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Glossary

Scaling limits A scaling limit denotes a procedure to re-
duce the degree of complexity of a large particle sys-
tem. It consists in scaling the space-time variables and,
possibly, other quantities (like the interaction potential
or the density), in order to obtain a more handable de-
scription of the same system. The initial space-time co-
ordinates are called microscopic, while the new ones,
those well suited for the description of kinetic or hy-
drodynamical systems, are calledmacroscopic.

Boltzmann equation It is an integro-differential kinetic
equation for the one particle distribution function in
the classical phase space (see Eq. (64) below). It arises
in some physical regimes, namely for a rarefied gas and
for a weakly interacting quantum dense gas.

Uehling–Uhlenbeck equation It is a Boltzmann type
equation taking into account corrections due to

the Bose–Einstein or the Fermi–Dirac statistics (see
Eq. (69) below). It holds in the weak-coupling limit.

Fokker–Planck–Landau equation It is a kinetic equation
diffusive in velocity (see Eq. (28) below). It arises in the
context of a weakly interacting classical dense gas.

Hydrodynamical equations They are evolution equa-
tions for macroscopic quantities like density, mean ve-
locity, temperature, and so on.

Low density limit Sometimes called Boltzmann–Grad
limit, it is a scaling limit in which the density is van-
ishing. Applied to classical particle systems it gives the
Boltzmann equation.

Weak coupling limit It is a scaling limit in which the den-
sity is constant but the interaction vanishes suitably.
Applied to a quantum particle systems it gives a Boltz-
mann equation. Applied to a classical particle systems
it gives the Fokker–Planck–Landau equation.

Hydrodynamic limit In this scaling we simply pass from
micro to macro variables. We look at the behavior of
suitable mean values, which are functions of the space
and the time. We expect them to behave in a hydrody-
namical way, namely to satisfy a set of hydrodynamical
equations.

Wigner transform It is the description of a quantum state
as a function in the classical phase space.

Definition of the Subject

Many interesting systems in Physics and Applied Sciences
are constituted by a large number of identical components
so that they are difficult to analyze from a mathematical
point of view. On the other hand, quite often, we are not
interested in a detailed description of the system but rather
to his global behavior. Therefore it is necessary to look for
all procedures leading to simplified models, retaining all
the interesting features of the original system, cutting away
unnecessary informations. This is exactly themethodology
of the Statistical Mechanics and the Kinetic Theory when
dealing with large particle systems.
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In this contribution we want to approach a problem
of this type, namely we try to outline the difficulties in
making rigorous the limiting procedure leading themicro-
scopic description of a large particle system (based on the
fundamental laws like Newton or Schrödinger equations)
to a more handable kinetic or hydrodynamic picture. Such
a transition depends on the space-time scale we choose to
describe the phenomenon. To fix the ideas we start by con-
sidering a system constituted byN identical classical point
particles of unitary mass. The Newton equations are:

d2

d�2
qi D

X

jD1:::N :
j¤i

F(qi � qj) ; (1)

where fq1 : : : qNg, qi 2 R3 are the position of the particles
and � is the time. Here F D �r� denotes the interpar-
ticle (conservative) force and � the two-body interaction
potential.

We now introduce a small parameter " > 0 express-
ing the ratio between themacroscopic and themicroscopic
scales. For instance " could denote the inverse ratio of
a typical distance between two molecules of a gas, mea-
sured in microscopic unities, and the same distance mea-
sured in meters. It can be as well the ratio between typ-
ical macroscopic and microscopic times. We now intro-
duce the new variables

x D "q t D "� :

Since we are interested in the macroscopic properties of
the system, namely in the evolution of macroscopic quan-
tities that are those varying on the (x; t) scale and hence
almost constant in the (q; �) scale, it is natural to rescale
also Eq. (1). We write

d2

dt2
xi D

1
"

X

jD1:::N :
j¤i

F

 xi � x j

"

�
: (2)

Up to now we did nothing else than an innocent change
of variables. However to obtain a non trivial description,
N has to diverge when "! 0, and we have to specify how.
Also additional hypotheses on the strength of the inter-
action, according to the physical situation at hand, may
be necessary. There are various possible scaling limits we
shall discuss below.

� The hydrodynamic limit
Here the system is dense, namely N D O("�3). For all
x 2 ˝ � R3, we consider a small box 
 around x.
In 
 there are a very large number of particles. We

denote the initial density, mean velocity and temper-
ature by (�0(x); u0(x); T0(x)). At a positive time t the
particles starts to interact. For a microscopic time �
the particles in 
 interact practically among them-
selves only (supposing a short range interaction) and,
if an ergodic property would hold, we expect that
they reach a thermal equilibrium state. We remind
that t D "� is essentially vanishing, therefore we ex-
pect that at macroscopic time t � 0 the particle are
distributed according to the Gibbs measure charac-
terized by the parameters (�0(x); u0(x); T0(x)), being
mass momentum and energy locally conserved. On
a larger time scale (t > 0) mass momentum and energy
are not locally conserved anymore. If a local equilib-
rium structure is preserved, the parameters of the equi-
libria (�(x; t); u(x; t); T(x; t)) will evolve according to
five equations which are the exactly the well known Eu-
ler equations for compressible gas.
This complex mechanism is very far to be proven rig-
orously, even for short times and initial regular data.
A heuristic derivation of the Euler equations in terms
of particle dynamics was first given byMorrey [35]. We
address the reader to [39] and [19] for further refer-
ences and comments.

� The low-density (Boltzmann–Grad) limit
Now we are dealing with a rarefied gas assuming
N D O("�2). This is the reason why this scaling is
called low-density. We assume also, just for simplic-
ity, that the interaction range of � is one. Consider
now a given test particle. If the gas is more or less ho-
mogeneous, the number of particles interacting with
this particle in a given (macroscopic) time interval is
O(N"2) D O(1). Therefore we expect a finite number
of collisions per unit time. Moreover each collision is
almost instantaneous so that each particle undergoes
a jump process in velocity.
We also assume that initially the particles are indepen-
dently distributed according to the one-particle distri-
bution on the phase space f0(x; v) (v is the velocity).
Of course the dynamics creates correlations so that,
strictly speaking, we expect that the particles, for ev-
ery positive time t, are not independently distributed
anymore. However the probability that a given pair of
particles interact is vanishing in the limit "! 0. There-
fore the statistical independence (called propagation of
chaos) is recovered in the same limit. In other words
we expect, for the time evolved distribution f (x; v; t),
a nonlinear evolution equation, which is the celebrated
Boltzmann equation discovered in 1872. This scaling
limit, often called the Boltzmann–Grad limit [25], has
been proved rigorously by Lanford [31] for a short time
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interval (see also [28] for a special case in which the
limit holds globally in time). We address the reader to
refs. [14,39] and [19] for additional comments and ref-
erences.

� The weak-coupling limit
Now the gas is dense because we assume N D O("�3),
however the particles are weakly interacting. This con-
dition is expressed by rescaling the interaction poten-
tial by setting

� !
p
"� :

After that the equation of motion (in macroscopic vari-
ables) become:

d2

dt2
xi D �

1
p
"

X

jD1:::N :
j¤i

r�

 xi � x j

"

�
: (3)

To have a vague idea of the behavior of a test particle in
this limit, we observe first that the velocity change due
to a single collision is


v � F
t � O("/
p
") D O(

p
") :

Here
t D O(") is the time in which the collision takes
place, � is assumed short-range in microscopic vari-
ables and then 1 /

p
" is the order of magnitude of the

force F.
The number of collisions per unit time is "2"�3 D "�1,
so that
X
j
vj2 D O(1) :

Therefore, provided that the propagation of chaos is
ensured, v D v(t) is expected to be not absolutely con-
tinuous in the limit and the one-particle distribution
function to satisfy a diffusion equation in velocity, the
Landau–Fokker–Planck equation.
The statistical independence at a positive time t is ex-
pected because the effect of the interaction between two
given particle is going to vanish in the limit "! 0.
Note that the physical meaning of the propagation of
chaos here is quite different from that arising in the
contest of the Boltzmann equation. Here two particles
can interact but the effect of the collision is small, while
in a low-density regime the effect of a collision between
two given particles is large but quite unlikely.
The above scalings make sense as well for quantum sys-
tems.What we expect in this case? Notice that the tran-
sition from micro to macro variables increase the fre-
quency of the quantum oscillations so that we are al-

ways in presence of a semiclassical limit as regards the
kinetic energy part of the Hamiltonian. However the
potential varies on the same scale of the oscillations.
As a consequence we face the following scenario. The
hydrodynamic limit of quantum systems yields the Eu-
ler equations for the equilibria parameters �; u; T . The
only difference with the classical case is that the rela-
tionship between the pressure and the hydrodynam-
ical fields, is that dictated by the Quantum Statistical
Mechanics. Indeed the local equilibrium is achieved at
a microscopic level and this is the only quantum effect
we expect to survive in the limit.
The situation is conceptually similar for the low density
limit: here we have the classical Boltzmann equation for
the one-particle distribution function. The only quan-
tum macroscopic effect is that the cross-section must
be computed in terms of the quantum scattering pro-
cess (see [6]).

Introduction

The hydrodynamical and the low density limits are rela-
tively more popular then the weak-coupling limit, which
will be, for that reason, the object of the present contribu-
tion. More precisely we analyze large classical and quan-
tum particle systems in the weak-coupling regime. We
show how we expect such systems to be well described
by the Landau–Fokker–Planck and the Boltzmann equa-
tions, for the classical and the quantum case respectively.
We also describe the effects of the Fermi–Dirac and Bose–
Einstein statistics.

Unfortunately our arguments we present here are
largely formal because the rigorous results we know up to
now, are few. A rigorous proof of the validity of the weak-
coupling limit, or a rigorous derivation of the correspond-
ing kinetic equations, is a challenging and still open prob-
lem.

In Sect. “Weak-Coupling Limit for Classical Systems”
we introduce and discuss the problem for classical systems,
presenting a formal proof of the validity of the Landau
equation.

In Sect. “Weak-Coupling Limit for Quantum Systems”
we pass to analyze the case of a quantum system, neglect-
ing the correlations due to the statistics. The case of Bosons
and Fermions is discussed in Sect. “Weak-Coupling Limit
in the Bose–Einstein and Fermi–Dirac Statistics”.

Finally, in Sect. “Weak-Coupling Limit for a Single
Particle: the Linear Theory” we briefly introduce and dis-
cuss the corresponding linear problems, namely the be-
havior of a single (classical or quantum) particle in a ran-
dom distribution of obstacles.
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Section “Future Directions” is devoted to concluding
remarks.

Weak-Coupling Limit for Classical Systems

We consider a classical system of N identical particles
of unitary mass. Rescaled positions and velocities are de-
noted by x1 : : : xN and v1 : : : vN . After having also rescaled
the potential in the following way

� !
p
"� ;

the Newton equations reads as

d
dt

xi D vi
d
dt

vi D �
1
p
"

X

jD1:::N :
j¤i

r�

 xi � x j

"

�
: (4)

We also assume that N D O("�3), namely the density is
O(1).

We are interested in the statistical behavior of the sys-
tem so that we introduce a probability distribution on the
phase space of the system,WN D WN(XN ;VN ), that is the
state at time zero. Here (XN ;VN ) denote the set of posi-
tions and velocities:

XN D (x1; : : : ; xN) VN D (v1; : : : ; vN ) :

Then from Eq. (4) we obtain the following Liouville equa-
tion

(@tCVN �rN )WN (XN ;VN ) D
1
p
"

�
T"NW

N(XN ;VN ) (5)

where VN � rN D
PN

iD1 vi � rxi and (@t C VN � rN ) is the
usual free stream operator. Also, we have introduced the
operator

(T"NW
N(XN ;VN ) D

X

0<k<`�N

(T"k;`W
N(XN ;VN ) ; (6)

with

T"k;`W
N D r�


 xk � x`
"

�
� (rvk � rv` )W

N : (7)

To investigate the limit "! 0 ; N D "�3, it is convenient
to introduce the BBKGY hierarchy (from Bogoliubov,
Born, Green, Kirkwood and Yvon, see e. g. [2] and [19]),
for the j-particle distributions defined as

f Nj (Xj;Vj) D
Z
dx jC1 : : :

Z
dxN

Z
dv jC1 : : :

Z
dvN

WN (Xj; x jC1 : : : xN ;Vj ; v jC1 : : : vN )
(8)

for j D 1; : : : ;N � 1. Obviously, we set f NN D WN .

From now on we shall suppose that, due to the fact that
the particles are identical, the function WN and f Nj which
we have introduced are all symmetric in the exchange of
particles.

A partial integration of the Liouville equation (5) and
standard manipulations give us the following hierarchy of
equations: (for 1 � j � N):
 

@tC

jX

kD1

vk �rk

!

f Nj D
1
p
"
T"j f

N
j C

N � j
p
"

C"jC1 f
N
jC1: (9)

The operator C"jC1 is defined as:

C"jC1 D

jX

kD1

C"k; jC1 ; (10)

and

C"k; jC1 f jC1(x1 : : : x j; v1 : : : v j)

D �

Z
dx jC1

Z
dv jC1F


 xk � x`
"

�

�rvk f jC1(x1; x2; : : : ; x jC1; v1; : : : ; v jC1) :

(11)

C"k; jC1 describes the “collision” of particle k, belonging to
the j-particle subsystem, with a particle outside the sub-
system, conventionally denoted by the number jC 1 (this
numbering uses the fact that all particles are identical). The
total operator C"jC1 takes into account all such collisions.
The dynamics of the j-particle subsystem is governed by
three effects: the free-stream operator, the “recollisions”,
i. e. the collisions “inside” the subsystem, given by the T
term, and the “creations”, i. e. the collisions with particles
“outside” the subsystem, given by the C term.

We finally fix the initial value f f 0j g
N
jD1 of the solution

f f Nj (t)gNjD1 assuming that f f 0j g
N
jD1 is factorized, that is, for

all j D 1; : : : N

f 0j D f˝ j
0 ; (12)

where f 0 is a given one-particle distribution function. This
means that any pair of particles are statistically uncorre-
lated at time zero. Of course such a statistical indepen-
dence is destroyed at time t > 0 and Eq. (9) shows that
the time evolution of f N1 is determined by the knowledge
of f N2 which turns out to be dependent on f N3 and so on.
However, since the interaction between two given parti-
cle is going to vanish in the limit "! 0, we can hope
that such statistical independence, namely the factoriza-
tion property (12), is recovered in the same limit.

Therefore we expect that in the limit "! 0 the one-
particle distribution function f N1 converges to the solution
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of a suitable nonlinear kinetic equation f which we are go-
ing to investigate.

If we expand f Nj (t) as a perturbation of the free flow
S(t) defined as

(S(t) f j)(Xj;Vj ) D f j(Xj � Vj t;Vj) ; (13)

we find

f Nj (t) D S(t) f 0j C
N � j
p
"

Z t

0
S(t � t1)C"jC1 f

N
jC1(t1)dt1

C
1
p
"

Z t

0
S(t � t1)T"j f

N
j (t1)dt1 :

(14)

We now try to keep informations on the limit behav-
ior of f Nj (t). Assuming for the moment that the time
evolved j-particle distributions f Nj (t) are smooth (in the
sense that the derivatives are uniformly bounded in "),
then

C"jC1 f
N
jC1(Xj;Vj ; t1) D �"3

jX

kD1

Z
dr
Z

dv jC1F(r)

�rvk f jC1(Xj; xk � "r;Vj ; v jC1; t1) :

(15)

Assuming now, quite reasonably, that
Z

drF(r) D 0 ; (16)

we find that

C"jC1 f
N
jC1(Xj;Vj ; t1) D O("4)

provided that D2
v f NjC1 is uniformly bounded. Since

N � j
p
"
D O("

7
2 )

we see that the second term in the right hand side of (14)
does not give any contribution in the limit. Moreover

Z t

0
S(t � t1)T"j f

N
j (t1)dt1 D

X

i¤k

Z t

0
dt1

� F

 
(xi � xk) � (vi � vk)(t � t1)

"

!

g(Xj;Vj ; t1) ;

(17)

where g is a smooth function.
Obviously the above time integral is O(") so that also

the last term in the right hand side of (14) does not give

Scaling Limits of Large Systems of Non-linear Partial Differential
Equations, Figure 1
The collision sequence (1;2); (1;3); (1;3); (2;3)

any contribution in the limit. Then we are facing the alter-
native: either the limit is trivial or the time evolved distri-
butions are not smooth. However we believe that the limit
is not trivial (actually we expect to get a diffusion equation,
according to the previous discussion) and a rigorous proof
of this fact seems problematic.

The difficulty in obtaining a-priori estimates induce us
to exploit the full series expansion of the solution, namely

f N1 (t)

D
X

n�0

X

Gn

K(Gn)
Z t

0
dt1

Z t1

0
dt2 : : :

Z tn�1

0
dtn

�
�
S(t � t1)O1S(t1 � t2) : : :OnS(tn)

�
f 0m :

(18)

Here Oj is either an operator C or T expressing a creation
of a new particle or a recollision between two particles re-
spectively. Gn is a graph namely a sequence of indices

(r1; l1); (r2; l2); : : : (rn ; ln)

where (r j ; l j); r j < l j are the pair of indices of the particles
involved in the interaction at time tj . The number of parti-
cles created in the process ism � 1. It is convenient to rep-
resent the generic graph in the following way, as in Fig. 1.

The legs of the graph denotes the particles and the
nodes the creation of new particles (operators C). Recolli-
sions (operators T) are represented by horizontal link. For
instance the graph in figure is (1; 2); (1; 3); (1; 3); (2; 3);
m D 3 and the integrand in Eq. (18) is in this case

�
S(t � t1)C1;2S(t1 � t2)C1;3S(t2 � t3)T1;3

�S(t3 � t4)T2;3S(t4)
�
f 03 :

(19)
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Note that the knowledge of the graph determines com-
pletely the sequence of operators in the right hand side
of (20).

Finally the factor K(Gn) takes into account the diver-
gences:

K(Gn) D O


"
�
n
2 "�3(m�1)

�
: (20)

We are not able to analyze the asymptotic behavior of each
term of the expansion (18) however we can compute the
limit for "! 0 of the few terms up to the second order (in
time). We have:

gN (x1; v1; t) D f 0(x1 � v1t; v1)C
N � 1
p
"

Z t

0
S(t � t1)

�C"1;2S(t1) f
0
2 dt1 C

(N � 1)
"

(N � 2)
"

X

jD1;2

Z t1

0
dt2

�S(t � t1)C"1;2S(t1 � t2)C"j;3S(t2) f
0
3 C

N � 1
"

Z t

0
dt1

�

Z t1

0
dt2 S(t � t1)C"1;2S(t1 � t2)T"1;2S(t2) f

0
2 :

(21)

Here the right hand side of (21) defines gN .
The second and third term in (21) corresponding to

the graphs shown in Fig. 2 are indeed vanishing as follows
by the use of the previous arguments.

The most interesting term is the last one, shown in
Fig. 3.

Scaling Limits of Large Systems of Non-linear Partial Differential
Equations, Figure 2
The vanishing terms in the expansion of gN

Scaling Limits of Large Systems of Non-linear Partial Differential
Equations, Figure 3
The first non vanishing terms in the expansion of gN

To handle this term we denote by w D v1 � v2 the rel-
ative velocity and note that, for a given function u:

S(t1 � t2)T"1;2u(x1; x2; v1; v2)

D �F

 
(x1 � x2) � w(t1 � t2)

"

!

� [(rv1 � rv2 )u]

� (x1 � v1(t1 � t2); x2 � v2(t1 � t2); v1; v2)

D �F

 
(x1 � x2) � w(t � t1)

"

!

� (rv1 � rv2 C (t1 � t2)

� (rx1 � rx2 ))S(t1 � t2)u(x1; x2; v1; v2) :
(22)

Therefore the last term in the r.h.s. of (22) is

N � 1
"

Z t

0
dt1 S(t � t1)

Z t1

0
dt2

Z
dx2

Z
dv2 (23)

F

 x1 � x2

"

�
� rv1F

�
(x1 � x2) � w(t1 � t2)

"

�

� (rv1 � rv2 C (t1 � t2)(rx1 � rx2 ))

� S(t1) f 02 (x1; x2; v1; v2) :

Setting now r D x1�x2
"

and s D t1�t2
"

then

gN (x1; v1; t) D (N � 1)"3
Z t

0
dt1

Z t1
"

0
ds
Z

dr

�

Z
dv2 F(r) � rv1

F(r � ws) � (rv1 � rv2 C "s(rx1 � rx2 ))

� S(t1 � "s) f 02 (x1; x2; v1; v2)C O(
p
") :

(24)

The formal limit is of (21) is

g(x1; v1; t) D
Z t

0
dt1

Z
dv2 S(t � t1)rv1 a(v1 � v2)

� (rv1 � rv2 ) S(t1) f
0
2 ; (25)

where (using F(r) D �F(�r)) the matrix a is given by:

a(w) D
Z

dr
Z C1

0
ds F(r)˝ F(r � ws) D

1
2

Z
dr

�

Z C1

�1

ds F(r)˝ F(r � ws)
1
2

1
(2�)3

Z C1

�1

ds

�

Z
dk k ˝ k �̂(k)2ei(w �k)s D

1
(8�)2

Z
dk k ˝ k �̂(k)2

� ı(w � k) D
A
jwj3

(jwj2Id � w ˝ w);

(26)
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where �̂(k) D
R
e�i l �x�(x)dx. Here the interaction poten-

tial � has been assumed spherically symmetric and:

AD
1
8�

Z C1

0
dr r3�̂(r)2 : (27)

Looking at Eq. (25) we are led to introduce the following
nonlinear equation:

(@t C v � rx ) f D QL( f ; f ) (28)

with the collision operator QL given by:

QL( f ; f )(v) D
Z

dv1 �rv
h
a(v�v1) (rv�rv1 ) f (v) f (v1)

i
:

(29)

Here x plays the role of a parameter and hence his depen-
dence is omitted.

Equation (28) is called the Fokker–Planck–Landau
equation (Landau equation in the sequel) and has been in-
troduced by Landau in the study of a dense, weakly inter-
acting gas (see [32]).

From (28) we obtain the following (infinite) hierarchy
of equations

(@t C Vj � rX j ) f j D CjC1 f jC1 (30)

for the quantities:

f j(t) D f (t)˝ j (31)

where f (t) solves Eq. (28). Accordingly CjC1 DP
k Ck; jC1 where

Ck; jC1 f jC1(x1 : : : x j; v1 : : : v j)

D
Y

r¤k

f (xr ; vr )QL( f ; f )(xk ; vk) : (32)

Therefore f has the following series expansion representa-
tion

f (t) D
X

n�0

Z t

0
dt1

Z t1

0
dt2 : : :

Z tn�1

0
dtn

�
�
S(t � t1)C2S(t1 � t2)C3 : : : Cn�1S(tn)

�
f 0nC1 :

(33)

The previous calculation shows the formal convergence
of gN to the term with n D 1 of the expansion (33), namely
we have an agreement between the particle system (18)
and the solution to the Landau equation (33) at least up to
the first order in time (second order in the potential). Al-

Scaling Limits of Large Systems of Non-linear Partial Differential
Equations, Figure 4
The collision-recollision sequence (1;2); (1;2); (1;3); (1;3);
(2;4); (2; 4)

though the above arguments can be made rigorous, under
suitable assumption on the initial condition f 0 and the po-
tential � , it seems difficult to show the convergence of the
whole series. On the other hand it is clear that the graphs
which should contribute in the limit are those formed by
a collision-recollision sequence, like that shown in Fig. 4.
For those terms it is probably possible to show the conver-
gence. For instance the case in figure has the asymptotics

Z t

0
dt1

Z t1

0
dt2

Z t2

0
dt3
�
S(t � t1)C1;2S(t1 � t2)

�C1;3S(t2 � t3)C2;4S(t3)
�
f 04 :

(34)

However the proof that all other graphs are vanishing in
the limit is not easy. Even more difficult is a uniform con-
trol of the series expansion (18), even for short times. As
we shall see in the next section, somethingmore can be ob-
tained for quantum systems under the same scaling limit.

Some comments are in order.
In the present section we showed how the Landau

equation is expected to be derived in the weak-coupling
limit from a particle system. In doing this we essentially
followed the monograph [2]. This is not however the usual
way in which the Landau equation is introduced in the lit-
erature. Indeed it is usually recovered from the Boltzmann
equation. when the density increases and the grazing col-
lisions become dominant. In particular, the case of the
homogeneous Boltzmann equation has been investigated
in [1,24,44] (see also [15] for the Coulomb potential case,
and see the general survey [43]). In [1] the authors show
that, under suitable assumptions on the cross-section, the
diffusion Fokker–Planck–Landau equation (28) can in-
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deed be derived. The diffusion operator is the form (29)
but with a matrix a given by

a(w) D ˛(jwj)(jwj2Id � w ˝ w) ;

with ˛ smooth function. Next in [24] and [44] steps for-
ward were performed to arrive to cover the case ˛(jwj) �
1/jwj� for small jwj, with � < 1. We remark that the dif-
fusion coefficient found in this way is different from that
derived here in (26).

We conclude by observing that the Landau equation
describes a genuine kinetic evolution. Mass, momentum
and energy are conserved, while the kinetic entropy is de-
creasing. The equilibrium is Maxwellian. The difficulties
in the validation problem are certainly related to the tran-
sition from a reversible (hamiltonian) dynamics to an irre-
versible one, as for the Boltzmann equation. Here we tried
to compare the two series expansions as in the Lanford’s
validation proof for the Boltzmann equation. This is a sort
of Cauchy–Kowalevski brute force argumentwhich works,
as well, for negative times. It is clear that, in this way, we
cannot go beyond a short time result and even this seems
not trivial at all. Other approaches making use of the diffu-
sive nature of the motion of a test particle are, at moment,
absent. However the weak-coupling limit of a single par-
ticle in a random distribution of scatterers is well under-
stood as we shall discuss later in Sect. “TheWeak Coupling
Limit for a Single Particle: the Linear Theory”.

Weak-Coupling Limit for Quantum Systems

We consider the quantum analog of the system considered
in Sect. “Introduction”, namely N identical quantum par-
ticles with unitary mass in R3. In the present section the
statistical nature of the particles will be ignored.

The interaction between particles is still a two-body
potential � so that the total potential energy is taken as

U(x1 : : : xN) D
X

i< j

�(xi � x j) : (35)

The associated Schrödinger equation reads

i@t� (XN ; t) D � 1
2
N� (XN ; t)CU(XN )� (XN ; t); (36)

where
N D
PN

iD1
i ,
i is the Laplacian with respect to
the xi variables, XN D (x1; : : : ; xN ) and ¯ is normalized to
unity.

As for the classical system considered in Sect.“ Intro-
duction” we rescale the equation and the potential by

x ! "x ; t ! "t ; � !
p
"� : (37)

The resulting equation is,

i"@t� "(XN ; t) D �
"2

2

N�

"(XN ; t)CU"(XN )� "(XN ; t);

(38)

where:

U"(x1 : : : xN) D
p
"
X

i< j

�

 xi � x j

"

�
: (39)

Wewant to analyze the limit "! 0 in the above equations,
when N D "�3.

Note that this limit looks, at a first sight, similar to
a semiclassical (or high frequency) limit. It is not so: in-
deed the potential varies on the same scale of the typical
oscillations of the wave functions so that the scattering
process is a genuine quantum process. Obviously, due to
the oscillations, we do not expect that the wave function
does converge to something in the limit. The right quan-
tity to look at was introduced by Wigner in 1922 [45] to
deal with kinetic problems. It is called the Wigner trans-
form (of � ") and is defined as

WN (XN ;VN ) D
�

1
2�

�3N Z
dYN eiYN �VN�

"

�(XN C
"

2
YN )� "(XN �

"

2
YN ) : (40)

The Wigner transformWN satisfies a transport-like equa-
tion, completely equivalent to the Schrödinger equation:

(@t CVN � rN )WN (XN ;VN ) D
1
p
"

�
T"NW

N(XN ;VN ):

(41)

The operator T"N on the right-hand-side of (38) plays the
same role of the classical operator denoted with the same
symbol in Sect. “Introduction”. It is

(T"NW
N(XN ;VN ) D

X

0<k<`�N

(T"k;`W
N(XN ;VN ); (42)

where each T"k;` describes the interaction of particle k with
particle `

(T"k;`W
N(XN ;VN ) D

1
i

�
1

(2�)3N

Z
dYNdV 0N

�eiYN �(VN�V 0N )
h
�

 xk � x`

"
�

yk � y`
2

��

��

 xk � x`

"
C

yk � y`
2

� i
WN (XN ;V 0N ) : (43)
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Equivalently, we may write

(T"k;`W
N(XN ;VN ) D �i

X


D˙1

�

Z
dh

(2�)3
�̂(h)

�ei
h
"
(xk�x`)WN (x1; : : : ; xN ; v1; : : : ; vk � �

h
2
;

: : : ; v` C �
h
2
; : : : ; vN ) : (44)

Note that T"k;` is a pseudodifferential operator which
formally converge, at fixed ", for „ ! 0 (here „ D 1)
to its classical analog given by Eq. (7). Note also that
in (44), “collisions” may take place between distant parti-
cles (xk ¤ x`). However, such distant collisions are penal-
ized by the highly oscillatory factor exp(ih(xk � x`) / ").
These oscillations turn out to play a crucial role through-
out the analysis, and they explain why collisions tend to
happen when xk D x` in the limit "! 0.

The formalism we have introduced is formally similar
to the classical case so that we proceed as before by trans-
forming Eq. (38) into a hierarchy of equations. We intro-
duce the partial traces of the Wigner transform WN , de-
noted by f Nj . They are defined through the following for-
mula, valid for j D 1; : : : ;N � 1:

f Nj (Xj;Vj) D
Z

dx jC1 : : :

Z
dxN

Z
dv jC1 : : :

Z
dvN

WN(Xj; x jC1 : : : xN ;Vj ; v jC1 : : : vN) :
(45)

Obviously, we set f NN DWN . The function f Nj is the
kinetic object that describes the state of the j particles sub-
system at time t.

As before, the wave function � , as well WN and f Nj ,
are assumed to be symmetric in the exchange of particle,
a property that is preserved in time.

Proceeding then as in the derivation of the BBKGY hi-
erarchy for classical systems, we readily transform Eq. (38)
into the following hierarchy:

(@t C
jX

kD1

vk � rk) f Nj (Xj;Vj)

D
1
p
"
T"j f

N
j C

N � j
p
"

C"jC1 f
N
jC1 ; (46)

where

C"jC1 D

jX

kD1

C"k; jC1 ; (47)

and C"k; jC1 is defined by

C"k; jC1 f
N
jC1(Xj;Vj) D �i

X


D˙1

�

Z
dh

(2�)3

Z
dx jC1

�

Z
dv jC1 �̂(h) ei

h
" (xk�x jC1)

f NjC1

�
x1; x2; : : : ; x jC1; v1; : : : ; vk � �

h
2
;

: : : ; v jC1 C �
h
2

�
:

(48)

As before the initial value f f 0j g
N
jD1 is assumed com-

pletely factorized: for all j D 1; : : : ;N , we suppose

f 0j D f˝ j
0 ; (49)

where f 0 is a one-particle Wigner function, and f 0 is as-
sumed to be a probability distribution.

In the limit "! 0, we expect that the j-particle dis-
tribution function f Nj (t), that solves the hierarchy (46)
with initial data (49), tends to be factorized for all times:
f Nj (t) � f (t)˝ j (propagation of chaos).

As for the classical case, if f jC1 is smooth:

C"k; jC1 f
N
jC1(Xj;Vj) D �i"3

X


D˙1

�

Z
dh

(2�)3
�̂(h)

�

Z
dr
Z

dv jC1 ei h�r

f NjC1

�
Xj; xk � "r; v1; : : : ; vk � �

h
2
; : : : ; v jC1 C �

h
2

�

D O("4) : (50)

Indeed, setting " D 0 in the integrand, the integration
over r produces ı(h). As a consequence the integrand is
independent on � and the sum vanishes. Therefore the in-
tegral is O("). Also

1
p
"

Z t

0
dt1 S(t � t1)Tr;k f Nj (t1) D

�i
X


D˙1

�

Z t

0
dt1

dh
(2�)3

�̂(h)ei
h
" �(xr�xk )�(vr�vk )(t�t1)

� f Nj (Xj � Vj(t � t1);Vj ; t1)

(51)

is weakly vanishing, by a stationary phase argument
(see [4]). Therefore, as for the classical case, we analyze
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the asymptotics of the collision-recollision term (shown in
Fig. 1):

�
N � 1
"

Z t

0
dt1

Z t1

0
d�1 �S(t�t1)C1;2S(t1��1)T1;2S(�1) f 02 :

(52)

Explicitly it looks as:

�
N � 1
"

X


;
 0D˙1

�� 0
Z t

0
dt1

Z t1

0
d�1

Z
dx2

Z
dv2

�

Z
dh

(2�)3

Z
dk

(2�)3
�̂(h) �̂(k) ei

h
" �
�
x1�x2�v1(t�t1)



�ei
k
" �
�
x1�x2�v1(t�t1)�(v1�v2�
h)(t1��1)


f 02

�
x1 � v1t

C�
h
2
t1 C � 0

k
2
�1; x2 � v2t1 � �

h
2
t1 � � 0

k
2
�1;

v1 � �
h
2
� � 0

k
2
; v2 C �

h
2
C � 0

k
2

�
:

(53)

By the change of variables:

t1��1 D "s1 ; (i. e. �1 D t1�"s1) ; � D (hC k)/" ; (54)

we have

(54) D �(N � 1) "3
X


;
 0D˙1

�� 0
Z t

0
dt1

Z t1/"

0
ds1

�

Z
dx2 dv2

d�
(2�)3

dk
(2�)3

�̂(�k C "�1) �̂(k)

� ei��
�
x1�x2�v1(t�t1)


e�i s1k�(v1�v2�
(�kC"�)) f 0jC1(: : : ) ;

(55)

In the limit "! 0, the above formula gives the asymp-
totics

(52) �
"!0
�

X


;
 0D˙1

�� 0
Z t

0
dt1

Z
dv2

dk
(2�)3

j�̂(k)j2

�

 Z C1

0
e�i s1k�(v1�v2C
 k)ds1

!

� f 02

 

x1 � v1t � (� � � 0)
k
2
t1;

x1 � v1(t � t1)� v2t1 C (� � � 0)
k
2
t1; v1 C (� � � 0)

k
2
;

v2 � (� � � 0)
k
2

!

:

(56)

In [4], we completely justify formula (56) and its forth-
coming consequences.

Now, we turn to identifying the limiting value obtained
in (56). To do so, we observe that symmetry arguments
allow us to replace the integral in s by its real part:

Re
Z 1

0
e�i s1k�(v1�v2C
 k)ds1 D �ı(k�(v1�v2C�k)): (57)

Using this we realize that the contribution � D �� 0 in (56)
gives rise to the gain term:

Z t

0
dt1

Z
dv2

Z
d! B

�
!; v1 � v2


f 02
�
x1 � v1(t � t1)

�v01t1; x2 � v2(t � t1)� v02t1; v
0
1; v
0
2

;

(58)

where the integral in ! is on the surface of the unitary
sphere inR3, and

B(!; v) D
1

8�2 j! � vj j�̂(! (! � v))j2; (59)

and the velocities v01, v
0
2 are

v01 D v1�!(! � (v2 � v1) ; v02 D v2C!(! � (v2 � v1) :

Similarly, the term � D � 0 in (5) yields the loss term:
Z t

0
dt1

Z
dv2

Z
d! B(!; v1 � v2)

� f 02 (x1 � v1t; x2 � v2(t � t); v1; v2) :
(60)

By the same arguments used in the previous section we can
conclude that the full series expansion (20) (of course for
the present quantum case) agrees, up to the second order
in the potential, with

S(t) f0 C
Z t

0
dt1 S(t � t1)Q(S(t1) f0; S(t1) f0) (61)

where

Q( f ; f ) D
1

4�2

Z
dv1

Z
dh j�̂(h)j2ı((h � (v � v1 C h))

�[ f (v C h) f (v1 � h) � f (v) f (v1)] D
Z

dv1
Z

d!

�B(!; v � v1)[ f 0 f 01 � f f1] ;
(62)

with

f1 D f (v1) ; f 0 D f (v0) ; f 01 D f (v01) ;
v0 D v C h D v � !(! � (v � v1)) ;
v01 D v1 � h D v1 C !(! � (v � v1)) :

(63)
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In other words the kinetic equation which comes out is the
Boltzmann equation with cross-section B:

(@t C v � rx ) f D Q( f ; f ) ; (64)

whereQ is given by Eq. (62). We note once more that the ı
function in Eq. (62) expresses the energy conservation,
while the momentum conservation is automatically satis-
fied. Note also that the cross-section B is the only quantum
factor in the purely classical expression (62). It retains the
quantum features of the elementary “collisions”.

An important comment is in order. Why the kinetic
equation for quantum systems is of Boltzmann type in
contrast with the classical case where we got a diffusion?
The answer is related to the asymptotics of a single scat-
tering (see [36,37] and [8]). For quantum systems we have
a finite probability of having any angle scattering, while
for a classical particle, we surely have a small deviation
from the freemotion. Therefore a quantumparticle, in this
asymptotic regime, is going to perform a jump process (in
velocity) rather than a diffusion.

From a mathematical view point we observe that [4]
proves more than agreement up to second order. We in-
deed consider the subseries (of the full series expansion
expressing f Nj (t)) formed by all the collision–recollision
terms (as that shown in Fig. 3). In other words, we con-
sider the subseries of f Nj (t) given by

X

n�1

X

r1;:::;rn ;l1;:::;ln

"�4n
Z t

0
dt1

Z t1

0
d�1 S(t � t1)C"r1;l1

�S(t1 � �1)T"r1;l1

Z �n�1

0
dtn

Z tn

0
d�n S(�n�1 � tn)C"rn ;ln

�S(tn � �n)T"rn ;ln S(�n) f
0
jCnC1 :

(65)

Here the sum runs over all possible choices of the parti-
cles number r’s and l’s, namely we sum over the subset of
graph of the form in Fig. 4.We establish in [4] that the sub-
series (65) is indeed absolutely convergent, for short times,
uniformly in ". Moreover, we prove that it approaches
the corresponding complete series expansion obtained by
solving iteratively the Boltzmann equation with collision
operator given by Eq. (62) extending and making rigorous
the above argument.

Under reasonable smoothness hypotheses on the po-
tential and on the initial distribution, assuming in addition
that �̂(0) D 0, we also proved in [7], that all other terms
than those considered in the subseries (65) are indeed van-
ishing in the limit. The condition �̂(0) D 0 is probably
only technical: it takes care automatically of some diver-
gences which are difficult to deal with differently.

Unfortunately this result, even under these severe as-
sumptions on the potential, is not yet conclusive because
we are not able to show a uniform bound on the full series.
Thus a mathematical justification of the quantum Boltz-
mann equation is a still an open and difficult problem.

It is not surprising that we know more for the quan-
tum case in comparison with the classical problem intro-
duced in Sect. “Introduction”. Now the operators involved
are differences while, for the classical case, we have to deal
with derivatives. Introducing explicitly the ¯ dependence,
we easily realize that the results discussed in the present
section are not uniform in ¯.

Weak-Coupling Limit in the Bose–Einstein
and Fermi–Dirac Statistics

In this section we approach the same problem as in
Sect. “Weak-Coupling Limit for Classical Systems”, for
Bosons or Fermions, namely for particles obeying the
Fermi–Dirac or Bose–Einstein statistics. As we shall see,
the kinetic equation we expect to hold in the limit, is the so
called Uehling and Uhlembeck equation, which is a Boltz-
mann type equation, with cubic collision operator. We
note that the effects of the quantum correction here, en-
ter also in the structure of the operator.

In this case, the starting point is still the rescaled
Schrödinger equation (38), or the equivalent hierar-
chy (46). The only new point is that we cannot take a to-
tally decorrelated initial datum as in (49). Indeed, the
Fermi–Dirac or Bose–Einstein statistics yield correlations
even at time zero. In this perspective, the most uncorre-
lated states one can introduce, and that do not violate the
Fermi–Dirac or Bose–Einstein statistics, are the so called
quasi-free states. They have, in terms of the Wigner for-
malism, the following form

f j(x1; v1; : : : ; x j; v j) D
X

	2P j

� s(	) f 	j (x1; v1; : : : ; x j; v j) ;

(66)

where each f 	j has the value

f 	j (x1; v1; : : : ; x j; v j) D
Z

dy1 : : : dy j
Z

dw1 : : : dwj

� ei(y1�v1C���Cy j �v j)
jY

kD1

e�
i
"
wk �(xk�x
(k))

� e�
i
2wk �(ykCy
(k)) f

�
xk C x	(k)

2
C "

yk � y	(k)
4

;wk

�
;

(67)
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and f is a given one-particle Wigner function. Here P j de-
notes the group of all the permutations of j objects and �
its generic element.

Note that the uncorrelated case treated in Sect. “Weak-
Coupling Limit for Classical Systems”, is recovered by the
contribution due the permutation � D identity.

To verify that (66) and (67) really describe admissible
states for the statistics, consider the inverse Wigner trans-
form of (66) and (67). The density matrix obtained in this
way does verify the permutation invariance required by
the statistics.

Moreover the quasi-free states converge weakly to the
completely factorized states as "! 0. This is physically
obvious because the quantum statistics become irrelevant
in the semiclassical limit. However the dynamics take place
on the scale " so that the effects of the statistics are present
in the limit. Indeed it is expected that the one-particle dis-
tribution function f N1 (t) converges to the solution of the
following cubic Boltzmann equation:

(@t C v � rx ) f (x; v; t) D Q� ( f )(x; v; t) ; (68)

Q� ( f )(x; v; t) D
Z

dv1 d! B� (!; v � v1)

�
�
f (x; v0) f (x; v01)(1C 8�3� f (x; v))(1C 8�3� f (x; v1))

� f (x; v) f (x; v1)(1C 8�3� f (x; v0)(1C 8�3� f (x; v01))
�
;

(69)

(for the notations see Eq. (63)). Here � D C1 or � D �1,
for the Bose–Einstein or the Fermi–Dirac statistics respec-
tively. Finally, B� is the symmetrized or antisymmetrized
cross-section derived from B (see (59)) in a natural way:

B� (!; v) D
1

16�2 j! � vj

�
�
�̂(! (! � v))C ��̂(v � ! (! � v))

�2
:

As we see, the modification of the statistics trans-
forms the quadratic Boltzmann equation of the Maxwell–
Boltzmann case, into a cubic one (fourth order terms can-
cel). Also, the statistics affects the form of the cross-section
and B has to be (anti)symmetrized into B� .

The collision operator (69) has been introduced by
Nordheim in 1928 [38] and by Uehling–Uhlenbeck in
1933 on the basis of purely phenomenological consider-
ations [42].

Plugging in the hierarchy (46) an initial datum satis-
fying (66), we can follow the same procedure as for the
Maxwell–Boltzmann statistics, namely we write the full
perturbative series expansion expressing f Nj (t) in terms
of the initial datum and try to analyze its asymptotic
behavior.

As we did before, we first restrict our attention to those
terms of degree less than two in the potential.

The analysis up to second order is performed in [5].
We actually recover here Eq. (68), (69) with the suitable
B� . Now the number of terms to control is much larger
due to the sum over all permutations that enters the defini-
tion (66) of the initial state. Also, the asymptotics is much
more delicate. In particular, we stress the fact that the ini-
tial datum brings its own highly oscillatory factors in the
process, contrary to the Maxwell–Boltzmann case where
the initial datum is uniformly smooth, and where the oscil-
latory factors simply come from the collision operators T
and C.

In [5] we consider the graphs of second order in �̂,
show in Fig. 5, which, because of the permutation of ini-
tial state, yields various terms: two of them are bilin-
ear in the initial condition f 0 (C12T12), and give in the
limit the part of Q� quadratic in f , twelve are cubic in
f0(C12C13; C12C23). Due to a non-stationary phase argu-
ment the two terms with permutation � D id D (123)
vanish, as that the term with � D (321) for C12C13, and
the term with � D (132) for C12C23. The two terms with
� D (321) give rise to truly diverging contributions (nega-
tive powers of "), however their sum is seen to cancel. Last,
permutations without fixed point (� D (312); (231)) and
� D (132) for C12C13, and � D (321) for C12C23, give the
part ofQ� cubic in f . This ends up the analysis of terms up
to second order in the potential.

The computation is heavy and hence we address the
reader to [5] for the details.

We mention that a similar second order analysis, us-
ing commutator expansions in the framework of the sec-
ond quantization formalism, has been performed in [27]
(following [26]) in the case of the van Hove limit for lat-
tice systems (that is the same as the weak-coupling limit,
yet without rescaling the distances). For more recent for-
mal results in this direction, but in the context of the weak-
coupling limit, we also quote [21].

We finally observe that the initial value problem for
Eq. (68) is somehow trivial for Fermions. Indeed we have
the a priori bounds f � 1 / (8�)3 making everything easy.
For Bosons the situation is much more involved even for
the spatially homogeneous case. The statistics favor large
value of f and it is not clear whether the equation can ex-
plain dynamical condensation. See, for the mathematical
side, [33,34].

Under the weak coupling limit we derived two very dif-
ferent equations, the Fokker–Planck–Landau equation in
the classical case, and a Boltzmann equation with a quan-
tum cross section in the quantum case. For the original
large particle system a classical or a quantum description
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Scaling Limits of Large Systems of Non-linear Partial Differential Equations, Figure 5
The three graphs of second order with the statistical permutations

depends on the value of the physical scales of the macro-
scopic variables with respect to ¯. The same happen for
the two asymptotic equations. The dependence on ¯ of the
collision term (69) is given by

QUU ( f )(v) D
1

16�2„4

Z
dv1

Z
d!

�
�̂


! (!�w)
„

�

C ��̂


w�! (!�w)
„

� �2
f(1˙ (2�„)3 f )(1˙ (2�„)3 f1)

� f 0 f 01 � (1˙ (2�„)3 f 0)(1˙ (2�„)3 f 01) f f1g :
(70)

The quantum-cross section term �̂(! (! � (v � v1)) /„)
make ! � (v � v1) D O(„), so that the collision operator
concentrates on grazing collisions. In this sense, the classi-
cal limit „ ! 0 for (70) is a natural grazing collision limit.
More formally, the operator (70) tends to the operator QL
given in Eq. (29) (see [9]); nevertheless no results are avail-
able for the limit of the solutions of the equations.

We conclude this section with some consideration on
the low-density limit.

In the classical case the low-density limit (or the Boltz-
mann–Grad limit) yields the usual Boltzmann equation
for classical systems and this result has been proved for
short times [31]. It is natural to investigate what happens,
in the same scaling limit, to a quantum system. Here, due
to the fact that the density is vanishing, the particles are too
rare to make the statistical correlations effective. As a con-
sequence, we expect that the Bose–Einstein, and Fermi–
Dirac statistics, as well fully uncorrelated states, all give
rise to the same Boltzmann equation along the low-den-

sity limit with the true quantum cross-section, given by the
sum of the Born series, under smallness assumption for the
potential. The analysis of the partial series of the dominant
terms (uniform bounds and convergence as for the weak-
coupling limit) has been performed in [6].

Weak-Coupling Limit for a Single Particle:
The Linear Theory

Consider the time evolution of a single particle, in the low-
density or in the weak-coupling regime, under the action
of a random configuration of obstacles c D fc1 : : : cN g �
R3N .

More precisely, after the rescaling, the basic equations
are:

ẋ(t) D v(t) ; v̇(t) D �
X

j

r�"(x(t) � c j) (71)

for a classical particle and, for a quantum particle,

i"@t D �
"2

2

 C

X

j

�"(x(t) � c j) ; (72)

where �" D �( x" ) and �" D
p
"�( x

"
) for the low-density

and weak-coupling limits respectively. Here � denotes
a given smooth potential.

We are interested in the behavior of

f"(x; v; t) D E[ fc(x; v; t)] (73)

where fc(t) is the time evolved classical distribution func-
tion or the Wigner transform of  according to Eq. (71)
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or (72) respectively. FinallyE denotes the expectation with
respect to the obstacle distribution, for which, a natural
choice could be the Poisson distribution of density �"
which is also scaled according to

�" D "
�2 ; �" D "

�3

for the low-density and weak-coupling respectively.
For the low-density scaling (this is the so called

Lorentz model), we obtain, for classical systems, a linear
Boltzmann equation (see [3,13,17,23,40]). It is also known
that the system does not homogenize to a jump process
given by a linear Boltzmann equation in case of a periodic
distribution of obstacles [10]. For recent results in this di-
rection see [11].

For the weak-coupling limit of a classical particle we
obtain a linear Landau equation as it is shown in [29]
and [16].

Let us spend a few words on these results. Each solu-
tion (x(t); y(t)) D (xc(t); vc(t)) of Eq. (71) is a sample of
a stochastic process. Looking at the behavior of vc(t) we
suddenly realize that it does not enjoy the Markov prop-
erty because, once an obstacle produces a change in veloc-
ity, we know its existence and this creates time correlations
with the future behavior of the particle. However if a recol-
lision with the same obstacle is an unlikely event, we could
consider the velocity change due to the collisions, as inde-
pendent and Poisson distributed (as the obstacles) random
variables. In this case it is not difficult to prove the con-
vergence to a diffusion process, solution to the following
stochastic differential equation

dx D vdt ;

dv D �2A v
jvj3 dt C

q
2A
jvj



I � v˝v

jvj2

�
dw ;

(74)

where dw is a brownian motion, A is the constant given
by Eq. (27), and

q
2A
jvj �

�
I � v ˝ v/jvj2


is the matrix

p
2a,

with a given by Eq. (26). Notice that each collision pre-
serves the energy so that the above process lives on the
surface of the sphere jvj D const.

Therefore the main point in the proof of the weak-
coupling limit is to show that, in the same limit, the pro-
cess under consideration is stochastically equivalent to
a Markov process with the right properties. Moreover, as
a consequence, we have also that f"(t)! f (t) being f so-
lution to the following linear Landau equation

(@t C v � rx ) f D divv [a(v)rv f ] ; (75)

Alternatively we could proceed differently, in the same

(Cauchy–Kovalevskii) spirit of our previous analysis for
the nonlinear case. Namely we first represent the time
evolved distribution fc(t) in terms of a series expansion.
Then, taking the expectation of each term of the series,
we exploit its limit by using the same arguments as in
Sect. “Introduction”. Finally the convergence of the se-
ries (uniformly in ") should also be proven. This is cer-
tainly a possible program which is, however, conceptually
and technically weaker than that based on the control of
the particle trajectory illustrated above. Indeed the abso-
lute control of the series expansion yielding the solution to
Eq. (75) does not use the positivity of the diffusion coeffi-
cient so that, at best, we could recover the result for a short
time only and in spaces of analytic functions, not at all nat-
ural in our context.

This remark applies as well to the nonlinear case for
which, however, we do not have any result, even for short
times.

As regards the corresponding weak-coupling quantum
problem, the easiest case is when � is a Gaussian process.
The kinetic equation is still a linear Boltzmann equation.
The first result, holding for short times, has been obtained
in [41] (see also [30]). More recently this result has been
extended to arbitrary times [22]. The technique of [22] can
be also applied to deal with a Poisson distribution of ob-
stacles [12] Obviously the cross section appearing in the
Boltzmann equation is the one computed in the Born ap-
proximation. Finally in [20] the low-density case has been
successfully approached. The result is a linear Boltzmann
equation with the full cross-section.

Future Directions

The program of obtaining macroscopic equations from
the microscopic dynamics is an ambitious and difficult
problem. It arised in 1900 with the Hilbert’s speech at the
congress of mathematicians in Paris, as the sixth problem.
After more than hundred years, such a program is far to
be achieved.

It is probably true that new ideas and techniques are
needed. As we said before in discussing the linear prob-
lems, it may be quite possible that classical ideas in the
field of partial differential equations are not enough to ap-
proach this kind of problems successfully. On the other
hand a deeper and more detailed analysis of the particle
dynamics is technically difficult and philosophically para-
doxical. Indeed from the practical side we introduce a par-
tial differential equation to reduce the difficulties of the
study of particle evolution, while its justification may re-
quire a deeper control of the underlying microscopic dy-
namics.



Scaling Limits of Large Systems of Non-linear Partial Differential Equations S 7821

Bibliography

Primary Literature

1. Arseniev AA, Buryak OE (1990) On a connection between the
solution of the Boltzmann equation and the solution of the
Landau–Fokker–Planck equation (Russian). Mat Sb 181(4):435–
446 (translation in Math USSR-Sb 69(2):465–478 1991)

2. Balescu R (1975) Equilibrium and Nonequilibrium Statistical
Mechanics. Wiley, New York

3. Boldrighini C, Bunimovich LA, Ya Sinai G (1983) On the Boltz-
mann equation for nthe Lorentz gas. J Stat Phys 32:477–501

4. Benedetto D, Castella F, Esposito R, Pulvirenti M (2004) Some
Considerations on the derivation of the nonlinear Quantum
Boltzmann Equation. J Stat Phys 116(114):381–410

5. Benedetto D, Castella F, Esposito R, Pulvirenti M (2005) On
TheWeak–Coupling Limit for Bosons and Fermions. Math Mod
Meth Appl Sci 15(12):1–33

6. Benedetto D, Castella F, Esposito R, Pulvirenti M (2006) Some
Considerations on the derivation of the nonlinear Quantum
Boltzmann Equation II: the low-density regime. J Stat Phys
124(2–4):951–996

7. Benedetto D, Castella F, Esposito R, Pulvirenti M (2008) From
the N-body Schrödinger equation to the quantum Boltzmann
equation: a term-by-term convergence result in the weak cou-
pling regime. Commun Math Phys 277(1):1–44

8. Benedetto D, Esposito R, Pulvirenti M (2004) Asymptotic analy-
sis of quantum scattering undermesoscopic scaling. Asymptot
Anal 40(2):163–187

9. Benedetto D, Pulvirenti M (2007) The classical limit for the
Uehling–Uhlenbeck operator. Bull Inst Math Acad Sinica
2(4):907–920

10. Burgain J, Golse F, Wennberg B (1998) On the distribution of
free path lenght for the periodic Lorentz gas. CommMath Phys
190:491–508

11. Caglioti E, Golse F (2003) On the distribution of free path
lengths for the periodic Lorentz gas. III Comm Math Phys
236(2):199–221

12. Chen T (2005) Localization lengths and Boltzmann limit for the
Anderson model at small disorders in dimension 3. J Stat Phys
120(1–2):279–337

13. Caglioti E, Pulvirenti M, Ricci V (2000) Derivation of a linear
Boltzmann equation for a periodic Lorentz gas. Mark Proc Rel
Fields 3:265–285

14. Cercignani C, Illner R, Pulvirenti M (1994) The mathematical
theory of dilute gases, AppliedMathematical Sciences, vol 106.
Springer, New York

15. Degond P, Lucquin–Desreux B (1992) The Fokker–Planck
asymptotics of the Boltzmann collision operator in the
Coulomb case. Math Models Methods Appl Sci 2(2):167–182

16. Dürr D, Goldstain S, Lebowitz JL (1987) Asymptotic motion of
a classical particle in a random potential in two dimension:
Landau model. CommMath Phys 113:209–230

17. Desvillettes L, Pulvirenti M (1999) The linear Boltzmann eqau-
tion for long-range forces: a derivation for nparticle systems.
Math Moduls Methods Appl Sci 9:1123–1145

18. Di Perna RJ, Lions PL (1989) On the Cauchy problem for the
Boltzmann equatioin. Ann Math 130:321–366

19. Esposito R, Pulvirenti M (2004) From particles to fluids. In:
Friedlander S, Serre D (eds) Handbook of Mathematical Fluid
Dynamics, vol 3. Elsevier, North Holland, pp 1–83

20. Eng D, Erdös L (2005) The linear Boltzmann equation as the
low-density limit of a random Schrödinger equation. Rev Math
Phys 17(6):669–743

21. Erdös L, Salmhofer M, Yau HT (2004) On the quantum Boltz-
mann equation. J Stat Phys 116:367–380

22. Erdös L, Yau HT (2000) Linear Boltzmann equation as a weak-
coupling limit of a random Schrödinger equation. Comm Pure
Appl Math 53:667–735

23. Gallavotti G (1972) Rigorous theory of the Boltzmann equation
in the Lorentz gas in Meccanica Statistica. reprint Quaderni
CNR 50:191–204

24. Goudon T (1997) On Boltzmann equations and Fokker–Planck
asymptotics: influence of grazing collisions. J Statist Phys 89(3–
4):751–776

25. Grad H (1949) On the kinetic Theory of rarefied gases. Comm
Pure Appl Math 2:331–407

26. Hugenholtz MN (1983) Derivation of the Boltzmann equation
for a Fermi gas. J Stat Phys 32:231–254

27. Ho NT, Landau LJ (1997) Fermi gas in a lattice in the van Hove
limit. J Stat Phys 87:821–845

28. Illner R, Pulvirenti M (1986) Global Validity of the Boltzmann
equation for a two-dimensional rare gas in the vacuum. Comm
Math Phys 105:189–203 (Erratum and improved result, Comm
Math Phys 121:143–146)

29. Kesten H, Papanicolaou G (1981) A limit theorem for stochastic
acceleration. CommMath Phys 78:19–31

30. Landau LJ (1994) Observation of quantum particles on a large
space-time scale. J Stat Phys 77:259–309

31. Lanford III O (1975) Time evolution of large classical systems.
In: Moser EJ (ed) Lecture Notes in Physics 38. Springer, pp 1–
111

32. Lifshitz EM, Pitaevskii LP (1981) Course of theoretical physics
“Landau–Lifshit”, vol 10. Pergamon Press, Oxford-Elmsford

33. Xuguang LU (2005) The Boltzmann equation for Bose–Einstein
particles: velocity concentration and convergence to equilib-
rium. J Stat Phys 119(5–6):1027–1067

34. Xuguang LU (2004) On isotropic distributional solutions to the
Boltzmann equation for Bose–Einstein particles. J Stat Phys
116(5–6):1597–1649

35. CB Jr Morrey (1955) On the derivation of the equations of
hydrodynamics from statistical mechanics. Comm Pure Appl
Math 8:279–326

36. Nier F (1996) A semi-classical picture of quantum scattering.
Ann Sci Ec Norm Sup 29(4):149–183

37. Nier F (1995) Asymptotic analysis of a scaled Wigner equa-
tion and quantum scattering. Transp Theory Statist Phys 24(4–
5):591–628

38. Nordheim LW (1928) On the Kinetic Method in the New Statis-
tics and Its Application in the Electron Theory of Conductivity.
Proc Royal Soc Lond Ser A 119(783):689–698

39. Spohn H (1991) Large scale dynamics of interacting particles,
Texts andmonographs in physics. Springer

40. Spohn H (1978) The Lorentz flight process converges to a ran-
dom flight process. CommMath Phys 60:277–290

41. Spohn H (1977) Derivation of the transport equation for elec-
trons moving through random impurities. J Stat Phys 17:385–
412

42. Uehling EA, Uhlembeck GE (1933) Transport Phenomena in
Einstein–Bose and Fermi–Dirac Gases. Phys Rev 43:552–561

43. Villani C (2002) A review of mathematical topics in collisional
kinetic theory. In: Friedlander S, Serre D (eds) Handbook of



7822 S Scaling Properties, Fractals, and the Renormalization Group Approach to Percolation

Mathematical Fluid Dynamics, vol 1. Elsevier, North Holland,
pp 71–307

44. Villani C (1998) On a new class of weak solutions to the spatially
homogeneous Boltzmann and Landau equations. Arch Ratio-
nal Mech Anal 143(3):273–307

45. Wigner E (1932) On the quantum correction for the thermody-
namical equilibrium. Phys Rev 40:742–759

Books and Reviews
Balescu R (1975) Equilibrium and Nonequilibrium Statistical Me-

chanics. Wiley, New York
Cercignani C, Boltzmann L (1998) The man who trusted atoms. Ox-

ford University Press, Oxford
Cercignani C, Illner R, Pulvirenti M (1994) The mathematical the-

ory of dilute gases. Applied Mathematical Sciences, vol 106.
Springer, New York

Esposito R, Pulvirenti M (2004) From particles to fluids. In: Friedlan-
der S, SerreD (eds) Handbook ofMathematical FluidDynamics,
vol 3. Elsevier, North Holland, pp 1–83

Spohn H (1991) Large scale dynamics of interacting particles, Texts
and monographs in physics. Springer, Heidelberg

Villani C (2002) A review of mathematical topics in collisional ki-
netic theory. In: Friedlander S, SerreD (eds) Handbook ofMath-
ematical Fluid Dynamics, vol 1. Elsevier, North Holland, pp 71–
307

Scaling Properties, Fractals,
and the Renormalization Group
Approach to Percolation
DIETRICH STAUFFER
Institute for Theoretical Physics, Cologne University,
Köln, Germany

Article Outline

Glossary
Definition of the Subject
Introduction
Methods
Quantities and Exponents
Fractal Dimension; Incipient Infinite Cluster
Simple Renormalization Group
Future Directions
Bibliography

Glossary

Cluster Clusters are sets of occupied neighboring sites.
Critical exponent At a critical point or second-order

phase transition, many quantities diverge or vanish
with a power law of the distance from this critical
point; the critical exponent is the exponent for this
power law.

Fractals Fractals have a mass varying with some power of
their linear dimension. The exponent of this power law
is called the fractal dimension and is smaller than the
dimension of the space.

Percolation Each site of a large lattice is randomly occu-
pied or empty.

Renormalization A cell of several sites, atoms, or spins
is approximated by one single site etc. At the critical
point, these supersites behave like the original sites,
and the critical point thus is a fixed point of the renor-
malization.

Definition of the Subject

Percolation theory mostly deals with large lattices where
every site is randomly either occupied or empty. In partic-
ular it studies the resulting clusters which are sets of neigh-
boring occupied sites.

Introduction

Paul Flory, who later got the Chemistry Nobel prize, pub-
lished in 1941 the first percolation theory [1], to describe
the vulcanization of rubber [2]. Others later applied and
generalized it, in particular by dealing with percolation
theory on lattices and by studying it with computers. Most
of the theory presented here was known around 1980,
though in the case of computer simulation with less ac-
curacy than today. But on the questions of universality, of
critical spanning probability and of the uniqueness of in-
finite clusters, the 1990’s have shown some of our earlier
opinions to be wrong. And even today it is questioned by
some that the critical exponents of percolation theory can
be applied to real polymer gelation, the application which
Flory had in mind two-thirds of a century ago.

On a large lattice we assume that each site indepen-
dently and randomly is occupied with probability p and
empty with probability 1 � p. Depending on applications,
also other words can be used instead of occupied and
empty, e. g. Republican and Democrat for the majority
party in an electoral district of the USA. A cluster is now
defined as set of occupied neighboring sites. Percolation
theory deals with the number and structure of these clus-
ters, as a function of their size s, i. e. of the number s of
occupied sites in the cluster. In particular it asks whether
an infinite cluster spans from one side of the lattice to
the opposite side. Alternatively, and more naturally if one
wants to describe chemical reactions for rubber vulcaniza-
tion, this site percolation can be replaced by bond perco-
lation, where every site is occupied but the link between
neighboring sites is either present with probability p or ab-
sent with probability 1� p, again independently and ran-
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Scaling Properties, Fractals, and the Renormalization Group Ap-
proach to Percolation, Table 1
Site and bond percolation thresholds for one dimension, three
two-dimensional, four three-dimensional and four hypercubic
lattices in higher dimensions [1,3]

pc Site Bond
d D 1 chain 1 1
honeycomb .697043 1� 2 sin(	/18)
square .592746 1/2
triangular 1/2 2 sin(	/18)
diamond .4301 .3893
SC .311608 .248813
BCC .245691 .180287
FCC .199236 .120163
d D 4 hypercubic .196885 .160131
d D 5 hypercubic .140797 .118172
d D 6 hypercubic .109018 .094202
d D 7 hypercubic .088951 .078675

domly for each link. A cluster is now a set of neighboring
sites connected by links, and the size s of the cluster can be
counted as the number of links, or as the number of sites,
in that cluster. Because of this ambiguity we discuss here
mainly site percolation; bond percolation is similar in the
sense that it belongs to the same universality class (same
critical exponents). One may also combine both choices
and study site-bond percolation where each site is ran-
domly occupied or empty, and where each bond between
neighboring occupied sites is randomly present or absent.

Neither temperature nor quantum effects enter this
standard percolation model, which is purely geometrical
probability theory. However, to understand why percola-
tion works the way it does it is helpful to understand ther-
mal phase transitions like the vapor-liquid critical point;
and for magnetic applications it is useful to know that
some spins (atomic magnetic moments) have only two
states, up or down, according to quantum mechanics. We
will explain these physics aspects later.

For small p, most of the occupied sites are isolated
s D 1, coexisting with only few pairs s D 2 and triplets
s D 3. For large p, most of the occupied sites form one “in-
finite” cluster spanning the lattice from left to right, with
a few small isolated holes in it. Thus there exists one perco-
lation threshold pc such that for p < pc we have no span-
ning cluster and for p > pc we have (at least) one span-
ning cluster. Inspite of decades of research in this seem-
ingly simple problem, no exact solution for pc is proven
or guessed for site percolation on the square lattice with
nearest-neighbor bonds; only numerically we know it to
be about 0.5927462. For site percolation on the triangular

lattice or bond percolation on the square lattice, pc D 1/2
exactly. More thresholds are given in Table 1 [1]. They are
valid in the limit of L!1 for lattices with about Ld sites
in d dimensions. For small L instead of a sharp transition
at pc one has a rounded changeover: with a very low prob-
ability one chain of L occupied sites at p D 1/Ld�1 spans
from left to right. In one dimension, a small chain can
easily be spanned if p is close to one, but for L!1 the
threshold approaches pc D 1 since at smaller p a hole will
appear about every 1/(1 � p) sites and prevent any cluster
to span.

Methods

This section summarizes some of the methods employed
to find percolation properties, first by pencil and paper,
and then with the help of computers for which Fortran
programs are published e. g. in [4,5]. More details on sim-
ulations are reviewed by Ziff in this percolation part of this
encyclopedia.

Mean Field Limit

The Bethe lattice or Cayley tree neglects all cyclic links and
allows a solution with paper and pencil. We start from
one central site, and let z bonds emanate from that. At
the end of each bond sits a neighbor. Then from each of
these neighbors again z bonds emanate, one back to the
central site and z � 1 to new sites further outward. They
in turn lead again each to z � 1 new sites, and so on. None
of the newly added sites agrees with one of the already ex-
isting sites, and so we can travel along the bonds only out-
wards or back, but never in a loop. It is quite plausible that
an infinite cluster of bond percolation is formed if each
site leads to at least one more outward site along an exist-
ing bond, that means if (z � 1)p > 1. This condition also
holds for site percolation. Thus

pc D 1/(z � 1) : (1)

In this way Flory calculated the threshold and other perco-
lation properties. Today we call this the “mean field” uni-
versality class in analogy with thermal phase transitions.
The critical exponents, to be discussed below, are inte-
gers or simple fractions. To this universality class belong
also the Erdös-Rényi random graphs, where we connect in
an assembly of N points each pair with a low probability
/ 1/N. And the same universality class is reached if we let
the dimension d of the hypercubic lattice go to infinity (or
at least take it above 6). A disadvantage of the Bethe lattice
is its lack of realism: If the length of the bonds is constant,
then the exponential increase of the number of sites and
bonds with increasing radius leads to an infinite density.
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Small Clusters

The probability of a site to be an isolated s D 1 cluster on
the square lattice is n1 D p(1 � p)4 since the site must be
occupied and all its four neighbors be empty. The formula
for pairs is n2 D 2p2(1 � p)6 since the pair can be oriented
horizontally or vertically, resulting in the factor 2. Simi-
lar, only more difficult, is the evaluation of ns with a max-
imum s usually 10 to 20; the general formula is

ns D
X

t
gst ps (1 � p)t (2)

where the perimeter t is the number of empty neighbors
and gst is the number of configurations (or lattice animals,
or polyominoes) of size s and perimeter t. The King’s Col-
lege group in London published these results decades ago.
With techniques borrowed from series expansions near
thermal critical phenomena, these polynomials allow to
estimate not only pc but also many other quantities (see
below) diverging or vanishing near pc.

Leath Cluster Growth

In the cluster growth method of Leath (1976) one starts
with one occupied site in the center of the lattice. Then
a cluster is grown by letting each empty neighbor of an al-
ready occupied cluster site decide once and for all, whether
it is occupied or empty. One needs to keep and to up-
date a perimeter list of undecided neighbors. If that list
becomes empty, the cluster growth is finished, and no
boundary effects of the lattice influence this cluster. If, on
the other hand, the cluster reaches the lattice boundary,
one has to stop the simulation and can regard this cluster
as spanning (from the center to one of the sides). Repeat-
ing many times this growth simulation one can estimate
pc as well as the cluster numbers. More precisely, the clus-
ter statistics obtained in this way is not ns but nss since
the original center site belongs with higher probability to
a larger than to a smaller cluster.

Hoshen-Kopelman Labelling

To go regularly through a large lattice, which may even
be an experimentally observed structure to be analyzed
by computer, one could number consecutively each seem-
ingly new cluster, and if no clusters merge later then one
has a clear classification: All sites belonging to the first
cluster have label 1, all sites of the second cluster have label
2, etc. Unfortunately, this does not work. In the later anal-
ysis it may turn out that two clusters which at first seemed
separate actually merge and form one cluster:

Already in the simple structure shown on the left we have
several such label conflicts. The labels to the right come
from going through the lattice like a typewriter, from left
to right, and after each line to the lower line. When we
come to the right neighbor of the 3 we see that 3 is really
part of the cluster with label 2. And at the right neighbor
of 4 we see that 4 belongs to cluster 1. The stupid method
is to go back and to relabel all 3 into 2, and all 4 into 1.
If then we come to the site marked with x we see that the
whole structure is really one single cluster, and thus all la-
bels 2 have to be relabeled into a 1. This is inefficient for
large lattices. Instead, Hoshen and Kopelman (1976) gave
each site labelm D 1; 2; 3; : : : another index n(m). This la-
bel n(m) of labels equals its argument, n(m) D m, if it is
still a good “root label”, and it equals another number k is
the cluster with initial labelm later turned out to be part of
an earlier cluster k. By iterating the command m = n(m)
until finally the new m equals n(m) one finds this root la-
bel. For the above we make the following assignments and
re-assignments to n: n(1) D 1; n(2) D 2; n(3) D 3;
n(3) D 2; n(4) D 4; n(4) D 1; n(2) D 1. Clusters
are now characterized by the same root label for all their
labels.

An advantage if this method is that only one line of the
square lattice, or one hyperplane of the d-dimensional lat-
tice, needs to be stored at any time, besides the array n(m).
And that array can also be reduced in size by regular recy-
cling no longer used labels n, just as beer bottles can be re-
cycled. Lattices with more than 1013 sites were simulated,
using parallel computers. However, understanding the de-
tails of the algorithms and finding errors in them can be
very frustrating.

Sometimes one wants to determine the cluster num-
bers for numerous different p from 0 to 1. Instead of start-
ing a new analysis for each different p one may also fill
the lattice with new sites, and make the proper labeling of
labels whenever a new site was added [6]. Similarly, one
can determine the properties of various lattice sizes L by
letting L grow one by one and relabeling the cluster after
each growth step [7]. Unfortunately, these two methods
came long after most of the percolation properties were
already studied quite well by standard Hoshen-Kopelman
analysis.

Relation to Ising and Potts Models

The relation between percolation and thermal physics was
useful for both sides: Scaling theories for percolation could
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follow scaling theories for thermal physics from ten years
earlier, and computer simulations for thermal physics
could use the Leath and Hoshen-Kopelman algorithms
of cluster analysis, leading to the Wolff and Swendsen-
Wang methods, respectively, a decade later. A mathemat-
ical foundation is given by the Kasteleyn-Fortuin theo-
rem [8] for the partition function Z of the Q-state Potts
model at temperature T:

Z(Q) D hQNi (3)

where N is the total number
P

s ns of clusters for bond
percolation at probability 1 D exp(�2J/kBT), h: : : i indi-
cates an average over the configurations at this probabil-
ity, kB is Boltzmann’s constant and 2J is the energy needed
to break a bond between neighboring spins. (Each site i
of a Potts lattice carries a variable Si D 1; 2; : : :Q; the en-
ergy of a neighbor pair is �2J if the two variables agree,
and zero otherwise.) For the special Ising case Q D 2 see
also this author in this encyclopedia, “Opinion dynam-
ics...” and “Phase transitions...”.

Q values of 3 and larger are interesting since for in-
creasing Q a second-order phase transition with a con-
tinuous order parameter changes into a first-order phase
transition with a jumping order parameter, when T in-
creases. The special case Q D 2 is the spin 1/2 Ising model
(the model is pronounced EEsing, not EYEsing since Ernst
Ising was born in Cologne, Germany, and became US citi-
zen Ernest Ising only after publishing his theory in 1925
and surviving Nazi persecution 1933–1944). The limit
Q ! 0 corresponds to some tree structures (no cyclic
links, as in Flory’s percolation theory, [9]). Percolation, on
the other hand, corresponds to the limit Q ! 1, in the fol-
lowing way: The “free energy” in units of kBT is in this
limit ln Z D lnhexp(N lnQ)i ' lnhexp[(Q � 1)N]i '
lnh1 C (Q � 1)Ni ' (Q � 1)N . Thus for Q near unity
this thermal free energy, divided by Q � 1, is the number
of percolation clusters.

In this way thermal physics and percolation are re-
lated, and the cluster numbers N correspond to a free en-
ergy. In thermal physics, the negative derivative of the free
energy with respect a conjugate field gives the order pa-
rameter (e.g magnetic field and magnetization), and the
field derivative of the order parameter is called the sus-
ceptibility. For liquid-gas equilibria, the order parameter
is the volume (or the density), the field is the pressure (or
chemical potential), and the analog of the susceptibility is
the compressibility. This result Eq. (3), not its derivation,
we should keep in mind if we now look at the percolation
quantities of interest.

Formally we may define for percolation a free energy F
as a generating function of a ghost field h:

F(h) D
X

s
ns exp(�hs) : (4)

Then its first h-derivative is �
P

s ns s, and the second one
is
P

s ns s
2, sums which appear below in the percolation

probability P1 (the order parameter) and themean cluster
size S D

P
s ns s

2/
P

s ns s (the susceptibility).

Quantities and Exponents

The basic quantity is ns, the number (per site) of clusters
containing s sites each, and often is an average over several
realizations for the same occupation probability p in the
same lattice. Several moments

Mk D
X

s
ns sk (5)

are used to define other quantities of interest; in these sums
the infinite (spanning) clusters are omitted. The follow-
ing proportionalities are valid asymptotically in the limit
of large lattice size L and for p! pc:

F D M0 / jp � pcj2�˛ C : : : (6a)

P1 D p � M1 / (p � pc)ˇ (6b)

S D M2/M1 / jp � pcj�� : (6c)

Here F is the analog of the thermal free energy,
where the three dots represent analytic background terms
whose derivatives are all finite. Since every occupied site
must belong either to a finite or to an infinite cluster,
P1 D p �

P
s ns s is the fraction of sites belonging to the

infinite cluster and gives the probability that from a ran-
domly selected site we can walk to a lattice boundary along
a path of occupied sites. It is thus called the percolation
probability but needs to be distinguished from the proba-
bility p that a single site is occupied and from the proba-
bility R, with R(p < pc) D 0; R(p > pc) D 1, that there is
a spanning cluster in the lattice.

The quantity S is usually called the mean cluster
size, and we follow this tradition even though it is very
bad. There are many ways to define a mean size, and
polymer chemists have the much more precise notation
of a number average M1/M0, a weight average M2/M1
and a z average M3/M2 for the cluster size (= degree
of polymerization). Physicists arbitrarily call the weight-
averaged s the mean cluster size S. Numerically, the ex-
ponent � is determined more easily from the “susceptibil-
ity” � D M2 / jp � pcj�� , since the denominator M1 in
Eq. (6c) approaches very slowly its asymptotic limit of 1.
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Scaling Properties, Fractals, and the Renormalization Group Ap-
proach to Percolation, Table 2

Critical exponents for percolation clusters. The mean field val-
ues are valid for six and more dimensions and also apply to
Flory’s Bethe approximation and to Erdös-Rényi randomgraphs.
The exponents ˛; ı; �; � can be derived from the scaling laws,
Eq. (8)

d ˇ � �

2 5/36 43/18 4/3
3 0.41 1.796 0.88
� 6 1 1 1/2

The radius of a cluster Rs can be defined as the rms
distance ri ; i D 1; 2; : : : ; s of cluster sites from the center
of mass rc of the cluster (radius of gyration):

R2
s D h

X

i

(ri � rc)2/si (6d)

where the h: : : i average over all cluster configurations at
probability p. Then the correlation length � is related to
the z-average cluster radius through

�2 D
X

s
R2
s ns s

2/
X

s
ns s2 / jp � pcj�� (6e)

with another critical exponent �.
Finally, right at p D pc, the cluster numbers decay as

ns / 1/s2C1/ı (7)

where ımust be positive to allow a finite density
P

s ns s D
p.

These five critical exponents are not independent of
each other but are related in d dimensions through the
scaling laws:

2 � ˛ D � C 2ˇ D (ı C 1)ˇ D d� (8a)

as known from thermal phase transitions; the last equa-
tion involving d is not valid in mean field theory (large d)
but only for d � 6. Table 2 gives the numerical estimates
of the exponents in three dimensions as well as their mean
field values for d � 6 and their exact two-dimensional re-
sults [10,11]. Thus, for six and less dimensions, if you
know two exponents you know them all; thus far.

These scaling laws (8a) can be derived by assuming

ns D s�� f [(p� pc)s
 ] (� D 2C1/ı; 1/� D ˇı) (8b)

which was first postulated for the thermal Isingmodel, and
then successfully applied to percolation. Here f is a suit-

able scaling function, which only in the mean-field limit
approaches a Gaussian.

For both thermal critical phenomena and percolation,
“universality” asserts that these critical exponents are in-
dependent of many details and (for the Potts model) de-
pend only on the dimensionality d and the number Q
of possible spin states. Since percolation corresponds to
Q ! 1 this means that the exponents depend only on d.
There are exceptions from this universality for thermal
phase transitions, but for random percolation thus far it
worked. However, the numerical value of the percolation
threshold pc is not a critical exponent, depends on the lat-
tice structure, and is different for site and bond percola-
tion.

This universality is one of the reasons why the inves-
tigation of exponents is important: They allow to clas-
sify models and materials. Similarly, in biology we have
many birds of different colors, andmany types of domestic
animals. Biology became a systematic science only when
it was found that all mammals share certain properties,
which birds no not have. Thus there is the universality
class of mammals.

(The proportionality factors in Eq. (6) are not univer-
sal, but some of their combinations are; for example, the
ratio of the proportionality factors for S above to below pc
is universal. In some sense also the probability R(p D pc)
of a lattice to contain one spanning cluster at the threshold
is universal: same for bond and site percolation; however,
that probability depends on the boundary conditions and
the shape of the sample and thus is far less universal that
the mentioned ratio for S.)

Unfortunately, there is another exponent which does
not follow from the cluster numbers and radii and for
which no scaling law is accepted which relates it to the
other exponents above. This refers to the electrical con-
ductivity

˙ / (p � pc)� (9)

when each occupied site (or bond) conducts electrical cur-
rent and each empty site (or deleted bond) is an insula-
tor. The numerical values are 1.30, 2.0 and 3 in two, three
and at least six dimensions. If bonds are realized by elas-
tic springs with bending forces, the elastic exponent may
be �C 2� if entropy effects are negligible, or 2 � ˛ if en-
tropy effects are dominant. Moreover, � is less universal:
the above lattice values do not hold on a continuum (con-
ducting spheres which may overlap). Similarly, the kinet-
ics of the Ising model determine a critical exponent which
differs in different variants of the kinetics and may not be
related to the static Ising exponents like ˇ and � .
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Fractal Dimension; Incipient Infinite Cluster

Fractal Dimension D

Typical objects of geometry classes in school are one-
dimensional lines, two-dimensional squares or circles, and
three-dimensional cubes or spheres. They have a length
(radius) L and a mass (volume for unit density) M with
M / Ld for d dimensions. In reality, mother nature pro-
duces much more complex objects, like trees, where the
mass varies with a power of the tree height below 3:

M / LD (D < d; L!1) : (10a)

D is the fractal dimension, and such objects are called
fractals, particularly if they also are self-similar in that
a small twig looks like a big branch, etc. Finite-size scal-
ing theory then relates D of the largest (spanning?) cluster
at p D pc to the above percolation exponents through

D D d�ˇ/� D (�Cˇ)/� D 1/(��) D d/(1C1/ı) (10b)

for d � 6. Thus the critical cluster is about 1.9-dimen-
sional in two and 2.5-dimensional in three dimensions,
while in the mean field regime for d � 6 we have D D 4.
Why is this so? Any quantity X which is supposed to vary
near p D pc as jp � pcjx does so only for infinitely large
systems. For a finite lattice size L, the transition is rounded,
and neither X nor any of its p-derivatives diverges or be-
comes exactly zero. In particular, the typical cluster radius
or correlation length � / jp � pcj�� cannot become infi-
nite but becomes of order L. Then the relation X / ��x/�

is replaced by

X(p D pc) / L�x/� (11a)

at the threshold, and

X(p ' pc) D L�x/� g[(p � pc)L1/�] (11b)

near the threshold, with a suitable scaling function g. In
particular, the fraction P1 of sites belonging to the largest
cluster at p D pc vanishes as L�ˇ /� , and the total number
M of sites in this cluster as

M / Ld�ˇ /� or D D d � ˇ/� (11c)

as asserted in Eq. (10b).
Figure 1 shows the second moment � D M2 DP

s ns s
2 in small (curve) and large (+) simple cubic lat-

tices, differing only for p ' pc. Figure 2 shows right at
p D pc the variation with lattice size of the number M of
sites in the largest cluster and of the second moment M2
(susceptibility).

In a finite lattice, the probability R(p) of a spanning
cluster to exist goes from nearly zero to nearly unity in
a p-interval proportional to 1/L1/� , according to Eq. (11b)
with x D 0. The derivative dR/dp is the probability that
spanning first occurred at probability p. It is plausible
that this probability, peaked around pc, is a Gaussian,
i. e. a normal distribution. Unfortunately, the Evil Empire,
also known as the Departments of Chemical Engineer-
ing, destroyed [12] this beautiful idea: Since for p ' pc
and � � L every part of the lattice is correlated with the
rest of the lattice, the central limit theorem does not
hold.

(If for p
 pc we let the cluster size s go to infinity,
which requires a special algorithm, we get into the uni-
versality class of lattice animals, Sect. “Small Clusters”.
Most simply, in the limit p! 0, Eq. (2) simplifies to
ns /ps D gst , that means we look at the distribution of con-
figurations with s sites and perimeter t, where all config-
urations of a given s are weighted equally, whatever their
perimeter t is. An important result for these animals is that
in three dimensions their radius Rs varies as

p
s, i,e. their

fractal dimension is exactly 2. In two dimensions, only nu-
merical estimates exist with D ' 1:56. It is highly unusual
that a problem has an exact solution in three but not in two
dimensions.)

Incipient Infinite Cluster

Right at p D pc the largest cluster spans the lattice with
a pseudo-universal probability 0 < R(pc) < 1, and then
has a density P1 going to zero for L going to infinity. It
is also called the incipient infinite cluster IIC. Most of the
IIC consists of dangling ends which carry no current if the
cluster is interpreted as a random resistor network with
conductivity ˙ , see Eq. (9) above. The remaining current
carrying “backbone” has a fractal dimension 1.643 in two
dimensions, 1.7 in three and 2 in at least six dimensions
and mostly consists of blobs where current flows along
several parallel though connected paths. The few “articu-
lation” sites or bonds, the removal of which cuts the net-
work into two or more parts, are also called “red” since all
the current flows through them; they have a fractal dimen-
sion of only 1/� = 0.75, 1.14 and 2 in two, three and � six
dimensions.

How many infinite clusters do we have? The easy an-
swer is: none below, perhaps one at and always one above
pc in an infinite network. Indeed, this is what was claimed
mathematically in the 1980’s [13]: The number of infi-
nite clusters is zero, one or infinite. Later mathematics
excluded the last choice of infinitely many clusters, even
though in seven dimensions scaling arguments, confirmed
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Scaling Properties, Fractals, and the Renormalization Group Approach to Percolation, Figure 1
“Susceptibility”M2 in simple-cubic lattice. For the smaller size the maximum is reduced appreciably

Scaling Properties, Fractals, and the Renormalization Group Approach to Percolation, Figure 2
NumberM of sites in largest cluster (+) and susceptibilityM2 (x) at p D pc D 1/2 for triangular site percolation. The two straight lines
have the exact slopes D D 91/48 and �/ D 43/24 predicted by finite-size scaling. The largest lattice took about 36 h on a worksta-
tion with 2Gbmemory. Tiggemann [7] simulated L D 7� 106, 25024, 1305, 225 for d D 2, 3, 4, 5 on a large parallel computer
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by numerical studies [14], indicated the number of IIC to
go to infinity for increasing L in seven dimensions. Only in
1995 and later Aizenman [15] predicted that in all dimen-
sions one may have several spanning clusters at p D pc, in
agreement with simulations [16].

Why were the earlier uniqueness theorems irrepro-
ducible at pc and for very elongated rectangles even above
pc [17]? A clear definition of “infinite” is missing in some
of the mathematics, although [13] defined a cluster as infi-
nite if its cardinality (= number of sites in it) is infinite for
L!1 in a hypercubic lattice of Ld sites. Clear definitions
of infinity are, of course, needed for reliable proofs [18].
Measure theory as applied in some theoremsmay be based
on some axioms which are not applicable for a fractal IIC.
Very simply, imagine each line of an L � L square lattice
to have one randomly selected site occupied and all oth-
ers empty. The set of occupied site then has cardinality
L which is infinite for infinite lattices, but its density be-
comes zero. Does your measure theory agree with this?
More relevant for percolation, even for p < pc the largest
cluster has a size increasing logarithmically with lattice size
and thus can be described as infinite, invalidating the per-
colation threshold as the onset of infinite clusters. Thus in-
finite might be defined as increasing with a positive power
of L, i. e. having a positive fractal dimension. Thenwe have
infinitely many infinite clusters only at p D pc, though in
most cases only the largest of them is a spanning clus-
ter. Using “spanning” as a definition of an infinite cluster
seems to cause the smallest problems.

Thus one should not regard a question as settled if
some mathematical theorem claims to have answered it.
The mathematics may not apply to the same problem one
is interested in, or (see bootstrap percolation in this ency-
clopedia) may apply only for unrealistically large lattices.
On the other hand, also computer simulations should be
relied upon only if confirmed independently. And in the
interpretation of simulation results one should be objec-
tive and not try to agree with prevailing theories. For ex-
ample, [14] might already have seen the multiplicity of in-
finite clusters in five dimensions, not only in seven, had
she not followed her obviously incompetent postdoctoral
mentor.

(On a more positive side, mathematicians [19] solved
biased diffusion on percolating clusters above pc only a few
years after physicists still had controversies about their
simulations.)

Simple RenormalizationGroup

Why are scaling laws and finite-size scaling so simple?
Why is universality valid for the exponents? These ques-

tion arose for thermal critical phenomena as well as for
percolation. The main reason is that the correlation length
� goes to infinity at the critical point. Thus all approx-
imations which restrict the correlations to some finite
lengths eventually become wrong, and instead the scaling
ideas become correct. They were explained by Ken Wil-
son through what he called renormalization group, around
1970, and he got the physics Nobel prize for it in 1982. Ba-
sically, since correlations extend over long distances, the
single atom or lattice point becomes irrelevant and can be
averaged over. In politics, we have a similar effect: Many
democracies are based on electoral districts, and the can-
didate winning most votes within this district represents
this district in the national parliament. It is the coopera-
tion of many people within the electoral district, not the
single vote, which is decisive.

Returning to an L � L lattice, we can divide it into
many blocks of linear dimension b, and treat a block anal-
ogously to an electoral district. Thus in an Ising model,
if the majority of block spins point upward, the whole
block is represented by a superspin pointing up, analo-
gous to the single representative in politics. These block
spins then act like the original spins, one can put b � b
superspins into one superblock, and have just one super-
representative following the majority opinion of the repre-
sentatives within the superblock. This process can be con-
tinued: at each stage b � b lower representatives are nor-
malized into a single higher representative.

Such a renormalization by majority rule works fine
with Ising spins, but percolation deals with connections,
not with up and down spins. Thus for percolation a b � b
block is normalized into an occupied supersite if and only
if there is a spanning cluster within the block; otherwise
the superblock is defined empty. In this way, whole blocks
are normalized into single sites via connectedness. And the
renormalization is reduced to the standard question which
was asked already before Wilson’s invention: Does a b � b
lattice have a spanning cluster? The supersite is thus oc-
cupied if and only if the block spans, which happens with
probability Rb(p). If we call p0 the probability of the super-
site to be occupied, we thus have

p0 D Rb (p) : (12a)

If we are at p D pc, then the renormalization should not
change anything drastic since � is larger than any b; thus if
the renormalization would be exact we would have

p0c D Rb (pc) : (12b)

Practically we determine a fixed point p D p� such that

p� D Rb (p�) : (12c)
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and then find pc as the limit of p* for b!1, which again
is similar to what percolation experts did before this renor-
malization theory.

A particularly simple example is the triangular site per-
colation problem with pc D 1/2, if we do not divide the
lattice into large b � b blocks but into small triangles of
three sites which are nearest neighbors, as shown on the
left:

The triangle contains a spanning cluster if either all three
sites are occupied (x, central diagram) or two sites are oc-
cupied (x) and one site is empty (., right diagram). The first
choice appears with probability p3, the second with prob-
ability p2(1 � p). However, this second choice has three
possible orientations since each of the three sites can be
the single empty site. Thus the total probability of the tri-
angle to have a spanning cluster is

p0 D p3 C 3(1 � p)p2 (13a)

with three fixed points p* where p0 D p:

p� D 0; p� D 1/2; p� D 1 : (13b)

The second of these fixed points is the percolation
threshold, while the first corresponds to lattice animals
(Sect. “Small Clusters” and end of Sect. “Fractal Dimen-
sion D”) and the third to compact non-fractal clusters.
With somewhat more effort one can derive also a good ap-
proximation for �.

This agreement of the fixed point p* with the true
threshold pc D 1/2 is not valid for other lattices or block
choices. Nevertheless there was a widespread fixed-point
consensus that Rb (pc) D pc for sufficiently large b. Re-
grettably, the Evil Empire [20] again destroyed this beauty
and found Rb (pc) D 1/2 for square site percolation where
pc ' 0:593. In general, R(pc) is a pseudo-universal quan-
tity depending on boundary conditions and sample shape,
while pc for large samples is independent of these details
but is different for site and bond percolation and depends
on the size of the neighborhood. Life was much nicer be-
fore. Fortunately, if a fixed point is determinedby Eq. (12c)
and the block size goes to infinity, then the fixed point still
approaches pc.

Future Directions

This review summarized the basic theory, particularly
when it was not yet contained in the earlier books [1].

Applications were left to the Sahimi book [1]; even for
the very first application [2] there is not yet a complete
consensus that the three-dimensional percolation expo-
nents apply to polymer gelation. More recent applica-
tions are social percolation [21] for marketing by word-
of-mouth, and stock market fluctuations due to herding
among traders [22].

Percolation theory, similar to Fortran programming or
capitalism, was thought to be finished but seems to be alive
and kicking. Nevertheless I think the future is more in its
applications.

The manuscript was improved by criticism of A.
Aharony.
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Glossary

Mental model how one perceives cause and effect rela-
tions in a system, along with its boundary, i. e., exoge-
nous variables, and the time horizon needed to artic-
ulate, formulate or frame a decision situation; one’s
implicit causal map of a system, sometimes linked
to the reference performance scenarios it might pro-
duce.

Product either a physical good or an intangible service
a firm delivers to its clients or customers.

Real option right and obligation to make a business de-
cision, typically a tangible investment. The option to
invest, for example, in a firm’s store expansion. In con-
trast to financial ‘call’ and ‘put’ options, a strategic
real option is not tradable. Any time it invests, a firm
might be at once acquiring the strategic real options of
expanding, downsizing or abandoning projects in fu-
ture. Examples include research and development (ab-
breviated R&D), merger and acquisition (abbreviated
M&A), licensing abroad and media options.

Scenario a postulated sequence or development of events
trough time; via Latin scena ‘scene’, from Greek
�����́, skēnē ‘tent, stage’. In contrast to a forecast
of what will happen in the future, a scenario shows
what might happen. The term scenario must not be
used loosely to mean situation. Macro-environmental
as well as industry-, task- or transactional-environmen-
tal scenarios are merely inputs to the strategic objec-
tives and real options a firm must subsequently ex-
plore through strategic scenarios, computed or simu-
lated with an explicit, formal system dynamics (abbre-
viated SD) model of its strategic situation. Computed
strategic scenarios create the multiple perspectives that
strategic thinkers need to defeat the tyranny of dog-
matism that often assails firms, governments and other
social entities or organizations.

Scenario-driven planning (abbreviated SdP) to attain
high performance through strategic flexibility, firms

use the SdP management technology to create fore-
sight and to anticipate the future with strategic real
options, in situations where the business environment
accelerates frequently and is highly complex or inter-
dependent, thereby causing uncertainty.

Situation the set of circumstances in which a firm finds
itself; its (strategic) state of affairs.

Strategic management process (abbreviated SMP)
geared at detecting environmental threats and turning
them into opportunities, it proceeds from a firm’s mis-
sion, vision and environmental constraints to strategic
goals and objectives to strategy design or formula-
tion to strategy implementation or strategic action to
evaluation and control to learning through feedback
(background, Fig. 2).

SMP-1 environmental scanning monitors, evaluates and
disseminates knowledge about a firm’s internal and
external environments to its people. The internal en-
vironment contains strengths and weaknesses within
the firm; the external shows future opportunities and
threats (abbreviated SWOT).

SMP-2 mission a firm’s purpose, raison d’être or reason
for being.

SMP-3 objectives performance (P) goals that SMP often
quantifies for some Pmetrics.

SMP-4 policy decision-making guidelines that link strat-
egy design or formulation to action or implementation
tactics.

SMP-5 strategy a comprehensive plan that shows how
a firm might achieve its mission and objectives. The
three strategy levels are: corporate, business and pro-
cess or functional.

SMP-6 strategy design or formulation the interactive, as
opposed to antagonistic, interplay of strategic content
and process that creates flexible long-range plans to
turn future environmental threats into opportunities;
includes internal strengths and weaknesses as well as
strategic mission and objectives, and policy guidelines.

SMP-7 strategic action or implementation the process
by which strategies and policies are put into action
through the development of programs, processes, bud-
gets and procedures.

SMP-8 evaluation and control sub-process that moni-
tors activities and performance, comparing actual re-
sults with desired performance.

SMP-9 learning through feedback occurs as knowledge
about each SMP element enables improving previous
SMP elements (background, Fig. 2).

System an organized group of interrelated components,
elements or parts working together for a purpose; parts
might be either goal seeking or purposeful.
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System dynamics (abbreviated SD) a lucid modeling
method born from the need to manage business per-
formance through time. Thanks to Forrester [23], who
discovered that all change propagates itself through
stock and flow sequences, and user-friendly SD soft-
ware (iThink®, Vensim®, etc.), SD models let man-
agers see exactly how and why, like other biological
and social organizations, business firms perform the
way they do. Unlike other social sciences, SD shows ex-
actly how feedback loops, i. e., circular cause and effect
chains, each containing at least one time lag or delay,
interact within a system to determine its performance
through time.

Variable or metric something that changes either though
time or among different entities at the same time. An
internal change lever is a decision or policy variable
that a strategy-design modeling, or client, team con-
trols. An external change trigger is an environmental
or policy variable that a strategy-designmodeling team
does not control. Both trigger and lever variables can
initiate change and be either endogenous or exogenous
to a model of a system.

However certain our expectation, the moment foreseen
may be unexpected when it arrives

—T.S. Eliot

Definition of the Subject

Many of us live and work in and about business ecosys-
tems with complex structures and behaviors. Some real-
ize that poor performance often results from our very own
past actions or decisions, which come back to haunt us.
So business leaders in diverse industries and firms, such as
Airbus, GeneralMotors, Hewlett-Packard, Intel andMerck,
use scenario-driven planning (SdP) with system dynamics
(SD) to help them identify, design and apply high-lever-
age, sustainable solutions to dynamically complex strate-
gic-decision situations. Onemust know, for example, if the
effect of an environmental change or strategic action gets
magnified through time or is dampened and smoothed
away. What may seem insignificant at first might cause
major disruption in performance. SdP with SD shows the
causal processes behind such dynamics, so firms can re-
spond to mitigate impacts on performance.

Accelerating change and complexity in the global
business environment make firms and other social orga-
nizations abandon their inactive, reactive and preactive
modes [2]. SdP with SD turns them proactive, so they
can translate anticipation into action. To properly trans-
form anticipation into action, computed with SD mod-
els, ‘strategic scenarios’ must meet four conditions: con-

sistency, likelihood, relevance and transparency [37]. Com-
bining SdP with SD for that purpose, with other tools, like
actor and stakeholder purposes, morphological methods
or probability might help avoid entertainment and explore
all possible scenarios. Indeed, SdP with SD

“does not stand alone. . . modeling projects are part
of a larger effort. . . modeling works best as a com-
plement to other tools, not as a substitute” (see p. 80
in [75]).

SdP with SD is a systematic approach to a vital
top-management job: leading today’s firm in the rapidly
changing and highly complex global environment. Antici-
pating a world where product life cycles, technology and
the mix of collective- and competitive-strategy patterns
change at an unprecedented rate is hard enough. Moving
ahead of it might prove larger than the talent and resources
now available in leading firms. SdP with SD leads to a de-
cisive integration of strategy design and operations, with
the dividing line much lower than at present. As mid-level
managers take on more responsibility, senior executives
become free to give more time and attention to economic
conditions, product innovation and the changes needed to
enhance creativity toward strategic flexibility [23].

It is perhaps its capacity to reintegrate strategy content
and process that turns SdP with SD into a new paradigm
for competitive advantage [42], and simulation modeling
in general [28], into a critical fifth tool, in addition to the
four tools used in science: observation, logical-mathemat-
ical analysis, hypothesis testing and experiment [77]. But
full-fledged SD models also allow computing scenarios to
assess possible implications of strategic situations. Strate-
gic scenarios are not merely hypothesized plausible fu-
tures, but computed by simulating combined changes in
strategy and in the business environment [32].

Computed scenarios help managers understand what
they do not know, enabling strategy design and imple-
mentation through the coalignment of timely tactics to
improve long-term performance. Through its judicious
use of resources, scenario-driven planning with system
dynamics makes the tactics required for implementation
clear [27]. And because computed scenarios reveal the re-
quired coalignment of tactics through time, SdP with SD
helps firms become flexible, dependable and efficient, and
save time!

Everyone’s mind sees differently, but if there is truth in
the adage ‘a picture is worth a thousand words’, then the
complex interrelations that SdP with SD unearth and show
must be worth billions. In a world where strategic chitchat
dominates, one can only hope that SdP with SD will play
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a central role in public and private dialogues about dynam-
ically complex opportunities and threats.

We shape our buildings; thereafter,
our buildings shape us
—Winston Churchill

Introduction

Following on the heels of Ackoff and Emery [3] and
Christensen [10], respectively, Gharajedaghi [35] and
Raynor [64] show how strategies with the best chances for
brilliant success expose firms to debilitating uncertainty.
Firms fail as their recipes for success turn bad through
time. Gharajedaghi [35] shows, for example, five strategy
scenarios that convert success to failure. Each scenario
plays a critically different role. Together, however, these
scenarios form a dynamically complex system. Through
time, as each scenario plays, it enables the context for the
next:

1. Noble ape or copycat strategy imitates and replicates ad-
vantage. Also called ‘shadowmarketing’, it lets shadowy
copycats instantly shadow market product technology,
often disruptively.

2. Patchy or sluggish strategy delays responses to new
technology. When this second scenario plays, then
patching up wastes time, enabling competitors to de-
liver new technology and to dominate markets. Worse,
it causes costs to rise as it drives down product qual-
ity.

3. Satisficing or suboptimal strategy scenarios take many
forms. One entails a false assumption: if a policy lever
helps produce desired performance, then pulling or
pushing on that lever will push performance further.

4. Gambling or changing the game strategy scenario trans-
forms a strategic situation by playing the game success-
fully. While dealing with a challenge, firms gradually
transform their strategic situation and change the basis
for competition, so a whole new game and set of issues
emerge. Success marked, for example, the beginning of
the information era. But competitive advantage has al-
ready moved away from having access to information.
In our systems era [2], creating new knowledge and gen-
erating insight is the new game [81].

Lastly, the cumulative effects from these four strategy sce-
narios trickle down to the:

5. Archetypal swing or paradigm shift scenario. Both
learning and unlearning can cause archetypal swings
and paradigm shifts to unfold through time intention-
ally [76]. These also occur unintentionally when con-

ventional wisdom fails to explain patterns of events that
challenge prevailing mental models. The lack of a con-
vincing explanation creates a twilight zone where ac-
ceptable ideas are not competent and competent ideas
are not acceptable.

Beliefs about the future drive strategies. But the future
is unpredictable. Worse, success demands commitments
that make it impossible to adapt to a future that turns out
surprising. So, strategies with great success potential also
bear high failure probabilities. Raynor [64] calls this the
strategy paradox. Dissolving it requires turning environ-
mental uncertainty into strategic flexibility. To make it so,
Raynor urgesmanagers to: anticipate multiple futures with
scenarios, formulate optimal strategies for each future, ac-
cumulate strategic real options [5] and manage the select
options portfolio.

SdP with SD helps managers who operate in an un-
certain world question their assumptions about how the
world works, so they can see it more clearly. To survive,
the human mind overestimates small risks and underes-
timates large risks. Likewise, it is much more sensitive to
losses than to gains. So the capability to leverage opportu-
nities and tomitigate risk might have become an economic
value driver.

The purpose of computing scenarios is to help man-
agers alter their view of reality, to match it up more closely
with reality as is and as it might become. To become
a leader, a manager must define reality. The SdP with SD
purpose is not, however, to paint a more accurate picture
of tomorrow, but to improve the quality of decisions about
the future. Raynor says that the requisite strategic flexibil-
ity, which SdP with SD creates:

“is not a pastiche of existing approaches. Integrating
these tools and grounding them in a validated the-
ory of organizational hierarchy creates something
that is quite different from any of these tools on its
own, or in mere combination with the others” (see
p. 13 in [64]).

Indeed, knowledge of common purposes and the ac-
ceptable means of achieving them form and hold together
a purposeful hierarchical system. Its members know and
share values embedded in their culture, which knits parts
into a cohesive whole. And because each part has a lot to
say about the whole, consensus is essential to SdP with
SD for the co-alignment of diverse interests and pur-
poses.

Ackoff and Emery [3], Gharajedaghi [35] and Nico-
lis [55] concur that purpose offers the lens one needs to see
a firm as amulti-minded social net. A purposeful firm pro-
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duces either the same result differently in the same envi-
ronment or different results in the same or different envi-
ronments. Choosing among strategic real options is neces-
sary but insufficient for purposefulness. Firms that behave
differently but show only one result per environment are
goal seeking, not purposeful. Servomechanisms are goal
seeking but people are purposeful. As a purposeful sys-
tem, the firm is part of purposeful sub-systems, such as its
industry value chain [61] and the society. And firms have
purposeful people as members. The result is a dynamically
interdependent, i. e., complex, hierarchical purposeful sys-
tem.

A firm’s value chain is, along with its primary and sup-
port activities, at once a member of at least one industry
value chain and of the society or macro-environment. In-
dustry analysis requires looking at value chains indepen-
dently from the society [61]. But people, the society and
firm and industry value chains are so interdependent, so
interconnected, that an optimal solution might not exist
for any of them independently of the others. SdP with SD
helps firms co-align the ‘plural rationality’ of purposeful
stakeholder groups with each other and that of the system
as a whole.

Seeing strategic management as a strategies and tac-
tics net [27] is in perfect syzygy with the plural rationality
that SdP with SD accounts for among individuals, groups
and organizations. Singer [73,74] contrasts monothematic
conventional universes of traditional rationality with the
multiverse-directed view of plural rationality. In counter-
point, Morecroft’s [52] computed scenarios trace the dys-
functional interactions among sales objectives, overtime
and sales force motivation to the intended, i. e., stated, sin-
gular rationality that drove action in a large sales organi-
zation.

Because their superordinate purpose is neither to com-
pete nor to collaborate, but to develop new wealth-cre-
ating capabilities, in unique ways that serve both current
and future stakeholder interests, customers and clients in-
cluded [51], firms can benefit from themultiverse-directed
view of strategic management as a net of strategies and tac-
tics. SdP with SD helps firms break free from the tradeoffs
tyranny of the mass-production era. Evidently, adherents
to tradeoffs-free strategy like Bell Atlantic, Daimler-Benz,
Hallmark andMotorola “can have it all” [60].

A firm must serve the purposes of its people as well as
those of its environment, not as amindlessmechanical sys-
tem, but as a living, purposeful, knowledge-bonded hierar-
chical system [3,35,55,81]. To clarify, a bike always yields
to its rider, for example, regardless of the rider’s desire;
even if that entails running into a solid brick wall. Ouch!
But riding a horse is an entirely different story. Horse and

rider form a knowledge-bonded system: the horse must
know the rider and the rider must know exactly how to
lead the horse.

SdP with SD History:
Always Back, Always in Style, Always Practical

Herman Kahn introduced scenarios to planning while at
RAND Corporation in the 1950s [45]. Scenarios entered
military strategy studies conducted for the US govern-
ment. In the 1960s, Ozbekhan [58] used urban planning
scenarios in Paris, France. Organization theorists and even
novelists were quick to catch on. The meaning of scenar-
ios became literary. Imaginative improvisation produced
flickering apocalyptic predictions of strikingly optimistic
and pessimistic futures. Political and marketing experts
use scenarios today to jazz up visions of favorable and un-
favorable futures.

Wack [78,79] asserts it was Royal Dutch Shell that
came up with the idea of scenarios in the early 1970s.
Godet [36] points to the French OTAM team as the first
to use scenarios in a futures study by DATAR in 1971.
Brauers and Weber [8] claim that Battelle’s scenarios
method [49] was originally a German approach. In con-
nection with planning, however, most authors see scenario
methods as typically American.

Indeed, during the 1970s, US researchers Olaf Helmer
and Norman Dalkey developed scenario methods at
RAND for eliciting and aggregating group judgments via
Delphi and cross-impact matrices [4]. They extended cross
impact analysis within statistical decision theory [39].
A synthesis of scenario methods began in the 1970s that
draws together multiple views, including those of profes-
sional planners, analysts and line managers.

Ansoff [6] and other strategy theorists state that the
1970s witnessed the transformation of global markets. To-
day, changes in the external sociopolitical environment
become pivotal in strategymaking. Combined with the ge-
ographical expansion of markets, they increase the com-
plexity of managerial work. As environmental challenges
move progressively faster, they increase the likelihood of
strategic surprises. So, strategic thinkers use scenarios to
capture the nonlinearity of turbulent environments. Ex-
amples are Hax and Majluf [38] and, more clearly so,
Porter [61] and Raynor [64]. They consider scenarios in-
strumental both in defining uncertainty and in anticipat-
ing environmental trends.

Huss and Honton [41] see scenarios emerge as a dis-
tinct field of study, a hybrid of a few disciplines. They iden-
tify multiple scenarios methods that fall into three major
categories:
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1. Intuitive logics [78,79], now practiced by SRI Interna-
tional,

2. Trend-impact analysis, practiced by the Futures Group
and

3. Cross-impact analysis, practiced by the Center for Fu-
tures Research using INTERAX (Interactive Cross-Im-
pact Simulation) and by Battelle using BASICS (BAt-
telle Scenario Inputs to Corporate Strategies).

Similarly, after joining Ozbekhan to advocate reference
scenarios, Ackoff [2] distinguishes between:

1. Reference projections as piecemeal extrapolations of
past trends and

2. The overall reference scenario that results from putting
them together.

Based on Acar’s [1] work under Ackoff, Georgantzas
and Acar [32] explore these distinctions with a practi-
cal managerial technology: comprehensive situation map-
ping (CSM). CSM is simple enough for MBA students to
master in their capstone Business Policy course. With the
help of Vensim® PLE [18], CSM computes scenarios to-
ward achieving a well-structured process of managing ill-
structured strategic situations. In their introduction to SD,
Georgantzas and Acar (see Chap. 10 in [32]) draw from
the banquet talk that Jay Wright Forrester, Germeshausen
Professor Emeritus, MIT, gave at the 1989 International
Conference of the SystemDynamics Society, in Germany, at
the University of Stuttgart:

After attending the Engineering College, University of
Nebraska, which included control dynamics at its core,
Forrester went to MIT. There he worked for Gordon
S. Brown, a pioneer in feedback control systems. Dur-
ing World War II, Brown and Forrester worked on ser-
vomechanisms for the control of radar antennas and gun
mounts. This was research toward an extremely practical
end, during which Forrester run literally from mathemat-
ical theory to the battlefield, aboard the US carrier Lexing-
ton.

After the war, Forrester worked on an analog aircraft
flight simulator that could do little more than solve its
own internal idiosyncrasies. So, Forrester invented ran-
dom-access magnetic storage or core memory. His inven-
tion went into the heart of Whirlwind, a digital computer
used for experimental development of military combat
systems that eventually became the semiautomatic ground
environment (SAGE) air defense system for North Amer-
ica.

Alfred P. Sloan, the man who built General Motors,
founded the Sloan School of Management in 1952. For-

rester joined the school in 1956. Having spent fifteen years
in the science and engineering side of MIT, he took the
challenge of exploring what engineering could do for man-
agement.

One day, he found himself among students from Gen-
eral Electric. Their household appliance plants in Ken-
tucky puzzled them: they would work with three or four
shifts for some time and then, a few years later, with half
the people laid off. Even if business cycles would explain
fluctuating demand, that did not seem to be the entire rea-
son. GE’s managers felt something was wrong.

After talking with them about hiring, firing and in-
ventory policies, Forrester did some simulation on a pa-
per pad. He started with columns for inventories, em-
ployees and customer orders. Given these metrics and
GE’s policies, he could tell how many people would be
hired or fired a week later. Each decision gave new condi-
tions for employment, inventories and production. It be-
came clear that wholly determined internally, the system
had potential for oscillatory dynamics. Even with constant
incoming orders, the policies caused employment insta-
bility. That longform simulation of GE’s inventory and
workforce systemmarked the beginning of system dynam-
ics [23,24,25,26].

SdP with SD Use and Roadmap

Scenarios mostly help forecast alternative futures but, as
firms abandon traditional forecasting methods for inter-
active planning systems, line managers in diverse busi-
ness areas adopt scenario-driven planning with system dy-
namics. Realizing that a tradeoffs-free strategy design re-
quires insight about a firm’s environment, both business
and sociopolitical, to provide intelligence at all strategy
levels, firms use SdP with SD to design corporate, busi-
ness and process or functional strategies. SdP with SD is not
a panacea and requires discipline, but has been successful
in many settings. Its transdisciplinary nature helps mul-
tiple applications, namely capital budgeting, career plan-
ning, civil litigation [31], competitive analysis, crisis man-
agement, decision support systems (DSS), macroeconomic
analysis, marketing, portfolio management and product
development [65]. SdP with SD is a quest for managers
who wish to be leaders, not just conciliators. They rec-
ognize that logical incrementalism, a piecemeal approach,
is inadequate when the environment and their strategy
change together.

Top management might see both divisional, i. e., busi-
ness, and process or functional strategies as ways of imple-
menting corporate strategy. But active subsidiaries [43,44]
provide both strategic ideas and results to their parent en-
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terprise. Drawing too stiff a line between the corporate of-
fice and its divisions might be

“an unhealthy side effect of our collective obses-
sion with generating returns. The frameworks for
developing competitive strategy that have emerged
over the last thirty years have given us unparal-
leled insight into how companies can succeed. And
competitive strategy remains enormously impor-
tant, but it should be the preserve of divisional man-
agement. . . corporate strategy should be focused on
the management of strategic uncertainty” (see p. 11
in [64]).

Roadmap It is material to disconnect scenarios from
unproductive guesswork and to anchor them to sound
practices for strategy design. This guided tour through
the fascinating but possibly intimidating jungle of sce-
nario definitions shows what the futuremight hold for SdP
with SD. Extensive literature, examples, practical guide-
lines and two real-life cases show how computed scenar-
ios help manage uncertainty, that necessary disciple of our
open market system. Unlike extrapolation techniques, SdP
with SD encourages managers to think broadly about the
future.

The above sections clarify the required context and
provide a glossary. Conceptual confusion leads to lan-
guage games at best and to operational confusion at
worst [15]. SdP with SD helps firms avert both types of
confusion. Instead of shifting their focus away from actu-
ality and rationality, managers improve their insight about
fundamental assumptions underlying changes in strategy.
The mind-set of SdP with SD makes it specific enough
to give practical guidance to those managing in the real
world, both now and in the future.

The sections below look at three SdP with SD facets
linked to strategy design and implementation. The first
facet involves the business environment, the forces behind
its texture and future’s requisite uncertainty (Sect. “En-
vironmental Turbulence and Future Uncertainty”). The
second entails unearthing unstated assumptions about
changes in the environment and in strategy, and about
their potential combined effects on performance. The SdP
with SD framework (Sect. “SdP with SD: The Modeling
Process� Strategic Situation Formulation”) builds on ex-
isting scenario methods. Its integrative view delineates
processes that enhance institutional learning, bolster pro-
ductivity and improve performance through strategic flex-
ibility. It shows why interest in computed scenarios is
growing.

The third facet entails computing the combined or
mixed effects on performance of changes both in the en-
vironment and in strategy. Even in mature economies, no
matter how and how frequently said, decision makers of-
ten forget how the same action yields different results as
the environment changes. The result is often disastrous.
Conversely, the tight coupling between computed scenar-
ios and strategic results can create new knowledge. Linking
a mixed environmental and decision scenario in a one-to-
one correspondence to a strategic result suits the norma-
tive inclination of strategic management, placing rational-
istic inquiry at par with purely descriptive approaches in
strategy research.

The unified treatment of SdP with SD and the strat-
egy-making process grants a practical bonus, accounting
for the entry’s peculiar nature. It is not only a concep-
tual or idea contribution, but also an application-oriented
entry. Sections “Case 1: Cyprus’ Environment and Hotel
Profitability” and “Case 2: A Japanese Chemicals Keiretsu
(JCK) present two real-life cases of scenario-driven plan-
ning with system dynamics. Written with both the con-
crete and the abstract thinker in mind, the two cases show
how firms and organizations build scenarios with a mod-
est investment. SdP with SD provides an effective man-
agement technology that serves well those who adopt it.
It saves them both time and energy.

Improvements in causal mapping [19,20], and SD
modeling and analysis [50,57] contribute to the SdP with
SD trend (Sect. “Future Directions”). Behavioral decision
theory and cognitive science also help translate the knowl-
edge of managers into SD models. The emphasis remains
on small, transparent models of strategic situations and on
dialogue between the managers’ mental models and the
computed scenarios [53].

All prognosticators are bloody fools
—Winston Churchill

Environmental Turbulence and Future Uncertainty

Environmental Turbulence

Abundant frameworks describe the business environment,
but the one by Emery and Trist [22], which Duncan [17]
abridged, has been guiding many a strategic thinker. It
shows four business environments, each more complex
and troublesome for the firm than the preceding one
(Fig. 1a).

1. Placid or independent-static environment: infrequent
changes are independent and randomly distributed,
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i. e., IID. Surprises are rare, but no new major oppor-
tunities to exploit either (cell 1, Fig. 1a).

2. Placid-clustered or complex-static environment: pat-
terned changes make forecasting crucial. Comparable
to the economist’s idea of imperfect competition, this
environment lets firms develop distinctive competen-
cies to fit limited opportunities that lead to growth and
bureaucracy (cell 2, Fig. 1a).

3. Disturbed-reactive or independent-dynamic environ-
ment: firms might influence patterned changes. Com-
parable to oligopoly in economics, this environment
makes changes difficult to predict, so firms increase
their operational flexibility through decentralization
(cell 3, Fig. 1a).

4. Turbulent field or complex-dynamic environment: most
frequent, changes are also complex, i. e., interdepen-
dent, originating both from autonomous shifts in the
environment and from interdependence among firms
and conglomerates. Social values accepted by members
guide strategic response (cell 4, Fig. 1a).

Ansoff and McDonnell [7] extend the dichotomous envi-
ronmental uncertainty perceptions by breaking turbulent
environments (cell 4, Fig. 1a) into discontinuous and sur-
prising. This is a step in the right direction, but not as
helpful as a causal model specific to the system structure
of a firm’s strategic situation. Assuredly, 2 � 2 typologies
help clarify exposition and aremost frequent in the organi-
zation theory and strategy literatures. The mystical signifi-
cance of duality affected even Leibniz, who associated one
with God and zero with nothingness in the binary system.
The generic solutions that dichotomies provide leave out
the specifics that decision makers need. No matter what
business they are in (Fig. 1b), managers cannot wait until
a better theory comes along; they must act now.

It is worth noting that people often confuse the term
‘complex’ with ‘complicated’. Etymology shows that com-
plicated uses the Latin ending -plic: to fold, but complex
contains the Greek root �"́�- ‘plēx-’: to weave. A compli-
cated structure is thereby folded, with hidden facets stuffed
into a small space (Fig. 1c). But a complex structure has in-
terwoven parts with mutual interdependencies that cause
dynamic complexity [46]. Remember: complex is the op-
posite of independent or untwined (Fig. 1a) and compli-
cated is the opposite of simple (Fig. 1c).

Daft and Weick’s [12] vista on firm intrusiveness
and environmental equivocality is pertinent here. They
see many events and trends in the environment as be-
ing inherently unclear. Managers discuss such events and
trends, and form mental models and visions expressed in
a fuzzy language and label system [80]. Within an enact-

ment process, equivocality relates to managerial assump-
tions underlying the analyzability of the environment.
A firm’s intrusiveness determines how active or passive the
firm is about environmental scanning. In this context, as
the global environment gets turbulent, active firms and
their subsidiaries construct SdP with SD models and com-
pute scenarios to improve performance.

Managers of active firms combine knowledge acquisi-
tion with interpretations about the environment and their
strategic situation. They reduce equivocality by assessing
alternative futures through computed scenarios. In fre-
quent meetings and debates, some by videoconferencing,
managers use the dialectical inquiry process for strategic
assumption surfacing and testing (SAST), a vital strate-
gic loop. Often ignored, the SAST loop gives active firms
a strategic compass [47].

Conversely, passive firms do not actively seek knowl-
edge but reduce equivocality through rules, procedures
and regular reports: reams of laser-printed paper with little
or no pertinent information. Managers in passive firms use
the media to interpret environmental events and trends.
They obtain insight from personal contacts with signifi-
cant others in their environment. Data are personal and
informal, obtained as the opportunity arises.

Future Uncertainty

“If we were omnipotent”, says Ackoff, then we could get
“perfectly accurate forecasts” (see p. 60 in [2]). Thank God
the future is unpredictable and we must yet create it. If it
were not, then life would have been so boring! Here are
some facts about straight forecasting:

1. Forecasts are seldom perfect, in fact, they are always
wrong, so a useful forecasting model is one that min-
imizes error.

2. Forecasts always assume underlying stability in sys-
tems.

3. Product family and aggregated forecasts are always
more accurate than single product forecasts, so the
large numbers law applies.

4. In the short-term, managers can forecast but cannot act
because time is too short; in the long term, they can act
but cannot forecast.

To offset conundrum #4, SdP with SD juxtaposes the de-
composition of performance dynamics into the growth
and decline archetypes caused by balancing (–) and re-
inforcing (+) recursive causal-link chains or feedback
loops [33,50]. A thermostat is a typical example of a goal-
seeking feedback loop that causes either balancing growth
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Scenario-Driven Planning with System Dynamics, Figure 1
a Environmental complexity and change celerity dimensions that cause perceived environmental uncertainty (adapted from [32]).
b Scenario-driven planning with system dynamics helps with strategy-design fundamentals, such as, for example, defining a busi-
ness along the requisite client-job-technology three-dimensional grid. c The simple-complicated dimension must not be confused
with the environmental complexity dimension (adapted from [46])

or decline. The gap between desired and room tempera-
ture causes action, which alters temperature with a time
lag or delay. Temperature changes in turn close the gap
between desired and room temperature.

Conversely, a typical loop that feeds on itself to cause
either exponential growth or decline is that of an arms
race. One side increases its arms. The other sides increase
theirs. The first side then reacts by increasing its arms, and
so on. Price wars between stores, promotional competi-
tion, shouting matches, one-upmanship and the wildcard
interest rates of the late 1970s are good examples too. Es-
calation might persist until the system explodes or outside
intervention occurs or one side quits, surrenders or goes
out of business. In the case of wildcard interest rates, out-
side intervention by a regulatory agency can bring an end
to irrationally escalating rates.

We’ve never been here before
—Peter Senge

SdP with SD: The Modeling Process
 Strategic
Situation Formulation

The strategic management process (SMP, Fig. 2) starts
with environmental scanning, in order to gauge environ-
mental trends, opportunities and threats. Examples in-
clude increasing rivalry among existing competitors and
Porter’s [62] emphasis on the bargaining power of buy-
ers and suppliers as well as on the threats of new entrants
and substitutes. Even if some firms reduce environmen-
tal scanning to industry analysis in practice, changes in
the environment beyond an industry’s boundaries can de-
termine what happens within the industry and its entry,
exit and inertia barriers. Internal capability analysis comes
next. It examines a firm’s past actions and internal pol-
icy levers that can both propel and limit future actions.
The integrative perspective of the SdP with SD framework
on Fig. 2 delineates processes that enhance institutional
learning, bolster productivity and improve performance
through strategic flexibility.
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Strategy design begins by identifying variables perti-
nent to a firm’s strategic situation, along with their inter-
related causal links. Changes in these variables can have
profound effects on performance. Some of the variables
belong to a firm’s external environment. Examples are
emerging new markets, processes and products, govern-
ment regulations and international interest and currency
rates. Changes either in these or their interrelated causal
links determine a firm’s performance through time.

It is a manager’s job to understand the causal links un-
derlying a strategic situation. SdP with SD helps antici-
pate the effects of future changes triggered in the external
environment. Other variables are within a firm’s control.
Pulling or pushing on these internal levers also affects per-
formance. To evaluate a change in strategy, one must look
at potential results along with changes in the environment,
matching resource capabilities, stakeholder purposes, and
organizational goals and objectives (Fig. 2).

Most variables interact. Often, the entire set of possible
outcomes is obscure, difficult to imagine. But if managers
oversimplify, then they end up ignoring the combined
effects of chain reactions. Even well-intended rational-
ity often leads to oversimplification, which causes cogni-
tive biases (CBs) that mislead decision makers [21,70,72].
Conversely, computing mixed environmental and deci-
sion scenarios that link internal and external metrics can
reveal unwarranted simplification.

SdP with SD integrates business intelligence with strat-
egy design, not as a narrow specialty, but as an admis-
sion of limitations and environmental complexity. It also
uses multiperspective dialectics, crucial for strategic as-
sumption surfacing and testing (SAST). Crucial because
the language and labels managers use to coordinate strate-
gic real options are imprecise and fuzzy. Fuzzy language
is not only adequate initially for managing interdepen-
dence-induced uncertainty but required [80]. Decision
makers rely on it to overcome psychological barriers and
Schwenk’s [70] groups of CBs.

The best-case scenario for a passive firm is to acti-
vate modeling on Fig. 2, sometimes unknowingly. When
its managers boot up, for example, electronic spreadsheets
that contain inside-out causal models, with assumptions
hidden deeply within many a formula. At bootup, only the
numbers show. So passive-firm managers use electronic
spreadsheets to laser-print matrices with comforting num-
bers. They

“twiddle a few numbers and diligently sucker them-
selves into thinking that they’re forecasting the fu-
ture” [69].

And that is only when rapid changes in the environ-
ment force them to stop playing blame the stakeholder.
They stop fighting the last war for a while, artfully name
the situation a crisis, roll up their sleeves, and chat about
and argue, but quickly agree on some arbitrary interpreta-
tion of the situation to generate strategic face-saving op-
tions. Miller and Friesen (see pp. 225–227 in [48]) show
how for futile firms, rapid environmental changes lead
to crisis-oriented decisions. Conversely, successful firms
look far into the future as they counter environmental dy-
namism through strategy design with real options. To-
gether, their options and interpretation of the environ-
ment, through the consensus that SdP with SD facilitates,
enable a shared logic to emerge: a shared mental model
that filters hidden spreadsheet patterns and heroic as-
sumptions clean and clear.

Managers of active firms enter the SdP with SD loop of
Fig. 2 both consciously and conscientiously. They activate
strategic intelligence via computed scenarios and the SAST
loop. Instead of twiddling spreadsheet numbers, proactive
firm managers twiddle model assumptions. They stake,
through SD model diagrams, their intuition about how
they perceive the nature and structure of a strategic situ-
ation. Computed scenarios quantitatively assess their per-
ceived implications. Having quantified the implications of
shared visions and claims about the structure of the strate-
gic situation, managers of active firms are likely to reduce
uncertainty and equivocality. Now they canmanage strate-
gic interdependence. Because articulated perception is the
starting point of all scenarios, computed scenarios give ac-
tive firms a fair chance at becoming fast strategic learn-
ers.

The design of action or implementation tactics re-
quires detailing how, when and where a strategy goes into
action. In addition to assuming the form of pure commu-
nication (III: 1 and 2, Fig. 2) or pure action (III: 3 and 4,
Fig. 2), in a pragmatic sense, tactics can be either coop-
erative or competitive and defensive or offensive. Market
location tactics, for example, can be either offensive, trying
to rob market share from established competitors, or de-
fensive, preventing competitors from stealing one’s mar-
ket share. An offensive tactic takes the form of frontal as-
sault, flanking maneuver, encirclement, bypass attack or
guerilla warfare. A defensive tactic might entail raising
structural barriers, increasing expected retaliation or low-
ering the inducement for future attack. Conversely, coop-
erative tactics try to gain mutual advantage by working
with rather than against others. Cooperative tactics take
the form of alliances, joint ventures, licensing agreements,
mutual service consortia and value-chain partnerships, the
co-location of which often creates industrial districts [29].
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Scenario-Driven Planning with System Dynamics, Figure 2
Cones of resolution show how scenario-driven planning with system dynamics enhances the strategy design component of the
strategic management process (SMP; adapted from [32])

The usual copycat strategy retort shows linear think-
ing at best and clumsy benchmarking, also known as
shadow marketing, at worst. Its proponents assume per-
formance can improve incrementally, with disconnected
tactics alone, when strategy design is of primary concern.
Piecemeal tactics can undermine strategy, but they are
secondary. It might be possible to improve performance
through efficient tactics, but is best to design strategies
that expel counterproductive tactics. Counterproductive
tactics examples are coercive moves that increase rivalry,
without a real payoff, either direct or indirect, for the in-
dustry incumbent who initiates them. It is atypical of an
industry or market leader to initiate such moves.

In strategy, superb action demands superior design.
According to the design school, which Ansoff, Channon,
McMillan, Porter, Thomas and others lead, logical incre-
mentalismmay help implementation, but becomes just an-
other prescription for failure when the environment shifts.
Through its judicious use of corporate resources, SdP with
SD makes the tactics required for action clear. Also, it re-
veals their proper coalignment through time, so a firm can
build strategic flexibility and save time!

The Modeling Process
 Strategic Situation
Formulation

SdP with SD (Fig. 2) begins by modeling a business or ‘so-
cial process’ than a business or ‘social system’. It is more
productive to identify a social process first and then seek
its causes than to slice a chunk of the real world and ask
what dynamics it might generate. Distinguishing between
a social system and a social process is roughly equivalent to
distinguishing between a system’s underlying causal struc-
ture and its dynamics. Randers (see p. 120 in [63]) de-
fines a social system as a set of cause and effect relations.
Its structure is a causal diagram or map of a real-world
chunk. A social process is a behavior pattern of events
evolving through time. The simulation results of SdP with
SD models show such chains of events as they might occur
in the real world. An example of a social system (struc-
ture) is the set of rules and practices that a firm might en-
act when dealing with changes in demand, along with the
communication channels used for transmitting informa-
tion and decisions. A corresponding social process (dy-
namics) might be the stop-and-go pattern of capital in-
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Scenario-Driven Planning with System Dynamics, Figure 3
The recursive nature of the modeling process that scenario-driven planning with system dynamics entails a creates a sustainable,
ever-expanding vortex of insight and wisdom, needed in strategic real-options valuation, and b saves both time and money as it
renders negligible the cost of resistance (R) to change

vestment caused by a conservative bias in a firm’s cul-
ture.

In his model of a new, fast-growing product line, for
example, Forrester [24] incorporates such a facet of corpo-
rate culture. Causing sales to stagnate, considerable back
orders had to accumulate to justify expansion because the
firm’s president insisted on personally controlling all cap-
ital expenditures.

People often jump into describing system structure,
perhaps because of its tangible nature as opposed to the
elusive character of dynamics or social process fragments.
Also, modelers present model structure first and then be-
havior. Ultimately, the goal in modeling a strategic situa-
tion is to link system structure and behavior. Yet, in the
early stages of modeling is best to start with system dy-
namics and then seek underlying causes. Indeed, SD is par-
ticularly keen in understanding system performance, “not
structure per se” (see p. 331 in [56]), in lieu of SD’s core
tenet that structure causes performance.

The modeling process itself is recursive in nature. The
path from real-world events, trends and negligible exter-
nalities to an effective formal model usually resembles an
expanding spiral (Fig. 3a). A useful model requires con-
ceptualization; also focusing the modeling effort by estab-
lishing both the time horizon and the perspective from
which to frame a decision situation. Typically, strategy-de-
signmodels require a long-term horizon, over which com-
puted scenarios assess the likely effects of changes both in
strategy and in the environment.

Computer simulation is what makes SdP with SD
models most useful. Qualitative cause and effect dia-
grams are too vague, tricky to simulatementally. Produced
through knowledge elicitation, their complexity vastly ex-
ceeds the human capacity to see their implications. Cast-
ing a chosen perspective into a formal SdP with SD model
entails postulating a detailed structure; a diagramming de-
scription precise enough to propagate images of alterna-
tive futures, i. e., computed scenarios, “though not neces-
sarily accurate” (see p. 118 in [63]). But the modeling pro-
cess must never downplay the managers’ mental database
and its knowledge content. Useful models always draw on
that mental database [24].

FollowingMorecroft [53], SdPwith SD adoptersmight
strive to replace the notion of modeling an objectively
singular world out there, with the much softer approach
of building formal models to improve managers’ mental
models. The expanding spiral of Fig. 3a shows that the in-
sight required for decisive action increases as the quantity
of information decreases, by orders of magnitude. The re-
quired quantification of the relations among variables per-
tinent to a strategic situation changes the character of the
information content as one moves from mental to writ-
ten to numerical data. Perceptibly, a few data remain, but
much more pertinent to the nature and structure of the
situation. Thanks to computed scenarios, clarity rules in
the end. And, if the modeling process stays interactive (i),
as opposed to antagonistic (a), then clarity means low re-
sistance to change (Ri < Ra, Fig. 3b), which helps reach
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Scenario-Driven Planning with System Dynamics, Figure 4
Cyprus’ a environment and population, and b annual andmonthly tourismmodel sectors (adapted from and extending [30])

a firm’s action/implementation threshold quickly (ti < ta,
Fig. 3b). This is how SdP with SD users build strategic flex-
ibility while they save both time and money!

Case 1: Cyprus’ Environment and Hotel Profitability

Cyprus’ Hotel Association wished to test how Cyprus’ year
2010 official tourism strategy might affect tourist arrivals,
hotel bed capacity and profitability, and the island’s en-
vironment [30]. Computed with a system dynamics sim-
ulation model, four tourism growth scenarios show what
might happen to Cyprus’ tourism over the next 40 years,
along with its potential effects on the sustainability of
Cyprus’ environment and hotel profitability. Following is
a partial description of the system dynamics model that
precedes its dynamics.

Model Description (Case 1)

The SD model highlights member interactions along
Cyprus’ hotel value chain. The model incorporates
a generic value-chain management structure that allows
modeling customer-supplier value chains in business as
well as in physical, biological and other social systems. Al-
though the structure is generic, its situation specific pa-

rameters faithfully reproduce the dynamic behavior pat-
terns seen in Cyprus’ hotel value-chain processes, business
rules and resources.

Cyprus’ Environment, Population and Tourism Model
Sectors Within Cyprus’ environment and population
sector (Fig. 4a), the carbon dioxide (CO2) pollution stock
is the accumulation of Cyprus’ anthropogenic emissions
less the Mediterranean Sea region’s self clean-up rate. The
clean-up rate that drains Cyprus’ CO2 pollution depends
on the level of anthropogenic pollution itself as well as on
the average clean-up time and its standard deviation (sd).
Emissions that feed CO2 pollution depend on Cyprus’
population and tourism and on emissions per person [9].

In SD models, rectangles represent stocks, i. e., level
or state variables that accumulate through time, e. g.,
the Tourism stock on Fig. 4b. The double-line, pipe-
and-valve-like icons that fill and drain the stocks, of-
ten emanating from cloud-like sources and ebbing into
cloud-like sinks, represent material flows that cause the
stocks to change. The arrive rate of Fig. 4b, for exam-
ple, shows tourists who flow into the tourism stock per
month. Single-line arrows represent information flows,
while plain text or circular icons depict auxiliary con-
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stant or converter variables, i. e., behavioral relations or
decision points that convert information into decisions.
Changes in the tourism stock, for example, depend on an-
nual tourism, adjusted by tourism seasonality. Both the di-
agram on Fig. 4a and Table 1 are reproduced from the ac-
tual simulationmodel, first built on the glass of a computer
screen using the diagramming interface of iThink® [67],
and then specifying simple algebraic equations and param-
eter values. Built-in functions help quantify policy param-
eters and variables pertinent to Cyprus’ tourism situation.

There is a one-to-one correspondence between the
model diagram on Fig. 4a and its equations (Table 1).
Like the diagram, the equations are the actual output
from iThink® too. The equations corresponding to Fig. 8b
are archived in [30]. Together, Cyprus’ population, lo-
cal tourism and monthly tourism determine the popula-
tion and tourism sum (Eq. 1.11, Table 1). According to
CYSTAT [11], both Cyprus’ Tourism Organization and
its government attach great importance to local tourism.
A study on domestic tourism conducted in 1995 revealed
that about 46 percent of Cypriots take long holidays. Of
these, 61 percent take long holidays exclusively in Cyprus
and eight percent in Cyprus and abroad, while 31 percent
chose to travel abroad only. These are precisely the per-
centages in the model (Eq. 1.10, Table 1).

On Fig. 4a, the world land and population data, mi-
nus Cyprus’ land, population and tourism co-determine
the world EF (environmental footprint, Eq. 1.14, Table 1).
Compared to Cyprus’ smooth EF, i. e., the smooth ratio of
the island’s free land divided by its total population and
tourism, the world EF gives a dynamic measure of Cyprus’
relative attractiveness to the rest of the world. The EF ra-
tio (Eq. 1.6, Table 1), i. e., the ratio of Cyprus’ smooth EF
(Eq. 1.13, Table 1) divided by the world EF (Eq. 1.14, Ta-
ble 1), assumes that the higher this ratio is, themore attrac-
tive the island is to potential tourists, and vice versa. The
EF ratio, which depends on Cyprus’ total population and
tourism, feeds back to the island’s annual tourism via the
inflow of foreign visitors who come to visit Cyprus every
year (Fig. 4b).

The logistic or Verhulst growth model, after François
Verhulst who published it in 1838 [66], helps explain
Cyprus’ actual annual tourism, a quantity that cannot
grow forever (Fig. 4b). Every system that initially grows ex-
ponentially eventually approaches the carrying capacity of
its environment, whether it is food supply for moose, the
number of people susceptible to infection or the potential
market for a good or a service. As an ‘autopoietic’ system
approaches its limits to growth, it goes through a non-lin-
ear transition from a region where positive feedback dom-
inates to a negative feedback dominated regime. S-shaped

growth often results: a smooth transition from exponential
growth to equilibrium.

The logistic model conforms to the requirements for
S-shaped growth and the ecological idea of carrying ca-
pacity. The population it models typically grows in a fixed
environment, such as Cyprus’ foreign annual tourism has
done since 1960 up to 2000. Initially dominated by positive
feedback, Cyprus’ annual tourismmight soon reach the is-
land’s carrying capacity, with a nonlinear shift to domi-
nance by negative feedback. While accounting for Cyprus’
tourism lost to the summer of 1974 Turkish invasion, of-
ficially a very long ‘military intervention’, further deplet-
ing annual tourism is the outflow of Cyprus’ visitors (not
shown here) who might go as the island’s free area reaches
its Carrying Capacity, estimated at seventy times the num-
ber of Cyprus’ visitors in 1960 [30].

Cyprus’ Hotel Association listed Cyprus tourism sea-
sonality as one of its major concerns. At the time of this in-
vestigation, CYSTAT [11] had compiled monthly tourism
data for only 30 months. These were used for comput-
ing Cyprus’ tourism seasonality (Fig. 4b). Incorporating
both the foreign annual tourism and the monthly tourism
stocks in the model allows both looking at the big picture
of annual tourism growth and assessing the potential long-
term effects of tourism seasonality on the sustainability
of Cyprus’ environment and hotel EBITDA, i. e., earnings
before interest, taxes, depreciation and amortization. The
publicly available actual annual tourism data allow testing
the model’s usefulness, i. e., how faithfully it reproduces
actual data between 1960 and 2000 [30].

Cyprus’ foreign visitors and local tourists arrive at the
island’s hotels and resorts according to Cyprus’ tourism
seasonality, thereby feeding Cyprus’ monthly tourism
stock. About 11.3 days later, according to CYSTAT’s [11]
estimated average stay days, both foreign visitors and lo-
cal tourists depart, thereby depleting the monthly tourism
stock. By letting tourism growth = 0 and Cyprus’ tourism
seasonality continue repeating its established pattern, the
model computes a zero-growth or base-run scenario. Sub-
sequently, however, tourism growth values other than zero
initiate different scenarios.

Cyprus’ Tourism Growth Scenarios (Case 1)

What can Cyprus’ hoteliers expect to see in terms of bot-
tom-line dynamics? According to the four tourism-growth
scenarios computed on Fig. 5, seasonal variations notwith-
standing, the higher Cyprus’ tourism growth is, the lower
hotel EBITDA (smooth hE) is, in the short term. In the
long term, however, higher tourism growth yields higher
profitability in constant year 2000 prices.
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Scenario-Driven Planning with System Dynamics, Table 1
Cyprus’ environment and population (and local tourism)model sector (Fig. 4a) equations, with variable, constant parameter and unit
definitions

Level or state variables (stocks) Eq. #
CO2Pollution(t)D CO2Pollution(t� dt)C (emissions� clean up) � dt (1.1)
INIT CO2 Pollution = emissions (Based on 1995 gridded carbon dioxide anthropogenic emission data; unit: 1000 metric ton C
per one degree latitude by one degree longitude grid cell)

(1.1.1)

Rate variables (flows)
Emissions D emissions per person � population and tourism (unit: 1000 metric tons C/month) (1.2)
Cleanup D max(0;CO2Pollution/average clean� up time) (unit: 1000 metric tons C/month) (1.3)
Auxiliary variables and constants (converters)
Average clean� up timeD 1200 (Med Sea region average self clean-up time = 100 years; unit: months) (1.4)
Cyprus’ land = If (time � 168) then (9251 � 247:1052) else ((9251� 3355) � 247:1052) (Cyprus’ free land area; unit: acres; 1 km2

= 247.1052 acres)
(1.5)

EF ratioD smooth EF/world EF (unit: unitless) (1.6)
EF : environmental footprint D Cyprus’ land/population and tourism (unit: acres/person) (1.7)
Emissions per person D 1413:4/702000/12 (unit: anthropogenic emissions/person/month) (1.8)
Local tourism D local tourism fraction � Cyprus’ population (unit: persons/month) (1.9)
Local tourism fraction D 0:46 � (0:61C 0:08) (Percentages based on a 1995 study on domestic tourism; unit: unitless) (1.10)
Population and tourism D Cyprus’ populationC Tourism� local tourism (Subtracts local tourists already included in Cyprus’
population; unit: persons)

(1.11)

Sd clean� up timeD 240 (clean-up time standard deviation = 20 years; unit: months) (1.12)
Smooth EF D SMTH3 (EF: environmental footprint, 36) (Third-order exponential smooth of EF) (1.13)
World EFD (world land� Cyprus’ land)/(world population� population and tourism) (unit: acres/person) (1.14)
World landD 36677577730:80 (unit: acres) (1.15)
Cyprus’ populationD GRAPH(time/12) (Divided by 12 since these are annual data; unit: persons) (0.00, 493984), (1.00, 498898),
(2.00, 496570), (3.00, 502001), (4.00, 505622), (5.00, 509329), (6.00, 512950), (7.00, 516743), (8.00, 520968), (9.00, 525364),
(10.0, 529847), (11.0, 534330), (12.0, 539934), (13.0, 546486), (14.0, 552348), (15.0, 526313), (16.0, 516054), (17.0, 515881),
(18.0, 518123), (19.0, 521657), (20.0, 526744), (21.0, 532692), (22.0, 538210), (23.0, 544675), (24.0, 551659), (25.0, 558038),
(26.0, 560366), (27.0, 568469), (28.0, 572622), (29.0, 578394), (30.0, 587392), (31.0, 598217), (32.0, 609751), (33.0, 619658),
(34.0, 626534), (35.0, 632082), (36.0, 636790), (37.0, 641169), (38.0, 645560), (39.0, 649759), (40.0, 653786), (41.0, 657686),
(42.0, 661502), (43.0, 665246), (44.0, 668928), (45.0, 672554), (46.0, 676147), (47.0, 679730), (48.0, 683305), (49.0, 686870),
(50.0, 690425), (51.0, 693975), (52.0, 697524), (53.0, 701056), (54.0, 704547), (55.0, 707970), (56.0, 711305), (57.0, 714535),
(58.0, 717646), (59.0, 720613), (60.0, 723415), (61.0, 726032), (62.0, 728442), (63.0, 730629), (64.0, 732578), (65.0, 734280),
(66.0, 735730), (67.0, 736928), (68.0, 737887), (69.0, 738627), (70.0, 739172), (71.0, 739540), (72.0, 739743), (73.0, 739792), (74.0,
739697), (75.0, 739472), (76.0, 739123), (77.0, 738658), (78.0, 738083), (79.0, 737406), (80.0, 737406)

(1.16)

World populationD GRAPH(time/12) (Divided by 12 since these are annual data; unit: persons) (0.00, 3e+09), (1.00, 3.1e+09),
(2.00, 3.1e+09), (3.00, 3.2e+09), (4.00, 3.3e+09), (5.00, 3.3e+09), (6.00, 3.4e+09), (7.00, 3.5e+09), (8.00, 3.6e+09), (9.00, 3.6e+09),
(10.0, 3.7e+09), (11.0, 3.8e+09), (12.0, 3.9e+09), (13.0, 3.9e+09), (14.0, 4e+09), (15.0, 4.1e+09), (16.0, 4.2e+09), (17.0, 4.2e+09),
(18.0, 4.3e+09), (19.0, 4.4e+09), (20.0, 4.5e+09), (21.0, 4.5e+09), (22.0, 4.6e+09), (23.0, 4.7e+09), (24.0, 4.8e+09), (25.0, 4.9e+09),
(26.0, 4.9e+09), (27.0, 5e+09), (28.0, 5.1e+09), (29.0, 5.2e+09), (30.0, 5.3e+09), (31.0, 5.4e+09), (32.0, 5.4e+09), (33.0, 5.5e+09),
(34.0, 5.6e+09), (35.0, 5.7e+09), (36.0, 5.8e+09), (37.0, 5.8e+09), (38.0, 5.9e+09), (39.0, 6e+09), (40.0, 6.1e+09), (41.0, 6.2e+09),
(42.0, 6.2e+09), (43.0, 6.3e+09), (44.0, 6.4e+09), (45.0, 6.5e+09), (46.0, 6.5e+09), (47.0, 6.6e+09), (48.0, 6.7e+09), (49.0, 6.8e+09),
(50.0, 6.8e+09), (51.0, 6.9e+09), (52.0, 7e+09), (53.0, 7e+09), (54.0, 7.1e+09), (55.0, 7.2e+09), (56.0, 7.2e+09), (57.0, 7.3e+09),
(58.0, 7.4e+09), (59.0, 7.5e+09), (60.0, 7.5e+09), (61.0, 7.6e+09), (62.0, 7.6e+09), (63.0, 7.7e+09), (64.0, 7.8e+09), (65.0, 7.8e+09),
(66.0, 7.9e+09), (67.0, 8e+09), (68.0, 8e+09), (69.0, 8.1e+09), (70.0, 8.1e+09), (71.0, 8.2e+09), (72.0, 8.3e+09), (73.0, 8.3e+09), (74.0,
8.4e+09), (75.0, 8.4e+09), (76.0, 8.5e+09), (77.0, 8.5e+09), (78.0, 8.6e+09), (79.0, 8.6e+09), (80.0, 8.7e+09)

(1.17)

High tourism growth implies accommodating over-
booked hotel reservations for tourists who actually show
up. Free cruises erode Cyprus’ hotel EBITDA. The al-
ternative is, however, angry tourists going off in ho-
tel lobbies. Tourists have gotten angry at hotels before,
but hotels have made the problem worse in recent years

worldwide [16]. They have tightened check-in rules, dou-
bled their renovations and increased the rate of over-
booking by about 30 percent. The results can be ex-
plosive if one adds the record flight delays that travel-
ers endure. Anyhow, free cruises to nearby Egypt and
Israel sound much better than simply training employ-
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Scenario-Driven Planning with System Dynamics, Figure 5
Four computed scenarios show how tourism growth might affect Cyprus’ hotel EBITDA (smooth hE) and the island’s environment,
with carbon-dioxide (CO2) pollution (adapted from and extending [30])

ees to handle unhappy guests that scream in hotel lob-
bies.

Eventually, as Cyprus’ bed capacity increases and
thereby catches up with tourism demand, there will be
less overbooking and a few free cruises to erode Cyprus’
hotel EBITDA. Given enough time for an initial bed ca-
pacity disequilibrium adjustment, in the long term, high
tourism growth increases both hotel EBITDA (Fig. 5a) and
cash [30].

In addition to their profound consequences for its
hotel value-chain participants, Cyprus’ tourism growth
might also determine the fate of the island’s environment.
Depending on the island’s population and emissions per
person, high tourism growth implies high anthropogenic
emissions feeding Cyprus’ CO2 Pollution. Anthropogenic
CO2 emissions attributed to the upward and downward
movements of recurring tourist arrivals create much more
stress and strain for the island’s natural environment than
a consistent stream of tourism with low seasonality would.
High tourism growth lowers Cyprus’ environmental foot-
print (EF). The summer 1974 Turkish military interven-
tion has had a drastic negative effect on Cyprus’ relative
attractiveness because it reduced the island’s free land by
41 percent.

Although qualitatively similar to the world’s average
EF after the invasion, Cyprus’ environmental footprint is
lower than the world’s average EF (Fig. 5c), rendering the

island’s free area relatively less attractive as more foreign
tourists visit. Manifested in the EF ratio (Fig. 5d), Cyprus
becomes relatively less attractive as more visitors choose
to vacation on the island’s free area.

Qualitatively, Cyprus’ CO2 pollution scenarios
(Fig. 5b) look exactly like the A2 scenario family of har-
monized anthropogenic CO2 emissions, which the Inter-
governmental Panel on Climate Change (IPCC) computed
to access the risks of human-induced climate change [54].
Like in the rest of the world, unless drastic changes in pol-
icy or technology alter the emissions per person ratio in
the next 40 years, CO2 pollution is expected to grow pro-
portionally with Cyprus’ tourism, degrading the island’s
environment.

Case 2: A Japanese Chemicals Keiretsu (JCK)

Home of NASA’s Johnson Space Center, the Clear Lake re-
gion in Texas boasts strong high technology, biotechnol-
ogy and specialty chemicals firms. Among them is JCK,
whose recent investment helps the Clear Lake region con-
tinue its stalwart role in Houston’s regional economic ex-
pansion [40].

An active member of a famous Japanese giant con-
glomerate, JCK’s history begun in the late 1800s. Despite
its long history, however, it has not been easy for JCK to
evade the feedback loop that drives Japanese firms toman-
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ufacture outside Japan. Since the 1950s, with Japan still re-
covering from WWII, the better Japanese companies per-
formed, the better their national currency did. But the bet-
ter Japan’s currency did, the harder it became for its firms
to export. The higher the yen, the more expensive and,
therefore, less competitive Japan’s exports become. This
simple loop explains JCK’s manufacturing lineage from
Japan to USA [34].

But the transition process behind this lineage is not
that simple. JCK’s use of SdP with SD reveals a lot about
its strategy design and implementation tactics. The model
below shows a tiny fragment of JCK’s gigantic effort to re-
perceive itself. The firm wants to see its keiretsu transform
into an agile, virtual enterprise network (VEN) of active
agents that collaborate to achieve its transnational busi-
ness goals. Although still flying low under the media’s col-
lective radar screen, VENs receive increased attention by
strategic managers [29].

Sterman (see Chap. 17 and 18 in [75]) presents
a generic value-chain management structure that can un-
earth what VENs are about. By becoming a VEN, JCK is
poised to bring the necessary people and production pro-
cesses together to form autopoietic, i. e., self-organizing,
customer-centric value chains in the specialty chemicals
industry. JCK decided to build its own plant in USA be-
cause the net present value (NPV) of the anticipated com-
bined cash flow resulting from a merger with other spe-
cialty chemicals manufacturers in USA would have been
less then the sum of the NPVs of the projected cash flows
of the firms acting independently. Moreover, JCK’s own
technology transfer cost is so low that the internalization
cost associated with a merger would far exceed supplier
charges plus market transaction costs. To remain compet-
itive [62], JCK will not integrate the activity but offshoot it
as a branch of its VEN-becoming keiretsu. The plant will
be fully operational in January 2008. In order to maximize
the combined net present value of earnings before interest,
taxes, depreciation and amortization, i. e., NPV(EBITDA),
of its new USA plant and the existing one in Asia, JCK
wishes to improve its USA sales revenue before produc-
tion starts in USA.

JCK’s pre-production marketing tactics aim at build-
ing a sales force to increase sales in USA. Until the comple-
tion of the new plant (Dec. 2007), JCK will keep importing
chemicals from its plant in Asia. Once production starts in
USA (Jan. 2008), then the flow of goods from Asia to USA
stops, the plant in USA supplies the USA market and the
flow of goods from USA to Asia begins.

Strategic scenarios are not new to the chemical indus-
try [82]. SdP with SD helps this specialty chemicals pro-
ducer integrate its business intelligence efforts with strat-

egy design in anticipation of environmental change. Mod-
eling JCK’s strategic situation requires a comprehensive
inquiry into the environmental causalities and equivocali-
ties that dictate its actions. Computed strategic and tactical
scenarios probe the combined consequences of environ-
mental trends, changes in JCK’s own strategy, as well as
the moves of its current and future competitors. The sec-
tion below describes briefly how JCK plans to implement
its transnational strategy of balanced marketing and pro-
duction. This takes the form of a system dynamics simula-
tion model, which precedes the interpretation of its com-
puted scenarios.

Model Description (Case 2)

The entire model has multiple sectors, four of which com-
pute financial accounting data. Figure 6a shows the pro-
duction and sales, and Fig. 6b the total NPV(EBITDA)
model sectors. The corresponding algebra is in [34]. While
JCK is building its USA factory, its factory in Asia makes
and sells all specialty chemicals the USA market cannot
yet absorb. This is what the feed-forward link from the
production in Asia flow to the sales in Asia rate shows.
The surplus demand JCK faces in Asia for its fine chem-
icals accounts for this rather unorthodox model structure.
The surplus demand in Asia is the model’s enabling safety
valve, i. e., a major strategic assumption that renders tacti-
cal implementation feasible.

With the plant in Asia producing at full capacity before
the switch, sales in the USA both depletes the tank in Asian
stock and reduces sales in Asia. USA sales depend on JCK’s
USA sales force. But the size of this decision variable is just
one determinant of sales in USA.

Sales productivity depends on many parameters, such
as the annual growth before the switch rate of specialty
chemicals in USA, the average expected volume a sales-
person can sell per month as well as on the diminishing re-
turns that sales people experience after the successful calls
they initially make on their industrial customers. B2B or
business to business, i. e., industrial marketing, can some-
times be as tough as B2C or business to customer, i. e., sell-
ing retail.

Time t D 30 months corresponds to January 2008,
when the switch time converter cuts off the supply of JCK’s
chemicals from its plant in Asia. Ready by December 2007,
the factory in the USA can supply the entire customer base
its USA sales force will have been building for 30 months.
As production in the USA begins, the sales in the USA
before flow stops draining the tank in Asia and sales in
Asia resume to match JCK’s surplus demand there. Act-
ing both as a production flow and as a continuous-review
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Scenario-Driven Planning with System Dynamics, Figure 6
JCK’s a production and sales, and b total NPV(EBITDA) model sectors (adapted from [34]; NPV = net present value, and EBITDA =
earnings before interest, taxes, depreciation and amortization)

inventory order point, after January 2008, production in
USA feeds the tank in USA stock of the rudimentary value-
chain management structure on Fig. 6a.

Value chains entail stock and flow structures for the
acquisition, storage and conversion of inputs into outputs,
and the decision rules that govern the flows. The jet ski
value chain includes, for example, hulls and bows that
travel down monorail assembly paths. At each stage in the
process, a stock of parts buffers production. This includes
the inventory of fiberglass laminate between hull and bow
acquisition and usage, the inventory of hulls and bows for
the jet ski lower and upper structures, and the inventory of
jet skis between dealer acquisition and sales. The decision
rules governing the flows entail policies for ordering fiber-
glass laminate from suppliers, scheduling the spraying of
preformed molds with layers of fiberglass laminate before
assembly, shipping new jet skis to dealers and customer
demand.

A typical firm’s or VEN’s value chain consists of
cascades of supply chains, which often extend beyond
a firm’s boundaries. Effective value chain models must
incorporate different agents and firms, including suppli-
ers, the firm, distribution channels and customers. Sce-

nario-driven planning with system dynamics is well suited
for value chain modeling and policy design because value
chains involve multiple stock and flow chains, with time
lags or delays, and the decision rules governing the flows
create multiple feedback loops among VEN members or
value- and supply-chain partners (see Chap. 17 and 18
in [75]).

Back to JCK, its tank in the USA feeds information
about its level back to production in the USA. Acting first
as a decision point, production in the USA compares the
tank in the USA level to the tank’s capacity. If the tank is
not full, then production in the USA places an order to
itself and, once the USA factory has the requisite capac-
ity, production in the USA refills the tank in the USA, but
only until sales in the USA after the switch drains the tank.
Then the cycle begins all over again.

Meanwhile, the profit in Asia, profit in the USA before
and profit in the USA after sectors [34] perform all the fi-
nancial accounting necessary to keep track of the trans-
actions that take place in the value chain production and
sales sector (Fig. 6a). As each scenario runs, the profit in
Asia, the USA before and the USA after sectors feed the
corresponding change in net present value (NPV) flows of
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Scenario-Driven Planning with System Dynamics, Figure 7
Thirty computed scenarios show JCK’s dual, smooth-switch and profitable purpose in production (adapted from [34])

the model’s total NPV(EBITDA) sector (Fig. 6b). By ad-
justing each profit sector’s EBITDA according to the dis-
count rate, the change in NPV flows compute the total
NPV(EBITDA) both in Asia and in the USA, both before
and after JCK’s January 2008 supply switch.

JCK’s Computed Scenarios (Case 2)

Recall that the SdP with SD modeling-process spiral en-
abled our modeling team to crystallize JCK’s strategic situ-
ation into the cyclical pattern that Fig. 3a shows. Although
heavily disguised, the JCK measurement data and econo-
metric sales functions let the system dynamicsmodel com-
pute scenarios to answer that razor-sharp optimization
question the JCK executives asked:

What size a USA sales force must we build in order
to get a smooth switch in both sales and production
in January 2008, and also tomaximize the combined
NPV(EBITDA) at our two plants in Asia and USA
from now through 2012?

Treating the USA sales force policy parameter in the
‘Sensi Specs. . . ’ menu item of iThink® allowed computing

a set of 30 strategic scenarios. The 30 scenarios correspond
to JCK’s hiring from one to 30 sales people, respectively, to
sell specialty chemicals tomanufacturing firms in theUSA,
both before and after the January 2008 switch. Figures 7
and 8 show the 30 computed scenarios.

Figure 7c shows the response surfaces the production
in USA rate and tank in the USA stock form after January
2008, in response to the 30 computed scenarios. The com-
puted scenario that corresponds to JCK’s building a USA
sales force of 19 people achieves a smooth balance between
sales in Asia and in the USA. Under this scenario, after
January 2008, on the line where the two surfaces cross each
other, not only the number of pounds of chemicals made
and sold in Asia equals the number of pounds of chemi-
cals made and sold in the USA, but as Fig. 7c shows, pro-
duction in the USA also equals the tank in USA stock. So
hiring 19 sales people now meets JCK’s smooth switch in
sales and production objective. But how?

How does producing and selling in the USA at rates
equal to the corresponding rates in Asia constitute a fair
response to JCK’s smooth switch objective? The JCK exec-
utives seemed to accept this at face value. But our team
had to clearly explain the dynamics of JCK’s rudimen-
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tary USA value chain (Fig. 6a), in order to unearth what
the USA member of this transnational VEN-becoming
keiretsu might be up to.

It looks simple, but the value chain of the production
and sales sector on Fig. 6a can show the same amplifi-
cation symptoms that much more elaborate value chains
show when they fall pray to bullwhip effects. Locally ra-
tional policies that create smooth and stable adjustment
of individual business units can, through their interaction
with other functions and firms, cause oscillation and in-
stability. Figure 8a shows the profound consequences of
JCK’s switch for its value chain in the USA. Because of
the sudden switch in January 2008, the computed scenar-
ios cause 30 sudden step changes. Both variables’ adjust-
ment rates increase, but the tank in the USA stock’s am-
plification remains almost constant below 50 percent. As
customer demand steps up, so do both metrics’ new equi-
librium points, but in direct proportion to the step increase
in customer demand in the USA.

The 30 computed scenarios confirm Sterman’s argu-
ment that, while the magnitude of amplification depends
on stock adjustment times and delivery lags, its existence
does not. No matter how drastically customers and firms
downstream in a value chain change an orders’ magni-
tude, they cannot affect supply chain amplification. Value
chain managers must never blame customers and down-
stream firms or their forecasts for bullwhip effects. The
production in USA amplification is almost double the tank
in USA for a small USA sales force, suggesting that JCK’s
USA factory faces much larger changes in demand than its
sales people do. Although temporary, during its disequilib-
rium adjustment, the tank in the USA consistently over-
shoots the new equilibrium points that it seeks after the
switch (Fig. 7b), an inevitable consequence of stock and
flow structure. Customers are innocent, but JCK’s value
chain structure is not:

First, the tank in the USA stock adjustment process
creates significant amplification of the production in the
USA rate. Though the tank in the USA relative amplifica-
tion is 36.18 percent under the USA sales force = 1 sce-
nario, for example, the relative amplification of produc-
tion in the USA (Fig. 8a) increases by a maximum of more
than 90 percent (the peak production in the USA rate, af-
ter t = 30 months, divided by the minimum production
in the USA rate D 11; 766; 430:01/1; 026; 107:64 D 91:28
percent). The amplification ratio, i. e., the ratio of max-
imum change in output to maximum change in input,
therefore is 91:28%/36:18% D 2:52. A one-percent in-
crease in demand for JCK’s chemicals causes a 2.52 percent
surge in demand at JCK’s USA plant. While the amplifi-
cation ratio magnitude depends on the stock adjustment

times and delivery lags, its existence does not (see p. 673
in [75]).

Second, amplification is temporary. In the long run,
a one-percent increase in sales in the USA after leads to
a one-percent increase in production in the USA. After
two-adjustment times, i. e., two months, production in the
USA gradually drops (Fig. 7a). During the disequilibrium
adjustment, however, production in the USA overshoots
its new equilibrium, an inevitable consequence of the stock
and flow structure of customer-supplier value chains, no
matter how tiny or simple they are. The only way the tank
in the USA stock can increase is for its inflow production
in the USA rate (order rate) to exceed its outflow rate sales
in the USA after (Fig. 6a). Within a VEN’s or keiretsu’s
customer-supplier value chain, supply agents face much
larger changes in demand than finished-goods inventory,
and the surge in demand is temporary.

The computed scenarios show that as the USA sales
force increases, the production in the USA’s rate of am-
plification declines because its new long-term equilibrium
point is closer to its initial jump in January 2008. Con-
versely, as the tank in the USA stock’s long-term equilib-
rium point remains consistently high because of the larger
USA sales force, its relative amplification begins to rise.
Since the two variables’ relative amplification moves in
opposite directions, eventually, they meet. What a coin-
cidence! They meet above the USA sales force = 19 people.
Now, is this not a much better interpretation of the word
‘smooth’ in fair response to JCK’s smooth-switch perfor-
mance purpose? The answer to JCK is now pertinent to its
balancing its value chain in USA. With a USA sales force =
19, JCK’s value chain components show equal relative am-
plification to sudden changes in demand, attaining noth-
ing less than a magnificent amplification ratio = 1. Now
that is smooth!

But what of profitability? JCK’s polite executives said:
“maximize. . . combined. . . NPV”. In the time domain
(Fig. 8b), total NPV(EBITDA) creates intricate dynamics
that obscures the USA sales force effect. But the phase plot
on Fig. 8c clearly shows a concave down behavior along
the USA sales force: USA sales force = 19 maximizes the
two plants’ combined total NPV(EBITDA).

Future Directions

The above cases show how scenario-driven planning with
system dynamics helps control performance by enabling
organizational learning and the management of uncer-
tainty. The strategic intelligence system that SdP with SD
provides rests on the idea of a collective inquiry, which
translates the environmental ‘macrocosm’ and a firm’s
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Scenario-Driven Planning with System Dynamics, Figure 8
Thirty computed scenarios show how hiring a sales force of 19 people in the USA might maximize JCK’s NPV(EBITDA), and thereby
fulfill its dual, smooth-switch and profitable purpose (adapted from [34])

‘microcosm’ into a shared causal map with computed sce-
narios. Informed discussion then takes place. Seeing SdP
with SD as an inquiry system might help the outcomes
of the situation formulation-solution-implementation se-
quence, each stage built on successive learning.

Strategic situations are complex and uncertain. Be-
cause planning is directed toward the future, predictions
of changes in the environment are indispensable compo-
nents of it. Conventional forecasting by itself provides no
cohesive way of understanding the effect of changes that
might occur in the future. Conversely, SdP with SD and
its computed scenarios provide strategic intelligence and
a link from traditional forecasting to modern interactive
planning systems. In today’s quest for managers who are
more leaders than conciliators, the strategists’ or execu-
tives’ interest in scenarios must be welcomed. A clearer de-
lineation of SdP with SD might make it a very rich field of
application and research.

The SdP with SD inquiry system on Fig. 2 includes sev-
eral contributions. First, by translating the environmental
macrocosm and the firm microcosm into a common con-
text for conceptualization, the requisites of theory build-
ing can be addressed. Planning analysts no longer have to
operate piecemeal. A theory and a dominant logic typically
emerge from shared perceptions about a firm, its environ-
ment and stakeholder purposes through model construc-
tion.

Second, the outputs of the strategic management pro-
cess activities build on each other as successive layers. The
SAST loop on Fig. 2 follows the counterclockwise direc-
tion ofmultiperspective dialectics [47]. This process allows
adjustment of individual and organizational theories and
logic, leading to an evolutionary interpretation of the real
system that strategic decisions target.

Third, the inquiry system of Fig. 2 enables flexible sup-
port for all phases of strategy design. Problem finding or
forming, or situation formulation receives equal attention
as problem solving.

SdP with SD helps open up the black box of decision
makers’ mental models, so they can specify the ideas and
rules they apply. That in turn helps enrich their language
and label system, organizational capability and knowledge,
and strategic decision processing system. Computed sce-
narios bring about transformation rules not previously
thought of as well as new variables and interaction paths.

As an entity, each decision maker has a local scope and
deals only with specific variables and access paths to other
entities. But success factors are not etched in stone. Of-
ten, we only observe a representative state of each entity,
namely, locally meaningful variables and parts of a sce-
nario. This representativeness changes dynamically in the
process of computing scenarios. Beyond the purely techni-
cal advantages of computed scenarios, planning becomes
interactive, and language and label systems render them-
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selves more adequate, effective and precise. Their associ-
ated organizational capability develops even more. In ad-
dition, the minor andmajor assumptions in decisionmak-
ers’ mental models surface as computed scenarios specify
the conditions under which performance changes.

A line of great immediate concern requires researchers
and practitioners alike to explore the modeling process
behind SdP with SD. For the sake of realism, to make
negotiated perceptions of reality explicit, we need repre-
sentations where strategic real options and self-interest
projections mold the way in which managers incorporate
their observations and interpretations into strategy mod-
els. This is an unavoidable, most challenging path to tread,
if we want to build a dialectical debate into the strategy de-
sign process.

Do we really want to? Yes because:

1. The traditional hierarchical organization dogma has
been planning, managing and controlling, whereas the
new reality of the learning organization incorporates vi-
sion, values andmental models. It entails training man-
agers and teams in the IPRD learning cycle conceived
by Dewey [14] (cf. Senge and Sterman [71]):

2. In the strategic management process (SMP) evolution,
planning is evolving too, from objective-driven to bud-
get-driven to strategy-driven to scenario-driven plan-
ning with system dynamics (SdP with SD, see pp. 271–
272 in [32]).

3. The inquiry system that mediates the restructuring of
organizational theory in use [68] determines the quality
of organizational learning.

By looking into the dynamics of strategy design and the
resulting performance of firms, the SdP with SD frame-
work on Fig. 2 might let managers, planners and busi-
ness researchers see the tremendous potential of computed
strategic scenarios. They might choose to build intelli-
gence systems around SdP with SD to create insight for
strategy design. They will be building real knowledge in
the process, while developing capability for institutional
learning. Both Pascale [59] and de Geus [13] see the ca-
pability to speed up institutional learning as a truly sus-
tainable competitive advantage.
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Glossary

Bayesian analysis A model estimation technique that ac-
counts for incomplete knowledge. Bayes’ theorem is
a mathematical formulation of how an a priori esti-
mate of the probability of an event can be updated, if
a new information becomes available.

Critical earthquake concept The occurrence of large
earthquakes may be described in terms of statistical
physics and thermodynamics. In this view, an earth-
quake can be interpreted as a critical phase transi-
tion in a system with many degrees of freedom. The
preparatory process is characterized by acceleration of
the seismic moment release and growth of the spatial
correlation length as in the percolation model. This in-
terpretation of earthquake occurrence is referred to as
the critical earthquake process.

Earthquake forecast/prediction The forecast or predic-
tion of an earthquake is a statement about time,
hypocenter location, magnitude, and probability of oc-
currence of an individual future event within reason-
able error ranges.

Fault model A fault model calculates the evolution of slip,
stress, and related quantities on a fault segment or
a fault region. The range of fault models varies from
conceptual models of cellular automaton or slider-
block type to detailed models for particular faults.

Probability A quantitative measure of the likelihood for
an outcome of a random process. In the case of re-
peating a random experiment a large number of times
(e. g. flipping a coin), the probability is the relative fre-
quency of a possible outcome (e. g. head). A different
view of probability is used in the! Bayesian analysis.

Seismic hazard The probability that a given magnitude
(or peak ground acceleration) is exceeded in a seismic
source zone within a pre-defined time interval, e. g.
50 years, is denoted as the seismic hazard.

Self-organized criticality
Self-organized criticality (SOC) as introduced by
Bak [2] is the ability of a system to organize itself in
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the vicinity of a critical point independently of values
of physical parameters of the system and initial condi-
tions. Self-organized critical systems are characterized
by various power law distributions. Examples include
models of sandpiles and forest-fires.

Definition of the Subject

The most fundamental question in earthquake science is
whether earthquake prediction is possible. Related issues
include the following: Can a prediction of earthquakes
solely based on the emergence of seismicity patterns be re-
liable? In other words, is there a single or several “magic”
parameters, which become anomalous prior to a large
earthquake? Are pure observational methods without spe-
cific physical understanding, like the pattern recognition
approach of Keilis–Borok and co-workers [41], sufficient?
Taking into account that earthquakes are monitored con-
tinuously only for about 100 years and the best available
data sets (“earthquake catalogs”) cover only a few decades,
it seems questionable to forecast earthquakes solely on the
basis of observed seismicity patterns. This is because large
earthquakes have recurrence periods of decades to cen-
turies; consequently, data sets for most regions include less
than ten large events making a reliable statistical testing
questionable.

In the studies discussed here, the goal is not to fore-
cast individual earthquakes. Instead, we aim at developing
a combined approach based on numerical modeling and
data analysis in order to understand seismicity and the
emergence of patterns in the occurrence of earthquakes.
The discussion and interpretation of seismcity in terms of
statistical physics leads to the concept of “critical states”,
i. e. states in the seismic cycle with an increased probabil-
ity for abrupt changes involving large earthquakes. Amore
general goal of this work is to provide perspectives for
the understanding of the relevant mechanisms and to give
outlines for developments related to time-dependent seis-
mic hazard.

Introduction

Several empirical relationships for the occurrence of seis-
micity are well-known. The most common one is probably
the Gutenberg–Richter law [30] for the relation between
frequency and magnitude of earthquakes in a large seismi-
cally active region,

logN D a � bM ; (1)

where N is the frequency of earthquakes with magnitude
equal to or greater than M; a is a measure of the over-

all seismicity level in the region and the b value deter-
mines the relation between large and small earthquakes.
The Gutenberg–Richter law provides an important con-
straint for the design of physical models and serves as a key
ingredient for seismic hazard estimations. Statistical rela-
tions for the temporal occurrence of large events are less
well known, because the corresponding data records are
too short.

Several additional problems exist in the understanding
and interpretation of observed seismicity patterns. First,
it is important to decide whether an observed pattern has
a physical origin or is an artifact, arising for example from
inhomogeneous reporting or from man-made seismicity
like quarry blasts or explosions [69]. Second, the non-ar-
tificial events have to be analyzed with respect to their
underlying mechanisms. This leads to an inverse prob-
lem with a non-unique solution, which can be illustrated
for the most pronounced observed temporal pattern asso-
ciated with aftershocks. It is empirically known that the
earthquake rate Ṅ after a large event at time tM follows the
Omori–Utsu law [49,67]

Ṅ D
K

(c C t � tM)p
; (2)

where t is the time, K and c are constants, and the Omori
exponent p is close to unity. In particular, aftershocks are
an almost universal phenomenon; that is, they are ob-
served nearly after eachmainshock. The underlyingmech-
anisms leading to aftershocks are, however, unknown.
Various physical models have been designed to explain af-
tershock occurrence following Eq. (2). These models in-
clude viscoelasticity [32], pore fluid flow [46], damage
rheology [9,57], and rate-state friction [24]. The question
which mechanism or combination of mechanisms is rele-
vant in a given fault zone remains open. Detailed compar-
isons of observed and modeled seismicity with respect to
the aftershock rate, the duration of aftershock sequences,
the dependence on the mainshock size, and other features
are necessary to address this problem. Additionally, results
from lab experiments on rupture dynamics and satellite
observations of deformation provide important informa-
tion for the design of such models.

Apart from aftershock activity, other seismicity pat-
terns are occasionally associated with observations, in-
cluding foreshocks [39], seismic quiescence [34,72,78],
and accelerating moment release [17,38]. These patterns
have been documented in several cases before large earth-
quakes. They occur, however, far less frequently than af-
tershocks. For example, foreshocks are known to preceed
only 20–30% of large earthquakes [71]. Therefore, their
predictive power is questionable. Moreover, it is not clear
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whether these patterns can be attributed to physical pro-
cesses or to random fluctuations in the highly sparse and
noisy earthquake catalogs. This problem can be addressed
by using fault models which simulate long and complete
earthquake sequences over thousands of years. If the mod-
els capture the main features of the underlying physics,
the occurrence of seismicity patterns can be studied with
reasonable statistics. The main ingredients of such models
are the geometry of a fault region, empirically known con-
stitutive laws, spatial heterogeneities, and stress and dis-
placement functions following dislocation theory [20,47].
In order to allow for detailed studies of the relations be-
tween the imposed mechanisms and the observed seismic-
ity functions, it is important that the number of adjustable
parameters is limited.

It is emphasized that thesemodels do not aim to repro-
duce an observed earthquake catalog in detail. Instead, the
main goal is to address questions like: Why is the Park-
field segment of the San Andreas fault characterized by
relatively regular occurrence of earthquakes with magni-
tude M � 6, while on the San Jacinto fault in California
the properties of earthquake occurrence are more irregu-
lar? Basic models for seismicity are mainly based on one or
more solid blocks, which are driven by a plate over a slid-
ing surface. The plate and the blocks are connected with
springs. This model can generate stick-slip events con-
sidered to represent earthquakes. The slider-block mod-
els can produce a wide range of complexity, beginning
with a single block model leading to periodic occurrence
of events of uniform size, and progressing to an array of
connected blocks [18] leading to complex sequences of
events with variable size. In order to reduce the computa-
tional effort cellular automata are commonly used [42,48].
Mathematically, these models include maps instead of dif-
ferential equations; physically, this corresponds to instan-
taneously occurring slip events, neglecting inertia effects.
The main ingredients of slider-block and cellular automa-
ton models are (1) external driving (plate motion), and
(2) sudden local change of system parameters (stress),
when a critical value (material strength) is reached, fol-
lowed by an avalanche of block slips (stress drop and co-
seismic stress transfer during an earthquake). While the
first process lasts for years to several hundred years, the
second occurs on a time scale of a few seconds. The sim-
plest model including these features has been formulated
by Reid [52] and is known as Reid’s elastic rebound the-
ory; in terms of slider-block models, this corresponds to
a single blockmodel with constant plate velocity. Account-
ing for spatial heterogeneity and fault segmentation, many
interacting blocks, or fault segments, have to be consid-
ered. This leads to a spatiotemporal stress field instead

of a single stress value. In general, the material strength
will also become space-dependent. Such a model frame-
work can be treated with the methodology of statistical
physics similar to the Ising model or percolation mod-
els [43]. In this context, large earthquakes are associated
with second-order phase transitions [2,59,64]. The view of
earthquakes as phase transitions in a system with many
degrees of freedom and an underlying critical point, is
hereinafter referred to as the “critical point concept”. The
period before such a phase transition is expected to be
characterized by a preparation process including devel-
opment of power laws and growing spatial correlation
length [14]. However, depending on the parameters of
a model, different situations are conceivable: the system
trajectory can enter the critical state and the critical point
frequently (“supercritical”) or it may never becomes criti-
cal (“subcritical”). A case of special interest is the class of
models [2] showing self-organized criticality (SOC), which
have their origin in a simple cellular automaton model
for a sandpile [3]. In this case the system drives itself
permanently to the vicinity of the critical point with al-
most scale-free characteristics. Consequently, each small
event can grow into a large earthquake with some proba-
bility [28].

Long simulations of earthquake activity can be used to
calculate statistical features like the recurrence time distri-
bution of large earthquakes and the frequency-size distri-
bution with high precision. Despite the scaling behavior
(Eq. (1)) in the earthquake magnitudes for small and in-
termediate earthquakes, which is observed for many sets
of model parameters, clear deviations become visible for
large magnitudes. Such deviations are known from real
catalogs, but their statistical significance is not clear in
all cases. The model simulations suggest that deviations
from scaling for strong earthquakes can be attributed to
physical properties. One important property is the spatial
disorder of brittle parameters of the fault. The presence
of strong heterogeneities suppresses system-wide events
with some probability, whereas such events can evolve
more easily on smooth faults. The degree of quenched
(time-independent) spatial heterogeneity turns out to be
a key parameter for statistical and dynamical properties of
seismicity [5,12,80]. This includes the temporal regularity
of mainshock occurrence, various properties of the stress
and displacement fields, and a spontaneous mode-switch-
ing between different dynamical regimes without chang-
ing parameters. The degree of heterogeneity can act as
a tuning parameter that allows for a continuous change
of the model dynamics between the end-member cases of
supercritical and subcritical behavior. Such a dependence,
which is observed also for other parameters, can be visual-
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Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 1
Sketch of the fault model framework

ized in phase diagrams similar to the phase diagram for the
different aggregate states of water [22,79,80]. For increas-
ing complexity of a model, the number of axes of the phase
diagram, representing the relevant model parameters, will
increase. The above mentioned question of distinguish-
ing different faults like the Parkfield segment and the San
Jacinto fault can be rephrased as the problem of assign-
ing the faults to different regions in such a diagram. An
important step in this direction is the physical modeling
of observed seismicity patterns, including universal pat-
terns like aftershocks (Eq. (2)), common fluctuations like
foreshocks and the acceleration of seismic energy release
before large earthquakes. The latter phenomenon which
sometimes occurs over large regions including more than
one fault, can be interpreted in terms of the approach to-
wards a critical point. This view is supported by an ob-
servational study of the growth of the spatial correlation
length which is a different aspect of the same underlying
physics [73,75,76,77].

The establishment of relationships between model pa-
rameters and observational features may be used to tune
the model towards a specific fault zone, and use the tuned
fault model for practical applications of seismic hazard es-
timations. Toward this end the recurrence time distribu-
tion of large earthquakes is needed. Since observational
data records are often short and noisy, the use of Bayesian
probability theory is helpful for the estimation of uncer-
tain model parameters, and the incorporation of various
types of observational data in seismic hazard estimations.
The Parkfield segment, as one of the best monitored seis-
mically-active regions, serves as an excellent natural lab-
oratory for such a case study. A discussed example illus-

trates how partially known parameters like the stress drop
and the seismic hazard can be estimated by combining nu-
merical models and observational data [74].

In Section “Modeling Seismicity in Real Fault Re-
gions”, the physical fault model used for the discussed
studies is described. Results from numerical simulations
are presented in Sect. “Results”. A summary is given in
Sect. “Summary and Conclusions”.

Modeling Seismicity in Real Fault Regions

Numerous frameworks have been used to simulate
seismicity (see e. g. [6,9,10,18,32,37,48] and references
therein). These include slider-block models, cellular au-
tomata, “inherently discrete” fault models where the dis-
creteness is an inherent feature of the imposed physics,
and continuum models. In this section we illustrate how
a fault model (Fig. 1) can be adjusted in order to simulate
seismicity of a real fault region, e. g. the Parkfield segment
of the San Andreas fault in California.

Fault Geometry and Model Framework

A first constraint for a specific model is to represent the
geometry of the fault segment. As shown in Fig. 2, the re-
gion of Parkfield is characterized by a distribution of fault
segments, which have generally the same orientation. It is
therefore reasonable to map these segments in the model
on a plane intersecting the surface at a straight line from
SE to NW. The dimensions of the fault segment for mod-
eling (Fig. 1) are chosen to be 70 km in length and 17.5 km
in depth. As discussed in [10], this geometry corresponds
approximately to the San Andreas fault near Parkfield. The
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entire fault is an infinite half-plane, but the brittle pro-
cesses are calculated on the above rectangular section re-
ferred to below as the computational grid. The computa-
tional grid is discretized to 128 � 32 cells of uniform size,
where stress and slip are calculated. The size of the cells is
not related here to observations; rather it depends on the
magnitude range under consideration and the computa-
tional effort. The failure of a single cell defines the lowest
magnitude.A higher resolution of the grid with same over-
all dimensions increases the magnitude range, because the
magnitude is calculated from the slip of all cells during an
earthquake. Following Ben–Zion and Rice [10], the mate-
rial surrounding the fault is assumed to be a homogeneous
elastic half space, which is characterized by elastic param-
eters and a related Green’s function:

1. The elastic properties are expressed by the Lamé con-
stants  and �, which connect stress and strain in
Hooke’s law. For many rocks, these constants are al-
most equal; therefore we use  D � with � being the
rigidity. An elastic solid with this property is called
a Poisson solid. Because the strain is dimensionless, �
has the same dimension as the stress. In the present
study, we use � D 30GPa.

2. The (static) Green’s function G( Ey1; Ey2) defines the
static response of the half space at a position Ey1 to a dis-
placement at Ey2, which may arise from (coseismic) slip
or (aseismic) creep motion. Due to the discretization
of the fault plane into computational cells, we use the
Green’s function for static dislocations on rectangu-
lar fault patches of width dx and height dz, which is
given in [20] and [47]. Themain difference between this
Green’s function and the nearest-neighbor interaction
of most slider-blockmodels and cellular automata is the
infinite-range interaction following a decay according
to 1/r3, where r is the distance between source cell and
receiver point.

Interseismic Processes

The motion of the tectonic plates, indicated in Fig. 2, is
responsible for the build-up of stress in the fault zone.
Geodetic measurements of surface displacements provide
estimates of the velocity of the plates. For the San Andreas
fault, a value of vpl D 35mm/year as a long-term aver-
age [55] is widely accepted and is adopted for the model.
The displacement du in the regions surrounding the grid
during a time period
t is simply du D vpl �
t. While the
average slip rate u̇ is independent of the location of a cell,
the stress rate �̇ depends on space. The assumption that the
computational grid is embedded in a half-plane which un-
dergoes constant creep, implies that cells at the boundaries

of the grid experience higher load than cells in the cen-
ter of the grid. The Green’s function G(i; j ; k; l) defines
the interaction of points (i; j) and (k; l) in the medium. In
particular, the stress response at a position (i; j) to a static
change of the displacement field du(k; l) is given by

d�(i; j) D �
X

(k;l )2 half space

G(i; j ; k; l) � du(k; l) ; (3)

where the minus sign stems from the fact that forward
(right-lateral) slip of regions around a locked fault seg-
ment is equivalent to back (left-lateral) slip of the locked
fault segment. Taking into account that

X

(k;l )2half space

G(i; j ; k; l) D 0 ; (4)

Eq. (3) can be written as

�(i; j ; t) D �
X

(k;l )2 half space

G(i; j ; k; l)�[u(k; l ; t)�vpl t] ;

(5)

where u(k; l ; t) is the total displacement at position
(k; l) and time t since the start of the simulation. Be-
cause the surrounding regions sustain stable sliding,
u(k; l ; t) D vpl t for (k; l) … grid, the slip deficit outside
the fault region vanishes and it is sufficient to perform the
summation on the computational grid:

�(i; j ; t) D
X

(k;l )2 grid

G(i; j ; k; l) � [vpl t�u(k; l ; t)] : (6)

Equation (6) can be decomposed to a part for the tectonic
loading and a residual part for slip on the computational
grid. The tectonic loading follows the formula

�load(i; j ; t) D � (i; j) � t (7)

with a space-dependent but time-independent loading rate

� (i; j) D vpl �
X

(k;l )2 grid

G(i; j ; k; l) : (8)

The build-up of stress may be reduced by aseismic
creep motion, which is implemented by a local constitu-
tive law corresponding to lab-based dislocation creep [5]:

u̇creep(i; j ; t) D c(i; j) � �3(i; j ; t) (9)

with space dependent but time-independent creep coeffi-
cients c(i; j).
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Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 2
a Distribution of faults in the Parkfield (California) region; b fault region in the model

Friction and Coseismic Stress Transfer;
Quasidynamic Approach

It is widely accepted that earthquakes on large faults are
due to frictional processes on pre-existing structures. The
friction is therefore an important empirical ingredient
of a fault model [56]. Numerous laboratory experiments
have been carried out to characterize frictional behavior
of different materials (see e. g. [19]). An important find-
ing is that the friction coefficient defined as the ratio of
shear stress �shear and compressional normal stress �normal,
�f D �shear/�normal at the initiation of slip is approximately
constant for many materials; the value of �f lies between
0.6 and 0.85. This observation, known as Byerlee’s law,
is related to the Coulomb failure criterion [16] for the
Coulomb stress CS,

CS D �shear � �f�normal : (10)

The Coulomb stress depends on a plane where shear stress
and normal stress are calculated. Neglecting cohesion, the
Coulomb criterion for brittle failure is

CS � �0 ; (11)

which for CS D 0 is Byerlee’s law.
The North-American plate and the Pacific plate move

in opposite directions along the fault plane having strike-
slip motion. The absence of normal and thrust faulting re-
duces the problem to a one-dimensional motion: all parts
of the fault move along the fault direction. The stress state
of the fault is fully determined by the shear stress �xy in the
coordinates given in Fig. 2b. Slip is initiated if �xy exceeds
�f�y y . This quantity, which is called the static strength �s is
constant in time if �f is assumed to be constant. Note that
the normal stress on a planar fault in a homogeneous solid

does not change [1]. The shear stress �xy will be denoted
simply by � . In this notation, the failure criterion Eq. (11)
reduces to

� � �s : (12)

When a cell (k; l) fails, the stress drops in this cell to
the arrest stress �a:

�(k; l)! �a ; (13)

where the value �a maybe space-dependent. The stress
change produces a corresponding slip

du(k; l) D
�(k; l)� �a
G(k; l ; k; l)

(14)

with the self-stiffness G(k; l ; k; l) of cell (k; l).
The observational effect of dynamic weakening in-

cludes also a strength drop from the static strength to
a lower dynamic strength:

�s ! �d : (15)

In particular, slipping material becomes weaker during
rupture and recovers to the static level at the end of the
rupture. This approximation of the strength evolution is
known as static-kinetic friction.

The values �s, �d, and �a are connected by the dynamic
overshoot coefficient D:

D D
�s � �a

�s � �d
; (16)

or alternatively by the dynamic weakening coefficient ":

" D 1 �
�d

�s
: (17)
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Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 3
Pictorial evolution of stress (solid line) and strength (dashed line) of a hypocenter cell in the quasidynamic approach

Following [10] we use in most simulations D D 1:25.
The redistribution of the stress release 
�(k; l) D

�(k; l)� �a from cell (k; l) to a point (i; j) at time t is

d�(i; j ; t) D G(i; j ; k; l) � ı
�
t �

r(i; j ; k; l)
vs

�

�

�(k; l)

G(k; l ; k; l)
; (18)

where ı(x) denotes the ı-function, which is 1 for x D 0
and 0 else; vs is the shear-wave velocity, and r(i; j ; k; l) is
the distance between source cell (k; l) and receiver posi-
tion (i; j). That is, regions far from the slipping cell receive
their stress portion later than regions close to the slipping
cell. The value of vs is assumed to be constant. Each “stress
transfer event” associated with Eq. (18) gives a transfer of
a stress d� from a source cell (k; l) to a receiver cell (i; j)
at time t. This time-dependent stress transfer is called the
quasidynamic approach in contrast to the quasistatic ap-
proach used in most similar models.

The evolution of stress and strength in a failing cell
is shown schematically in Fig. 3. When the slip is initi-
ated, both the stress and the strength drop. Due to co-
seismic stress transfer during the event, the cell may slip
several times before the earthquake is terminated and in-
stantaneous healing takes place in all cells. The piecewise
constant failure envelope (dashed line) indicates static-ki-
netic friction. A model version with gradual healing was
employed by [79]. A review of analytical results associated
with the basic model in the context of a large universality
class is given in� JerkyMotion in Slowly DrivenMagnetic
and Earthquake Fault Systems, Physics of.

We note that the Green’s function leads to an infinite
interaction range. Using open boundary conditions with
respect to the computational grid, the stress release from

a slipping cell is not conserved on the grid, but on the infi-
nite half plane.

Data

Themodel produces two types of data, earthquake catalogs
and histories of stress and displacement fields. As demon-
strated below, all parameters of the model have physical
dimensions and can therefore be compared directly with
real data, where they are available. This is in contrast to
most of the slider-block and cellular automaton models.

Earthquake catalogs include values of the earthquake
time, hypocenter, and size. The time of an earthquake is
the time of the first slip; the hypocenter is determined
by the position of the corresponding cell along strike and
depth. The size of an event can be described by differ-
ent measures: The rupture area A is the total area, which
slipped during an earthquake. The potency

P D
Z

u(A)dA (19)

measures [7] the total slip during the event and is related
to the seismic moment m0 by the rigidity: m0 D �P. The
(moment) magnitude M can be calculated from the po-
tency [10] using

M D (2/3) log10 (P)C 3:6 ; (20)

where P is given in cm � km2.

Results

Numerous simulations of the model described in the pre-
vious section have been performed. Firstly, simulations
have been examined with respect to the spatiotemporal
propagation of stress during single earthquakes (“rupture
histories”). Then, long deformation histories have been
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Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 4
Snapshots of rupture evolution for a system-wide event on a smooth fault without creepmotion. t denotes the time after the rupture
initiation (given in units of the total earthquake duration tEQ). The white circle is the hypocenter of the event. The figure shows the
dimensionless stress state �̂ D ���a

�s��a
of the cells. a t/tEQ D 1/6; b t/tEQ D 2/6; c t/tEQ D 3/6; d t/tEQ D 4/6; e t/tEQ D 5/6; f t/tEQ D 1

simulated in order to search in a large fraction of the pa-
rameter space for relationships between input parameters
and observed seismicity features. In this section, a selec-
tion of key results is presented and discussed in relation to
critical states of seismicity.

Rupture Histories

We compare qualitatively rupture histories of large earth-
quakes for three end-member cases in parameter space:

(1) a smooth fault,
(2) a rough fault, and
(3) a fault without dynamic weakening (�d D �s or

D!1 in Eq. (16)).

Following [5], we vary the degree of quenched spatial dis-
order for a particular realization by introducing barriers
of high stress drop �s � �a in an environment of low stress
drop.

The observation that smooth faults show a more reg-
ular earthquake occurrence than rough faults, can be ex-

plained by the ability of the stress field to synchronize
on certain fault patches. On a disordered fault, this type
of synchronization is unlikely. Figure 4a shows the stress
field (normalized between 0 and 1) immediately before
a large earthquake on a smooth fault. The most striking
feature is the emergence of clearly defined patches with
highly loaded boundaries. During rupture evolution, these
patches rupture almost in series until the fault is nearly un-
loaded (see Fig. 4b–f). A different situation is shown in
Fig. 5, corresponding to a rough fault with creep coeffi-
cients c(i; j) (Eq. (9)) that increase with depth leading to
a brittle-ductile transition zone as in [5] and [80]. Here the
stress field in the brittle regime is irregular without obvi-
ous pattern formation. Similar behavior is found in a case
where dynamic weakening is switched off (D!1); in
other words, the material heals instantaneously. Figure 6
shows the stress field in this case. In analytical studies, it
has been shown that this corresponds exactly to a criti-
cal point in a phase diagram spanned by the stress dissi-
pation and dynamic weakening [22,27]. Observational re-
sults indicate [68] that irregular slip histories and power
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Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 5
Same as Fig. 4 for a strongly disordered fault with a brittle-ductile transition at about 15 km depth. a t/tEQ D 1/6; b t/tEQ D 2/6;
c t/tEQ D 3/6; d t/tEQ D 4/6; e t/tEQ D 5/6; f t/tEQ D 1

Seismicity, Critical States of: From Models to Practical Seismic
Hazard Estimates Space, Figure 6
Same as Fig. 4a for a fault without dynamic weakening (�d D �s)
corresponding to a dynamic overshoot coefficient D!1
(Eq. (16))

law frequency-size distributions are associated with geo-
metrically disordered fault structures, while characteris-
tic earthquake statistics and overall regular ruptures are
found on mature fault with large total displacements.

Although the stress field shows a complex evolution
during a simulation, the presence or absence of charac-
teristic length scales indicating the relation to a critical

point is easily detected. From an observational point of
view, the stress field is not accessible. The evolution of
the displacement field may be estimated, e. g. from seis-
mic and geodetic data using slip inversion techniques. Be-
cause of the high uncertainties in the calculated slip his-
tories, a quantitative comparison of the simulated data
with “natural” data is questionable. However, general fea-
tures of the quasidynamic ruptures are quite realistic, e. g.
the irregular patterns in Fig. 5 resemble the rupture of
the Chi–Chi (Taiwan) earthquake on September 21, 1999
(Mw D 7:6) [58].

Later we will show that the frequency-size distribution
of earthquakes can serve to some extent as a proxy for the
degree of disorder of the stress field. Ben-Zion et al. [12]
discuss additional seismicity functions that may be used as
surrogate variables for the stress.

Frequency–Size Distributions

The frequency-size (FS) distribution is one of themost im-
portant characteristics of observed seismicity. For world-
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Seismicity, Critical States of: From Models to Practical Seismic
Hazard Estimates Space, Figure 7
Frequency-size distribution for California from 1970 to 2004; the
dashed line denotes a power law fit to the data

wide seismicity, this distribution is given by the Guten-
berg–Richter law (Eq. (1)). Figure 7 shows the FS distribu-
tion of California seismicity from 1970 to 2004. Here we
use the non-cumulative version of Eq. (1), where N is the
number of earthquakes with magnitude between M and
M C dM with a magnitude bin dM D 0:1.

For individual fault zones the FS distribution can de-
viate from Eq. (1), especially for high magnitudes. Exam-
ples are given in Fig. 8, which shows the FS distribution
of the Parkfield segment (Fig. 8a) and for the San Jacinto
fault (Fig. 8b) in California for a time span of 45 years.
The distribution of the Parkfield segment consists of two
parts: A scaling regime for 2:2 � M � 4:5 and a “bump”
for 4:5 < M � 6:0. For the San Jacinto fault, the scaling
range is observed for almost all events (2:2 � M � 5:0).
The decrease for M � 2 in both plots is probably due to
catalog incompleteness.

The FS distribution as shown in Fig. 8a is called the
characteristic earthquake distribution, because of the in-
creased probability for the occurrence of large (“charac-
teristic”) events compared to the prediction of the Guten-
berg–Richter relation. The latter is an exponential dis-
tribution for the earthquake frequency as a function of
magnitude, or a power law distribution for the earthquake
frequency as a function of potency (Eqs. (19), (20)), mo-
ment, energy, or rupture area, over a broad range of mag-
nitudes [66]. The Gutenberg–Richter relation is “scale-
free” because a power law distribution indicates the ab-
sence of a characteristic scale of the earthquake size [64].
In terms of critical point processes, the absence of a char-
acteristic length scale indicates that the system is close to
the critical point. In this state, earthquakes of all mag-
nitudes can occur, or each small rupture can grow into

a large one. Therefore, the frequency-size distribution can
serve as a proxy for the current state of a system in relation
to a critical point.

The FS distribution in a model can be tuned by vary-
ing the mean stress h�i on the fault, where hi denotes the
spatial average. This can be achieved, for instance, by vary-
ing brittle properties, e. g. in terms of the dynamic over-
shoot coefficient D (Eq. (16)), or by introducing dissipa-
tion [31,79]. Figure 9 shows FS distributions for two dif-
ferent values of D : D D 5/4 (Fig. 9a) and a higher value
D D 5/3 (Fig. 9b). While Fig. 9a follows a characteristic
earthquake behavior similar to the Parkfield case (Fig. 8a),
Fig. 9b resembles the shape of the FS distribution of the
San Jacinto fault (Fig. 8b).

As an outcome, three cases can be distinguished by
means of a critical mean stress �crit:

1. subcritical fault (h�i < �crit): the mean stress on the
fault is too small to produce large events. The system
is always far from the critical point. The FS distribution
is a truncated Gutenberg–Richter law.

2. supercritical fault (h�i > �crit): the mean stress is high
and produces frequently large events. After a large
earthquake (critical point), the stress level is low (sys-
tem is far from the critical point) and recovers slowly
(approaches the critical point). The FS distribution is
a characteristic earthquake distribution.

3. critical fault (h�i � �crit): the system is always close to
the critical point with scale-free characteristics. The FS
distribution is a Gutenberg–Richter law with a scaling
range over all magnitudes.

If the FS distribution is plotted as a function of the model
parameters, the result can be visualized by a phase dia-
gram [22,31,79,80]. An example is provided in Fig. 10,
which shows schematically the phase diagram spanned by
the degree of quenched spatial disorder and 1 � " with
the dynamic weakening coefficient " (Eq. (17)). The phase
diagram summarizes results from various studies, which
demonstrate that the degree of spatial disorder of the
stress drop acts as a tuning parameter for the FS distribu-
tion [5,36,80].

If the model is in the transition regime betweenGuten-
berg–Richter statistics and characteristic earthquake be-
havior, the ability of the stress field to synchronize on
parts of the fault can have additional impact on the dy-
namics of seismicity: for a model with small cells and high
stress fluctuations along the cell boundaries arising from
a high degree of spatial disorder, the system can undergo
a spontaneous transition from an ordered state and char-
acteristic behavior to a disordered state following Guten-
berg–Richter statistics. Due to the high fluctuations in the
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Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 8
Frequency-size distribution for two faults in California: a the Parkfield segment, and b the San Jacinto fault

Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 9
Frequency-size distribution for model realizations with different dynamic overshoot coefficients (Eq. (16)): a D D 5/4 , b D D 5/3

Seismicity, Critical States of: From Models to Practical Seismic
Hazard Estimates Space, Figure 10
Phase diagram for the frequency-size distribution (GR=Gu-
tenberg–Richter distribution, CE=characteristic earthquake dis-
tribution) spanned by the degree of quenched spatial disorder
and the dynamic weakening represented by ". The upper left
corner corresponds exactly to a critical point [22,27] and results
in scale-free characteristics as shown in Fig. 6

stress field, there is some probability that a certain num-
ber of cells synchronize by chance, leading to an ordered
behavior for some seismic cycles, until the order is de-
stroyed, again resulting from stress fluctuations. This type
of mode-switching behavior has been observed earlier in
a mean-field model and a damage rheology model [11,22].
Figure 11a gives a corresponding earthquake sequence
with spontaneous mode-switching behavior. Figure 11b
shows a sequence calculated with a higher grid resolu-
tion (128 � 50 cells). The tendency to mode-switching is
less pronounced, but still visible. In [79] it is shown that
the emergence of such mode-switching depends both on
the spatial range of interaction (given as the decay of the
Green’s function) and the discretization of the computa-
tional grid. In the less realistic model of [22], where the
stress redistribution is governed by a constant (space-in-
dependent) Green’s function, analytical expressions for
persistence times have been calculated [27]. In [11] some
evidence for mode-switching behavior in long seismic
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Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 11
Earthquake area (measured as the number of failed cells) as a function of time a in the mean-field model of Dahmen et al. [22] for
a fault with 100 cells and b in the elastic model with 128� 50 cells

Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 12
Earthquakes before and after amainshock: a theM7:3 Landers (California) earthquake; bM7:3 earthquake in the basic version of the
model

records based on paleoseismic and geologic data from the
Dead Sea fault and other regions are discussed. However,
the relevance of mode-switching to natural seismicity re-
mains unclear due to the general lack of very long data
records.

Aftershocks and Foreshocks
The most pronounced temporal pattern in observed seis-
micity is the emergence of strongly clustered aftershock
activity following a large earthquake. Apart from the
Omori–Utsu law (Eq. (2)), it is widely accepted that after-
shocks are characterized by the following properties:

1. The aftershock rate scales with the mainshock size [51].
2. Aftershocks occur predominantly around the edges of

the ruptured fault segments [66].

3. Båth’s law [4]: The magnitude of the largest aftershock
is usually about one unit smaller than the mainshock
magnitude.

Deviations from the Omori–Utsu law, especially for rough
faults, are discussed in [45]. While aftershocks are ob-
served after almost all large earthquakes, foreshocks oc-
cur less frequent [71]. As a consequence, much less is
known about the properties of these events. Kagan and
Knopoff [40] and Jones and Molnar [39] propose a power
law increase of activity according to an “inverse” Omori–
Utsu law.

Figure 12a shows an example for the aftershock se-
quence following theM7:3 Landers earthquake in Califor-
nia on June 28, 1992. An earthquake of similar size gener-
ated by the model is given in Fig. 12b. The absence of af-
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tershocks in the simulation is clearly visible. The reason for
the lack of aftershocks is the unloading of the fault result-
ing from the mainshock: When a large fraction of the fault
has ruptured, the stress in this region will be close to the
arrest stress after the event. Consequently, the seismicity
rate will be almost zero until the stress field has recovered
to a moderate level.

Discussions for likely mechanisms of aftershocks are
given in [9] and [81]. A common feature is the presence
of rapid postseismic stress which generates aftershock ac-
tivity. In [32], for instance, postseismic stress has been
attributed to a viscoelastic relaxation process following
the mainshock. In the work discussed here, continuous
creep displacement following Eq. (9) is assumed. Addi-
tionally, the computational grid is divided by aseismic bar-
riers from the free surface to depth into several seismi-
cally active fault segments. As shown in [81], this mod-
ification results in a concentration of stress in the aseis-
mic regions during rupture and, subsequently in a release
of stress after the event according to the coupled creep
process. This stress release triggers aftershock sequences
obeying the Omori–Utsu law (Eq. (2)). A typical after-
shock sequence after a M6:8 event is shown in Fig. 13.
In agreement with Båth’s law, the strongest aftershock has
the magnitude M D 5:5 in this sequence. The sequence
shows also the effect of secondary aftershocks, namely af-
tershocks of aftershocks [61]. The stacked earthquake rate
as a function of the time after the mainshock is given
in Fig. 14. In this case, where the barriers are character-
ized by creep coefficients higher by a factor of 105 than in
the other patches, a realistic Omori exponent of p D 1 is
found.

Seismicity, Critical States of: From Models to Practical Seismic
Hazard Estimates Space, Figure 13
Earthquakes before and after a mainshock with MD 6:8 in the
modified model

Aftershock sequences like in Fig. 13 emerge after all
large events in the extended model. In contrast, there is
generally no clear foreshock signal visible in single se-
quences. However, stacking many sequences together un-
veils a slight increase of the earthquakes rate prior to
a mainshock supporting the observation of accelerating
foreshock activity. An explanation of these events can be
given in the following way: Between two mainshocks the
stress field organizes itself towards a critical state, where
the next large earthquake can occur. This critical state
is characterized by a disordered stress field and the ab-
sence of a typical length scale, where earthquakes of all
sizes can occur [12]. The mainshock may occur immedi-
ately or after some small to moderate events. The latter
case can be considered as a single earthquake, which is in-
terrupted in the beginning. This phenomenon of delayed
rupture propagation has also provided a successful expla-
nation of foreshocks and aftershocks in a cellular automa-
ton model [33,35].

The hypothesis that foreshocks occur in the critical
point and belong, in principle, to the mainshock, can
be verified by means of the findings from Subsect. “Fre-
quency–Size Distributions”. In particular, the frequency-
size distribution in the critical point (or close to the
critical point) is expected to show scale-free statistics.
If an overall smooth fault model following characteris-
tic earthquake statistics is studied over a long time pe-
riod, the approach of the critical point should be seen in
terms of a change of the frequency-size distribution to-
wards Gutenberg–Richter behavior [12]. This change of
frequency-size statistics is indeed observed in the model
(Fig. 15) and supports the validity of the critical point con-
cept [82].

Accelerating Moment Release

In the previous section, it has been argued that large earth-
quakes are associated with a critical point and the prepa-
ration process is characterized by increasing disorder of
the stress field and increasing tendency for scale-free char-
acteristics in the frequency-size distribution. Further sup-
port for critical point dynamics has been provided by the
observational finding of [17] that the cumulative Benioff
strain ˙˝(t) follows a power law time-to-failure relation
prior to the M7:1 Loma Prieta earthquake on October 17,
1989:

˙˝(t) D
N(t)X

iD1

p
Ei D A� B(tf � t)m (21)

Here, Ei is the energy release of earthquake i, N(t) is the
number of earthquakes before time t; tf is the failure time
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Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 14
Earthquake rate as a function of time for the model with seismic and aseismic regions. The calculation is based on a simulation with
200,000 earthquakes covering about 5000 years; the earthquake rates are averaged over about 300mainshocks. A fit of the Omori–
Utsu law (Eq. (2)) with pD 1 is denoted as a solid line. The dashed line gives the estimated background level of seismicity

Seismicity, Critical States of: From Models to Practical Seismic
Hazard Estimates Space, Figure 15
Frequency-magnitude distributions of all earthquakes, fore-
shocks and aftershocks. Foreshocks and aftershocks are defined
as earthquakes occurring within one month before and after an
earthquake withM � 6

and A; B, and m > 0 are constants. Similar studies for nu-
merous seismically active regions followed (see [8,77] and
references therein).

The time-to-failure relation Eq. (21) has been ex-
plained by [54] and [60] from the viewpoint of renormal-
ization theory and by [8] and [65] in terms of damage rhe-
ology. Similar to the findings about foreshocks, the time-
to-failure pattern is not universal. Therefore, a stacking
procedure is adopted in order to obtain robust results on
the validity of Eq. (21) in the model. This is not straight-
forward, since the interval of accelerating moment release
is not known a priori and the duration of a whole seis-
mic cycle, as an upper limit, is not constant. To normal-
ize the time interval for the stacking, the potency release

Seismicity, Critical States of: From Models to Practical Seismic
Hazard Estimates Space, Figure 16
Mean potency release (Eq. (19)) as a function of the stress level.
The stress level is normalized to the maximum (max) and mini-
mum (min) observed stress

(Eq. (19)) is computed as a function of the (normalized)
stress level (Fig. 16). Taking into account that the stress
level increases almost linearly during a large fraction of the
seismic cycle, the stress level axis in Fig. 16 can effectively
be replaced by the time axis leading to a power law depen-
dence of the potency release on time. The best fit is pro-
vided with an exponent s D �1:5. Transforming the po-
tency release to the cumulative Benioff strain (Eq. (21)),
results in an exponent m D 0:25 in Eq. (21). This find-
ing is based on a simulation over 5000 years; the exponent
is in good agreement with the theoretical work [53], that
derives m D 0:25 for a spinodal model, and the analyti-
cal result of m D 0:3 in the damage mechanics model [8].
An observational study of California seismicity findsm be-
tween 0.1 and 0.55 [15].
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Seismicity, Critical States of: From Models to Practical Seismic
Hazard Estimates Space, Figure 17
The normalized interevent time distribution of the model sim-
ulations (black dots) compared with the result of [21] and the
distribution of earthquakes in California (ANSS catalog ofM � 3
earthquakes occurred between 1970 and 2004 within 29ı and
43ı latitude and�113ı and�123ı longitude)

Interevent Times

In recent studies it has been shown that the distribution
of interevent times can be described by a universal law. In
particular, the distributions from different tectonic envi-
ronments, different spatial scales (from worldwide to local
seismicity) and different magnitude ranges collapse if the
time
t is rescaled with the rate Rxy of seismic occurrence
in a region denoted by (x; y) [21]. Such rescaling leads to

Dxy(
t) D Rx y � f (Rx y
t) ; (22)

whereDxy is the probability density for the interevent time

t, and f can be expressed by a generalized gamma distri-
bution

f (�) D C
1

���1
exp

 

�
�ı

B

!

: (23)

The parameters C, � , ı, and B have been determined
by a fit to several observational catalogs [21].

In Fig. 17 we compare Dxy(
t) from Eq. (22) with two
earthquake catalogs: (1) The ANSS catalog of California
(catalog ranges are given in the caption), and (2) the model
catalog. Due to the universality of Eq. (22) with respect to
different spatial scales, the comparison of the model simu-
lating a single fault of 70 km length with a region of hun-
dreds of kilometers including several faults in California
does not require coarse graining the ANSS catalog. In the
region where the interevent times are calculated, we find
a remarkable agreement of the three curves. For small val-
ues of 
t, Eq. (22) deviates from the California data; for

Seismicity, Critical States of: From Models to Practical Seismic
Hazard Estimates Space, Figure 18
The temporal earthquake occurrence quantified by the coeffi-
cient of variation as a function of the lower magnitude cutoff.
Values larger than 1 indicate clustering, whereas lower values
point to quasiperiodic behavior

high values the model has a slightly better correspondence
with the observational data than Eq. (22). Thus the results
generally support the recent findings of [21].

The degree of temporal clustering of earthquakes can
be estimated by the coefficient of variation CV of the in-
terevent time distribution.

CV D � /� ; (24)

where � is the standard deviation and � the mean value of
the interevent time distribution. Values of CV > 1 denote
clustered activity, while CV < 1 represents quasiperiodic
occurrence of events. The case CV D 1 corresponds to
a randomPoisson process. The studies of [5] and [80] have
found that the clustering properties of the large events de-
pend on the degree of quenched spatial disorder of the
fault. Figure 18 shows that CV as a function of the lower
magnitude cutoff has a characteristic shape. The values of
CV are higher than 1 (clustered) for small and intermedi-
ate earthquakes (M � 5:4) and smaller than 1 (quasiperi-
odic) for larger earthquakes. This corresponds to the case
of a low degree of disorder in [80], because the brittle cells
which participate in an earthquake have no significant spa-
tial disorder.We note that this behavior resembles the seis-
micity on the Parkfield segment of the San Andreas fault,
which is characterized by a quasiperiodic occurrence of
mainshocks. Based on the analysis of 37 earthquake se-
quences, an estimation of CV � 0:5 has been found for
multiple tectonic environments [26].

A different behavior is observed on the San Jacinto
fault in California, where the largest events occur less reg-
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ularly and have overall smaller magnitudes. As discussed
in [5] and [80], this can be modeled by imposing higher
degrees of disorder leading to a broader range of spatial
size scales, e. g. by using a higher number of near-verti-
cal barriers.While barriers provide a simple and physically
motivated way to tune the degree of disorder, other types
of heterogeneities may work as well, as long as they are
able to produce strong enough fluctuations of the stress
field. As an example, we mention fractal distributions of
the stress drop, which can be tuned easily by changing the
fractal dimension [63,80].

Recurrence Times of Large Earthquakes

While interevent times are waiting times between suc-
cessive earthquakes in a given catalog, recurrence times
are defined as waiting times between two successive large
events, typically in the magnitude range 6 � M � 9, de-
pending on the region. For example, on the Parkfield seg-
ment of the San Andreas fault seven �M6 earthquakes
occurred between 1857 and 2004 with recurrence times
T1 D 24 years, T2 D 20 years, T3 D 21 years, T4 D 12
years, T5 D 32 years, and T6 D 38 years.

The distribution of recurrence times of large earth-
quakes is crucial for the calculation of seismic hazard. Due
to a lack of observational data, this distribution is un-
known for real fault systems. Commonly used distribu-
tions are based on extreme value statistics and on mod-
els for catastrophic failure. These include the lognormal
distribution [50], the Brownian passage time distribu-
tion [44], and the Gumbel distribution [29]. All distribu-
tions are characterized by a maximum for a certain recur-
rence time followed by an asymptotic decay. The Brown-
ian passage time distribution and the lognormal distribu-
tion have been used by the Working Group on California
Earthquake Probabilities [70], e. g. for calculating earth-
quake probabilities in the San Francisco Bay area.

Figure 19a shows the probability density function
(pdf) of the recurrence times of earthquakes with mag-
nitude M > 6:2 in a realization of the numerical model
for the Parkfield region [74]. Since we focus on long
time-scales, we use here a minimal model without aseis-
mic creep and strong spatial heterogeneities. This model
leads to characteristic earthquake statistics and quasiperi-
odic occurrence of large events, and can therefore serve
as a model framework for large earthquakes on the Park-
field segment. However, quantities which are only poorly
known from empirical data, e. g. the stress drop, have
to be chosen in order to perform a numerical simula-
tion. Starting with an imposed uniform a priori distribu-
tion P(
�) of stress drops between a lower bound 
�min

and an upper bound 
�max, an a posteriori distribution
P(
� jT1; : : : ; TN) can be estimated using observational
recurrence times T1; : : : ; TN from Parkfield and Bayes’
theorem [13],

P(
� jT1 ; : : : ; TN) D
P(T1 ; : : : ; TNj
�)P(
�)
��maxP

sD��min

P(T1 ; : : : ; TNjs)P(s)
;

(25)

with the likelihood function

P(T1 ; : : : ; TNj
�) D
NY

iD1

f (Ti j
�) : (26)

The function f (Ti j
�) denotes the pdf of recurrence times
simulated with a model stress drop 
� . To get an analytic
expression of this function, it is fitted by a Gamma dis-
tribution f (t) D ˇ�1(� (� ))�1( t��

ˇ
)��1exp (� t��

ˇ
) with

the location parameter �, the shape parameter � � 2:0
and the scale parameter ˇ (with x � � ; �; ˇ > 0). For an
example see Fig. 19a. In [74] it is shown that the mean
value �t and the standard deviation � t of the fits in this
model are related to the average stress drop of a large
earthquake
� by the simple empirical relations

�t(
�) D 9:7 �
�

�t(
�) D 1:8 �
�2 � 6:8 �
� C 11:7
(27)

with �t ; �t in years and 
� in MPa. Using this approxi-
mation in combination with six observational recurrence
times from�M6 earthquakes on the Parkfield segment, we
find the a posteriori distribution of stress drops shown in
Fig. 19b. The position where this distribution reaches the
maximum, 
� D (3:04˙ 0:27)MPa, is the most repre-
sentative value of the stress drop of�M6 Parkfield events.

The cumulative probability density function (cdf) of
recurrence times based on Eq. (26) and the observational
data can now be calculated by

C(t) D
tZ

0

��maxZ

��min

f (t0j
�)P(
� jT1 ; : : : ; TN)d
�dt0 : (28)

The hazard function

H(
tjt0) D
C(t0 C
t) � C(t0)

1 � C(t0)
(29)

is the conditional probability that the next large earth-
quake occurs in the interval [t0 ; t0 C
t] given the time
t0 since the last large event. Results for two choices of ob-
servational data (corresponding to two different observa-
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Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 19
a Approximated probability density function of the recurrence time distribution of large earthquakes (M > 6:2) for a simulated
earthquake catalog and fit with a truncated Gamma distribution; b A posteriori distribution P(	�jT1; : : : ; TN) of stress drop	�
calculated with Bayes’ theorem (Eq. (25))

Seismicity, Critical States of: FromModels to Practical Seismic Hazard Estimates Space, Figure 20
a Cumulative recurrence time distribution C(t) (Eq. (28)) for (1) the Bayesian approach with three data points: long-dashed line; (2)
the Bayesian approach with six data points: short-dashed line. The solid line denotes the cdf of the six Parkfield recurrence times;
b Hazard function H(t0j	T) (Eq. (29)) based on the six observational recurrence times between 1857 and 2004 a as a function of dT
for different values of t0

tional periods) in comparison to the Parkfield cdf are given
in Fig. 20a. The hazard function for three fixed values of t0
and varying
t is given in Fig 20b.

This approach enables us to calculate the most likely
occurrence time of the next (post 2004) Parkfield earth-
quake by picking the maximum of the (non-cumulative)
recurrence time distribution (inner integral in Eq. (28))
after taking all Parkfield earthquakes (1857–2004) into ac-
count. Based on the analysis done so far, we may forecast
the next �M6 Parkfield earthquake to occur in May 2027.
The error associated with one standard deviation of the
pdf is 7.7 years. We note, however, that the probability for
the occurrence of a �M6 earthquake between May 2026
and May 2028 is only about 14%.

Summary and Conclusions

The present reviewdeals with the analysis, the understand-
ing and the interpretation of seismicity patterns with a spe-
cial focus on the critical point concept for large earth-
quakes. Both physical modeling and data analysis are dis-
cussed. This study aims at practical applications to model
data from real fault zones. A point of particular interest is
the detection of phenomena prior to large earthquakes and
their relevance for a possible prediction of these events.
Despite numerous reports on anomalous precursory seis-
micity changes [62], there is no precursor in sight which
obeys a degree of universality that would make it practi-
cally useful. It is, therefore, important to study less fre-
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quent precursory phenomena by means of long model
simulations.

Toward this goal, we discuss a numerical model which
is on one hand reasonably physical, and on the other hand
simple enough that it allows to obtain some analytical re-
sults and perform long simulations. The basic version of
themodel consists of a segmented two-dimensional strike-
slip fault in a three-dimensional elastic half space and is
inherently discrete because of the abrupt transition from
static to kinetic friction [10]. This paper and � Jerky Mo-
tion in Slowly Driven Magnetic and Earthquake Fault Sys-
tems, Physics of summarize a large body of analytical and
numerical results associated with the model.

The results of the simulations indicate an overall good
agreement of the synthetic seismicity with natural earth-
quake activity, with respect to frequency-size distributions
and various features of earthquake sequences. The de-
gree of spatial heterogeneity on the fault, which is imple-
mented by means of space-dependent rheological prop-
erties, has important effects on the resulting catalogs.
Smooth faults are associated with the characteristic earth-
quake statistics, regular occurrence of mainshocks and
overall smooth stress fields. On the other hand, rough
faults generate scale-free Gutenberg–Richter statistics, ir-
regular mainshock occurrence, and overall rough stress
fields. A closer look at the disorder of the stress field
shows, however, that even on a smooth fault a gradual
roughening takes place when the next large earthquake
is approached [12,82]. This is reflected in the frequency-
size distribution which evolves towards the Gutenberg–
Richter law and other changes of seismicity. The results
can be used to establish relations between the proximity
of a state on a fault to a critical point, the (unobservable)
stress field, and the (observable) seismicity functions. Fur-
thermore, it is demonstrated that the concept of “self-or-
ganized criticality” can be folded back to criticality associ-
ated with tuning parameters [12,31]. We note that phase
diagrams with different dynamic regimes as functions of
tuning parameters, in addition to criticality, provide a gen-
eral and rich description of seismicity. Accelerating seis-
mic release, growing spatial correlation length, changes of
frequency-size statistics and evolution of other seismicity
parameters may be used to track the approach to critical-
ity [73,75,76,77].

Future Directions

We have demonstrated that numerical fault models are
valuable for understanding the underlying mechanisms of
observed seismicity patterns, as well as for practical esti-
mates of future seismic hazard. The latter requires model

realizations that are tuned to a specific fault zone by assim-
ilating available observational results and their uncertain-
ties. In a case study, the seismic hazard in the Parkfield re-
gion has been estimated by combining such a tunedmodel
with few observational data. The use of Bayesian analysis
allows us to construct a flexible hazard model for this re-
gion which can, in general, incorporate statistical and non-
statistical data (e. g. from paleoseismology and geodesy) to
improve and update the estimations of the seismic hazard.
This approach is particularly promising for less-well mon-
itored regions, and especially for low-seismicity regions
like those in central Europe.

Modification of the stress transfer calculations to ac-
count for a statistical preference of earthquake propaga-
tion direction on a given fault section, e. g. [6,25], can im-
prove the estimates of seismic hazard associated with large
faults. It is also possible to extend the discussed framework
to other geohazards with even smaller amount of obser-
vational data, e. g. the occurrence of landslides. Since the
fault model deals with coupled physical processes leading
to interacting earthquakes, a challenging future direction
will be the design of a more general model for interact-
ing geohazards including earthquakes on different faults
as well as landslides triggered by earthquakes, and perhaps
tsunamis initiated by (submarine) earthquakes or land-
slides.
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Glossary

Chaos Chaos occurs in dynamical systems with two in-
gredients: (i) nonlinear recurrent re-injection of the
dynamics into a finite domain in phase space and
(ii) exponential sensitivity of the trajectories in phase
space to initial conditions.

Continuous phase transitions If there is a finite disconti-
nuity in the first derivative of the thermodynamic po-
tential, then the phase transition is termed first-order.
During such a transition, a system either absorbs or
releases a fixed amount of latent heat (e. g. the freez-
ing/melting of water/ice). If the first derivative is con-
tinuous but higher derivatives are discontinuous or in-
finite, then the phase transition is called continuous, of
the second kind, or critical. Examples include the crit-
ical point of the liquid–gas transition, the Curie point
of the ferromagnetic transition, or the superfluid tran-
sition [127,235].

Critical exponents Near the critical point, various ther-
modynamic quantities diverge as power laws with as-
sociated critical exponents. In equilibrium systems,
there are scaling relations that connect some of the
critical exponents of different thermodynamic quan-
tities [32,127,203,216,235].

Critical phenomena Phenomena observed in systems
that undergo a continuous phase transition. They are
characterized by scale invariance: the statistical prop-
erties of a system at one scale are related to those at
another scale only through the ratio of the two scales
and not through any one of the two scales individually.
The scale invariance is a result of fluctuations and cor-
relations at all scales, which prevents the system from
being separable in the large scale limit at the critical
point [32,203,235].

Declustering In studies of seismicity, declustering tra-
ditionally refers to the deterministic identification of
fore-, main- and aftershocks in sequences (or clus-
ters) of earthquakes clustered in time and space. Re-
cent, more sophisticated techniques, e. g. stochastic

declustering, assign to earthquakes probabilities of be-
ing triggered or spontaneous.

Dynamical scaling and exponents
Non-equilibrium critical phase transitions are also
characterized by scale invariance, scaling functions
and critical exponents. Furthermore, some evidence
supports the claim that universality classes also ex-
ist for non-equilibrium phase transitions (e. g. the di-
rected percolation and the Manna universality class
in sandpile models), although a complete classifica-
tion of classes is lacking and may in fact not exist
at all. Much interest has recently focused on directed
percolation, which, as the most common universality
class of absorbing state phase transitions, is expected
to occur inmany physical, chemical and biological sys-
tems [85,135,203].

Finite size scaling If a thermodynamic or other quantity
is investigated at the critical point under a change of
the system size, the scaling behavior of the quantity
with respect to the system size is known as finite size
scaling [32]. The quantity may refer to a thermody-
namic quantity such as the free energy or it may refer
to an entire probability distribution function. At criti-
cality, the sole length scale in a finite system is the up-
per cut-off sc, which diverges in the thermodynamic
limit L!1. Assuming a lower cut-off s0 
 sc; s, a fi-
nite size scaling ansatz for the distribution P(s; sc) of
the observable variable s, which depends on the upper
cut-off sc is then given by:

P(s; sc) D as��G(s/sc) for s; sc 	 s0 ; (1)

where the parameter a is a non-universal metric fac-
tor, � is a universal (critical) exponent, and G is a uni-
versal scaling function that decays sufficiently fast for
s	 sc [32,36]. Pruessner [163] provides a simple yet
instructive and concise introduction to scaling theory
and how to find associated exponents. System-specific
corrections appear to sub-leading order.

Fractal A deterministic or stochastic mathematical object
that is defined by its exact or statistical self-similar-
ity at all scales. Informally, it often refers to a rough
or fragmented geometrical shape which can be subdi-
vided into parts which look approximately the same
as the original shape. A fractal is too irregular to be
described by Euclidean geometry and has a fractal di-
mension that is larger than its topological dimension
but less than the dimension of the space it occupies.

Mean-Field An effective or average interaction field de-
signed to approximately replace the interactions from
many bodies by one effective interaction which is con-
stant in time and space, neglecting fluctuations.
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Mechanisms for power laws Power laws may be the hall-
mark of critical phenomena, but there are a host of
other mechanisms that can lead to power laws (see
Chapter 14 of [203] for a list of power lawmechanisms
as well as [37,143]). Observations of scale invariant
statistics therefore do not necessarily imply SOC, of
course. Power laws express the existence of a symme-
try (scale invariance) and there are many mechanisms
by which a symmetry can be obtained or restored.

Non-equilibrium phase transitions In contrast to sys-
tems at equilibrium, non-equilibrium phase transi-
tions involve dynamics, energy input and dissipation.
Detailed balance is violated and no known equivalent
of the partition function exists, from which all ther-
modynamic quantities of interest derive in equilib-
rium. Examples of non-equilibrium phase transitions
include absorbing state phase transitions, reaction-dif-
fusion models, andmorphological transitions of grow-
ing surfaces [85,135].

Phase transitions In (equilibrium) statistical mechanics,
a phase transition occurs when there is a singularity
in the free energy or one of its derivatives. Examples
include the freezing of water, the transition from fer-
romagnetic to paramagnetic behavior in magnets, and
the transition from a normal conductor to a supercon-
ductor [127,235].

Renormalization group theory A mathematical theory
built on the idea that the critical point can be mapped
onto a fixed point of a suitably chosen transforma-
tion on the system’s Hamiltonian. It provides a foun-
dation for understanding scaling and universality and
provides tools for calculating exponents and scal-
ing functions. Renormalization group theory provides
the basis for our understanding of critical phenom-
ena [32,216,235]. It has been extended to non-Hamil-
tonian systems and provides a general framework for
constructing theories of the macro-world from the mi-
croscopic description.

Self-organized criticality (SOC) Despite two decades of
research since its inception by [13] and the ambitious
claim by [11] that, as a mechanism for the ubiqui-
tous power laws in Nature, SOC was “How Nature
Works”, a commonly accepted definition along with
necessary and sufficient conditions for SOC is still
lacking [93,163,203]. A less rigorous definition may be
the following: Self-organized criticality refers to a non-
equilibrium, critical andmarginally stable steady-state,
which is attained spontaneously and without (explicit)
tuning of parameters. It is characterized by power
law event distributions and fractal geometry (in some
cases) and may be expected in slowly driven, interac-

tion-dominated threshold systems [93]. Some authors
additionally require that temporal and/or spatial cor-
relations decay algebraically (e. g. [84], but see [163]).
Definitions in the literature range from broad (simply
the absence of characteristic length scales in non-equi-
librium systems) to narrow (the criticality is due to an
underlying continuous phase transition with all of its
expected properties) (see, e. g., [162] for evidence that
precipitation is an instance of the latter definition of
SOC in which a non-linear feedback of the order pa-
rameter on the control parameter turns a critical phase
transition into a self-organized one attracting the dy-
namics [198]).

Spinodal decomposition In contrast to the slow process
of phase separation via nucleation and slow growth of
a new phase in a material inside the metasstable re-
gion near a first-order phase transition, spinodal de-
composition is a non-equilibrium, rapid and critical-
like dynamical process of phase separation that oc-
curs quickly and throughout the material. It needs to
be induced by rapidly quenching the material to reach
a sub-area (sometimes a line) of the unstable region of
the phase diagramwhich is characterized by a negative
derivative of the free energy.

Statistical physics is the set of concepts and mathemat-
ical techniques allowing one to derive the large-scale
laws of a physical system from the specification of the
relevant microscopic elements and of their interac-
tions.

Turbulence In fluid mechanics, turbulence refers to
a regime in which the dynamics of the flow involves
many interacting degrees of freedom, and is very
complex with intermittent velocity bursts leading to
anomalous scaling laws describing the energy trans-
fer from injection at large scales to dissipation at small
scales.

Universality In systems with little or no frozen disor-
der, equilibrium continuous phase transitions fall into
a small set of universality classes that are character-
ized by the same critical exponents and by certain scal-
ing functions that become identical near the critical
point. The class depends only on the dimension of
the space and the dimension of the order parameter.
For instance, the critical point of the liquid–gas tran-
sition falls into the same universality class as the 3D
Ising model. Even some phase transitions occurring in
high-energy physics are expected to belong to the Ising
class. Universality justifies the development and study
of extremely simplified models (caricatures) of Nature,
since the behavior of the system at the critical point can
nevertheless be captured (in some cases exactly). How-
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ever, non-universal features remain even at the critical
point but are less important, e. g. amplitudes of fluc-
tuations or system-specific corrections to scaling that
appear at sub-leading order [32,216,235,239].

Definition of the Subject

A fundamental challenge in many scientific disciplines
concerns upscaling, that is, of determining the regulari-
ties and laws of evolution at some large scale from those
known at a lower scale: biology (from molecules to cells,
from cells to organs); neurobiology (from neurons to brain
function), psychology (from brain to emotions, from evo-
lution to understanding), ecology (from species to the
global web of ecological interactions), condensed matter
physics (from atoms and molecules to organized phases
such as solid, liquid, gas, and intermediate structures), so-
cial sciences (from individual humans to social groups and
to society), economics (from producers and consumers to
the whole economy), finance (from investors to the global
financial markets), Internet (from e-pages to the world
wide web 2.0), semantics (from letters and words to sen-
tences and meaning), and so on. Earthquake physics is no
exception, with the challenge of understanding the tran-
sition from the laboratory scale (or even the microscopic
and atomic scale) to the scale of fault networks and large
earthquakes.

Statistical physics has had a remarkably successful
track record in addressing the upscaling problem in
physics. While the macroscopic laws of thermodynamics
have been established in the 19th century, their micro-
scopic underpinning were elaborated in the early 20th cen-
tury by Boltzmann and followers, building the magnificent
edifice of statistical physics. Statistical physics can be de-
fined as the set of concepts and mathematical techniques
allowing one to derive the large-scale laws of a physical
system from the specification of the relevant microscopic
elements and of their interactions. Dealing with huge en-
sembles of elements (atoms, molecules) of the order of the
Avogadro number (' 6 � 1023), statistical physics uses the
mathematical tools of probability theory combined with
other relevant fields of physics to calculate the macro-
scopic properties of large populations.

One of the greatest achievement of statistical physics
was the development of the renormalization group analy-
sis, to construct a theory of interacting fields and of critical
phase transitions. The renormalization group is a perfect
example of how statistical physics addresses the micro-
macro upscaling problem. It decomposes a problem of
finding the macroscopic behavior of a large number of in-
teracting parts into a succession of simpler problems with

a decreasing number of interacting parts, whose effective
properties vary with the scale of observation. The renor-
malization group thus follows the proverb “divide to con-
quer” by organizing the description of a system scale-by-
scale. It is particularly adapted to critical phenomena and
to systems close to being scale-invariant. The renormal-
ization group translates into mathematical language the
concept that the overall behavior of a system is the aggre-
gation of an ensemble of arbitrarily defined sub-systems,
with each sub-system defined by the aggregation of sub-
subsystems, and so on [203].

It is important to stress that up to now the term “sta-
tistical” has different meanings in statistical physics and in
statistical seismology, a field that has developed as a mar-
riage between probability theory, statistics and the part
of seismology concerned with empirical patterns of earth-
quake occurrences [225] (but not with physics). Statistical
seismology uses stochastic models of seismicity, which are
already effective large-scale representation of the dynami-
cal organization. In contrast, a statistical physics approach
to earthquake strives to derive these statistical models
or other descriptions from the knowledge of the micro-
scopic laws of friction, damage, rupture, rock-water in-
teractions, mechano-chemistry and so on, at the micro-
scopic scales [200,201]. In other words, what is often miss-
ing in statistical seismology is the physics to underpin the
stochastic model on physically-based laws, e. g. rate-and-
state friction [55].

The previously mentioned successes of statistical
physics promote the hope that a similar program can be
developed for other fields, including seismology. The suc-
cesses have been more limited, due to the much more
complex interplay between mechanisms, interactions and
scales found in these out-of-equilibrium systems. This
short essay provides a subjective entry to understand some
of the different attempts, underlining the few successes, the
problems and open questions. Rather than providing an
exhaustive review, we mention what we believe to be im-
portant topics and have especially included recent work.

Introduction

Much of the recent interest of the statistical physics
community has focused on applying scaling tech-
niques, which are common tools in the study of crit-
ical phenomena, to the statistics of inter-event recur-
rence times or waiting times [14,40,41,42,43,44,46,48,
134]. However, the debate over the relevance of crit-
ical phenomena to earthquakes stretches back as far
as 30 years [7,11,12,47,61,84,93,104,106,109,114,147,151,
178,192,193,194,202,203,207,223], � Jerky Motion in
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Slowly Driven Magnetic and Earthquake Fault Systems,
Physics of and � Seismicity, Critical States of: From
Models to Practical Seismic Hazard Estimates Space. The
current debate on recurrence statistics is thus the lat-
est tack in an evolving string of arguments with a long
history. As discussed below, many of the claims made
in the recent articles on recurrence statistics have ei-
ther been challenged, refuted or explained by previously
known facts about earthquake statistics [132,133,145,176,
177,230]. As will be discussed below, this debate in the lit-
erature is important because of the potential consequences
for understanding earthquakes, but it needs to be pur-
sued with rigorous scientific arguments accessible to both
the seismological and the statistical physics communi-
ties.

The debate would almost certainly benefit significantly
from testing hypotheses with simulations to establish null
hypotheses and benchmarks: seismicity patterns are suffi-
ciently stochastic and earthquake catalogs contain a suffi-
cient amount of observational uncertainties so as to make
inference difficult. It is often not straightforward to predict
the signal of well-known statistical features such as clus-
tering in new data analysis techniques. Therefore, testing
the purported claims by realistic simulations of earthquake
catalogs can provide a strong benchmark against which the
claims can be evaluated. This view and the corresponding
criticism of many studies has been put forward and de-
fended for a long time by Kagan [111].

Such a model-dependent approach may be at odds
with the philosophy of a so-called “model-free” analy-
sis, which the community of statistical physicists claim to
take in their analysis. For instance, network theory-based
approaches, space-time window-based finite size scaling,
box-covering methods and other techniques used in the
study of critical and fractal phenomena are said to be
“model-free” because no assumptions about seismicity are
supposedly made at the outset. By using model-free anal-
ysis techniques, the often uncertain and sometimes clearly
wrong assumptions of flawed models and resulting biased
results are meant to be circumvented.

However, as is almost always the case in statistical hy-
pothesis testing, the less assumptions are made about the
test, the less powerful the test statistic. More importantly,
seismicity is sufficiently stochastic so that well-known fea-
tures may appear as novel in new analysis methods. Fur-
thermore, to convince the seismological community of
new data analysis techniques, the methods need to be
tested on established knowledge and show the improve-
ment over traditional methods. These types of initial tests
are rarely performed by the statistical physics commu-
nity.

In the next Sect. “Concepts and Calculational Tools”,
we present a summary of some of the concepts and cal-
culational tools that have been developed in attempts to
apply statistical physics approaches to seismology. Then,
Sect. “Competing Mechanisms and Models” summarizes
the leading theoretical physical models of the space-time
organization of earthquakes. Section “Empirical Studies of
Seismicity Inspired by Statistical Physics” presents a gen-
eral discussion and several examples of the new met-
rics proposed by statistical physicists, underlining their
strengths and weaknesses. Section “Future Directions”
briefly outlines expected developments.

Concepts and Calculational Tools

Renormalization, Scaling and the Role of Small
Earthquakes in Models of Triggered Seismicity

A common theme in many of the empirical relations in
seismology (and in those employed in seismicity mod-
els) is the lack of a dominating scale. Many natural phe-
nomena can be approached by the traditional reductionist
approach to isolate a process at a particular scale. For ex-
ample, the waves of an ocean can be described quite ac-
curately by a theory that entirely ignores the fact that the
liquid is made out of individualmolecules. Indeed, the suc-
cess of most practical theories in physics depends on iso-
lating a scale [234], although since this recognition, much
progress has been made in developing a holistic approach
for processes that do not fall into this class. Given current
observational evidence, earthquakes seem to belong to the
set of processes characterized by a lack of one dominating
length scale: fluctuations of many or perhaps a wide con-
tinuum of sizes seem to be important and are in no way
diminished – even when one is interested solely in large-
scale descriptions [206].

The traditional reductionist approach in seismology,
which, for instance, attempted to separate large (main)
shocks from small (fore- or after-) shocks, is slowly giv-
ing way to the holistic approach, in which all earthquakes
are created equal and seismicity is characterized by fluc-
tuations of all sizes. This gradual shift is supported, on
a conceptual and qualitative level, by the vision of criti-
cal phenomena. A particularly strongmodel of the interac-
tions between earthquakes has emerged in the concept of
triggering, which places all earthquakes on the same foot-
ing: each earthquake can trigger its own events, which in
turn can trigger their own events, and so on, according to
the same probability distributions, and the resulting seis-
micity can be viewed as the superposed cascades of trig-
gered earthquakes that cluster in space and time [77,117,
149,150].
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From this point of view, it is natural that small earth-
quakes are important to the overall spatio-temporal pat-
terns of seismicity. Indeed, the scaling of aftershock pro-
ductivity with mainshock magnitude suggests that small
earthquakes are cumulatively as important for the trig-
gered seismicity budget as rarer but larger events [60,76,
82]. The importance of small earthquakes has also been
documented in, e. g., [73,138,141].

But earthquake catalogs do not contain information
(by definition) about the smallest, unobserved events,
which we know to exist from acoustic emission exper-
iments and earthquakes recorded in mines. To guaran-
tee a finite seismicity budget, Sornette and Werner ar-
gued [209] for the existence of a smallest triggering earth-
quake, akin to a “ultra-violet cut-off” in quantum field
theory, below which earthquakes do not trigger other
events. Introducing a formalism which distinguishes be-
tween the detection threshold and the smallest triggering
earthquake, Sornette andWerner placed constraints on its
size by using a simplified version of the popular Epidemic-
Type Aftershock Sequence (ETAS) Model [149], a power-
ful model of triggered seismicity based on empirical statis-
tics, and by using observed aftershock sequences. Sornette
andWerner [210] also considered the branching structure
of one complete cascade of triggered events, deriving an
apparent branching ratio and the apparent number of un-
triggered events, which are observed when only the struc-
ture above the detection threshold is known. As a result
of our inability to observe the entire branching structure,
inferred clustering parameters are significantly biased and
difficult to interpret in geophysical terms. Second, separat-
ing triggered from untriggered events, commonly known
as declustering, also strongly depends on the threshold, so
that it cannot even in theory constitute a physically sound
method.

Sornette and Werner [210] also found that a simpli-
fied, averaged version of the ETASmodel can be renormal-
ized onto itself, with effective clustering parameters, under
a change of the threshold. Saichev and Sornette [175] con-
firmed these results for the stochastic number statistics of
the model using a rigorous approach in terms of generat-
ing probability functions, but also showed that the tem-
poral statistics could not be renormalized. Furthermore, it
can be shown (see Chapter 4 of [229]) that the conditional
intensity function of the ETAS model, the mathematical
object which uniquely defines the model, cannot be renor-
malized onto itself under a change ofmagnitude threshold.
It is not a fixed-point of the renormalization process oper-
ating via magnitude coarse-graining. The functional form
of the model must change under a change in the detection
threshold [175]. In other words, if earthquakes occur ac-

cording to an ETAS model above some cut-off m0, then
earthquakes above md cannot be described by the ETAS
model in a mathematically exact way. Although in prac-
tice, the ETAS model provides an excellent fit.

The issue of how to deal with small earthquakes is
thus reminiscent of the decades of efforts that have been
invested in physics to deal with the famous ultra-violet
cut-off problem, eventually solved by the so-called “renor-
malization” theory of Feynmann, Schwinger and Tomon-
aga. In the 1960s and 1970s, this method of renormaliza-
tion was extended into the “renormalization group” (in
fact a semi-group in the strict mathematical sense) for
the theory of critical phenomena (see glossary), which we
also mention in Sect. “Competing Mechanisms and Mod-
els”. It is fair to say that there has been limited success
in developing a multi-scale description of the physics of
earthquakes and, in particular, in addressing the upscal-
ing problem and the impact of the many small earth-
quakes.

One tantalizing approach, not yet really understood in
terms of all its consequences and predictions, is the variant
of the ETAS model proposed by Vere-Jones [224], which
has the remarkable property of being bi-scale invariant
under a transformation involving time and magnitudes.
One of the modifications brought in by [224] is to assume
that the distribution of the daughter magnitudes is depen-
dent on the mother magnitudemi through a modification
of the Gutenberg–Richter distribution of triggered earth-
quakemagnitudes by a term of the form exp(�ıjm � mi j),
where ı > 0 quantifies the distance to the standard Guten-
berg–Richter distribution. Remarkably, Saichev and Sor-
nette [174], who studied the Vere-Jonesmodel, found that,
due to the superposition of the many magnitude distri-
butions of each earthquake in the cascades of triggered
events, the resulting distribution of magnitudes over a sta-
tionary catalog is a pure Gutenberg–Richter law. Thus,
there might be hidden characteristic scales in the physics
of triggering that are not revealed by the standard observ-
able one-point statistical distributions. Simulation and pa-
rameter estimation algorithms for the Vere-Jones model
are not yet available. If and when these algorithms be-
come available, the study of this bi-scale invariant branch-
ing model may be a strong alternative to the ETAS model,
as this model is exactly scale invariant with neither ultra-
violet nor infra-red cut-offs.

Nevertheless, being empirically based, these stochastic
point process models lack a genuine microscopic physical
foundation. The underlying physics is not explicitly ad-
dressed and only captured effectively by empirical statis-
tics, even at the smallest scales. The physical processes and
their renormalization are missing in this approach.
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Universality

Universality, as defined in the glossary, justifies the devel-
opment and study of extremely simplified models (carica-
tures) of Nature, since the behavior of a studied system at
the critical point can nevertheless be captured by toy mod-
els (in some cases exactly). For instance, the liquid–gas
transition, the ferromagnetic to paramagnetic transition,
and the behavior of binary alloys, all apparently differ-
ent systems, can be described successfully by an extremely
simplified picture of Nature (the Ising model) because of
universality. The hope that a similar principle holds for
earthquakes (and other non-equilbrium systems) under-
pins many of the models and tools inspired by statisti-
cal physics that have been applied to seismicity, to bring
about the “much coveted revolution beyond reduction-
ism” [17,67].

Speaking loosely, the appearance of power laws in
many toy models is often interpreted as a kind of universal
behavior. The strict interpretation of universality classes,
however, requires that critical exponents along with scal-
ing functions are identical for different systems. It is in-
teresting to note that slight changes in the sand-pile model
already induce new universality classes, so that evenwithin
a group of toy models, the promise of universality is not,
strictly, fulfilled [13,98,136].

A lively debate in seismology concerns the universality
of, on one hand, the frequency-size distribution of earth-
quake magnitudes (e. g. [47,61,91,108,111,232]), and, on
the other hand, the universality of the exponent of the
Gutenberg–Richter distribution (e. g. [25,184,212,233]).
A spatio-temporally varying critical exponent is not tra-
ditionally part of the standard critical phenomena reper-
toire, although analytical and numerical results based on
a simple earthquake model on a fault showed a possible
spontaneous switching between Gutenberg–Richter and
characteristic earthquake behavior associated with a non-
equilibrium phase transition [24,47,61], � Jerky Motion
in Slowly Driven Magnetic and Earthquake Fault Systems,
Physics of and� Seismicity, Critical States of: FromMod-
els to Practical Seismic Hazard Estimates Space. Another
possible mechanism for the coexistence of and intermit-
tent shifts between different regimes (Gutenberg–Richter
scaling and characteristic earthquakes) stems from the
competition between several interacting faults which give
rise to long intervals of activity in some regions followed
by similarly long intervals of quiescence [129,213,214].
Both careful empirical investigations of seismicity param-
eters and theoretical progress on heterogeneous, spatially
extended critical phenomena may help elucidate the con-
troversy.

Intermittent Periodicity and Chaos

As part of the conquest of chaos theory in the 70s and
80s [58,139], its concepts and methods were invariably
also applied to seismicity. Huang and Turcotte [87,88]
modeled the interaction between two faults by two sliding
blocks that are driven by a plate through springs, coupled
to one another via another spring and endowed with a ve-
locity-weakening friction law. The dynamical evolution of
the blocks showed chaotic behavior and period-doubling
(the Feigenbaum route to chaos [58]). Huang and Tur-
cotte [87,88] suggested that the interaction of the Park-
field segment with the southern San Andreas fault may be
governed by the kind of chaotic behavior they observed
in their model: the lighter block slipped quasi-periodi-
cally for several times until both slipped together. Their
study explained that apparent quasi-periodicity of earth-
quakes on fault segments may be a result of chaotic inter-
actions between many fault segments, thereby providing
a warning that the extrapolations of quasi-periodic models
are not to be trusted (e. g. [15,75] and references therein).
However, it is doubtful that models with just a few degrees
of freedom can go a long way towards providing deeper
physical insights, or predictive tools. One needs to turn
to models with a large number of degrees of freedom, for
which turbulence appears as the leading paradigm of com-
plexity.

Turbulence

A drastically different approach has been favored by Yan
Kagan [104,106,109,114], who described seismicity as the
“turbulence of solids” – attesting to the far greater prob-
lems in earthquake seismology than the theory of crit-
ical phenomena promises to solve. While renormaliza-
tion group methods and scaling theory have contributed
immensely to the study of turbulence [63], the problem
of turbulence involves significant additional complica-
tions. First, loosely speaking, renormalization group the-
ory helps predict global behavior by coarse-graining over
degrees of freedom, which is essentially a bottom–up ap-
proach. In turbulence, the enstrophy acts bottom–up, but
the energy cascades top down. Secondly, there is a sig-
nificant spatial and topological aspect to turbulence, for
instance involving topological defects, such as filament
structures, which are crucial to the dynamical evolution of
the system. The existence of the two cascades (top–down
and bottom–up) as well as the influence of the dissipation
scale all the way within the so-called inertial range makes
turbulence the most important problem still unsolved in
classical Physics. The importance of addressing the issue of
the interplay between the top–down and bottom–up cas-



Seismicity, Statistical Physics Approaches to S 7879

cades in earthquake toy models has been outlined by [65,
66,236,237].

The analogous problem for seismicity lies in the com-
plex fault network, which constrains seismicity through
its weak structures but also grows and evolves because
of earthquakes redistributing stresses and rupturing fresh
surfaces. The statistical description of this tensorial and
dynamical problem is only at its beginning [64,99,100,
101,102,103,107,116,118,119,142,213]. But it is likely to be
a key aspect to the dynamical evolution of faults and seis-
micity. New physics and approaches are required to tackle
the tensorial nature of the stress and strain fields and the
complex topological structures of defects, from disloca-
tions to joints and faults, as well as the many different
physical processes operating from the atomic scale to the
macro-scale [200,201].

Self-Organized Criticality

Self-organized criticality (SOC) refers to the sponta-
neous organization of a system driven from outside
into a globally dynamical statistical stationary state,
which is characterized by self-similar distributions of
event sizes and sometimes fractal geometrical proper-
ties. SOC applies to the class of phenomena occurring
in driven out-of-equilibrium systems made of many in-
teractive components, which possess the following fun-
damental properties: 1) a highly non-linear behavior,
2) a very slow driving rate, 3) a globally stationary
regime, characterized by stationary statistical proper-
ties, and 4) power-law distributions of event sizes and
fractal geometrical properties. The crust obeys these four
conditions, as first suggested by [12,193], who proposed
to understand the spatio-temporal complexity of earth-
quakes in this perspective.

The appeal of placing the study of earthquakes in the
framework of critical phenomena may be summarized as
follows. Power law distributions can be understood as a re-
sult of an underlying continuous phase transition into
which the crust has organized itself [197,211]. Applying
the methods of renormalization group theory may help
calculate exponents and scaling functions and rational-
ize the spatio-temporal organization of seismicity along
with its highly correlated structures. For instance, Sor-
nette and Virieux [208] provided a theoretical framework
which links the scaling laws exhibited by earthquakes at
short times and plate tectonic deformations at large times.
Perhaps earthquakes fall into a universality class which
can be solved exactly and/or investigated in toy models.
Moreover, studying the detailed and highly complicated
microphysics involved in earthquakes may not lead to in-

sights about the spatio-temporal organization, because, as
a critical phenomenon, the traditional approach of sepa-
rating length scales to describe systems is inadequate. On
the other hand, as mentioned above, there is the possibil-
ity of a hierarchy of physical processes and scales which
are inter-related [156,157], for which the simplifying ap-
proach in terms of critical phenomena is likely to be insuf-
ficient.

As another reason for the importance of the topic,
interesting consequences for the predictability of earth-
quakes might be derived, for instance by mapping earth-
quakes to a genuine critical point (the accelerating mo-
ment release hypothesis, e. g. [202,207]) or by mapping
earthquakes to SOC (e. g. [70,147]). The latter mapping
had led some to argue that earthquakes are inherently un-
predictable. In the sandpile paradigm [13], there is little
difference between small and large avalanches, and this led
similarly to the concept that “large earthquakes are small
earthquakes that did not stop,” hence their supposed lack
of predictability.More than ten years after this contentious
proposal, a majority of researchers, including most of the
authors of this “impossibility claim,” recognize that there
is some degree of predictability [83,97]. Actually, the clari-
fications came from investigators of SOC, who recognized
that the long-term organization of sandpiles [51,52] and
of toy models of earthquakes and fault networks [142,213,
214] is characterized by long-range spatial and temporal
correlations. Thus, large eventsmay indeed be preceded by
subtle long-range organizational structures, an idea at the
basis of the accelerating moment release hypothesis. This
idea is also underlying the pattern recognition method in-
troduced by Gelfand et al. [69] and developed extensively
by V. Keilis-Borok and his collaborators for earthquake
predictions [122]. In addition, Huang et al. [89] showed
that avalanche dynamics occurring within hierarchical ge-
ometric structures are characterized by significant precur-
sory activity before large events; this provides a clear proof
of the possible coexistence between critical-like precursors
of large events and a long-term self-organized critical dy-
namical state.

In summary, self-organized criticality provides a gen-
eral conceptual framework to articulate the search for
a physical understanding of the large-scale and long-time
statistical properties of the seismogenic process and of the
predictability of earthquakes. Beyond this, it is of little help
as many different mechanisms have been documented at
the origin of SOC (see, e. g., chapter 15 in [203]). SOC
is not a theory, it does not provide any specific calcula-
tion tools; it is a concept offering a broad classification of
the kinds of dynamics that certain systems, including the
Earth crust, seem to spontaneously select.
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CompetingMechanisms andModels

It should be noted at this point that the statistical physics
approach to earthquake science is not limited to SOC.
Over the years, several groups have proposed to apply the
concepts and tools of statistical physics to understanding
the multiscale dynamics of earthquake and fault systems.
Various mechanisms drawn conceptually from statistical
mechanics but not necessary even limited to critical (phase
transition) phenomena have been proposed and are be-
ing pursued. Such approaches include the concept of the
critical point earthquake related to accelerated moment
release, network theory, percolation and fiber models as
models for fracture, and many more, some of which can
be found in [84,203,220,221].

In this section, we outline some of the major model
classes which underpin distinct views on what are the
dominating mechanisms to understand earthquakes and
their space-time organization.

Roots of Complexity in Seismicity:
Dynamics or Heterogeneity?

The 1990s were characterized by vigorous discussions at
the frontier between seismology and statistical physics
aimed at understanding the origin of the observed com-
plexity of the spatio-temporal patterns of earthquakes. The
debate was centered on the question of whether space-
time complexity can occur on a single homogeneous fault,
solely as a result of the nonlinear dynamics [23,38,39,128,
186,187,188,189], associated with the slip and velocity de-
pendent friction law validated empirically in particular
by [53,54,55,56]. Or, is the presence of quenched hetero-
geneity necessary [21,22,126,168]?

The rediscovery of the multi-slider-block-spring
model of [31,33] led to a flurry of investigations by physi-
cists [34,128,170], finding an enticing entry to this dif-
ficult field, in the hope of capturing the main empirical
statistical properties of seismicity. It is now understood
that complexity in the stress field, in co-seismic slips and
in sequences of earthquakes can emerge purely from the
nonlinear laws. However, heterogeneity is probably the
most important factor dominating the multi-scale com-
plex nature of earthquakes and faulting [156,157,181,182].
It is also known to control the appearance of self-orga-
nized critical behavior in a class of models relevant to the
crust [191,214].

Critical Earthquakes

This section gives a brief history of the “critical earth-
quake” concept.

We trace the ancestor of the critical earthquake con-
cept to Vere-Jones [223], who used a branching model
to illustrate that rupture can proceed through a cascade
of damage events. Allègre et al. [7] proposed what is in
essence a percolation model of damage/rupture describing
the state of the crust before an earthquake. They formu-
lated the model using the language of real-space renormal-
ization group, in order to emphasize the multi-scale na-
ture of the underlying physics, and the incipient rupture
as the approach to a critical percolation point. Their ap-
proach is actually a reformulation in the language of earth-
quakes of the real-space renormalization group approach
to percolation developed by [165]. Chelidze [35] indepen-
dently developed similar ideas. In the same spirit, Smalley
et al. [192] proposed a renormalization group treatment
of a multi-slider-block-spring model. Sornette and Sor-
nette [194] took seriously the concept put forward by [7]
and proposed to test it empirically by searching for the
predicted critical precursors. Voight [227,228] was prob-
ably the first author to introduce the idea of a time-to-fail-
ure analysis quantified by a second order nonlinear ordi-
nary differential equation. For certain values of the param-
eters, the solution of [227,228]’s time-to-failure equation
takes the form of a finite time singularity (see [180] for
a review and [204] for a mechanism based on the ETAS
model). He proposed and did use it later to predict vol-
canic eruptions. The concept that earthquakes are some-
how associated with critical phenomena was also underly-
ing the research efforts of a part of the Russian school [120,
222].

The empirical seed for the critical earthquake concept
were the repeated observations that large earthquakes are
sometimes preceded by an increase in the number of inter-
mediate size events [29,59,92,96,121,123,131,144,164,217].
The relation between these intermediate events and the
subsequent main event took a long time to be recognized
because the precursory events occur over such a large area.
Sykes and Jaumé [217] proposed a specific law� exp[t/�]
quantifying the acceleration of seismicity prior to large
earthquakes. Bufe and Varnes [30] proposed that the fi-
nite-time singularity law

�Benioff � 1/(tc � t)m (2)

is a better empirical model than the exponential law. In (2),
�Benioff is the cumulative Benioff strain, tc is critical time
of the occurrence of the target earthquake andm is a posi-
tive exponent. The fit with this law of the empirical Benioff
strain calculated by summing the contribution of earth-
quakes in a given space-time window is supposed to pro-
vide the time tc of the earthquake and thus constitutes
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a prediction. This expression (2) was justified by a me-
chanical model of material damage. It is important to un-
derstand that the law (2) can emerge as a consequence of
a variety of mechanisms, as reviewed by [180].

One of these mechanisms has been coined the “crit-
ical earthquake” concept, first formulated by Sornette
and Sammis [207], who proposed to reinterpret the for-
mula (2) proposed by [30] and previous related works
by generalizing them within the statistical physics frame-
work. This concept views a large earthquake as a genuine
critical point. Using the insight of critical points in rup-
ture phenomena, Sornette and Sammis [207] proposed
to enrich Eq. (2), now interpreted as a kind of diverging
susceptibility in the sense of critical phenomena, by con-
sidering complex exponents (i. e. log-periodic corrections
to scaling). These structures accommodate the possible
presence of a hierarchy of characteristic scales, coexisting
with power laws expressing the scale invariance associ-
ated with a critical phenomenon [199]. This was followed
by several extensions [89,94,95,178]. Sornette [202] re-
viewed the concept of critical “ruptures” and earthquakes
with application to prediction. Ike and Sornette [90] pre-
sented a simple dynamical mechanism to obtain finite-
time singularities (in rupture in particular) decorated by
complex exponents (log-periodicity). Bowman et al. [28,
153,154,242,243] proposed empirical tests of the critical
earthquake concept. The early tests of [28] have been
criticized by [74], while [226] commented on the lack of
a formal statistical basis of the accelerating moment re-
lease model. This stresses the need for rigorous tests in the
spirit of [166,167]. The debate is wide open, especially in
view of the recent developments to improve the determi-
nation of the relevant spatio-temporal domain that should
be used to perform the analyzes [26,27,124,130] (see [62]
for a review).

Spinodal Decomposition

Klein, Rundle and their collaborators have suggested
a mean-field approach to the multi-slider-block-spring
model justified by the long-range nature of the elastic in-
teractions between faults. This has led them to propose
that the fluctuations of the strain and stress field associ-
atedwith earthquakes are technically those occurring close
to a spinodal line of an underlying first-order phase transi-
tion (see [125,169,172] and references therein). This con-
ceptual view has inspired them to develop the “Pattern In-
formatics” technique, an empirical seismicity forecasting
method based on the idea that changes in the seismicity
rate are proxies for changes in the underlying stress [86,
218].

The fluctuations associated with a spinodal line are
very similar to those observed in critical phenomena. It is
thus very difficult if not impossible in principle to falsify
this hypothesis against the critical earthquake hypothesis,
since both are expected to present similar if not identical
signatures. Perhaps, the appeal of the spinodal decomposi-
tion proposal has to be found at the theoretical level, from
the fact that first-order phase transitions are more generic
and robust than critical phenomena, for systems where
heterogeneity and quenched randomness are not too large.

Dynamics, Stress Interaction
and Thermal Fluctuation Effects

Fisher et al. [24], Dahmen et al. [47], Ben-Zion et al. [61]
and co-workers (see the reviews by � Jerky Motion in
Slowly Driven Magnetic and Earthquake Fault Systems,
Physics of and� Seismicity, Critical States of: FromMod-
els to Practical Seismic Hazard Estimates Space) have in-
troduced a mean-field model (resulting from a uniform
long-range Green function) of a single fault, whose dy-
namical organization is controlled by two control pa-
rameters, � which measures the dynamic stress weak-
ening and c which is the deviation from stress conser-
vation (due for instance to coupling with ductile lay-
ers). The point (� D 0; c D 0) is critical in the sense of
a phase transition in statistical physics, with its associ-
ated scale invariant fluctuations described by power laws.
Dynamic stress strengthening (� < 0) leads to truncated
Gutenberg–Richter power laws. Dynamic stress weaken-
ing (� > 0) is either associated with a truncated Guten-
berg–Richter power law for c > 0 or with characteristic
earthquakes decorating a truncated power law for c < 0.
The coexistence of a characteristic earthquake regime with
a power-law regime is particularly interesting as it suggests
that they are not exclusive properties but may characterize
the same underlying physics under slightly different con-
ditions. This could provide a step towards explaining the
variety of empirical observations in seismology [5,110,185,
232].

Sornette et al. [214] have obtained similar conclusions
using a quasi-static model in which faults grow and self-
organize into optimal structures by repeated earthquakes.
Depending on the value of dynamical stress drop (con-
trolling the coupling strength between elements) relative
to the amplitude of the frozen heterogeneity of the stress
thresholds controlling the earthquake nucleation on each
fault segment, a characteristic earthquake regime with
a truncated power law is found for small heterogeneity or
large stress drop while the power law SOC regime is recov-
ered by large heterogeneity or small stress drop. The two
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approaches of [24,47,61] and � Jerky Motion in Slowly
Driven Magnetic and Earthquake Fault Systems, Physics
of on the one hand and of [214] on the other hand can be
reconciled conceptually by noting that the dynamic stress
weakening of � Jerky Motion in Slowly Driven Magnetic
and Earthquake Fault Systems, Physics of controls the dy-
namical generated stress heterogeneity while the lack of
stress conservation c controls the coupling strength. Fun-
damentally, the relevant control parameter is the degree
of coupling between fault elements seen as threshold os-
cillators of relaxation versus the variance of the disorder
in their spontaneous large earthquake recurrence times.
Generically, power law statistics are expected to co-exist
with synchronized behavior in a general phase diagram in
the heterogeneity-coupling strength plane [152,214].

Let us finally mention a promising but challenging
theoretical approach, which has the ambition to bridge
the small-scale physics controlled by thermal nucleation
of rupture to the large-scale organization of earthquakes
and faults [155,205]. Partial success has been obtained
with a remarkable prediction on the (“multifractal”) de-
pendence of the Omori law exponent of aftershocks on the
magnitude of the mainshock, verified by careful empirical
analyzes on earthquakes in California, Japan and world-
wide [158].

Empirical Studies of Seismicity
Inspired by Statistical Physics

“False facts are highly injurious to the progress of sci-
ence, for they often endure long; but false views, if
supported by some evidence, do little harm, for every-
one takes a salutary pleasure in proving their false-
ness.”

Charles Darwin, in The Origin of Man, Chap. 6.

Early Successes and Subsequent Challenges

A significant benefit of the statistical physics approach to
seismology has been the introduction of novel techniques
to analyze the available empirical data sets, with the goal
of obtaining new insights into the spatio-temporal organi-
zation of seismicity and of revealing novel regularities and
laws that may guide the theoretical analysis.

A prominent forerunner is the application of the con-
cept of fractals introduced by Mandelbrot [137] and of the
measures of fractal dimensions to describe complex sets
of earthquake epicenters, hypocenters and fault patterns.
The use of fractals has constituted an epistemologic break-
through in many fields, and not only in seismology. In-
deed, before Mandelbrot, when dealing with most com-

plex systems, one used to say: “this is too complicated for
a quantitative analysis” and only qualitative descriptions
were offered. After Mandelbrot, one could hear: “this is
a fractal, with a fractal dimension equal to xxx!” By pro-
viding a new geometrical way of thinking about complex
systems associated with novel metrics, Mandelbrot and his
fractals have extended considerably the reach of quantita-
tive science to many complex systems in all fields.

However, while there have been some attempts to use
fractal dimensions as guidelines to infer the underlying
organization processes, as for instance in [195,196], most
of the initial reports have lost their early appeal [18,19,
183,219] since the complexity of seismicity and faulting
is much too great to be captured by scaling laws embody-
ing solely a simple scale invariance symmetry. Among oth-
ers, multifractal and adapted wavelet tools are needed to
quantify this complexity, see for instance [68,146,156,157,
159]. It should also be noted that few studies of the fractal
dimensions of seismicity address the significant issues of
errors, biases and incomplete records in earthquake cata-
logs – a notable exception being [115].

Since the beginning of the 21st century, a renewal of
interest and efforts have burgeoned as groups of statistical
physicists, interested in earthquakes as a potential instance
of self-organized criticality (SOC), have claimed “novel”,
“universal” and “robust” scaling laws from their analysis
of the spatio-temporal organization of seismicity. The au-
thors purport to have discovered universal and hitherto
unknown features of earthquakes that give new insights
into the dynamics of earthquakes and add to the evidence
that earthquakes are self-organized critical. We now dis-
cuss a few of these recent studies to illustrate the existence
of potential problems in the “statistical physics” approach.
In a nutshell, we show that perhaps most of these “novel
scaling laws” can be explained entirely by already known
statistical seismicity laws. This claim has been defended by
other experts of statistical seismology, the most vocal be-
ing perhaps Yan Kagan at UCLA [111].

The flurry of interest from physicists comes from their
fascination with the self-similar properties exhibited by
seismicity (e. g. the Gutenberg–Richter power law of earth-
quake seismic moments, the Omori–Utsu law of the decay
of aftershock rates after large earthquakes, the fractal and
multifractal space-time organization of earthquakes and
faults, etc.), together with the development of novel con-
cepts and techniques that may provide new insights. But,
and this is our main criticism based on several detailed ex-
amples discussed below, many of the new approaches and
results do not stand close scrutiny. This failure is rooted
in two short-comings: (i) the lack of testing of new meth-
ods on synthetic catalogs generated by benchmark mod-
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els which are based on well-known statistical laws of seis-
micity, and (ii) the failure to consider earthquake catalog
bias, incompleteness and errors. The latter may cause cat-
alog artifacts to appear as genuine characteristics of earth-
quakes. Testing the results on a variety of catalogs and con-
sidering the influence of various catalog errors can help
minimize their influence. The former short-coming often
leads to the following scenario: authors fail to realize that
a simpler null hypothesis could not be rejected, namely
that their “discovery” could actually be explained by just
a combination of basic statistical laws known to seismolo-
gists for decades.

The well-established laws of statistical seismicity that
authors should consider before claiming for novelty in-
clude the following:

1. The Gutenberg–Richter law for the distribution of
earthquake magnitudes with a b-value close to 1 (corre-
sponding to an exponent' 2/3 for the probability den-
sity function of seismic moments),

2. The Omori–Utsu law for the decay of the rate of after-
shocks following a mainshock,

3. The inverse Omori law for foreshocks,
4. The fact that aftershocks also trigger their own after-

shocks and so on, and that aftershocks do not seem to
exhibit any distinguishable physical properties,

5. The fact that the distribution of distances between
mainshocks and aftershocks has a power law tail,

6. The fertility law (the fact that earthquakes of magni-
tude M trigger of the order of 10aM aftershocks with
a~ � b ' 1,

7. The fractal distribution of faults which are concentra-
tion centers for earthquakes.

This above non-exhaustive list selects “laws” which are ar-
guably non-redundant, in the sense that it is likely not pos-
sible to derive one of these laws from the others (a pos-
sible exception is the inverse Omori law for foreshock,
which can be derived from the direct Omori law for after-
shocks in the context of the ETAS model [78,81]). Some
experts would argue that we should add to this list other
claimed regularities, such as “Båth’s law” (see e. g. [190]
for a recent discussion emphasizing the importance of this
law), that states that the differences in magnitudes be-
tween mainshocks and their largest aftershocks are ap-
proximately constant, independent of the magnitudes of
mainshocks [20]. However, Helmstetter and Sornette [79]
and Saichev and Sornette [173] have shown that Bath’s law
can be accurately recovered in ETAS-type models combin-
ing the first, second, fourth, and sixth laws stated above,
with the assumption that any earthquake can trigger sub-
sequent earthquakes.

Entropy Method for the Distribution
of Time Intervals Between Mainshocks

Mega et al. [140] used the “diffusion entropy” method to
argue for a power-law distribution of time intervals be-
tween a large earthquake (the mainshock of a seismic se-
quence or cluster) and the next one. Helmstetter and Sor-
nette [80] showed that all the “new” discoveries reported
by [140] (including the supposedly new scaling) can be ex-
plained solely by Omori’s law for intra-cluster times, with-
out correlation between clusters, thus debunking the claim
for novelty.

Scaling of the PDF of Waiting Times

Bak et al. [14] analyzed the scaling of the probability den-
sity function of waiting times between successive earth-
quakes in southern California as a function of “box size”
or small regions in which subsequent earthquakes are con-
sidered. They found an approximate collapse of the pdfs
for different seismic moment thresholds S and box sizes L
which suggested the following scaling ansatz for the wait-
ing times T:

T˛PS;L(T) D f (TS�bLd f ) ; (3)

where b D 1 is the Gutenberg–Richter exponent, d f ' 1:2
was claimed to be a spatial fractal dimension of seismic-
ity (see [146] and [115] for more in-depth studies), ˛ D 1
was identified as the exponent in the Omori law and f (�) is
a scaling function which was proposed to be roughly con-
stant up to a constant (“kink”) beyond which it quickly
decays. The scaling (3) was claimed to be a unified law
for earthquakes that revealed a novel feature in the spa-
tio-temporal organization of seismicity in that the Guten-
berg–Richter, the Omori law and the spatial distribution
of earthquakes were unified into a single picture that made
no distinction between fore-, main- and aftershocks. The
scaling relations and critical exponents were claimed to
be contained in the scaling ansatz. Corral [40,41,42,43]
and others broadened the analysis to other regions of the
world. Corral [41] proposed a slightly different scaling
ansatz for a modified data analysis.

Early criticism came from Lindman et al. [132], who
noted that synthetic data generated using a non-homoge-
neous Poisson process derived from Omori’s law was able
to reproduce some of the results of [14], indicating a rather
trivial origin of the unified scaling law. Molchan [145]
showed that, if at least two regions in the data set are in-
dependent, then, if a scaling relation were to hold exactly,
this scaling function could only be exponential. All other
functions could only result in approximate data collapses.
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Proponents of the unified scaling law, e. g. [44], argued
that indeed all regions were correlated, as expected in sys-
tems near a critical point so that the assumption of inde-
pendence between different regions should not hold. But
Molchan [145] also showed that a simple Poisson cluster
model (Poissonianmainshocks that trigger Omori-type af-
tershock sequences) could reproduce the short and long
time limits of the observed statistics, indicating that the
Omori law, the Gutenberg–Richter relationship and sim-
ple clustering were the sole ingredients necessary for the
observed short and long time limit, and no spatial correla-
tion was needed.

Saichev and Sornette [176,177] extended Molchan’s
arguments to show that the approximate data collapse
of the waiting times could be explained completely by
the Epidemic-Type Aftershock Sequence (ETAS) model
of [149]. This provided further evidence that the appar-
ent data collapse was only approximate. Remarkably, the
theoretical predictions of the ETAS model seem to fit the
observed data better than the phenomenological scaling
function proposed by [41] to fit the data. Saichev and Sor-
nette [176,177] thus showed that a benchmark model of
seismicity was able to reproduce the apparent unified scal-
ing law and that therefore the distribution of interevent
times did not reveal new information beyond what was al-
ready known via statistical laws: The combination of the
Gutenberg–Richter law, the Omori law, and the concept of
clustering suffice to explain the apparent “universal” scal-
ing of the waiting times.

Sornette et al. [215] developed an efficient numerical
scheme to solve accurately the set of nonlinear integral
equations derived previously in [177] and found a dra-
matic lack of power for the distribution of inter-event
times to distinguish between quite different sets of param-
eters, casting doubt on the usefulness of this statistics for
the specific purpose of identifying the clustering parame-
ter (e. g. [72]).

Scaling of the PDF
of Distances Between Subsequent Earthquakes

Davidson and Paczuski [49] claimed evidence contradict-
ing the theory of aftershock zone scaling in favor of scale-
free statistics. Aftershock zone scaling refers to the scal-
ing of the mainshock rupture length, along which most
aftershocks occur, with the mainshock magnitude [112].
Davidson and Paczuski [49] suggested that the probabil-
ity density function of spatial distances between successive
earthquakes obeys finite size scaling with a novel dynam-
ical scaling exponent, suggesting that the mainshock rup-
ture length scale has no impact on the spatial distribution

of aftershocks and that earthquakes are self-organized crit-
ical.

Werner and Sonette [230] debunked this claim by
showing that (i) the purported power law scaling function
is not universal as it breaks down in other regions of the
world; (ii) the results obtained by [49] for southern Cal-
ifornia depend crucially on a single earthquake (the June
28, 1992, M7.3 Landers earthquake): without Landers and
its aftershocks, the power law disappears; (iii) a model of
clustered seismicity, with aftershock zone scaling explicitly
built in, is able reproduce the apparent power law, indi-
cating that an apparent lack of scales in the data does not
necessarily contradict aftershock zone scaling and the ex-
istence of scales associated with mainshock rupture length
scales.

The Network Approach

The recent boom in the statistical mechanics of network
analysis has recently extended to applications well beyond
physics (for reviews, see [6,16,57,148]). Earthquake seis-
mology is no exception [1,2,3,4,8,9,10,160,161]. The re-
sulting impact has been limited so far for several reasons.

A major concern is the assumption that earthquake
catalogs as downloaded from the web are data sets fit
for immediate analysis. References [82,113,229] and [231]
present modern and complementary assessments of the
many issues of incompleteness spoiling even the best cat-
alogs. In particular, we should stress that magnitude de-
terminations are surprisingly inaccurate, leading to large
errors in seismic rate estimates [231]. Furthermore, there
is no such thing as a complete catalog above a so-called
magnitude of completeness, due to the fact that a non-
negligible fraction of earthquakes are missed in the af-
termath of previous earthquakes [82,113]. One should be
concerned that analyses in terms of network metrics could
be particularly sensitive to these defects. Nevertheless, Abe
and Suzuki [1,2,3,4] applied metrics of network analysis to
“raw” catalogs which included events well below the esti-
mated magnitude of completeness. As a result of neglect-
ing to use a (reasonably) homogeneous and trustworthy
data set, the results of their analysis may be severely bi-
ased, because the reliability of the inferred network struc-
ture is probably more sensitive than other metrics to the
correct spatio-temporal ordering of the earthquake cata-
log. No serious study has yet been performed to quantify
the usually serious impact of quality issues on the metrics
used in network analysis. As a consequence, it is also not
clear how to interpret the “success” of [160,161] in repro-
ducing the “features” of Abe and Suzuki’s analysis on the
synthetic seismicity generated by a spring-block model.
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In addition, at best limited attempts have been made
to interpret the results of the new network metrics using
well-known, established facts in seismology. Many of the
claimed novel features are probably very well understood –
they are mostly related to scale-invariance and clustering
of seismicity, facts documented for decades. The authors
should always strive to show that the newmetrics that they
propose give results that cannot be explained by the stan-
dard laws in statistical seismology. Toward this end, there
are well-defined benchmarkmodels that incorporate these
laws and that can generate synthetic catalogs on which the
new metrics can be tested and compared.

A few exceptions are worth mentioning. Motivated by
the long-standing and unresolved debate over “aftershock”
identification, Baiesi and Paczuski [9,10] and Baiesi [8]
provided a new metric for the correlations between earth-
quakes based on the space-time-magnitude nearest-neigh-
bor distance between earthquakes. The authors compared
their results with known statistical laws in seismology and
with the predictions of the ETAS model, actually confirm-
ing both. While no new law has been unearthed here, such
efforts are valuable to validate known laws and continue
to test the possible limits. Zaliapin et al. [238] extended
their study and investigated the theoretical properties of
the metric and its ability to decluster catalogs (i. e., sepa-
rate mainshocks from aftershocks). They concluded that
aftershocks defined from this metric seem to be differ-
ent from the rest of earthquakes. It will be interesting to
see head-to-head comparisons with current state-of-the-
art probabilistic declustering techniques that are based on
empirical statistical laws and likelihood estimation [105,
240,241].

Future Directions

The study of the statistical physics of earthquakes remains
wide-open with many significant discoveries to be made.
The promise of a holistic approach – one that emphasizes
the interactions between earthquakes and faults – is to be
able to neglect some of the exceedingly complicated mi-
cro-physics when attempting to understand the large scale
patterns of seismicity. The marriage between this concep-
tual approach, based on the successes of statistical physics,
and seismology thus remains a highly important domain
of research. In particular, statistical seismology needs to
evolve into a genuine physically-based statistical physics
of earthquakes.

The question of renormalizability of models of earth-
quake occurrence and the role of small earthquakes in the
organization of seismicity is likely to remain an important
topic. It connects with the problem of foreshocks and the

predictability of large events from small ones and there-
fore has real and immediate practical applications as well
as physical implications.

More detailed and rigorous empirical studies of the
frequency-size statistics of earthquake seismic moments
and how they relate to seismo-tectonic conditions are
needed in order to help settle the controversy over the
power-law versus the characteristic event regime, and the
role of regime-switching and universality.

Spatially extended, dynamically evolving fault net-
works and their role in the generation of earthquakes are
mostly ignored in the statistical physics approach to seis-
micity. Akin to the filaments in turbulence, these may pro-
vide key insights into the spatio-temporal organization of
earthquakes. Novel methods combining information from
seismology to faulting will be required (e. g., [71,159,195,
196,197]) to build a real understanding of the self-organi-
zation of the chicken-and-egg structures that earthquakes-
faults constitute. Furthermore, a true physical approach
requires understanding the spatio-temporal evolution of
stresses, their role in earthquake nucleation via thermally
activated processes, in the rupture propagation and in the
physics of arrest, both involved in the generation of com-
plex stress fields.

The important debate regarding statistical physics ap-
proaches to seismicity would benefit significantly from
two points. Firstly, earthquake catalogs contain data un-
certainties, biases and subtle incompleteness issues. Inves-
tigating their influence on the results of data analyses in-
spired by statistical physics increases the relevance of the
results. Secondly, the authors should make links with the
literature on statistical seismology which deals with simi-
lar questions. It is their task to show that the new metrics
that they propose give results that cannot be explained by
the standard laws in statistical seismology. For this, there
are well-defined benchmark models that incorporate these
laws and that can generate synthetic catalogs on which the
new metrics can be tested.
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Glossary

Numerical methods Processes in nature are often de-
scribed by partial differential equations. Finding solu-
tions to those equations is at the heart of many stud-
ies aiming at the explanation of observed data. Sim-
ulations of realistic physical processes requires gener-
ally the use of numerical methods – a special branch
of applied mathematics – that approximate the par-
tial differential equations and allows solving them on
computers. Examples are the finite-difference, finite-
element, or finite-volume methods.

Spectral elements The spectral element method is an ex-
tension of the finite element method that makes use
of specific basis functions describing the solutions in-
side each element. These basis functions (e. g., Cheby-
shev or Legendre polynomials) allow the interpolation
of functions exactly at certain collocation points. This
is often termed spectral accuracy.

Discontinuous Galerkin method The discontinuous Ga-
lerkin method is a flavor of the finite-element method
that allows discontinuous behavior of the spatial or
temporal fields at the element boundaries. The discon-
tinuities – that might be small in the case of continu-
ous physical fields such as seismic waves – then define
so-called Riemann problems that can be handled using
the concepts from finite-volume techniques. There-
fore, the approximate solution is updated via numer-
ical fluxes across the element boundaries.

Parallel algorithms All modern supercomputers make
use of parallel architectures. This means that a large
number of processors are performing (different) tasks
on different data at the same time. Numerical algo-
rithms need to be adapted to these hardware architec-
tures by using specific programming paradigms (e. g.,
the message passing interface MPI). The computa-
tional efficiency of such algorithms strongly depends
on the specific parallel nature of the problem to be
solved, and the requirement for inter-processor com-
munication.

Grid generation Most numerical methods are based on
the calculation of the solutions at a large set of points
(grids) that are either static or depend on time (adap-
tive grids). These grids often need to be adapted to
the specific geometrical properties of the objects to be
modeled (volcano, reservoir, globe). Grids may be de-
signed to follow domain boundaries and internal sur-
faces. Before specific numerical solvers are employed
the grid points are usually connected to form trian-
gles or rectangles in 2D or hexahedra or tetrahedra
in 3D.

Definition of the Subject

Seismology is the science that aims at understanding the
Earth’s interior and its seismic sources from measure-
ments of vibrations of the solid Earth. The resulting im-
ages of the physical properties of internal structures and
the spatio-temporal behavior of earthquake rupture pro-
cesses are prerequisites to understanding the dynamic evo-
lution of our planet and the physics of earthquakes. One
of the key ingredients to obtain these images is the calcu-
lation of synthetic (or theoretical) seismograms for given
earthquake sources and internal structures. These syn-
thetic seismograms can then be compared quantitatively
with observations and acceptable models be searched for
using the theory of inverse problems. The methodologies
to calculate synthetic seismograms have evolved dramati-
cally over the past decades in parallel with the evolution of
computational resources and the ever increasing volumes
of permanent seismic observations in global and regional
seismic networks, volcano monitoring networks, and ex-
perimental campaigns. Today it is a tremendous challenge
to extract an optimal amount of information from seismo-
grams. The imaging process is still primarily carried out
using ray theory or extensions thereof not fully taking into
account the complex scattering processes that are occur-
ring in nature.

To model seismic observations in their full complexity
we need to be able to simulate wave propagation through
3D structures with constitutive relations that account for
anisotropic elasticity, attenuation, porous media as well
as complex internal interfaces such as layer boundaries or
fault systems. This implies that numerical methods have
to be employed that solve the underlying partial differen-
tial equations on computational grids. The high-frequency
oscillatory nature of seismic wave fields makes this an ex-
pensive endeavor as far as computational resources are
concerned. As seismic waves are propagating hundreds
of wavelengths through scattering media, the required ac-
curacy of the numerical approximations has to be of the
highest possible order. Despite the fact that the physics of
wave propagation is well understood, only recently com-
putational algorithms are becoming available that allow us
to accurately simulate wave propagation on many scales
such as reservoirs, volcanoes, sedimentary basins, conti-
nents, and whole planets.

In addition to the imaging problem for subsurface
structure and earthquake sources, the possibilities for 3D
wave simulations have opened a new route to forecast-
ing strong ground motions following large earthquakes
in seismically active regions. In the absence of any hope
to deterministically predict earthquakes, the calculation
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Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 1
Transverse velocity seismogram of the M8.3 Tokachi-Oki earthquake near Hokkaido observed at station WET in Germany with
a broadband seismometer. The total seismogram length is one hour. Arrival times of body wave phases (P, S) and the onset of trans-
versely polarized surface (Love) waves are indicated

of earthquake scenarios in regions with sufficiently well
known crustal structures and fault locations will play an
important role in mitigating damage particularly due to
potentially amplifying local velocity structures. However,
to be able to employ the advanced 3D simulation technol-
ogy in an efficient way, and to make use of the fast ad-
vance of supercomputing infrastructure, a paradigm shift
in the concept of wave simulation software is necessary:
The Earth science community has to build soft infrastruc-
tures that enable massive use of those simulation tools on
the available high-performance computing infrastructure.

In this paper we want to present the state of the art of
computational wave propagation and point to necessary
developments in the coming years, particularly in connec-
tion with finding efficient ways to generate computational
grids for models with complex topography, faults, and the
combined simulation of soil and structures.

Introduction

We first illustrate the evolution of methodologies to calcu-
late and model aspects of seismic observations for the case
of global wave propagation. Seismology can look back at
almost 50 years of systematic observations of earthquake
induced teleseismic groundmotions with the standardized
global seismic and regional networks. The digital revolu-
tion in the past decades has altered the recording culture
such that now seismometers are recording ground mo-

tions permanently rather than in trigger-mode, observa-
tions are becoming available in near-real time, and – be-
cause of the required sampling rates – the daily amount
of observations automatically sent to the data centers is gi-
gantic. If we take a qualitative look at a seismic observation
(Fig. 1) we can illustrate what it takes to model either part
or the whole information contained in such physical mea-
surements.

In Fig. 1 a seismogram observed using a broadband
seismometer (station WET in Germany) is shown. Glob-
ally observed seismograms following large earthquakes
contain frequencies up to 1 Hz (P-wave motions) down
to periods of around one hour (eigenmodes of the Earth)
in which case modeling is carried out in the frequency do-
main. Seismograms of the kind shown in Fig. 1 contain
many types of information. For large earthquakes the first
part of the seismogram (inlet) contains valuable informa-
tion on the spatio-temporal evolution of the earthquake
rupture on a finite-size fault. A model of the fault slip his-
tory is a prerequisite to model the complete wave form of
seismograms as the whole seismogram is affected by it un-
less severe low-pass filtering is applied. Information on the
global seismic velocity structure is contained in the arrival
times of numerous body-wave phases (here only P- and S-
wave arrivals are indicated) and in the dispersive behavior
of the surface waves (here the onset of the low-frequency
Love waves is indicated). Further information is contained
in the characteristics of the coda to body wave phases in-
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Seismic Wave Propagation in Media with Complex Geometries,
Simulation of, Figure 2
Snapshot of wave propagation inside the Earth approx. 25 min-
utes after an earthquake occurs at the top part of the model.
The radial component of motion is shown (blue and red denote
positive and negative velocity, resp.). The simulation was carried
out using an axi-symmetric approximation to the wave equa-
tion [55,58] and high-order finite-differences. Motion is allowed
in the radial and horizontal directions. This corresponds to the
P-SV case in 2D cartesian calculations. Therefore the wavefield
contains both P- and S-waves and phase conversions

dicative of scattering in various parts of the Earth (see [62]
for an account of modern observational seismology).

Adding a temporal and spatial scale to the above qual-
itative discussion reveals some important insight what it
takes to simulate wave propagation on a planetary scale
using grid-based numerical methods. Given themaximum
frequency of around 1Hz (P-waves) and 0.2Hz (S-waves)
the minimum wavelength in the Earth is expected to be
O(km), requiring O(100m) type grid spacing at least in
the crustal part of the Earth leading to O(1012) neces-
sary grid points (or volume elements) for accurate nu-
merical simulations. This would lead to memory require-
ments O(100 TByte) that are today possible on some of the
world’s largest supercomputers. The message here is that
despite the rapid evolution of computational power, the
complete modeling of teleseismic observations using ap-
proaches such as spectral elements (e. g., [63,64]) requiring
tremendous numbers of calculations to constrain struc-
ture and sources will remain a grand challenge for some
time to come. However, in many cases it is not necessary

or not even desirable to simulate or model the whole seis-
mogram, i. e. the complete observed frequency band. If we
lower the cutoff frequency to 0.1Hz (period 10 s), the re-
quired memory drops down to O(100GByte). Such calcu-
lations can be done today on PC-clusters that can be in-
expensively assembled and run on an institutional level
(e. g., [8]). In addition, it means that the massive use of
such forward simulations for imaging purposes and phe-
nomenological investigations of wavefield effects is around
the corner. This does not only apply to wave propagation
or imaging on a planetary scale but in the same way to
problems in volcanology, regional seismology, and explo-
ration geophysics.

An illustration of global wave simulations using the fi-
nite difference method (e. g., [14,54,55,58,109,110,114]) is
shown in Fig. 2 (more details on the methodologies are
given in Sect. “The Evolution of Numerical Methods and
Grids”). The snapshot of the radial component of motion
at a time when the direct P-wave has almost crossed the
Earth reveals the tremendous complexity the wave field
exhibits even in the case of a spherically symmetric Earth
model (PREM, [37]). The wavefield with a dominant pe-
riod of ca. 15 seconds also highlights the short wavelengths
that need to be propagated over very large distances. This
is the special requirement for computational wave prop-
agation that is quite different in other fields of compu-
tational Earth Sciences. While the theory of linear elastic
wave propagation is well understood and most numer-
ical methods have been applied to it in various forms,
the accuracy requirements are so high that – particularly
when models with complex geometrical features need to
be modeled – there are still open questions as to what
works best. One of the main goals of this paper is to high-
light the need to focus on the grid generation process for
various types of computational grid cells (e. g., rectangular,
triangular in 2D, and hexahedral and tetrahedral in 3D)
and the interface to appropriate highly accurate solvers for
wave propagation problems.

As mentioned above computational modeling of
strong ground motions following large earthquakes (see
Fig. 3 for an illustration) is expected to play an increas-
ingly important role in producing realistic estimates of
shaking hazard. There are several problems that are cur-
rently unsolved: (1) to achieve frequencies that are inter-
esting for earthquake engineers in connection with struc-
tural damage the near surface velocity structure needs to
be known and frequencies beyond 5Hz need to be calcu-
lated. In most cases this structure is not well known (on
top of the uncertainties of the lower basin structures) and
the required frequencies demand extremely large compu-
tational models. (2) In addition to structural uncertain-
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Simulation of, Figure 3
Snapshot (horizontal component) for a simulation of the M5.9
Roermond earthquake in the Cologne Basin in 1992 [38]. The 3D
sedimentary basin (maximumdepth 2 km) leads to strong ampli-
fication andprolongation of the shakingduration that correlates
well with basin depth. Systematic calculations may helpmitigat-
ing earthquake induced damage

ties, there are strong dependencies on the particular earth-
quake rupture process that influence the observed ground
motions. This suggests that many 3D calculations should
be carried out for any characteristic earthquake of interest,
to account for such variations (e. g., Wang et al. 2006). (3)
The large velocity variations (e. g., 300m/s up to 8 km/s)
require locally varying grid densities which is difficult to
achieve with some of the classical numerical methods in
use (e. g. finite differences). Some of the potential routes
are developed below.

In summary, computational simulation of 3D wave
propagation will be more and more a central tool for seis-
mology with application in imaging problems, earthquake
rupture problems, questions of shaking hazard, volcano
seismology and planetary seismology. In the following we
briefly review the history of the application of numeri-
cal methods to wave propagation problems and the evo-
lution of computational grids. The increasing complexity
of models in terms of geometrical features and range of
physical properties imposes the use of novel methodolo-
gies that go far beyond the initial approximations based
on finite differences.

The Evolution of NumericalMethods and Grids

In this section we give a brief history of the application of
numerical methods to the problem of seismic wave propa-
gation. Such a review can not be complete, certainly gives
a limited perspective, and only some key references are
given. One of the points we would like to highlight is
the evolution of the computational grids that are being
employed for wave propagation problems and the conse-

quences on the numerical methods of choice now and in
the future.

Why do we need numerical approximations to elas-
tic wave propagation problems at all? It is remarkable
what we learned about the Earth without them! In the
first decades in seismology, modeling of seismic obser-
vations was restricted to the calculation of ray-theoret-
ical travel times in spherically symmetric Earth models
(e. g., [13,16]). With the advent of computing machines
these approaches could be extended to 2D and 3D me-
dia leading to ray-theoretical tomography and the images
of the Earth’s interior that we know today (e. g., [115]).
The analytical solution of wave propagation in spher-
ical coordinates naturally leads to spherical harmonics
and the possible quasi-analytical solution of wave prop-
agation problems in spherically symmetric media using
normal modes. As this methodology leads to complete
waveforms the term “waveform inversion” was coined for
fitting the waveforms of surface waves by correcting the
phase differences for surface waves at particular frequen-
cies (e. g., [118]). This allowed the recovery of seismic ve-
locity models particularly of crust and upper mantle (sur-
face wave tomography). A similar approach in Cartesian
layered geometry led to complete solutions of the wave
equation in cylindrical coordinates through the summa-
tion of Bessel functions, the reflectivity method [46]. This
method was later extended to spherical media through
the Earth-flattening transformation [85]. Recently, ray-
theory was extended allowing the incorporation of finite-
frequency effects (e. g., [84]). The impact on the imaging
process is still being debated.

Most of these methods are still today extremely valu-
able in providing first estimates of 2D or 3D effects and
are important for the use in standard seismic processing
due to their computational efficiency. Nevertheless, with
the tremendous improvements of the quality of seismic
observations we strive today to extract much more infor-
mation on Earth’s structure and sources from recorded
waveforms. As waveforms are in most places strongly af-
fected by 3D structural variations the application of nu-
merical methods that solve “directly” the partial differen-
tial equations descriptive of wave propagation becomes
mandatory. This necessity was recognized early on and the
developments of numerical wave propagation began in the
sixties of the 20th century.

Numerical Methods
Applied toWave Propagation Problems

The finite-difference technique was the first numerical
method to be intensively applied to the wave propagation
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problem (e. g., [1,6,61,77,82,83,88,89,116,117]). The par-
tial differentials in the wave equation are replaced by fi-
nite differences leading to an extrapolation scheme in time
that can either be implicit or explicit. The analysis of such
simple numerical schemes led to concepts that are central
to basically all numerical solutions of wave propagation
problems. First, the discretization in space and time intro-
duces a scale into the problem with the consequence that
the numerical scheme becomes dispersive. This numerical
dispersion – for the originally non-dispersive problem of
purely elastic wave propagation – has the consequence that
for long propagation distances wave pulses are no longer
stable but disperse. The consequence is, that in any simula-
tion one has to ascertain that enough grid points per wave-
length are employed so that numerical dispersion is re-
duced sufficiently. Finding numerical schemes that mini-
mize these effects has been at the heart of any newmethod-
ology ever since. Second, the so-called CFL criterion [24]
that follows from the same theoretical analysis of the nu-
merical scheme basically relates a “grid velocity” – the ratio
between the space and time increments dx and dt, respec-
tively – to the largest physical velocity c in themodel. In or-
der to have a stable calculation, this ratio has to be smaller
than a constant " that depends on the specific scheme and
the space dimension

c
dt
dx
� " : (1)

This simple relationship has important consequences:
When the grid spacing dx must be small, because of model
areas with low seismic velocities, then the time step dt has
to be made smaller accordingly leading to an overall in-
crease in the number of time steps and thus overall com-
putational requirements. In addition, the early implemen-
tations where based on regular rectangular grids, implying
that large parts of the model where carrying out unneces-
sary calculations. As shown below local time-stepping and
local accuracy are important ingredients in efficient mod-
ern algorithms.

The fairly inaccurate low order spatial finite-differ-
ence schemes were later extended to high-order opera-
tors [26,48,49,50,51,56,76,103]. Nevertheless, the required
number of grid points per wavelength was still large, par-
ticularly for long propagation distances. This has led to
the introduction of pseudo-spectral schemes, “pseudo” be-
cause only the calculations of the derivatives where done
in the spectral domain, but the wave equation was still
solved in the space-time domain with a time-extrapola-
tion scheme based on finite differences [10,45,47,67]). The

advantage of the calculation of derivatives in the spectral
domain is at hand: The Fourier theorem tells us that by
multiplying the spectrum with ik, i being the imaginary
unit and k the wavenumber, we obtain an exact deriva-
tive (exact to numerical precision) on a regular set of grid
points. This sounds attractive. However, there are always
two sides to the coin. The calculation requires FFTs to be
carried out extensively and the original “local” scheme be-
comes a “global” scheme. This implies that the derivative
at a particular point in the computational grid becomes
dependent on any other point in the grid. This turns out
to be computationally inefficient, in particular on parallel
hardware. In addition, the Fourier approximations imply
periodicity which makes the implementation of boundary
conditions (like the free surface, or absorbing boundary
conditions) difficult.

By replacing the basis functions (Fourier series) in the
classical pseudo-spectral method with Chebyshev polyno-
mials that are defined in a limited domain (�1,1) the prob-
lemwith the implementation of boundary problems found
an elegant solution (e. g., [66,107,108]). However, through
the irregular spacing of the Chebyshev collocation points
(grid densification at the domain boundaries, see section
below) new problems arose with the consequence that this
approach was not much further pursued except in com-
bination with a multi-domain approach in which the field
variables exchange their values at the domain boundaries
(e. g., [108]).

So far, the numerical solutions described are all based
on the strong form of the wave equation. The finite-ele-
ment method is another main scheme that found immedi-
ate applications to wave propagation problems (e. g., [79]).
Finite element schemes are based on solving the weak
form of the wave equation. This implies that the space-
and time-dependent fields are replaced by weighted sums
of basis (also called trial) functions defined inside ele-
ments. The main advantage of finite element schemes is
that elements can have arbitrary shape (e. g., triangular,
trapezoidal, hexahedral, tetrahedral, etc.). Depending on
the polynomial order chosen inside the elements the spa-
tial accuracy can be as desired. The time-extrapolation
schemes are usually based on standard finite differences.
There are several reasons why finite-element schemeswere
less widely used in the field of wave propagation. First,
in the process a large system matrix needs to be assem-
bled and must be inverted. Matrix inversion in principle
requires global communication and is therefore not op-
timal on parallel hardware. Second, in comparison with
the finite-element method, finite- difference schemes are
more easily coded and implemented due to their algorith-
mic simplicity.
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A tremendous step forward was the introduction
of basis functions inside the elements that have spec-
tral accuracy, e. g., Chebyshev or Legendre polynomi-
als [11,15,39,40,65,86,90,98]. The so-called spectral ele-
ment scheme became particularly attractive with the dis-
covery that – by using Legendre polynomials – the ma-
trices that required inversion became diagonal [65]. This
implies that the scheme does no longer need global com-
munication, it is a local scheme in which extrapolation
to the next time step can be naturally parallelized. With
the extension of this scheme to spherical grids using the
cubed-sphere discretization [63,64] this scheme is today
the method of choice on many scales unless highly com-
plex models need to be initiated.

Most numerical schemes for wave propagation prob-
lems were based on regular, regular stretched, or hexahe-
dral grids. The numerical solution to unstructured grids
had much less attention, despite the fact that highly com-
plex models with large structural heterogeneities seem to
be more readily described with unstructured point clouds.
Attempts were made to apply finite volume schemes to
this problem [31], and other concepts (like natural neigh-
bor coordinates [7] to find numerical operators that are
applicable on unstructured grids [72,73,78]). These ap-
proaches were unfortunately not accurate enough to be
relevant for 3D problems. Recently, a new flavor of nu-
merical method found application to wave propagation on
triangular or tetrahedral grids. This combination of a dis-
continuous Galerkin method with ideas from finite vol-
ume schemes [33,70] allows for the first time arbitrary ac-
curacy in space and time on unstructured grids. While the
numerical solution on tetrahedral grids remains computa-
tionally slower, there is a tremendous advantage in gener-
ating computational grids for complex Earth models. De-
tails on this novel scheme are given below.

Before presenting two schemes (spectral elements and
the discontinuous Galerkin method) and some applica-
tions in more detail we want to review the evolution of
grids used in wave propagation problems.

Grids for Wave Propagation Problems

The history of grid types used for problems in compu-
tational wave propagation is tightly linked to the evolu-
tion of numerical algorithms and available computational
resources. The latter in the sense that – as motivated in
the introduction – even today realistic simulations of wave
propagation are still computationally expensive. This im-
plies that it is not sufficient to apply stable and simple nu-
merical schemes and just use enough grid points per wave-
length and/or extremely fine grids for geometrically com-

plex models. Optimal mathematical algorithms that min-
imize the computational effort are still sought for as the
recent developments show that are outlined in the follow-
ing sections.

In Fig. 4 a number of different computational grids
in two space dimensions is illustrated. The simple-most
equally-spaced regular finite-difference grid is only of
practical use in situations without strong material dis-
continuities. With the introduction of the pseudospectral
method based on Chebyshev polynomials grids as shown
in Fig. 4a grids appeared that are denser near the domain
boundaries and coarse in the interior. While this enabled
a muchmore efficient implementation of boundary condi-
tions the ratio between the size of the largest to the small-
est cell depends on the overall number of grid points per
dimension and can be very large. This leads to very small
time steps, that can in some way be compensated by grid
stretching [9] but overall the problem remains. An ele-
gant way of allowing grids to be of more practical shape is
by stretching the grids using analytical functions (Fig. 4c,
this basically corresponds to a coordinate transformation,
e. g., [50,107]). By doing this either smooth surface topog-
raphy or smoothly varying internal interfaces can be fol-
lowed by the grid allowing a more efficient simulation of
geometrical features compared to a blocky representation
on standard finite difference grids.

The problem of global wave propagation using spheri-
cal coordinates (here in the two-dimensional, axi-symmet-
ric approximation) nicely illustrates the necessity to have
spatially varying grid density (e. g., [42,43,53,59,89,109]).
The grid shown in Fig. 4b demonstrates that in spheri-
cal coordinates a regular discretization leads to grid dis-
tances that get smaller and smaller towards the center of
the Earth. This is in contrast to what is required to effi-
ciently model the Earth’s velocity structure: Velocities are
small near the surface (requiring high grid density) and in-
crease towards the center of the Earth (requiring low grid
density). One way of adjusting is by re-gridding the mesh
every now and then, in this case doubling the grid spacing
appropriately. This is possible, yet it requires interpolation
at the domain boundaries that slightly degrades the accu-
racy of the scheme.

The problems with grid density and complex sur-
faces cry for the use of so-called unstructured grids. Let
us define an unstructured grid as an initial set of points
(a point cloud), each point characterized by its spatial co-
ordinates. We wish to solve our partial differential equa-
tions on this point set. It is clear that – with appropri-
ate grid generation software – it is fairly easy to generate
such grids that obey exactly any given geometrical con-
straints be it in connection with surfaces or velocity mod-
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Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 4
Examples of 2D grids used for wave propagation simulations. a Chebyshev grid with grid densification near the domain boundaries.
bMultidomain finite-difference grid in regular spherical coordinates. c Stretched regular finite-difference grid that allows following
smoothly varying interface or surface boundaries. d Triangular staggered grid following an interface that allows finite-difference
type operators. e Unstructured grid with associated Voronoi cells for calculations using the finite-volume method. f Triangular cells
for finite-element type calculations. See text for details and references

els (i. e., varying grid density). It is important to note that
such point clouds cannot be represented by 2D or 3D ma-
trices as is the case for regular or regular stretched grid
types. This has important consequences for the paralleliza-
tion of numerical schemes. The first step after defining
a point set is to use concepts from computational geom-
etry to handle the previously unconnected points. This
is done through the idea of Voronoi cells, that uniquely
define triangles and their neighbors (Delauney triangu-
lation). In Fig. 4d an example is shown for a triangular
grid that follows an internal interface [72]. For finite-dif-
ference type operators on triangular grids a grid-stagger-
ing makes sense. Therefore, velocities would be defined
in the center of triangles and stresses at the triangle ver-
tices. Voronoi cells (Fig. 4e) can be used as volumetric
elements for finite volume schemes [31,73]. For finite-
element schemes triangular elements (Fig. 4f, e. g., [70])
with appropriate triangular shape functions are quite stan-
dard but have not found wide applications in seismol-
ogy.

If the grid spacing of a regular finite-difference grid
scheme in 3D would have to be halved this would result
in an overall increase of computation time by a factor of
8 (a factor 2 per space dimension and another factor 2
because of the necessary halving of the time step). This
simply means that the accuracy of a specific numerical

scheme and the saving in memory or computation time
is much more relevant in three dimensions. The evolu-
tion of grids in three dimensions is illustrated with ex-
amples in Fig. 5. A geometrical feature that needs to be
modeled correctly particularly in volcanic environments
is the free surface. With standard regular-spaced finite-
difference schemes only a stair-step representation of the
surface is possible (Fig. 5a, e. g., [87,92]). While the spe-
cific numerical implementation is stable and converges to
the correct solution a tremendous number of grid points
is necessary to achieve high accuracy.

Chebyshev grids and regular grids were applied to the
problem of wave propagation in spherical sections (Fig. 5b,
e. g., [52,57]). The advantage of solving the problem in
spherical coordinates is the natural orthogonal coordinate
system that facilitates the implementation of boundary
conditions. However, due to the nature of spherical coor-
dinates the physical domain should be close to the equa-
tor and geographical models have to be rotated accord-
ingly. A highly successful concept for wave propagation in
spherical media was possible through the adoption of the
cubed-sphere approach in combination with spectral-ele-
ments (Fig. 5c, [63,64]). The cubed-sphere discretization is
based on hexahedral grids. Towards the center of the Earth
the grid spacing is altered to keep the number of elements
per wavelength approximately constant.
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Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 5
Examples of 3D grids. a Stair-step representation of a complex free surface with finite-difference cells. b Chebyshev grid in spherical
coordinates for a spherical section. cCubed sphere grid used for spectral-element andmulti-domain Chebyshev calculations.d Tetra-
hedral grid of the Matterhorn. e Tetrahedral grid of the Earth’s interior with the grid density tied to the velocity model. fHexahedral
grid of bridge structure and subsurface structure for spectral-element calculations. See text for details and references

Computational grids for wave propagation based on
tetrahedra (Fig. 5d,e) are only recently being used for
seismic wave propagation in combination with appro-
priate numerical algorithms such as finite volumes [34]
or discontinuous Galerkin (e. g., [70]). The main advan-
tage is that the grid generation process is greatly facili-
tated when using tetrahedra compared to hexahedra. Gen-
erating point clouds that follow internal velocity struc-
tures and connecting them to tetrahedra are straight for-
ward and efficient mathematical computations. However,
as described in more detail below, tetrahedral grids re-
quire more involved computations and are thus less effi-
cient than hexahedral grids. Complex hexahedral grids –
even for combined modeling of structure and soil (Fig. 5f)
are possible but – at least at present – require a large
amount of manual interaction during the grid generation
process. It is likely that the combination of both grid types
(tetrahedral in complex regions, hexahedral in less com-
plex regions) will play an important role in future devel-
opments.

In the following we would like to present two of the
most competitive schemes presently under development,
(1) the spectral element method and (2) the discontinu-
ous Galerkin approach combined with finite-volume flux
schemes. The aim is to particularly illustrate the role of the
grid generation process and the pros and cons of the spe-
cific methodologies.

3DWave Propagation on Hexahedral Grids:
Soil-Structure Interactions

We briefly present the spectral element method (SEM)
based on Lagrange polynomials, focusing only on its main
features and on its implementation for the solution of
the elasto-dynamic equations. The SEM can be regarded
as a generalization of the finite element method (FEM)
based on the use of high order piecewise polynomial func-
tions. The crucial aspect of the method is the capability
of providing an arbitrary increase in spatial accuracy sim-
ply enhancing the algebraic degree of these functions (the
spectral degree SD). On practical ground, this operation
is completely transparent to the users, who limit them-
selves to choosing the spectral degree at runtime, leaving
to the computational code the task of building up suit-
able quadrature points for integration and new degrees of
freedom. Obviously, the increasing spectral degree implies
raising the required computational effort.

On the other hand, one can also play on the grid refine-
ment to improve the accuracy of the numerical solution,
thus following the standard finite element approach. Spec-
tral elements are therefore a so-called “h � p” method,
where “h” refers to the grid size and “p” to the degree of
polynomials. Referring to Faccioli et al. [40], Komatitsch
and Vilotte [65], Chaljub et al. [15] for further details, we
briefly remind in the sequel the key features of the spectral
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elementmethod adopted.We start from thewave equation
for the displacement u:

�
@u2

@t2
D div�i j(u)C f ; i; j D 1 : : : d(d D 2; 3) (2)

where t is the time, � D �(x) the material density,
f D f (x; t) a known body force distribution and �i j the
stress tensor. Introducing Hooke’s law:

�i j(u) D  div uıi j C 2�"i j(u) ; (3)

where

"i j(u) D
1
2

�
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@x j
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@uj
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�
(4)

is the strain tensor,  and � are the Lamé coefficients,
and ıi j is the Kronecker symbol, i. e. ıi j D 1 if i D j and
ıi j D 0, otherwise.

As in the FEM approach, the dynamic equilibrium
problem for themedium can be stated in the weak, or vari-
ational form, through the principle of virtual work [121]
and through a suitable discretization procedure that de-
pends on the numerical approach adopted, can be written
as an ordinary differential equations system with respect
to time:

[M] Ü(t)C [K]U(t) D F(t)C T(t) (5)

with matrices [M] and [K] , respectively the mass and
stiffness matrices, and vectors F and T representing the
contributions of external forces and traction conditions,
respectively. In our SE approach, U denotes the displace-
ment vector at the Gauss–Lobatto–Legendre (GLL) nodes,
that correspond to the zeroes of the first derivatives of
Legendre polynomial of degree N. The advancement of
the numerical solution in time is provided by the ex-
plicit 2nd order leap-frog scheme. This scheme is condi-
tionally stable and must satisfy the well known and al-
ready mentioned Courant–Friedrichs–Levy (CFL) condi-
tion. The key features of the SE discretization are described
in the following.

Like in the FEM standard technique, the computa-
tional domain may be split into quadrilaterals in 2D or
hexahedra in 3D, both the local distribution of grid points
within the single element and the global mesh of all the
grid points in the domain must be assigned. Many of these
grid points are shared amongst several spectral elements.
Each spectral element is obtained by amapping of amaster
element through a suitable transformation and all compu-
tations are performed on the master element. Research is
in progress regarding the introduction of triangular spec-
tral elements [80]. The nodes within the element where

displacements and spatial derivatives are computed, on
which volume integrals are evaluated, are not necessar-
ily equally spaced (similar to the Chebyshev approach in
pseudospectral methods mentioned above). The interpo-
lation of the solution within the element is done by La-
grange polynomials of suitable degree. The integration in
space is done through Gauss–Lobatto–Legendre quadra-
ture formula.

Thanks to this numerical strategy, the exponential ac-
curacy of the method is ensured and the computational
effort minimized, since the mass matrix results to be di-
agonal. The spectral element (SE) approach developed by
Faccioli et al. [40] has been recently implemented in the
computational code GeoELSE (GeoELasticity by Spectral
Elements) [93,102,120] for 2D/3D wave propagation anal-
ysis. The most recent version of the code includes: (i)
the capability of dealing with fully unstructured compu-
tational domains, (ii) the parallel architecture, and (iii)
visco-plastic constitutive behavior [30]. The mesh can be
created through an external software (e. g., CUBIT [25])
and the mesh partitioning is handled by METIS [81].

Hexahedral Grids

As alreadymentioned in the SEM here presented the com-
putational domain is decomposed into a family of non
overlapping quadrilaterals in 2D or hexahedra in 3D. The
grid discretization should be suitable to accurately prop-
agate up to certain frequencies. Obviously, owing to the
strong difference of the mechanical properties between
soft-soil and stiff-soil (or building construction material)
and to the different geometrical details as well, the grid re-
finement needed in the various parts of the model varies
substantially. Therefore, a highly unstructured mesh is
needed to minimize the number of elements. While 3D
unstructured tetrahedral meshes can be achieved quite
easily with commercial or non commercial software, the
creation of a 3Dnon structured hexahedramesh is still rec-
ognized as a challenging problem. In the following para-
graph we provide state of the art results concerning the
mesh creation.

Grid Generation

Hexahedral grids havemore severe restrictions inmeshing
efficiently. This is basically related to the intrinsic difficulty
that arises from themapping of the computational domain
with this particular element. As a consequence automatic
procedures have difficulty capturing specific boundaries,
create poor quality elements, the assigned size is difficult
to be preserved and the generation process is usuallymuch
slower compared to the tetrahedral mesh generation algo-
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Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 6
3D numerical model used for the simulations of ESG06 “Grenoble Benchmark”. “Honoring” technique: The computational domain is
subdivided into small chunks and each one is meshed starting from the alluvial basin down to the bedrock. For simplicity only the
spectral elements are shown without GLL nodes

Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 7
3D numerical model used for the simulations of ESG06 “Grenoble Benchmark”. “Not Honoring” technique: The computational do-
main is meshed with a coarse mesh and then refined twice approximately in the area where the alluvial basin is located

rithms. On the other hand the advantages of hexahedral
meshes are usually related to the lower computational cost
of the wave propagation solutions with respect to the one
based on triangular meshes or hexahedral structured grids
(like in the finite difference method).

Nevertheless certain problems can be addressed rea-
sonably well with specific solutions. A quite typical case
in earthquake seismology is the study of the alluvial basin
response under seismic excitation. In handling this prob-
lem, a first strategy is to try to “honor” the interface be-
tween the sediment (soft soil) and the bedrock (stiff soil).
The two materials are divided by a physical interface and
the jump in the mechanical properties is strictly preserved.
The major drawback of this approach is that usually it re-
quires strong skills from the user to build-up the mesh and
a significant amount of working time (Fig. 6). Given that
the “honoring approach” is not always feasible in a reason-
able time (or with a reasonable effort) a second strategy is
worth to be mentioned: The so called “not honoring” pro-
cedure. In this second case themesh is refined in proximity

of the area where the soft deposit are localized but the ele-
ments do not respect the interface. On a practical ground
the mechanical properties are assigned node by node and
the sharp jump is smoothed through the Lagrange inter-
polation polynomial and substituted with smeared inter-
faces (Fig. 7). At the present time it is still strongly un-
der debate if it is worth to honor or not the physical inter-
faces.

Finally, we highlight the fact that meshing software
(e. g., CUBIT [25]) is available that seems to be extremely
promising and potentially very powerful for the creation
of geophysical and seismic engineering unstructured hex-
ahedral meshes. Further very interesting mesh genera-
tion procedures based on hexahedral are under investiga-
tion [99].

Scale Problem with Structure and Soil

In engineering practice one of the most common ap-
proaches to design buildings under seismic load is the im-
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Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 8
3D model of Acquasanta bridge and the surrounding geological configuration. The investigated area is 2 km in length, 1.75km in
width and 0.86km in depth. The model was designed to propagate waves up to 5Hz with a SD D 3 (Order 4) and has 38,569 hexa-
hedral elements and 1,075,276 grid points. The contact between calcareous schists (brown color) and serpentine rocks (green color)
is modeled with two sub-vertical faults (red-line). Cyan color represents the alluvial and weathered deposits

position of an acceleration time history to the structure,
basically acting like an external load. An excellent exam-
ple of this technique can be found in recent publications
(e. g., [68,69]) and in the study of the so-called “urban-seis-
mology”, recently presented by Fernandez-Ares et al., [44].
In this case the goal is to understand how the presence of
an entire city can modify the incident wave-field. Due to
the size of the simulation and the number of buildings, the
latter are modeled as single degrees of freedom oscillators.
The interaction between soil and structure is preserved but
the buildings are simplified. For important structure (e. g.:
Historical buildings, world heritage buildings, hospitals,
schools, theaters, railway and highways) it is worth to pro-
vide an ad-hoc analysis capable to take into account the
full complexity of the phenomena.

Here we present an example of a fully coupled mod-
eling (Fig. 8): A railway bridge and its geotechnical-to-
pographical surroundings. The Acquasanta bridge on the
Genoa-Ovada railway, North Italy, is located in the Genoa
district and represents a typical structure the ancestor of
which can be traced back to the Roman “Pont du Gard”.
This structural type did not change significantly along the
centuries, thanks to the excellent design achieved no less
than 1900 years ago. The Acquasanta bridge structure is
remarkable both for the site features and the local geolog-
ical and geomorphological conditions. The foundations of
several of the piers rest on weak rock; moreover, some in-

stability problems have been detected in the past on the
valley slope towards Ovada.

Several simulations have been performed with
GeoELSE, in order to evaluate the influence of seismic
site effects on the dynamic response of the Acquasanta
bridge. A fully coupled 3D soil-structure model was de-
signed: The grid is characterized by a “subvertical fault”
between calcareous schists and serpentine rocks. This
is in accordance with available data, even if further in-
vestigations in future should identify more in detail the
tectonic structure of the area. The geometry of weath-
ered materials overlaying the calcareous schists on the
Ovada side has been assumed according to available in-
formation. The dimension of hexahedral elements ranges
some tens of centimeters to about 1000m. With such
a model, the problem can be handled in its 3D com-
plexity and we can examine the following aspects that
are usually analyzed under restrictive and simplified as-
sumptions: (i) soil-structure interaction, (ii) topographic
amplification, (iii) soft soil amplification (caused by the
superficial alluvium deposit shown in cyan), (iv) subverti-
cal fault (red line) between the schists, on the Ovada side,
and serpentine rock, on the Genoa side. For excitation
a shear plane wave (x-direction) was used (Ricker wavelet,
fmax D 3Hz, t0 D 1:0 s. and amplitude D 1mm) prop-
agating vertically from the bottom (red elements in
Fig. 8).
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Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 9
Snapshots of the modulus of the displacement vector and the magnified deformed shape of the bridge (in mm)

In Fig. 9 we present some snapshots of the modulus
of the displacement vector and the magnified deformed
shape of the bridge. It is worth to note that at T D 2 s the
motion of the bridge is almost in-plane (direction x), while
at T D 4 s is clearly evident how the coupling between the
in-plane and out-plane (y-direction) motion starts to be
important.

The study of the soil-structure interaction problem
could be easily enhanced (i) improving the input excita-
tion of the model here presented and (ii) taking into ac-
count complex constitutive behavior both from the soil
and the structure side. The former is already available in
GeoELSE thanks to the recent implementation [41,93] of
the domain reductionmethod (DRM), a methodology that
divides the original problem into two simpler ones [4,119],
to overcome the problem of multiple physical scales that is
created by a seismic source located some kilometers away
from the structure with typical element size of the order
of meters and located over a relatively small area (less than
1 km2) on soft deposit. The latter still needs to be improved
because of the lack of a complete tool capable to handle in

3D non linear soil behavior, non-linear structural behav-
ior and the presence of the water, that play a crucial role
in the failure of buildings. Partial response to this prob-
lem can be found in the recent work of Bonilla et al. [5]
and in the visco-plastic rheology recently introduced in
GeoELSE [30].

3DWave Propagation on Tetrahedral Grids:
Application to Volcanology

As indicated above, the simulation of a complete, highly
accurate wave field in realistic media with complex geom-
etry is still a great challenge. Therefore, in the last years
a new, highly flexible and powerful simulation method
has been developed that combines the Discontinuous
Galerkin (DG) Method with a time integration method
using Arbitrary high order DERivatives (ADER) of the ap-
proximation polynomials. The unique property of this nu-
merical scheme is, that it achieves arbitrarily high approx-
imation order for the solution of the governing seismic
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wave equation in space and time on structured and un-
structured meshes in two and three space dimensions.

Originally, this new ADER-DG approach [32,35] was
introduced for general linear hyperbolic equation systems
with constant coefficients or for linear systems with vari-
able coefficients in conservative form. Then, the extension
to non-conservative systems with variable coefficients and
source terms and its particular application to the simula-
tion of seismic waves on unstructured triangular meshes
in two space dimensions was presented [70]. And finally,
the further extension of this approach to three-dimen-
sional tetrahedral meshes has been achieved [33]. Further-
more, the accurate treatment of viscoelastic attenuation,
anisotropy and poroelasticity has been included to handle
more complex rheologies [28,29,71]. The governing sys-
tem of the three-dimensional seismic wave equations is
hereby formulated in velocity-stress and leads to the hy-
perbolic system of the form

@Q p

@t
C Apq

@Qq

@�
C Bpq

@Qq

@�
C Cpq

@Qq

@�
D Sp ; (6)

where the vector Q of unknowns contains the six stress
and the three velocity components and S is the source
term. The Jacobian matrices A, B and C include the ma-
terial values as explained in detail in [33,70].

The ADER-DGMethod: Basic Concepts

The ADER-DG method is based on the combina-
tion of the ADER time integration approach [113],
originally developed in the finite volume (FV) frame-
work [96,97,111] and the Discontinuous Galerkin finite el-
ement method [18,19,20,21,22,23,91]. As described in de-
tail in [33] in the ADER-DG approach the solution is ap-
proximated inside each tetrahedron by a linear combina-
tion of space-dependent polynomial basis functions and
time-dependent degrees of freedom as expressed through

(Qh)p(�; �; �; t) D Q̂ pl (t)˚ l (�; �; �) ; (7)

where the basis functions˚l form an orthogonal basis and
are defined on the canonical reference tetrahedron. The
unknown solution inside each element is then approxi-
mated by a polynomial, whose coefficients – the degrees of
freedom Q̂ pl – are advanced in time. Hereby, the solution
can be discontinuous across the element interfaces, which
allows the incorporation of the well-established ideas of
numerical flux functions from the finite volume frame-
work [75,112]. To define a suitable flux over the element
surfaces, so-called Generalized Riemann Problems (GRP)
are solved at the element interfaces. The GRP solution

provides simultaneously a numerical flux function as well
as a time-integration method. The main idea is a Taylor
expansion in time in which all time derivatives are re-
placed by space derivatives using the so-called Cauchy–
Kovalewski procedure which makes recursive use of the
governing differential Eq. (6). The numerical solution of
Eq. (6) can thus be advanced by one time step without in-
termediate stages as typical e. g. for classical Runge–Kutta
time stepping schemes. Due to the ADER time integra-
tion technique the same approximation order in space and
time is achieved automatically. Furthermore, the projec-
tion of the elements in physical space onto a canonical ref-
erence element allows for an efficient implementation, as
many computations of three-dimensional integrals can be
carried out analytically beforehand. Based on a numerical
convergence analysis this new scheme provides arbitrary
high order accuracy on unstructured meshes. Moreover,
due to the choice of the basis functions in Eq. (7) for the
piecewise polynomial approximation [23], the ADER-DG
method shows even spectral convergence.

Grid Generation: Unstructured Triangulations
and Tetrahedralization

Both tetrahedral and hexahedral elements are effectively
used to discretize three-dimensional computational do-
mains and model wave propagation with finite element
type methods. Tetrahedra can be the right choice because
of the robustness when meshing any general shape. Hexa-
hedra can be the element of choice due to their ability to
providemore efficiency and accuracy in the computational
process. Furthermore, techniques for automaticmesh gen-
eration, gradual mesh refinement and coarsening are gen-
erally much more robust for tetrahedral meshes in com-
parison to hexahedral meshes. Straightforward tetrahedral
refinement schemes, based on longest-edge division, as
well as the extension to adaptive refinement or coarsen-
ing procedures of a refined mesh exist [3,12]. In addition,
parallel strategies for refinement and coarsening of tetra-
hedral meshes have been developed [27].

Less attention has been given to the modification
of hexahedral meshes. Methods using iterative octrees
have been proposed [74,95], but these methods often re-
sult in nonconformal elements that cannot be accom-
modated by some solvers. Lately also conformal refine-
ment and coarsening strategies for hexahedral meshes
have been proposed [2]. Other techniques insert non-hex-
ahedral elements that result in hybrid meshes that need
special solvers that can handle different mesh topologies.
Commonly, the geometrical problems in geosciences arise
through rough surface topography, as shown for the Mer-
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Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 10
Tetrahedral mesh for the model of the volcano Merapi. The zone of interest, such as the free surface topography and the volcano’s
interior are discretized by a fine mesh, whereas the spatial mesh is gradually coarsened towards the model boundaries

api volcano in Fig. 10, and internal material boundaries
of complex shape that lead to wedges and overturned or
discontinuous surfaces due to folding and faulting. How-
ever, once the geometry of the problem is defined by the
help of modern computer aided design (CAD) software,
the meshing process using tetrahedral elements is auto-
matic and stable. After the mesh generation process, the
mesh vertices, the connectivity matrix and particular in-
formation about boundary surfaces are typically imported
to a solver.

The computational possibilities and algorithmic flexi-
bility of a particular solver using the ADER-DG approach
for tetrahedral meshes are presented in the following.

Local Accuracy: p-Adaptation

In many large scale applications the computational do-
main is much larger than the particular zone of interest.
Often such an enlarged domain is chosen to avoid effects
from the boundaries that can pollute the seismic wave field
with possible, spurious reflections. Therefore, a greater
number of elements has to be used to discretize the do-
main describing the entire model. However, in most cases
the high order accuracy is only required in a restricted area
of the computational domain and it is desirable to choose
the accuracy that locally varies in space. This means, that it
must be possible to vary the degree p of the approximation
polynomials locally from one element to the other [36]. As
the ADER-DG method uses a hierarchical order of the ba-
sis functions to construct the approximation polynomials,
the corresponding polynomial coefficients, i. e. the degrees
of freedom, for a lower order polynomial are always a sub-
set of those of a higher-order one. Therefore, the computa-
tion of fluxes between elements of different approximation

orders can be carried out by using only the necessary part
of the flux matrices.

Furthermore, the direct coupling of the time and space
accuracy via the ADER approach automatically leads to
a local adaptation also in time accuracy, which often is re-
ferred to as pt-adaptivity. In general, the distribution of the
degree pmight be connected to the mesh size h, i. e. the ra-
dius of the inscribed sphere of a tetrahedral element. In
particular, the local degree p can be coupled to the mesh
size h via the relations

p D pmin C
�
pmax � pmin

 � h � hmin

hmax � hmin

�r
; (8)

p D pmax �
�
pmax � pmin

 � h � hmin

hmax � hmin

�r
; (9)

where the choice of the power r determines the shape of
the p-distribution. Note, that depending on the choice of
the first term and the sign the degree p can increase as in
Eq. (8) or decrease as in Eq. (9) with increasing h, starting
from a minimum degree pmin up to a maximum degree
pmax. This provides additional flexibility for the distribu-
tion of p inside the computational domain. An example of
a p-distribution for the volcano Merapi is given in Fig. 11.

Here the idea is to resolve the slowly propagating sur-
face waves with high accuracy, whereas the waves prop-
agating towards the absorbing model boundaries pass
through a zone of low spatial resolution. This approach
leads to numerical damping due to an amplitude decay
that reduces possible boundary reflections. Furthermore,
the computational cost is reduced significantly due to the
strongly reduced number of total degrees of freedom in the
model.
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Seismic Wave Propagation in Media with Complex Geometries,
Simulation of, Figure 11
The local degree p of the approximation polynomial depends on
the insphere radius of each tetrahedral element and is given in
color code. Close to the surface topography an approximation
polynomial of degree p D 5 (blue) is used, whereas in depth the
degree is reduced to pD 4 (green) and pD 3 (yellow)

Local Time Stepping:�t-Adaptation

Geometrically complex computational domains or spatial
resolution requirements often lead to meshes with small
or even degenerate elements. Therefore, the time step for
explicit numerical schemes is restricted by the ratio of the
size h of the smallest element and the corresponding maxi-
mum wave speed in this element. For global time stepping
schemes all elements are updated with this extremely re-
strictive time step length leading to a large amount of it-
erations. With the ADER-DG approach, time accurate lo-
cal time stepping can be used, such that each element is
updated by its own, optimal time step [36]. Local time-
stepping was used in combination with the finite-differ-
ence method [42,106].

An element can be updated to the next time level if its
actual time level and its local time step
t fulfill the follow-
ing condition with respect to all neighboring tetrahedra n:

t C
t � min(tn C
tn) : (10)

Figure 12 is visualizing the evolution of four elements (I,
II, III and IV) in time using the suggested local time step-
ping scheme. A loop cycles over all elements and checks
for each element, if condition (10) is fulfilled. At the ini-
tial state all elements are at the same time level, however,
element II and IV fulfill condition (10) and therefore can

be updated. In the next cycle, these elements are already
advanced in time (grey shaded) in cycle 1. Now elements
I and IV fulfill condition (10) and can be updated to their
next local time level in cycle 2. This procedure continues
and it is obvious, that the small element IV has to be up-
dated more frequently than the others. A synchronization
to a common global time level is only necessary, when data
output at a particular time level is required as shown in
Fig. 12.

Information exchange between elements across inter-
faces appears when numerical fluxes are calculated. These
fluxes depend on the length of the local time interval over
which a flux is integrated and the corresponding element is
evolved in time. Therefore, when the update criterion (10)
is fulfilled for an element, the flux between the element it-
self and its neighbor n has to be computed over the local
time interval:

�n D [max(t; tn) ; min(t C
t; tn C
tn)] : (11)

As example, the element III fulfills the update crite-
rion (10) in cycle 5 (see Fig. 12). Therefore, when com-
puting the fluxes only the remaining part of the flux given
by the intervals in Eq. (11) has to be calculated. The other
flux contribution was already computed by the neighbors
II and IV during their previous local updates. These flux
contributions have been accumulated and were stored into
a memory variable and therefore just have to be added.

Note that e. g. element IV reaches the output time af-
ter 10 cycles and 9 local updates, which for a global time
stepping scheme would require 9 � 4 D 36 updates for the
all four elements. With the proposed local time stepping
scheme only 16 updates are necessary to reach the same
output time with all elements as indicated by the final
number of grey shaded space time elements in Fig. 12.

Comparing these numbers leads to a speedup fac-
tor of 2.25. For strongly heterogeneous models and local
time step lengths this factor can become even more pro-
nounced. However, due to the asynchronous update of el-
ements that might be spatially very close to each other the
mesh partitioning for parallel computations becomes an
important and difficult issue. Achieving a satisfying load
balancing is a non-trivial task and still poses some unre-
solved problems as explained in the following.

Mesh Partitioning and Load Balancing

For large scale applications it is essential to design a par-
allel code that can be run on massively parallel super-
computing facilities. Therefore, the load balancing is an
important issue to use the available computational re-
sources efficiently. For global time stepping schemes with-
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Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 12
Visualization of the local time stepping scheme. The actual local time level t is at the top of the gray shaded area with numbers
indicating the cycle, in which the update was done. Dotted lines indicate the local time step length 	t with which an element is
updated

out p-adaptation standard mesh partitioning as done e. g.
by METIS [60] is sufficient to get satisfying load balanc-
ing. The unstructured tetrahedral mesh is partitioned into
subdomains that contain an equal or at least very similar
number of elements as shown in Fig. 13. Therefore, each
processor has to carry out a similar amount of calcula-
tions. However, if p-adaptation is applied, the partition-
ing is more sophisticated as one subdomain might have
many elements of high order polynomials whereas another
might have the same number of elements but with lower
order polynomials. Therefore, the parallel efficiency is re-
stricted by the processor with the highest work load. How-
ever, this problem can usually be solved by weighted par-
titioning algorithms, e. g. METIS.

In the case of local time stepping, mesh partitioning is
becoming a much more difficult task. One solution is to
divide the computational domain into a number of zones,
that usually contain a geometrical body or a geological
zone that typically is meshed individually with a partic-

ular mesh spacing h and contains a dominant polynomial
order. Then each of these zones is partitioned separately
into subdomains of approximately equal numbers of ele-
ments. Then each processor receives a subdomain of each
zone, which requires a similar amount of computational
work as shown in Fig. 13. In particular, the equal distri-
bution of tetraheda with different sizes is essential in com-
bination with the local time stepping technique. Only if
each processor receives subdomains with a similar amount
of small and large elements, the work load is balanced.
The large elements have to be updated less frequently than
the smaller elements and therefore are computationally
cheaper. Note, that the separately partitioned and after-
wards merged zones lead to non-connected subdomains
for each processor (see Fig. 13). This increases the num-
ber of element surfaces between subdomains of different
processors and therefore increases the communication re-
quired. However, communication is typically low as the
degrees of freedom have to be exchanged only once per
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Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 13
Standard partitioning of the computational domain (left) and an example of 4 subdomains grouped together for more efficient local
time stepping

time step and only for tetrahedra that have an interface
at the boundary between subdomains. Therefore, the im-
provements due to the new load balancing approach are
dominant and outweigh the increase in communication.

However, care has to be taken as the distribution of
the polynomial degree p or the seismic velocity structure
might influence the efficiency of this grouped partitioning
technique. A profound and thorough mesh partitioning
method is still a pending task as the combination of lo-
cal time stepping and p-adaptivity requires a new weight-
ing strategy of the computational cost for each tetrahedral
element considering also the asynchronous element up-
date. The automatic partitioning of unstructured meshes
with such heterogeneous properties together with the con-
straint of keeping the subdomains as compact as possible
to avoid further increase of communication is still subject
to future work.

In Fig. 13 an example of a grouped partition of the
tetrahedral mesh is shown for 4 processors. Two non-con-
nected subdomains indicated by the same color are as-
signed to each processor including small – and therefore
computationally expensive – tetrahedra that are updated
frequently due to their small time step, and much larger
elements that typically are cheap due to their large time
step. This way, the work load often is balanced sufficiently
well over the different processors.

Relevance of High Performance Computing:
Application to Merapi Volcano

In recent years the development of the ADER-DG algo-
rithm including the high order numerical approximation
in space and time, the mesh generation, mesh adaptation,

parameterization, and data visualization created the ba-
sis of an efficient and highly accurate seismic simulation
tool. Realistic large scale applications and their specific re-
quirements will further guide these developments. On the
other hand, the study and incorporation of geophysical
processes that govern seismic wave propagation insures,
that the simulation technology matches the needs and ad-
dresses latest challenges in modern computational seis-
mology. Hereby, the accurate modeling of different source
mechanisms as well as the correct treatment of realistic
material properties like anelasticity, viscoplasticity, poros-
ity and highly heterogeneous, scattering media will play an
important role.

However, only the combination of this state-of-the-art
simulation technology with the most powerful supercom-
puting facilities actually available can provide excellent
conditions to achieve scientific progress for realistic, large
scale applications. This combination of modern technolo-
gies will substantially contribute to resolve current prob-
lems, not only in numerical seismology, but will also influ-
ence other disciplines. The phenomenon of acoustic, elas-
tic or seismic wave propagation is encountered in many
different fields. Beginning with the classical geophysical
sciences seismology, oceanography, and volcanology such
waves also appear in environmental geophysics, atmo-
spheric physics, fluid dynamics, exploration geophysics,
aerospace engineering or even medicine.

With the rapid development of modern computer
technology and the development of new highly accurate
simulation algorithms computer modeling just started to
herald a new era in many applied sciences. The 3D wave
propagation simulations in realistic media require a sub-
stantial amount of computation time even on large par-



Seismic Wave Propagation in Media with Complex Geometries, Simulation of S 7909

Seismic Wave Propagation in Media with Complex Geometries, Simulation of, Figure 14
Snapshots of the seismic wave field after an explosive event close to the summit of Merapi volcano. The free surface topography
introduces strong scattering of the waves making it extremely difficult to invert for the seismic source mechanism or the exact
source location

allel computers. Extremely powerful national supercom-
puters already allow us to run simulations with unrivaled
accuracy and resolution. However, using the extremely
high accuracy and flexibility of new simulation methods
on such massively parallel machines the professional sup-
port of experts in supercomputing is absolutely essential.
Only professional porting, specific CPU-time and storage
optimizations of current software with respect to continu-
ously changing compilers, operating systems, hardware ar-
chitectures or simply personnel, will ensure the lifetime of
new simulation technologies accompanied by ongoing im-
provements and further developments. Additionally, the
expertise and support in the visualization of scientific re-
sults using technologies of Virtual Reality for full 3Dmod-
els not only enhances the value of simulation results but
will support data interpretation and awake great interest
in the new technology within a wide research community.

As an example, volcano monitoring plays an increas-
ingly important role in hazard estimation in many densely
populated areas in the world. Highly accurate computer
modeling today is a key issue to understand the processes
and driving forces that can lead to dome building, erup-
tions or pyroclastic flows. However, data of seismic ob-
servations at volcanoes are often very difficult to interpret.
Inverting for the source mechanism, i. e. seismic moment
tensor inversion, or just locating an exact source position
is often impossible due to the strongly scattered wave field
caused by an extremely heterogeneous material distribu-
tion inside the volcano. Furthermore, the rough topogra-
phy alone can affect the wave field by its strongly scattering
properties as shown in Fig. 14.

Therefore, it is fundamental to understand the effects
of topography and scattering media and there influence on
the seismic wave field. A systematic study of a large num-
ber of scenarios computed by highly accurate simulation
methods to provide reliable synthetic data sets is necessary
to test the capabilities of currently used inversion tools.

Slight changes in parameters like the source position, the
source mechanism or the elastic and geometric properties
of the medium can then reveal the limits of such tools and
provide more precise bounds of their applicability in vol-
cano seismology.

Finally, the implementation of the ADER-DG method
is still much more expensive than other state-of-the-art
implementations of existing methods. However, a fair
comparison between accuracy and computational cost is
still a pending task. Themain reason for the CPU-time dif-
ference is the much larger number of tetrahedral elements
than hexahedra that have to be used to cover the same vol-
ume. Furthermore, due to the choice of the basis functions,
the flux computations are expensive, as the matrix-matrix
multiplications involved are not sparse.

However, the ADER-DG method is currently imple-
mented on hexahedral meshes to make fair comparisons
possible. Preliminary tests show, that the change of mesh
topology from tetrahera to hexahedra significantly reduces
the computational cost. However, final results are subject
to future investigations.

Discussion and Future Directions

As indicated in the introduction and highlighted in the
previous sections, computational tools for wave propa-
gation problems are getting increasingly sophisticated to
meet the needs of current scientific problems. We are far
away from simple finite-difference time schemes that are
solving problems on regular grids on serial computers in
which case the particular programming approach did not
affect dramatically the overall performance. Today, com-
petitive algorithms are results of years of partly highly pro-
fessional coding. Implementations on high-performance
computing hardware requires in-depth knowledge of par-
allel algorithms, profiling, and many technical aspects of
modern computations. To make complex scientific soft-
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ware available to other researchers requires implementa-
tion and testing on many different (parallel) platforms.
This may involve parallelization using different program-
ming paradigms (e. g., the combination of OpenMP and
MPI on nodes of shared memory machines), and interop-
erability on heterogeneous computational GRIDs.

This has dramatic consequences particularly for young
researchers in the Earth Sciences who want to use ad-
vanced computational tools to model observations. While
in the early days a finite-difference type algorithm could
be understood, coded, implemented and tested in a few
weeks, this is no longer possible. In addition, standard cur-
ricula do not offer training in computational methods al-
lowing them to efficiently write and test codes. This sug-
gests that at least for some, well-defined computational
problems verified and professionally engineered scientific
software solutions should be provided to the commu-
nity and also professionally extended and maintained in
close collaboration with scientists. In seismology we are
in a quite fortunate situation. In contrast to many other
fields of physical sciences, our constitutive relations (e. g.,
stress-strain) are fairly well understood, and – as indicated
in this paper – numerical solutions for 3D problems and
their implementation on parallel hardware are well ad-
vanced. Another argument for stable tested “community”-
codes for wave propagation is the fact that advancement in
many scientific problems (e. g., imaging the Earth’s inte-
rior, quantifying earthquake-induced shaking hazard) re-
lies on zillions of forward modeling runs with only slight
variations of the internal velocity models.

As far as technical developments are concerned, the ef-
ficient initialization of complex 3D models on computa-
tional grids is still a great challenge. Realistic models may
be composed of complex topography, families of over-
lapping fault surfaces, discontinuous interfaces, and vary-
ing rheologies (e. g., elastic, anisotropic, viscoelastic, vis-
coplastic, porous). This may require the combination of
tetrahedral and hexahedral grid in models with strongly
varying degree of complexity. Ideally, standards for Earth
models (and synthetic data) formats should be established
by the communities that allow easy exchange andmultiple
use of models with different simulation tools (e. g., wave
propagation, deformation, earthquake rupture). In addi-
tion, the rapid developments towards PetaFlop computing
opens new questions about the scalability and efficient par-
allelization of current and future algorithms.

As the forward problem of wave propagation is at the
core of the seismic imaging problem for both source and
Earth’s structure, in the near future we will see the in-
corporation of 3D simulation technology into the imag-
ing process. Provided that the background seismic velocity

models are fairly well known (e. g., reservoirs, global Earth,
sedimentary basins), adjoint methods provide a power-
ful analytical tool to (1) relate model deficiencies to misfit
in observations and (2) quantify the sensitivities to spe-
cific aspects of the observations (e. g., [100,104,105]). As
the core of the adjoint calculations is the seismic forward
problem, the challenge is the actual application to real data
and the appropriate parametrizations of the model and the
data that optimize the data fitting process.

In summary, while we look back at (and forward
to) exciting developments in computational seismology,
a paradigm shift in the conception of one of the central
tools of seismology – the calculation of 3D synthetic seis-
mograms – is necessary. To extract a maximum amount of
information from our high-quality observations scientists
should have access to high-quality simulation tools. It is
time to accept that “software is infrastructure” and provide
themeans to professionally develop andmaintain commu-
nity codes and model libraries at least for basic Earth sci-
ence problems and specific focus regions. Developments
are one the way along those lines in the SPICE project
(Seismic Wave Propagation and Imaging in Complex Me-
dia, a European Network [101]), the Southern Califor-
nia Earthquake Center (SCEC [94]) and the CIG Project
(Computational infrastructure in geodynamics [17]).
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Glossary

Attenuation factor Q�1 A measure of attenuation char-
acteristics of a medium caused by intrinsic absorption
and scattering loss. The former means the transfer of
vibration energy into heat and the latter means the
transfer of vibration energy from the direct wave to
coda waves caused by scattering due to medium het-
erogeneity.

Coda waves Wave trains that follow the arrival of the di-
rect S-wave phase are called S-coda waves or simply
coda waves. Coda waves are interpreted as a super-
position of S waves scattered by distributed hetero-
geneities. Wave trains between direct P and S wave ar-
rivals are called P-coda waves.

Coda attenuation factor Q�1C This parameter character-
izes the amplitude decay of S coda of a local earthquake
with the lapse time increasing based on the S-to-S sin-
gle scattering. The coda duration shortens for a larger
coda attenuation factor.

Envelope broadening The source duration time of a mi-
croearthquake is short; however, the apparent dura-
tion time of the S-wave seismogram increases with
the travel distance increasing because of diffraction
and scattering by medium heterogeneities. This phe-
nomenon is called envelope broadening.

Radiative transfer theory A phenomenological theory
that describes scattering process of wave energy in
a scattering medium on the basis of causality, geomet-
rical spreading and the energy conservation. It neglects
the interference of waves but focuses on the intensity
only. This theory admits various types of scattering
patterns. It is often applied to model the energy prop-
agation of high-frequency seismic-waves in heteroge-
neous Earth media.

Randommedia A mathematical model for media whose
parameters are described by random functions of
space coordinates. The stochastic properties of the en-
semble of randommedia are characterized by their au-
tocorrelation function or the power spectral density
function.

Scattering coefficient g A measure of the scattering
power in a unit solid angle at a certain direction by
a unit volume of heterogeneous media for the inci-
dence of unit energy flux density. The average of g over
the solid angle gives the total scattering coefficient g0,
of which the reciprocal gives the mean free path. This
quantity characterizes the coda excitation and the scat-
tering loss in the heterogeneous media.

Definition of the Subject

The structure of the solid Earth was extensively studied by
using seismic waves such as travel time analysis based on
Snell’s law, dispersion analysis of surface waves, and spec-
tral analysis of free oscillation, where the notion of a hor-
izontally stratified structure or a spherical shell structure
prevailed among the geophysical community. This means
the acceptance of the dominance of gravity in geodynamic
process. Velocity tomography revealed that the solid Earth
structure is three-dimensionally inhomogeneous with var-
ious ranges of scales; however, the resolution of velocity
tomography is much coarser than the wavelength of seis-
mic waves. In 1970s, the existence of distributed inho-
mogeneities having the order of the wavelength of seis-
mic waves was recognized from the observation of coda
waves of local earthquakes, which are long-lasting wave
trains following the direct S-wave arrival in high-fre-
quency seismograms. Here, we use “high-frequency” for
frequency higher than about 1Hz. The long duration time
of coda waves can be interpreted as a direct evidence



Seismic Waves in Heterogeneous Earth, Scattering of S 7915

of wide-angle scattering caused by distributed small-scale
heterogeneities since the source duration time is gener-
ally very short. S-wave seismograms of microearthquakes
show broadened envelopes with travel distance increas-
ing. This envelope broadening phenomenon is also an ev-
idence of scattering around the forward direction due to
random velocity inhomogeneities.

Since then, focusing on the frequency dependence
of seismogram envelopes, geophysicists have extensively
studied the scattering process of high-frequency seismic
waves in relation to the spectral structure of velocity in-
homogeneities, where the statistical characterization of the
medium inhomogeneity is inevitable. The radiative trans-
fer theory and the stochastic Markov approximation have
been developed as mathematical tools for the analyzes of
seismogram envelopes. The strength of scattering and/or
the spectral structure of random inhomogeneity have been
measured in various regions of the solid Earth. The scat-
tering approach is found to be also useful for detect-
ing temporal changes in the crustal medium associated
with earthquake occurrences. Thus, scattering of high-fre-
quency seismic waves in the heterogeneous Earth medium
is important for understanding the physical structure and
the geodynamic process reflecting the evolution of the
solid Earth.

Introduction

Coda Waves

The high-frequency seismogram of a local earthquake has
a long tail after the direct S-coda arrival. The tail portion of
seismogram is called “S-coda waves” or simply “coda”. As
an example, Fig. 1a and b show the raw seismogram and
the band-pass filtered mean square (MS) trace of an earth-
quake of magnitude (M) 6.1, respectively.We note that the
mean square wave envelope, which is the running mean of
the squared trace with characteristic time of a few times the
center period, is proportional to the time trace of the wave
energy density. The coda wave oscillation lasts more than
several hundreds of seconds. The duration of coda waves
measured from the P-wave onset until when the coda am-
plitude decreases to themicroseism’s level has been used as
a quick measure of the earthquake magnitude from a sin-
gle station observation since the 1960s. Having a motiva-
tion to extract the source spectrum of a large earthquake
from clipped seismograms, Aki [1] first studied the char-
acteristics of coda waves as scattered waves. Coda enve-
lopes of a local earthquake have a smoothly decaying com-
mon curve with lapse time increasing irrespective of epi-
central distances and the source radiation pattern. Aki and
Chouet [4] interpreted coda waves as single back-scattered

Seismic Waves in Heterogeneous Earth, Scattering of, Figure 1
a Seismogram of a local earthquake of M 6.2 in northeastern
Honshu, Japan recorded by F-net, NIED. b Bandpass-filtered MS
envelope (Courtesy of T. Maeda)

S-waves due to heterogeneities randomly distributed in the
lithosphere. Their model based on the radar equation for
the same location of a source and a receiver can be written
as follows.

Point-like isotropic scatterers characterized by total
scattering cross-section �0 are randomly and homoge-
neously distributed with number density n in a 3-D
mediumwith background wave velocityV0. The scattering
power per unit volume is characterized by the total scatter-
ing coefficient g0 D n�0, of which the reciprocal gives the
mean free path. When the total wave energy W is impul-
sively radiated from a point source at time t D 0, the wave
energy density of singly back-scattered waves at the source
location is written as

ESB (t) �
Wg0

2�V2
0 t2

e� Q�1C 2	 f t (1)

since the interference of scattered waves can be neglected
because of the random distribution of scatterers. The in-
verse square of lapse time means geometrical spreading
in a 3-D space. Here, an exponential damping term with
coda attenuation factor Q�1C is introduced to represent
phenomenological attenuation effect. This simple formula
has been widely used for measurements of g0 and Q�1C for
S-waves in the world since the 1980s. Reported g0-values
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are of the order of 0:01 km�1 for 1–30Hz and Q�1C values
are about 10�2 at 1Hz and decrease to about 10�3 at 20Hz
in the lithosphere [74].

Envelope Broadening of S-Seismogram

There is another evidence of scattering due to random
inhomogeneity in high-frequency seismograms. Observed
S-seismograms of a microearthquake have broadened en-
velopes around their peaks after the direct arrivals. As
shown by an example in Fig. 2, the apparent duration time
of the S-seismogram just after the direct S-arrival increases
with increasing travel distance. It is more than ten seconds
at distances larger than 100 km, where the source dura-
tion time is less than one second for an earthquake of M
4.0. Sato [70] called this phenomenon observed in an is-
land arc as “envelope broadening”, and Atkinson [6] re-
ported similar phenomenon in a continent. For P-waves
of teleseismic events, broadening of the vertical compo-

Seismic Waves in Heterogeneous Earth, Scattering of, Figure 2
Envelope broadening shown in horizontal component seismo-
grams of a microearthquake with M 4.0 in Japan recorded by Hi-
net, NIED, where the abscissa is reduced travel time with move-
out velocity 7 km/s (Courtesy of T. Takahashi)

nent envelope [35] and the excitation in the transverse
component amplitude [52] have been used as a measure
of lithospheric heterogeneity. These phenomena can be
interpreted by multiple scattering within a narrow angle
around the global ray direction due to random velocity
inhomogeneities. When the wavelength is much shorter
than the characteristic scale of the random velocity inho-
mogeneity, the scattering process of waves can be repre-
sented by successive ray bending processes, where scatter-
ing angles are statistically controlled by the spectrum of
random velocity inhomogeneity. At a given distance from
the source, a small number of rays with large scattering
angles arrive long after the direct ray.

Radiative Transfer Theory for a ScatteringMedium

Radiative Transfer Integral Equation
for the Isotropic Scattering Process

Disregarding wave interference and focusing on wave
power, the radiative transfer theory [8] treats the propaga-
tion of wave energy in a scattering medium. Wu [85] first
introduced the radiative transfer theory for the stationary
state in the synthesis of seismogram envelopes. The non-
stationary multiple isotropic scattering process in 1-D was
solved by Hemmer [24] and that in 2-D was solved by
Shang and Gao [77]. Later, Zeng et al. [92] formulated the
time-dependent multiple isotropic scattering process in
3-D as an extension of the single backscattering model [4]
as follows.

In a 3-D scattering medium characterized by back-
ground velocity V0 and total scattering coefficient g0,
when the total wave energyW is impulsively radiated iso-
tropically from a source at the origin, the multiple iso-
tropic scattering process is written by the following inte-
gral equation for energy density:

E (x; t) D WGE (x; t)C g0V0

�

1Z

�1

1Z

�1

1Z

�1

1Z

�1

GE
�
x � x0; t � t0


E
�
x0; t0


dx0dt0 ;

(2)

where the convolution integral in the second term
means the propagation of energy from the last scatter-
ing point x0 to a receiver at x. The first term is the bal-
listic term that means the direct propagation of energy
from the source with scattering loss, GE(x; t) D ı(t �
r/V0) exp(�g0V0 t)/(4�V0r2), where r D jxj. The solution
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is written as [92]

E (x; t) D WGE (x; t)C
Wg0e�g0V0 t

4�r2
r
V0 t

� ln
�
V0t C r
V0 t � r

�
H
�
t �

r
V0

�

CWg20V
2
0

1
(2�)2

1Z

�1

1Z

�1

d!dk e�i! t�i kr

�
ik
2�r

¯̄GE (�k;�i!)3

1 � g0V0 ¯̄GE (�k;�i!)
;

(3)

where ¯̄GE (k; s) D (1/kV0) tan�1 kV0/
�
sC g0V0


is the

Fourier–Laplace transform of GE with respect to coordi-
nate and time, respectively. The second term represents
the single scattering process (see Sato [67]), which has
a logarithmic divergence at the direct arrival t D r/V0 and
decreases according to the inverse square of lapse time at
long lapse times asWg0/

�
2�V2

0 t
2. The third term repre-

senting multiple scattering converges to a diffusion solu-
tion with lapse time increasing as
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where M (x) � ex
p
1C 2:026/x. The error of this ap-

proximation is of the order of 2% outside the ballistic peak
and its tail for g0V0 t < 6 and 2 < g0r < 4.

Figure 3 shows spatiotemporal variations in energy
density in a scattering medium theoretically predicted by
the approximation solution (5) for instantaneous spher-
ical source radiation at the origin. Scattered energy den-
sity is shown by a black curve, where the ballistic term is
shown by a vertical gray line. At a small distance from the
source compared with the mean free path 1/g0, the energy
density decreases rapidly after the direct arrival as pre-
dicted by the single scattering term; however, the decay
rate becomes smaller due to multiple scattering accord-
ing to the power of lapse time t�3/2 at long lapse times.

Seismic Waves in Heterogeneous Earth, Scattering of, Figure 3
a Temporal change and b spatial variation of energy density
in an isotropic-scattering medium for a point source radiation.
Each black curve shows the scattering contribution predicted by
the Paaschens approximation and each vertical gray line shows
a ballistic term

At a long distance, for example at r D 3:2/g0, the energy
density has an additional diffusion peak. The spatial dis-
tribution of scattered energy density is uniform around the
source at a short lapse time compared with the mean free
time 1/g0V0; however, it converges to a Gaussian curve at
a long lapse time as theoretically predicted by the diffu-
sion solution (4), for example at t D 7:48/g0V0. There is
no violation of causality since no signal exists beyond the
ballistic peak. The smooth spatial distribution of scattered
energy density around the source location gives the phys-
ical basis of the coda normalization method for measure-
ments of S-wave attenuation and site amplification factors
(e. g. [3,56,89]).

Gusev and Abubakirov [21] and Hoshiba [27] numeri-
cally solved the radiative transfer equation for the isotropic
scattering process by using the Monte Carlo method.
Yoshimoto [88] numerically simulated envelopes in scat-
tering media of which the background velocity decreases
with depth. He found the concentration of scattered en-
ergy near the surface because of seismic ray bending.
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Nonisotropic radiation from a source can be easily in-
troduced in the radiative transfer equation. Sato et al. [75]
analytically solved the case of double couple source radia-
tion: the energy density theoretically predicted faithfully
reflects the source radiation pattern near the direct ar-
rival; however, the azimuthal dependence diminishes with
increasing lapse time. It qualitatively agrees with the ob-
served radiation pattern independence of coda amplitudes
at long lapse times. Their solution has been used in the
envelope inversion of strong motion records for the spa-
tial distribution of high-frequency wave energy radiation
from an earthquake fault (e. g. [47]).

Measurements of Total Scattering Coefficient
and Attenuation

For the practical application of the radiative transfer the-
ory to observed seismograms, it is necessary to introduce
intrinsic absorption Q�1Int by multiplying an exponential
temporal decay factor exp[�Q�1Int 2� f t] to the resultant
energy density. By using the solution (3) of the radia-
tive transfer theory for the isotropic scattering model, to-
tal scattering coefficient g0 and intrinsic absorption factor
Q�1Int. of the S-wave have been measured. Reported g0 val-
ues in the lithosphere are of the order of 10�2 km�1 for
frequencies from 1 to 30Hz as plotted in Fig. 4.

Seismic Waves in Heterogeneous Earth, Scattering of, Figure 4
Total scattering coefficient of S-waves in the Earth. Measure-
ments in the mantle [40] are added to lithospheric inhomogene-
ity [74]

From the observed lapse time dependence of Q�1C , Gu-
sev [20] quantitatively explained the decrease of g0 with
depth. Lee et al. [40] analyzed coda envelopes of regional
earthquakes before and after the ScS arrival around 900s in
lapse time from the origin time based on the numerically
simulated envelopes for the PREM model, which is char-
acterized by depth-dependent background velocity and to-
tal attenuation for S-waves. They reported lower g0 values
in 4s and 10s period bands in the upper and lower man-
tle compared with those in the lithosphere as illustrated in
Fig. 4.

Hoshiba et al. [28] and Fehler et al. [10] developed
a method to measure simultaneously g0 and Q�1Int val-
ues for the S-wave from the whole S-envelope analysis
based on the synthetic envelope derived from the radiative
transfer theory. Their multiple lapse-time window analy-
sis method has been widely used in the world. Estimated
scattering loss g0V0/! decreases with frequency; however,
intrinsic absorption Q�1Int is rather insensitive to frequency.
Estimated seismic albedo B � g0V0/

�
!Q�1Int C g0V0


, the

ratio of scattering loss to the total attenuation, of S-waves
in the lithosphere widely distribute from 0.2 to 0.8 for 1–
6Hz, but they are limited between 0.2 and 0.5 for 6–20Hz.

Total scattering cross-section and number density of
scatterers appear jointly as the total scattering coefficient
in theoretical models; however, Matsumoto [44] proposed
a method to separate them from the temporal variation
of the semblance coefficient of coda waves recorded by
a seismic array. Analyzing data obtained in the aftershock
area of the 2000 western Tottori earthquake, Japan, he es-
timated n D 0:03 km�3 and g0 D 0:001 km�1 at 20Hz.

It should be noted that lunar seismograms have coda
durations exceeding one hour. Applying the diffusion
model for the explanation of spindle-like envelopes of lu-
nar-quakes, Dainty and Toksöz [9] estimated g0 to be as
large as 0:05–0:5 km�1 at 0.45Hz.

Wave Envelopes in RandomMedia
and Statistical Characterization

Statistical Characterization of RandomMedia

As revealed from tomography analyses (e. g. [93]), veloc-
ity structure is three-dimensionally inhomogeneous espe-
cially in the lithosphere. Well log data show typical sam-
ples of the shallow crust. Figure 5a shows well log data
of P- and S-wave velocities and mass density obtained
in Kyushu, Japan [80], where wave velocities and mass
density are measured in a borehole by using ultrasonic
waves and gamma rays, respectively. These well log data
clearly show random fluctuation with short wavelengths.
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Seismic Waves in Heterogeneous Earth, Scattering of, Figure 5
aWell log data at the YT-2 site, Kyushu, Japan. b Power spectral
density function of the fractional fluctuation of P-wave velocity
log. c Scattergram of P-wave velocity and mass density. Repro-
duced from [80]

As a natural consequence, we imagine random inhomo-
geneities widely distributed in the solid Earth medium.

By using computer power, wave propagation in ran-
dom media has been numerically studied extensively. Us-
ing finite difference simulations of waves in random me-
dia, Frankel and Clayton [14] first examined the relation
between coda excitation and scattering loss and the spec-
trum of random inhomogeneity. On the basis of numer-
ical simulations, Frankel and Wennerberg [15] proposed
the energy flux model that has a uniform distribution of
scattered energy behind the direct waves for the analysis of
high-frequency seismogram envelopes. Using a boundary
integral method for the simulation of waves in a medium
containing many cavities, Yomogida and Benites [87] ex-
amined a relation between coda attenuation and the distri-
bution of cavities.

There is an alternative approach to treat statistically
randomly inhomogeneous media. The wave-velocity is
written as V (x) D V0 f1C � (x)g, where V0 is the aver-
age velocity and fractional fluctuation � (x) is a homo-
geneous and isotropic random function of space coordi-
nate x. We imagine an ensemble of random media f�g,
which is statistically characterized by the autocorrelation

function (ACF) R (x) �
˝
�
�
xC x0


�
�
x0
˛
, where angular

brackets mean the ensemble average. The MS fractional
fluctuation "2 � R (0) and the correlation distance a are
key parameters. The Fourier transform of ACF gives the
power spectral density function (PSDF) P. The PSDF of
the P-wave velocity fractional fluctuation of well log data
shows a power-law characteristic at large wavenumbers as
illustrated in Fig. 5b. P-wave velocity and mass density
show a good correlation as shown in Fig. 5c. The statis-
tical view is useful for representing geological data, too
(e. g. [18,26]).

Scattering Coefficient Based
on the Born Approximation

When the medium inhomogeneity is small j�j 
 1, scalar
wave � is governed by the following wave equation:

�
� �

1
V2
0
@2t

�
� C

2
V2
0
�(x)@2t� D 0 : (6)

Velocity inhomogeneity is supposed to localize in a vol-
ume around the origin, of which the dimension is chosen
to bemuch larger than a. For the incidence of a plane wave
of unit amplitude at angular frequency ! as ei(k0ezx�! t),
where ez is the unit vector to the z direction, we calcu-
late the spherically outgoing scattered waves due to a lo-
calized inhomogeneity by using the Born approximation
as �1 (x; t) D �k20e

i(k0r�! t)�̃ (k0er � k0ez) / (2�r), where
the tilde means the Fourier transform with respect to
coordinates in 3-D space and er is a radial unit vector
(e. g. [74]). According to Aki and Chouet [4], the scattering
coefficient defined as the scattering power in a unit solid
angle at certain direction by a unit volume of random in-
homogeneous media for the incidence of unit energy flux
density is statistically written by using its PSDF as

g ( ;!) D
k40
�
P (k0er � k0e3) D

k40
�
P
�
2k0 sin

 

2

�
; (7)

where  is the scattering angle measured from the z di-
rection. This functional form means anisotropic scatter-
ing depending on frequency. In general, scattering near
around the forward direction becomes larger with increas-
ing wavenumber in random media.

Radiative Transfer Theory with Scattering Coefficients
Calculated by the Born Approximation

Extending the above formulation to vector wave propa-
gation in random elastic media, we can define scattering
coefficients for different scattering modes as PP, PS, SP,
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Seismic Waves in Heterogeneous Earth, Scattering of, Figure 6
RMS envelopes of amicroearthquake in the shallow crust, Nikko in northern Kanto, Japan. Fine curvesandbroken curves are observed
and best-fit synthesized envelopes, respectively, where shades show time windows used for the estimation of the source radiation
energy. The trace on the top left shows a raw seismogram. Reproduced from [90]

and SS. For the case of random elastic media character-
ized by an exponential ACF with " D 10% and a D 2 km,
Sato [68] synthesized three-component seismogram en-
velopes of a microearthquake of M 3 as a superposition of
polarized scattered waves’ power at a finite distance from
a point shear dislocation source. That is the single scat-
tering approximation of the radiative transfer theory with
scattering coefficients calculated by the Born approxima-
tion. The SS scattering mode dominates in S coda, and
pseudo P and S waves are produced even at a receiver on
the null direction of the source radiation. By using a von
Kármán-type ACF for describing random elastic me-
dia, Sato [71] estimated parameters � D 0:35; " D 8:4%
and a D 2:1 km from observed frequency dependence of
S-wave attenuation and g0, where the parameter � con-
trols the role-off of PSDF at large wavenumbers. Extend-
ing the above vector wave envelope synthesis to include
mode conversions at the free surface, Yoshimoto et al. [90]
analyzed three-component seismogram envelopes of mi-
croearthquakes in the shallow crust in Nikko, northern
Kanto, Japan. A raw seismogram is shown at the top-left
of Fig. 6 as an example. Fine curves in Fig. 6 are logarith-
mic plots of observed root mean square (RMS) envelopes
in the 2–16Hz band. Broken curves are best-fit theoreti-

cal envelopes for random elasticmedia characterized by an
exponential ACF with " D 5:7% and a D 400m. We find
that the fitness is good not only for S coda but also for P
coda.

Wave theory in random media predicts that the scat-
tering coefficient has a large lobe in the forward direction
in higher frequencies. Gusev and Abubakirov [22] used
the Monte Carlo method to simulate envelopes for the
multiple nonisotropic scattering process. There have been
mathematical developments to derive the radiative trans-
fer equation for multiple nonisotropic scattering from the
stochastic averaging of the wave equation in random me-
dia (e. g. [13,29,41,64]). Przybilla et al. [58] showed an ex-
cellent coincidence of vector envelopes calculated from fi-
nite difference simulation in 2-D random elastic media
and those synthesized by the radiative transfer theory with
scattering amplitudes derived from the Born approxima-
tion and the wandering effect of travel time.

Interference of ScatteredWaves

The interference effect is neglected in conventional studies
of wave scattering in random media; however, it becomes
important for a specific case even in randommedia.When
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randomness is strong enough to produce multiple scatter-
ing, coda wave intensity at a receiver near a source is en-
hanced compared to the prediction of conventional radia-
tive transfer theory. Margerin et al. [42] showed that a spot
of backscattering enhancement stabilizes in a sphere of ra-
dius half a wavelength centered at the source after a tran-
sient regime. The enhancement persists in time and should
be observable as long as a coda is measurable. From field
experiment of seismic waves in a shallow volcanic struc-
ture Larose et al. [39] reported the existence of weak lo-
calization, where the size of enhancement spot was one
wavelength and the estimated mean-free path was 200m
for seismic waves around 20Hz.

Envelope Broadening
of a High-Frequency Seismogram

Markov Approximation for Parabolic Wave Equation

For the study of light propagation through the upper at-
mosphere and/or acoustic sound propagation through in-
ternal waves in oceans, various stochastic methods have
been developed in the fields of physics. One of the most at-
tractive methods for explaining the wave envelope around
the direct arrival is the Markov approximation for the
parabolic wave equation, which is an extension of the
phase screen method or the split step Fourier method
(e. g. [29,63]). This method is found to be applicable to
seismogram envelopes. We imagine an elastic medium
composed of a homogeneous half space z < 0 and an in-
homogeneous half space z > 0, where the inhomogene-
ity is supposed to be small ("2 
 1) and the random-
ness is statistically homogeneous and isotropic. When the
wavelength is smaller than the correlation distance a, we
may neglect conversion scattering between P and S waves.
Then, we can describe the principal characteristics of vec-
tor wave propagation by using potentials. For the inci-
dence of plane P-wavelet to the z direction from the ho-
mogeneous zone, scalar potential is written as a super-
position of harmonic waves of angular frequency ! as
� D

R1
�1 (2� ik0)�1 U (x?; z; !) ei k0z�i! t d! for z > 0,

where x? D
�
x; y


on the transverse plane. Neglecting the

second derivative with respect to z, we have the parabolic-
type equation for U as

2ik0@zU C


@2x C @

2
y

�
U � 2k20� (x)U D 0 : (8)

We define the two-frequency mutual coherence function
(TFMCF) of field U between two different locations on
the transverse plane at a distance z and different angu-
lar frequencies at ! 0 and ! 00 as �2 (x?c; x?d; z; !c; !d) �
hU(x0?; z; !

0)U(x00?; z; !
00)�i, where !c and !d are center-

of-mass and difference angular frequencies, respectively.
In the case of quasi-monochromatic waves j!dj 
 j!cj,
using causality and neglecting back scattering, we derive
the master equation for TFMCF. This derivation is called
theMarkov approximation. For the ith component, the in-
tensity is defined as the ensemble average of the square of

displacement h@i� @i��i D 1/(2�)
R1
�1

_

I Pi d!c. The in-

tegrand is the intensity spectral density (ISD)
_

I Pi , which
means the time trace of MS amplitude in a band having
the central angular frequency !c.

Vector Envelopes for a Gaussian ACF

The case of a Gaussian ACF R (x) D Exp
�
�r2/a2


is

mathematically tractable. For the initial condition
_

I Px D
_

I Py D 0 and
_

I Pz D ı (t � z/V0) at z D 0, ISDs are analyti-
cally written as [72]

_

I Px0 (z; t; !c) D
_

I Py0 (z; t; !c)

D 2 (V0/z) (t � z/V0) �
_

I R0 (z; t; !c)
_

I Pz0 (z; t; !c) D [1 � 4 (V0/z) (t � z/V0)]

�
_

I R0 (z; t; !c) ;

(9)

where subscript “0” means ISD without the wandering ef-
fect. The reference ISD is a solution for scalar waves for the
initial condition �2 (x?; z D 0) D 1 [82]:
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where tM D
p
�"2z2/ (2V0a) is the characteristic time and

function # 01 is the derivative of the elliptic theta function

of the first kind. Function
_

I R0 shows a broadened envelope
having a delayed peak and a smoothly decaying tail as illus-
trated by a chained curve in Fig. 7, where solid and broken

curves show three-component ISDs
_

I P0z and
_

I Px0(D
_

I Py0),
respectively, for V0 tM/z D 0:05 as an example. All the
three component envelopes have broadened traces; how-
ever, the peak height of the transverse component is
smaller than that of the longitudinal component and the
peak delay of the transverse component is larger than
that of the longitudinal component. When "2z/a
 1, the

peak height of
_

I Pz0 approximately decays according to the
square of travel distance and the peak ratio of the trans-
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Seismic Waves in Heterogeneous Earth, Scattering of, Figure 7
Chained curve shows the reference ISD without the wandering
effect in 3-D random elastic media characterized by a Gaussian
ACF for the incidence of a plane P-wavelet. Solid and broken
curves show three-component ISDs without the wandering ef-
fect for V0tM/z D 0:05. Reproduced from [72]

verse component to longitudinal component is propor-

tional to "2z/a. ISDs
_

I Px ;
_

I Py , and
_

I Pz can be calculated by
using the convolution of (9) with the travel-time wander-
ing effect exp

�
� (V0t � z0)2 /2

p
�"2az

�
V0/
p
2�
p
�"2az

in time domain. For 2-D cases, the validity of the Markov
approximation was numerically confirmed by a compari-
son with the finite difference simulations [11,36].

The above synthesis can be simply extended to S wave
envelopes. Extension from plane wave incidence to impul-
sive radiation from a point source is also possible [73]. Fig-
ure 8 shows simulated three-component RMS envelopes
along the z axis for a point source radiation, where random
media are characterized by average P and S wave velocities,
6 km/s and 3.46 km/s, respectively, and a Gaussian ACF
with " D 5% and a D 5 km.We assume that P-wavelet ra-
diation is isotropic and S-wavelet radiation is axially sym-
metric around the y axis with polarization to the x axis,
where the ratio of S to P-wave source energy is chosen
to be 23.3. Envelope broadening is common to both P
and S waves in the syntheses. Excitation of the transverse
component for P-waves and that of the radial component
for S-waves are prominent. The appearance of scattered
S-waves having long duration in synthesized envelopes at
large travel distances qualitatively well explains observed
characteristics shown in Fig. 2.

Randomness in the Lithosphere

Applying the envelope broadening model to S-wave seis-
mograms recorded in Kanto, Japan, Sato [70] estimated
the ratio "2/a � 10�3 km�1 with the assumption of
a Gaussian ACF and S-wave attenuationQ�1 D 0:014 f�1.

Seismic Waves in Heterogeneous Earth, Scattering of, Figure 8
Synthesized vector envelopes in randommedia characterizedby
a Gaussian ACF for radiation of P wavelet and S wavelet with
a polarization to the x-axis from a point source. Reproduced
from [73]

Saito et al. [66] studied the case of a von Kármán-type
random media having a power-law spectrum at large
wavenumbers, which are more appropriate for the real
Earth inhomogeneity. The resultant envelope shows fre-
quency dependence, which is controlled by the roll-off
of the PSDF. Analyzing the hypocentral-distance depen-
dence and frequency dependence of S-wave seismogram
envelopes in northern Honshu, Japan for 2–32Hz, Saito
et al. [66] estimated parameters of von Kármán-type ACF
as � D 0:6 and "2:2/a � 10�3:6 km�1 with Q�1 D
0:009 f�1. It means the PSDF decreases as wavenumber
to the power of �4.2. Petukhin and Gusev [55] aver-
aged S-wave seismogram envelopes of small earthquakes
recorded in Kamchatka and compared the shapes with
those numerically calculated for various types of random
media. They concluded that random media whose PSDF
decreases as the wavenumber to the power of �3.5 to �4
are appropriate.

Spatial Variation of Scattering Characteristics

Scattering Coefficient and Active Faults

Precisely examining coda envelopes of local earthquakes
against lapse time measured from the origin time, we find
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Seismic Waves in Heterogeneous Earth, Scattering of, Figure 9
Distribution of relative scattering coefficient at a depth of 0–
5 km in central California revealed from the coda envelope in-
version. Circleswith larger diameter indicate stronger scattering
and solid lines represent active faults. Reproduced with permis-
sion from [49]

temporal fluctuations around the smoothly decaying mas-
ter curve.Wemay interpret that swellings and dips around
the master curve are caused by stronger and weaker scat-
terers, respectively, distributed in the subsurface. By using
a single isotropic scattering model, Nishigami [48] pro-
posed an inversion scheme from coda envelopes of local
earthquakes recorded at multiple stations for estimating
the spatial variation of the scattering coefficient. Applying
this inversion scheme to coda records obtained in central
California, Nishigami [49] mapped the distribution of rel-
ative scattering coefficient in the shallow crust as in Fig. 9.
A good correlation is found between sub-parallel active
faults and relatively stronger scattering zones marked by
larger circles, where some large circles are caused by topo-
graphic roughness. He also suggested that segment bound-
aries of the San Andreas Fault are characterized by rela-
tively stronger scattering.

Stacking forward scattered energy in the coda of tele-
seismic P waves observed by a local seismographic net-
work, Revenaugh [59] proposed a Kirchhoff coda migra-
tion method, which puts a focus on small-angle scatter-
ing from the forward direction. He made a map of P-wave
scatterers in the upper mantle beneath southern Califor-
nia. Between depths of 50 km and 200 km, the south-

ern flank of the slab subducting beneath the Transverse
Ranges was marked by strong scattering. Using the same
method, Revenaugh [60,61] estimated geographic varia-
tion of the statistical significance of scattering potential in
the upper crust in California, where the scattering poten-
tial is a measure of the likelihood that scattering strength
locally exceeds the regional mean. In the region surround-
ing the 1992 Landers earthquake of M 7.3, he found a no-
ticeable tendency for aftershocks to cluster in regions of
strong scattering potential.

There weremore precise mappings of scattering coeffi-
cient. Slant-stacking records of 12 explosions in the Awaji
island, Japan registered by a dense seismic array for a 6–
10Hz band, Matsumoto et al. [45] mapped the spatial dis-
tribution of PP single scatterers. The resultant distribution
of scatterers shows higher strengths beneath the initiation
point of the mainshock rupture and in the southwestern
part of the fault plane of the 1995 Kobe earthquake (M
7.2). Analyzing precisely aftershock records of the 2000
western Tottori earthquake (M 7.3), Japan registered by
a dense seismic network, Asano and Hasegawa [5] found
strong scattering along and around the fault zone of 20 km
in length.

Coda Attenuation and Deformation Zone

Regional variation of coda attenuation Q�1c has been mea-
sured from the decay gradient of coda amplitude en-
velopes of small earthquakes in various areas in the world.
Jin and Aki [31] made a map of Q�1c at 1Hz in China.
They reported that Q�1c is as large as 0.01 in Tibet at
the active continental collision. They found that large his-
torical earthquakes took place in large Q�1c regions. Jin
and Aki [33] made precise analysis of Q�1c for 1–32Hz
in Japan. They found significant spatial variation up to
a factor of 3 for the lower frequency bands, as well as
its strong frequency dependence. They found conspicuous
large Q�1c for 1–4Hz in a narrow belt from Niigata to-
wards the south-west to the Biwa lake along the Japan Sea
coast, which coincides with a high-deformation rate zone
revealed from the GPS observation. For frequency bands
4–16Hz (2–4Hz in Kyushu), large Q�1c areas agree with
volcanic and geothermal areas.

Attenuation and Volcanoes

Yoshimoto et al. [91] studied the spatial variation of MS
amplitude of S-coda at a fixed lapse time across the vol-
canic front in northeastern Honshu, Japan: S-coda en-
ergy is uniformly distributed in the fore-arc side, whereas
an exponential decrease with horizontal offset to the west
from the volcanic front was found in the back-arc side. The
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decay rate increases with increasing frequency. They in-
terpreted this variation by a diffusion–absorption model,
where the intrinsic absorption factor of S-wave Q�1Int D

0:02 at a frequency of 10Hz beneath the back-arc side,
which is about twice as large as those reported for the fore-
arc side.

Scattering and Volcanoes

Medium heterogeneity is strong beneath volcanoes. Ap-
plying the diffusion model to seismogram envelopes be-
neath Merapi volcanoes, Friedrich and Wegler [16] esti-
mated the total scattering coefficient as large as 5 km�1

as shown in Fig. 4. Nishimura et al. [50] applied an en-
velope inversion method based on the isotropic scatter-
ing model for PP and PS scattering to artificial explosion
records obtained in Jemez volcanic field, New Mexico.
They found that the mid-crust under most of the region
is fairly transparent but that the lower crust is heteroge-
neous. The strongest scattering occurs at shallow depths
beneath the center of the caldera, where the medium is
highly heterogeneous.

Seismic Waves in Heterogeneous Earth, Scattering of, Figure 10
a Seismogram envelopes observed in the back-arc side and fore-
arc side in Kanto-Tokai, Japan and b a schematic illustration of
seismic rays. Reproduced from [53]

Obara and Sato [53] analyzed S-wave envelopes of
microearthquakes in Kanto-Tokai, Japan, where the Pa-
cific plate is subducting from east to west, to examine re-
gional differences in their envelope broadening. As shown
by examples in Fig. 10a, envelope broadening is typically
stronger for higher frequencies in records at stations on
the back-arc side of the volcanic front but weaker and fre-
quency independent in records on the fore-arc side. These
regional differences in the envelope broadening mean that
PSDF of velocity inhomogeneity is rich in short-wave-
length components in the mantle wedge on the back-arc
side and poor on the fore-arc side as schematically illus-
trated in Fig. 10b. Takahashi et al. [83] precisely exam-
ined how the peak delay from the S-wave onset depends
on the ray path in northern Japan. They found that peak
delays observed in the back-arc side of the volcanic front
are larger for rays which propagate beneath Quaternary
volcanoes (see Fig. 11b and d); however, peak delays for
rays which propagate between Quaternary volcanoes are
as short as those observed in the fore-arc side (see Fig. 11a,
c, and e). Large peak delay suggests strong scattering due
to medium inhomogeneity. That is, the structure beneath
Quaternary volcanoes is not only characterized by low ve-
locity and large intrinsic absorption revealed from tomog-
raphy studies but also by strong inhomogeneity.

Nonisotropic RandomMedium Oceanic Slab

If random media are statistically nonisotropic, scatter-
ing contribution depends on the propagation direction.
Saito [65] studied the envelope broadening in non-
isotropic random media based on the Markov approxi-
mation. His simulations show that the envelope of scalar
wavelet propagating in parallel to the longer correla-
tion direction has longer duration compared to that with
the shorter correlation direction. The effective envelope
broadening in the elongated direction shows the wave trap
phenomenon of nonisotropic randommedia.

An intensity anomaly is observed on the eastern
seaboard of northern Japan for deep earthquakes. The
waveform records in the region of high intensity show
a low-frequency ( f < 0:25Hz) onset for both P and
S waves, followed by large-amplitude high-frequency
( f > 2Hz) later arrivals with long coda. A simple subduc-
tion zone model comprising a high-velocity plate with low
attenuation cannot explain quantitatively these observed
facts. Furumura and Kennett [17] proposed a scattering
slab model that the nonisotropic random structure in the
Pacific plate works as a wave-guide for high-frequency
seismic waves. Their preferred random medium is char-
acterized by a von Kármán-type ACF with elongated cor-
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Seismic Waves in Heterogeneous Earth, Scattering of, Figure 11
Path dependence of RMS envelopes (16–32Hz) in northeastern Honshu, Japan, where stars and triangles indicate earthquake epi-
centers and Quaternary volcanoes, respectively. Ray paths b and d travel beneath Quaternary volcanoes (triangles), and a, c, and e
travel between Quaternary volcanoes. Reproduced from [83]

relation distance of about 10 km parallel to the plate mar-
gin and much shorter correlation length of about 0.5 km
in thickness and " of about 2%. They clearly demonstrated
the scattering waveguide effects and frequency selectivity
for seismic waves traveling through the Pacific plate by us-
ing 3-D numerical simulations.

Lateral Variation of Lithospheric Heterogeneity

Korn [34] developed the energy flux model [15] appropri-
ate for the wave front of teleseismic P and P-coda waves
propagating through a scattering layer. During the prop-
agation the primary wave loses energy due to scattering
and intrinsic absorption, then the scattered energy appears
as coda energy behind the wave front. From the analy-
sis of vertical component trace envelopes observed in the
world, Korn [35] found strong scattering at island arcs
and smaller scattering on stable continental areas like Aus-
tralia. Nishimura et al. [52] analyzed the energy partition
of teleseismic P and P-coda into the transverse compo-
nent to evaluate the lithospheric heterogeneity in the west-
ern Pacific region. They showed the presence of strong
heterogeneity in and around the tectonically active re-
gions. Kubanza et al. [37] systematically characterized the
medium heterogeneity of the lithosphere by analyzing the
partition of P-wave energy into the transverse component
for 0.5–4Hz. They found significant regional differences
as shown in Fig. 12. The energy partition to the transverse
component is small at stations on stable continents while
the partition is large at stations in tectonically active re-
gions such as island arcs or collision zones.

Random Inhomogeneity in the Lithosphere and Mantle

Records of earthquakes registered by arrays of seismo-
graphs are useful for the statistical measurement of the
Earth inhomogeneity. Aki [2] first analyzed teleseismic

P-waves centered on about 0.6Hz registered by a seis-
mic array in Montana for the quantification of the litho-
spheric inhomogeneity. Measuring transverse correlation
functions of teleseismic P-waves arriving from near ver-
tical incidence, he found a positive correlation between
log-amplitude and phase fluctuations as theoretically pre-
dicted for a Gaussian ACF. From plots of the ratio of RMS
log-amplitude to RMS phase fluctuations against the cor-
relation between log-amplitude and phase fluctuations, he
estimated the thickness of the inhomogeneous lithosphere
to be 60 km, a= 10 km, and " D 4%. Flatté and Wu [12]
measured the transverse correlation of log-amplitude and
phase fluctuations of teleseismic P-wave beams with 2Hz
center frequency recorded at NORSAR. They also intro-
duced the new concept of angular correlation functions,
which are based on measurements of two rays with dif-
ferent incident angles. They proposed a model for litho-
spheric and asthenospheric inhomogeneities that consists
of two overlapping layers: the upper layer extending from
the surface to about the 200 km depth has a white PSDF,
however, the lower layer extending from 15 to 250 km
has poor amplitude in the short wavelength spectrum.
There are more small-scale inhomogeneities near the sur-
face compared with the deeper portions.

The radiative transfer theory with scattering coeffi-
cients calculated from the Born approximation was also
used for the study of mantle inhomogeneity. Analyzing
stacked P and P coda envelopes of teleseismic (>10°)
events at 1Hz, Shearer and Earle [79] concluded that most
scattering occurs in the lithosphere and upper mantle, but
that some lower mantle scattering is likely required. They
estimated " to be 3–4% and a D 4 km in the upper man-
tle and 0.5% and 8 km in the lower mantle. Analyzing en-
velopes of precursors to PKP, Margerin and Nolet [43]
found that inhomogeneity can not be restricted to the D00

layer and a small inhomogeneity spread over the whole
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Seismic Waves in Heterogeneous Earth, Scattering of, Figure 12
Plots of the square root of the relative partition of wave energy into the transverse component (1–2Hz) by a diameter of the circle
revealed from the teleseismic P-waves. Reproduced from [37]

lower mantle. They proposed a von Kármán ACF of � D 0
for random media, which has a power law PSDF rich in
short wavelengths compared with an exponential ACF.
They mentioned that " of 0.1–0.2% in the whole lower
mantle is enough to explain the observation even though
correlation distance is irresolvable because of the limited
range of observations.

Imaging of Subsurface Heterogeneity

There have been developments in deterministic imaging of
medium inhomogeneity from the analysis of array records
of P-coda waves. When the structures of interest are char-
acterized by laterally variable stratification, the receiver-
function technique [38] is useful since it is based on the
deconvolution of the horizontal component trace in the
radial direction by the vertical component trace for mea-
suring the Ps conversion depth. On the other hand, scat-
tering from localized volume inhomogeneity is most read-
ily treated by using the Born approximation. Analyzing
array records of teleseismic P coda in central Oregon by
using the Born approximation for both forward scattered
waves and backscattered free-surface reflectedwaves, Ron-
denay et al. [62] successfully imaged the precise structure
of the Cascadia subduction zone, which is consistent with
the consequences of prograde metamorphic reactions oc-
curring within the oceanic crust. Analyzing array records
of P coda waves of regional earthquakes at Izu-Oshima
volcano, which erupted in 1986, Mikada et al. [46] deter-

ministically imaged PP and PS scatterers on the basis of
diffraction tomography. They interpreted a cloud of scat-
terers centered at about 10 km depth beneath the volcano
crater as a primary magma reservoir and smaller and shal-
lower patches of high scattering strength with sub-magma
reservoirs.

Temporal Change in the EarthMedium Structure

There were reports on the temporal changes in the Earth
medium structure revealed from the analyses of scattered
waves. One is coda amplitude envelope analysis, which
gives information about the change in intrinsic absorption
and scattering strength of the crustal heterogeneity. An-
other is coda phase interferometry, which offers informa-
tion about the change in background velocity.

Change in Coda Characteristics

Monitoring coda envelopes of local earthquakes, Gusev
and Lemzikov [23] reported temporal change in Q�1c be-
fore and after the 1971 Ust-Kamchatsk earthquake (M
7.8), and Jin and Aki [30] reported temporal change in
Q�1c associated with the 1976 Tangshan earthquake (M
7.8) in China. Their observation attracted the interest of
geophysicists to the temporal variation of coda character-
istics because of a potential for monitoring the stress ac-
cumulation process preceding an earthquake occurrence.
Analyzing high-frequency seismograms recorded at River-
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side, California for 55 years, Jin and Aki [32] found a tem-
poral variability in Q�1c at about 1.6Hz having a positive
correlation with the seismic b-value calculated for M > 3
earthquakes within a 180 km radius. The seismic b-value
is a measure of the ratio between the numbers of small
to large earthquakes; smaller b-values mean that there are
relatively fewer small earthquakes compared to the num-
ber of larger ones. They interpreted these changes in Q�1c
and the b-value by creep fractures in the ductile part of
the lithosphere. Hiramatsu [25] precisely examined the
temporal variation in Q�1c and b-value for 10 years be-
fore and after the 1995 Hyogo-ken Nanbu earthquake
(M 7.2) in Japan. At frequencies between 1.5 and 4.0Hz
the temporal variation in Q�1c increased after the main-
shock occurrence, where the variation in b-value was op-
posite.

Sato [69] analyzed the relation between coda duration
time and earthquake magnitude of small earthquakes be-
fore and after an M 6.8 earthquake in central Japan. He
found that coda durations were anomalously longer than
usual for 16 months before the earthquake occurrence.
From 24-year observation of coda at 0.5Hz in Kamchatka
Gusev [19] reported prominent anomalies in coda level
residual from the mean coda excitation level at 100s lapse
time associated with two M 8 earthquakes and a volcanic
eruption.

Sawazaki et al. [76] measured the temporal variation of
the spectral ratio of coda waves registered on the ground
surface to that at the bottom of a borehole of 100m depth
in Japan, which experienced strong ground motion of sev-
eral hundred gals. They reported a sudden drop of the site
amplification factor caused by earthquake strong motion
and gradual recovery for a few years approaching to the
original ratio. They suggested crack formation and ground
water movement for explaining the site factor weakening
observed.

Coda Interferometry

Pairs of earthquakes with almost identical focal mech-
anisms are called earthquake doublets. The cross-corre-
lation function of earthquake doublet records allow us
to detect differences in the background velocity of the
Earth medium that took place in between the pair of
earthquakes. Applying the phase spectral analysis to coda
wave records of earthquake doublets before and after the
1979 Coyote earthquake of M 5.9 in California, Poupinet
et al. [57] found that the coda wave arrivals for some
stations are progressively delayed for the second earth-
quake in the doublet. They interpreted systematic varia-
tion along the coda as a decrease of background S-wave

velocity by 0.2% in an oblong region 5–10 km in radius at
the south end of the aftershock zone. Applying the phase
spectral analysis to records of repeated artificial explo-
sions, Nishimura et al. [51] found that the average seis-
mic velocity of the crust in the frequency range of 3–6Hz
decreased by about 1% around the focal region of an M
6.1 earthquake at Iwate volcano in northeastern Honshu,
Japan in 1998. They interpreted this velocity drop by the
dilatation caused by the M 6.1 earthquake with stress sen-
sitivity of the velocity change (ıV/V) /ı� of the order of
0:1MPa�1. From the set of successive artificial explosion
experiments, they observed gradual recovery of the seis-
mic velocity towards its original value over the next four
years. While interferometry detected a change in velocity
of the order of 1%, it was unidentifiable from travel time
analysis of first arrivals. Using coda waves is superior to
direct waves since coda waves volumetrically sample the
Earth medium.

Snieder et al. [81] demonstrated detection of the non-
linear dependence of the seismic velocity in granite on
temperature and the associated acoustic emissions from
the interference measurement of coda waves in rock sam-
ples as a laboratory experiment. They named this method
“coda interferometry” and proposed to use it for detecting
the presence of temporal changes in the medium, or in di-
agnostic mode. There is an idea to retrieve the Green func-
tion from the stacked cross-correlation function (CCF)
of multiple scattered waves or microseisms at a pair of
stations on condition that the propagation directions of
those waves are randomly isotropic. Stacking CCFs of coda
waves at several pairs of stations for regional earthquakes
in Mexico, Campillo and Paul [7] estimated the surface
wave velocity between each station pair from the peak de-
lay. The idea was extended for monitoring the temporal
change in the crustal structure. Wegler and Sens-Schön-
felder [84] computed the ACF of microseisms recorded at
a site in the vicinity of the source region of the 2004 Mid-
Niigata earthquake (M 6.6) in Japan for three months.
They detected a sudden decrease of relative seismic veloc-
ity in the crust of 0.6% at the occurrence of the earthquake
from the temporal variation of stacked ACFs.

Future Directions

In addition to classic parameterization as a layered struc-
ture with sharp edges and smooth velocity perturbation,
we introduced new approaches using scattered waves that
reflect solid Earth heterogeneity. For high-frequency seis-
mograms of earthquakes, envelope characteristics such as
the excitation level and the decay gradient of coda en-
velopes and the envelope broadening of the direct wavelet
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are useful for the study of small-scale inhomogeneities.
The lithospheric inhomogeneity is phenomenologically
well characterized by the scattering coefficient and coda at-
tenuation factor as a function of frequency. Furthermore,
the power spectral density function of random velocity in-
homogeneity is estimated from the frequency dependence
of high-frequency seismogram envelopes of local earth-
quakes or the array analysis of teleseismic waves. The ra-
diative transfer theory with scattering coefficients calcu-
lated from the Born approximation and the Markov ap-
proximation for the parabolic wave equation are useful
mathematical tools for the analyses.

Scattering characteristics are found to vary spatially re-
flecting seismotectonic settings. It will be necessary for us
to make a classification of seismogram-envelope patterns
in various regions in the world under different tectonic
conditions. It is interesting to model how such a variation
of medium inhomogeneity was created through the geo-
dynamic process. Compared to the lithospheric inhomo-
geneity, there were insufficient numbers of studies on the
mantle inhomogeneity. It will be necessary to map the dis-
tribution of inhomogeneities deep in the mantle, which is
useful for the study of the evolution of the planet Earth.

For mathematical simplicity; however, most
approaches assume homogeneity and isotropy of ran-
domness and a constant background velocity, which are
somewhat different from reality. It will be necessary to
mathematically develop the envelope synthesis in inho-
mogeneous media that are a superposition of small-scale
random inhomogeneities and a gradually varying back-
ground velocity. As revealed from the ray path depen-
dence of S-wave envelope broadening, randomness varies
from place to place. It is also necessary to develop the
envelope synthesis for random media having spatially
varying statistical parameters. In addition, it is important
to examine how conversion scattering between P and S
waves contributes to form spindle-like envelopes in highly
scattering media as shown in high-frequency seismograms
observed in volcanoes and on the Moon.

For further understanding, there are monographs that
treat the discussed subjects as follows: Sato and Fehler [74]
review seismological observation and mathematical mod-
els; Shapiro and Hubral [78] put special focus on wave
propagation through stratified random media; Goff and
Holliger [18] summarize the crustal heterogeneity; Wu
and Maupin [86] compile recent developments in mathe-
matical modeling of wave propagation in inhomogeneous
media; Chandrasekhar [8] is a classic text for radiative
transfer theory; Ishimaru [29] and Rytov et al. [63] offer
advanced mathematical tools for the study of wave propa-
gation in random media.
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Glossary

AI Ab initio
AM1 Austin model 1
AO Atomic orbital
B3LYP Becke’s three parameter hybrid LYP functional
BKL Bortz–Kalos–Lebowitz
BO Born–Oppenheimer
CA Cellular automata
CE Cluster expansion
CC Coupled cluster

CI Configuration interaction
CP Car-Parrinello
DCA Dynamic cellular automata
DFT Density functional theory
DLVO Derjaguin–Landau–Verwey–Overbeek
GGA Generalized gradient approximation
HF 1) Hartree–Fock 2) Harris–Foulkes functional
kMC kinetic Monte Carlo
KS Kohn–Sham
LbL Layer-by-layer
LCAO Linear Combination of Atomic Orbitals
LDA Local density approximation
LYP Lee–Young–Parr
MC Monte Carlo
MD Molecular Dynamics
MNDO Modified neglect of differential overlap
MO Molecular Orbital
MP Møller–Plesset
NDDO Neglect of diatomic differential overlap
NDO Neglect of differential overlap
NPT Isobaric ensemble: constant N, P and T
NVE Microcanonical ensemble: constant N, V and E
NVT Canonical ensemble: constant N, V and T
PBC Periodic boundary conditions
PF Phase-field
PM3 Parametric model 3
PP Pseudo-potential
PW Perdew–Wang
QCA Quantum-dot cellular automata
RSA Random sequential adsorption
SA Self-assembly
SAM Self-assembled monolayers
SCF Self-consistent field
STM Scanning tunneling microscopy
TB Tight-binding
XC Exchange correlation

Definition of the Subject

The concept of self-assembly is today highly popular and
frequently used to describe a wide range of phenomena. It
is also a concept that has a possibility to change the way we
produce various types of materials [1]. Self-assembly can
broadly speaking be defined as a process with the follow-
ing features [2], where: (i) it involves pre-existing compo-
nents, i. e. the components are not formed by the reaction
itself. (ii) the process should be reversible to some extent.
(iii) it can be controlled by design.

The supramolecular chemistry approach, pioneered by
Jean-Marie Lehn [3], where molecular recognition is used
to assemble supramolecular materials is clearly an impor-
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tant starting point for much of this work. The pre-existing
components are usually molecules, amphiphilic species,
or oligomeric or polymeric species. However, self-assem-
bly can also be observed on larger length scales involving
e. g. nanoparticles (superlattices) and larger colloidal par-
ticles (colloidal crystals). The final self-assembled material
should display certain features that can be related to the
building blocks in addition to the novel features that are
created by the self-assembled material itself. Reversibility
is a key feature since self-assembly processes commonly
scan a rich energy landscape with many metastable states.
This is commonly regulated by the balance between the
attractive and repulsive interactions between the self-as-
sembling components, involving e. g. van der Waals, elec-
trostatic, hydrophobic, hydrogen bonding and entropic
forces (molecules and mesoscale objects), and magnetic,
capillary, and gravity forces (meso- or macroscale objects).

The degree of versatility, simplicity and flexibility of
the various self-assemblymethods and the ability to intro-
duce specific functions with a high degree of spatial accu-
racy are important features for self-assembled materials to
move beyond academic beauty and be interesting for ap-
plications. The preparation of self-assembled coatings can
be traced back to the seminal work by Irving Langmuir
and Katherine Blodgett prior to the Second World War.
The development of a theory for adsorption on surfaces by
Langmuir togetherwith the design of a technique that both
could measure the pressure-area isotherms of monolayers
of amphiphilic molecules assembled at the air-liquid inter-
face, and also be used to transfer these monolayers onto
different substrates was a very important discovery that
has had a profound effect on future work on self-assem-
bled layers. The observation by Nuzzo and coworkers [4]
that alkanethiolates can self-assemble on gold surfaces and
result in well-ordered films sparked a large research inter-
est in these so called self-assembled monolayers (SAMs).
The relatively non-local nature of the thiol bond to the
gold surface allows the much weaker, attractive interac-
tion between the amphiphilic chains in the monolayer to
control the film structure. The SAMs are a beautiful exam-
ple of self-assembly as a crucial process in the formation of
a dense monolayer.

Self-organization of nanoparticles into two- and three-
dimensional superlattices has attracted much interest
since the early work on iron oxide “super crystals” [5]. In-
deed, understanding and optimizing the structures, at all
length scales, of nanocrystal superlattices is an important
step towards controlled design of novel nanostructured
materials and devices. This work did not really gain mo-
mentum until methods to achieve shape and size control
with a high fidelity was established in the end of 1980s

by e. g. Brus, Steigerwald et al. [6] and Moerup, Thölen
and Koch [5] mentioned above. The ability to assem-
ble different nanocrystals with size-tunable optical, elec-
tronic and magnetic properties into well-defined struc-
tures opens up the possibility to study and develop new
materials with tailored couplings between the constituent
units [7,8]. Layer-by-layer (LbL) self-assembly of charged
polymers has evolved as probably the most versatile tech-
nique to create multifunctional coatings on a wide range
of substrates [9]. These are but a limited set of examples
of self-assembly processes to produce novel materials that
has been demonstrated in the last decades [10,11,12,13,
14,15,16,17,18,19,20]. While the examples of self-assem-
bly are plentiful, the attempts to model the self-assembly
processes and systems is still in its infancy. This review at-
tempts to be a guide and introduction to the field of com-
puter modeling of self-assembly.

Introduction

Computer modelling of structural properties and dynam-
ical processes in matter is based on physical and mathe-
matical models. Ideally, we would prefer to use first-prin-
ciples methods of quantum mechanics with no other in-
put than atomic nuclei and the electrons spontaneously
forming atoms, molecules and more complicated systems
through local intermolecular interactions. Unfortunately
this is possible only for systems of very modest sizes using
rather drastic approximations and simplifications. We can
always blame the computers for not been powerful enough
but the truth is that the “first-principles” models would
grow too complicated and out of hands very rapidly. We
therefore use different physical models to describe matter
at different length and time scales togetherwith an increas-
ing amount of empirical data as input to the models.

Atomistic computer simulations such as the classical
Molecular Dynamics (MD) are currently run for molec-
ular systems consisting of the order of 105 atoms, corre-
sponding typically to a system size (length scale) of 5–
10 nm. These simulations are typically extended to 10–
100 ns (time scale). This may be enough for simulations
of isotropic liquids of simple molecules, whereas for many
complex systems, the requirements for the length and time
scales are much more extensive. To extend the simula-
tions to cover longer scales requires either simplifications
of used models or choosing more suitable modelling tech-
nique [21]. In the first strategy the resolution of the model
is reduced by removing certain degrees of freedom of the
studied system which are not important or can be consid-
ered as fluctuations while keeping those degrees of free-
dom which are operational on the longer scales. This is
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Self-assembled Materials, Table 1
Time and length scales covered bymodellingmethods reviewed
in this article

Scale Typical length Typical time
sub-atomic < 0.1 nm � 1 fs
atomic 0.1–1 nm 1 fs–1 ns
meso 1 nm–1 μm 1ns–1ms
macro 1 μm– 1ms–

generally called coarse-graining of the model leading to
a much fewer interaction sites thereby speeding up the cal-
culations. An alternative approach is to use a hybrid by
keeping an accurate description for a selected area of im-
portance and the environment is merely made to a fluc-
tuating medium with more or less specific interactions.
These techniques may include combining quantum and
classical mechanics [22] or classical mechanics and hydro-
dynamic/continuum models.

In Table 1 there is a somewhat artificial division of
matter on scales from sub-atomic (with nuclei and elec-
trons) to macroscopic. There are modelling and simu-
lation methods designed separately to these scales. Go-
ing from one scale to the next in the table requires ei-
ther coarse-graining or fine-graining of the used model by
building a bridge between two techniques. Thismeans tak-
ing as much vital information as possible to the next level.
Coarse-graining is obviously easier than fine-graining as
the latter requires re-activating non-existing degrees of
freedom from an under-defined system. Multiscale mod-
elling is currently a hot topic and in a rapid development
with the purpose to bridge several scales in a more system-
atic way.

The aim of this chapter is to describe a box of tools
containing some selectedmodelling methods to study self-
assembly. The tools should together cover the scales in
the table in Table 1. We will give a short description of
each of them together with some examples of applica-
tions. At the end of the chapter we show examples of
how to combine several techniques to extend length and
time scales in modelling. We will work from the “bottom-
up” by starting with first-principles calculations on elec-
trons and nuclei. Classical Molecular Dynamics (MD) and
Monte Carlo (MC) are mainly used in atomistic simula-
tions with empirically parameterized potential functions.
Meso-scale simulations of aggregates and soft particles use
coarse-grained models. We will discuss methods equally
applicable on both short and long scales such as the ki-
netic Monte Carlo (kMC) and Phase Field (PF) modelling.
All these techniques so far are examples of off-lattice mod-
elling methods. We then discuss two lattice methods with
some further development towards more off-lattice char-

acter, namely Random Sequential Adsorption (RSA) and
Cellular Automata (CA). Finally we will discuss multi-
scale modeling before the paper ends with a discussion on
future directions.

First-Principles Calculations and Simulations

Down in the bottom of the world of atoms and molecules,
quantum mechanics should be used to treat the moving
nuclei and electrons building up the matter. The electronic
structure in atoms and molecules and molecules gives the
first level of properties to all matter around us. Theoret-
ical calculations utilize the so-called Born–Oppenheimer
(BO) approximations which keeps the much heavier nu-
clei in fixed positions while the electrons adapt themselves
pair wise in binding and non-binding molecular orbitals
(MO), constructed as linear combinations of atomic or-
bitals (LCAO) using suitable basis sets (normally Gaussian
functions or plane waves). Computational quantum chem-
istry is largely based on solving the Schrödinger equations
interactively within the self-consistence field (SCF) the-
ory until suitable convergence criteria are reached. The
previously commonly used Hartree–Fock (HF) method
was made computationally convenient in matrix form by
Roothaan [23] in early 50s and allowed accurate calcula-
tions for larger and larger molecules at the same time as
computers were made more and more powerful [24]. As
there is no exact solution to many-body problems (N > 2)
all modelling methods use approximations to reduce the
problem to independent particle or pair problem [25].
Within the HF approximation the fullN-electron problem
is reduced to an independentN single-electronsmoving in
a mean-field of the other electrons. By increasing the size
of the basis set a so called HF limit can be reached where
the electron-electron repulsions are treated uncorrelated.
As the electron correlation effects are very important for
many molecular properties a number of post-HF schemes
have been developed, for example Møller–Plesset (MPn
(n D 2; 4; : : :)), configuration interaction (CI) or coupled
cluster (CC) [25].

The most affordable quantum chemistry methods are
the semi-empirical MO methods [26,27,28]. Among the
most popular are those based on the neglect of di-
atomic differential overlap (NDDO) approximation, such
as Austin Model 1 (AM1) [29], Parametric Model 3
(PM3) [30,31] andmodifiedNDO (MNDO) [32]. All these
schemes start fromHF-Roothaan equations [25] introduc-
ing the frozen-core approximation and using only the va-
lence AOs. Some electron-electron integrals are simply ne-
glected, some calculated approximately and some are re-
placed by empirical parameters. These methods are very
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fast compared to ab initio methods but give often unreli-
able results; the errors tend to be unsystematic and there-
fore both relative energies and conformational energies
become less reliable when calculated using semi-empiri-
cal schemes. Also hydrogen bonds are not accurately de-
scribed. These shortcomings are found to be largely due
to an unbalanced treatment of core-electron and electron-
electron interactions. Orthogonalization corrections have
been worked out to improve the NDDO schemes [33,34]
but have given only a slight improvement. This unbalance
is corrected in the recently published Extended NDDO
scheme [35] where the old NDDO is expressed as zeroth
order term. However, it still remains to be parameterized
and packaged to a new semi-empirical scheme, which is
a major undertaking.

In both materials science and chemistry, the density
functional theory (DFT) has recently gained the position
as the most popular method [25]. It is basically as fast as
the HF method but can incorporate a large part of the
electron correlation effects. In DFT the energy is given
as a functional of the electron density �(r). The contri-
butions to total energy come from the kinetic energy of
the electrons, nuclear-electron attraction, electron-elec-
tron Coulombic repulsion and finally from combined ex-
change and correlation energy. The most difficult problem
in DFT is to derive the exchange-correlation (XC) term.
In materials science for solids and metals the so called lo-
cal density approximation (LDA) is used as it is suitable
in cases of slowly fluctuating electron densities [25]. LDA
is not a good choice for chemical problems and so called
gradient corrected methods like the generalized gradient
approximation (GGA) are used where the XC term is not
just functional of the electron density but also derivatives
of the density with respect of the coordinates (x; y; z) [25].
The most popular XC functionals are currently those by
Lee, Yang and Parr (LYP) [36] and by Perdew and Wang
(PW91) [37]. In chemical applications the hybrid methods
where the HF exchange energy is mixed the corresponding
DFT term have gained popularity. Becke’s three parameter
hybrid [38] with the LYP functional, the so called B3LYP,
is frequently used. Current DFTmethods are based on for-
mulation proposed by Kohn and Sham (KS) [39,40] by
constructing the total electron density from a KS orbital.
This gives conceptually similar equations as inHFmethod.
Car and Parrinello (CP) presented a DFT based Molecular
Dynamics method using plane-wave basis functions [41]
which is the most popular ab initio simulation tool both in
chemistry and materials science.

Recently a robust approximate DFT method is intro-
duced where the electron-electron interactions in the total
energy density functional in DFT are expanded with re-

spect to a reference density and keeping the first order cor-
rection and neglecting the higher order corrections. This
is called Harris–Foulkes functional [42,43] and is stable
with respect to the used reference density as a small change
in the reference density introduces an error only to sec-
ond order term. Computational schemes based on Har-
ris–Foulkes functionals are normally called ab initio tight-
binding density functional theory (AB-TBDFT) methods,
and were first introduced by Sankey et al. [44]. A highly
efficient AB-TBDFT method is recently presented by Tu
and Laaksonen [45,46] applicable on simulations of large
systems. Various methods to incorporate quantum me-
chanics into molecular dynamics simulations are reviewed
in [22].

First principles electronic structure calculations and
simulations have a firm position inmaterials science. First-
principles MD simulations to materials properties are re-
viewed in [47]. In the following a few examples are cho-
sen from literature. Materials simulations using VASP
gives a quantum perspective to materials science accord-
ing to [48] using pseudo potentials (PP) and a plane wave
basis set based on a finite-temperature local-density ap-
proximation. Density functional theory meeting statistical
physics [49]: from the atomistic to the mesoscopic prop-
erties of alloys by combining DFT calculations with the
so-called Cluster Expansion (CE) methods and Monte-
Carlo (MC) simulations is reported. Determination of
solid-state nanostructure from ab initio structure calcula-
tions of nano-structured materials using diffraction data
in combination with distance geometry methods is ex-
plained in [50]. Tools, results and perspectives of quantum
software interfaced with crystal structure databases are
given [51]. Density-functional theory electronic structure
calculations of static and elastic properties and ab initio
molecular dynamics simulations for poly-atomic systems
made possible in package reported in [52] and first-princi-
ples computation of material properties using the ABINIT
software package in [53]. A primer to efficient tight-bind-
ing molecular dynamics is given by Colombo [54]. CON-
QUEST code for large-scale ab initio calculations in ma-
terials science is presented in [55]. Prediction of mate-
rials properties by ab initio computer simulations is re-
ported [56].

AtomisticMolecular Dynamic Simulations

Molecular Dynamics (MD) [57,58,59,60,61,62,63,64,65]
is, in its simplest formulation, numerical integrations of
Newton’s second law (acceleration (a(t)) of a particle is
equal to the force (F(t)) acting on a particle divided by the
mass (m) of the particle) applied on a collection of inter-
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Self-assembled Materials, Figure 1
Molecular Dynamics simulations in a nutshell

acting particles. Integrating the acceleration of each parti-
cle gives the velocity (v(t)) and a subsequent integration of
the velocity gives the actual position (r(t)) of the particle.
Thereby the trajectory of the particle can be determined.
The forces momentarily acting on the particles (masses)
are calculated as negative spatial derivatives of the poten-
tial functions U(r) (force fields) describing the attractive
and repulsive interactions between the particles (includ-
ing the internal degrees of freedom): F D �rU(r). Nor-
mally only the pairwise intermolecular interactions are in-
cluded as an approximation in classical MD simulations of
liquids and solutions. The number of particles (N) in cur-
rent simulations is from thousands to hundreds of thou-
sands and is a compromise set by the available computing
power. Particles are inserted into a cell (box) with a vol-
ume V . The shape of the cell is preferably chosen to have
translational symmetry so that replicas of the cell make
a pseudo-infinite periodic system where particles are syn-
chronously able to leave and enter the cells according to
periodic boundary conditions (PBC). This keeps the parti-
cle density constant. So called minimum image conven-
tion connected to the PBC is applied to avoid artificial
condensation effects (for more details see Table 1 and the
text in connection to the figure). In Newtonian dynam-
ics the energy (E) is expected to be conserved at equilib-
rium conditions and the simulation corresponds to a mi-

crocanonical (NVE) ensemble. By using suitable Hamil-
tonians containing thermostats canonical (NVT) ensem-
bles can be constructed and with corresponding barostats
isobaric (NPT) ensembles. Several other ensembles can be
constructed for MD simulations as well.

Historically, Alder and Wainwright introduced the
method ofMolecular Dynamics 50 years ago by simulating
a system of hard spheres [66,67] observing a phase transi-
tion, while Rahman [68] carried out the first simulation for
a liquid system using argon atoms in 1964 giving fairly ac-
curate diffusion coefficient. Verlet was able to obtain ther-
modynamic state functions noble gases [69]. A very im-
portant pioneering work for molecular systems was that
of Rahman and Stillinger for liquid water in 1974 obtain-
ing radial distribution functions in close agreement with
experiments [70], which also started a real boom in com-
puter simulations. MD simulation is a powerful method
to study structural, thermodynamic and dynamical prop-
erties in gases, liquids and solids. Using MD the motion
of molecules can be followed to gain a better understand-
ing of chemical reactions, fluid flow, phase transforma-
tions, droplet formation, and other physical phenomena.
MD is a statistical mechanical method (both equilibrium
and non-equilibrium).

Figure 1 gives all the information needed to write
a simple computer program to run MD simulations of N
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charged particles in a cubic volume V . First row: Pairwise
interaction potential consisting of Lennard–Jones (van der
Waals) and Coulombic terms. Particle sizes are deter-
mined by the � parameter and strength of the van der
Waals attractions is given by ". Particle charges are given
by q in the Coulombic term and pairwise distances are
given by rij (scalar) and the ri j (vector). Second row: Forces
acting on each particle are obtained as the negative spatial
derivative of the potential function given in first row and
are equal to particles mass times its acceleration (Newton’s
II law). Third row: By integrating the fluctuating time-de-
pendent acceleration gives particle’s velocity and a subse-
quent integration of the velocity gives the momentary po-
sition of the particle. Fourth row: Example of a numeri-
cal finite difference algorithm called the “Verlet leap-frog”
to carry out the integration. 
t is the time step and is
normally of order of a few femto seconds depending of
the particle masses and the density of the system. Observe
that the velocities in the Verlet leap-frog scheme are ob-
tained as half time steps to increase the accuracy and sta-
bility of the algorithm. Fifth row: Example of how com-
pute the average temperature from simulation data using
the kinetic energy and the equipartition principle (each
translational degree of freedom contributes 1/2 kT to the
kinetic energy). M is the total number of time steps in
the simulation. Other average quantities, for example the
total energy (potential+kinetic energy) is calculated sim-
ilarly. Sixth row: For a cubic simulation cell of a volume
V (containing the N particles) the side length is L. Peri-
odic boundary conditions (PBC) are easily applied on the
positions (to keep the particles inside the cell) by the sim-
ple formula where the anint is a function which truncates
the floating point number keeping only the integer digit.
Example here is given for the x-components and should
be done same way for y- and z-components. PBCs are ap-
plied on the distances as well according to the minimum
distance convention to avoid artificial condensation effects
during the simulations. Large scale simulations are carried
out using parallel computers with a large number of pro-
cessors. This requires computer software adapted to par-
allel architectures [71,72]. A large number of simulation
packages are available from the authors developing them.
Most of them are publicly availablewhile some (most often
those who are made particularly user-friendly by graphical
interfaces) require a license to be purchased.

MD is an example ofN-particle simulation techniques,
a wide-spread method found virtually in all areas dealing
with interacting dynamical particles from solvated elec-
trons to protein-lipid interactions and from orientations
of liquid crystals to formation of galaxies [58,59,60,61,62,
63,64,65]. It is also the main simulation method in mate-

rials science from metals to zeolites and from polymers to
colloids.

Self-assembled thiol monolayers on Au(111) made hy-
drophilic with polar end groups are studied with STM
and MD simulations [73] to examine the role of the for-
mation of hydrogen bonds between the molecules in the
layer and with polar co-adsorbates (water and solvent).
MD have been performed [74] to investigate the two-di-
mensional structure of organosilane self-assembledmono-
layers (SAMs). Unlike alkanethiol SAMs, the arrangement
of molecules in organosilane SAMs is not crystalline. Sim-
ulations performed for structures with different bonding
networks in the polysiloxane layer shows that the ratio
of hydrogen bonds has a profound effect on conforma-
tions and strain energies. Water density profile close to
spherical and planar hydrophobic objects is studied [75]
using MD simulations. A substantial increase of the de-
pletion layer thickness was found with the temperature.
High electrostatic surface potential presumably plays an
important role in the presence of charged solutes possi-
bly promoting adsorption into the interfacial layer. MD
investigations [76] of the morphology and structure of
monolayer and multilayer of chiral molecule N-stearoy-
L-glutamic acid (C-18-L-Glu) self-assembled on a mica
surface show that hydrogen-bonding effects are the ma-
jor driving forces in the layer formation proposing a mul-
tilayered model for the self-assembling. Static and dy-
namic properties of 2:1 layered silicates ion exchanged
with alkyl-ammonium surfactants are studied using MD
simulations [77] providing the structure and dynamics of
the intercalated surfactant in agreement with experiments.
Structure and properties of self-assembled monolayers
(SAMs) of a bi-stable[2]rotaxane on Au(111) surfaces as
a function of surface coverage are reported based on
atomistic molecular dynamics (MD) studies with a force
field optimized from DFT calculations with several exper-
iments validating the predictions [78]. To develop strate-
gies to self-assembly of nanostructured materialsMD sim-
ulations for telechelic molecules composed of two poly-
hedral oligomeric silsesquioxane cages connected by one
hydrocarbon backbone dissolved in liquid normal hexane
were carried out [79].MD simulations of nanoparticle self-
assembly at a liquid-liquid interface are carried out show-
ing in situ formation of clusters and migration of both
single particles and clusters from the water phase to the
trichloroethylene phase [80].

Among similar modelling works related to self-assem-
bly could be mentioned recent advances of classical den-
sity functional theory with emphasis on applications to
quantitative modeling of the phase and interfacial be-
havior of condensed fluids and soft materials, including
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colloids, polymer solutions, nanocomposites, liquid crys-
tals, and biological systems are summarized [81]. Molecu-
lar mechanical methods are used to calculate strain dis-
tribution in self-assembled interfacial misfit dislocation
arrays in highly mismatched III–V semiconductor ma-
terials in good agreement with experimental data using
cross section high-resolution transmission electronmicro-
graph images and also with other theoretical values [82].
Molecular self-assembly at equilibrium is studied using
a family of simple directional and short-range van der
Waals potentials giving rise to the self-assembly of linear
polymeric, random surface, tubular, and hollow icosahe-
dral structures. Dipolar potential with its continuous ro-
tational symmetry about the dipolar axis contributes to
chain formation, while higher multipoles lead to the self-
assembly of open sheet, nanotube, and hollow icosahe-
dral geometries [83]. To further understand the mecha-
nism behind Layer-by Layer assembly processes requires
even theoretical work, including thermodynamics calcula-
tions and molecular dynamics simulation as many kinds
of physicochemical molecular interactions, including hy-
drogen bonding, charge transfer interactions, and stereo-
complex formation are involved [84].

Monte Carlo Simulations

With modern computers the Monte Carlo technique has
evolved from a classical numerical algorithm to solve
multi-dimensional definite integrals based on statistical
sampling to a very powerful simulation technique to study
a large variety of complex systems with interacting par-
ticles [59]. The name “Monte Carlo”, given by Stanislaw
Ulam [85], refers to the capitol of Monaco at Mediter-
ranean, famous for its casinos and roulette tables. The cor-
responding “roulette” in the MC method is the random
number generator supplying a sequence of numbers nor-
mally between 0 and 1 from a uniform random distribu-
tion (rand[0; 1]). MC methods can be used, for example,
to compute equilibrium properties of classical many-par-
ticle systems. MC was in fact among the first applications
run in the first computers in early 50s. The first liquid
simulation using MC was carried out by Metropolis and
coworkers [86]. As molecular computer simulation meth-
ods MC and MD are very similar until the particles start
to move. The simulated systems in both MC and MD are
built in the same way by inserting the N particles in a sim-
ulation cell of volume V , applying the periodic boundary
conditions and choosing a force field to describe the in-
teractions between the particles and the cut-off distances
for short and long-range interactions. Ewald summation
can be employed if found necessary. By fixing the temper-

ature T we can perform the MC simulation in a canoni-
cal (NVT) ensemble which is also the simplest choice in
molecular MC simulations. Recall that the NVE (micro-
canonical) ensemble is the natural choice in the case of
Newtonian MD simulations. While the MD simulation
method is completely deterministic in the sense that the
particles always follow exactly same trajectories if same in-
put is given, the Monte Carlo (MC) method is stochas-
tic and the particles are moved as a random walk. How
the particles are moved depends on the studied systems.
In the case of small and rigid molecules (as a liquid) the
molecules (center-of-mass) is translated (displaced) in x, y
and z direction of a small distance one molecule at a time
rotating it slightly around its principal axes. For larger
and flexible molecules the individual atoms are slightly
moved and in addition different types of specific move-
ments are performedmimicking somehow the real motion
of the molecule. For example MC simulations of polymers
are undergoing residual “flips”, “rotations”, “crankshaft”,
“slithering snake” moves and “end-bridging” plus many
more. Probably the simplest MC technique to simulate in-
teracting particles at a desired temperature is Metropolis
Monte Carlo [86].

The mother of all Monte Carlo methods is the Marko-
vian master equation:

dP(Eri ; t)
dt
D
X

Er j

W(Er j ; Eri )P(Er j ; t) �
X

Er j

W(Eri ; Er j)P(Eri ; t) (1)

where P(Er; t) is the probability that the system is
in state Er at time t (time-dependent distribution of
states/configurations) andW(Eri ; Er j) is the transition prob-
ability/rate per unit time for the system to undergo a tran-
sition from i-state to j-state. AllMC techniques can be seen
as methods for solving the master equation. At steady state
(stationary or equilibrium):
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The detailed balance (microscopic reversibility) is valid.
The canonical contribution is:
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Self-assembled Materials, Figure 2
a Schematic illustration of a Monte Carlo move. b Transition probabilityW in Metropolis Monte Carlo. c Computational scheme for
Metropolis Monte Carlo

However, it is not possible to calculateW from this equa-
tion. MCmethods therefore use different functional forms
for W. Transition probabilities in thermodynamical MC
(like Metropolis) do not need to have any relationship to
the dynamics (energy barriers) of the system. To assign
real time to MC steps (Fig. 2a) is not possible. Conven-
tional MC methods are only applied to sample systems in
(or close to) thermal equilibrium. Functional form of tran-
sition probability in Metropolis MC:

In standard Metropolis MC the looping should not be
done until accepted. All moves with probability W larger
than 1 are accepted (the energy goes down) while if W is
less or equal to 1 the move is accepted if the random num-
ber is less than the Boltzmann factor in Eq. (4) (see also
Figs. 2). A rule of thumb is to choose the size of the dis-
placements in such a way that the acceptance/rejection ra-
tion is close to 1/2 which might be considered as the upper
limit while the lower limit is roughly 1/3 [87]. Several par-
ticles should not be moved simultaneously in Metropolis
MC. There is no direct correspondence between a Monte
Carlo step and real time but it is possible to use experi-
mental information of for example diffusion to calibrate
theMC simulations to obtain a rough estimate of real time.

Some examples of MC works in connection to self-as-
sembly are for example the MC (both multi-scale NVT
and grand canonical) simulations carried out to investi-

gate nano patterns an self-assembly of surfactants inside
SWCNT systems [88] and Monte Carlo simulations of
gold nanocrystals and (111) slabs covered with alkyl thiols
are carried out with and without explicit solvent (n-hex-
ane) at T D 300K. Inclusion of explicit solvent is found
important in [89]. Self-organization and chain-forming of
large ensembles of nanoparticles is studied by combining
DLVO theory andMC simulations [90]. The growth of lin-
ear agglomerates is kinetically controlled by a high activa-
tion barrier from all of the directions except one at end of
the chain. Adsorption of different model amphiphiles in
apolar and polar solvents is investigated using MC simu-
lations with a coarse grained model. As coating agents the
surfactants with a single hydrocarbon tail or two branches
are found to protect better the particle surfaces than am-
phiphiles with three or more branches [91]. Lattice Monte
Carlo simulation is used to investigate the equilibrium be-
tween free surfactant molecules in aqueous solution and
those adsorbed layers on structured solid. The solid sur-
faces are composed of hydrophilic and hydrophobic sur-
face regions [92]. Lattice MC simulation of self-assem-
bled ordered hybrid materials is reported and a compar-
ison of structural characterization of the different phases
using aggregate size distribution, density profiles, and ra-
dial distribution functions [192]. MC simulations are used
to study self-assembly of symmetric diblock copolymers
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in confined state resulting novel self-assembled strip, cir-
cle, core-multishell, and multi-barrel layer structures [94].
Self-assembly and adsorption on hydrophobic surfaces are
studied by MCmethods in [95,96,97,98].

Kinetic Monte Carlo Simulations

Ideally we would like to have a general computer sim-
ulation method operational on atomistic level of matter
which we can used for both short and long length and time
scales. We wish to use it to simulate general dynamical
processes with many different types of transitions between
various states the system populates during its evolution to-
wards amore permanent equilibrium state. The method of
molecular dynamics (MD) is often the first choice. Using
MD we model our system by applying realistic physical
conditions. We also have correct real time in our simu-
lation procedure. However, the time step 
t in atomistic
MD simulation to numerically solve the equations of mo-
tion has to be chosen according to the frequency (!max)
of the fastest dynamical event in the molecular system
this being in practice 
t 
 (!max)�1. This makes atom-
istic MD simulations very inefficient if the events of inter-
est occur beyond nanosecond time scales. Unfortunately
a vast amount of motional modes and dynamical events
take place beyond the capability of MD simulations even
with the fastest computers around.

We can use Monte Carlo (MC), such as the common
Metropolis method discussed above. We can build the
molecular system similarly as in MD and impose the de-
sired conditions onto it. We start simulations and pick up
the particles randomly and one at a time moving them in
small displacements based on the Boltzmann probability.
Again, we realize that as the size of the system increases
together with the number of motional degrees of freedom
our simulation starts to take too long time. Besides, as
mentioned in the previous chapter, we do not even know
how to add the time into a Metropolis simulation as dif-
ferent events have different characteristic times for their
dynamical behavior. MC as we perform it is normally only
for sampling ensembles.

We now consider using a method called the kinetic
Monte Carlo (kMC). Using kMC dynamical processes can
be simulated with real time incorporated and all possible
time scales can be covered easily. This sounds simply too
good to be true so what is the “catch” here? Before go-
ing into details of kMC method (in fact there are many
variants of it) we try to trace its origin by going back al-
most four decades ago and to computer simulations of va-
por deposition on two-dimensional lattices [99] and crys-
tal growth with surface diffusion [100]. These two works

Self-assembled Materials, Figure 3
Accessible stationary states (b–d) from state a

carry much of the basic underlying idea behind several
kMC schemes developed later. The paper by Bortz, Kalos
and Lebowitz (BKL) presents elegantly the theory and al-
gorithms for a method finding immediately a strong posi-
tion among physicists [101]. The BKL scheme is the solid
framework in many kMC programs used today. In almost
parallel and from purely chemical point of view Gillespie
presented his stochastic simulation method for coupled
chemical reactions [102] with the starting point being that
on atomistic level the time evolution of chemical systems
such as chemical reactions can be seen as both discrete and
stochastic rather than continuous and deterministic as the
text book kinetic equations are presented for us. Although
the BKL method and the Gillespie method appear to have
been developed in separate communities they both lead
to same family of kMC methods [103]. The name kinetic
Monte Carlo appears first as late as in 1992 [104].

Kinetic Monte Carlo is also based on solving the
Markovian master Eq. (1) discussed in the previous Chap-

Self-assembled Materials, Figure 4
Transition from state a to state b
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ter. In kMC we assume that the system is in a (stationary)
state and that a number of other states are accessible from
the current state (Fig. 4). A new state is randomly chosen
among the neighboring states and a transition is made to
this new state. The real time spent in the state before tran-
sition is added to the time development and can be seen as
the time step in kMC. The time spent in a state (Fig. 4) is
related to the transition rate:

rab D (e
�

Eab
kBT (5)

– where ( is the “attempt frequency”. The time step is then
calculated as:


t D �
ln(rand[0; 1])

P

iDb;c;d;:::
rai

(6)

kMC requires that the simulated events are Poisson pro-
cesses. There should also be a dynamic hierarchy among
the processes. The real time increments (time steps)
should be able to be calculated based on Eqs. (5)–(6).
In practice the detailed balance (Eq. (2)) is not strictly
required as the systems can be far from equilibrium. If
the transition probabilities are: (i) independent on pre-
vious history, (ii) the same at all times and (iii) a uni-
form function of time, the the transitions are Poisson pro-
cesses. A kMC transition should not have any effect on
any other transition. Also the time when the next transi-
tion will occur should be independent from the occasion
of the previous transition. To illustrate kMC we may con-
sider a “wheel of fortune” (Fig. 5) where the sectors cor-
respond to individual Poisson processes (events) and are

Self-assembled Materials, Figure 5
The Poisson “wheel of fortune” to illustrate the kMC

not necessarily evenly divided. The perimeter of the wheel
is the cumulative process (also a Poisson process). The cor-
responding dynamical hierarchy in Fig. 5 is as:

[0 6 r5/rmax 6 r8/rmax 6 r1/rmax 6 � � � 6 rmax/rmax 6 1] :

The whole spectrum of rates exists and the fastest rate (r2
in Fig. 5) gives the highest probability. Note, the Metropo-
lis MC does not fullfill dynamic hierarchy as all 
E 6 0
transitions are given probability 1. After a kMC time step
we are in a new state and we have a new “wheel” like the
one in Fig. 5 but possibly with a different number of sec-
tors corresponding to the new states with a finite proba-
bility to make transitions to. A new ensemble of processes
is obtained after each transition. This also means that the
time step in kMC changes continuously from one step to
another. There are no restrictions how short or long the
time step is: it can be for example a few femtoseconds or
several hours. It simply follows the evolution of the sys-
tem during the simulation. Time steps can be shorter in
the beginning of simulation due to (initially) fast moving
objects. Also, slow moving objects may break to smaller
ones moving faster. Kinetic MC sounds like the optimal
simulation method which can cover all possible time and
length scales. The “catch” here is that the user has to sup-
ply both the states and the transition rates to the new
states after each time steps. The kMC is not a self-going
scheme in the same way as the other simulation methods
are. This of course limits its use currently. Transitions rates
can be obtained for example from quantum chemical cal-
culations, MD simulations, transition state theory and ex-
periments. As all the information of the system and rates
is available the method has many attractive features: No
thermodynamical equilibration is needed and no simula-
tion of “dead dynamics” like in MD (event/step is always
guaranteed). kMC is suitable for “driven systems” (irra-
diation, high pressure, etc.). kMC has been used in stud-
ies surface diffusion, crystal growth, molecular beam epi-
taxy growth, defect mobility, vacancy diffusion, reactions
of surfaces, diffusion in zeolites, clustering dynamics, nu-
cleic acid hybridization, protein folding, etc. The number
of new application areas is growing rapidly. kMC can be
easily incorporated in multiscale simulations schemes.

Kinetic MC is used to determine the critical layer
thickness for misfit dislocations using deposition flux,
temperature and a pairwise interaction potential between
the particles as parameters [105]. Kinetic MC simula-
tions are used to study the deposition rate dependence
of nanopattern formation on periodically strained sur-
faces. The optimum nanopattern quality depends on sur-
face strain field, temperature and deposition rate and the
amount of material deposited [106]. Self-assembly of the
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elementary building blocks of nanophase materials are
studied using both a kinetic mean-fieldmodel and a meso-
scopic approach in which self-assembly is viewed as an
encounter-controlled process on a discrete lattice [107].
A 3D kMC model with a Green’s function-based long-
range strain energy contribution and with an up-down ra-
tio for atoms to jump out of the plane of the surface is de-
veloped to simulate the growth of self-assembled quantum
dot islands [108].

Phase-FieldModeling

Classical (macroscopic) theories & models assume sharp
interfaces (infinitely thin with a specific surface tension)
between phases and thermodynamical variables such as
T, P, concentration, etc. are used independently in each
phase obeying the phenomenological rules (schematically
shown in Fig. 6). Phase diagrams are common tools in
chemistry text books and traditionally the compositional
and structural evolution of the phase regions have been
treated mathematically using distinct interfaces with suit-
able boundary conditions at the interfaces. The idea of
a sharp interface is old going back to early 19th century
and Young, Laplace and Gauss. Gibbs later presented the
interface as a dividing surface so that the properties were
distinctly different on both sides of the interface (Fig. 7).
Subtraction of the upper curve (real system) from the ide-
alized system below gives the corresponding excess quan-
tity (here concentration) and sharp mathematical surface
line. The Gibbs dividing surface has zero volume but non-
zero excess quantities.

Also the idea of a diffuse continuous interface (Fig. 8)
goes back to 19th century when it was thought that gas

Self-assembled Materials, Figure 6
Sharp limit between two phases

and liquid states were simply distant points of the same
condition of matter and it was possible to move from one
phase to another along a continuous path. This picture was
established both experimentally by Andrews and theoret-
ically by Thompson and van der Waals [109]. Compared
to singularly sharp interface model there are many ben-
efits with using a diffuse inteface with a finite interface
volume. All field variables and corresponding equations
can be defined simultaneously for the whole system. Dif-
fuse interface allowsmodelling of various types of physical
variables, systems and effects in a flexible and efficient way.
Diffuse inteface exists on atomic scale as the surface lay-
ers are rough on atomic scale rather than mono-molecu-
lar. The density profile at the interface becomes larger than
the atomic length scale due to the roughness.

Phase field modelling gathers all categories of diffuse
interface models to describe a wide variety of materials
phenomena (for excellent reviews, see [110,111,112,113,
114,115,116,117]). It can describe easily a large number of
phenomena from nucleation to solute trapping as different
physical effects can be easily included [115]. It is based on
two assumptions: (i) There exists a continuous phase field
variable �(x; t) which characterizes the phases and inter-
faces of the system at any point point in space and time.
In bulk phases it is given a constant value. (ii) The total
(Helmholtz) free energy, F[�; : : : ] can be given as a func-
tional of the phase field variable � together with any other
thermodynamical variable, for example temperature, con-
centration etc. Even other variables can be introduced de-
pending on the studied system. A general form of F is
given as [113]:

F D
Z h
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(7)

c denotes conserved variables (satisfying local conserva-
tion conditions)

� denotes non-conserved variables.
f is local free-energy density,
˛ and ˇ are coefficients for energy gradients.

The first integral in Eq. (7) contains the local short-
range interactions to the free energy, while the second
integral represents the non-local long-range interactions,
such as, elastic, electrostatic, polar, etc. Various phase-field
models differ in their ways to treat all these contributions
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Self-assembled Materials, Figure 7
Gibbs dividing surface

Self-assembled Materials, Figure 8
Diffuse continuous interface between two phases

to the total free energy functional. The local free energy f
is the most important term in the phase field models:

f D f (c1; c2; : : : ; cn ; �1; �2; : : : ; �p) :

A large variety of these functions have been proposed. In
many phase-field models (like for solidification) simple
double-well potential functions are used for local free den-
sity like the one given in Eq. (8) and in Fig. 9:

f (') D 4h
�
� 1

2'
2 C 1

4'
4 : (8)

The variable � in Eq. (8) is normally called order param-
eter. It varies smoothly from one phase to another, dis-
tributing interfacial forces and other interactions over the
interface region [8]. We can often use it in a simple dou-
ble-well potential for a case where the values � D �1 and
+1 represent liquid and solid state, respectively, h is the
barrier height between the two states. We may also have
the phase field � D �1 and +1 representing two different
heterogenous mixtures during an isostructural (spinodal)
decomposition while 0 is a single homogeneous phase and
h is the driving force for the transformation. Other types of

Self-assembled Materials, Figure 9
Simple double-well free energy density function

similar simple local free energy density functions can also
be found in literature.

Some other forms of local free energy profiles are for
example the “double-obstacle” potential:

f (') D h(1 � '2)C I(')

I(') D

(
1 if j'j > 1
0 if j'j 6 1 :

(9)

Or a “crystalline” potential having infinite number of min-
ima:

f (') D h sin (�') : (10)

Often additional phase field parameters like temperature
are needed, T D temperature, Tm melting point and ˛ is
a positive constant:

f ('; T) D 4h
�
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2 C 1

4'
4

C
15˛
8
�
' � 2

3'
2 C 1

5'
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Self-assembled Materials, Figure 10
Twomain contributions to free energy: bulk and interface

Often coupling of phase field variables are needed – like in
the following function to describe the spatial distribution
for grain growth (for grains with different orientations):

f ('1; '2; : : :) D 4h
�
� 1
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2
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When ˛ > 2h (in Eq. (12)), infinite number of of min-
ima are located at (1; 0; : : : ), (0; 1; : : : ), (�1; 0; : : : ), etc.,
representing possible orientations of grains in a poly-
crystal. Functions in Eqs. (9)–(12) are discussed in [113]
where several other types local free density functions are
found. In general there are a large number of free en-
ergy functions like those above, all designed for specific
applications and studies of phenomena. For many studies
like solid-state transformations the energy functions are
made of well-defined physical order parameters and use
required symmetry operations of the studied high temper-
ature phases. In general, the interfacial energies should be
seen as anisotropic due to the crystalline feature of solid
phase [113]. Multiple order parameter models have been
proposed using both thermodynamical and geometrical
formulations [114].

There are two main contributions to the total free en-
ergy; bulk and interface as illustrated in the example in
Fig. 10.

Consider the isothermal process from the example in
Fig. 10 with a decreasing total free energy F. At equilib-
rium, if the gradient coefficients are constants, the varia-
tional derivatives of F satisfy following equations [114]:

ıF
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ı f
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� "2'r

2' D 0 (13)
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ıc
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� "2cr

2c D constant : (14)

The Eq. (13) is for non-conservative variables while
Eq. (14) is for conservative variables. Equation (14) is con-
stant as the amount of solute is constant in the volume
(concentration is one of the conserved quantities).

Time evolution of the phase field is assumed to be pro-
portional to variation of the total free energy functional
with respect to the order parameter � [110]: @'/@t /
L(ıF/ı'). Where L D partial differential operator
(L(0) D 0). The phase field equations are given:

Cahn–Hillard equation [118,119]:
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– for conserved variables such as: concentration, molar
fraction, mass, etc.

Allen–Cahn equation [120,121]:

@�

@t
D �L

ıF
ı�
D �L

�
ı f
ı�
� "2�r

2�

�
(16)



7944 S Self-assembled Materials

– for non-conserved variables such as: order parameters,
phase fields, etc. This equation is also known as the time-
dependent Ginzburg–Landau equation.

The evaluation of the phase field variables can be ob-
tained by solving the kinetic Eqs. (15) and (16) above.
Finite difference methods with explicit time-stepping are
normally used by constructing a uniform grid. Discussion
of numerical methods and stability of the computational
schemes are given in [122].

The areas of applications of phase field simulations are
increasing rapidly. Solidification and solid-state transfor-
mations are examples of the use phase field modelling as
well as coarsening, grain growth and dislocation dynam-
ics. A list of several applications can be found in Table 1
of [113].

A further development of phase field theory, called
phase-field crystal (PFC) method, was present by Elder
and Grant [123] for elastic and plastic deformations, free
surfaces and multiple crystal orientations.

Continuous phase field model by Lu and Suo have
been found applicable on self-assembly and monolayer
growth on surfaces describing all required components:
the phase separation, phase coarsening and phase refining
processes [112]. Lu and Salac [124] have developed a phase
field model to simulate pattern formation due to electric
dipole interactions among adsorbate molecules revealing
a unique self-assembly behavior. Wang [125] has devel-
oped a diffuse interface field approach (DIFA) which is
capable to explicitly describe short- and long-range inter-
actions and treat arbitrarily shaped particle packing pro-
cesses and other related applications.

Molecular dynamics simulations can be combined
with phase field modelling. Two basic approaches have
been used where MD simulations carried out at the in-
terface region are connected the phase field simulations
using finite element methods [126,127] or where (mov-
ing region) MD simulations are carried out at the inter-
face region to supply parameters, such as the strain re-
sponse, kinetic coefficient (velocity vs. under-cooling be-
havior) and diffusivity, to the phase field model [128]. As
the microstructure in many phase-field models is assumed
to be coherently uniform, which is, in many cases incor-
rect, atomistic MD simulations may be of help in sup-
plying anisotropic information about structure and dy-
namics of interface regions. A very interesting theoret-
ical model for binary crystal nucleation was developed
by Gránásy and coworkers [129,130,131,132,133,134,135,
136,137,138,139], and incorporated into simulations and
applied on Lennard–Jones and ice-water systems [129,130,
131], polymeric dendrites [132,134,136], hydrate forma-
tion by Gránásy, Kvamme and coworkers [133,135,137,

138] and heterogeneous crystal nucleation [139]. David-
chack and Laird [140,141] have used MD simulations with
hard spheres to study interfacial planes between crystal
and fluid-like domains.

Plapp and Karma have proposed a robust hybrid
multi-scale scheme applicable in one, two and three di-
mensions by combining diffusion Monte Carlo (similar to
the one used to solve Schrödinger equation) and phase-
field models to perform simulations of dendrictic solidi-
fication. The method is applicable for other applications
than solidification [142]. General critical discussion of mi-
crostructure modelling is given in [143] highlighting phase
field and cellular automata methods. More examples of
multi-scale methods will be given below in a dedicated
chapter.

Random Sequential Adsorption

Random sequential adsorption (RSA) is a family of mod-
els for a variety of phenomena in chemistry, physics, bi-
ology, ecology, sociology and in many other fields as it is
a general and highly interesting mathematical and phys-
ical packing problem [144]. It is applicable on all kinds
of moving particles from atoms to motor vehicles arriv-
ing randomly as a Poisson process selecting a free space
based on a distribution of sites or slots. Particles become
bound if they find a vacant place (with no overlap with
other particles already occupying the actual space), or they
leave the system in case of no luck (possibly to try again).
The process continues for a certain period of time until the
distribution of sites becomes saturated (complete packing)
following the random packing scheme, or if nomore parti-
cles are arriving although there may still be sites available.
For excellent reviews see [145,146,147,148,149]. Colloids
and Surfaces A, vol. 165 is a special issue containing sev-
eral articles of RSA. The one-dimensional RSA model is
known as the “car parking” problem as it can be seen as an
illustrative and familiar analog. Imagine a long street with
apartment houses where people and families live. During
the day (office hours) there is plenty of space to park but
in the evening the parking spots become quickly occu-
pied (adsorption). In the next morning cars one after an-
other are driven away (desorption). The solution of this
1D RSA problem would give us an answer of how many
drivers on average (driving similar cars) can park at ran-
dom positions along a street of a certain length? This can
be solved analytically if the cars are equally long and the
parking slots are discrete. For continuous space along the
street the exact solution was given by a Hungarian math-
ematician Alfréd Rényi [150]. Higher dimensional prob-
lems are complicated and approximate solutions are given



Self-assembled Materials S 7945

Self-assembled Materials, Figure 11
A phase field model for a growth of a precipitate

based on series expansion, or as a sequential Markovian
process solved using Monte Carlo simulations although
the detailed balance does not apply for irreversible pro-
cesses.

The two dimensional RSA is an important and reli-
able model for molecules adsorbing on a surface reversible
or binding irreversibly (with covalent bonds) to specific
sites on the surface. Molecules can typically be monomers,
dimers (occupying two neighboring sites which are va-
cant). Polymers can be adsorbed if they find successive
empty slots on the surface. Various rules can be im-
posed on gas molecules approaching already occupied
site. The interactions can be both specific and non-spe-
cific depending on the studied systems. Orchestration of
van der Waals, electrostatic, hydrophilic/phobic interac-
tions as well as hydrogen bonds covalent and ionic bonds
leads to adsorption of molecules onto surfaces (consist-
ing of atoms and molecules). Collective sequential ad-
sorption (CSA) is a further generalization of RSA tak-
ing into account the local environment around the ad-
sorption site [146]. Even large biomolecular systems (e. g.
proteins, DNA, colloids, cells) can be coarse-grained and
treated with RSA methods. RSA have been used even for
translocation of biopolymers through pores [151] and nu-
clesomes on a stretched single strand DNA [152]. Gener-
alized RSAmethods can used to simulate multilayer build-
up in a self-assembled layer-by-layer (LbL) process [153].
Good agreement was obtained between the simulations
and experiment for colloids and poly-electrolytes suggest-
ing that the method could be extended to polymers and
proteins. Kinetics, jamming limit and structural phase be-

havior of polydisperse tethered nanoparticles are studied
by Gray et al. [154]. Dynamics of self-assembled polyelec-
trolyte multilayers on glass substrates have been studied
by Breit and coworkers [155]. The kinetics could be quan-
titatively understood using a RSA model for the buildup
of a film consisting of polyelectrolyte disks with polydis-
perse sizes. RSA types of methods in modelling of self-
assembled monolayers of charged colloidal particles are
reviewed in [156]. Erban and Chapman have presented
a diffusion driven random sequential adsorption simula-
tion model operating in real physical time containing fea-
tures for both reaction kinetics between the molecules and
the surface and geometrical constraints of the molecular
surface. It is illustrated by an assembly of reactive poly-
mers on a virus surface [157]. Pre-patterning is used as
a tool in RSA-based lattice Monte Carlo simulations to im-
prove the self-assembly in nano and micro-scale structure
engineering by Cadilhe et al. [158]. RSA model is applied
for gelatin self-assembly in binary mixture of water and
ethanol [159]. Short-time and long-time kinetics in col-
loidal adsorption to a monolayer are studied by combin-
ing RSAmodel and Brownian dynamics by Gray and Bon-
negaze [160] in the case of self-assembly to meso-struc-
tures.

Cellular Automata

The Cellular Automaton (CA) concept was created by
John von Neuman and Stanislaw Ulam more than a half
century ago to originally solve problems in evolution-
ary biology [161]. CAs are discrete dynamical systems



7946 S Self-assembled Materials

where space and time variables and all properties have fi-
nite discrete values. CAs start from simple identical (or
nearly identical) individual systems interacting locally but
evolve to complex systems following simple rules in a syn-
chronous manner. CAs are similar to Petri nets [162] in
providing a lessmathematical way to differential equations
and calculus. Other similar automata are the Turing sys-
tems, presented by Alan Turing in 1952 [163] showing
how a simple mathematical model can describe sponta-
neously spreading of reacting chemical specie giving sta-
tionary concentration patterns. Turing patterns can also
be found as stripes on zebras and spots on cheetahs and
elsewhere in nature. Maybe the most widely known appli-
cation of CAs is the tic-tac-toe like “Game of Life” by John
Conway from 1970, a very simple model simulating birth
and death of cells in a square lattice interacting according
to a set of Boolean conditions. It was easily adapted from
paper sheets to computer screen. Dynamic Cellular Au-
tomata (DCA) by Wishart and coworkers [164] is a sim-
ulation approach allowing a Brownian type of stochastic
motion of individual molecules. DCA is more flexible as it
allows several cells/molecules to move in a single step. Lat-
tice gas automata are another common use of CA which
together with the Boltzmann equation and kinetic the-
ory has led to development of Lattice Boltzmann simula-
tions [165], a powerful method to do fluid dynamics and
to solve the Navier–Stokes equations in a from-bottom-up
way. The obvious drawback in the current CA methods is
that the objects do not have realistic features.

The quantum-dot cellular automata (QCA) approach
is proposed as an alternative tomolecular electronics. The-
oretical behavior of QCA (arrays of Coulomb- coupled
quantum-dot cells) is studied in [166] and the state of each
QCA cell is determined by its interaction with neighboring
cells through the Coulomb interaction and demonstrated
experimentally [167] and the field was reviewed [168,169,
170]. A single-molecule implementation of a QCA cell is
presented combined with ab initio electronic structure cal-
culations [171] using simple prototype molecular systems
with a molecule in which charge is localized on specific
sites and can tunnel between those sites while the role of
the dots is played by redox sites, with tunneling paths pro-
vided by bridging ligands. Possibilities to coarse-grain cel-
lular automata, emergence, and the predictability of com-
plex systems are studied by Israeli and Goldenfeld [172].
As molecular self-assembly is driven by local, short-range
forces and therefore the dynamics is solely based on lo-
cal interactions and as atomistic simulations of self-assem-
bly become quickly complicated, a cellular automata based
simulation, in which data structures, representing differ-
ent molecular entities such as water and hydrophilic and

hydrophobic monomers, share locally propagated force
information on a hexagonal, two-dimensional lattice is
proposed, with the purpose of this level of description to
gain insight about entropy-driven processes in molecular
many-particle systems [173].

Nilsson and Rasmussen present a lattice gas tech-
nique for simulating molecular self-assembly of am-
phiphilic polymers in aqueous environments, where wa-
ter molecules, hydrocarbons tail-groups and amphiphilic
head-groups are explicitly represented on a three dimen-
sional discrete lattice [174]. A Cellular AutomataModel of
Diffusion in Aqueous Systems show that lipophilic solutes
diffuse faster than do polar solutes (in agreement with ex-
periments) [175]. Cellular automaton andMC simulations
for the case of CO oxidation on a catalytic surface with
simultaneous adsorption, reaction, and diffusion, includ-
ing the Eley–Rideal step in the reaction mechanism is pre-
sented [176]. As properties of diffusing species in micro-
porous materials are strongly influenced by the confining
framework, providing the energy landscape for the trans-
port process. Because of the simple topology and the cel-
lular nature of the cages of a zeolite Demontis et al. [177]
suggest that it is appropriate to apply to the study of the
problem of diffusion in tight confinement a time-space
discrete model such as a lattice-gas cellular automaton.

Multi-ScaleModeling

Molecules are moving in a world where “nanometer”
could be used as a standard length unit and “femtosec-
ond” is a convenient time unit. For us humans “meter”
and “second” are the familiar units to which we all can re-
late our daily activities. In measuring the time from the big
bang and distances between galaxies, both meter and sec-
ond turn out immediately not to be very convenient to use.
Obviously phenomena occur at different length and time
scales. Connecting time and length scales has rapidly be-
come a very vital area in from-bottom-up strategies. It will
certainly still take quite some time for multi-scale mod-
elling of matter to mature. Below we give examples of
both concurrent and hierarchical approaches to multiscale
modelling, the two main approaches.

“Concurrent” multiscale modelling can be accom-
plished by making geometric network of grid points de-
scribing the system at a detailed level successively coarser
while losing more and more details. For example a crys-
tal could be described with atoms or molecules in crystal
sites connected together in 3D net. By applying a scheme
with successive coarsening of connecting grid points ap-
proaching a continuum description can be coupled to the
atomistic scheme by finite element methods [178]. A spe-
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cific hand-shake region is created between the both scales.
This is used to model cracks and fractures both at atom-
istic and macroscopic scale.

“Hierarchical” multiscale modelling can be performed
by successively reducing the degrees of freedom which are
not needed in the next less accurate description of the
studied system. This makes the modelling faster and al-
lows longer length and time scales to be covered. A pow-
erful method called the Inverse Monte Carlo (IMC) was
presented by us [179] where the “Inverse Problem” was
solved completely to obtain interaction potentials (force
fields) from radial distribution functions (RDF). The IMC
constructs effective potentials consistent with the origi-
nal RDFs. It can be used for example by starting from
ab initio MD simulations and construct atomistic inter-
action potentials to be used in classical all-atom simula-
tions. In all-atom simulations IMC can construct coarse-
grained potentials for example by grouping together func-
tional groups in large molecular systems and eliminate the
solvent by incorporating it into the coarse-grained poten-
tials. These coarse-grained potentials reproduce the RDFs
in the all-atom simulations carried out with explicit sol-
vent. This scheme can be used even beyond this kind of
meso-scale description. There are other related methods
presented [180,181].

Innovative computational schemes for multiscale
modelling are reported continuously based on varying
strategies. Examples below are given of studies (i) to
couple first-principles simulations and other quantum
schemes (ii) to use results from atomistic simulations
to carry out subsequent coarse-graining (iii) to connect
atomistic schemes with continuum models (iv) to apply
kinetic Monte Carlo and other kinetic schemes subse-
quent to particle simulations, as well as (v) other combi-
nations of various methods discussed earlier in this article
are listed below, including a beautiful text-book example
(vi) of multi-scale modelling of human hair.

(i) Transparent interface is created between classi-
cal molecular dynamics and first-principles molec-
ular dynamics combining first-principles Born–
Oppenheimer local spin density molecular dynam-
ics (BO-LSD-MD) with classical molecular dynamics
in [182]. Effective quantum mechanical classical me-
chanical (QM/CM) partitioning method for multi-
scale modeling is proposed in [183]. Quantum me-
chanics at the core of multi-scale simulations with
neglect of diatomic differential overlap theory (used
in common semi-empirical schemes such as AM1,
PM3 and MNDO) is considered in [184]. Potential
parameterization based on extended model systems

where the force data is calculated from QM methods
on a limited range of applications is shown to be es-
sential for a consistent and ultimately, predictive em-
bedding approach to concurrent multi-scale materi-
als simulation in [185].

(ii) Automatic coarse-graining of polymers by deriv-
ing effective potentials for multi-atom units or
super-atoms from atomistic simulations is reported
in [186]. Hierarchical multi-scale modelling of plas-
ticity of submicron thin metal films allowing mod-
elling of thicker films a discrete dislocation model
of “diffusional creep” is presented in [187]. Materi-
als modeling platform bridging the molecular char-
acteristics of polymers with macroscopic proper-
ties is given in [188]. Linkage between atomistic
and meso-scale coarse-grained simulation based on
model where the force acting on the CG particles is
divided into the mean force (calculated from con-
strained MD simulations), friction force and random
force is discussed in [189,190]. Combined atomistic
and meso-scale simulation of grain growth in nano-
crystalline thin films with input materials parameters
obtained by MD simulation in [191]. Fuzzy cluster-
ing approach to hierarchical MD simulation of multi-
scale materials phenomena by combining a hierarchy
of sub-dynamics: (i) rigid-body cluster dynamics for
global conformational changes; (ii) implicit integra-
tion of Newton’s equations for the coalescence of the
clusters; and (iii) normal-mode analysis of fast atomic
oscillations is used to facilitate the seamless integra-
tion of the multiple levels of abstraction in [192].
A multi-scale simulation of tungsten film delamina-
tion from silicon substrate where MD simulations of
a single crystalW block under tension are used to cal-
ibrate a new decohesion model to investigate the ef-
fect of specimen size and loading rate on the material
properties in [193].

(iii) Coupling of atomistic and continuum models in
computational materials science using finite ele-
ment methods is studied in [194] and finite-element
method multi-scale atomistic-continuum modelling
of crack propagation in a two-dimensional macro-
scopic plate by coupling the crack dynamics at the
macro scales and nano-scales via an intermediate
meso-scale continuum is carried out with molecu-
lar dynamics simulation driving the crack tip forward
in [195].

(iv) Molecular simulations in zeolitic process design us-
ing configurational-biased Monte Carlo simulations
combined with transition rate theories kinetic Monte
Carlo and molecular dynamics simulations [196].
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Multi-scale modeling of hydrogen isotope diffusion
in graphite is carried out where molecular dynam-
ics calculations resolve the microscopic length scale
and deliver reliable input data for kinetic Monte
Carlo calculations (jump frequencies, migration en-
ergies, jump step-sizes) from meso-scale up to the
macroscopic system length [197]. An MD study of
the carbon-catalyst interaction energy for multi-scale
modelling of single wall carbon nano-tube growth
is presented [198]. A multi-scale approach to radi-
ation-induced segregation at various grain bound-
aries based on a new rate equation model and MD
simulations is reported in [199]. Multi-Scale Compu-
tational Framework by integrating a Computational
Fluid Dynamics software, a Kinetic Monte Carlo
solver and an MD simulator for the self-assembly of
atoms into molecular structures is presented in [200].
A novel polycrystalline thin film growth simulator
with an atomic level one-dimensional kinetic lattice
Monte Carlo model and a real time feature scale two-
dimensional facet nucleation and growth model is
demonstrated in [201]. A multi-scale atomistic study
of the interstitials agglomeration in crystals using
a hierarchy of atomistic approaches: the tight-bind-
ing molecular dynamics, molecular dynamics based
on environment dependent inter-atomic potentials
and a lattice kinetic Monte Carlo (LKMC) I reported
in [202]. Computer simulations, spanning across dif-
ferent time and length scales, are used to study thin
film growth morphology in organic self-assembled
monolayers using thiophenes on gold. Ab initio cal-
culations created a catalog of the energetics in vac-
uum and interactions in three orthogonal orienta-
tions to a Au (111) surface in [203]. This informa-
tion was supplied as the input for kMC simulations
of dimer and trimer representations of small organic
molecules to describe both sub-monolayer and mul-
tilayer growth. Finally, MD studies were used to un-
derstand the packing structures of stable polymorphs
of thiophene SAMs.

(v) Studies of behavior and structure of charged sur-
faces on different length scales is carried out using
a different computational schemes yielding different
levels of description of charged surfaces. (a) Coarse
grained MC simulations of idealized surfaces incor-
porate large-length-scale fluctuation and correlation
effects in the counter-ion cloud at a charged surface.
(b) Brownian dynamics simulations of more realis-
tic and structured surfaces give modified counter-
ion distributions, also allowing estimations of mobil-
ity of counter-ions at charged surfaces. (c) All-atom-

istic MD simulations reproduce water structuring ef-
fects at surfaces such as hydration and hydropho-
bic de-wetting. (d) Ab initio calculations finally give
the effective interactions between oppositely charged
groups in vacuum and in solution in [204]. Multi-
scale simulations using generalized interpolation ma-
terial point method and Structured Adaptive Mesh
Refinement Application Infrastructure parallel pro-
cessing as a multiple length scale tool from nanome-
ter to millimeter is presented in [205]. To simulate
the agglomeration carbonaceous nanoparticle assem-
bly was studied using a multiscale coarse-graining
by starting with an atomistic ensemble of 10 000
nanoparticles (or effectively 2 million total carbon
atoms). The coarse-graining was accomplished ap-
plying a force-matching procedure. The results show
rich and varied clustering behaviors for different par-
ticle morphologies [206]. A multiscale coarse-grain-
ing to derive coarse-grained models is applied to
C60 and to carbonaceous nano-particles produced
in combustion environments. The coarse-graining of
the inter-particle force field is accomplished applying
a force-matching procedure from all-atomMD simu-
lations reproduce accurately the structural properties
of the nano-particle systems [207].

(vi) A very impressive multiscale modelling approach to
themechanics of human hair fibres is given by Akker-
mans in [208] providing a very concrete example of
multiscale modelling work-flows at their best where
mesoscale models are constructed from atomistic
simulations and where meso-scale simulation meth-
ods are used as input to finite-element calculations.

There are several excellent reviews discussing a great vari-
ety of inventedmulti-scale modelling schemes inmaterials
science listed below and well worth of consulting. Simula-
tion methods including broad areas of quantum mechan-
ics, molecular dynamics and multiple-scale approaches,
based on coupling the atomistic and continuum mod-
els are discussed in [209] and continuum/quasi-contin-
uum approaches, the kinetic Monte Carlo technique and
accelerated molecular dynamics simulation are gathered
in [210]. Recent advances in bridging scale between quan-
tum mechanical and continuum coupling are briefly de-
scribed in [211] andmultiscale hybrid simulationmethods
for material systems based on tight-binding DFT, MD and
continuum models for deformation and diffusion on sur-
faces are reviewed in [212]. A seamless coupling of quan-
tum to statistical to continuummechanics involving mod-
els for unifying finite elements, molecular dynamics and
semi-empirical tight-binding and coarse-grained Molec-
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ular Dynamics as an effective model in solid state is ex-
plained in [213]. Current trends from atomistic simulation
towards multiscale modelling of materials based on quan-
tum mechanical, especially density functional theory for
electronic properties linked to atomic/molecular dynamics
and kinetic Monte Carlo simulations where coarse grain-
ing leads to lattice gas and cellular automata, and also to
continuum equations solved by finite-element and finite-
difference techniques are discussed in [214]. Vvedensky
presents a comprehensive outlook and an excellent review
of current multiscale modelling methods for nanostruc-
tures across a vast range of length and time scales clearly
stating that a complete understanding of the behavior of
materials thereby requires theoretical and computational
tools that span from the atomic-scale detail of first-princi-
ples methods to the more coarse-grained description pro-
vided by continuum equations with the ultimate aim to
systematically couple the scales from the atomistic to the
continuum level in [215].

Multi-scale mechanics of nano-composites including
an interface to better understand the phenomenological
changes across multiple length and time scales are re-
viewed in [216] and current multi-scalemodeling and sim-
ulation of nano-structured materials in [217]. Modelling
the nano-scale phenomena in condensed matter physics
via computer-based numerical simulations focusing on
the adhesive and indentation properties of the solid sur-
faces in nano-contacts, the nucleation and growth of nano-
phasemetallic and semi-conducting atomic andmolecular
films on supporting substrates, and the nano- and multi-
scale crack propagation properties of metallic lattices are
discussed in [218]. Heterogeneousmultiscalemethods, ap-
plicable on complex fluids, micro-fluidics, solids, interface
problems, stochastic problems, and statistically self-simi-
lar problems are reviewed in [219] and the emerging role
of multiscale modeling in nano- and micro-mechanics of
materials in [220].

Hierarchical modeling of amorphous polymers where
a broad spectra of length and time scales governing the be-
havior of these materials is based on the use of connec-
tivity-altering Monte Carlo algorithms for rapid equilibra-
tion of atomistic models of long-chain polymer systems,
calculation of their conformational, packing and volumet-
ric properties, and assessment of their entanglement struc-
ture, and self-consistent field calculations of morphology
development in complex systems containing block copoly-
mers, coupled with rubber elasticity theory for the predic-
tion of the stress-strain behavior of these systems are dis-
cussed in [221]. Linking various length scales via materi-
als informatics is reviewed in [222]. Recent progress in the
simulations of liquid crystals across a range of length and

time scales is reviewed in [223] with three material prop-
erties of liquid crystals (the archetypal self-assembled ma-
terials in Nature) are discussed in detail: elastic constants,
rotational viscosity and helical twisting powers. Computer
simulations of surfactant solutions are reviewed by Shel-
ley & Shelley discussing the importance of connecting the
inherently disparate length scales treating the systems us-
ing a single coherent multiscale simulation [224]. In an ex-
cellent review dealing with self-assembly from nano-scale
to micro-scale colloids, issues like the effect of the shape
and composition on assembly and the role of these factors
in the self-organization of particles into ordered assem-
blies, scale dependent effects on assembly related to inter-
particle forces, vitrification and gelation and also build-
ing block design rules from computer simulations using
anisotropic interactions are discussed in [225]. Karakasi-
sis and Charitidis give an excellent review of methods in
multiscale computational materials science how to con-
nect electronic structure calculations with classical atom-
istic simulation using molecular dynamics or Monte Carlo
methods at the nano/micro scale and further with kinetic
Monte Carlo for larger system/time scales and finite el-
ements for very large scales, presenting both hierarchi-
cal and hybrid strategies in [226]. A multiscale modelling
scheme is reviewed, starting the initial nucleation pro-
cesses using MD simulation and inputing the data into
a cellular automaton (CA)-based model of the micro-
structure formation at the micro-scale, as well as to the
macroscopic heat flow equation in [227]. Thermodynam-
ics of self-assembly of surfactants in solution through sim-
ulations is now being expanded to include phenomena
in the fluid dynamic regime a smooth link from MD to
mesoscopic and macroscopic length and time scales. Re-
cent trends in this area along with new results based on
classical approaches are reviewed in [228].

Future Directions

Self-assembly is a process of pivotal importance that
should be very attractive to study using modelling and
simulations. The intermolecular interactions that drives
the process can be directly introduced into common forms
of the interaction potentials and force-fields. Many self-as-
sembly processes can indeed also be rationalized and un-
derstood both molecularly and macroscopically by means
of thermodynamics.

Self-assembly is typically a relatively slow process that
proceeds through several metastable states. The extended
time-scale and structure evolution that usually extends of
several length scales requires a combination of approaches.
The rapid expansion of multi scale modeling approaches
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show much promise but it is still a long way to go before
the fine details of self assembly processes with durations of
hours up to weeks can be captured accurately. In principle
the kineticMonte Carlo method could cover arbitrary long
time scales but it requires detailed knowledge about the
system, its states and barriers between them.

Another great challenge in modern computational
molecular science is the transition from a descriptive to
a predictive level of molecular modeling. Despite several
examples of successful predictions of molecular proper-
ties in silico, current molecular modeling remains largely
on a descriptive stage: simulations are used to describe al-
ready known experimental phenomena, in order to give
a better understanding, for testing the theories describ-
ing experiment, or for correct interpretation of the ex-
perimental data. Ability of simulations to predict, to dis-
cover something new is still rather limited. While some
properties are predicted, others are not, successful inves-
tigations are published while failures are not, etc., so it is
still difficult to rely on simulation results and experimen-
tal verification of simulation is therefore always needed.
One of the reasons to a limited predictability of molecu-
lar models is that the currently used force fields were de-
veloped originally at the early stages of molecular mod-
eling in the 80s with rather limited computing resources
at hands and later only refined in a few occasions. In the
case of meso-scale modeling on a coarse-grained level,
even a functional form of the interaction potential is not
known and therefore many ad hocmodels are used. In or-
der to substantially improve reliability and predictability
of molecular simulations, a new generation of force fields
would be necessary, which have to be derived in a more
consecutive manner with more emphasis on the funda-
mental ab-initio approaches. To replace experiment with
a computer experiment surely lies far in the future. How-
ever, if modelling can point the right direction to an ex-
perimentalist, much guesswork, effort and resources can
be saved.
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Glossary

Self organization A property of open and complex sys-
tems that achieve their order spontaneously, that is, by
means of “self-organization”.

City A form of settlement that first emerged in the Near
East (the core being Mesopotamia) some 5500 years
ago. Since its first appearance in Mesopotamia it has
diffused in space and time.With colonialism theWest-
ern–European form of city has diffused to the en-
tire world, suppressing on the way other forms of
cities (e. g. in South America, East Asia, etc.). In the
last few decades the city has become the most domi-
nant form of settlement: for the first time in human
history more than half of world population lives in
cities.

Urbanism The term refers to the totality of life in cities:
the interrelations between the social structure, culture,
economy, politics, architecture, physical morphology,
. . . associated with life in cities. The first appearance
of cities is thus termed the urban revolution. Most stu-
dents of urbanism would agree that 21st century soci-
ety is undergoing a major urban transformation; some
describe it as a new urban revolution.

Planning Planning is, on the one hand, a basic cogni-
tive capability of humans while on the other, a profes-
sion and research domain termed interchangeably city
planning, urban and regional planning or environmen-
tal planning. City planners work and act in the context
of planning law and administration the aim of which is
to regulate and control life in cities.

SIRN (synergetic inter-representation network) An ap-
proach to cognitive mapping and urban dynamics sug-
gesting that cities emerge, maintain their order and
change again as a consequence of an on-going inter-
action between cognitive maps that are constructed in
the mind/brain of humans as internal representations
and the city as a collective external representation. This
on-going interaction gives rise to a network some of
whose elements are in the mind/brain, while others in
the world.

Information compression, inflation and adaptation
A view suggesting that Shannon’s notion of infor-
mation is a property of closed systems and that in
complex, self-organizing systems one has to take into
consideration the role of semantic information. Due to
semantic information, the process of self-organization
often entails information compression; in some cases
it entails information inflation. The suggestion is that
information compression and inflation are two facets
of the process of information adaptation.
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Definition of the Subject

Self-organization is a central property of open and com-
plex systems. While the concept had already appeared in
the 1940s, its modern use was pioneered in the 1960s
by people such as Haken [50,51] with his theory of syn-
ergetics, Prigogine with his notion of dissipative struc-
tures [87,109,110] and others (see review in Chap. 3.1
[95]). Such systems are typically in “a far from equilibrium
condition” and exhibit phenomena of chaos, fractal struc-
ture and the like. For a long time, the term “self-organiza-
tion” was used also as an umbrella name for these theories;
nowadays it is common to refer to these theories as com-
plexity theories.

The notions of self-organization and complexity orig-
inated in the sciences, specifically in physics, as a property
of natural systems. However, as we shall see below, from
the start they were associated with the city – at the begin-
ning the city was used as a metaphor to convey the no-
tion of “self-organization” [87] and at a later stage it was
studied as a genuine self-organization system in its own
sake [5].

Most theories and methodologies of complexity devel-
oped in the last three decades have been applied also to
the study of cities with the result that we now have a rich
body of research on fractal cities [20], self-organization and
the city [95], cities and complexity [16], cellular automata
and agent base urban simulation models [22], studies on
cities from the perspective of Bak’s self-organized critical-
ity [20], studies on cities as networks [16] and much more.
This growing body while enriching our understanding of
cities and providing sophisticated tools to city planning,
also exposes problems that will become the challenges for
the next generation of studies on complexity, self-organi-
zation and the city.

Introduction

The title “Self-Organization and the City” enfolds two no-
tions – ‘Self-organization’ and ‘City’, a thesis suggesting
that cities are complex self-organizing systems, and an in-
consistency – the view of cities as complex systems that
achieve their order spontaneously contradicts the tradi-
tional view of cities as symbols of organized order and
planning. From the title thus follow four questions: what
is self-organization?What is a city? In what sense are cities
self-organizing systems? What is the meaning of plan-
ning in a self-organizing system? In an Encyclopedia of
Complexity and System Sciences such as this, there is no
need to introduce the term self-organization beyond what
has been said about it above; we are thus left with three

introductory tasks, namely, to clarify the notion “City”,
elaborate the thesis that cities are self-organizing systems,
and, solve the contradiction between self-organization and
planning in the realm of cities.

What is a City?

There are two ways to answer this question: first, by look-
ing at explicit attempts to define a city. Second, by expos-
ing the way the different theories of cities explicitly de-
scribe, or implicitly perceive, a city.

Explicit Attempts to Define a City The history of the
many attempts to define “a city” is rather confusing:
Whenever a definition was proposed, it was always pos-
sible to falsify it (in Popper’s [90] sense) by putting for-
ward cities that do not comply with the definition. The
main reason for the failure to define cities is that the vari-
ous attempts to do so were always made with reference to
what in cognitive science [115] is called classical categories.
That is, groups composed of entities sharing some neces-
sary and sufficient conditions that define them as a cate-
gory and distinguish them from other categories. Students
of urbanism have implicitly treated cities as classical cat-
egories, and yet, cities are not classical categories – they
form a category due to whatWittgenstein [136] has termed
family resemblance. As a consequence, attempts to define
them in terms of a classical category ended up with a fail-
ure [95].

A family resemblance category becomes a category not
when its elements share some common denominators, but
when they form a network of partial links and similarities.
Further research and experiments have found that many
family resemblance categories have a core-periphery struc-
ture, in the sense that some instances of the category are
more prototypical of the category than others and they thus
form its center while the rest of the instances form the cat-
egory’s periphery [74,78,115].

The city is a good example of a family resemblance cat-
egory with a core periphery structure. On the one hand,
there are no common elements between the “first” cities
of some 5,500 years ago and the cities of today except for
the name. On the other hand, the first cities had space-
time links and similarities with subsequent cities, which
in turn had common elements with subsequent cities, and
so on until the global cities of today. The result of this
process is that cities form a huge space-time family re-
semblance network extending in time and space from the
ancient cities of 5,500 years ago to the cities of today. In
this network, one can identify space-timemoments during
which certain cities became more characteristic or proto-
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Self-Organization and the City, Figure 1
Thünen’s type land-use system as transformed into an urban land-use system by location theory. Businesses are prepared to pay
high rent at the center of the city, but are reluctant to “live” far from it. Their spatial demand curves (or rbc – rent bid curves) are thus
the highest and steepest. Industrialists, in this exposition, are exactly the opposite and residents are in between: they cannot afford
to pay the high prices at the center, but are prepared to live far from it, and so on. Each land use thus occupies a ring were it can pay
(bid for) the highest rent. Note that the principle of marginal utility which is implicit in Thünen’s landscape, here appears explicitly
as the central economic principle

Self-Organization and the City, Figure 2
The diagrams of Thünen’s Isolated State: Left, upper part of the diagram “This shows the Isolated State in the shape it must take from
the assumptions made in Section One. . . ”. Left, lower part “Here we see the Isolated State crossed by a navigable river. Here the ring
of crop alternation become very much larger, stretching along the river . . . The effect of constructing a highway is similar, . . . ” (Par.
385). Right “Thediagram illustrates the effect of the Towngrain price on the extension of the cultivated plain” (Par. 386). Source: [129]

typical of the category than others. Such cities have tem-
porarily captured the center of the category city, pushing
to the periphery the rest of the instances, only to be re-
placed in subsequent space-time moments by other pro-
totypical cities, other centers and other peripheries. How

does this huge network evolve in time and space? The an-
swer is: “by means of self-organization” [95].

Images of Cities This section discusses images of cities
that are implicit or explicit in several of the urban theories.
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� Self-Organization and the City, Figure 3
Christaller’s systems of central places according to the three lo-
cational principles. a The marketing regions in a system of cen-
tral places. b A system of central places developed according to
the traffic principle. c A system of central places developed ac-
cording to the separation principle. (Source: Figs. 2, 4, 6 in [36])

Only theories that facilitate subsequent discussion will be
discussed.

The Economic City The city is portrayed as a center-pe-
riphery structure with several rings that come into being
by an economic competition between land uses that dif-
fer in their spatial demand function (Fig. 1). The land uses
with the highest and steepest spatial demand curves or rent
bid curves [8,69] capture the central ring – the most ac-
cessible area of the city – thus forming the CBD (central
business district); the rest of the land uses occupy the pe-
ripheral rings. The origin of this city image is von Thü-
nen’s [129] Isolated State (Fig. 2): Originally formulated
as a theory of agricultural land uses it became the found-
ing theory of all location theories including urban land use
theories.

The City as a Central Place The city is perceived as
a central place that mediates between the city’s comple-
mentary region and other cities that form a hierarchi-
cal network of central places (Fig. 3). The origin of this
view is Christaller’s [36] central place theory that perceived
the city as a central place for tertiary activities (a mar-
ket place, transportation node and administrative center).
Losch’s [81] central place theory was more ambitious and
complicated and portrayed the city as a central place for
all production, consumption, transportation and political
activities (Fig. 4).

The City as a Node in a System of Cities The city here
“looses” its autonomy in the sense that it is perceived as
a node in a system of cities – no attention is paid to the
city’s role or function; the focus of interest is on the sys-
tem as a whole. This view is due to Auerbach [10] who al-
ready at the turn of the 20th century showed that the rank-
size distribution of cities obeys the power law. In a famous
work from 1949 Zipf showed that this rank-size distribu-
tion typifies not only cities (Fig. 5), but a whole range of
phenomena [138]. Zipf’s work provided a source of inspi-
ration to a long list of subsequent studies on systems of
cities [111].

The Ecological City As in the economic city, here too,
the city is portrayed as a center-periphery ring structure.

However, here the city’s structure emerges out of a com-
petition between cultural and socio-economic groups in
a way similar to competition between species in natural
ecology. The various studies in this domain are termed
urban ecology; their source of inspiration is the Chicago
school of social ecology. Several urban landscapes were
suggested the most dominant one is Burgess’ [30,31,32]
ring structure (Fig. 6).

The City as a Representation of Society The city is here
perceived as a spatial representation of society as a whole.
This image of the city emerged in the early 1970s as a con-
sequence of a paradigm shift the study of cities under-
went – from liberal social and economic theories to more
radical ones with Marxism being the most dominant view.
Two Marxist interpretations of the city can give the flavor
of this approach. The first is Castells’ [33] view according
to which the city is a spatial representation of the struc-
ture of society as perceived by structuralist-Marxist theory
(Fig. 7). The second is Harvey’s view according to which
the city’s landscape emerges, as a logical consequence, out
of internal contradictions inherent in the capitalist mode
of production that according to this view, dominates world
society of the 20th and 21st centuries. Namely, between
forces of spatial agglomeration and processes of spatial
dispersion. As illustrated in Fig. 8, this tension can be re-
solved only by the urbanization of capital [47,63].

The City as a Socio-cultural Force The city is here per-
ceived as a force that is shaping the life of the people
living in it. In urban societies it implies that the city is
in fact shaping society. This view is due to the study
of Wirth’s [135] Urbanism as a way of life and also of
Park’s study The City [88]. In 1970 Lefebvre has pub-
lished a monograph La Révolution Urbaine suggesting
from aMarxist point of view that society is reaching a stage
of being completely urban so that urbanism is replacing
industrialism as the major force of society [79].

The Postmodern City The city of 21st century is de-
scribed as the postmodern city [95]: Untamed, shrew,
capricious, ever-changing; actually it is not a city but a text
written by millions of unknown writers, unaware that they
are writers, read by millions of readers, each reading his
or her own personal and subjective story in this ever-
changing chaotic text, thus changing and recreating and
further complicating it. Today’s urbanism is a big the-
ater at the center of whose stage we see a kaleidoscope
of shapes, forms, high-tech science-fiction structures, cul-
tures and sub-cultures, Italians, Chinese, Japanese, Jews,
Indians, Gays, Lesbians. Yapese; nothing is stable, nothing
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Self-Organization and the City, Figure 4
a The derivation of Lösch’s system of central places. Top The derivation of a spatial demand cone with its market area (right) out of
an “ordinary” demand curve (left). Bottom Development of market areas from the large circle to the final small hexagon. Source:
Figs. 20–23 in [81]. b Lösch’s derived system of central places with their market areas, divided into “city-poor”, “city-rich” sectors.
Source: Fig. 28 in [81]. c A Lösch system of central places modified by Isard [69] so as to be consistent with the resulting population
distribution

is true nor matter for more than a second, not the Marxist
urban categories, nor any other grand theory or truth; all
must go, must move, clear the way to the new next what-
ever it is.

The Self-organizing City Strangely enough, an image of
the city similar to the postmodern one is emerging out of
complexity studies of cities. This is a seemingly similarity,
however; a closer look reveals, first, that theories of com-
plexity made a direct and explicit link to the views of cities
as central places, to the studies on systems of cities and to

the ecological views on the city. Second, that the notion
of self-organizing city has several important resemblances
with modern social theory oriented urban studies that per-
ceive the city as the representation of society.

In What Sense Are Cities Self-organized Systems?

Self-organization is a property of systems that are open
and complex. No one plan such systems, no one fully con-
trols them and yet they have order, rules, organization
and all these emerge spontaneously by means of self orga-
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Self-Organization and the City, Figure 5
Rank size distribution of cities with more than 100,000 inhabitants in four different countries. Source: Fig. 2.7 in [27]

nization. A nice example of self-organization is provided
by human languages (Chinese, Hebrew, English . . . ). Each
such language is an open system; each is a complex system;
each is a system that emerged out of synergetic interac-
tion between a huge number of people (the “parts” of such
systems); no one has ever fully controlled languages; no
one has fully planned a language; and yet each of the hu-
man languages has order, rules, organization and all these
emerged spontaneously by means of self organization.

Similarly to human languages, each city is an artifact;
each is an open system; each is a complex system; each city
is a system that emerged out of interaction between a huge
number of people; no one fully controls it; and yet it has
order, rules, organization and all these spontaneously by
means of self organization.

But cities are not languages. For one thing, their prod-
ucts are stand-alone objects such as buildings, roads,
bridges, etc. that exist and survive independently of their
producers. The products of languages are humans’ voices

and gestures that have no existence independent of their
producers. Cities, in this respect, are akin to writing and
texts – the external, stand-alone, representations of lan-
guages. The appearance of cities, some 5,500 years ago,
hand in hand with writing, is, to my mind, not acciden-
tal.

A second difference concerns planning: There are no
language planners and the attempt to “plan” the interna-
tional language of Esperanto ended in failure. But there
are many city planners – much more than appreciated in
conventional planning theory. This is so because planning
is a basic human property with the implication that each
agent operating in the city (person, family, company) is
a planner on a certain level. In certain cases, because of
the nonlinearities that typify the complexity of cities, the
planned action of a single individual might influence the
city more than that of the official planners and their plans.
Urban dynamics can thus be seen as an on-going interac-
tion between planners and their plans when none of them
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Self-Organization and the City, Figure 6
a Burgess concentric zone model. (1) Central Business District,
(2) Zone in transition, (3) Zone of working men’s homes, (4) Res-
idential zone, (5) commuters’ zone. b Regional differentiation of
Chicago as commonly presented in several geographical text-
books. Source: [95]

can fully determine the final form and structure of the city.
They are all participants in a big city-planning game (see
Part III in [95]).

The Inconsistency Between Self-Organization
and Planning

All theories of cities were associated with city planning.
The basic idea is that the city is an artifact and as such
a product of humans’ intentions and needs. Planning is
needed in order to implement human needs and inten-
tions in a rational way. The notion of complexity suggests
that the city is a product of self-organization; if this is so,
who needs city planning? The answer to this inconsistency
has already been given above: the plans produced by city
planners, like those produced by “ordinary” urban agents,
are participants in a big city-planning game.

Complexity Theories of Cities – an Overview

The discussion in this section proceeds under the titles of
eight “cities” that are related to general theories or specific
methodologies. It starts with ‘dissipative cities’ to indicate
that Prigogine’s was the first complexity theory applied to
the study of cities

Dissipative Cities

In their introduction to Self-Organization in Nonequilib-
rium Systems Nicolis and Prigogine [87] use the example
of a city as a metaphor to convey to their fellow physicists
what they mean by “self-organization.”

“An appropriate illustration would be a town that
can only survive as long as it is a center for inflow of
food, fuel . . . and sends out products and wastes.”

Peter Allen [5] – Prigogine’s student – showed that
towns and cities are not just metaphors, but genuine self-
organizing systems. He did so by reformulating central
place theory (above Sect. “Images of Cities”) in terms
of Prigogine’s theory. (Note the resemblance between
the hexagonal landscapes of central place theory and the
hexagonal Bénard cells – one of the canonical experiments
of the paradigm of self-organization).

Allen and co-workers’ have developed a sequence of
several models which elaborated their theoretical treat-
ment of hierarchical landscapes of central places, first with
respect to systems of cities in a given region and later at
the intra-urban scale in connection with a single city. At
a later stage they have also applied their models to real
case studies of Brussels and the Belgian provinces [121],
see also [109].

A typical model of Allan’s starts with an infrastruc-
ture of localities in a region, each with its residents and
jobs. The actors are individuals who migrate in order to
get employment, and employers who offer or take away
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Self-Organization and the City, Figure 7
The Marxist city as a spatial representation of social structure [33]. Source: [47]

Self-Organization and the City, Figure 8
The Marxist city as an outcome of basic tensions in the landscape of capitalism [63]. Source: [47]
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Self-Organization and the City, Figure 9
Allen and Sanglier’s simulated evolution of a dissipative system
of cities. a at time (t) t D 4; b at t D 12; c at t D 20; d at t D 34

jobs depending on the market’s situation. The migra-
tion/interaction between localities and the introduction
and extraction of economic activities (i. e. employment op-
portunities), create for each locality a kind of local “car-
rying capacity” and for the system as a whole nonlineari-
ties and feedback loops which link population growth and
manufacturing activities. An example for a simulated sce-
nario produced by the model is Fig. 9. It starts (Fig. 9a)
with a hypothetical region characterized by a rectangular
lattice of homogeneous localities. Then, the mere play of
chance factors, such as the place and time where differ-
ent enterprises and migrations start, produce symmetry
breakings which entail an uneven distribution of popula-
tion, employment and so on (Figs. 9b–d). The result is an
evolutionary process by which new urban centers emerge,
grow, and form the whole of the regional system of central
places; as the system evolves, some old localities grow, oth-
ers decline or even disappear, thus constructing the spe-
cific history of this region.

Allen and co-workers’ approach exposes the similar-
ity and difference between the “old” static approaches of

Christaller and Lösch, and the new treatment by means of
self-organization. In both, economic activities and interac-
tions give rise to cities as central places. However, while in
the old formulations the landscape reflects an equilibrium
state which is the optimized sum of the properties of the
various economic forces, the new landscape reflects a far-
from-equilibrium situation in which the spatial hierarchi-
cal order among the central places is obtained, maintained
and then transformed, by means of interplay between in-
teraction, fluctuations and dissipation.

Synergetic Cities
Two main approaches of synergetics have been applied to
the study of cities. The first is the master-equation ap-
proach that is characteristic of Weidlich and co-work-
ers studies in sociology, economics and urban dynam-
ics [131,132,133,134]. For many years this was the main
synergetic approach to cities, and most applications thus
far have been within this conceptual frame [48,112,119].
The second, the pattern recognition approach, typifies
the synergetics’ treatment of pattern formation, cognition,
pattern recognition and brain activities, as developed in
the last three decades by Haken and co-workers [56]. Since
the 1990s this approach has been applied to the study of
cities as self-organizing systems [58,95].

Slow Cities and Fast Regions One way to look at
Haken’s synergetics and its slaving principle is in terms of
interplay between slow and fast processes:

If in a system of nonlinear equations of motion for
many variables these variables can be separated into
slow ones and fast ones, a few of the slow variables
. . . are predestined to become “order parameters”
dominating the dynamics of the whole system on
the macro-scale [134].

This perspective stands at the basis of Weidlich’s and
co-workers studies on sociodynamics and cities [131,132,
133,134]. According to this perspective, fast and slow pro-
cesses are easily identifiable in processes of settlement
and urbanism. The fast ones typify the local microlevel of
building sites, streets, subways, etc., whereas the slow pro-
cesses typify the macrolevel of whole regions which are of-
ten described as systems of cities. The relations between
the slow and the fast processes are described by the slaving
principle: on the one hand, the regional system

serves as the environment and the boundary con-
dition under which each local urban microstruc-
ture evolves. On the other hand, the . . . regional
macrostructure is . . . the global resultant of many
local structures [134].
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Self-Organization and the City, Figure 10
Building and development under population pressure [134]. Top: on a uniform urban plain. Bottom: on an urban plain with distur-
bances
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This circular causality between the local and the global,
allows one to study global regional systems by assuming
that local processes adapt to the slow regional ones, and to
study local urban processes by treating the regional con-
text as given, and of course to study the complex interplay
between the local and the global. In all three cases Wei-
dlich has recently prescribed a four stages approach: stage
1 concerns the configuration space of the variables; stage 2,
measures the utility of each configuration; stage 3, defines
transition rates between configurations which are in fact
utility differences; stage 4 derives stochastic or quasi-deter-
ministic evolution equations for the system under consid-
eration. The central evolution equation is the master equa-
tion which defines the probability that the configuration
under examination is realized at a certain time.

The above theoretical procedure has been used to
study the role of population pressure in “fast and slow pro-
cesses in the evolution of urban and regional settlement
structures”. Figure 10 brings some results from these stud-
ies, in which the city capacity for building and develop-
ment is related to population pressure. Figure 10a shows
the evolving city capacity when the urban plain is uniform,
and Fig. 10b, when it is disturbed in one of its sites.

Pattern Formation and Pattern Recognition in the City
The paradigm of pattern recognition was derived by an
analogy to the material process of pattern formation [54].
Haken and Portugali suggested that the synergetic pattern
recognition paradigm is specifically attractive for the study
of cities [58]. The latter can be perceived as self-organizing
systems which are both physical and cognitive: individu-
als’ cognitive maps determine their location and actions in
the city, and thus the physical structure of the city and the
latter simultaneously affects individuals’ cognitive maps of
the city. In their preliminary mathematical model Haken
and Portugali construct the city as a hilly landscape which
is evolving, changing and moving as a consequence of the
movement and actions of individuals (firms etc.). The lat-
ter give rise to the order parameters which compete and
enslave the individual parts of the system and thus deter-
mine the structure of the city. The new feature of this ex-
position is that the order parameters enslave and thus de-
termine two patterns (Fig. 11): one is the material pattern
of the city, and the other is the cognitive pattern of the
city – its cognitive map(s).

Chaotic Cities

Self-organization is often regarded as a theory aboutOrder
out of Chaos [110] and yet, with a few exceptions [39,95]
chaotic behavior is rarely studied in cities. Most complex-

Self-Organization and the City, Figure 11
The city as self-organizing systems which is at the same time
both physical and cognitive. Its emerging order- and attention-
parameters enslave the city’s cognitive and material patterns.
Source: [95]

ity studies of cities perceive cities as ordered structures
which the theory of complexity explains just how their or-
der state was created. According to Batty (see p. 29 in [16])
this is “because the required growth rates [for chaotic be-
havior to appear in cities] are far too large”.My view is that
this is due, firstly, to the tendency of most students of com-
plexity to focus on the short-term dynamics of Western
cities from which perspective cities are indeed structurally
stable. However, when the focus of interest turns to the
long-term rural urbanmigration process in a country such
as China, or to the archaeological record of the rise and fall
of urban cultures [95,105], chaos suddenly appears. Look-
ing at this longue durée [26] of cities, their evolution ex-
hibits a very distinct and routinized path: a long period of
“steady state”, followed by a short period of strong fluc-
tuations or chaos, from which the system re-emerges to
a new level of steady state and structural stability, and
so on (Fig. 12). As can be seen, the urban system moves
from one structurally stable state to another, via bifurca-
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Self-Organization and the City, Figure 12
The evolution of the settlement system in Palestine from the Early Bronze Age period to the Iron Age. Source: [100]. Top: A descrip-
tion in terms of chaos and order. Middle: A description of the process as a rhythm between agriculture and urbanism, interrupted
by global collapses of the urban system. Bottom: Calculated population changes in the Early Bronze and Middle Bronze periods.
Source: [93,95]

tions, when every evolutionary move is a transition from
a microscopic chaotic state to an ordered, macro, steady
state.

Secondly, this is due to the fact that phenomena of
chaos and their role in cities during their short-term struc-
turally stable periods have not as yet been fully studied. In
a preliminary attempt to do so it has been found that often,
when the city as a whole evolves stably, a few local unstable
chaotic areas are found captive within the otherwise sta-
ble city. This phenomenon has been termed the captivity
principle with the suggestion that it might play a supple-
mentary role to Haken’s slaving principle (see Chap. 5.8
in [95], [61]), namely, that these local islands of instability
are needed in order to maintain the overall global stability
of the city. Figure 15 below provides a hypothetical exam-
ple simulated by means of cellular automata.

The play between chaos and order might show up also
in the daily routines of cities. The movement of cars on the
roads, or of pedestrians on pavements, are characterized
by shifts between instable and stable motions and might
thus be candidates for this kind of interpretation.

Fractal Cities

Mandelbrot’s theory of fractals is based on the notions of
self similarity and the fractal dimension, and, on the idea
that a rather simple iterative process might produce highly
complex geometrical shapes. Using these principles, sev-
eral scholars have demonstrated, first, that the complex
geometries of urban form, growth and evolution, on intra-
urban and inter-urban regional scales, can be generated by
means of a simple iterative process with a few and simple
rules. Second, that many urban structures are self-similar
and have fractal structure. The most comprehensive study
in this domain is Batty and Longley’s [19] Fractal Cities, to
which one can add studies on urban structure, on the frac-
tal structure of transportation networks [23], on the ques-
tion “when and where is a city fractal?” [24] andmore (For
updated survey of studies see [16]). Figure 13 illustrates
the evolving fractal structure of the Tel-Aviv metropolitan
area from 1935 onwards.

Another important insight implied by fractal cities
studies is that a city, or a system of cities, in a steady state
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Self-Organization and the City, Figure 13
The evolving fractal structure of the Tel-Aviv metropolitan area
from 1935 onwards: The central parts 1 and 2 were fractal dur-
ing the entire period, while their fractal dimension increased
with time. The entiremetropolitan area became fractal only after
1985. In 1991 the fractal dimension of the Tel Aviv metropolitan
area was found to be 1.667with error of 0.037. Source: [23]

does not mean equilibrium and stability, as is the case of
Christaller’s and Lösch’s central place theories, for exam-
ple, but rather a rich and complex evolution and change
according to a given ordering principle.

Cellular Automata Cities

The attraction of CA (cellular automata) models to the
study of cities is almost self-evident. Real cities are built
of discrete spatial units such as houses, lots, city-blocks
and the like. CA models are also built of discrete spatial
units – the cells. In real cities the properties of local spa-
tial units (e. g. land value) are determined, to a large ex-
tent, in relation to their immediate neighbors; so are the

Self-Organization and the City, Figure 14
Cellular automata simulation of the Buffalo–Niagra frontier.
Source: [17]

properties of the cells in CA models. These resemblances,
together with the mathematical simplicity of CA models,
make them natural tools to simulate urban processes. In
the last few years CA urban simulation models are among
the most popular approach to simulate the dynamic of
cities [16,22,95].

One can divide the various models of CA cities into
implicit and explicit self-organized CA cities. The first
group refers to studies the aim of which is to use the sim-
ulation capabilities of the CA city in order to best-fit a cer-
tain simulated pattern to an existing one [16]. Figure 14
is an example. The general motivation here is to explain
an existing or historical pattern, or alternatively to predict
a future one for the purpose of planning. The fact that the
model has properties of self-organization, just adds more
realism and sophistication to the simulation.

The second group concerns explicit self-organized CA
cities. Here the central motivation is to use the model as
means to investigate the self-organization properties in-
herent in cities and urbanism. For example, how micro
decisions and behavior of individuals and firms, taken at
the local scale, are related to the global behavior and struc-
ture of the city. Such models are essentially heuristic and
they regard the simulated CA city as essentially a learning
device (Fig. 15).



Self-Organization and the City S 7967

Self-Organization and the City, Figure 15
Time evolution of consecutive stages of SIS (stability-instability surface) in the development of a city with 33%neutral Greens when
the rest of the Greens and all the Blues are segregatives. Source: [95]

Because of their iterative structure, CA models can
be used as convenient tools to generate fractal struc-
tures [16,17] and the insight they add to our understand-
ing of cities is similar: an iterative process guided by
a few simple rules, can generate complex structures such
as cities [16].

AB and FACS Cities

CA is an efficient tool to model the relations between in-
frastructure objects of the city. Unlike infrastructure ob-
ject, urban agents have aims and plans, can learn andmove
in the city, and see and know beyond their nearest neigh-

bors. Agent base (AB) models that are built to imitate such
cognitive entities were applied to the city dynamic too. An
important source of inspiration here was Schelling’s model
that demonstrated how local and simple behavior of urban
agents can give rise to complex residential segregation in
cities – even when their tendency for segregation is min-
imal [122]. Subsequent agent base studies have supported
Schelling’s finding [16] and added that a small minority of
agents with a tendency for segregation is sufficient to turn
the whole city into a segregative structure [95].

Free agents on a cellular space (FACS) models com-
bine CA and AB models [95]. A typical such model is built
as a superposition of a CA layer simulating the relationship
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Self-Organization and the City, Figure 16
A typical FACS model is constructed of two-layers: a population layer of human agents describing the migratory and interaction
activities of individuals (right), superimposed on a CA infrastructure describing the urban landscape (left). Source: [95]

between the city’s infrastructure objects (buildings, roads
. . . ) and AB layer that simulates the activities of the ur-
ban agents (Fig. 16). At each model iteration new agent(s)
come to the city with a certain intention in mind – say to
find a house to live in. The agent then examines the avail-
able empty cells/buildings, ranks them according to its set
of preferences and picks the best one. Once the agent lo-
cated itself in a certain cell, the CA dynamics starts: The
properties of each cell are determined by reference to the
properties of its neighbors; and if the cell is occupied by
a certain agent, by some mix between the properties of the
agent and its neighbors. Figure 17 presents typical results.

Sandpile Cities

The sandpile, the canonical example of self-organized crit-
icality [11,12,16,20], has two incongruous features: the
system is unstable in many of its local locations; never-
theless its global state is absolutely robust: The local con-
figurations of the sand change all the time because of the
avalanches, while the statistical properties, such as the size
distribution of the avalanches, remain essentially the same.
Similarly to the sandpiles, cities appear volatile and fast
moving at their local scales while at their global scale they
appear absolutely robust [16,20]. For example, the size-
distribution of many cities and systems of cities remains
essentially the same under circumstances such as ongoing
population growth (Above Sect. “Image of Cities”).

Compared to the “grand” synergetic and dissipative
cities, the sandpile city is a kind of a zooming-in to the in-
ternal dynamics of self-organized cities in their steady state
periods – when they are controlled by what in synergetics
is called order parameters. Sandpile cities show how com-
plex and rich is the internal dynamics of a city in steady
state (Fig. 18).

Small World Cities

The notion network is implicit in all theories of com-
plexity. Recently, Watts and Strogatz [130] showed that
complex networks have ‘small world’ characteristics [84]
and Barabasi and Alberst [14] demonstrated that com-
plex networks are scale free thus following the power law
that according to Barabasi [13] is a mark of self organiza-
tion.

The link to cities as complex systems was just natu-
ral: The view of systems of cities as networks character-
ized by the power law was indicated above. Single cities
too were described as networks. Thus Alexander’s clas-
sic “a city is not a tree” [1] demonstrated that cities are
typified not by a simple tree network, but by a complex
semi-lattice network (Fig. 19). Alexander’s view was re-
cently reformulated in terms of the new science of net-
works [117,118]. Another example is Hillier’s space syn-
tax that analyzes the morphology of urban spaces in terms
of networks [65,66]. Space syntax exposes the way society
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Self-Organization and the City, Figure 17
Several snapshots from an evolving FACS city. Source: [95]

determines the urban morphology and the way the letter
feeds back and re-shapes society. The link between space
syntax and network analysis has already produced several
useful results [38,41,67,89,114].

In the domain of transportation one canmention stud-
ies that characterize roads’ traffic dynamics in terms scale-
free networks (Fig. 20) [68,72], the same was found for the

transit system in Beijing [137], pedestrian movement [73]
and for the canal networks of Venice [25]. Andersson et
al. [9] showed that the market dynamics generates land
values that can be represented as a growing scale-free net-
work. Finally, Batty [16] has suggested viewing cities and
their dynamics from the combined perspectives of net-
works, fractals, self-organized criticality and AB.
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Self-Organization and the City, Figure 18
Self-organized criticality: “Simulation of a hypothetical urban growth pattern in its critical level”. Source: [16]

Self-Organization and the City

Self-Organization and the City is an ongoing project that
explores the city as a complex system from two interrelated
perspectives: Haken’s (1983) synergetic theory of complex
systems, in particular from the perspective of the pattern
recognition paradigm [50,51,55] and IRN – inter-repre-
sentation nets [94]. The link between the two is termed
SIRN – synergetic inter-representation nets.

SIRN – Synergetic Inter-representation Networks

IRN commences with a distinction between cognitively
simple tasks that can be performed by working mem-
ory (e. g. 2 � 3 D 6) and complicated tasks (e. g. 257 �
389 D 99 973) that are the result of the “magic number
seven” that constraints our ability to process information
in working memory [85]. One way to overcome this lim-
itation is by means of IRN: We first externalize the task
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Self-Organization and the City, Figure 19
A tree network (right) versus a semi-latice network (left). Source: [1]

(write it down on a paper); then we solve part of it inter-
nally (9 � 7 D 63); externalize it again and so on in a se-
quence until the task is completed.

Complex tasks refer to creative cognitive tasks, when
a person writes, paints, designs etc. Such a task often starts
with a vague idea inmind that the person then externalizes
by writing it down or painting . . . Here too the process
proceeds by interplay between internal and external rep-
resentations, but with one important addition – it involves
emerging properties. It is here were synergetics gets in and
the process becomes SIRN. More specifically, the process
might start with a preliminary internal idea (or external
cue that entails internal idea), that the person then exter-
nalizes and so on. After a few internal-external iterations
an order parameter (in the sense of synergetics) emerges
and enslaves subsequent iterations.

The development of the notion of SIRN was inspired
by Bartlett’s serial reproduction scenarios in his study Re-
membering [15]. A typical such scenario starts when a test
person is shown a text or a figure and is asked to repro-
duce it out of memory (Fig. 21). The result is offered to
a second person that is asked to do the same and so on.
As shown by Bartlett, at the beginning the reproductions
change from person to person, however, at certain stage
they stabilize and become a scheme. Stadler and co-work-
ers [126] demonstrated that the scenarios proceed as syn-
ergetic self-organized process. The focus of interest in the
above studies was on the way schemata are created. Haken
and Portugali have used the Bartlett scenarios as illustra-

tion of the play between internal and external representa-
tions [59,94].

It is important to emphasis, first, that external rep-
resentations are media that enable communication be-
tween persons and the emergence of collective SIRNs –
e. g. a brain storm. Second, that internal and external rep-
resentations are generative – once produced, they generate
new ideas and properties not seen before in previous rep-
resentations.

The Basic SIRN Model Haken and Portugali [59] have
cast the SIRN process into the formalism of synerget-
ics. They started with Haken’s [54] ‘synergetic computer’
(Fig. 22, Top), composed as it is of an input layer with
model neurons representing the initially given input ac-
tivity; a middle layer representing the order parameters,
and an output layer with neurons representing the final
activity of each neuron. The first step is to look at this net-
work from the side, as indicated by the arrow. The result
is shown in Fig. 22, bottom, left. Adding to the latter exter-
nal inputs and outputs, we arrive at our basic SIRN model
(Fig. 22, bottom, right) that has two kinds of inputs, inter-
nal and external and two kinds of outputs, again internal
and external. The middle node symbolizes the order pa-
rameters that emerge out of the interaction between inter-
nal and external representations.

The basic SIRN model can be seen as symbolizing
a self-organizing active agent that is subject to two flows
of information: internal and external (Fig. 23). The first
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Self-Organization and the City, Figure 20
A small street network (a) and its connectivity graph (b). Ev-
ery node in b is labeled by the corresponding street name, and
the size of nodes shows the degree of connectivity of individual
streets. Source: [73]

is coming from the mind/brain, in the form of ideas, fan-
tasies, dreams, thoughts, and the like, while the second
from the ‘world’ – via the senses, the agent’s body and/or
artifacts. The interaction between these two flows gives
rise to an order parameter that governs the agent’s action
and behavior, as well as the feedback information flow to
the agent’s mind. ‘Action or behavior’ may refer to a sin-
gle individual executing exploratory behavior, reproduc-
ing texts or drawing, as well as to several individuals col-
lectively reproducing a large-scale artifact such as a city.
In an analogous fashion, the ‘feedback information flow’
refers to the formation of internal representations, such as
images or learned patterns. The order parameters are de-

termined by a competition in line with the synergetics’ pat-
tern recognition paradigm noted above. Note that all the
above steps (and below), can and have been, performed by
a computer so that the approach is entirely operational.

In order to apply the basic SIRN model to specific case
studies, Haken and Portugali [59] reformulated it in terms
of three prototype sub-models: the intrapersonal, the inter-
personal collective, and the interpersonal with a common
reservoir sub-models (Fig. 24). The first refers to a soli-
tary agent, the second to a sequential dynamics of sev-
eral agents whereas the third to a simultaneous interaction.
The third sub-model is, in fact, a theory of urban dynamic.
The intrapersonal is typical to the way of an artist, for in-
stance, develops her/his work (Fig. 25), whereas the inter-
personal to the Bartlett scenario that provided a source of
inspiration to IRN (above, Fig. 21).

In the first two sub-models the process depends fully
on the biological memories of individuals. In the third sub-
model the process depends partly on biological memories,
as before, but partly also on externalized non-biological
memory that we term a common reservoir. This common
reservoir of external, artificial and non-biological memory,
might take the form of texts, Internet, buildings or whole
cities.

Figures 24 (bottom) and 26 illustrate graphically this
public-collective SIRN sub-model. Each individual agent
is subject to internal input constructed by the mind/brain,
and external input which is the legible information com-
ing from the common reservoir, that is, the city. The in-
teraction between these two forms of input gives rise to
a competition between alternative decision rules that ends
up when one or a few decision rules “wins”. The win-
ning rule(s) is/are the order parameter(s) that enslave(s)
the system. The emerging order parameter governs an ex-
ternal output, which in the case of a city is the agent’s
behavior and action in the city, and an internal output,
which is an information feedback loop back to the agent’s
mind/brain.

Both the previous sub-model and the present one in-
volve a two-scale self-organization process: an individual-
local scale referring to each individual agent as a self-or-
ganizing system, and a collective-global scale, referring to
the whole city as a self-organizing system. The individual
agents by their action and behavior determine the city,
which by means of its emerging order parameter(s) en-
slaves the minds of the individual agents. In the language
of synergetics this process is termed circular causality. In
terms of social theory it is close to notions of socio-spatial
reproduction and structuration. Recent applications show
that the common reservoir might be a non-biological ex-
ternalized memory such as a city[95,96,97,98], a planning
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Self-Organization and the City, Figure 21
A Bartlett’s scenario of serial reproduction: an Egyptian ‘Mulak’ (owl) transformed into a cat (see pp. 180–181 of [15])
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Self-Organization and the City, Figure 22
The derivation of the SIRNmodel. See text

textual report or an urban planning policy emerging out of
a discourse among the members of a planning team [105].
Note that as in the previous model, here too, due to circu-
lar causality, as the process evolves the subjective cognitive
maps of the individual agents are becoming more similar
to each other and an inter-subjective, collective cognitive

map emerges. Both private–subjective cognitive maps and
public-collective ones are thus constructions.

The City Game A simple and effective way to illustrate
the SIRN view on the dynamics of cities is by means of
a set of experiments termed city games [94]. A city game
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Self-Organization and the City, Figure 23
The SIRN model symbolizes a self-organizing agent that is sub-
ject to two forms of information: internal and external, and is
actively constructing two forms of information, again internal
and external. Graphically, Fig. 23 corresponds to Fig. 22 (bottom,
right) turned 180° on its NW-SE axis

can be described as a group dynamics that involves some
40 to 70 participants. Their aim is to build a city on a floor,
representing the site for a new city. Each player is given
a 1:100 mock-up of a building and in his/her turn is asked
to locate it in the virtual city on the floor, in what s/he
considers as the best location for that building. In a typ-
ical game (Fig. 27a and Fig. 27b), the players observe the
city as it develops, and in the process also learn the spon-
taneously emerging order on the ground. It is typical in
such games that, after a few initial iterations, an observ-
able urban order emerges. The participants internalize this
emerging order and tend to locate their buildings in line
with it. As can be seen, the main features of such a game
are the main ingredients of SIRN, namely, a sequential in-
terplay between internal and external representations, the
emergence of a collective complex city as an artifact and
a typical synergetic process of self-organization. Needless
to say that the city game is not a 1:1 description of reality,
but an illustration of the dynamics of cities as dual self-
organizing systems.

Cognition and the City

SIRN is at once a theory of cognition, cognitive mapping
and urban dynamics. This emphasis on cognition is a di-
rect consequence of complexity theory; a major achieve-
ment of complexity theory was to show how local behav-
ior and interaction between urban agents give rise to the
global structure of the city. The agent is thus the main and
most important actor. Given this, one would assume that
practitioners of complexity theory and urban simulation
models will have an elaborated theory of agents’ percep-

tion, behavior, decision making and action; especially so,
in light of the fact that a whole body of research on agents’
behavior was readily available. I’m referring to studies on
spatial cognition, spatial behavior and cognitive mapping
that were developed on the interface between cognitive
science and urban studies [45,77,92,98,99,103]. And yet,
with few exceptions such as SIRN, this body of theoretical
and empirical studies is largely overlooked by students of
complexity theory of cities. Researchers in this field tend
to follow economists by assuming that individuals behave
in space as simple “economic persons”. The result is that
the rather simple behavior of agents in the models contra-
dicts the complex behavior revealed by studies on cognitive
mapping and spatial behavior.

In The Sciences of the Artificial Simon [124] suggested
that the observed complex behavior of human agents,
guided as it is by aims, plans, intentions, needs, policies
and so on, misleads us as it is only an external appearance
of innately simple behaving entities: Similarly to simple
animals, we humans as

“behaving systems, are quite simple. The apparent
complexity of our behavior over time is largely a re-
flection of the complexity of the environment in
which we find ourselves” (ibid. 53).

Most AB/CA urban simulation models are built in line
with Simon’s logic. They typically start with local inter-
actions between agents having a few simple aim(s) “in
mind”. This interaction gives rise to an urban system,
which from iteration to iteration becomes increasingly
complex. Complexity is thus understood as a property of
the whole global system, but not of its individual parts.

The efficiency of the simple cause!complex effect
model is apparent. But there is a catch here: Several empir-
ical studies, of animals’ and humans’ exploratory behavior,
for example, falsify Simon’s view [96,97,98]. Furthermore,
the property of the city as a dual self-organizing system
implies that the initial conditions of such complex systems
are relatively large numbers of interacting parts, each of
which is itself a complex system exhibiting complex behav-
ior. Can there then be a science of cities that is not based
on Simon’s model? The answer is yes! To see how we shall
look at the relations between self organization and infor-
mation.

Information Compression, Inflation, Adaptation
Complexity is a property of systems that exchange mat-
ter and information with their environment and that their
huge number of parts forms networks characterized by
complex feedback and feedforward loops that allow inten-
sive flow of information inside the system.
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Self-Organization and the City, Figure 24
Top: The intrapersonal SIRN submodel of a single person.Middle: The interpersonal submodel: serial reproduction of several persons.
Bottom: The interpersonal with a common reservoir submodel. Note that in the intrapersonal submodel information is transmitted
via external and internal outputs, in the interpersonal via external output only (action and behavior), while in the third submodel
information and interaction between the agents aremediated by the common reservoir (e. g. a text, a city, Internet, etc.). Source: [96]

The notion Information is associated with Shannon’s
theory of information [123] that has played a seminal role
in the development of system thinking. In Shannon’s the-
ory the notion of information is a pure quantity (usually
measured by bits) devoid of any meaning. Such a concept
of information makes sense only in closed systems where
the number of possible states the system can take is finite
and a-priori known; hence the link between information
and the notion of Entropy, which is a property of closed
systems. For example, the information conveyed by throw-

ing a die is 2.5 bits, that is, the logarithm to the base of 2
of the six possible states the system can take. But the com-
plex systems we are dealing with are by definition open. So
what is the meaning of information in complex systems?

In Information and Self-OrganizationHaken [52] sug-
gested that complex systems ‘self-organize’, that is, ‘inter-
pret’, the information that comes from the environment.
In other words, the meaning assigned to the message de-
pends on the receiver (the receiving system) and not just
on the message itself as in Shannon’s theory. Haken (see
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Self-Organization and the City, Figure 25
‘The Kiss’ by Brancusi: from a figurative kiss in 1907, to the geometrical ‘Gate of the Kiss’ in 1937: An intrapersonal SIRN process in
sculpturing
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Self-Organization and the City, Figure 26
Another conceptualization of the public-collective SIRN sub-model. Each individual agent is subject to internal input – a cognitive
map constructed by the mind/brain and external input –the legible information coming from the common reservoir, that is, the city
of a planning team. The interaction between these two forms of input gives rise to a competition between alternative decision rules
that ends up when one or a few decision rules “wins”. The winning rule(s) is/are the order parameter(s) that enslave(s) the system.
The emerging order parameter governs an external output, which in the case of a city is the agent’s behavior and action in the city,
and an internal output, which is an information feedback loop back to the agent’s mind/brain

p. 15 in [53]) has consequently suggested two forms of
information: semantic information which is information
with meaning, versus Shannonian information which is
“information withmeaning exorcised”. Haken further em-
phasizes that the process of self-organization implies “an
enormous compression of information” (see pp. 25, 35,
151 in [52]).

Haken and Portugali [60] have studied information in
the context of the city. They show that different elements
of the city transmit different quantities of Shannonian in-

formation that can be practically measured by means of
information bits, for example (Fig. 28). They further show
that cognitive processes such as pattern recognition and
categorization entail an enormous information compres-
sion thus affecting the quantity of the Shannonian infor-
mation conveyed by the city (ibid) and that information
compression is just one facet of the process – the other
facet is information inflation [62]: In certain urban situ-
ations categorization might entail information compres-
sion while in others information inflation (Fig. 29). Infor-
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Self-Organization and the City, Figure 27a
Four snapshots from a typical city game (at iterations 1, 15, 35, 57)

mation inflation and compression are thus two aspects of
the process of information adaptation by which individu-
als and collectivities shape the city in a way that is adapted
to the inhabitants’ cognitive capabilities.

The notion information adaptation has far reaching
implications to the above discussion about the scientific
method and the science of cities: Self-organization as in-
formation compression implies a complex! simplemodel
and thus an alternative Simon’s simple! complex model.
The process of information inflation, on the other hand, is
in line with Simons’ model. These twomodels are thus two
facets of a single process of information adaptation that
in some cases requires inflations while in others compres-
sion. Complexity theory shows that whatever are the open-
ing conditions (complex or simple) a scientific approach is
possible.

CogCity A central property of complex systems is the
process of circular causality that typifies also the dynamics
of cities: Thus in the SIRN model the interaction between
the local/micro urban agents gives rise to the global struc-
ture of the city, which then feeds back and prescribes the
behavior, interaction and action of the agents, and so on.
Guided by Simon’s simple! complexmodel, standard ur-

ban simulationmodels have become excellent tools to sim-
ulate the first part of this loop – the way local interactions
give rise to a global structure – but they fail to describe the
second, feedback part of the loop. CogCity (cognitive city)
is a model that attempts to simulate the dynamic of cities
as a process of circular causality [98].

CogCity is essentially a FACS model (above Sect. “AB
and FACS cities”) with several additions that make it an
explicit SIRN, cognitive, urban simulationmodel. It differs
from standardAB/CA urban simulationmodels in that the
latter are essentially bottom-up in their structure (Fig. 30,
left). CogCity, per contra, is characterized by an on-going
interaction between top-down and bottom-up. Figure. 30,
right describes a typical scenario: It starts top-down when
an agent arrives to the city with a global cognitive map in
mind; compares it to the global structure of the city and
selects a local sub-area. Now starts the bottom-up process:
the agent selects the empty cells in that local area; evaluates
the appropriateness of the cells and their nearest neighbors
in light of its needs and then takes a decision and action.
In parallel, the properties of every cell are determined ac-
cording to its relations to its nearest neighbors and so on.

In a regular AB/CA simulation the process ends here:
the global outcome is recorded and mapped as the output



7980 S Self-Organization and the City

Self-Organization and the City, Figure 27b
A conceptualization of the city game

of this specific iteration and the model is ready for a new
iteration. In a SIRN-CogCity model the process continues
and feeds back to the global structure of the city that al-
lows the top-down process in the next iteration: Firstly,
the state of the various central places is determined. Sec-
ondly, peripheries are determined around central places.
Thirdly, areas are defined or redefined. Fourthly, subareas
are redefined. Fifthly, given areas and subareas, the global
state of the city as a whole and its rank-size structure,
is defined. The latter changes redefine the local member-
ship state of each cell in the various infrastructure objects
and become the externally represented input for a new
agent in the next iteration, and so on in circular causality
(Figs. 31, 32).

Planning

The link between self-organization and cities is contradic-
tory. Firstly, since cities were always regarded as symbols
of planned action – walls, roads, castles, fortresses, indi-
cated a central authority that is capable of planning. Sec-
ondly, since planning as means to achieve a controlled

order diametrically opposes self-organization as the spon-
taneous emergence of order. This is a seemingly contradic-
tion, however, since cities are dual self-organizing systems
with the implication that every urban agent is a planner at
a certain scale. This view is supported by psychology and
cognitive science that consider planning as one of the basic
cognitive capabilities of humans [86].

Cognitive planning, that is, the ability to think, decide
and act ahead, must be based on information about the fu-
ture which by definition is partial and insufficient – a sit-
uation that according to Haken typifies also the process of
pattern recognition as conceptualize by synergetics. Based
on this analogy Haken [57] described decision situation in
the context of planning as in Fig. 33.

This decision situation raises the question of ‘How
do people complement the unknown data?’ According to
Haken and Portugali, as in pattern recognition tasks here
too, the unknown data is being supplied by means of asso-
ciativememory [57,95], conceptual cognitive maps [98,99]
and decision heuristics [95,127,128]. Table 1 specified sev-
eral decision heuristics and their interpretation in the con-
text of cities.
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Self-Organization and the City, Table 1
Seven heuristics and their interpretation in the context of cities. For sources see [95]

Heuristic Description Urban interpretation
Similarity The similarity of two items is expressed as a function

of their common and distinctive features.
The recognition of fundamental rules of urban com-
position, such as a grid layout, built form, or urban
fabric, is performed through similarity.

Representativeness The probability that an object or event belongs to
a particular class is judged by the degree to which
the description is representative of a stereotype.

Urban categories are identified on the basis of ar-
chitectural stereotypes, such as church, skyscraper,
boulevard, tower, park, arch, etc.

Availability The probability of an event, or frequency of a class,
is assessed by the ease with which instances or oc-
currences can be brought to mind, or recalled.

Availability would make universal symbols (such
as Macdonald’s signs, Stop signs, etc.) more easily
identified and recalled.

Decision frame The frame that a decision maker formulates of the
problem (gain versus loss, etc.) is influenced by
norms, habits, and personal characteristics of the
decision maker.

Urban frames for decisions (congested versus free,
public versus privet, etc.) depend on the cultural
code of each agent (e. g. a tourist, a taxi driver, a po-
liceman, etc.).

Anchoring The tendency of people to make estimates by start-
ing from an initial base value that is adjusted to
yield the final answer.

City’s internal representations can contain certain
categories such as style, urban violence, town size,
etc., which can be ‘fired on’ early in the process of
cognition; once switched on, it stays on and is only
eventually reprocessed.

Synergetic I: Collective
effects

When facing complex decision situations people
tend to rely on what other people are doing or say-
ing.

Drivers, pedestrians, intra- and inter-urban immi-
grants, tend to ’follow the stream’. That is: to take
decisions in line with what others are doing.

Synergetics II: Attention
parameters effect

When facing complex decision situations people of-
ten employ several heuristics in a sequence. First,
the attention parameter calls into use a heuristic.
Then, when exhausted, another attention parame-
ter heuristic emerges and so on.

Intra- and inter-urban immigrants, for example, of-
ten start with a given location decision heuristic (say
synergetic I); if it doesn’t work, they switch to an al-
ternative heuristic and so on.

Haken and Portugali [95] have further suggested that
complex processes of decision making in the context of
city planning evolve according to their SIRN model. This
suggestion was further elaborated by Portugali and Al-
fasi [105] who demonstrated empirically how this SIRN
process practically takes place in the reality of planning dis-
course as it evolved among members of a planning team
engaged in formulating urban policies concerning the de-
velopment of the city of Beer Sheva, Israel (Fig. 34).

As a basic cognitive capability planning is intimately
associated with the fact that humans are social creatures –
people tend to plan together (e. g. families, friends, firms
etc). Some planning decisions are thus made solitarily
while others collectively. Planning is also a profession that
is closely linked to the central authorities of society (mu-
nicipal, regional, national governments etc.). We thus have
three forms of planning – solitary, collective and profes-
sional.

The notion that cities are complex self-organizing sys-
tems thus implies a novel view on planning the essence of
which is, first, that all three forms of planning (solitary,
collective and professional) participate in the dynamic of
cities. Second, that due to non-linearities that typify cities

as complex systems, the act of a single solitary planner
might affect the evolution of a city more than the plan-
ning act of a professional planning team. (For an exam-
ple see [101]). Does that mean that due to self-organiza-
tion there is no need for city planning? Not at all! – It
means that we have to adopt a new perception of plans as
participants in the overall urban dynamics. It also means
that we have to adopt a new perception of urban dynamics
as a complex interaction between many plans at different
scales, or more specifically, between solitary, collective and
professional, planning agents, each with its specific plan.

Can there be an administrative planning process that is
built in line with the above? The answer suggested by Por-
tugali and Alfasi is positive [105]: In a sequence of stud-
ies they have portrayed the principles of such self-planned
city [95] and the way it can be applied to the reality of city
planning law and structure of Israel [2]. Similarly to cur-
rent planning systems it is a 3-layers system: the legislative,
the judiciary and the executive. It differs in the following:
First, its planning law refers to the qualitative relations be-
tween the various city objects (Fig. 35) and not to land
use plans that assume to determine top-down the urban
landscape. Second, it suggests a novel planning judicature
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Self-Organization and the City, Figure 28
Different configurations and categorizations of buildings con-
vey different quantities of Shannonian information. When all
building are similar, information (i) is low. When they are dif-
ferent, i is high but difficult to memorize. When landmarks are
added i is high, provided that they are located apart from each
other; otherwise, i is low. Source: [60]

composed of spatially distributed “planning courts” con-
ducted by professionals who have specialized in both law
and planning. Their aim is to evaluate, accept or reject the
plans proposed by all planning agents – solitary, collective
or professional. Third, it suggests a separation of authori-
ties that doesn’t exist today in standard planning adminis-
trations. Fourth, it suggests a process of hermeneutic plan-
ning that enables phase transition and adaptation to new
situations. Figure 36 describes the structure and operation
of this self-organized planning system.

Prediction, Planning, Self-Organization and Cities
The first principle of the above planning system is that
its planning laws refer to qualitative relations between the
various city objects and not to land use plans. The rea-
son is that land use plans are commonly based on predic-
tions. This is problematic since prediction in the context
of complex systems such as cities is associated with four
fundamental properties. First, the nonlinearities that typ-

ify cities imply that one cannot establish predictive cause-
effect relationships between some of the variables. Second,
many of the triggers for change in complex systems have
the nature of unpredictable mutations [4]; not because of
lack of data, but because of their very nature. Third, un-
like closed systems, in complex systems, the observer, with
his/her predictions, is part of the system – a point made
by Jantsch [71] more than two decades ago and largely ig-
nored since then. In such a situation, predictions are es-
sentially feed-forward loops, affecting the system and its
future evolution with implications that include self-fulfill-
ing and self-falsifying or self-defeating predictions [101].

From the above follows a dilemma: complex systems
are in essence unpredictable and yet, the current practice
of planning as well as planning administration and law are
based on the ability to predict. In a recent paper (ibid) it
was shown that this situation leads to planning paradoxes
that are the result of phenomena of self-fulfilling and self-
falsifying predictions. It was further shown that these phe-
nomena are the result of the feed-forward and feedback
loops that are typical of complex systems in general and
of cities and regions in particular. The existence of such
loops is one of the properties that make systems complex.
Such loops are responsible to the situation by which a pre-
diction or a plan, once produced, becomes a participant in
the system’s dynamic.

Another way to look at this issue is from the point of
view of the distinction between Shannonian and semantic
information (above, Sect “Information Compression, In-
flation, Adaptation”): Predictions and plans are essentially
kinds of information transmission. One can thus speak
of Shannonian prediction and semantic prediction. In the
first, the outcome of the prediction is independent of the
receiver(s) while in the second it depends on the meaning
attached to it by a receiver or receivers. A weather forecast
is a good example for both: it has no effect on the climatic
system, but it might affect the urban system – following
the prediction people might behave in different ways that
might entail phenomena of self-falsifying and self-fulfill-
ing predictions as described above.

Planning theory has not as yet internalized the impli-
cations of complexity theory to city planning. For exam-
ple, in the planning and decision support systems (PSS,
DSS) that are currently discussed and built by propo-
nents of the complexity paradigm, urban simulation mod-
els are assumed to function as sophisticated prediction de-
vises [28,29,43]. The result is a discrepancy that to my
mind characterizes the domain of urban and regional
planning: On the one hand, planning theory, as well as
the structure of planning law, practice and administra-
tion, are all based on the (usually implicit) assumption that
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Self-Organization and the City, Figure 28a, b
a An example of a good landmark. b An example of not very effective landmark

Self-Organization and the City, Figure 29
If all buildings in the city are different from each other, catego-
rization entails information compression; if they are similar – in-
formation inflation

cities are essentially predictable entities; that given suffi-
cient data, information and models, their future behav-
ior is in essence predictable. On the other hand, current
urban theory suggests that cities are complex, self-orga-
nizing and non-linear systems and that as a consequence
their future behavior is in essence not predictable; even
if sufficient information and data is collected and avail-
able [95].

Urbanism

In Sect. “Explicit Attempts to Define a City” we’ve defined
the category “city” in terms of a family resemblance ac-
cording to which a settlement becomes a “city” not by hav-
ing some necessary and sufficient properties, but by being
a member in a network of cities that has center, periphery

etc. This view is in line with cognitive science’s approach to
concepts and categories. In the latter it is common also to
distinguish between basic level categories and super-ordi-
nate categories [116]. A ‘chair’, for instance, is a basic level
category whereas ‘furniture’ a super-ordinate. The sugges-
tion here is that a city is a basic level category whereas ur-
banism is a super-ordinate one, referring to the totality of
cities ranging from their physical structure, architecture,
economics, politics, social and cultural composition, and
so on. The term ‘urban revolution’ (coined by Childe, [35])
thus implies a major transformation in society with the ba-
sic level category ‘city’ at its center.

Most complexity studies of cities have traditionally fo-
cused on specific aspects of cities – land-use, morphology,
transportation, social segregation etc. – but not on the to-
tality of city life which is what urbanism is all about. Why?
Because they evolved mainly out of regional sciences’ at-
tempt to develop a scientific approach to cities and the
consequent tendency to choose research issues that can be
analyzed by reference to ‘real world’ data. The study of ur-
banism was thus left to the “soft” social theory approaches
to cities[33,34,63,64].

This is rather unfortunate because 21st century world
society is undergoing a major transformation with urban-
ism at its center: Massive rural-urban migration and de-
mographic processes entailed a situation by which cities
such as Mexico City, Bombay (Mumbai) and Sao Paolo
grew from 8.8 million, 6.2 million and 8.3 million respec-
tively in 1970 to over 20 million, over 16 million and again
over 18 million today; for the first time in human history,
the number of people living in cities is crossing 50% of the
world’s population and the process is still on. In the last
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Self-Organization and the City, Figure 30
A cognitive (right) vs non-cognitive (left) AB/CA urban simulation model. Source: [98]

few decades we’ve witnessed the emergence of world cities,
or global cities, that form the centers for the globalization
process.

These quantitative processes are associated with sev-
eral qualitative processes: a process of privatization that
leads to the decline of the welfare nation-state; the emer-
gence of a civil society that takes over many of the past
duties and functions of the nationalist welfare state; the
crucial problems of many (post)modern counties are no
longer classical national problems (e. g. national self-deter-
mination, national boundaries etc.), but rather the prob-
lems of cities. The events of September 11 and the en-
suing wars in Afganistan and the Middle East are tragic
indications to the urbanization of war. Finally, the process
of globalization is making some world cities more domi-
nant than the states within which they exist thus repressing
the nation states.

All the above indicates the more fundamental change:
According to Lefebvre [79], its essence is that urbanism is
replacing industrialization as the dominant force in soci-
ety. My view is that the essence of this change is that ur-
banism is challenging nationalism as the order parameter
of modern society [101].

Complexity andUrbanism Complexity studies of cities,
with their focus on the short-term dynamics of cities and
of national systems of cities are indeed highly advanced
in terms of mathematical formalism and data analysis but
rather anachronistic in terms of the issues studied; as such
they have so far said very little on the dramatic urban phe-
nomena of 21st century. Can they saymore about the issue
of urbanism? The answer is yes! And for several reasons:
To my mind the “deeper messages” of complexity theories
is that they have discovered properties in matter hitherto
assigned to life, art and society [91]. It is not surprising
therefore that complexity theories, particularly synerget-
ics, bear many similarities to social theory and philosophy
and, as a consequence, several of the notions that origi-
nated in the study of complex systems can be related to
similar notions that originated in the domain of social the-
ory [100]:

� Both are essentially systemic and even holistic.
� Both tend to conceptualize ‘development’ and ‘evolu-

tion’ in terms of abrupt changes rather then a smooth
progression. In social theory the common terms for an
abrupt change is (social/political/cultural) ‘revolution’,
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Self-Organization and the City, Figure 31
Preliminary results from an evolving scenario simulated by CogCity: The central screen in each of the four snapshots shows the
evolving spatial distribution of various kindsof agents, the top left screen the evolution of centers and sub-centers,while the bottom
left, the evolving cognitive maps of agents. Source: [98]

Self-Organization and the City, Figure 32
Preliminary results from an evolving scenario simulated by CogCity – the graphs. Source: [98]
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Self-Organization and the City, Figure 33
Decisions in the city are characterized by insufficient data. In
such a reality the known data may be complemented in a vari-
ety of ways. Each of theses waysmight entail a different decision
and action. Source: [57,95]

while in the language of complexity ‘bifurcations’ and
‘phase transitions’ (that reminds one of Gould’s and El-
dredge’s, [46] punctuated equilibrium).

� Synergetics’ notion of ‘order parameter’ is similar to so-
cial theory’s notion of ‘mode of production’.

� Synergetics’ notions of ‘enslavement’ and ‘circular
causality’ are close to social theory’s notions of ‘social
reproduction’ and ‘socio-spatial reproduction’ [44,80].

� Complexity’s view of systems in ‘a far from equilibrium
condition’ comes close to postmodernism’s recent em-
phasis on viewing reality as ever changing and trans-
forming; hence the general popularity of notions such
as ‘chaos’ and ‘butterfly effect’.

Several writers have already responded to these sim-
ilarities from the perspective of the sciences, philosophy,
media/cultural critics and modern and postmodern so-

Self-Organization and the City, Figure 34
Bifurcation diagramof the planning discourse. Each alternative is representedwith a continuous line along the time axis (the X-axis).
A horizontal line represents an order state during which the alternative scenario maintains a certain image and possesses certain
attributes. Bifurcation points indicate a shift from one order state to another. The broken lines represent optional order states that
were not actualized. Source: [105]

cial theory [37,75,76,100,113]. A preliminary attempt has
also been made to employ synergetics as a complexity the-
ory of urbanism [95,101]. That is, to interpret the cur-
rent changes in cities and urbanism in terms of synerget-
ics along the following scenario: the combined force of
rapid population growth, urban expansion and technolog-
ical change throughout the 20th century acted as a con-
trol parameter. Toward the end of the 20th century and
at the beginning of the 21st, we are witnessing a bifurca-
tion and phase transition followed by a competition be-
tween the newly emerging urban order parameter and the
old nationalist one. My personal view is that what we see
emerging today out of this competition is not the replace-
ment of nationalism as an order parameter by urbanism as
an order parameter, but the urbanization of nationalism.

Future Directions

Looking in retrospect at more than two and a half decades
of complexity theory studies of cities, one can now ap-
preciate some of its major achievements: First, the link
between cities and complexity theory gave urban studies
a strong theoretical basis it never had before. The fact that
complexity theory was applied to a large number of do-
mains gave urban studies a wide context andmany sources
of inspiration. The fact that complexity theory comes with
a rich and strong mathematical formalism gave urban
studies a sound methodological background. The attempt
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Self-Organization and the City, Figure 35
Proposition for a new planning structure for a self-planned city: The interrelations between urban elements provide the basis for
planning law. A singular urban element might be a building, a linear one might be a road, while an example for a spatial urban
element is a park

Self-Organization and the City, Figure 36
Proposition for a new planning structure for a self-planned
city: The system is built of private planners (the inhabitants of
the city) and professional planners. Each of them might sub-
mit a plan to the planning judiciary. In the latter the “planning
judge” takes decisions according to the planning law as deter-
mined by the planning legislature. Unlike the current structure,
there is a clear separation of authorities

to transform the study of cities into a science of cities is
today closer than ever.

Complexity theory has given us a new insight to our
understanding of the dynamics of cities. According to
Batty [16] the most important contribution is that com-
plexity studies of cities have verified the intuitive views
of Jean Jacobs [70] and Alexander [1], namely, that the
complex entity “city”, with its variety of different land-
uses, socio-spatially and culturally segregated communi-

ties, transportation networks and all the rest, is an out-
come of “bottom-up” processes: The local interaction
between agents at local scale, conducted by very few and
simple rules gives rise the complexity we term ‘city’.

At the same time, however, it must be admitted that
the potential contribution of complexity theories to ur-
banism, planning and urban design has yet to be realized.
The complexity approach has indeed given the bottom-up
views on the nature of cities a strong mathematical for-
malism that can be quantified by real data. But this focus
on the local, the bottom-up and the quantifiable was not
without price: Cities and urbanism of the 21st century are
in the midst of a dramatic transformation, new forms of
cities are emerging – world cities, global cities, megacities,
and yet the vast majority of complexity studies still focus
on the old traditional quantitative urban questions, leav-
ing the qualitative grand urban issues to the “non-scien-
tific” social theory oriented urban studies. Can complexity
theories of cities contribute? The answer suggested above
is yes! SIRN is one approach in this direction and the field
is ripe for others.

The same applies to planning. In the literature on plan-
ning theory it is common to make a distinction between
planning theory versus theory in planning [40]. That is, be-
tween a theories about how to plan and theories about ur-
ban and regional dynamics that planners can use during
the planning process. Examining complexity theories of
cities from this perspective we see that they are very in-
novative with respect to theory in planning, but very con-
servative when it comes to theory of planning: The vast



7988 S Self-Organization and the City

majority of studies simply ignore the implications of com-
plexity to urban, regional and environmental planning.

Why do we need a complexity theory of planning? The
answer is twofold: First, standard planning theory was de-
veloped in the 1950s and 1960s hand in hand with what
we consider today as anachronistic urban theory: Both are
based on the (usually implicit) assumption that cities are
in essence simple, mechanistic systems that given suffi-
cient data and advanced technologies, their future behav-
ior is predictable and hence controllable. As we’ve seen
above, complexity theories tell us a different story: Cities
are complex self-organized systems that are in essence un-
predictable and controllable; even if sufficient data and the
most advanced technologies are at hand. From here fol-
low a whole set of new and interesting questions: what is
the role of planning in a complex system? Are all parts
and components of the system unpredictable? In the above
we’ve suggested some preliminary answers – but new ones
must still come.

Finally it is important to mention the issue of extreme
events in cities. The rapid processes of urbanization cities
underwent in the last few decades and the ‘urbanization
of war’ made cities rather vulnerable areas in cases of ex-
treme events. The question of how cities and their inhabi-
tants behave and respond to extreme events, is a pressing
social issue that already started to capture the attention of
students of complexity theory of cities and urbanism.
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Definition of the Subject

Clinical psychology is a sub-discipline of psychology en-
gaged in the description, classification, explanation, and
treatment of mental disorders. The primary focus is on
psychological methods, models, and topics such as behav-
ior, cognition, emotion, and social interaction with sub-
stantial overlap with related areas in psychiatry, psycho-
somatics, or behavioral medicine. Yet, the main stream
in clinical psychology views the etiology of mental disor-
ders, their time courses and susceptibility to psychologi-

cal treatment still through the magnification glass of lin-
ear input-output philosophy of human functions. Owing
to this paradigm, linear combinations of variables (as in-
ner conflicts, irrational cognitions, or stressors) trigger the
development of psychiatric diseases or disorders in genet-
ically predisposed individuals. Therefore, linear multivari-
ate regression models are assumed be able to predict the
probability of falling ill or suffering from disorders. As an
important field in clinical psychology, psychotherapy re-
search defines randomized controlled trials as the golden
standard of outcome research. Here, patients randomly as-
signed to different treatment modalities are being com-
pared with respect to the outcome of different tests. In this
regard, the input (treatment) is thought to determine the
outcome (treatment effects).

Contrary, or rather, supplementing this line of re-
search is the scientific paradigm of self-organization, i. e.
the functioning of complex nonlinear systems with circu-
lar causality at its center. Gestalt psychology, tradition-
ally concerned with patterns (“Gestalts”) in perception,
human behavior and interaction (e. g., those prevalent in
group dynamics, Lewin [25]) focuses on such self-orga-
nization processes. Gestalt psychologists like Wolfgang
Köhler (e. g. [28]), Wolfgang Metzger, Max Wertheimer,
Kurt Lewin and others can be seen as direct predeces-
sors of modern complexity researchers in psychology [67].
Another root of this development is Jean Piaget’s equi-
libration theory of action-cognition patterns (schemata)
describing assimilation-accommodation-cycles of these
schemata [49]. During these processes, input from the in-
ner and outer environment assumes the role of disturbing
stimulation of individual system dynamics. A third im-
portant line of thinking in circular causality comes from
anthropological medicine. The “Gestaltkreis” integrates
feedback loops between sensorial and actional systems on
the one side, and individual and environmental systems on
the other side (ecosystemic approach) [84].

Introduction

During the past decades in clinical psychology, it was
particularly the transdisciplinary approach of synerget-
ics [16] which inspired a specific nonlinear and com-
plexity research on cognition [17,79]), social interac-
tion [41,77], etiology and dynamics of mental diseases
(e. g., [57,78]), and psychotherapy (for an overview see
Haken and Schiepek [21]). Synergetics describes, mea-
sures, and explains the autonomous processes of pattern
formation and pattern transitions in complex nonlinear
systems. Founded on Haken’s fundamental discovery that
these processes do not depend of the matter of the sys-
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tems they occur in, synergetics became one of the most
important inspirations to many scientific fields and topics.
Especially, Haken early transferred synergetics to brain re-
search (e. g., [3]), since the brain is an outstanding example
of a complex, self-organizing system. Today, it is widely
accepted that the brain and a serial computer not only dif-
fer profoundly, but there is almost nothing they share: No
wonder in light of the more than 1011 nonlinear intercon-
nected neurons forming a dynamic mega-network of neu-
ral networks with essential features like arrays of emerg-
ing and submerging synchronizations, its flexibility and
ever changing pattern formation, working at the edge of
chaos, or realizing combined (activating and inhibiting)
feedback mechanisms following the principles set forth by
synergetics which describes the laws of self-organizing sys-
tems [18,19].

Taking a closer look at most of the phenomena clini-
cal psychology is concerned with it becomes obvious that
they appear to be of dynamic nature. Human development
processes, human change and learning processes, the dy-
namics and prognosis of mental disorders, problemsman-
ifesting in social systems like couples, families, teams, or
the question of how psychotherapy works: Self-organiza-
tion is a ubiquitous entity.

Dynamic Diseases

Mental disorders are characterized by specific dynamic
patterns, mirroring “endogenous” and common features
of a disorder (like the repetitive phases of unipolar ma-
jor depression or the bipolar phases of bipolar disor-
ders, oscillating between mania and depression), as well
as the effects of an individual life-style including individ-
ual coping and treatment efforts. Mental disorders can
be conceived as highly structured and coherent states
which enslave and thus impair the individual’s mental
and social functioning. Following the “enslaving princi-
ple”, emerging order parameters reduce the degrees of
freedom in the behavior of the single parts of a sys-
tem. There is phenomenal evidence that this is the case
in many mental disorders. Obsessive-compulsive disor-
der patients coerced to repeat unwished thoughts or rit-
uals are just but one most impressive example. On the
brain level, such pathological states correspond with ab-
normal synchronization in specific neural networks im-
pairing brain functions. In obsessive-compulsive disor-
ders, cortico-striato-thalamo-cortical feedback-loops are
thought to be at the center of the dysfunctional net-
work [55,59], while abnormal synchronization in highly
similar neural populations is the source of Parkinsonian
resting tremor [34,43].

At times, transitions between different pathological
states or between states of health and disease are linear
and balanced, at other times they are discontinuous and
abrupt, such as in nonlinear phase transitions accompa-
nied by critical fluctuations described by synergetics to
occur in physical systems. Such transitions have been re-
ported for unipolar or bipolar cyclic depression (e. g., [1]),
and also for schizophrenia [68]. The usefulness of the
concept of attractors in psychopathology is best reflected
by the final common pathway of different disorders with
similar phenomenology and syndromal patterns. Differ-
ent initial conditions and different qualities and degrees
of stressors and vulnerability factors may result in simi-
lar pathological end-states on the one hand. But on the
other hand, small fluctuations within the intrapsychic or
environmental conditions or small differences of some
boundary or threshold conditions may result quite dif-
ferent disorders or may decide between health and dis-
ease (for a dynamical simulation of major depression see
Schaub and Schiepek [56]). The encouraging message syn-
ergetics delivers is that while the structure of a generic sys-
temmay stay unchanged, small changes in control param-
eters, threshold conditions, and internal or external fluctu-
ations are able to trigger dramatic changes in the behavior
of the system. As a consequence, therapy exerting changes
of these parameters is thus able to trigger return of the sys-
tem to a healthy state.

For illustrative purposes we present results of a com-
puter simulation of different chronic courses of schizo-
phrenia [57]. A qualitative network model of five macro-
scopic variables was transformed into a set of nonlin-
ear difference equations, with each equation describ-
ing and determining the change rate of each variable
from t to t C 1. The empirical references of the simula-
tion model were empirical studies of the chronic course of
schizophrenic patterns, mostly mixed psychotic episodes,
healthy functioning, and chronic states. For example,
Ciompi and Müller [12] report on eight different patterns
in the long-term evolution of schizophrenia, most of them
reproduced by our model. These patterns result from vari-
ous combinations of slow vs. acute onset, acute episodes
vs. progressive deterioration, and remission vs. chronic
end-state.

Variables taken into account were chosen from re-
views in psychiatric and psychological schizophrenia re-
search (e. g., [6,7,11]). Selected were (1) degree of cogni-
tive disorders, (2) emotional and interpersonal stress, (3)
withdrawal and social isolation, (4) degree of expressed
(negative) emotions in the social environment of the pa-
tient, and (5) positive symptoms like delusions and hal-
lucinations. The parameters mediating the nonlinear in-
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terplay of these macroscopic variables or order parame-
ters were (a) diffuseness of affective-cognitive schemata as
a central long-term vulnerability of mental functioning,
(b) dopamine and serotonin metabolism, (c) social deficits
and lack of competencies, (d) genetic risk for schizophre-
nia, and (e) some parameters mediating mixed feedback
processes, especially the negative feedback responsible for
antipsychotic damping effects of the pathology. Results
of the simulation runs are indicated in Fig. 1. The sim-
ulation reproduces most precisely (a) episodic patterns
with prodromal symptoms and acute onset, (b) acute on-
set, but continuous evolution with chronic end-state, and
(c) slow and smooth onset with chronic long-term course
(see also [76]).

Other simulation models are effective on the micro-
scopic level of neural networks. Kruse et al. [27] in-
troduced a model focusing on the coupling dynamics
between neurons processing brain correlates of social ex-
periences. If unable to learn from cues delivered by the rel-
evant environment, this system will fail to establish adap-
tive and coherent structures. When inducing fluctuations
which promote re-learning and self-healing processes, the
neural network causes incoherent and chaotic behavior.
Most current models of schizophrenia take into account
the neural circuits of relevant brain regions (cortical ar-
eas, basal ganglia like striatum and pallidum, thalamic ar-
eas, brain stem centers) and particularly the equilibria be-
tween different neurotransmitters and neuromodulators
(e. g. [9]). The complicated local balances and their (non-)
equilibria states are in the focus of the strongly evolving
field of computational or systems neuroscience [15,44].

Not only central neuroscience has benefitted from
concepts introduced by synergetics, however, but also
physiology studying the effects of the autonomic nervous
system (ANS) activities on peripheral systems, such as
the cardiovascular, the respiratory, or themicrocirculation
system. Such activities are most prominent as the ANS en-
gages in the mediation of emotions.

Self-Organized Synchronization Patterns
in Peripheral Physiological Systems

For decades, the study of the ANS involvement in emo-
tional arousal and its impact on the cardiovascular system
has attracted clinical and scientific attention in psychol-
ogy and psychophysiology (e. g. [65]). Ever since the sem-
inal findings of W. B. Cannon [8] and H. Selye [63] on
the general adaptation syndrome, colloquially condensed
as stress, the clinical relevance of emotional responses be-
came ultimately clear. This obvious clinical relevance is
thwarted by the fact that direct observations of ANS ac-

tivity in humans are restricted not only because of ethical
constraints but also because of the fear to provoke what
they strive to detect. Therefore, the study of the ANS in
humans had to rely for a long time preferably on indirect
measures, such as the power spectral density (PSD), a lin-
ear computation method. Based on the fast Fourier trans-
form (FFT) which extracts periodic components in the fre-
quency domain, the PSD was favored by many researchers
due to its computational ease to analyze frequencies inher-
ent in the two branches of the ANS, the parasympathetic
(PNS) and the sympathetic nervous system (SNS). This al-
lowed to divide the effects of the PNS and SNS activity on
variations of the heart rate, the so-called heart rate vari-
ability (HRV), into three major variance components, the
very low frequency (VLF) band below 0.04Hz, the low fre-
quency (LF) band between 0.04–0.15Hz, and the high fre-
quency (HF) band between 0.15–0.45Hz. While the origin
of both VLF and the HF bands is not debated, controversy
reigns whether the origin of the LF band is attributable to
SNS activity or whether it represents a mixture of SNS and
PNS activity. Subsequently, some authors propose calcu-
lating the LF to HF ratio assumed to reflect the sympatho-
vagal balance (for an overview see [73]). There has been
growing discontent and criticism as to the validity of such
drawer style classifications based on the consideration that
the PSD, or FFT resp., as a linear routine is only able to de-
tect linear properties, that are to some extent included in
most physiological signals [23,86]. That, however, should
restrict and limit its use since an increasing body of sci-
entific evidence is demonstrating the obvious: In times of
adaptation and rapid changes – a hallmark of life and its
living systems – healthy ANS activity exhibits nonlinear
dynamics necessary to mediate responses appropriate to
those change processes. This is particularly the case for
emoting as one of the most volatile change patterns.

However, this is not only true for discrete emotion
transitions but also for a process crucial for the mainte-
nance of health, namely psychophysical relaxation. Con-
trary to the rigid scheme depicted above, Perlitz and co-
workers have introduced a relaxation model which takes
into account adaptive, self-organizing characteristics of
the central and peripheral subsystems involved in the psy-
chophysical relaxation process. They scrutinized the phys-
iological conditions and interactions observed with the
emergence of a frequency at ca. 0.15Hz, which in terms
of the classical scheme is attributed to the transition be-
tween parasympathetic and sympathetic nervous activity.
This frequency prevailed at different amplitudes in HRV,
blood pressure and respiration, but foremost in the mi-
crocirculation of the forehead skin. Using several non-
linear methods, such as wavelet time frequency distribu-
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Self-Organization in Clinical Psychology, Figure 1
Different patterns of the long-term evolution of schizophrenia (empirical data from a study by Ciompi and Müller [12]) (left) were
reproduced by simulations based on a set of five coupled nonlinear difference equations with different parameter values [57] (right)

tions (TFD) or post-event-scan (PES) analysis, this 0.15Hz
frequency band (range 0.12–0.18Hz) emerged or erupted
with amplified oscillations and periods of 6–7 s in all time
series of subsystems under study. The emergence clearly
depended on psychomotor drive reduction which can be
either reduced by taking naive relaxationmaneuvers (such
as closing the eyes), or be enhanced using auto-suggestive
means, such as autogenic training. Their zest to elaborate
the origin of this frequency was supported by invasive ob-
servations with anesthetized dogs made by Lambertz and
colleagues who had presented their findings earlier. They
found a rhythm at a similar frequency which originated in
reticular brainstem neurons of freely breathing dogs when
administering narcotics to reduce drive. Followed by the
emergence in those unspecific reticular neurons, this fre-
quency also emerged in arterial blood pressure, HRV, and
respiration [32,47,48]. This reticular rhythm, termed retR,
was unaffected by changes in the frequency of respiration
or arterial blood pressure which could both be presumed
to exert distinct influences owing to linear models. Rather,

in these experiments respiration and HRV were entrained
to the 0.15Hz band at 1:1, 2:1 and 1:2 integer number ra-
tios which are, according to Bethe [5], an outflow of cen-
tral-peripheral order–to–order transitions. With regard to
parallels in frequency and dynamics observed in man and
dog, Perlitz and coworkers suggested that also in humans
the 0.15Hz bandmost likely originates from reticular neu-
rons of the lower brainstem network [46,47,48].

In summary, the findings presented in Fig. 2 underpin
the theory of synergetics, since there is reason to regard the
ca. 0.15Hz frequency as an order parameter and the level
of mental drive as control parameter. The ca. 0.15Hz fre-
quency is a prominent example of biological pattern for-
mation lacking external or macroscopic control.

Nonlinear Dynamics in the Communication
of Patient and Therapist

As mentioned above, psychotherapy is usually conceptu-
alized as the application of psychological treatments to pa-
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Self-Organization in Clinical Psychology, Figure 2
Wavelet time frequency distributions (TFD) of peripheral noninvasively obtained recordings of a female expert in autogenic training
(AT, 56 yrs., healthy, non-smoker, 15 yrs practiceAT). Top left: TFD of glabella skinmicrocirculation photoplethysmography; top right:
TFD of chest respiration related movements; bottom left: TFD of peripheral systemic arterial blood pressure; bottom right: So-called
“joined TFD” of PPG-, respiration- and blood pressure-TFD, a novelmethod by Besting and colleagues (2005) (multiplying TFDs yield-
ing only frequencies prominent at identical times and identical frequencies, www.Simplana.de) used to compute the intersection of
TFD time series.White arrowsmark the start of AT, black arrowsmark the end of AT. In the TFD of PPG, the main frequency is at ca.
0.21Hz prior to the onset of AT and is clearly stabilized at ca. 0.18Hzwith the start of AT, with signs of dissociation when terminating
AT. The TFD of respiration supplies ample evidence of an order–order transition triggered by the practice of AT: The main frequency
plummets from ca. 0.25 to 0.15 and 0.07Hz to be maintained at ca. 0.12Hz. With termination of AT, the main frequency skips back
to frequencies shown beforehand. The TFD of systemic arterial blood pressure exhibits an intersection of approx. 90% during the
AT section, but also few minor intersections before and after AT (data not shown); the joined TFD intersection shows merely few
frequency “spots” at ca. 0.12Hz during AT

tients in order to change their problem states and diseases.
However, as different research programs revealed during
the last decades, psychological change processes show all
important features of nonlinear systems – like determin-
istic chaos, nonstationary phase transitions, and nonlin-
ear coupling between patient and therapist. Physiologi-
cal synchronization appears to be realized at an interper-
sonal level (between therapist and patient) as well as be-
tween different phenomenological levels of the interper-
sonal system (speech qualities and psycho-physiological
variables). In a study of Villmann et al. [83] heart rate, res-
piratory frequency, muscular tension, and skin conductiv-
ity weremeasured from both, therapist and patient, during
37 therapy sessions. Speech production was analyzed by
theMergenthalermodel focusing on emotional feeling and
cognitive referential activity/abstraction [38]. Physiologi-
cal data were analyzed by an artificial neural network ap-
proach (growing self-organizing map), which uses a kernel
smoothing for improved data density estimation. It was
possible to generate an entropy model of psycho-physi-
ological variability detecting emotionally instable phases
during the therapy process. The entropy reflecting psycho-

physiological and emotional variability was related to the
dramatic value of speech analysis according to the cycle
model of Mergenthaler.

Empirical evidence exists also for synchronized
chaoto-chaotic phase transitions in the brains of therapist
and patient during a therapeutic interview, measured by
local largest Lyapunov exponents in the EEGs of both in-
teraction partners [52].

Taking into account the importance of the therapeu-
tic relationship for the treatment outcome the attention
of a study realized by Schiepek and co-workers focused
on the interactional process between therapist and pa-
tient [26,58]. The authors used the method of sequential
plan analysis, which is a development of the hierarchical
plan analysis proposed by Grawe and Caspar (e. g. [10]).
Plans in this sense are verbally or non-verbally commu-
nicated intentions of self-presentation in a social situa-
tion. Patient’s and therapist’s interactional behavior was
analyzed on the basis of video recordings. Two com-
plete therapies (13 and 9 therapy sessions, resp.) were en-
coded with a sampling rate of 10 s (Fig. 3). The construc-
tion of an inclusive hierarchical plan-analysis leads to an

http://www.Simplana.de
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Self-Organization in Clinical Psychology, Table 1
Second-order plans and categories of self-presentations as identified by the hierarchical plan analysis of a complete 13-session psy-
chotherapy. Encoding of therapist and patient. Plans and categories are used as ideographic observation categories for the sequen-
tial plan analysis

Second-order plans Categories of self-presentation

Therapist

1 show competence
2 encourage a trusting relationship
3 show understanding
4 motivate her

I encourage trust/create a secure atmosphere

5 encourage her to reflect on her patterns of thinking
6 confront her with her avoidance and problem behavior

II confrontation/exposing to insecurity

7 activate her
8 show her that she is responsible

III encourage self-responsibility of the patient

9 guide her focus of attention
10 give her structure

IV activate structuringwork

Patient
1 demonstrate strength and competence
2 make it clear that things are or have been difficult
3 be a good patient/create a good relationship to the therapist

I search for sympathy/appreciation/good relationship

4 show that your suffering is strongly influenced by external
causes

5 ask for help from the therapist

II externalization/demonstration of helplessness

6 show interest and willingness in solving your problems
7 protect yourself from threatening changes

III problem-oriented work (self-relatedness vs. avoidance)

Self-Organization in Clinical Psychology, Figure 3
Nominal sequences of interactional plans of the therapist (top) and the patient (bottom) during a psychotherapy session. The sam-
pling rate is 10 s. Different plans can be realized simultaneously. The pattern looks like a music score with the plans representing
the different instruments of an orchestra. A sonification of the score of plans coded from a 13-session psychotherapy is recorded on
a DVD added to the textbook of Haken and Schiepek [21]

ideographic categorical system for the observation of the
client–therapist interaction (Table 1).

The first hints of order in the dynamics came from
the distribution of simultaneous configurations (on-off-
patterns) of plans in the scores. This distribution follows
a power law (1

ı
f a) demonstrating a distinct structure or-

der within the data (Fig. 4). Following Bak et al. [2], power
law-distributions as demonstrated in Fig. 4 emerge from
self-organized criticality within dynamic systems.

Further data analysis was based on the time series of
the highest-level categories, the so-called categories of self-

presentation (see Table 1). Since in the hierarchical system
of the plan analysis the operators at the lowest observa-
tion level were quantified by intensity ratings, the plans
and the self-presentation categories at the top level inte-
grating the lower level categories were also quantified. The
time series were analyzed by methods which are sensitive
to the nonlinearity as well as the nonstationarity of the
time series [21,26,58,70]. Nonlinearity was proofed by sur-
rogate data tests [51] using random surrogates and FFT-
based phase-randomized surrogates [69]. Whereas frac-
tal dimensionalities of the empirical time series (based on
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Self-Organization in Clinical Psychology, Figure 4
Empirical frequencies of constellations of interactional plans realized by therapists (10 plans) and patients (7 plans) within two
psychotherapies (therapy I: 13 sessions, therapy II: 9 sessions). X-axis: Number of all possible configurations of plans (therapist:
210 D 1024, patient: 27 D 128) ordered by the frequency of their realization. Y-axis: Frequencies of plan configurations. The distri-
butions follow a power-law (1

ı
fa) distribution

the correlation dimension D2 as well as mean Pointwise
D2 [66]) saturated at finite values (convergence to a frac-
tal dimensionality of about 6), random and FFT-surro-
gates did not. The methods of PD2 [66] and of the lo-
cal largest Lyapunov exponents (algorithm from Rosen-
stein et al. [53]) were used to identify phase-transition
like discontinuities. Following the evolution of PD2 di-
mensionalities, both therapies realized nonstationarities,
and both therapies showed periods of strongly synchro-
nized (with correlations from 0.80 to 1.00) and anti-syn-
chronized PD2-processes (with correlations from�0.80 to
�1.00) between patient and therapist. Quite similar and
even more pronounced dynamical jumps were to be seen
in the development of the local largest Lyapunov expo-
nents (Fig. 6), representing changes in the chaoticity of
a time signal [26]. An important part of the discontinuities
of the LLLE were exactly synchronized between patient
and therapist. Obviously both persons create a dynamic
self-organizing communication system, which allows for
the individual change processes of the patient.

These results get support from nonlinear coupling
measures between the time series of the interaction part-
ners. Pointwise transinformation as well as pointwise cou-
pling conditional divergence [33,80] were applied to the
data, and both indicate changing and time-dependent cou-
pling strengths between the time series of the interaction

partners. There is no priority to the therapist’s influence
on the patient, which contradicts the classical idea that in-
put from the therapist should determine the client’s out-
put. The other way round is also true and both constitute
the circular causality of psychotherapeutic self-organiza-
tion.

In other studies, sequential plan analysis was applied
to themicrodynamics of group interaction [21]. In a group
of five persons a creativity and problem solving task was to
be solved within 2,5 h (creation of ideas, rules, and physi-
cal handicraft realization of a prototype board game from
different materials). Similar to the psychotherapy study
the sampling rate was 10 s. The superordinate plans which
could be identified for all five persons were (1) spontane-
ity and emotional engagement vs shyness, restricted be-
havior, and orientation to social norms, (2) engagement
in the group interaction and in positive social climate, (3)
task orientation. Length of time series was about 810 cod-
ing points (= intervals). D2 as well as mean PD2 estimates
saturated at a fractal dimensionality of about 5 for all cat-
egories. The embedding of the time series was realized
by two ways: (1) The phase space was constituted by the
three dimensions of superordinated plans with five tra-
jectories representing the five group members, or (2) the
phase space was constituted by the five persons with three
trajectories representing the time course of the three plans
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Self-Organization in Clinical Psychology, Figure 5
Synchronized jumps in the dynamics of local largest Lyapunov exponents (black arrows). Grey arrows indicate not clearly synchro-
nized changes. a Therapist, b Patient

Self-Organization in Clinical Psychology, Table 2
Factors (principal component analysis) of the Therapy Process Questionnaire (TPQ). Factor analysis was based on 94 therapy pro-
cesses (mean stay = 66 days, daily ratings). Seven first-order factors (right) are related to three second-order factors (left). Numbers
behind the first-order factors indicate factor loadings on second-order factors (for details see [21])

I(2) Change involvement I Therapeutic progress/confidence in treatment effects/self-efficacy (.571)
VI Intensity of therapeutic work/motivation to change (.596)
V Opening of perspectives/personal innovations (.649)

II(2) Relationship/Social climate III Quality of the therapeutic relationship/openness/confidence in the therapist (.705)
II Ward atmosphere, social relationship to other inpatients (.692)

III(2) Emotionality IV Dysphoric emotions/self-relatedness (.732)
VII Impairment by symptoms and problems

(additional embedding dimensions result from time de-
lay coordinates). In both cases PD2 results show an evolv-
ing pattern of quasi-attractors with changing complexity,
and LLLEs (algorithm from Rosenstein et al. [53]) portray
chaoto-chaotic phase transitions with clear-cut and inter-
personally synchronized jumps – similar to the dyadic in-
teraction of the psychotherapy study.

Self-Organization in Human Change Processes

A quite different approach to human change processes
focuses on inpatient treatments at a hospital of psycho-
somatics. In a study by Schiepek and coworkers (results
in [21]) 94 change processes were investigated, realized by
91 inpatients with different diagnoses (depression, anxiety
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disorders, posttraumatic stress disorders, eating disorders,
somatoform disorders, and others). The time series data
was produced by patients’ self-ratings which were com-
pleted once a day in the evening. For this purpose a 53-
item rating sheet was developed (Therapy Process Ques-
tionnaire [TPQ], [21]) whose factor analysis resulted in
a solution of seven factors defining the subscales of the
questionnaire (Table 2). The ratings combined seven-step
Likert scales and visual analogue scales especially for rat-
ings of emotions. TPQmeasurements reflect important as-
pects of the patient’s experience of progress and goal at-
tainment, emotional involvement, self-efficacy, therapeu-
tic relationship, social relations with other inpatients, and
the ward atmosphere.

The inclusive outcome criterion integrated the follow-
ing measures: Inventory of Interpersonal Problems (IIP),
Gießener Beschwerdebogen (GBB), Hospital Anxiety and
Depression Scale (HADS), Questionnaire for Social Sup-
port (F-SOZU), a life-quality questionnaire (Münchener
Lebensqualitäts-Dimensionenliste), a self-efficacy ques-
tionnaire (Fragebogen zur Generalisierten Kompetenzer-
wartung), the Sense-of-Coherence Questionnaire, and an
interview-based assessment of personal resources. Addi-
tionally, therapists and patients scored the overall treat-
ment effectiveness and treatment quality.

Results confirmed synergetic conceptualizations of
how psychotherapy works and corroborated hypotheses
drawn from this model. Here therapy is supposed to pro-
vide support for the patient’s own self-organization pro-
cesses, which should be characterized by cascades of order-
to-order transitions accompanied by critical instabilities
of the process. Pathological and restrictive order should
be transformed into more flexible and adaptive patterns of
behavior, and the synchronization of the different aspects
of the patient’s experience should undergo some transfor-
mations. Exactly this could be observed.

Significant correlations exist between the local max-
ima of critical fluctuations and the outcome of psychother-
apy. The local maxima were defined by the difference be-
tween the mean dynamic complexity of the whole psy-
chotherapy process and the maximum of the complexity
which was observed during the process. Correlations were
�0.455 (second-order factor I: “Change involvement” of
the TPQ, p D 0:002), �0.431 (second-order factor 2: “Re-
lationship/social climate”, p D 0:003), and �0.572 (sec-
ond-order factor 3: “Emotionality”, p D 0:000) (compare
Table 2). Negative correlations result from the fact that in-
creased local maxima of dynamic complexity correspond
to reduced problems, symptoms, and impairment.

The dynamic complexity combines a fluctuation in-
dex with a distribution index. The fluctuation index mea-

sures the frequency and amplitude of the change rates of
a time series between the reversals of the development
within a scanning window gliding over the whole time se-
ries. For analysis purpose a window width of seven mea-
surement points (= days) was introduced. The distribu-
tion indexmeasures the scattering of realized valueswithin
a given scanning window. The more scores are restricted
to only narrow intervals of the available scale range, the
smaller the distribution index becomes. The score of this
index increases as the interval filled by the realized values
grows. The algorithm solves the problem of value distri-
bution independently of the scale resolution, the width of
the scanning window, and of any combination of these pa-
rameters.

In order to answer the question if the observed inten-
sities of dynamic complexity reach critical values, intra-
item calibration procedures were used in order to de-
fine adequate thresholds fitting to the actual dynamics.
The time series of dynamic complexity were standard-
ized by z-transformations, providing significance thresh-
olds of 5% or 1%. Applying this threshold method to all
items of the TPQ reduces the quantitative complexity sig-
nals of each time series to a three-step signal (not signif-
icant, complexity exceeds a 5% threshold, complexity ex-
ceeds a 1% threshold). A synopsis of these qualitative sig-
nals referring to all items of the TPQ gives an impression
of the localization of critical fluctuations during the whole
process. Dynamic complexities seem to be synchronized
over many items and factors of the TPQ, resulting in the
structure of columns of grey (<5%) or black (<1%) dots.
In a large part of the investigated therapies such column-
like structures could be identified. In an item-by-time syn-
opsis they indicate phases of intensified as well as synchro-
nized fluctuations and entropies of quite different aspects
of the process. Consequently, these item-by-time synopses
are called complexity resonance diagrams (Fig. 6).

In order to confirm the structures found within the
complexity-resonance-diagrams, surrogate tests were re-
alized based on random as well as on FFT-based surro-
gates of the time series. The empirical patterns are impres-
sively different from the surrogate-based patterns (all re-
alized comparisons with p D 0:000). Further support for
phase-transition like phenomena in the change processes
came from recurrence plots representing similarities and
dissimilarities of dynamic segments of a whole time se-
ries [13,80,85]. This method is based on the embedding
of time series into a phase space constructed by time-
delay coordinates, a method which is also crucial in the
algorithms for the estimation of dimensional complexity
or chaoticity (e. g., Kolmogorov–Sinai-Entropy, Lyapunov
Exponents). Neighbors in the time-delay phase space rep-
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Self-Organization in Clinical Psychology, Figure 6
Complexity resonance diagram of a psychotherapy process. Such diagrams portray the threshold exceeding dynamic complexities
of a process encoded by the 53 items of the Therapy Process Questionnaire (TPQ).Gray dots: 5% threshold of significance; black dots:
1% threshold of significance. X-axis: Days of hospital stay, Y-axis: Items of the TPQ arranged by the order of the factors as reported in
Table 2. Windowwidth for the calculation of dynamic complexities is 7. Column-like structures indicate phases of critical instabilities
during the process

resent similar dynamic segments and are plotted by a dot
in the recurrence plot. Dissimilarities are represented by
empty columns in the recurrence plots, which in many
cases exactly correspond to the columns of dots in the
complexity-resonance diagrams. The overall correlation is
�0.45, if small shifts (lags ofC or�3 measurement points
at maximum) will be allowed. This means that periods of
critical instability correspond to transient dynamics out-
side of the quasi-attractors established by the self-orga-
nizing system under consideration. These different ways
to identify critical phase transitions are further validated
by the time frequency distribution (TFD) of the time se-
ries. The TFD method uses wavelet spectra in order to
scan the evolution of the frequency distributions within

a signal [33,80]. It is a dynamic counterpart to the static
fast Fourier transformation and allows for the identifica-
tion of pronounced frequency amplitudes or changes in
the frequency distributions. In the data set of the referred
study these often appear exactly during the phase transi-
tions which can be identified by other methods (see the
synoptical representations of different time series analy-
sis methods on the DVD in the textbook of Haken and
Schiepek [21]).

An overall result of the study is shown in Fig. 7. It por-
trays the evidence that in order to bring forth change pro-
cesses within self-organizing systems at least two condi-
tions should be realized. The first condition: The degree
of the control parameter energizing the system and push-
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Self-Organization in Clinical Psychology, Figure 7
The effect size (ES) (mean ES of all outcome measures introduced in the study, see text) of inpatient psychotherapy is produced by
an interaction between the local maximum of critical fluctuations and the intensity of the control parameter realized during the
change process. The local maxima of fluctuations were defined by the difference between the mean dynamic complexity of the
whole therapy process and the maximum of the complexity observed during the process. The diagram is based on the mean of
the local maxima of all items. The control parameter was defined by the overall mean of the TPQ factor VI: Intensity of therapeutic
work/motivation to change

ing it away from its actual equilibrium state should exceed
a certain intensity level. With respect to psychotherapies
this control parameter could be the patient’s motivation
to change including his engagement into the therapeutic
work. Second condition: The degree of instability the sys-
tem attains during its change process. This instability dur-
ing emerging symmetries and symmetry breaking transi-
tions is given by the local maximum of dynamic complex-
ity during the hospital stay. The interaction of both condi-
tions results in treatment effectiveness. A third important
condition is not represented in Fig. 7: It is the experienced
stability of the outer environment (context at the ward or
therapeutic bond) or of the inner environment (as self-es-
teem, self-confidence, or activated resources). This context
of stability is a prerequisite for a system to undergo critical
instabilities.

The Concept of Self-OrganizationPromotes
New Information Technologies in Clinical
Psychology – The Synergetic Navigation System

Since self-organization and nonlinear dynamics seem to be
ubiquitous in human change processes, it should be help-
ful to go beyond the diagnostics of steady states to an as-

sessment of dynamics. Practitioners should get informa-
tion on the therapy and its features during the ongoing
process in order to use this information for an adequate
placement of interventions and a control of the dynamics.
“Controlling” self-organization processes in psychothera-
pies means the generation and co-creation (together with
the patient) of adequate boundary conditions, the deci-
sion to do or to retain certain interventions, and to sup-
port the dynamics which the system is creating by itself.
The patient takes an active and cooperative role in this
understanding of data-based and co-creative change pro-
cesses. Another importantmotivation for the development
of real-time assessment comes from the evidence thatmost
of the empirically identified specific and non-specific fac-
tors driving therapeutic change processes are connected
with specific persons (the concrete therapist who meets
a concrete patient in a concrete setting) and evolve by its
nonlinear interactions in specific systems. These factors
are (i) personal features of the patient like his motivation
to change, his premorbid adaptation and degree of social
functioning, personality integration, ego-strength, or co-
morbidities, (ii) personal and professional features of the
therapist like his own personality integration, social and
professional competencies, allegiance to his approach of
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� Self-Organization in Clinical Psychology, Figure 8
Synopsis of a psychotherapy process asmonitored by the Syner-
getic Navigation System. The time course of the inpatient treat-
ment of a patient with eating disorders portrays a clear cut
phase-transition associated with critical instabilities. Top: Recur-
rence plot of the item “Today I was successful to do steps to-
wardsmy personal goals”.Dots represent recurrent segments of
the time series, empty spaces represent transitions.Middle: Com-
plexity resonance diagramof all items of the TPQ. Different from
Fig. 6, the intensities of the dynamic complexity of each item is
transformed into colors. Items are arranged by the order of the
first- and second-order factors of TPQ. Bottom: Mean of all inter-
item correlations irrespective of the sign (absolute values). This
is a measure of the overall synchronisation of the patient’s expe-
riences as represented by the items of the TPQ. The correlation
structure is shown at fourmeasurement points (days) of the psy-
chotherapy process (t D 4, t D 19, t D 33, t D 46). Intensity of
green represents positive correlations, intensities of red repre-
sents negative correlations

doing therapy, stress-resistance, and so on, and (iii) fac-
tors of the professional and social context (see the so-called
generic model of psychotherapy [29,42]). In consequence,
evidence-based treatments should be based on the evidence
of concrete data mirroring the ongoing change process
and on the professional decisions reflecting this insight.

Real-timemonitoring actually uses internet-based pre-
sentations (including PDA or cell phone technology) of
outcome and process questionnaires. Data are sent to
a server, where they are stored and analyzed. Profession-
als and patients can inspect the results whenever they
want. Experiences with real-time feedback to therapists
(based on an outcome questionnaire the patient fills out
during the therapy sessions in an ambulatory or outpa-
tient context) are encouraging. Lambert and co-workers
(e. g., [31]) were able to identify processes on the way of
getting difficult or unsuccessful (“not on track” therapies,
compared to more promising “on track” therapies), and
helped therapists to correct these not-on-track dynamics
by specific interventions. By this, threatening drop-outs
could be avoided, bad results could be corrected, and on-
track processes could be optimized and even shortened.

More sophisticated than the distinction between “on-
track” and “not-on-track” courses is the feedback on self-
organization features realized by a system based on syn-
ergetics [21]. The Synergetic Navigation System uses the
therapy process questionnaire for daily ratings and applies
methods from nonlinear time series analysis in order to
identify important qualities of the change process. This
are:

� Stability or instability of the dynamics as represented by
the subscales (factors) of the TPQ (see Table 2), which
is measured by the dynamic complexity

� Recurrence plots indicating transitions or repeating
patterns

� Intensity of synchronization and time-dependent syn-
chronization patterns between the items and the fac-
tors of the TPQ (realized by the cross-correlations of
all items of the TPQ, calculated within a running win-
dow).

Figure 8 shows a synopsis of these analysis methods
applied to a specific change process. Preceding the inspec-
tion of all analysis results the raw data series of the items
and the time courses of the factors (z-transformed values)
are available. Additionally patients can write an electronic
diary after filling out the questionnaire. The diary entries
can be presented within a gliding tip-tool running over the
time series. By this, corresponding qualitative and quanti-
tative information completes the picture.

The Self-Organizing Brain

The human brain is one of the most outstanding exam-
ples of a complex nonlinear system producing self-orga-
nized patterns of functioning. Since function corresponds
to structure and vice versa, structural changes (changes of
intersynaptic coupling strengths and network configura-
tions, (re-)wiring patterns following the synchronized co-
activity of neurons) can be explained by functional self-or-
ganization of neural populations. Perception, action and
transition of action patterns, decision making, and cog-
nitive, behavioral, as well as emotional learning are psy-
chological functions following the principles of self-orga-
nization [21]. At a neural level they correspond to and
are based on nonlinear brain dynamics. The emergence of
order parameters and the occurrence of phase transitions
can be described and measured on a psychological as well
as on a neural level.

One of the phenomena modeled by synergetics is
Gestalt perception – the construction of percepts and the
switching of ambiguous visual patterns (e. g., Necker cube
or stroboscopic alternative motion). These processes of
Gestalt perception constitute the link between Gestalt psy-
chology and actual mathematical modeling in synerge-
tics [17]. The binding of different perceptual features or
components to coherent structures or “qualia” seems to
be due to synchronization processes of extended brain re-
gions and converging integrative areas [64]. Pattern per-
ception corresponds to pattern formation – as H. Haken
puts it into pointed words. Tallon-Baudry et al. [71,72]
measured enhanced gamma-band activity (30–50Hz) in
the EEG of the primary and secondary visual cortex while
subjects identified a triangle within the offered stimu-
lus material. This could be a fingerprint of correspond-
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ing neural synchronization processes. This activity oc-
curred when subjects saw a real object (triangle) as well
as a figural illusion of the object (Kanizsa triangle), but
not if geometrical components could not be composed to
a true Gestalt. The research group of Basar–Eroglu and
Stadler [4] measured significant gamma-band activity in
EEG during states of perceptual switching triggered by
stroboscopic alternative motions. In summary: Perception
of multistability is one of the multifold cognitive processes
giving rise to 40Hz enhancement in the cortex, and coher-
ent oscillations reflect an important mechanism of feature
linking in the visual cortex which corresponds to the emer-
gence of a neural order parameter. Changing order pa-
rameter dynamics during different cognitive activities was
shown by Schupp et al. [62]. Mental imagery of an object
could be differentiated from its concrete perception. The
dimensional complexity of prefrontal EEG was increased
during sensory imagery compared to the real perception
of the same object (compare [36]).

The well-known movement coordination paradigm
modeled by Haken et al. [22] was used to demonstrate
neural correlates of instability and symmetry breaking
processes in the motor brain. The order parameter in this
finger movement experiment is the relative phase of the
index fingers of both hands. Metronome-pacing – with
movement frequency as the control parameter – triggers
the system from parallel (out-of-phase) to mirror (in-
phase) movement. Meyer-Lindenberg et al. [39] showed
that the emergence of patterns in open, nonequilibrium
systems like the brain is governed by their stability in re-
sponse to small disturbances. Transitions could be elicited
by interference at the neural level. Functional neuroimag-
ing (PET) identified premotor (PMA) and supplemen-
tary motor (SMA) cortices as having neural activity linked
to the degree of behavioral instability, induced by in-
creasing frequency of the finger movement. These regions
then were transiently disturbed with graded transcranial
magnetic stimulation (TMS), which caused sustained and
macroscopic behavioral transitions from the less stable
out-of-phase to the stable in-phase movement, whereas
the stable pattern could not be affected. Moreover, the
strength of the disturbance needed (a measure of neural
stability) was linked to the degree of the control parame-
ter (movement frequency) and thereby to the behavioral
stability of the system.

Synergetic research in clinical psychology is now
reaching the brain level. The aim of an actual fMRI-
study [60] is the investigation of phase transitions of brain
activity and related subjective experiences of patients dur-
ing their psychotherapy process. Repeated fMRI scans are
related to the degree of stability or instability of the on-

going dynamics (measured by the dynamic complexity of
daily TPQ-ratings) as well as to the therapy outcome. Real-
time monitoring by the Synergetic Navigation System al-
lows for the identification of stable or unstable periods and
by this for a decision on the appropriate moments of fMRI
acquisitions. Three or four scans are realized during each
of the psychotherapy processes of 15 patients. The study
includes only patients with obsessive-compulsive disorder
(OCD) of the washing/contamination fear subtype (DSM
IV: 300.3), without any medication or comorbid psychi-
atric or somatic diagnoses. Patients are matched to healthy
controls. (This research is a multi-center study of the
Ludwig-Maximilians-University Munich, Institute of Psy-
chology (Prof. Dr. Günter Schiepek, head of the project),
and Clinic of Psychiatry (PD Dr. Oliver Pogarell, Dipl.
Psych. Susanne Karch, Dr. Christoph Mulert), Hospital
of Psychosomatic Medicine Windach/Ammersee and Day
Treatment Centre Munich/Westend (Dr. Igor Tomin-
schek, cand. Psych. Stephan Heinzel, Prof. Dr. Michael
Zaudig), University Hospital Vienna/Astria, Clinic of Psy-
chiatry (Prof. Dr. Martin Aigner, Prof. Dr. Gerhard Lenz,
cand. med. Markus Dold, Dr. Annemarie Unger), MR
Centre of Excellence, Medical University Vienna/Austria
(Prof. Dr. Ewald Moser, Dr. Christian Windischberger).

OCD seems to be an appropriate model system for
synergetic studies in clinical psychology, since the patho-
logical order parameter is phenomenologically quite ev-
ident, the disease has an obvious and quite stable time
course, and therapeutic phase transitions – if they do
occur at all – are easy to be observed. OCD-specific
functional neuroanatomy is partially known: Friedlander
and Desrocher [14] report on an executive dysfunction
model corresponding to the cortico-striato-thalamo-cor-
tical feedback-loops involved in perseverations and com-
pulsions, and on a modulatory control model involved in
the pathological mechanisms of anxiety and distress pro-
voking obsessions.

The visual stimulation paradigm of the study uses
symptom provoking, disgust provoking, and neutral pic-
tures. The disgust and the neutral pictures are taken from
the International Affective Picture System, whereas the
OCD-related pictures are photographed in the home set-
ting of the patients, showing specific and individualized
symptom provoking stimuli.

For illustrative purposes we report on the results of
a single case. It is a female patient, whose fMRI scans
were taken three times during the 59 days of their hos-
pital stay at days 9, 30, and 57. The healthy control was
also scanned three times at identical time intervals as the
patient. The second acquisition was done after an inten-
sive period of critical instability of the TPQ-based time se-
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ries, but just before the flooding was started. (Flooding or
response prevention is an essential therapy technique in
the treatment of OCD, where patients are confronted with
symptom provoking stimuli but abstain from performing
compulsive rituals.) The instability of the patient’s process
was the precursor of an important personal decision to di-
vorce from her husband. (It should be noted that the de-
velopment of her OCD symptoms was in the context of
a long-lasting marital conflict.) This decision was the es-
sential phase transition of the therapy.

Indeed, the most pronounced changes in brain activity
occurred from the first to the second fMRI scan, whereas
BOLD response differences from the second to the third
session were only slight. They perhaps represent the neu-
ral correlates of an important personal phase transition re-
lated to the resolution of a severe personal conflict. Be-
cause these changes occurred before the flooding proce-
dure was started, this can be seen as indicator of an early
rapid response in the therapy [29]. Additionally, marked
alternations in brain activity were to be observed before or
during symptom reduction took place (measured by the
Y-BOCS), not afterwards.

Alternations in brain activity involved widespread ar-
eas, e. g. the medial frontal brain regions including ante-
rior cingulate cortex, superior and middle frontal gyrus,
inferior frontal and precentral gyrus, superior temporal
gyrus, superior parietal lobe, cuneus, thalamus and cau-
date nucleus in both hemispheres, as well as the right
fusiform gyrus (see Fig. 9 for a OCD to disgust contrast).
Thalamic and basal ganglia activation is part of the dor-
solateral-caudate-striatum-thalamuscircuitry of OCD. Es-
pecially the caudate nucleus takes a role within the execu-
tive dysfunction model of compulsions, and its activity has
been found to be reduced after treatment [40].

The function of the anterior cingulate cortex is in-
teresting with regard to synergetics. The cingulate cortex
comprises various functions like somatosensoric integra-
tion, mediation of affective and cognitive processes, con-
trol of attention, and processing of painful stimuli. Ad-
ditionally, it plays an important role as conflict monitor-
ing system: It is sensitive to ambiguous or conflicting in-
formation [81,82], is involved in decision making [24,54],
and its activation is predictive to treatment outcome in de-
pression (e. g. [37]). This is true especially for the dorsal
(cognitive) structures of the ACC. It could be an indica-
tor of symmetry states of brain functioning, which is char-
acterized by two or more dynamic patterns or attractors
in competition. In the present case, the ACC activation at
the beginning of the therapy could be either part of the
pathology or could be indicative for the critical instabil-
ity of the cognitive-affective system of the patient, prepar-

ing her important decision. The second fMRI measure was
conducted during a local minimum of critical fluctuations.
If the impressive change in cingulate activation could be
attributed to a changed critical symmetry state of the neu-
ral self-organization before vs. after the phase-transition or
to changes in symptom severity cannot be decided within
a single case study, but seems to be an interesting question
to further research. Perhaps the fact that during the sec-
ond fMRI measure the Y-BOCS score was nearly on the
same level as during the first measure – only 14% reduc-
tion, compared to 50% reduction in dynamic complexity –
could be a first argument in favor of the instability hypoth-
esis.

The paradigm of self-organization is a very promis-
ing approach to clinical as well as other fields of psy-
chology. Its interdisciplinary is due to the fact that the
laws and principles of self-organization are true for neu-
ral, mental, and behavioral processes (and the correspond-
ing data qualities). Interdisciplinary cooperation is under-
pinned by the unifying terminology as well as by the uni-
fying formalism and modeling tools of synergetics. This
opens new perspectives for basic and applied research, but
also for the treatment of mental disorders. New develop-
ments in the real-time monitoring of human change pro-
cesses based on synergetics and nonlinear science have
been mentioned. Another field of encouraging develop-
ments is deep brain stimulation (DBS), which apply to
neurological diseases as Parkinsonian or essential tremor,
but also to psychiatric disorders as OCD or mayor depres-
sion [75]. The difference between new technologies (ap-
plying the mathematical instruments and concepts of syn-
ergetics as well asmethods from stochastic phase resetting)
and classical electrical deep brain stimulation is that nor-
mal DBS at high frequencies has a blocking effect on the
stimulated target and mimics the effect of tissue lesioning.
New technologies are demand-controlled, working with
low stimulation frequencies, and avoid the suppression of
neurons’ firing. Its effect is a desynchronization of patho-
logically synchronized populations of neurons, using
multi-site coordinated reset stimulation [74] or nonlinear
delayed feedback stimulation [50]. Both methods coun-
teract abnormal interactions and detune the macroscopic
frequency of the collective oscillators – that is the abnor-
mally established order parameters of neural synchroniza-
tion. Thereby they restore the natural frequencies of the
individual oscillatory units. Neurons get in the range of
physiological functioning and can engage in changing and
varying synchronization patterns. If altered synchroniza-
tion patterns also change the coupling strength connect-
ing synapses, a rewiring of neural nets could be reached.
Changed function triggers the emergence of healthy at-
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Self-Organization in Clinical Psychology, Figure 9
Brain activation patterns of a patient with OCD during psychotherapy. BOLD signals from a 1.5 Tesla fMRI scanner. Top: First
scan (9th day of hospital stay; x D 0, y D �55, z D �2; p(uncor) <0:001). Middle: Second scan (30th day of hospital stay; x D 8,
y D �54, z D 5; p(uncor) < 0:001). Bottom: The third scan (57th day of hospital stay; x D 0, y D �85, z D 26; p(uncor) < 0:001).
Activations during the presentation of OCD-related pictures compared to activations during the presentation of neutral pictures
(OCD > disgust)

tractors and by this changes the structure of neural net-
works. Perhaps in the future technologies of DBS or even
non-invasive brain stimulation could be combined with
psychotherapy and psychological navigation instruments
developed to optimize self-organizing change processes.

Future Directions

The future developments of self-organization and com-
plexity research in clinical psychology and psychotherapy
will be interconnected to its acceptance in practice and
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training. Perhaps this sounds paradoxically, since in most
other scientific fields the future depends on the investiga-
tions to basic research and to new technologies. Of course
this holds also for synergetics and its applications to clini-
cal psychology. However, it should be noted that complex-
ity research and nonlinear dynamics are done since more
than two decades in European academic psychology with
poor impact to mainstream science. So, the future will de-
pend on a greater number of new arriving and highly qual-
ified students in this topic who do not avoid the touch
with mathematics. Self-organization and complexity re-
search including its mathematical backgrounds should be-
come part of the training curricula in psychology and psy-
chotherapy. Since the Synergetic Navigation System waits
for its broad application in clinical and psychotherapeutic
practice, a new decade of practice-based research can be
started. But these developments depend on its acceptance
by practitioners because of the competencies required for
the widespread use of sophisticated methods. This integra-
tion of science with practice will open huge sources and
new dimensions of data gathering on dynamic systems. An
important database for outcome and time series data (in-
cluding biomarkers) of human change processes is actually
prepared.

Another stream of development is concerning the inte-
gration of psychological and biological/physiological data.
Since human self-organization takes place on synchro-
nized mental, social, and biological system levels, all of
them should be taken into account in further research.
One research paradigm was suggested in this chapter: The
investigation of individual and social processes by the Syn-
ergetic Navigation System, and in parallel repeated brain
scans using fMRI technology or other methods to get in-
sight into brain dynamics (EEG, gene expression mark-
ers [25], immune or endocrine markers [61], or others).
Two final remarks: First, future developments of syn-
ergetic-based minimal invasive DBS could be combined
with psychotherapy and psychological interventions – as
pharmacological and psychological treatments are com-
bined nowadays. Second, the nonlinear networks under-
lying psychological as well as neural self-organization will
not be understood without applying appropriate mathe-
matical tools, giving raise to a new systemic psychology
and neuroscience.
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Glossary

Alfvén speed The Alfvén speed cA is the propagation
speed of Alfvén waves and is given by cA D

B0/(4��)1/2, whereB0 is meanmagnetic field and � the
plasma mass density. Alfvèn waves are transverse, in-
compressible magnetohydrodynamic waves that prop-
agate along B0 and originate from the tension of mag-
netic field lines.

Elsässer variables Elsässer variables z
 are defined by
z
 D vC �B/(4��)1/2, with � D ˙1, v the velocity
field, B the magnetic field and � the plasma mass den-
sity. The equations of incompressible MHD are often
written in terms of these variables in order to describe
the propagation of Alfvén waves and the non-linear
couplings occurring in MHD turbulence.

Magnetohydrodynamics Magnetohydrodynamics (ab-
breviated, MHD) represents a one-fluid mathematical
model which describes plasma dynamics at low fre-
quencies: The main dynamical variables are the ve-
locity of the fluid and the magnetic field. The vector
equations for these variables are the fluid momentum
conservation and the induction Maxwell equation.

MHD turbulence MHD turbulence is that turbulence
which develops inside plasmas at macroscopic level,
when viscosity and resistivity are low. Apart from ve-
locity fluctuations which are also present in ordinary
fluids, it is characterized also by the presence of mag-
netic field fluctuations.

Reverse field pinch Reverse field pinch (abbreviated,
RFP) are plasma fusion toroidal devices whose concep-
tion is based on the idea that non-linear interactions in
plasmas spontaneously give rise to magnetic structures
where the Laplace force is zero (force free structures).

Shell models Shell models of turbulence are dynami-
cal systems consisting of a set of ordinary differen-
tial equations representing a simplified version of the
Navier–Stokes or MHD equations in the wavevector
space. These models provide the possibility to investi-
gate turbulence at very high Reynolds number regimes

at the cost of neglecting information about spatial
structures.

Solar corona The solar corona is the region extending
from the solar surface up to one million of kilometers
in the space, which can be visible to the naked eye dur-
ing the eclipses. It is constituted mainly by a hydro-
gen plasma (proton and electrons) at a temperature of
about two million degrees. The corona is highly struc-
tured by the magnetic field generated at the sun sur-
face.

Solar wind The solar wind is a stream of plasma
mainly composed of protons and electrons (hydrogen
plasma), which flows out of the sun, due to the fact
that plasma pressure associated to the very high coro-
nal temperature overcomes the sun gravity. The flow
velocity ranges from 250 km/s in the equatorial plane
to about 900 km/s in the polar regions. Solar wind rep-
resents an extremely efficient plasma laboratory where
the turbulence associated with the supersonic flow can
be studied using space experiment data.

Definition of the Subject

Plasma dynamics at low frequency, i. e. at frequencies
lower then the ion cyclotron frequency, can be described
using a one-fluid model usually called magnetohydrody-
namics (MHD), where the main dynamical variables are
represented by fluid velocity and magnetic field, which
evolve non-linearly being coupled to each other. This de-
scription applies both to laboratory plasma devices (toka-
maks, reverse field pinch etc.), devoted to realize con-
trolled nuclear fusion, and to space and astrophysical plas-
mas (Solar corona, Solar wind). Very often, when viscosity
and resistivity are sufficiently small, the plasma behavior is
characterized by the presence of a developed turbulence.
In the last 20 years huge progress in understanding the
properties of such turbulence has been realized, both by
the use of high resolution computer simulations and by
analysis of space and laboratory data. One of the most fas-
cinating results of these studies concerns the evidence of
self organization processes which have been shown to be
very effective inside this kind of turbulence. Other aspects
of turbulence and dynamical complexity in space plasmas
are considered in the review by Chang � Space Plasmas,
Dynamical Complexity in in this Encyclopedia.

Introduction

Dynamical systems, whose time evolution is described by
non-linear equations, can often give rise to chaotic behav-
ior, i. e. to a behavior characterized by a strong depen-
dence on initial conditions, which, in all practical cases,
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does not allow to predict the final fate of such systems, or
at least limits considerably the possibility to make predic-
tions. Nevertheless, inside these systems, sometimes new
complex, coherent structures, without any need of exter-
nal intervention, can develop. This phenomenon is called
self-organization.

Self-organization requires decreasing the entropy in-
side the coherent organized structures and exporting such
entropy to the surroundings. For this reason the coher-
ent structures can be called, following Prigogine, dissipa-
tive structures, in that their organization is always associ-
ated with an increased efficiency of dissipative processes
around them.

MHD turbulence, as well as ordinary fluid turbulence,
is characterized by a phenomenology, first described some
centuries ago around the year 1500 by Leonardo da Vinci
(Piumati 1894, fo. 74,v), where energy injected at large
scales (injection range) is transferred by non-linear in-
teractions (inertial range) towards smaller and smaller
scales where it is finally dissipated (dissipative range). The
physical phenomenon by which coherent organized struc-
tures are produced through an increased dissipation inside
MHD turbulence has been evidenced both at large scale
and at small scales. In the latter case it is usually called in-
termittency. We will discuss separately the two cases.

The occurrence of self organization at large scale seems
to be directly related to the existence in MHD equations of
some quadratic invariants (energy, magnetic helicity, cross
helicity), which are conserved inside inviscid flows and are
dissipated at very different rates in dissipative flows. Ac-
tually the existence of some long-living non-trivial states,
towards which dissipative flows are attracted, has been ev-
idenced for a long time. Moreover it has been suggested
that these states could be derived from a variational prin-
ciple, i. e. by minimizing an energy integral subject to some
constraints on the other quadratic invariants. Woltjer [58]
first explored the astrophysical implications of this pos-
sibility. The conjecture by Taylor [51] that an MHD sys-
tem relaxes towards a state where the energy is minimum,
subject to the constraint that magnetic helicity is con-
served, allowed one to obtain a quite particular solution,
usually called Taylor’s vortex. This solution was extremely
useful to explain the large scale behavior of reverse field
pinch (RFP) devices [51]. The same conjecture has also
been used to estimate the energy release in coronal struc-
tures [25,42] in connection to the problem of coronal heat-
ing.

The discovery in the solar wind of quite peculiar
Alfvénic fluctuations, characterized by a high degree of cor-
relation between velocity and magnetic field [3], which
was interpreted by Dobrowolny et al. [20] as the result

of a self organization of MHD turbulence, has suggested
the formulation [10,38,53] of a different minimum princi-
ple: Alfvénic solutions can be obtained by minimizing the
energy subject to the condition that cross-helicity is con-
served.

In any case the energy minimization is dynamically re-
alized through a selective decay process, i. e. a process dur-
ing which some energy is dissipated into heat and the ap-
pearance of the coherent large scale structures is associated
with redistribution of entropy to the surroundings.

The self organization processes discussed above, and
related to the spontaneous creation of large scale coher-
ent structures during theMHD turbulence dynamics, have
their counterpart also at small scales. Actually, the non-
linear energy cascade process in fully developedMHD tur-
bulence is characterized by the formation at the smallest
dissipative scale of coherent structures. These structures
are strictly related to the intermittency phenomenon; that
is, to the breakdown of global self-similarity in the turbu-
lent cascade, which represents a typical signature of non-
linear interactions.

In the following sections we first present the MHD
equations (Sect. “MHD Equations and Quadratic Invari-
ants”) properties and discuss the characteristics of the self
organized structures at large scales (Sect. “Self-Organiza-
tion at Large Scales”). Then in Sect. “Self-Organization at
Small Scales and Intermittent Structures in MHD Turbu-
lence” we show that at small scales coherent dissipative
structures are spontaneously formed in a physical process
usually called intermittency. Finally in Sect. “Future Di-
rections” we discuss the possible future developments and
perspectives of such kind of studies.

MHD Equations and Quadratic Invariants

The equations describing the time evolution of an incom-
pressible magnetofluid can be written

@v
@t
C (v � r)v D �

1
�
rpC (r � b) � bC �r2v ; (1)

@b
@t
D r � (v � b)C �r2b (2)

where v represents the fluid velocity and p the fluid pres-
sure, b D B/

p
4�� (B being the magnetic field and �

the mass density), � is the kinematic viscosity and
� D (c2�)/(4�) the magnetic diffusivity (� being the fluid
resistivity). The velocity and magnetic field must also sat-
isfy the incompressibility conditions

r � v D 0 r � b D 0 : (3)
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Quadratic Invariants

It can be easily shown that during their ideal time evolu-
tion, i. e. in absence of viscosity and resistivity, these equa-
tions conserve the following quadratic invariants: Total
energy (kinetic + magnetic) per mass unit

E D
1
2

Z
(v2 C b2)dV (4)

and cross helicity

Hc D

Z
v � bdV : (5)

Moreover Woltjer [58] showed that in the ideal 3DMHD,
also magnetic helicity

Hm D

Z
a � bdV (6)

(a being the magnetic vector potential defined through
b D r � a) remains invariant during the evolution of any
closed magnetic flux system. In 2D MHD on the contrary,
the third conserved quantity is the square of the magnetic
field vector potential [24]

AD
Z

a2dV (7)

In Eqs. (4), (5), (6) and (7) the integrals are extended to the
whole volume of the magnetofluid.

Elsässer’s Variables

In the following we will find it useful to rewrite these equa-
tions in terms of the Elsässer [21] variables z
 defined
by z
 D vC �b with � D ˙1. Using such variables the
equations governing incompressible MHD are recast to
the more compact form

@z


@t
C(z�
 �r)z
 D �

1
�
r(pC

B2

8�
)C�Cr2z
C��r2z�


(8)

with �
 D � C ��. Obviously also the fields z
 must sat-
isfy the incompressibility conditions

r � z
 D 0 : (9)

In terms of these variables, the conservation of total en-
ergy per mass unit and cross helicity can be written as the
conservation of the two pseudo-energies

E
 D
1
2

Z
z


2
dV : (10)

MHD equations display and infinite number of ideal
non-quadratic invariants, but quadratic invariants (4), (5)
and (6) (or in 2D (7)) play a key role. Actually, let us in-
troduce the Fourier transform of the field z
 in a cubic
periodic box of size a

z
 (r; t) D
X

k

z
 (k; t) exp(ik � r)

where k D 2�m/a, andm is vector of integer numbers. In
terms of these Fourier transforms (taking into account the
incompressibility condition (9) and neglecting dissipative
terms), MHD Equations (8) can be written

@z
i (k; t)
@t

D

3X

l ;sD1

X

p;q
Mi;l ;s(k;p; q)z
l (p; t)

z�
s (q; t)ık;pCq (11)

with Mi;l ;s(k;p; q) D �i


ıi l �

ki k l
k2

�
ks and where ık;pCq

is the usual Kronecker symbol. The peculiar form of these
equations shows that non-linear terms are characterized
by triad interactions among wave vectors k, p and q such
that k D pC q. Quadratic invariants are also called rugged
invariants, because they are conserved in any single inter-
action among a triad of wave vector and for this reason

Self-Organization in Magnetohydrodynamic Turbulence, Fig-
ure 1
Sketch of the reducedMHD configuration
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they survive also when a Galerkin approximation is per-
formed on MHD equations. In other words, even if the
r. h. s. of (11) contains an infinite number of non-linear in-
teractions, E(t), Hc(t) and Hm(t) remain invariant also by
retaining any finite number of interacting triads in Equa-
tion (11).

Reduced Magnetohydrodynamics

In some fusion plasma devices, or in the solar corona,
the plasma ˇ parameter (that is the ratio between the ki-
netic and magnetic pressure) is low ˇ ' 10�2, and MHD
equations can be simplified into the so-called Reduced
MHD [47,61]. This approximation is valid, for example,
for a plasma column with a low aspect ratio a/L
 1 (a
and L being respectively the width and the height of the
plasma column), with a strong magnetic field B0 along the
z-direction (Fig. 1).

In this case the plasma dynamical variables reduce to
the velocity field v? and the magnetic field b? perpendic-
ular to B0, so that starting from MHD Equs. (8), the fol-
lowing set of RMHD equations [61] is obtained:

@z


@t
� � cA

@z


@z
C (z�
 � r?)z


D �
1
�
r(pC

B2

8�
)C �C r2

?z

 C �� r2

?z
�
 (12)

r? � z
 D 0 (13)

where z
 D v? C �b? (with � D ˙1), r? is the spa-
tial gradient perpendicular to B0, cA D B0/(4��)1/2 is the
Alfvén velocity associated with B0.

Equation (12) shows that, in this approximation, non-
linear interactions are retained only in the directions per-
pendicular to B0, while only propagation at the Alfvén
speed takes place parallel to B0.

Let us now Fourier transform the fields with respect to
the perpendicular variable r? D (x; y), in a 2D periodic
box of size a

v?(r; z; t) D
X

k

v(k; z; t)e(k) exp(ik � r) ; (14)

b?(r; z; t) D
X

k

b(k; z; t)e(k) exp(ik � r) ; (15)

where k D 2�m/a, (m is a couple of integers) and e(k) is
a unit vector perpendicular to k. After some algebra, it can
be shown that in this approximation, for each value of z,
the MHD equations reduce to [49]

@v(k)
@t
D cA

@b(k)
@z
C
X

pq
c(k; p; q)(p2 � q2)

�
�
v(p)v(q) � b(p)b(q)

�
ık;pCq

@b(k)
@t
D cA

@v(k)
@z
C
X

pq
c(k; p; q)k2

�
�
b(p)v(q) � v(p)b(q)

�
ık;pCq

(16)

(for simplicity we omit the time and z dependence of the
Fourier amplitudes) where

c(k; p; q) D
px qy � pyqx

2kpq

means that the sum is extended over all wave vec-
tors p and q which satisfy the triad-interaction relation
k D pC q. Let us note that, if we chose a box of size
a D 2� , each wave vector k turns out to be represented
by a couple of integers.

Equations (16) have quadratic invariants namely the
total energy

E(t) D
X

k

[jv(k; t)j2 C jb(k; t)j2]

and the cross-helicity

Hc(t) D
X

k

Re[v(k; t)b�(k; t)] :

When the background magnetic field is set to zero B0 D 0,
also the mean-square of the vector potential

A(t) D
X

k

jb(k; t)j2/k2

is conserved. On the contrary, when B0 6D 0, the last quan-
tity is almost constant, with relative fluctuations of about

A/A ' 10�2 [49].

This means that 2D MHD has a much wider field of
physical applications then those situations where no ex-
plicit dependence on the z components exists. Actually 2D
MHD represents a good approximation for the low-beta
and low aspect ratio plasmas as for example some labora-
tory devices (tokamaks, RFP, etc.) or somemagnetic struc-
tures (loops) in the solar corona. In the next section we will
take advantage of this result.

Self-Organization at Large Scales

Relaxation Processes in MHD

In MHD, the quadratic invariants (4, 5, 6) play a crucial
role in the problem of predicting the final fate of solu-
tions starting from quite general initial conditions. When
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studying the ideal relaxation, the quadratic invariants re-
main constant during time evolution, and the problem of
predicting the final state reduces to calculating the ensem-
ble–averaged equilibrium spectra of these invariants. Us-
ing a standard statistical approach it has been shown by
Frisch et al. [23] that these spectra are determined by the
ensemble-averaged initial values of invariants. Dissipative
relaxation processes in MHD are much more complicated,
since the values of the ideal invariants change during the
evolution. It seems however that some long-living non-
trivial states toward which dissipative flows are attracted
exist, and that these states could be derived by minimizing
an energy integral subject to some constraints.

Dissipative relaxations have been investigated in con-
nection withmeasurements in laboratory plasmas, and ob-
servations in the solar wind turbulence. Taylor [51], in-
spired by laboratory plasma experiments, conjectured that
an MHD system relaxes towards a state where the en-
ergy tends to a minimum, subject to the constraint that
magnetic helicity is conserved. The relaxation can then be
seen as a selective decay between the two invariants. From
a mathematical point of view, the solution of the problem
can be obtained through a variational principle

ı
n Z

(v2 C b2)dV � 
Z

a � bdV
o
D 0 ;

where  is a Lagrange multiplier. By imposing the conser-
vation of magnetic helicity, we get the so-called force-free
solution, characterized by v D 0 and

r � b D ˛b (17)

(˛ being a constant), i. e. a solution where the velocity field
and the Laplace force are both null. This means that the
kinetic energy decays to zero and the magnetic energy oc-
cupies the largest scale. Taylor’s hypothesis allows one to
circumvent in an elegant way the complex plasma relax-
ation dynamics (involving turbulence and reconnection).

When looking at (17) in cylindrical coordinates, the
following solution can be obtained

BT D B0 J0(˛r) BP D B0 J1(˛r) (18)

where BT and BP are respectively the axial and poloidal
components of the magnetic field (B0 is a constant and
J0 and J1 are Bessel functions). This solution, which can
display a change in the sign of the magnetic field ax-
ial component (Fig. 2), was able to explain the puzzling
phenomenon of field reversal spontaneously observed in
some laboratory experiments, where no current necessary
to produce such reversal was present in the initial state.
This theory has also been the basis for the development

Self-Organization in Magnetohydrodynamic Turbulence, Fig-
ure 2
Axial (solid line) and poloidal (dashed line) components of mag-
netic field in a force free cylindrical plasma column as function of
the radial coordinate normalized to ˛�1 (B0 D 1)

of RFP devices (Fig. 3), toroidal devices which at a first
order approximation can be considered periodic cylinders
(Fig. 4). Applications to spheromak and other plasma fu-
sion devices [4,52,59] have been consideredmore recently.

Belcher and Davis [3] analyzing solar wind data dis-
covered velocity and magnetic field fluctuations were ex-
tremely well-correlated (Fig. 5). Dobrowolny et al. [20]
suggested that this correlation could be the result of
a self organization of MHD turbulence and set up a phe-
nomenological explanation for this self organization,
based on the idea that between the two modes of propaga-
tion ofAlfvénic fluctuations in solar wind only that initially
dominating survives to the non-linear cascade process to-
wards dissipative scales.

This kind of self organization can also be obtained
through a variational principle. Let us impose that energy
assumes a minimum value, constrained to the conserva-
tion of cross-helicity, we have then to write

ı
n Z

(v2 C b2)dV � 
Z

v � bdV
o
D 0 ;

once again  is a Lagrange multiplier. By imposing the
conservation of cross helicity, we finally get the two solu-
tions

v D �b (19)

with � D ˙1. These solutions, which can also be writ-
ten z
 D 0 for either � D 1 or � D �1 in terms of the
Elsässer [21] variables, correspond to annihilating non-
linear interactions in (1, 8). This phenomenon has been
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Self-Organization in Magnetohydrodynamic Turbulence, Figure 3
The RFX: A reverse field pinch plasma device in Padua (Italy) (Consorzio RFX is a research organization promoted by CNR, ENEA,
Università di Padova, Acciaierie Venete S.p.A. and INFN, within the framework of the Euratom – ENEA Association)

Self-Organization in Magnetohydrodynamic Turbulence, Fig-
ure 4
Typical profile of the magnetic field in an RFP device (reprinted
from [48])

called dynamical alignment in that velocity and magnetic
field tend to become aligned to each other.

It has been shown that also in numerical simulations
of 2D and 3DMHD equations [17,38,39,46,53] there exists

systematic behavior of turbulent flows. In particular, relax-
ation processes which bring the fluid toward those partic-
ular states like Taylor solutions or Alfvénic solutions have
been found to emerge systematically from numerical sim-
ulations. In terms of ideal invariants, it has been shown
that the Taylor’s solution is obtained, when starting with
almost zero cross helicity, while the dynamical alignment
is found when the initial value of the cross helicity is sub-
stantially different from zero. In general when both effects
are in competition, the situation is much more compli-
cated. A systematic analysis of a wide number of 2DMHD
simulations at different resolutions have been performed
by Ting et al. [53]. Their results can be summarized by re-
ferring to the time behavior of the system projected on the
plane (a; h), where a D A/E and h D 2Hc/E. In fact, start-
ing from whatever initial conditions, in that plane the sys-
tem tends to approach the ellipse

1
a
D 2

�
kmin

h

�2 h
1˙
p
1 � h2

i
; (20)

where kmin represents the minimum wave vector allowed
in the simulations. Of course the points (a; h) D (1/2;˙1)
represents the attractors of dynamical alignment solu-
tions, the point (a; h) D (1; 0) represents the attractor of
selective decay, and the point (a; h) D (0; 0) represents
the attractor when the system behaves like a fluid, with
zero magnetic field. These extreme points can be recov-
ered through the minimization of energy subject to the
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Self-Organization in Magnetohydrodynamic Turbulence, Figure 5
Velocity (vR , vT , and vN) andmagnetic field (bR, bT , and bN) fluctuationsmeasured in solarwind in the RTN reference system (reprinted
from [3]). The RTN system has the R unity vector along the radial direction, positive from the sun to the spacecraft, the T unity vector
perpendicular to the plane formed by the rotation axis˝ of the sun and the radial direction, i. e., T D˝ � R, and the N component
resulting from the vector product N D R� T. Particle density N and magnetic field intensity B are also shown in the lowest part of
the plot. Units are 10�5 gauss for magnetic fields, km/s for velocities, and cm�3 for particle density

conservation of the other invariants. When the magnetic
field is zero, the kinetic helicity is invariant and the point
(a; h) D (0; 0) can be recovered by allowing that the ki-
netic energy decays, subject to the constraint that the ki-
netic helicity remains constant. The entire curve, however,
does not represent the locus of the extreme of anything
over its entire range of definition.

AMinimal Triad-Interaction Model of Relaxation
Processes in 2DMHD

As we have seen, 2D MHD plays a privileged role, in
that it describes low-beta and low aspect ratio 3D plas-
mas. Here we briefly present how the basic non-chaotic
triad-interaction works in 2D MHD, and how this rep-
resents a minimal basic model for relaxation processes.
Choosing only three wave vectors, namely k1 D (1; 1),
k2 D (2;�1), k3 D (3; 0), we obtain a set of 12 ordi-
nary differential equations [18] for the complex Fourier
modes of both velocity ui (t) D u(ki ; t)/2

p
5 and mag-

netic field bi (t) D b(ki ; t)/2
p
5. The system can be fur-

ther reduced through a projection of equations on a sub-
set of the phase space, that is by considering only real
fields. This can be seen by writing the fields in the form
uj D jujjei˛ j and bj D jbjjeiˇ j , and by defining real fields
through Vj(t) D jujj cos˛ j and Bj(t) D jbjj cosˇ j (sub-
ject to the conditions sin˛ j D 0 and sinˇ j D 0). In this

case we found a set of 6 ordinary differential equations for
Vj and Bj, namely

(d/dt C 2�)V1 D 4(V3V2 � B3B2)
(d/dt C 5�)V2 D �7(V3V1 � B3B1)
(d/dt C 9�)V3 D 3(V1V2 � B1B2)
(d/dt C 2�)B1 D 2(B3V2 � V3B2)
(d/dt C 5�)B2 D 5(V3B1 � B3V1)
(d/dt C 9�)B3 D 9(V1B2 � B1V2) :

For its simplicity the model represents the basic system to
investigate the structure of nonlinear interactions in 2D
MHD, and to study the role played by the rugged invari-
ants during the dynamical evolution.

Let us introduce the phase space ˝ , of dimension
Dim[˝] D 6, which can be built up by using as coordi-
nates the Fourier amplitudes. A point �i(t) 2 ˝ , defined
as �i (t) :D f[ui (t); bi (t)] 2 ˝g represents the system at
a certain time, and this point moves in˝ according to the
flow T� [�i (t)] D �i (t C �) which represents the result of
the equation of motion for the system. In absence of dissi-
pative terms the phase space volume is conserved

H D
X

i

@

@�i

�
d�i

dt

�
D 0 ; (21)



Self-Organization in Magnetohydrodynamic Turbulence S 8017

whereH represents the rate of change of volumes in phase
space.

If we define the ideal flow T id
� as the flow T� ob-

tained when � D � D 0, the phase space volume conser-
vation can be expressed as Tid

�!1[�i (t)] D �i (t C �). In
this case, for a given set of initial values �i (0), the point
moves on a hyper-surface S � ˝ defined by the initial
value of the invariants. In presence of dissipative terms the
quadratic invariants decay, and the rate of change of the
volume in the phase space is H D �16(� C �) � 0. The
condition H � 0 implies that the dissipative flow pushes
the system toward the trivial asymptotic state where all the
amplitudes of the fields are zero Tdiss

�!1[�(t)] D 0.
The triad-interaction model is able to capture the dy-

namics of the quiescent states observed in MHD. We
solved our system by starting from random initial con-
ditions uniformly distributed �i (0) 2 [�1; 1]. We used
a fourth-order Runge–Kutta scheme, with a time step

t D 10�3 and � D � D 0:01. This value for the dis-
sipative coefficients allows the nonlinear interactions to
have sufficient time to set up the dynamical behavior.
In Fig. 6 we report the curve " along with two ensem-
bles of points. The first ensemble (white circles) repre-
sents the set of points (a; h) obtained with some differ-

Self-Organization in Magnetohydrodynamic Turbulence, Fig-
ure 6
Numerical simulations of the triad-interaction model reported
in the plane (a; h). We show two sets of different solutions at
two different times. White circles refer to a set of 45 initial val-
ues 
i(0), black circles represent the set of point at a given time
t D 80 (in unit of time steps) obtained from the time evolution of
the above initial values
i(t D 80)D TdisstD80[
i(0)]. The solutions
represented on that plane are such that, after an initial transient,
they fall on the ellipse represented as a full line

ent initial conditions �i (0) randomly chosen in the in-
terval [�1; 1]. The second ensemble (black circles) repre-
sents the set of points (a; h) at time t D 80 (in unit of time
steps), calculated from the set of fields�i (t) which are ob-
tained through the time evolution of the set �i(0), that is
�i (t) D Tdiss

t [�i (0)]. As it can be seen that all the initial
conditions lead to the final state which belongs to the el-
lipse ".

Since nonlinear interactions in the simple triad-inter-
action model have the same structure as in the 2D MHD
equations, the model is able to capture relaxation prop-
erties. These properties are the fixed points and some in-
variant subspaces. The fixed points of the system can be
classified as follows:

a) Two Alfvénic fixed points (say A˙) characterized by
ui D ˙bi ;

b) Three fluid fixed points F(i) (i D 1; 2; 3) where all vari-
ables but the velocity Vi are zero;

c) Threemagnetic fixed pointsM(i) (i D 1; 2; 3) where all
variables but the magnetic field Bi are zero.

A standard analysis of stability can be performed by lin-
earizing the system around each fixed point. We find that
A˙ are always stable, M(1) is the only stable magnetic
fixed point, while F(1) and F(3) are stable. The only sta-
ble magnetic fixed point M(1) is such that the energy is
localized on the minimum wave vector.

Apart from fixed points the system displays some other
interesting properties. Looking at the equations, it can
be easily shown that there exists some 3D subspaces of
the 6D phase space which remain invariant under the
ideal flow operator. Let us denote by I˛ the ˛th invari-
ant subspace, which is then characterized by the fact that if
�i (0) 2 I˛ then �i (t) D Tid

t [�i (0)] 2 I˛ for each t > 0.
In other words an ideal invariant subspace is a portion of
the phase space where the system lies for all times. The
most useful way to classify these structures is through the
initial values the rugged invariants assume on them, since
under the ideal flow they remain constant:

a) A fluid subspace F, characterized by a D A/E D 0 and
h D 2Hc/E D 0. This can be recovered by imposing
that the magnetic field is always zero, namely

�i [F] D (V1;V2;V3; 0; 0; 0)

is the vector which describes this subspace.
b) Two Alfvénic subspaces A˙, characterized by

a D A/E D 0 and h D 2Hc/E D 1, which can be recov-
ered by imposing that Vi D ˙Bi for each i D 1; 2; 3.
These subspaces are also fixed points of the system.
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c) Three magnetic subspaces HA, HB and HC character-
ized by a 6D 0 and h D 0, i. e. a minimal value for the
cross-helicity. These subspaces can be recovered by im-
posing that the cross-helicity is initially zero over all
wave vectors, namely either Vi D 0 and Bi 6D 0 or vice
versa; specifically,

�i [HA] D (0; 0;V3; B1; B2; 0)

�i[HB] D (V1; 0; 0; 0; B2; B3)

�i [HC ] D (0;V2; 0; B1; 0; B3) :

The stability properties of each subspace can be investi-
gated numerically [11]. Simulations start by putting the
system on a given subspace, and by adding a small pertur-
bation on the complementary manifold. The motion is not
limited to the 3D subspace, and the problem of the stability
of a particular I˛ consists of determining if the perturbed
solution remains close to I˛ or goes away from it covering
all the allowed 6D phase space. For each subspace we can
define two pseudo-energies E(˛)

int (t) (built up with the fields
which belong to the ˛th subspace) and E(˛)

ext (t) (built up
with the fields which do not belong to the ˛th subspace).
The external energy represents the distance k
(˛)[�i (t)]k
between the point �i (t) and the ˛th invariant subspace.
Since the total energy E(t) D E(˛)

ext (t)C E(˛)
int (t) must re-

main constant under the ideal flow, two situations can
arise, namely

1) During the time evolution both E(˛)
ext (t) ' E(˛)

ext (0) and
E(˛)
int (t) ' E(˛)

int (0), which means that the solution re-
mains trapped near the invariant subspace. In that case,
the subspace is ideally stable.

2) During the time evolution energies become compara-
ble E(˛)

ext (t) ' E(˛)
int (t), which means that the solution is

repelled from the invariant subspace. In that case the
subspace is ideally unstable.

Numerical simulations show that the fluid subspace is al-
ways stable. As far as the magnetic subspaces are con-
cerned, we find that HA is always stable, while HB and HC

are always unstable. More information about the behav-
ior of the system near the invariant subspaces can be ob-
tained by considering the characteristic of solutions when
the dissipative coefficients are set different from zero. In
that case, the energies decay in time, but the rate of decay
is different, thus indicating a kind of selective dissipation.
In particular, looking at the time evolution of their ratios
R˛(t) D E(˛)

ext (t)/E
(˛)
int (t), we find that it decays to zero for

the ideally stable subspaces, while it settles to a constant
value for the unstable subspaces. This means that ideally
stable subspaces, namely the Alfvénic, fluid and magnetic

HA represent a kind of attractor for the system, while un-
stable subspaces, say HB and HC, repel solutions.

Whenwe start numerical solutions near the stable sub-
spaces, the system is attracted to the extreme points of the
plane (a; h). When we start near the fluid attractor, the
system reach the point (a; h) D (0; 0), and when we start
near one of the Alfvénic attractors the system is attracted
to (a; h) D (1/2;˙1). Finally, when we start near the sta-
ble magnetic subspace HA the system is attracted to the
extreme point (a; h) D (1; 0). This last point represents
a Taylor regime, say the magnetic field lies on the low-
est allowed wave vector. On the contrary, when we start
near the unstable magnetic attractors HB or HC, the sys-
tem evolves in an erratic way towards any point (a; h) of
the curve (20). Each point (a; h) is made by only one mode
with wave vector k1 D kmin D

p
2, so that if � D V1/B1 we

have

a D
2

�
1C �2


k2min

h D
�

1C �2
:

(22)

This last equation is nothing but the parametric equation
of the curve (20).

The behavior we have just described can be recovered
also when we start the numerical computation with gen-
eral initial conditions. In that case, we can associate to each
initial condition an invariant subspace according to the
rule that the ˛th subspace is associatedwith the initial con-
dition �i (0) when the distance k
(˛)[�i (0)]k is the min-
imum one over ˛. In other words, we associate an initial
condition to the nearest subspace. Numerical simulations
show that when the initial conditions are associated to the
unstable subspaces HB and HC, the final point reached by
the systemwill be any point (a; h) on the curve (20).When
the initial conditions are associated with one of the stable
subspaces, the final state will be one of the extreme points
of the curve (20).

Self-Organization at Small Scales and Intermittent
Structures in MHD Turbulence

The self organization processes discussed in the previous
sections are related to the spontaneous creation of large
scale coherent structures during the MHD turbulence dy-
namics. However, also at small scales the nonlinear en-
ergy cascade process in fully developed MHD turbulence
is characterized by the presence of self organization and
coherent structures. These structures are strictly related to
the intermittency phenomenon, that is, the breakdown of
global self-similarity in the turbulent cascade.
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The turbulence theory proposed by Kolmogorov in
1941 [30] is based on the conjecture that, within the in-
ertial range, the statistical properties of the fluid mo-
tions depend only on the mean energy transfer rate "
and on the scale `, and that the nonlinear energy cas-
cade occurring in this range is a self similar (fractal) pro-
cess. According to this idea, the velocity field increments
ıv`(r) D v(r C `) � v(r) scale as ıv` � `1/3. The self sim-
ilarity of the turbulent cascade implies that the probability
density function (PDF) of field increments P(ıv`) should
be invariant under the scale change

P(ıv`) D `�1/3F
�
ıv`
`1/3

�
; (23)

which means that PDFs of normalized velocity incre-
ments at different scales collapse onto the same curve.
Another consequence of the global self similarity is
that the structure functions Sp(`) D hıv

p
`
i, usually de-

fined using the longitudinal field increments, that is,
ıv`(r) D

�
v(r C `)� v(r)

�
� `
`
, should follow the scaling

law Sp(`) � `p/3.
When considering incompressible MHD turbu-

lence, the scaling properties of the field increments
ız

`
(r) D z
 (r C `) � z
 (r), expressed here in terms of

Elsässer variables z
 D v C �B/
p
4�� (B being the mag-

netic field and � the mass density) can be modified with
respect to the fluid case by the so-called Alfvén effect, con-
sisting of the fact that nonlinear interactions take place
between eddies of different � , which propagate in oppo-
site directions at the Alfvén velocity along the large scale
magnetic field reducing the efficiency of the non linear
energy cascade [20,29,31].

In the fluid-like case a Kolmogorov-like scaling can
be expected for the field increments, that is, ız


`
� `1/3.

On the other hand, when the Alfvén effect is at work the
Kraichnan’s scaling ız


`
� `1/4 is recovered. However, in

both cases the turbulent energy cascade is supposed to be
a self similar process, resulting in a linear behavior of the
structure function exponents, that is, Sp(`) � `p/m , where
m D 3 and m D 4 for the fluid-like and Alfvenic case re-
spectively.

Several studies on the statistical properties of fields in
fully developed turbulence have shown that the PDFs of
field increments are not self similar, that is, their shape
change with the scale `. The PDFs at large scales are nearly
Gaussian, while, as the scale decreases, the PDFs show
sharper and sharper peaks and, correspondingly, higher
and higher tails. As far as MHD turbulence is concerned,
this behavior has been found both in the solar wind [36,50]
and in laboratory plasmas [13]. This departure from self
similarity has also been inferred from structure function

analysis (see e. g. [8,12,13,35]) which have shown that for
both velocity and magnetic field fluctuations the scaling
exponents are nonlinear functions of p.

This behavior indicates thus that the turbulent, nonlin-
ear energy cascade is not a fractal (self similar), but rather
a multifractal process. In other words, small scale fluctua-
tions much larger than their RMS are present in some spa-
tial positions and the corresponding spatial fluctuations of
the energy transfer rate "(r) play a primary role in the cas-
cade process. These small scale fluctuations have been in-
terpreted as the signature of localized coherent structures
spontaneously produced by the nonlinear dynamics. The
phenomenon described above is known as intermittency
in fully developed turbulence.

Another important aspect of intermittency is the oc-
currence of impulsive bursts of energy dissipation which
are observed in different systems characterized by the
presence of MHD turbulence, e. g. the magnetic loops of
the solar corona [1], and laboratory plasma devices such
as reversed field pinches [5] and tokamaks [56]. This phe-
nomenon is often referred to as temporal intermittency,
to distinguish it from the spatial intermittency described
above, as it consists in the observation of strong bursts
of activity in the time series of a quantity which traces
the energy dissipation in the system (e. g. radiation inten-
sity). These bursts are separated from each other by inter-
vals of low activity, denoted as laminar times or waiting
times.

While temporal intermittency occurring in turbulent
systems has been described, until the end of 90s, in the
framework of theoretical paradigms other than turbulence
(e. g. Self organized criticality [2]), the idea that spatially
and temporal intermittency in fully developed turbulence
are both due to the underlying nonlinear dynamics of the
energy cascade, giving rise to small scale coherent struc-
tures, has now gained considerable standing. In the MHD
turbulence context this picture has been supported by
a number of results based on the analysis of solar wind
and solar corona observations and laboratory plasma ex-
perimental data.

The intermittent, coherent events can be viewed as lo-
calized zones of fluid where phase correlations exist. These
structures, which dominate the statistics of small scales,
occur as isolated events. They continuously appear and
disappear, apparently in a random fashion, at some loca-
tions in the fluid, and they carry most of the flow energy.
Among the different techniques which can be used to iden-
tify such structures within a turbulent signal, a very effec-
tive one is based on the use of wavelet transforms [22]. The
wavelet transform of a real square integrable signal f (x)
(where x is usually the time or a spatial coordinate) is de-



8020 S Self-Organization in Magnetohydrodynamic Turbulence

fined as

W(x; r) D C�1/2 r�1/2
1Z

�1

 

�
x0 � x

r

�
f (x0)dx0 ; (24)

where r is a scale dilation, x is a position (time) transla-
tion,  (x) is the so called mother wavelet function, and
C is a normalization constant, which must satisfy the
admissibility condition

RC1
�1 jkj

�1j ̂(k)j2dk <1 where
 ̂(k) is the Fourier transform of  (x). The wavelet coef-
ficients W(x; r) give a decomposition of f (x) at the scale r
as a function of the position x. For each scale, it is pos-
sible to identify the position (or the time occurrence) of
strong, intermittent events through a method proposed
by Farge [22] based on the so-called Local Intermittency
Measure (LIM) l(x; r) defined as

l(x; r) D
jW(x; r)j2

hjW(x; r)j2i
: (25)

The identification method of intermittent structures is
based on the idea that large values of l(x; r) represent a sig-
nature of large fluctuations with respect to the background
level. The wavelet coefficients can thus be classified as
“passive” if l(x; r) < F or “intermittent” when l(x; r) > F,
where F is a threshold which can be chosen by using dif-
ferent suitable criteria [9,41,54].

Another possible method to select intermittent
bursts [6] consists of defining bursts as the time intervals
during which the condition f (x) � fth is satisfied, where
the threshold value fth is calculated through the following
iterativemethod. One starts by defining fth D h f (t)i C a�
(a is an arbitrary positive number, usually 2 or 3), where
the average and the standard deviation are computed from
the whole time series. After excluding the values which ex-
ceed fth, the average and the standard deviation are calcu-
lated again using the remaining part of the time series. This
process is repeated until convergence of fth is reached.
This procedure allows one to remove strong events and to
evaluate the threshold taking into account only the back-
ground contribution.

Once intermittent structures are identified, it becomes
possible to study their typical profiles and some relevant
statistical properties such as the distributions of event
energy and of time intervals between successive bursts.
Such investigations allow one to shed light on the physical
mechanisms underlying the bursting process. We discuss
now the properties of intermittent events observed in three
different systems where MHD turbulence occurs, namely
the solar wind, reversed field pinches devices, and mag-
netic loops of the solar corona. Related aspects of inter-
mittency and multifractality are discussed in the review by

Chang � Space Plasmas, Dynamical Complexity in in this
Encyclopedia.

Intermittent Structures
in Solar Wind MHD Turbulence

Intermittent events in solar wind turbulence have been
studied by Veltri and Mangeney [54] and Veltri et al. [55]
by applying the LIM technique, with the Haar wavelet ba-
sis, to fluid velocity and magnetic field measurements per-
formed during about 1 year in the space experiment ISEE.
In this experiment only two components of the fluid veloc-
ity, namely, Vx and Vy, were measured, together with all
the three components of the magnetic field. The reference
frame used was the standard GSE frame and the sample
was formed by data at a time resolution of T D 1min, so
that the sampling rate was 
 D VswT � 24:000 km (Vsw
is the average solar wind velocity).

The classification of wavelet coefficients allows for an
identification and a study of the most intermittent events
in solar wind turbulence, which occur in those positions
where the amplitude of the wavelet coefficients displays
the largest values compared to the average. These events,
which occur on time scale of the order of few minutes, ex-
hibit a small number of typical profiles, summarized as fol-
lows:

a) “Tangential discontinuities”: These structures are al-
most incompressible, pressure balanced one dimen-
sional current sheets. A minimum variance analysis
performed on the magnetic field around the singularity
shows (Fig. 7) that the component of the magnetic field
which varies most changes sign, and this component is
perpendicular to the average magnetic field (the mag-
netic field component along the third axis being almost
zero). The magnetic field rotates then in a plane by an
angle which is about 120ı–130ı. There is one more in-
teresting property: When these structures occur during
an Alfvénic period (velocity and magnetic field fluctu-
ations highly correlated), the Alfvénic correlations go
from 1 to zero during the traversal of the current sheet
(Fig. 7, left panel), when, on the contrary, these struc-
tures occur during a period of almost no Alfvénic cor-
relation, the correlation increases to about 1 at the cur-
rent sheet location (Fig. 7, right panel).

b) “Compressive discontinuities”: These structures can be
either parallel shocks, mainly observed on the radial
component of the velocity field, but clearly seen also on
the magnetic field intensity, proton temperature and
density (Fig. 8, left panel); or slow mode wavetrains,
characterized by a value of ˇ � 0, a constantpressure,
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Self-Organization in Magnetohydrodynamic Turbulence, Figure 7
Current sheet intermittent events in solar wind MHD turbulence: The three components of the magnetic field obtained through
a minimum variance analysis (upper panels); the angle of rotation of the magnetic field in the plane perpendicular to the minimum
variance direction (middle panels); the coefficient of correlation between velocity andmagnetic field fluctuations (lower panels)

Self-Organization in Magnetohydrodynamic Turbulence, Figure 8
Intermittent events associatedwith compressive discontinuities in the solar wind. aA parallel shock intermittent event in solar wind,
Vx (full line) and Vy (dashed line) fluctuations normalized to the local average sound velocity (upper panel); proton density (full line)
and soundvelocity (dashed line) fluctuations normalized to their local average values (lower panel).bA slow shock intermittent event
in solar wind, velocity fluctuations parallel (full line) and perpendicular (dashed line) to the local average magnetic field normalized
to the local average sound velocity (upper panel); proton density (full line), sound velocity (dashed line) and total pressure (dotted
line) fluctuations normalized to their local average values (lower panel)

anticorrelated density and proton temperature fluctu-
ations and with velocity fluctuations along the average
magnetic field (Fig. 8, right panel).

Very interesting statistics can be studied on the time sep-
aration 
t (often denoted as waiting time) between the
occurrence of two consecutive structures. Waiting times
of solar wind intermittent structures are distributed ac-
cording to a power law P(
t) � 
t�� extended over
two decades at least, with an exponent � ' 2:18 (Fig. 9)
[14].

This property is very interesting, because it indicates
that the energy cascade process is non-Poissonian. Wait-
ing times occurring between isolated Poissonian events
must be distributed according to an exponential func-
tion. The power law represents the asymptotic behavior
of a Lévy function, which describes self-affine processes
and is obtained from the central limit theorem by relax-
ing the hypothesis that the variance of variables is finite.
The power law waiting time PDF is thus a clear evidence
that long-range correlations (or in other words “memory”)
exist in the underlying cascade process.
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Self-Organization in Magnetohydrodynamic Turbulence, Fig-
ure 9
Probability density functions of waiting times between consecu-
tive intermittent structures in solar wind MHD turbulence iden-
tified by applying the LIM technique onmagnetic field measure-
ments acquired by the HELIOS II spacecraft. The solid line repre-
sents a power lawwith an exponent � D 2:18

Intermittent Structures in Laboratory MHD
Turbulence

The properties of intermittent events in the magnetic tur-
bulence observed at the edge of a toroidal plasma de-
vice in reversed field pinch configuration has been stud-
ied by Carbone et al. [14] through the analysis of magnetic
field fluctuations in the Reversed Field Pinch experiment
RFX [48]. Events have been identified by applying the LIM
technique on radial and toroidal magnetic field time series.
The magnetic field fluctuations for some of the most inter-
mittent events are shown in Fig. 10 by using the minimum
variance reference frame.

One of the two components displays a peak when the
other component changes sign. This behavior suggests
that the intermittent structures identified in the RFXmag-
netic field are tangential discontinuities similar to those
found in the solar wind, although measurements of all the
magnetic field components would be needed to confirm
this interpretation.

Also in RFP magnetic turbulence, the waiting time
PDF of intermittent structures shows a power law behav-
ior P(
t) � 
t�� extended over two decades as in the
case of solar wind MHD turbulence, with an exponent
ˇ ' 1:5 (Fig. 11) [14].

Intermittent Energy Release Events in the Solar Corona

Another manifestation of intermittency phenomena in
systems where MHD turbulence is present is the occur-
rence of impulsive energy release events, the so-called so-
lar flares, which take place in the magnetic loops of the

solar corona. Energy is released mainly through acceler-
ated particles and emission of electromagnetic radiation
in a wide range of wavelengths, from radio to �-rays, and
can vary between 1024 and 1033 erg. The smallest events,
namely those between 1024 and 1027, are usually denoted
as nanoflares and microflares.

Parker [43] conjectured that nanoflares are produced
by the dissipation of small current sheets, associated with
tangential discontinuities, forming as a consequence of
the continuous shuffling and intermixing of field foot-
points in the photospheric convection. In the Parker’s pic-
ture, flares of all sizes result from the superposition of
small dissipation events (nanoflares) which can trigger en-
ergy releases in the neighboring discontinuities, originat-
ing a fragmented energy release process which can pro-
duce both small and large-scale events, depending on the
details of the magnetic configuration.

Starting from the idea that MHD turbulence is
most probably a fundamental ingredient of coronal
loop (Fig. 12) dynamics, it has been proposed [6] that
nanoflares and flares can be identified with dissipation
events of small-scale current sheets forming as a conse-
quence of the nonlinear turbulent cascade which occurs
inside coronal magnetic structures. The cascade would be
driven by the energy input due to photospheric footpoint
motions. In this framework, current sheets are coherent
intermittent small scale structures of MHD turbulence.
The energy injected at large scales by photospheric mo-
tions is transferred to small scales through the nonlinear
cascade, which goes down to the dissipative scales. The
intermittent nature of the energy release process is thus
associated with the intermittency of energy dissipation in
MHD turbulence.

This picture is supported by the statistical properties
of solar flares inferred from the analysis of the associated
radiation bursts. Nanoflares are detected as extreme ultra-
violet (EUV) brightenings, while larger flares are observed
through several types of emission (radio, microwaves,H˛,
UV, X-rays) and most often studied analyzing Soft X-ray
(SXR) and Hard X-ray (HXR) flare bursts. Probability dis-
tributions of the relevant quantities (peak flux, total en-
ergy, duration) characterizing the flare bursts have been
found to be well represented by power laws P(x) D Ax�˛

(see Fig. 13 for an example).
Using various SXR and HXR observations it has

been found that, for energy and peak flux distributions,
˛ ' 1:6–2 (see e. g. [15,16,34]). For the EUV nanoflare
brightenings the power law exponent is muchmore uncer-
tain, ˛ D 1:3–2:8 (see e. g. [32,44]). The waiting time dis-
tribution (WTD) has been studied both for HXR and SXR
bursts [6,45,57]. SXR observations acquired by the GOES
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Self-Organization in Magnetohydrodynamic Turbulence, Figure 10
Two components ofmagnetic field fluctuations (denoted as B1 and B2), in theminimumvariance reference frame, of two intermittent
events observed in the RFXmachine

Self-Organization in Magnetohydrodynamic Turbulence, Fig-
ure 11
Probability density functions of waiting times between consec-
utive intermittent structures in RFP magnetic turbulence identi-
fied by applying the LIM technique on magnetic field measure-
ments acquired at the RFX machine. The solid line represents
a power lawwith an exponent � D 1:5

satellites have the advantage to provide a long sequence of
bursts (from 1975 to today) with few gaps and allow, thus,
to analyze theWTDwith a much better statistical accuracy
than HXR data. The WTD of GOES SXR flares has been
shown to display a clear power law tail P(
t) � 
t��

in the range 5 h . 
t . 100 h, with an exponent � ' 2:4
(Fig. 14) [6].

The power law behavior of the solar flare WTD repre-
sents an indication of the existence of correlations between
successive bursts [6,33]. These correlations can be related
to the nonlinear dynamics of the MHD turbulent energy

Self-Organization in Magnetohydrodynamic Turbulence, Fig-
ure 12
An image of hot coronal loops which span 30 or more times
the diameter of planet Earth obtained from Transition Region
and Coronal Explore (TRACE) satellite. The image was taken in
the Fe IX 171Å emission line. (Transition Region and Coronal Ex-
plorer, TRACE, is amission of the Stanford–Lockheed Institute for
Space Research, and part of the NASA Small Explorer program)

cascade which generates intermittent bursts of chaoticity
at small scales.

From the theoretical point of view, describing in
a proper way the intermittency of the turbulent energy
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Self-Organization in Magnetohydrodynamic Turbulence, Figure 13
Probability density functions of peak flux (left panel) and duration (right panel) of Soft X-ray solar flare bursts detected by the Geosta-
tionary Operational Environmental Satellites (GOES). The solid line in the left panel represents a power law with an exponent ˛ D 2
obtained from a least squares fit. The solid line in the right panel, shown as a comparison, represents a power law with an exponent
˛ D 3

Self-Organization in Magnetohydrodynamic Turbulence, Fig-
ure 14
Probability density function of waiting times for SXR solar flare
bursts detected by the GOES satellites in the interval from
September 1975 to December 2001. The solid line represents
a power law with an exponent ˛ D 2:4 as found by Boffetta et
al. [6]

dissipation process is one of the basic ingredients for the
study of intermittent events occurring in the solar corona,
as well as in other astrophysical systems such as the so-
lar wind and accretion disks. These astrophysical plasmas
are characterized by huge Reynolds numbers. The num-
ber Ndf of degrees of freedom, i.e the number of grid
points necessary to resolve the entire inertial range of tur-
bulence in a direct numerical simulation of Navier–Stokes
orMHD equations, grows with the Reynolds number Re as
Ndf � Re9/4. Therefore performing direct numerical sim-

ulations at Reynolds number regimes of interest for space
plasmas is out of the present computational possibilities.
The so called shell models, a class of dynamical determin-
istic models of turbulence in which Ndf grows logarithmi-
cally with Re, can represent an extremely helpful tool for
the modeling of such physical systems, as these models are
able to simulate the turbulent cascade and the related in-
termittency of the energy dissipation process in Reynolds
number regimes which are not far from the real ones (at
least with respect to direct numerical simulations). The
statistical properties of intermittent events inMHD turbu-
lence can thus be effectively investigated through the use of
shell models [6,14,15].

Shell models [7] are dynamical systems designed in or-
der to represent in a simplified way the spectral Navier–
Stokes or MHD equations for turbulence. They were
originally proposed by Obukhov [40], Desnyansky and
Novikov [19], and Gledzer [26] in hydrodynamic turbu-
lence.

In order to build up the evolution equations for
a shell model, the wavevector space is divided into a dis-
crete number of shells of radius kn D �nk0, with � > 1,
n D 1; 2; : : : ;N . Each shell is assigned a scalar dynamic
variable (real or complex) vn(t) which represents the av-
eraged effect of velocity modes with wavenumber be-
tween kn and knC1. vn(t) can also be regarded as the ve-
locity increments jv(x C `) � v(x)j on an eddy of scale
` � k�1n . For MHD shell models, besides vn(t), another
variable bn(t), representing magnetic field modes between
kn and knC1 (or, alternatively, magnetic field increments
jb(x C `) � b(x)j), is assigned to each shell. The nonlinear
terms of the equations are quadratic combinations of the
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dynamic variables and are written under the assumption
that the interactions among shells are local in k-space. This
means that only nearest and, at most, next-nearest shells
are introduced in the non-linear terms. The coupling co-
efficients are found by imposing conservation of the ideal
invariants of Navier–Stokes or MHD equations.

The main advantage of shell models is that they can
be studied through numerical simulations at very high
Reynolds numbers. Moreover, they provide the possibil-
ity to obtain long time series with a fairly small computa-
tional effort, allowing thus a robust investigation of the sta-
tistical properties of intermittent events The weak point is
that they are scalar models, that is, any information about
spatial structures, such as vortices, sheets, and filaments, is
lost.

Among the various shell models which have been pro-
posed in the literature, we consider here the so called GOY
(Gledzer–Ohkitani–Yamada) model, which has been used
by several authors both in hydrodynamics and MHD. In
the MHD context, the advantage of the GOY model with
respect to previous shell models, where only the conser-
vation of two quadratic invariants, i. e. total energy and
cross helicity, can be imposed, is that it allows to conserve
also magnetic helicity. The GOY model involves near-
est and next-nearest interactions and was originally intro-
duced in the framework of hydrodynamic turbulence by
Gledzer [26], using real shell variables. The model was ex-
tended by Yamada and Ohkitani [60] to the case of com-
plex variables. TheMHD generalization of theGOYmodel
has been considered by several authors (see [6,27,28] and
references therein). The evolution equations for the dy-
namic variables vn(t) and bn(t) in the GOY shell model
can be written as [6]

dvn
dt
D ��k2nvn C fn C ikn

�
(vnC1vnC2 � bnC1bnC2)

�
1
4
(vn�1vnC1 � bn�1bnC1)

�
1
8
(vn�2vn�1 � bn�2bn�1)

��
; (26)

dbn
dt
D ��k2nbnCgnC ikn

1
6

�
(vnC1bnC2�bnC1vnC2)

C (vn�1bnC1 � bn�1vnC1)

C (vn�2bn�1 � bn�2vn�1)
��
: (27)

f n and gn represent external forcing terms, usually acting
on low wavenumber shells, while � and� appearing in the
linear, dissipative terms, are the kinematic viscosity and
the resistivity respectively, viscous and resistive terms pro-
vide a mechanism for energy dissipation at small scales.

In turbulent space plasmas such as solar corona and solar
wind dissipation mechanisms are different, involving ki-
netic plasma processes. Nevertheless, the properties of low
frequency MHD turbulent cascade in the inertial range
and of the related intermittency do not depend, in general,
on the details of the dissipation mechanism, hence the use
of viscous and resistive dissipation in the standard incom-
pressible form does not represent a serious limitation in
this context.

The GOY model described here has been designed to
investigate 3D MHD turbulence. This means that it satis-
fies the conservation of the ideal 3D MHD quadratic in-
variants (4), (5) and (6). In terms of shell variables, the in-
variants read [27,28]

E D
1
2

NX

nD1

(jvnj2 C jbn j2) ; (28)

Hc D
1
4

NX

nD1

<(vnb�n ) ; (29)

Hm D

NX

nD1

(�1)n
jbn j2

kn
: (30)

The energy dissipation rate in the GOYMHD shell model
can be defined as [6]

"(t) D �
NX

nD1

k2n jvnj
2 C �

NX

nD1

k2n jbn j
2 : (31)

A statistical analysis of intermittent events in the GOY
MHD shell model shows that the PDFs of event ener-
gies, duration and waiting times display power law tails
(Figs. 15 and 16) [6,14]. This behavior is consistent with
the statistics of intermittent events observed in the solar
wind, reversed field pinch devices and solar corona.

In closing this section, it can thus be remarked that the
study of intermittent events in MHD turbulence, mainly
based on wavelet transforms and PDFs of various event
parameters, has provided a quite detailed picture of the co-
herent structures produced by the self-organization of the
MHD turbulence cascade at small scales. The analysis of
data from solar wind and RFP devices has demonstrated
that the most intermittent structures in incompressible
MHD are one dimensional current sheets associated with
tangential discontinuities. The statistical analysis of inter-
mittent events occurring in solar wind, laboratory plasma
and magnetic structures of the solar corona has shown
that these events are characterized by power law distribu-
tions of event energy and waiting times, which are natu-
rally reproduced by MHD turbulence models. The power
law behavior of the waiting time distribution indicates the
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Self-Organization in Magnetohydrodynamic Turbulence, Fig-
ure 15
Total energy distribution P(e), peak energy distribution P(p) and
burst duration distribution P(�B) for the GOY MHD shell model.
The values of P(e) and P(�B) are offset by a factor 102 and 10�2

respectively. The straight lines represent power law fits, with ex-
ponents ˛e D 1:8,˛p D 2:05 and˛�B D 2:2 respectively

presence of long range time correlations which can be at-
tributed to the non-linear dynamics of the turbulent en-
ergy cascade.

Future Directions

In the previous sections we have discussed how coherent
dissipative structures are spontaneously formed by non-
linear interactions both in laboratory and in natural plas-
mas. A further understanding of these processes requires
an increase in the performance of computers, which will
allow one to simulate 3D MHD turbulence at Reynolds
numbers larger than 103, which represents the actual limit.
On the other hand, an improved effort in the analysis of
solar wind space data and laboratory plasma devices mea-
surements should also be necessary. An increased knowl-
edge of these phenomena is crucial in order to try to
control the transport processes in fusion plasmas and
then to improve the plasma confinement, since the pres-
ence of coherent structures inside turbulence greatly affect
the plasma diffusion process. Moreover a better compre-
hension of the self organization in MHD turbulence can
greatly help in explaining some basic phenomena in solar
corona (flares and coronal heating), which occur in a re-
gion where in situ observations cannot be performed.

Self-Organization in Magnetohydrodynamic Turbulence, Fig-
ure 16
Probability density function of waiting times between succes-
sive intermittent events in the GOY MHD shell model. a Wait-
ing time PDF for intermittent events identified in the time series
of the magnetic field variables at the largest wavenumber shell.
The solid line represents a power lawwith exponentˇ D 2:13. b
Waiting time PDF for intermittent events identified in the time
series of the energy dissipation rate " (Eq. 31). The solid line
represents a power law with exponent ˇ D 2:33. In both cases,
intermittent events were identified through the iterative proce-
dure proposed in [6] and described in the text, using the thresh-
old h�i C 2�
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Glossary

Abelian group A mathematical group wherein all the el-
ements commute.

Avalanche A possibly large disturbance induced in a sys-
tem by a small perturbation.

Cellular automaton This refers to the dynamics of a col-
lection of cells each of which can be in a finite set of
states. The evolution is discrete, with the state of a cell
at the next time step being dependent only on its pre-
vious state and that of its neighbors.

Chaos The tendency of a system of a few degrees of free-
dom to exhibit highly erratic behavior characterized by
an infinite range of time scales.

Self-organized criticality The tendency of certain dis-
crete and dissipative dynamical systems to evolve to
a state where changes occur over all possible length
scales.

Definition of the Subject

Self-organized criticality is a concept invoked to explain
the frequent occurrence of fractal structures and multi-
scale phenomena in nature. In contrast with the ideas of
chaos, here simple common features appear in systems
with many degrees of freedom. For modeling this phe-
nomenon, cellular automata provide an elegant class of dy-
namical systems which are easily simulated numerically.

Introduction

Cellular automata provide a fascinating class of dynam-
ical systems based on very simple rules of evolution yet
capable of displaying highly complex behavior. These in-
clude simplified models for many phenomena seen in na-
ture. Among other things, they provide insight into self-
organized criticality, wherein dissipative systems naturally
drive themselves to a critical state with important phe-
nomena occurring over a wide range of length and time
scales.

This article begins with an overview of self-organized
criticality. This is followed by a discussion of a few exam-
ples of simple cellular automaton systems, some of which
may exhibit critical behavior. Finally, some of the fasci-
nating exact mathematical properties of the Bak–Tang–
Wiesenfeld sandpile model [1] are discussed.

http://www.livingreviews.org/lrsp-2005-4
http://www.livingreviews.org/lrsp-2005-4
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Self-Organized Criticality

Self-organized criticality refers to the tendency of many
dynamical systems to naturally drive themselves to a state
displaying fluctuations over a wide range of scales [1].
The concept is invoked as a possible “explanation” of the
omnipresentmulti-scale structures throughout the natural
world, ranging from the fractal structure of mountains, to
the power law spectra of earthquake sizes [2]. Recent ap-
plications include such diverse topics as punctuated evo-
lution [3] and traffic flow [4]. The concept has even been
invoked to explain the unpredictable nature of economic
systems; i. e. why you can not beat the stock market [5].

Self-organized criticality nicely compliments the con-
cept of chaos. In the latter, dynamical systems with a few
degrees of freedom, say as little as three, can display highly
complex behavior, often generating beautiful fractal struc-
tures. With self-organized criticality, we start instead with
systems of many degrees of freedom, and find a few gen-
eral common features.

Another attractive feature of both self organized crit-
icality and chaos is the ease with which computer mod-
els can be implemented and the elegance of the resulting
graphics. Most of the figures in this chapter were produced
usingmy publicly available set of programs “xtoys” [6]. In-
deed, much of this presentation is based on my similar ar-
ticle in [7].

The paradigm for the phenomenon is the sandpile.
On slowly adding grains of sand to an empty table, a pile
will grow until its slope becomes critical and avalanches
start spilling over the sides. If the slope becomes too large,
a large catastrophic avalanche is likely, and the slope will
reduce. If the slope is too small, then the sand will accumu-
late to make the pile steeper. Ultimately one should obtain
avalanches of all sizes, with the prediction of the size for
the next avalanche being impossible to determine without
actually running the experiment.

The original Bak, Tang, Wiesenfeld paper [1] pre-
sented a particularly simple model to mimic the sandpile
idea. For this, each site of a two dimensional lattice has
a state represented by a positive integer zi. This integer
can be thought of as representing the amount of sand at
that location, or in another sense it represents the slope of
the sandpile at that point. Neither of these analogies is fully
accurate, the model has aspects of each.

The dynamics follows by setting a threshold zT above
which any given zi is unstable. Without loss of general-
ity, I take this threshold to be zT D 3. Time now pro-
ceeds in discrete steps. In one such step each unstable site
with zi � 4 “tumbles” or “topples,” dropping by four and
adding one grain to each of its four nearest neighbors. This

Self-organized Criticality and Cellular Automata, Figure 1
The sandpile model in the final stable state after adding lots of
sand to random places. The lattice is 198 cells by 198 cells. The
color code is gray, red, blue, and green for heights 0, 1, 2, and 3,
respectively. Despite the lack of obvious patterns, subtle correla-
tions are present; for example no two adjacent sites have height
zero

Self-organized Criticality and Cellular Automata, Figure 2
An ongoing avalanche obtained by adding a small amount of
sand to the configuration in Fig. 1. Stable sites which have tum-
bled during the avalanche are distinguished by being colored
light blue. The still active sites are colored yellowish brown

may produce other unstable sites, and thus an avalanche
can ensue. This proceeds for further time steps until all
sites are stable. Figure 1 shows a typical configuration on
a 198 by 198 lattice after lots of random sand addition fol-
lowed by relaxation. Figure 2 shows an avalanche proceed-
ing on this lattice, and Fig. 3 shows the final avalanch re-
gion after the system reaches stability.

A natural experiment consists of adding a grain of sand
to a random site and measuring the number of topplings
and the number of time steps for the resulting avalanche.
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Self-organized Criticality and Cellular Automata, Figure 3
The final state after the avalanch in Fig. 2 has completed. The
sites which tumbled during the avalanche are distinguished by
being colored light blue. Note that the final avalanche region is
simply connected. This is a general result proven later in the text

Repeating this many times to gain statistics, the distribu-
tion of avalanche sizes and lengths displays a power law
behavior, with all sizes appearing. In [8] such experiments
showed that the distribution of the number of tumbling
events s in an avalanche empirically scales as

P(s) � s�1:07 (1)

and the number of time steps � for avalanches scales as

P(�) � ��1:14 : (2)

This model has been extensively studied analytically.
While as yet there is no exact calculation of these expo-
nents, a lot is known. In particular, the critical ensemble is
well characterized. I will return to these points later.

The extent to which laboratory experiments reproduce
these phenomena is somewhat controversial. A study of
avalanche dynamics [9] in rice piles showed power laws
with long-grain rice, but more ambiguous results followed
similar experiments with short-grain rice.

Cellular Automata

The sandpile model is a simple example of a system of cel-
lular automata [10,11]. Each site or “cell” of our lattice fol-
lows a prescribed rule evolving in discrete time steps. At
each step, the new value for a cell depends only on the cur-
rent state of itself and its neighbors. These systems are fas-
cinating in that deceptively simple rules can give rise to
extremely complex behavior. Furthermore, slight changes
in the rules can dramatically change their behavior.

Even though the formulation of a cellular automaton
may seem almost trivial, there are a huge number of pos-
sible rules. For example, suppose I consider two dimen-
sional models where each cell can take only one of two
possible states. These might be referred to as unset or set
bits, or more figuratively as “dead” or “alive.” Suppose fur-
thermore that I restrict myself to rules where the evolution
of a given cell to the next time step depends only on the
current values of the cell and each of its eight neighbors.
In this case there are 29 D 512 possible arrangements for
the cell and its neighbors. A general rule needs to spec-
ify the next state of the cell for each of these arrangements.
This gives 2512 D 1:3 � 10154 possible rules. Given that the
universe is only of order 4 � 1017 seconds old, clearly only
a vanishing fraction of these rules have a chance of being
studied in any of our lifetimes.

A simple subset of rules called “totalistic” have the state
of the updated cell only depend on the total number of
living neighbors. With the eight cell neighborhood, there
are nine possible values for this sum, and the new value
for the cell requires specification of the new state for each
of these as well as the current state of the cell. This gives
218 D 262; 144 rules; still large, but not truly astronomical.
If I restrict the rule to depending on the total of only the
four nearest neighbors, I then have a modest 210 D 1024
cases to consider. Other than the sandpile model, most of
the following will be restricted to such totalistic rules.

With a discrete set of states, cellular automata have the
appealing feature of being easily implementable entirely
by logical operations, the natural functions of computer
circuitry. Also, the state of several cells can be stored and
manipulated within a single computer word. Using such
tricks, these models can often be implemented to run ex-
tremely fast, leading to hope that such models may supply
simulation methods as good as or better than the conven-
tional use of floating point fields on a discrete grid. With
this motivation, considerable attention has been paid to
cellular automata that may simulate fluid flow. Another
advantage of this approach is the ability to work with ar-
bitrary boundary conditions. These topics go beyond the
scope of this article. A nice review can be found in [12].

Conway’s Life

Perhaps the most famous cellular automaton model is
Conway’s “Game of Life” [13]. For this there exists a vast
literature; so, I will only mention a couple of interesting
features. The rule involves the eight cell neighborhood,
and if a cell is initially “dead” it becomes alive if and only
if it has exactly three live neighbors, or “parents”. A living
cell dies of loneliness if it has less than two live neighbors,
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Self-organized Criticality and Cellular Automata, Figure 4
Some living configurations in life. The top two are stable pat-
terns. The lower left shows a “blinker” or “traffic light” which os-
cillates with a period of two. On the lower right is a glider, which
propagates diagonally through the lattice. Blue denotes a state
that is and just was alive, red is newborn, and green represents
just died. The track of the glider is darkened slightly over the re-
maining gray background to show its motion

and of overcrowding if it has more than three live neigh-
bors. Only in the case of exactly two or three live neighbors
does it survive.

While simple to state, this model displays fascinating
complexity. There are simple isolated sets of live cells that
quietly survive, such as a block of four neighboring live
cells forming a two by two square. Other configurations
oscillate, such as three live cells in a row, which alter-
nate between being vertically and horizontally oriented.
A particularly amusing local configuration has five live
cells; say starting with coordinates f(0; 0); (0; 1); (0; 2);

Self-organized Criticality and Cellular Automata, Figure 5
On the left is a configuration in life resulting from a random start and evolved until only stable and period two oscillators remain. On
the right is the state after a small disturbance was introduced in the center and allowed to die out. Note the irregular shape of the
disturbed region, which has been tinted a darker gray. The lattice here is 198 sites wide by 198 sites high, with periodic boundaries

(1; 2); (2; 1)g. After four time steps this configuration re-
turns to its original shape, but displaced by (�1; 1). On an
otherwise empty board, this “glider” continues to propa-
gate as a single entity. In an on-screen simulation, it ap-
pears much as a small insect crawling about. Some ele-
mentary configurations are shown in Fig. 4. A large col-
lection of fascinating life configurations can be found in
the Wikipedia [14].

Gliders allow information to be propagated over long
distances, and it has been proven that with a complicated
enough initial configuration, one can construct a com-
puter out of live cells on a life board [13]. Special sub-con-
figurations form the analog of electronic gates, which can
control beams of gliders representing bits. Indeed, since
life is capable of universal computation, one might imag-
ine a life board programmed to simulate the game of life.

There is some limited evidence that the game of life
also displays self-organized criticality [15,16]. One can
repeatedly throw down gliders, which collide and create
a background of static and oscillating clumps. While oscil-
lators of arbitrarily long period are known to exist, those
with period longer than two are extremely rare and almost
never created from unorganized initialization. Once the
system has settled into a loop, then another glider can be
tossed on, giving a disturbance. An avalanche is defined to
occur during the period until the system again goes into an
oscillating state. Figure 5 shows the effect of such a distur-
bance. In Fig. 6 I show the distribution of such avalanches
as measured on modest lattices. There is a hint of a power
law superposed on additional structure from avalanches of
only a few time steps, and a rounding at large times possi-
bly due to finite size effects. The criticality of life remains
controversial; [17] has looked unsuccessfully for a power
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Self-organized Criticality and Cellular Automata, Figure 6
The distribution of avalanches generated by adding gliders ran-
domly to a system in the game of life consisting of stable and pe-
riod two oscillators. An avalanche occupies the period until the
system has relaxed again into such a periodic state. The solid line
represents 25,000 avalanches on a 512 by 512 lattice, and the
dashed line is for 6,000 avalanches on a 1024 by 1024 system.
This figure is taken from [16]

law distribution of activity as one moves in from a source
on the boundary. The relation between these two experi-
ments is unclear.

Fredkin’s Modulo-Two Rule

An extremely simple but highly amusing rule takes at
each time step the “exclusive or” (XOR) operation between

Self-organized Criticality and Cellular Automata, Figure 7
Starting from the initial configuration on the left, the modulo two rule is evolved for 64 steps using the four nearest neighbors. At
a certain stage, five copies of the original image appear. The blue pixels indicate which sites were also alive one step before

a site and its neighbors. This rule has the remarkable prop-
erty of self replication [18]. Starting with any given initial
pattern, after 2n time steps copies of the original state oc-
cupy positions separated by 2n spatial sites from the origi-
nal in every direction as specified in the chosen neighbor-
hood. In Fig. 7 I show an example of this with the four cell
neighborhood.

In this rule, the pattern is generally rather complex just
before returning to the replicated case, i. e. after 2n � 1
steps. Figure 8 shows the pattern obtained from a single
set pixel after this rule has been applied for 63 time steps
using the four nearest cells as the neighborhood. Note the
fractal structure. In one more time step, all but five copies
of the original set bit die.

Unlike most cellular automaton rules, this gives a dy-
namics which in some sense is not really “complex”. In
most cases the simplest way to predict the evolution of
a cellular automaton rule is to actually run it. Here, how-
ever, there is an easier way to predict what the final pattern
will look like; it is always an XOR operation between sev-
eral displaced copies of the configuration that appeared 2n

time steps in the past. Despite the lack of complexity, this
rule shows rather dramatically that cellular automata are
capable of “reproduction”.

Reversible Rules

Reversibility is rather elusive among cellular automata. In
the game of life, a single isolated cell immediately dies leav-
ing no trace; thus it is impossible from the state at a given
time to reconstruct what was there one time step back.
A related difficult problem is to construct “garden of Eden”
configurations which are impossible to arrive at from any
previous state [19].
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Self-organized Criticality and Cellular Automata, Figure 8
The state after applying 63 steps of the modulo two rule using
the four nearest neighbors to an initial state of a single set bit.
After the next time step this fractal structure decays into only
five remaining live cells

Fredkin pointed out an interesting class of reversible
rules based on an analogy with molecular dynamics [11].
In the later one specifies both the position and the veloci-
ties of a set of particles and evolves the system under New-
ton’s equations with some given inter-particle force law.
Reversal can then be accomplished bymerely changing the
signs of all the velocities.

In a cellular automaton an analog of velocity requires
the value of the cells at two successive time steps. Based
on this, Fredkin presented a very simple scheme using
the previous state to generate a wide class of reversible
rules. He considered taking an arbitrary automaton rule at
a given time, and then added an exclusive or (XOR) opera-
tion of the result with the state one step back in time. These
combined operations could then be reversed by merely in-
terchanging two successive time steps, the analogy of re-
versing the velocities.

To see this more mathematically, suppose the state
at time i is si, and the underlying rule begins by taking
some arbitrary function f (si). Then the full rule takes for
the next time step siC1 D f (si) XOR si�1. Here the exclu-
sive or operation is taken site by site over the entire lat-
tice. Elementary properties of the XOR operation then give
si�1 D f (si) XOR siC1, which is the identical rule for the
time reversed dynamics.

These rules provide a wonderful way to play with the
concepts of entropy and reversibility. Indeed, an idealized
universe of cellular automata enables experiments which
would be impossible to carry out in the real world. In Fig. 9
I show the evolution of a simple image under such a rule.
The experiment is a crude simulation of a beer glass shat-
tering after being dropped on the floor. After a few steps it
appears quite randomized. Reversal of the momenta of all
relevant atoms in the beer glass would allow its reconstruc-
tion. In the model this is easily accomplished by swap-
ping two time steps. After reversal, continuing with the
same rule reconstructs the original image. At all stages the
“information” contained in the system must be constant,
even though the image may appear of drastically different
complexity.

The reconstruction process is highly sensitive to the re-
versal being precise. The analog here is to the sensitivity to
initial conditions in dynamical systems. In the bottom of
Fig. 9c I try to reproduce the beer cup from its shards as in
the above experiment, except that now at the time of rever-
sal I modify the state of exactly one pixel. The reversal pro-
cess recovers the original image only in regions outside the
“light cone” for the modified pixel. As the disturbance can
only propagate to neighbors in one time step, pixels out-
side n steps can not know of the change before an equal
number of time steps. This use of an XOR operation to
generate reversible complex mappings is an integral part
of the Data Encryption Standard; see, for example, [20].

Forest Fires

An amusing model of forest fires has three possible states
per cell, empty, a tree, or a fire. For the updating step, any
empty site can have a tree born with a small probability.
At the same time, any existing fire spreads to neighboring
trees leaving its own cell empty. The rule here differs from
those discussed previously in having a stochastic nature.
As the system is made larger, the growth rate for the trees
should decrease to just enough to keep the fires going.

If too many trees grow, one obtains a large fire reduc-
ing their density, while if there are too few trees, fires die
out. On a finite system, one should light a fire somewhere
to get the system started. On the other hand, as the sys-
tem becomes larger, the growth rate for the trees can be
reduced without the fire expiring. In a steady state the sys-
tem has fire fronts continually passing through the system,
as illustrated in Fig. 10. Perhaps there is a moral here that
one should be careful about extinguishing all fires in the
real world, for this may enhance the possibility for a catas-
trophic uncontrollable fire. It is not entirely clear whether
this model is actually critical. What seems to happen on
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Self-organized Criticality and Cellular Automata, Figure 9
The encryption of a glass of beer. The original rule uses the eight cell neighborhood with births on 1, 3, 5, and 7 neighbors and sur-
vivors on exactly 1 neighbors. The rule is modified at each step by XOR’ing the result with the history one time step back. Swapping
two adjacent time steps will bring the glass back exactly. The first figure is the starting configuration, the second after 50 steps of
evolution. At this point one bit in the upper left hand quadrant is flipped, and the dynamics is reversed. The glass is restored in all
places beyond 50 steps from the flipped bit. Note the effect of a “speed of light” in the problem

Self-organized Criticality and Cellular Automata, Figure 10
A snapshot of the forest fire model on a 450 by 200 periodic lattice. Trees are continuously burning at a slow rate, while fires burn
them down and spread to nearest neighbor trees. Here the four cell neighborhood is used



Self-organized Criticality and Cellular Automata S 8035

large systems is that stable spiral structures form and set
up a steady rotation. For a review of this and several re-
lated models, see [21].

The Sandpile Revisited

Very little is known analytically about general cellular au-
tomata. However, in a series of papers, Deepak Dhar and
co-workers have shown that the sandpile model has some
rather remarkable mathematical properties [22,23,24,25].
In particular, the critical ensemble of the system has been
well characterized in terms of an Abelian group. In the
following I will generally follow the discussions given
in [2,26].

Dhar introduced the useful toppling matrix �i; j with
integer elements representing the change in the height, z at
site i resulting from a toppling at site j [22]. More precisely,
under a toppling at site j, the height at any site i becomes
zi ��i; j . For the simple two dimensional sand model the
toppling matrix is thus

�i; j D 4 i D j
�i; j D �1 i; j nearest neighbors
�i; j D 0 otherwise.

(3)

For this discussion there is little special to the specific
lattice geometry; indeed, the following results easily gen-
eralize to other lattices and dimensions. The analysis re-
quires only that under a toppling of a single site i, that site
has its slope decreased (�i;i > 0), the slope at any other
site is either increased or unchanged (�i; j � 0; j ¤ i),
the total amount of sand in the system does not increase
(
P

j �i; j � 0), and, finally, that each site be connected
through toppling events to some location where sand can
be lost, such as at a boundary.

For the specific case in Eq. (3), the sum of slopes over
all sites is conserved whenever a site away from the lattice
edge undergoes a toppling. Only at the lattice boundaries
can sand be lost. Thus the details of this model depend cru-
cially on the boundaries, which we take to be open. A top-
pling at an edge loses one grain of sand and at a corner
loses two.

The actual value of the maximum stable height zT is
unimportant to the dynamics. This can be changed by sim-
ply adding constants to all the zi. Thus, as in Sect. “Self-Or-
ganized Criticality”, I consider zT D 3. With this conven-
tion, if all zi are initially non-negative they will remain so,
and I thus restrict myself to states C belonging to that set.
The states where all zi are non-negative and less than 4 are
called stable; a state that has any zi larger than or equal
to 4 is called unstable. One conceptually useful configu-
ration is the minimally stable state C� which has all the

heights at the critical value zT. By construction, any ad-
dition of sand to C� will give an unstable state leading to
a large avalanche.

I now formally define various operators acting on
the states C. First, the “sand addition” operator ˛i act-
ing on any C yields the state ˛i C where zi D zi C 1 and
all other z are unchanged. Next, the toppling operator ti
transforms C into the state with heights z0j where z0j D
z j � �i; j . The operator U which updates the lattice one
time step is now simply the product of ti over all sites
where the slope is unstable,

UC D
Y

i

t p ii C (4)

where pi D 1 if zi � 4; 0 otherwise. Using U repeatedly
gives the relaxation operator R. Applied to any state C this
corresponds to repeating U until no more zi change. Nei-
ther U nor R have any effect on stable states. Finally, I
define the avalanche operators ai describing the action of
adding a grain of sand followed by relaxation

aiC D R˛iC : (5)

At this point it is not entirely clear that the operator R
exists; in particular, it might be that the updating proce-
dure enters a non-trivial cycle consisting of a never end-
ing avalanche. I now prove that this is impossible. First
note that a toppling in the interior of the lattice does not
change the total amount of sand. A toppling on the bound-
ary, however, decreases this sum due to sand falling off
the edge. Thus, during an avalanche the total sand in the
system is a non-increasing quantity. No closed cycle can
have toppling at the boundary since this will decrease the
sum. Next, the sand on the boundary will monotonically
increase if there is any toppling one site further in. This
also can not happen in a cycle; thus, there can be no top-
plings one site away from the edges. By induction there
can be no toppling arbitrary distances in from the bound-
ary; thus, there can be no cycle, and the relaxation operator
exists. Note that for a general geometry this argument re-
quires that every site be eventually connected to an edge
where sand can be lost.

With a system lacking edges, such as under periodic
boundaries, no sand would be lost and thus cycles are ex-
pected and easily observed. These models might be called
“Escher models” after the artist constructing drawings of
water flowing perpetually downhill and yet circulating
in the system. While little is known about the dynam-
ics of this variation on the sandpile model, some studies
have been done under the nomenclature of “chip-firing
games” [27]. It has been argued [28] that this lossless sand-
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pile model on an appropriate lattice is capable of universal
computation.

I now introduce the concept of recursive states. This
set, denoted R, includes those stable states which can be
reached from any stable state by some addition of sand fol-
lowed by relaxation. This set is not empty because it con-
tains at least the minimally stable state C�. Indeed, that
state can be obtained from any other by carefully adding
just enough sand to each site tomake each zi equal to three.
Thus, one might alternatively defineR as the set of states
which can be obtained from C� by acting with some prod-
uct of the operators ai.

It is easily shown that there exist non-recursive, tran-
sient states; for instance, no recursive state can have two
adjacent heights both being zero. If you try to tumble one
site to zero height, then it drops a grain of sand on its
neighbors. If you then tumble a neighbor to zero, it dumps
a grain back on the original site. One can also show that
the self-organized critical ensemble, reached under ran-
dom addition of sand to the system, has equal probability
for each state in the recursive set. This is a consequence of
the Abelian nature of this system, as discussed below.

The crucial results of [22,23,24,25] are that the oper-
ators ai acting on stable states commute, and they gener-
ate an Abelian group when restricted to recursive states.
I begin by showing that the operators commute, that is
ai a jC D a jaiC for all C. First I express the a’s in terms
of toppling and adding operators

ai a jC D

 n1Y

kD1

tlk

!

˛i

0

@
nY

kDn1C1

tlk

1

A˛ jC (6)

where the specific number of topplings n1 and n depend
on i, j, and C. Acting on general states, the operators t
and ˛ all commute because they merely linearly add or
subtract heights. Therefore I can shift ˛i to the right in this
expression:

ai a jC D

 nY

kD1

tlk

!

˛i˛ jC : (7)

Now I rearrange the product of topplings. In the non-
trivial case that the ˛-operators render either i or j (or
both) unstable, the product must contain toppling oper-
ators corresponding to those unstable sites. I shift those
operators to the right. Those operators constitute by defi-
nition the update operator, U, so I can write

ai a jC D

Y

tlk
�
U˛i˛ jC (8)

where the factors within the bracket are the remaining t’s.
Now, the update operator may leave some sites still un-

stable, and then the product must include further toppling
operators; working on those sites, I can pull out another
factor of the update operator. This procedure can be re-
peated until I have used all the toppling factors and the
state is stable. Thus, I can identify the operator within the
brackets in Eq. (8) as the relaxation operator R. But ˛i˛ jC
is the same state as ˛ j˛i C, so ai a jC D a jaiC.

A trivial consequence of this argument is that the to-
tal number of tumbling events occurring in the operations
ai a jC and a jaiC are the same. Of course, if a particular
site k tumbles it can be caused by either addition; the or-
ders of the tumbling events may or may not be altered.

An intuitive argument that sand additionmay be com-
mutative uses an analogy with combining many digit
numbers under long addition. The tumbling operation is
much like carrying, except rather than transferring to the
next digit, the overflow spreads to several neighbors. As
addition is known to be Abelian, despite the confusing ele-
mentary-school rules, I might expect the sandpile addition
rule also to be.

I now prove that the avalanche operators have unique
inverses when restricted to recursive states; that is, there
exists a unique operator a�1i such that ai (a�1i C) D C for
all C inR. This implies that the operators ai acting on the
recursive set generate an Abelian group. For any recursive
state C I first find another recursive state such that ai act-
ing on it gives C, and I then show that this construction is
unique.

I begin by adding a grain of sand at site i to the state C
and then relax the system. This generates a new recursive
state aiC. Now since the state C is by assumption recur-
sive, there is some way to add sand to regenerate C from
any given state. In particular, there is some product P of
addition operators aj such that

C D PaiC : (9)

But the a’s commute, so I have

C D aiPC (10)

and thus PC is a recursive state on which ai gives C.
I must now show that this state is unique. Consider

repeating the above process to find a series of states Cn
satisfying

(ai)nCn D C : (11)

Because on a finite system the total number of stable states
is finite, the sequence of states Cn must eventually enter
a loop. I can run backwards around this loop by adding
back the sand repeatedly to the given site. As the original
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state C appears in resupplying the sand, C itself must itself
belong to the loop. Calling the length of the loopm, I have
(ai)mC D C. I now uniquely define a�1i C D am�1i C.

I now have sufficient machinery to count the number
of recursive states. As all such can be obtained by adding
sand to C�, I can write any state C 2 R in the form

C D

 
Y

i

ani
i

!

C� : (12)

Here the integers ni represent the amount of sand to be
added at the respective sites. However, in general there are
several different ways to reach any given state. In particu-
lar, adding four grains of sand to any one site must force
a toppling and is equivalent to adding a single grain to
each of its neighbors. This can be expressed as the oper-
ator statement

a4i D
Y

j2nn

a j (13)

where the product is over the nearest neighbors to site i. I
can rewrite this equation by multiplying by the product of
inverse avalanche operators on the nearest neighbors on
both sides, thus obtaining for any site i

Y

j

a#i j
j D E (14)

where E is the identity operator. This allows me to shift
the powers appearing in Eq. (12). Define N to be the
number of sites in the system. If I label states by the
vector n D (n1; n2; n3; : : : ; nN ) I see that two states are
equivalent if the difference of these vectors is of the formP

j ˇ j�i j where the coefficients ˇj are integers. These are
the only constraints; if two states can not be related by
toppling they are independent. Thus any vector n can be
translated repeatedly until it lies in an N-dimensional hy-
per-parallelepiped whose base edges are the vectors �ji,
j D 1; : : : ;N . The vertices of this object have integer coor-
dinates and its volume is the number of integer coordinate
points inside it. This volume is just the absolute value of
the determinant of�. Thus the number of recursive states
equals the absolute value of the determinant of the top-
pling matrix�.

For large lattices this determinant can be found easily
by Fourier transform. In particular, whereas there are 4N
stable states, there are only

exp

 

N
Z (	;	)

(�	;�	)

d2q
(2�)2

ln(4 � 2qx � 2qy)

!

' (3:2102 : : : )N (15)

recursive states. Thus starting from an arbitrary state and
adding sand, the system “self-organizes” into an exponen-
tially small subset of states forming the attractor of the
dynamics.

An Isomorphism

Following [26], I now look into the consequences of stack-
ing sand piles on top of one another. Given stable config-
urations C and C0 with configurations zi and z0i , I define
the state C ˚ C0 to be that obtained by relaxing the con-
figuration with heights zi C z0i . Clearly, if either C or C0 is
a recursive state, so is C ˚ C0.

Under the operation ˚ the recursive states form an
Abelian group isomorphic to the algebra generated by
the ai. First, the addition of a state C with heights zi is
equivalent to operating with a product of ai raised to zi,
that is

B˚ C D

Y

azii
�
B (16)

for any recursive state B. The operation ˚ is associative
and Abelian because the operators ai are.

Since any element of a discrete group raised to the or-
der of the group gives the identity, it follows that aj#ji D E.
This implies the simple formula a�1i D aj#j�1i . The analog
of this for the states is the existence of an inverse state,�C

� C D (j�j � 1)˝ C : (17)

Here, n˝ C means adding n copies of C and relax-
ing. The state �C has the property that for any state
B˚ C ˚ (�C) D B.

The state I D C ˚ (�C) represents the identity and
has the property I ˚ B D B for every recursive state B.
The state which is isomorphic to the operator ai is sim-
ply ai I. The identity state provides a simple way to check
if a state, obtained for instance by a computer simulation,
has reached the attractor, i. e. if a given state is a recur-
sive state: A stable state is in R if and only if C ˚ I D C.
The proof is simple. By construction, a recursive state has
this property. On the other hand, since I is recursive, so is
C ˚ I.

The identity state can be constructed by taking any re-
cursive state, sayC� and repeatedly adding it to itself to use
j�j ˝ C D I. However, on any but the smallest lattices,
j�j is a very large integer. A more economical scheme is
to start with an empty table but use sandy boundary con-
ditions which continually pour sand onto the table. Once
it reaches a steady state, switch to open boundary condi-
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Self-organized Criticality and Cellular Automata, Figure 11
The identity state for the sandpile model on a 302 by 250 lattice. The color code is gray, red, blue, and green for heights 0, 1, 2, and 3,
respectively

tions and let the sand run back off. This then relaxes to the
desired identity. Figure 11 shows the identity state on a 302
by 250 lattice. Note the fractal structure, with features on
many length scales.

Majumdar and Dhar [25] have constructed a simple
“burning” algorithm to determine if a state belongs to the
recursive set. For a given configuration, first add one par-
ticle to each of the edge sites and two particles to the cor-
ners. This again corresponds to imagining a large source
of sand just outside the boundaries, which then tumbles
one step onto the system. Then return to open boundaries
and update according to the usual rules. If and only if the
original state is recursive, this will generate an avalanche
under which each site of the system tumbles exactly once.
Also, the final state after the avalanche will be identical to
the original. However, if the state is not recursive, some
untumbled sites will remain. Figure 12 shows such a pro-
cess underway on the configuration of Fig. 1. Here sites
which have already burned are shown in cyan, while the
remaining sites in the center have not yet tumbled. The
small number of sites shown in orange are the still ac-
tive sites, which eventually burn the entire remaining lat-
tice.

The burning algorithm provides a simple way to prove
that the avalanche regions are simply connected once one

Self-organized Criticality and Cellular Automata, Figure 12
The burning algorithm being applied to the state in Fig. 1. Burnt
sites are cyan, burning sites are orange, and the remaining sites
are colored as previously. This avalanche eventually tumbles ev-
ery site exactly once

is in the critical state. In a burning process, any sub-lat-
tice of the original will have all of its sites tumbled onto
from outside. This is the condition for starting a burning
on the sub-lattice. Thus, if a configuration is in the critical
ensemble for the whole lattice, then any extracted piece of
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this configuration on a subset of the original lattice is also
in the critical ensemble of the extracted part. Now suppose
that one constructs an avalanche with any initial addition
to a state from the critical ensemble. In any subregion en-
closed by this avalanche, sand will fall from the tumbling
sites on its outside. Since the sub-lattice is itself in its own
critical ensemble, this must induce an avalanche which, by
the burning algorithm, will tumble all enclosed sites. Thus
any avalanche on a state from the critical ensemble can-
not leave untumbled any sites in a region isolated from
the boundary, i. e. an untumbled island. This result that
avalanches must be simply connected does not follow for
states outside the recursive set, as can be easily demon-
strated by considering a sandpile with a hole of empty sites
in the middle.

The burning algorithm has several amusing conse-
quences. One is that any configuration with only height 2
or 3 present is in the critical ensemble as long as the lat-
tice has corners. For example, with all height 2, the burn-
ing will start at the four corners of a rectangular lattice
and steadily work its way to the center of the system. An-
other consequence is that in addition to the tumbling re-
gion from an avalanche being simply connected, so will the
smaller region where the number of tumblings exceed any
fixed number; i. e. the region of sites that tumble twice or
more is also simply connected.

Future Directions

Simple models as implemented by cellular automata pro-
vide a rich area for the study of complex phenomena.
Some systems can self organize with physics at many
scales, while others provide fascinating demonstrations of
thermodynamic laws. I have only touched on a few issues
here, leaving out many related topics such as lattice gasses,
driven interfaces in random media, growth processes, and
evolution. As the ease of programming and the speed of
modern computers continue to rush forward, so will the
fascination with such models.
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Glossary

Attractor A special set of system states approached by
a dynamical system after some time has passed when
starting from a variety of initial states.

Autopoiesis The process by which systemsmaintain their
identity and organization and regenerate their compo-
nents in the course of their operation.

Competition and cooperation Types of interaction be-
tween two or more elements of a system. Competition
refers to each element striving to maximize its use of
a finite and/or non-renewable resource. Cooperation
refers to the elements engaging in a mutually benefi-
cial exchange.

Complexity Measure of number of elements and way of
their interaction (structural c.); measure of variety of
behavioral repertoire of a system (functional c.).

Constructive system A system whose later components
are generated during the interaction of its earlier com-
ponents.

Dynamics The quantitative development of a system’s
state variables over time.

Emergence The appearance of qualitatively new phenom-
ena on higher levels of a hierarchical system.

Evolution A process of structural or qualitative change in
some direction.

Instability Inability of a system to keep its state or struc-
ture.

Mode Macroscopic behavior of a system caused by the in-
teraction of its microscopic parts via long-range corre-
lations.

Non-equilibrium System state with inflow of matter, en-
ergy and/or information causing it to stay away from
its most probable state under the hypothetical condi-
tion of isolation.

Phase transition A point at which the appearance or be-
havior, or qualitative nature of the steady state of a sys-
tem changes suddenly.

Resilience Measure of a system’s ability to remain within
a domain of stability in response to fluctuations of the
system by a perturbation, and the ability of the system
to return to that stable domain having once left.

Self-organized criticality The ability of a system to
evolve in such a way as to approach a critical point and
then maintain itself at that point.

Definition of the Subject

Self-organization is a core concept of Systems Science. It
refers to the ability of a class of systems (self-organizing
systems (SOS)) to change their internal structure and/or
their function in response to external circumstances. El-
ements of self-organizing systems are able to manipulate
or organize other elements of the same system in a way
that stabilizes either structure or function of the whole
against external fluctuations. The process of self-organiza-
tion is often achieved by growing the internal space-time
complexity of a system and results in layered or hierarchi-
cal structures or behaviors. This process is understood not
to be instructed from outside the system and is therefore
called self-organized.

Modern ideas about self-organization start with the
foundation of cybernetics in the 1940s. W. Ross Ashby,
H. von Foerster and N. Wiener, among others, have con-
tributed to an early understanding. Later, the concept was
adopted in physics and nowadays pervades most of natu-
ral sciences. Many systems have been identified as possess-
ing aspects of self-organization, though a clear definition
is still lacking. As a result of this inaccuracy, the theory of
self-organization is still in its infancy. While the concept
has found applications in the social sciences and engineer-
ing as well, SOSs are an area of active research, with fun-
damental questions still being explored.

Introduction

Over the last decades a variety of features have been iden-
tified as typical for self-organizing systems. Not all of these
features are present in all systems able to self-organize.
Self-organizing systems are dynamic, often non-determin-
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istic, open, exist far from equilibrium and sometimes em-
ploy autocatalytic amplification of fluctuations. Often, they
are characterized by multiple time-scales of their internal
and/or external interactions, they possess a hierarchy of
structural and/or functional levels and they are able to react
to external input in a variety of ways. Many self-organizing
systems are non-teleological, i. e. they do not have a specific
purpose except their own existence. As a consequence, self-
maintenance is an important function of many self-orga-
nizing systems. Most of these systems are complex and use
redundancy to achieve resilience against external pertuba-
tion tendencies.

Key aspects of self-organizing systems are:

� Growth of Complexity
� Emergence of new phenomena
� Positive and negative feedback loops of internal regula-

tion.

The process of self-organization has been invoked to
explain numerous phenomena in the natural sciences.
From non-living systems like galaxies and stars down to
nanoparticle aggregates, self-organizing systems have been
observed. In the living world cells, organisms and ecosys-
tems provide examples of systems classified as self-or-
ganizing. The concept has found applications in man-
made systems like communication networks, societies,
economies, and has been identified to be at work in the
world of ideas in the development of world views, scien-
tific beliefs and norm systems.

History of the Concept of Self-Organization

Early History

The concept of self-organization can be traced back to at
least two sources: Western philosophy influenced heav-
ily by Greek thinking; and eastern philosophy, centered
around the process thinking of Bhuddism. The ideas de-
rived from both sources resound with the modern way of
thinking about self-organization although the word itself
had never been used.

On wondering about the origin of the world, Greek
atomists fromDemocritos of Abdera to Epicuros of Samos
argued that world order arose from chance collisions
of particles. First, the cosmos (from Greek kosmos D
the ordered) did not exist but chaos instead (from Greek
chaos D the disordered). In modern times chaos theory
has taken up this topic again, with deep connections to
ideas about self-organization and the origin of order in the
universe.

In the Christian tradition, St Thomas Aquinas con-
tributed through his interest in logical proofs for the ex-

istence of God. One of these proofs considered God to be
the ultimate organizer or designer. The argument was that
everything had to be organized and this called for an or-
ganizer. In turn, the organizer had to be organized and so
on back to the original organizer: this was God. Since God
is present without cause (otherwise he would have to be
organized by another entity), he must have somehow or-
ganized himself.

The Bhuddist way of thinking, on the other hand,
was fundamentally process-oriented. Things are consid-
ered not to be in static existence, but rather are thought
to be generated and maintained by proper processes. The
emphasis on processes is reminescent of self-organizing
systems whose structure is determined by proper pro-
cesses of internal and external interactions.

The First Use of the Term

Work on General Systems Theory (von Bertalanffy) [1]
and Cybernetics (Wiener) [2] paved the way for the idea
of self-organization.

The concept of a self-organizing system was intro-
duced by Ashby in 1947 [3]. In the 1950s a self-organiz-
ing system was considered to be a system which changes
its basic structure as a function of its experience and en-
vironment. The term was used by Farley and Clark in
1954 to describe learning and adaptation mechanisms [4].
Ashby [5], in 1960, redefined a self-organizing system to
include the environment with the system proper. Von Fo-
erster argued [6], also in 1960, that a self-organizing dy-
namical system possesses some stable structures (eigenval-
ues, attractor states) which he later termed eigenbehavior.

Further Developments

This notion was further developed by Haken [7] in 1977
who termed the global cooperation of elements of a dy-
namical system – resulting in it assuming an attrac-
tor state – self-organization. Both Haken and Kauffman
(1993) [8] argued for a deep connection between self-orga-
nization and selection. Haken found that modes of collec-
tive behavior are competing against each other and consid-
ered this process to be Darwinian selection in the non-liv-
ing world. Kauffman, on the other hand, emphasized the
role of constraints on the direction of evolution (mostly of
the living), caused by self-organization.

Already in the 1970s, however, ideas branched out
into different directions. One branch of the development
of the idea deepened the relation to studies of learn-
ing and adaptation (Conrad, Kohonen, [9,10]), another
branch studied processes of self-organization in systems
far from equilibrium (Prigogine, Haken) [11,12]. Chaos
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Self-organizing Systems, Table 1
Examples of Self-Organizing Systems

System Flow Self -organizing entities Emergence
Atmosphere Solar energy Gas molecules Patterns of atmospheric circulation
Climate Energy Weather conditions (humidity,

precipitation, temperature, . . . )
Distribution patterns

Liquid between plates Heat Particle circulation Movement patterns
Laser Excitation energy Phase of light waves Phase-locked mode
Reaction vessel Chemicals for BZ reaction Chemical reactions Patterns of reaction fronts
Neural networks Information Synapses Connectivity patterns
Living cells Nutrients Metabolic reactions Metabolic pathways/network patterns
Food webs Organisms of different species Species rank relation Networks of species

Highway traffic Vehicles Distance of vehicles Density waves of traffic
City Goods, information Human housing density Settling patterns
Internet Computer nodes Connections between nodes Network connection pattern
Web Information posted in websites Links between websites Patterns of web communities

theory (Thom, Mandelbrot) [13,14] was the line of in-
quiry into nonlinear systems in mathematics, whereas au-
topoiesis and self-maintenance where at center stage in
biology (Eigen, Rosen) [15,16] neurophysiology (von der
Mahlsburg, Linsker [17,18]) and cognitive science (von
Foerster, Maturana and Varela) [19,20].

In recent years, self-organizing systems have assumed
center stage in the natural sciences [21,22], and the social
sciences [23,24,25]. Engineering is beginning to see the us-
ability of the concept [26] in connection with the approach
of nano-scale applications and the growing complexity of
human artefacts.

Examples of Natural Self-Organizing Systems

Classical examples of natural self-organizing systems are
the formation of Benard convection cells in non-equi-
librium thermodynamics, the generation of laser light in
non-linear optics and the Belousov–Zhabotinsky reaction
in chemistry. These are examples from the non-living
world, and the complexity of resulting macroscopic space-
time patterns is restricted.

Nearly unrestricted complexity through self-organiza-
tion can be achieved in the living world. For instance, the
interaction of species in foodwebs could be looked at from
this point of view [22]. Here, we shall briefly look at the
self-organization of the Earth’s biosphere known as the
Gaia hypothesis [27]. This hypothesis states that Earth’s
living and non-living components self-organize into a sin-
gle entity calledGaia. Gaia can be understood as the whole
of the biosphere, that is able to self-stabilize. The model
states, in other words, that the biomass of Earth self-
regulates to make conditions on the planet habitable for

life. In this way, a sort of homeostasis would be sought
by the self-organizing geophysical/physiological system of
Earth.

In recent years, the Gaia hypothesis has found its place
in Earth Systems Science as the realization that there is just
one global ecosystem, containing the entirety of resources
and all living organisms, all interacting with each other
in multiple regulatory cycles. These ideas have been con-
nected to the Darwinian theory of evolution via natural
selection [28,29], providing a mechanism by which such
a stable state can be assumed to have emerged.

Other examples of natural self-organizing systems can
be found in Table 1.

Examples of Artificial Self-Organizing Systems

There are numerous examples of man-made systems or
systems which involve man that exhibit self-organization
phenomena. Among them are traffic patterns, self-orga-
nizing neural networks, celular phone networks or the de-
velopment of web communities.

The example we shall briefly discuss is that of traf-
fic flow patterns. Macroscopic patterns of traffic jams on
highways have been observed and experimentally exam-
ined [30]. Their appearance is closely related to traffic den-
sity, the model of behavior for drivers and the traffic flow
that this allows [31]. Traffic flow is an open system, and
it develops waves of traffic jams (solitons) excited by the
density of traffic. Transitions between different traffic flow
patterns have been considered as phase transitions, typical
products of self-organization in the non-living world.

A number of examples of self-organizing systems from
different fields is given in Table 1, lower section.
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Explanatory Concepts of Self-Organization

Despite half a century of inquiry, the theory of self-orga-
nizing systems is still in its infancy. There is no “standard
model” of SOS, only various aspects emphasized by differ-
ent researchers. Here we shall discuss the most important
of these.

Non-Equilibrium Thermodynamics

Thermodynamics has been concerned with the notion of
order and disorder in physical systems for more than
a century. The theory of self-organization has to address
fundamental issues of this field. The most important ques-
tion in this regard is, how order can arise through self-or-
ganization.

Classical thermodynamics has focused on closed sys-
tems, i. e. systems isolated from external influence in the
form of matter and energy flow. This allowed to under-
stand the processes involved when a system evolves undis-
turbed. A key result of this inquiry is the second law
of thermodynamics, originally formulated by Carnot and
later refined by Clausius in the 19th century. It states that
“any physical or chemical process under way in a sys-
tem will always degrade the energy”. Clausius introduced
a quantitative measure of this irreversibility by defining
entropy:

S �
Z

dQ/T (1)

with Q the heat energy at a given temperature T. In any
process of a closed system, entropy always rises

dS
dt
� 0 : (2)

According to Eddington, 1928 [32] this universal increase
in entropy “draws the arrow of time” in nature.

Boltzmann had reformulated entropy earlier in terms
of the energy microstates of matter. In his notion, entropy
is a measure of the number of different combinations of
microstates in order to form a specific macrostate.

S D kB ln(W) (3)

with kB Boltzmann’s constant andW the thermodynamic
probability of a macrostate. He argued that the macrostate
with most microstates (with maximum entropy) would be
most probable and would therefore develop in a closed
system. This is the central tenet of equilibrium thermody-
namics.

More interesting phenomena occur if the restrictions
for isolation of a system are removed. Nicolis and Pri-

gogine [11] have examined these systems of non-equilib-
rium thermodynamics which allow energy and matter to
flow across their boundary. Under those conditions, total
entropy can be split into two terms, one characterizing in-
ternal processes of the system, diS and one characterizing
entropy flux across the border deS. In a generalization of
the second law of thermodynamics, Prigogine and Nicolis
postulated the validity of the second law for the internal
processes,

diS
dt
� 0 (4)

but explicitly emphasized that nothing can be said about
the sign of the entropy flux. Specifically, it could carry
a negative sign and it could be larger in size than the in-
ternal entropy production. Since the total entropy is the
sum of both parts, the sign of the total entropy change of
an open system could be negative,

dS
dt
D

diS
dt
C

deS
dt

< 0 (5)

a situation impossible in equilibrium thermodynamics.
Thus, increasing order of the system considered would
be possible through export of entropy. Self-organization
of a system, i. e. the increase of order, would not contra-
dict the second law of thermodynamics. Specifically, the
non-equilibrium status of the system could be considered
a source of order.

Even in the distance from thermodynamic equilib-
rium, however, certain stable states will occur, the sta-
tionary states. These states assume the form of dissipa-
tive structures if the system is far enough from thermody-
namic equilibrium and dominated by non-linear interac-
tions. The preconditions for dissipative structures can be
formulated as follows:

1. The system is open.
2. The inner dynamics is mainly non-linear.
3. There are cooperative microscopic processes.
4. A sufficient distance from equilibrium is assumed, e. g.

through flows exceeding critical parameter values.
5. Appropriate fluctuations appear.

If those conditions are fullfilled, the classical thermody-
namic branch of stationary solutions becomes unstable
and dissipative structures become stable system solutions.

Synergetics

Prigogine’s description of dissipative structures is formally
limited to the neighborhood of equilibrium states. As
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Haken pointed out, this is a severe restriction on its ap-
plication and in particular precludes its formal application
to living systems. Instead, Haken proposed order param-
eters and the slaving principle as key concepts for systems
far from equilibrium. Let the time evolution of a continu-
ous dynamical system is described by

dq
dt
D N(q; ˛)C F(t) (6)

where q(t) D [q1(t); q2(t); : : : ; qN (t)] is the system’s state
vector andN is the deterministic part of the system’s inter-
action whereasF represent fluctuating forces, and˛ are the
so-called control parameters. Then the stable and unstable
parts of the solution can be separated by linear stability
analysis, as can the time dependent and time independent
parts. As a result, the solution can be written as

q(t) D q0 C
X

u
�u(t)vu C

X

s
�s(t)vs (7)

vu ; vs are the unstable and stable modes, respectively, and
�u(t); �s (t) are their amplitudes. These amplitudes obey
the following equations

d�u
dt
D u�u C Nu(�u ; �s)C Fu(t) (8)

d�s
dt
D s�s C Ns(�u ; �s)C Fs (t) (9)

with u ; s characterizing the linear part of the equations
and function N summarizing the non-linear deterministic
components. The slaving principle formulated by Haken
now allows to eliminate the stable mode development by
expressing them as a function of unstable modes

�s(t) D fs[�u(t); t] : (10)

Thus, the unstable modes (order parameters) enslave the
stable modes and determine the development of the sys-
tem’s dynamics. This result is useful both to describe phase
transitions and pattern formation in systems far from equi-
librium.

Synergetic concepts have been applied in a variety of
disciplines [33].

Chaos and Complexity

The treatment of chaotic systems has been derived from
non-linear system theory. Chaotic systems are usually low-
dimensional systems which are unpredictable, despite be-
ing deterministic. The phenomenon was originally discov-

ered by the meteorologist E. Lorenz in 1963 [34], although
H. Poincare in 1909 was aware of the possibility of certain
systems to be sensitive to initial conditions [35]. The rea-
son for the difficulty to predict their behavior stems from
the fact that initially infinitesimal differences in trajecto-
ries can be amplified by non-linear interactions in the sys-
tem. These instabilities, together with the lack of methods
for solving even one-dimensional non-linear equations
analytically, produce the difficulties for predictions. Mod-
ern theory of deterministic chaos came into being with the
publication of a seminal article by May in 1976 [36].

Complex systems, on the other hand, have many de-
grees of freedom, mostly interacting in complicated ways,
i. e. they are high-dimensional. All the more astonishing is
the fact that our world is not totally chaotic in the sense
that nothing can be predicted with any degree of certainty.
It became apparent, that chaotic behavior is but one of
the ways non-linear dynamical systems behave, with other
modes being complex attractors of a different kind.

Complexity itself can be measured, notably there ex-
ist a number of complexity measures in computer science,
but describing or measuring complexity is not enough to
understand complex systems.

Self-Organized Criticality

For particular high-dimensional systems, Bak et al. [43]
have suggested a dynamic system approach toward the for-
mation of fractal structures, which are found to be wide-
spread both in natural and artificial environments. Their
canonical example was a pile of sand. They examined the
size and frequency of avalanches under certain well-pre-
pared conditions, notably that grains of sand would fall on
the pile one by one. This is an open system with the forces
of gravity and friction acting on the possibly small fluctu-
ations that are caused by deviations in the hitting position
of each grain of sand. They observed how the grains would
increase the slope of the sand pile until more or less catas-
trophic avalanches developed.

Bak suggested the notion of self-organized criticality
(SOC) as a key concept which states that large dissipa-
tive systems drive themselves to a critical state with a wide
range of length and time scales. This idea provided a unify-
ing framework for the large-scale behavior in systems with
many degrees of freedom. It has been applied to a diverse
set of phenomena, e. g. in economic dynamics and bio-
logical evolution. SOC serves as an explanation for many
power-law distributions observed in natural, social and
technical systems, like earthquakes, forest fires, evolution-
ary extinction events, and wars. As opposed to the widely
studied low-dimensional chaotic systems, SOC systems
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have a large number of degrees of freedom, and still ex-
hibit fractal structures as are found in the extended space-
time systems in nature.

The Hypercycle

In a series of contributions since 1971, Eigen and Schus-
ter have discussed particular chemical reaction systems re-
sponsible for the origin, self-organization and evolution of
life [37,38,39,40]. By considering autocatalytic sets of reac-
tions they arrived at the most simple form of organization,
the hypercycle, which is able to explain certain aspects of
the origin of life. They have considered a chemical reaction
system composed of a variety of self-reproductive macro-
molecules and energy-rich monomers required to synthe-
size those macromolecules. The system is open and main-
tained in a non-equilibrium state by a continuous flux of
energy-rich momomers. Under further assumptions they
succeeded in deriving Darwinian selection processes at the
molecular level. Eigen and Schuster have proposed rate
equations to describe the system.

The simplest system realizing the above mentioned
conditions can be described by the following rate equa-
tions

dxi
dt
D (AiQi � Di)xi C

X

k¤i

wik xk C˚i (x) (11)

where i enumerates the individual self-reproducing
units and xi measures their respective concentrations.
Metabolism is quantified by the formation and decompo-
sition terms AiQi xi and Di xi . The ability of the self-re-
producing entities to mutate into each other is summa-
rized by the quality factor for reproduction, Qi, and the
term wikxk which takes into account all catalytic produc-
tions of one sort using the other. Ai ;Di are rate constants
for selfreproduction and decay respectively. The flow term
˚ i finally balances the production/destruction in this open
system in order to achieve

P
k xk D const.

By introducing a new feature called excess production

Ei � Ai � Di (12)

and its weighted average

Ē(t) D
X

k

Ekxk/
X

k

xk (13)

and symbolizing the “intrinsic selection value” of a sort i
by

Wii D AiQi � Di (14)

one arrives at reduced rate equations

dxi
dt
D (Wii � Ē)xi C

X

k¤i

wik xk : (15)

These equations can be solved under certain simplifying
assumptions and notably yield the concept of a quasi-
species and the following extremum principle: A quasi-
species yi is a transformed self-replicating entity with
the feature that it can be considered as a cloud of sorts
xi whose average or consensus sequence it is. The ex-
tremum principle reads: Darwinian selection in the system
of quasi-species will favor that quasi-species which pos-
sesses the largest eigen-value of the rate equation system
above.

The Origin of Order

In the 1990s Kauffman [41] pointed out one of the weak-
nesses of Darwinian theory of evolution by natural selec-
tion: It cannot explain the ‘origin of species’ but rather only
their subsequent development. Kauffman instead empha-
sized the tendency of nature to constrain developments
along certain paths, due to restrictions in the type of in-
teraction and the constraints of limited resources avail-
able to evolution. In particular he held up the view that
processes of spontaneous order formation conspire with
the Darwinian selection process to create the diversity and
richness of life on Earth.

Previously, Kauffman had formulated and extensively
studied [42] the NK fitness landscapes formed by random
networks of N Boolean logic elements with K inputs each.
Kauffman observed the existence of cyclic attractor states
whose emergence depended on the relation between N
and K , and the absolute value of K . In the case of large K
(K � N), the landscape is very rugged and behavior of the
network appears stochastic. The state sequence is sensitive
to minimal disturbances and to slight changes of the net-
work. The attractor length is very large,� N/2, and there
are many attractors. In the other extremal case, K D 2,
the network is not very sensitive to disturbances. Changes
of the network do not have strong and important conse-
quences for the behavior of the system.

Kauffman proposed NK networks as a model of reg-
ulatory systems of living cells. He further developed the
notion of a canalizing function that is a Boolean function
in which at least one variable in at least one state can com-
pletely determine the output of the function. He proposed
that canalizing functions are an essential part of regulatory
genetic networks.
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Self-organizing Systems, Figure 1
The Hypercycle (reproduced from [15])

Emergence and Top-Down Causation

The notion of emergence has been introduced in complex
systems theory in order to explain the appearance of new
qualitative features on the level of an entire system that
could not be observed at the level of its components. Emer-
gent behavior can be connected to the afore-mentioned
complex attractors. It requires switching the level of de-
scription of behavior of a system, from local (component-
centered) to global (system-centered), or at least to ameso-
level (sub-system-centered). Emergent behavior happens
when

a) the system shows qualitatively new behavior on
a higher level of description which

b) could not have been easily predicted from the interac-
tions of components at the lower level (obeys a non-
linear relationship)

c) is the result of a self-organization process.

Emergence is strongly related to self-organization. It is of-
ten understood as a pattern formation process.While it es-
sentially has to do with changing the perspective and look-
ing at the system at a different level, it concerns itself with
a change in behavior (e. g. the system is getting more orga-
nized, shows new coordinated modes of behavior). It has
been further conjectured that there is top-down causation,
i. e. the structures forming on the higher level of the system
are able to affect the lower levels (system components) and
influence them in a way that stabilizes the newly emergent
behavior. Haken could show in the context of Synergetics
that this phenomenon exists. Top-down causation is be-
lieved to be an important source of complexity, especially
in living systems, because it stabilizes patterns.

Self-organization draws heavily from this source of
qualitative innovation in complex systems.

ModelingMethods

A formal model is a simplified mathematical or algorith-
mic representation of a system. Often it has been simpli-
fied to the point of a carricature, and this has to be born in
mind when making conclusions about the consequences
of model predictions. No model can predict beyond the
limits of its approximations.

Mean-Field Methods

One of the most important methods used to model com-
plex systems is tied to the notion of dynamical systems.
Dynamical systems are systems whose time development
is accessible to a description by state changes. It entails the
existence of a state space in which these changes can be
traced and quantified.

Mean-field methods of description focus on average
behavior. They abstract away from the local correlations
between a system’s elements and describe only long-range
changes. For instance, the behavior of a planet could be
described as a point on its trajectory around the star it cir-
cles. Detailed interactions of its atmosphere would not be
part of that description.

Mean-field methods are formulated in the form of
time-dependent differential or difference equations which
can be solved under certain conditions and predict the be-
havior of a system in its state space.

Assuming that the state of a system can be subsumed
in a vector of state variables x whose values are observable
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and depend on time, we can generally formulate an equa-
tion for continuous time development as:

dx
dt
D f(x) : (16)

If time does not develop continuously, a discrete (iterative)
equation can be used to describe system behavior:

xtC1 D f(xt) : (17)

The notion is that the state of the system at time t, x(t)
or xt , is everything that is of interest and can be known
about the system. It turned out that with this extreme sim-
plification many systems became treatable that would have
otherwise resisted quantitative treatment. The non-linear
nature of many of the state development equations, how-
ever, and the high-dimensionality of state space vectors of-
ten constitute prohibitive hurdles to exact or even approx-
imate mathematical solution of these equations.

As a result, algorithmic approaches for modeling self-
organizing systems have become more prevalent in recent
years.

Agent-Based Models

A very general class of algorithmic systems is subsumed
under the term agent-based models. In these systems, in-
dividual entities are modeled that interact with each other.
Thus, the approximation of average behavior, and the in-
terest for long-term behavior only is abandoned in favor of
a microscopic description of the elements of a system and
their interactions. The abstraction of features of a system
is achieved through the assumption of rules of behavior
of the agents, including their interaction behavior. Agent-
based systemsmust be implemented as computational sys-
tems, and run on a computer to obtain results. Agents
are assigned states, and transition rules between states, de-
pending on interacting agents, and then these rules are ex-
ecuted in parallel over the set of agents under considera-
tion.

Cellular Automata A particular subset of agent-based
models is the class of cellular automata introduced by von
Neumann [47] going back to lattice networks of Ulam. The
agents of cellular automata are placed on a grid of cells
and allowed to assume a finite number of states. Interac-
tions are determined by state transition rules and the def-
inition of a neighborhood, which determines the interac-
tivity of the cellular automaton. Many variants of cellular
automata exist, differing in the number of dimensions of
the grid, the number of states, the sort and distribution of
transition rules and the nature of the neighborhood.

A typical cellular automata model might, e. g. consist
of digital cells (allowing only two states, “ON” and “OFF”),
homogeneous and deterministic transition rules between
states, a one-dimensional grid, and nearest-neighbor in-
teractions. Cellular automata of this type have been thor-
oughly examined in [44,45] and show a surprising variety
and richness in behavior.

In a cellular automaton like LIFE, for instance, one
can observe how macroscopic and mesocopic structures
appear through self-organization, that is, as a process de-
termined solely by the local interaction of the CA’s el-
ements. some structures, e. g. spiral waves, are more re-
silient against perturbation than others, e. g. glider canons.
A moving structure like a glider can be interpreted as an
emergent phenomenon as it does not seem to be present
on the microscopic scale (single CA cells do not move).

Graphs andNetworks Amore general class of automata
can be formulated if the notion of cellular neighborhood
is abandoned. Instead of a rigidly defined grid, a graph
or network of automata connected through edges to other
automata is introduced. Each node of the graph/network
represents an automaton, with interactions allowed via
edges.

The notion of a graph is, however, more general, and
allows other agent-based systems to be simulated. For in-
stance, the nodes of a graph might represent species of
an ecosystem interacting with other species (connected by
edges). Each speciesmight be represented by a state count-
ing the number of individuals of that species. Nodes might
further hold information on particular features of individ-
uals, and possibly their variants. Explicit simulations of
such systems have been considered in the context of “Ar-
tificial Chemistries” [46].

In recent years, the structure and dynamics of net-
works has been a major focus of interest in the scientific
community. Network science has become a converging
point for different disciplines interested inmodelling com-
plex behavior.

Observables

Self-organizing phenomena rest on the appearance of par-
ticular sets of behaviors. If ever they are to be understood,
a clear notion of observable quantities needs to be devel-
oped that allows a proper description of the behavior of
such systems. At present, no such canonical set of observ-
ables exists, owing to the bewildering variety of systems
that show signs of self-organization. However, one can dis-
cern a number of different measures and observables that
might form the core of such a set [49].
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Entropic and Information Theoretic Measures One
class of observables can be considered entropic and infor-
mation-theoretic measures. These measures have in com-
mon a statistical root, and seek to describe a self-organiz-
ing system in terms of the order (or disorder) that develops
over time [48].

Stability Measures Another class of observables can be
discussed as stability measures. In this class, systems are
sought to be disturbed from their regular behavior in order
to obtain a clearer idea of their resilience.

Scaling Measures A further class of observables can be
attached to features of scaling. Both theoretical and exper-
imental approaches can be used to vary the number of di-
mensions, number of equations/agents, number and com-
plexity of interactions, etc, in these systems. Scaling behav-
ior can then be observed for particular quantities and sys-
tems classified accordingly.

Patterns and Flows The defining observables of a self-
organizing system are patterns. These refer to the collec-
tive behavior of the elements of a system, differentiating
them from noise. If individual entities would not show
such correlations in their behavior, self-organization could
not be observed. Patterns can be described in a variety of
ways, e. g. as multidimensional vectors, using spatial and
temporal coordinates. If patterns change dynamically one
can speak of flows.

The central tenet of self-organization is that systems
exist whose pattern forming tendencies are determined by
themselves, and not by an outside agency.

The Role of Self-Organization in Science,
the Social Sciences and Engineering

Self-organization as a concept has assumed center stage in
Science. With the advent of nonlinear systems and studies
on complex systems in non-equilibrium situations, the ex-
planatory power of self-organization now permeates every
branch of scientific enquiry.

From structure formation at the level of super-galactic
clusters, even starting from the development of the entire
universe, down to microscopic particles and their interac-
tion patterns, self-organizing phenomena have been pos-
tulated, theorized, observed and confirmed.

In particular the origin and evolution of life have been
studied under the aspect of self-organization. Within Bi-
ology, the developmental process of organisms as well as
their metabolisms, growth and learning have been identi-
fied as self-organizing processes.

In the humanities, the idea of self-organization has
taken roots, although the paradigm is far from being fully
recognized yet. Since the 1990s the origin and develop-
ment of languages has been an object of study under the
premise of self-organization. In social science the concept
of self-organization has been studied since a number of
years, due to the obvious fact that interaction between so-
cial actors generate a society. Even in psychology, self-or-
ganizing principles begin to appear.

Economy and Management Science have taken notice
of the concept, and a growing number of enterprise con-
cepts promote the idea of a form as a self-organizing entity.

Finally, Philosophy has embraced the concept of self-
organization and connected it to earlier thoughts on
the development of the scientific process and epistemol-
ogy. Whitehead put forward his process philosophy, and
Smuts, already in the 1920s, promoted the notion of
holism which has strong connections to self-organization.
Evolutionary epistemology was formulated as a response
to traditional epistemology and emphasizes the aspect of
natural selection affecting senses and cognitive abilities.

Engineering is beginning to grasp the ubiquity of self-
organization in Nature. Specifically in the area of nano-
technology the concept is used extensively for the purpose
of self-assembly of molecular entities. At nanoscales, it is
very difficult to directly specify the structuring behavior
of entities. As a result, self-organizing properties of matter
are used to the advantage of the structural outcome.

Different kinds of infrastructure networks have been
recognized as self-organizing, and Engineering begins to
make use of the tendency of networked systems to self-
organize.

In the area of adaptation, there exists a long tradition
of making use of self-organization principles. The self-or-
ganizing feature map, introduced by Kohohen, has been
a key step forward in the domain of unsupervised learning
of artificial neural networks.

Open Issues and Future Directions

So far, there is no unique theory of self-organization. Over
the course of many years different approaches have been
used, but a coherent picture has not yet emerged.

An important open question in the area of the math-
ematical basis for self-organization is the formulation of
a theory of constructive (evolutionary) systems, that is sys-
tems which, in the course of their development, generate
new elements that subsequently interact with elements al-
ready created earlier.

Another question aims at the raison d’etre of hierar-
chical systems. Why do they form, how do they structure
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themselves, and what would be possible to apply from
these principles in Engineering? Notably, how would one
build self-organizing systems such that they do something
useful? How could they be controlled?

In Science, the build-up of complexity remains a con-
troversial issue. Is it true that evolution of the universe
tends to increase complexity, or is there no tendency of
complexity increase at all? What are the mechanisms by
which Nature increases complexity, if any? How could we
apply this knowledge in planning and managing complex-
ity in the human world?

A wealth of questions remains, and it is anticipated
that the 21st century will shed light on at least a few of
them.
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Glossary

Artificial life Artificial life refers to the study of artifi-
cial systems that exhibit lifelike properties, typically
involving some form of self-replication and/or evo-
lution. This is a very broad field of study and in-
cludes work involving computer simulations, cellular
automata, chemistry, robotics, and synthetic biology.

Cellular automata A cellular automaton (CA) is a the-
oretical construct where a collection of cells are or-
ganized into regular grids or lattices. Many arrange-
ments are possible, but typically one-dimensional CAs
are composed of square cells arranged in a line, and
two-dimensional CAs are composed of square cells ar-
ranged in a square grid. Each cell contains a finite state
machine. The state of all cells in a CA are typically up-
dated synchronously (at the same time) with each cell
changing to a new state that is a function of its previ-
ous state and the previous states of its neighbors. The
surrounding cells that affect a given cell’s state transi-
tion are called the cell’s neighborhood. CAs can sim-
ulate a wide variety of physical processes by design-
ing an appropriate neighborhood and state transition
function. CAs are most often studied by implementing
them with computer simulations.

Finite state machine A finite state machine (FSM) is
a conceptual computing machine with an input, out-
put, and memory. At regular intervals in time the
machine transitions (changes) to a new state, which
is a function of the current state and the machine’s
current input. The output is a function of the input
and the state. The function of the memory is to store
the state information between each transition. FSMs
are easily implemented with discrete digital electronic
components, microcontrollers, or computer simula-
tions. Implementations of FSMs are widely used to
control industrial devices and consumer electronics.
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Modular robot A modular robot is composed of distict
“modules” which contain motors, mechanisms, elec-
tronics, and interconnections. Modules are typically
designed so that they can easily be connected and dis-
connected from each other. In some modular robotic
systems, many identical modules are assembled into
larger robots. This allows the same set of modules
to form robots optimized for different tasks. In other
cases, the modules may be specialized for certain tasks,
and when assembled they form a robot with additional
functionality. Motivation for building modular robots
includes increased versatility, ease of replacing dam-
aged components, and potentially lower manufactur-
ing costs.

Self-reconfigurable robot A self-replicating robotic sys-
tem is a robotic device that exhibits some form of self-
replication. This chapter is concerned primarily with
directed robotic self-replication, in which a robotic de-
vice interprets some form of coded instructions in or-
der to carry out the replication process. In nature de-
oxyribonucleic acid (DNA) typically encodes replica-
tion instructions. In the examples of robotic self-repli-
cation presented in this chapter, the instructions may
be encoded in a computer program, an arrangement
of modular components, or as a pattern of lines that
guide the motion of a mobile robot.

Self-replication Self-replication is the process by which
an entity creates a duplicate of itself. The most familiar
example is the self-replication of living organisms, al-
though other natural processes such as crystal growth
can be classified as self-replication.

Universal constructor A universal constructor (UC) is
a conceptual machine that reads instructions and ex-
ecutes them to construct an object. A key property
of a UC is that it can construct any object which
can be described to it via the instructions, including
duplicates of itself. UCs have been demonstrated in
computer simulations using cellular automata. Mod-
ern manufacturing tools, such as assembly robots and
computer-controlled machine tools, are similar to UCs
but practical limitations make these machines “some-
what less than universal” constructors. The ribosome,
a complex molecule present in nearly all biological
cells, performs a function very similar to that of a UC,
assembling proteins according to instructions encoded
in messenger ribonucleic acid (mRNA).

von Neumann universal constructor The mathemati-
cian John von Neumann proposed a cellular automata
model of a universal constructor capable of self-repli-
cation. Many researchers have refined and improved
von Neumann’s original design since it was first pre-

sented in the 1950s. The original design used tens of
thousands of cells in a two-dimensional CA with 29
states. The general structure of the model is a movable
constructing arm controlled by instructions encoded
in a long line of cells resembling a tape, conceptually
similar to a computer-controlled robot arm.

Introduction

The concept of an artificial self-replicating system was in-
troduced in the 1950s by John von Neumann [31]. Von
Neumann introduced the theory of self-replicating au-
tomata and established a quantitative definition of self-
replication. His early results on self-replicating machines
have become useful in several diverse research areas such
as: cellular automata, nanotechnology, macromolecular
chemistry, and computing [8,23,26,27]. However, prior to
the turn of the millennium, a fully autonomous self-repli-
cating physical robot had never been implemented. In this
chapter, a series of prototype designs from our laboratory
and their physical implementation are described. We be-
gin by discussing some motivation and history, then go
on to describe a remote-controlled replicating robotic sys-
tem and a semi-autonomous replicating robotic system.
We then describe some fully autonomous self-replicating
systems, and discuss how manufacturing work cells might
be designed so as to reproduce.

Motivation

People have imagined for years a factory that could au-
tonomously replicate itself for multiple generations, re-
quiring neither people nor the monstrous machinery typ-
ically associated with a factory. Over recent decades, outer
space has been mentioned as one potential application
for such self-replicating robotic factories (see e. g., [3,10],
and [7]). However, enormous technical barriers must be
overcome before these systems can become feasible. The
purpose of the current work is to take one small step to-
ward realizing this goal.

In contrast to self-reconfigurable robotics [1,12,14,21,
34], self-replication utilizes an original unit to actively as-
semble an exact copy of itself from passive components.
This has the potential to result in exponential growth in
the number of robots available to perform a job, thus dras-
tically shortening the original unit’s task time.

Descriptions of Self-Replication
by Johns von Neumann

According to von Neumann there are four components
required for a self-replicating machine: the builder, the
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controller, the copier, and the blueprint [31]. The process
of self-reproduction begins with the controller command-
ing the builder to fabricate an exact mechanical system by
following the blueprint. Then the controller instructs the
copier to replicate the blueprint, input the new blueprint
in the replica, and start the new machine. The process de-
scribed in the previous paragraph was written as a mathe-
matical model called the “Von NeumannKinematic Beast”
by Rolf Pfeifer et al. of the University of Zurich [24], which
goes as follows:

1. Let A represent the builder. If a machine G is desired,
one can build this machine with the blueprint, Blue(G).

AC Blue(G)! G :

Where ‘+’ indicates that the machine is composed of
the left and right components (AC Blue(G)) and ‘!’
indicates construction.

2. Let B represent the copier. B would make a copy of the
blue print, Blue(G).

BC Blue(G)!Blue(G) :

3. Let C be the controller. With the combination of A
and B, this would trigger them to follow in the correct
order to generate a desired mechanical system G and
the new blueprint Blue(G), and then wrap them up to-
gether and split them from the original machine

AC BC C C Blue(G)! G C Blue(G) :

4. Let G be the machine AC BC C then we get:

ACBCCCBlue(ACBCC) ! ACBCCCBlue(ACBCC):

Any system that observes this is a self-reproducing ma-
chine in Neumann’s view. A short time after successfully
presenting some of his theoretical work, von Neumann
began working on the implementation of his theories. In
the 1950’s, with the help of Stanislaw Ulam, von Neu-
mann invented the Cellular Automata concept (redrawn
and shown in Fig. 1.)

Previous Efforts in Mechanical Self-Replicating System

Von Neumann [31] was the first to seriously study the
idea of self-replicating machines from a theoretical per-
spective. In the late 1950’s, Penrose performed the first
recognized demonstration of a self-replicating mechanical
system [22]. It consisted of passive elements that self-as-
sembled under external agitation. This is similar in many

ways to the modern work of Whitesides [32], only at a dif-
ferent length scale. Moore [19] was interested in von Neu-
mann’s concepts, but he commented that Neumann’s Cel-
lular Automata was only for demonstration, and that ap-
plications of self-replicating systems needed to be carried
out. Moore described several conceptual designs of arti-
ficial living plants which could duplicate themselves not
only from off-the-shelf artificial parts, but also from ma-
terials from nature. Jacobson [13] constructed a self-repli-
cating machine using parts of toy trains. His replication
was done on a round section of toy track.

In the 1980s, NASA established a series of studies
on the topic of “Advanced Automation for Space Mis-
sions” [10]. These studies investigated the possibility of
building a self-replicating factory on the moon. Refer-
ences [5,6,7,9,30] also outlined strategies for space utiliza-
tion. Recently, research on robots that are capable of de-
signing other machines with little help from humans has
also been performed (see [17] and references therein). This
uses rapid prototyping technologies.

Our Previous Replicating Prototypes

This section describes in chronological order the robotic
prototypes capable of various levels of self-replication that
have been designed and built in our laboratory. Our pro-
totypes are constructed from modified LEGO Mindstorm
kits with enhanced electrical connections because of their
modularity, functionality and ease of use.

Demonstration I: Prototype 1

We built this robot as the first prototype to demonstrate
that it is mechanically feasible for one simple robot to pro-
duce a copy of itself. This robot depends on external pas-
sive fixtures for self-replication. Figure 2 shows fixtures,
the original prototype 1, and a set of the replica’s subsys-
tems. (Details of Prototype 1 can be found in [27].)

Demonstration II: Prototypes from the Spring 2002
Mechatronics Class at JHU.

From experience gained from Demonstration 1, we intro-
duced the concept of self-replicating robots to students
in a hands-on Mechatronics course (taught in the De-
partment of Mechanical Engineering at the Johns Hop-
kins University) under the supervision of the last author,
and TA’ed by the first author. We divided students in this
course into eight groups to explore designs and imple-
mentations of the concept of self-replicating robotic sys-
tems. In order to focus on the mechanical issues involved
in the design of the self-replicating systems, the robots
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Self-replicating Robotic Systems, Figure 1
Schematic of von Neumann’s self-reproducing cellular automaton (Redrawn from [31])

Self-replicating Robotic Systems, Figure 2
Fixtures, the original prototype 1, and a set of the replica’s sub-
systems

were remote-controlled rather than autonomous. (Details
of Demonstration II can be found in [27], and [2].)

Demonstration III:
A Semi-Autonomous Replicating System

This work builds upon previous results in remote-con-
trolled robotic replication with a new feature that many

Self-replicating Robotic Systems, Figure 3
a An assembly view of the semi-autonomous robotic system,
b Assembling station 1, c Assembling station 2, and d Assembly
station 3

subtasks in the replication process are now autonomously
performed by the robot. The use of feedback sensors
was implemented. The robot is unable to directly build
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its replicas. Therefore, several work-cells (intermediate
robots) are required to assist the original robot in the repli-
cating process. Each work-cell works as a station in this
factory-liked replicating system. Figures 3a, b, c, and d il-
lustrate an assembly view of the original robot, stations 1,
2, and 3, respectively. Full details of the semi-replicating
robot can be found in [27,28].

Design and Descriptions
of an Autonomous Self-ReplicatingRobot

The robot and its replicas each consist of four subsys-
tems: controller, left tread, right tread, and gripper/sensor
subsystems. All subsystems are connected to others using
magnets and shape constraints. Figure 4 shows an assem-
bly view of the robot.

The controller subsystem is made up of a LEGO RCX
programmable controller fit inside a chassis. The chas-
sis’s sides are used to connect to the left and right treads.
Each side has a set of magnets, a set of shape-constrain-
ing blocks, and a set of electrical connections. The front
end of the chassis is designed to attach with the gripper.
The front end also has a set of magnets, a set of shape-con-
straining blocks, and a set of electrical connections, which
transfer electrical signals and power from the controller to
the gripper’s motor and the navigating sensors installed on
the gripper subsystem.

The magnets and the shape-constraining blocks are
used in collaboration to aid aligning and interlocking sub-
systems. On each chassis side, the magnets are symmetri-
cally placed in opposite polar directions to each other. This
is to protect against incorrect positioning of the subsys-
tems. The concept of using the magnets (with different po-
larizations) and shape-constraining blocks was influenced
by the self-complementary molecules of Rebek [25]. Fig-
ure 5 illustrates the concepts of using the polar magnets

Self-replicating Robotic Systems, Figure 4
An assembly view of the self-replicating robot

and shape-constrained blocks to align and interlock sub-
systems. By design, it is very difficult for these connectors
to misalign.

The left and right tread subsystems are designed to
be identical to each other, with the purpose of reducing
the system’s design complexity. A tread subsystem hosts
a rubber tread with a driving gear system, a 9V LEGO DC
motor, and a light-reflective pad which helps the original
robot’s navigation. One side of the tread has a set of mag-
nets, a set of shape-constrained blocks, and a set of elec-
trical connections, all of which correspond to the side of
the controller subsystem. On the other side, the tread has
a wedge which is fitted to the gripper. The wedge is used
during the tread subsystem’s transferring and assembling
processes. Figure 6 shows how the original robot grasps

Self-replicating Robotic Systems, Figure 5
This diagram illustrates the concept of using polar magnets and
shape-constraining blocks (top: correctly aligning, and bottom:
incorrectly aligning)
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Self-replicating Robotic Systems, Figure 6
The original robot grasps the tread subsystem

Self-replicating Robotic Systems, Figure 7
The connections located between controller and tread subsys-
tems

the tread subsystem, and Fig. 7 shows the connections lo-
cated between the controller and tread subsystems.

The gripper/sensor subsystem is comprised of a 9V
LEGO DC motor, a set of rack and pinion gears used to
drive the left/right fingers of the gripper, a set of magnets,
a set of shape-constrained blocks, a set of electrical con-
nections, and two light sensors (one is pointed downward,
and the other is pointed forward).

The set of magnets, shape-constraining blocks, and
electrical connections are attached to their correspond-
ing part, on the front side of the controller subsystem.
The left finger of the gripper is designed in a wedge shape
to be fitted with the gripper in any identical robot. This
wedge is used in the same manner as in the tread sub-
systems during assembling processes. Figure 8 shows how
the original robot grasps the gripper/sensor subsystem,

Self-replicating Robotic Systems, Figure 8
The original robot grasps the gripper/sensor subsystem

Self-replicating Robotic Systems, Figure 9
The connections located between gripper/sensor and controller
subsystems

and Fig. 9 shows the connections located between grip-
per/sensor and controller subsystems. The two LEGO light
sensors are employed in the robot’s navigation system. The
first light sensor (pointed downward) is used to detect the
blue painted lines and silver acrylic spots on the experi-
ment surface. The second light sensor (pointed forward) is
used to detect objects (the subsystems of the replica) which
the robot runs into.

The experimental area is a 2m x 3m area made of
white colored paper with lines and spots painted in blue
and silver acrylic colors. The original robot starts at the
initial position, and the replica’s subsystems are at their
locations. Figure 10 shows the experimental area with lo-
cations of the replica’s subsystems and the initial position
of the original robot.
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Self-replicating Robotic Systems, Figure 10
Amap of the experimental area

Self-replicating Robotic Systems, Figure 11
The control architecture of the autonomous self-replicating
robot

Controls and Programming
of the Autonomous Self-ReplicatingRobot

The prototype robot is a fully autonomous system. Fig-
ure 11 shows the conceptual control architecture of the
robot. The robot and its replicas, using the LEGO light
sensor No. 1 (pointed downward), is capable of tracking
the blue lines, and it can recognize the assembling spots,
painted in a silver acrylic. The sensor detects and returns
different analog values, corresponding to different colors.
The robot tracks the painted lines to navigate between po-
sitions. Once the robot detects the assembling spot, the
robot begins the assembling process. The LEGO light sen-
sor No. 2 (pointed forward) returns an analog value once

Self-replicating Robotic Systems, Figure 12
The robot is searching for the assembly location while holding
the replica’s gripper/sensor subsystem

it detects a light-reflective pad attached to the tread and
gripper/sensor subsystems. This notifies the robot to be-
gin grasping the detected subsystem.

The grasping process consists of an aligning push to-
ward the subsystem, and closing the gripper to grasp the
subsystem. On the other hand, the assembly process con-
sists of opening the gripper to release the subsystem, and
an aligning push forward to snap the subsystem to the con-
troller. Figure 12 shows the original robot grasping a sub-
system, and moving toward an assembling spot, in silver
acrylic, along the blue line.

The programming of the prototype is described here.
The code is programmed on a PC and transferred through
a LEGO infrared program-transferring tower. In the or-
der in which events take place in the replication process,
the programming is separated into seven stages: 1) repli-
cation process is activated, 2) line tracking and searching
for a subsystem, 3) grasping the subsystem and changing
to a new path which leads to the next step, 4) line tracking
and searching for the assembly location, 5) assembling the
subsystem to the controller and changing to a new path,
6) the new path leads to the next subsystem, 7) The final
step loops back to steps 2 through 6 so the process re-
peats indefinitely. Figure 13 illustrates the programming
flowchart of the self-replicating robot system.

Experiments and Results
of the Autonomous Self-ReplicatingRobot

The following is a step-by-step outline of the procedure
that our autonomous self-replicating robot system under-
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Self-replicating Robotic Systems, Figure 13
The flowchart of the self-replication process

goes (Fig. 14 is a photographic representation of these step
but they are not synchronous):

1. The original robot starts following the line from the
starting point to the first subsystem using sensor
No. 1.

2. Once light sensor No. 2 detects the first subsystem
(right tread), the original robot begins the grasping
process and grasps the right tread subsystem.

3. After the grippers are closed the original robot turns
to the right until it detects a line.

4. The original robot follows the second line until it
reaches the assembly location.

5. When light sensor No. 1 on the original robot de-
tects the silver acrylic spot (the assembly location), the
robot stops, and begins the attaching process.

6. The original robot opens the grippers, and gives a final
push to secure the right tread subsystem to the con-
troller subsystem.

7. The original robot then backs up and turns to the left
until it detects a line value on sensor No. 1.

8. The original robot follows the line until it reaches the
left tread subsystem.

9. Once light sensor No. 2 detects the second subsystem,
the robot will stop, and begin the grasping process by
closing its gripper around the left tread’s wedge.

10. The original robot turns right until it detects the next
line.

11. The original robot will follow the second line until it
reaches the assembly location.

12. The original robot opens its gripper to release the left
tread subsystem.

13. The original robot gives a final push on the left tread
subsystem to help secure it.

14. The original robot then backs up and turns left until it
detects the next line, using sensor No. 1.

15. The original robot follows the line to the final subsys-
tem.

16. Once it reaches the gripper/sensor subsystem, it stops,
and begins the grasping process.

17. The original robot closes its gripper, and turns right
until it detects a line value with sensor No. 1.

18. The gripper/sensor subsystem is now transferred to
the assembly location.

19. Once the original robot reaches the assembly location
it stops, and opens the gripper.

20. The original robot backs up and turns left until sensor
No. 1 is a line value.

21. The original robot then follows the line back to the
starting point, and is ready to replicate again.

22. The completed replica self-activates (20 seconds after
completion) and begins following the line to the start-
ing point.

23. Once each robot reaches the starting point, it begins
the replication procedure again.

The replication process takes two minutes and fifteen sec-
onds per cycle. Although each subsystem is required to be
placed in its starting location, errors in initial position and
orientation are not very critical. We found slight errors
during the grasping process in a few experiments caused
by improper placement of the subsystems.Overall, the sys-
tem is robust and very repeatable.

Our Approach to Self-ReplicatingControl Circuitry

Ideally, for a robotic system to be truly self-replicating, it
would have to demonstrate the ability to assemble all of
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Self-replicating Robotic Systems, Figure 14
Self-replication process: 1) the original robot begins at the initial position with every part placed in their position. 2) The robot
detects the right-tread subsystem. 3) The robot grasps the right-tread subsystem, and attaches it to the controller. 4) In the same
manner, the robot performs the assembly of the left-tread subsystem. 5) After the robot grasps the gripper/sensor subsystem the
robot transfers the subsystem to the next assembly step at the controller. 6) After being fully assembled, the replica is self-activated,
and ready to replicate just like the original

its own subsystems from the most fundamental compo-
nents. In the case of the robot controller, we consider the
most fundamental components to be transistors, resistors,
capacitors, etc., whereas microcontrollers are too complex
to be considered as basic elements.

Our approach is to build a circuit capable of control-
ling an electro-mechanical system to re-build replicas of
the control circuit from the most fundamental electronic
components. In the von Neumann universal constructor
paradigm, an associated instruction code is also required.
In contrast it is possible to replicate a particular system

by self-inspection without invoking von Neumann’s uni-
versal constructor. We illustrate both concepts in hard-
ware designed and constructed by students in a Mecha-
tronics course taught at Johns Hopkins University in 2003.
Two prototypes illustrate replication by self-inspection,
and one demonstrates the universal constructor. In all
three cases, pre-built electro-mechanical systems (called
the SRI-builders) use the transistorized circuit as its con-
troller. While in the von Neumann paradigm, the con-
troller follows instructions that are explicitly encoded (and
hence must reproduce the code for the overall system to
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be self-replicating), in the self-inspection paradigm, ac-
tions are taken implicitly as a result of observing the spa-
tial layout of components in the original and feeding that
information into the circuit itself. Clever electromechani-
cal design ensures that observations obtained during self-
inspection are translated directly into actions without re-
quiring the interpretive step of consulting a long sequence
of encoded construction commands.

A von Neumann Universal Constructor Prototype
The prototype is a two-arm gantry-style robot with two de-
grees of freedom. The first degree of freedommoves along
the whole system, includes the feeders and the assembly
boards. The second degree of freedom moves vertically to
pick and place codes and circuit pieces. A controller cir-
cuit is used to control motions of the robot. There are
two boards being assembled at a certain amount of time.
The first board is the replicated circuit, and the second is
the replicated codes. The circuit is pre-wired before it is
placed into the carrier. This is similar to a process of plac-
ing a chip into a circuit board. In the code part, each code
consists of three lines of black and white strip represent-
ing 3 bits. A series of codes is set up on a code array where
it is fed simultaneously to a reader array. The reader ar-
ray is made of an array of photo-transistors and infrared
LED emitters used to read black (0) and white (1) colors in
each code. Infrared LED emitters are used instead of regu-
lar LED for reducing problem with ambient light distrac-
tions. Figure 15 shows the system in a side view. Once the
acquisition part of the system reads the code, the assembly
part of the systemworks by following the instruction code,
replicating the code and circuit of that part.

Self-replicating Robotic Systems, Figure 15
Side viewof the replicating system (vonNeumannuniversal con-
structor prototype)

Non-Universal Self-Replication by Self-Inspection
(Design 1)

This design is the first design of a non-universal self-repli-
cation by self-inspection. The self-replicating control cir-
cuit has the ability to identify the proper electronic compo-
nents required, translate information about its own con-
stituent parts obtained from self-inspection into mechani-
cal tasks that create a replica, and transfer all functions to
the replica. There is no list of instructions in the form of
a code. Each electronic component has a black-and-white
color code. Parts are loaded into feeders, and as a reading
head traverses the control circuit, the information about
which part of the control circuit is being observed is fed
into the circuit itself. This actuates the solenoid in the ap-

Self-replicating Robotic Systems, Figure 16
Side view of the replicating system (non-universal self-replica-
tion by self-inspection – design 1. (See [11] for details))
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propriate feeder to release the parts needed to form the
replica. Parts then slide down an incline and form an or-
derly array. The reading head continues to move and cre-
ates replicas until resources are completely utilized or its
track ends. The design is scalable and the components are
modular, allowing many different levels of intelligence to
be replicated. This concept is one of many which we are
investigating to enable self-replicating robots to perform
complex behaviors. See Fig. 16.

Non-Universal Self-Replication by Self-Inspection
(Design 2)

This robotic system is an X-Y table constructed frommod-
ified LEGO components. A photo-transistor sensor system
is attached to the end-effector of the X-Y system in order
to inspect the control circuit (the components of which are
each assigned a unique black and white code). On the top
of the X-Y system, a set of component feeders is installed.
The circuit converts the signal from the sensor system to
control the component feeders to release the correct com-
ponent to the parts assembler. The parts assembler then
arranges all the components to create a new replica of the
control circuit. See Fig. 17.

Merging the Self-Replicating Robot
and Self-Replicating Circuit Concepts

In prior prototypes we considered two disjoint cases: (1)
self-replicating robots constructed from modules where
one module contained a computer; (2) a control circuit
that commanded a mechanical device to assemble copies

Self-replicating Robotic Systems, Figure 17
Side view of the replicating system (non-universal self-replica-
tion by self-inspection – design 2)

of the circuit. In this section we review very recent work
with K. Lee and the JHU authors that merges these two
concepts.

Basically, the autonomous self-replicating robot de-
scribed previously in this paper functions as a finite-state
machine in a highly structured environment. This same
behavior can be implemented by a robot controlled by
a simple circuit without using a microprocessor. Discrete
electronics elements of this circuit such as transistors, re-
sistors, etc., can be distributed over the modules from
which the robot is constructed. This means that as the
original robot assembles these modules to form a replica,
the controller for the replica is assembled as the robot is.
Prototypes are shown in Figs. 18 and 19.

Self-replicating Robotic Systems, Figure 18
A modular self-replicating robot controlled by a finite state cir-
cuit (see [15,16])

Self-replicating Robotic Systems, Figure 19
Example of another modular self-replicating robot controlled by
a finite state machine (see [4,16,18] for details)



Self-replicating Robotic Systems S 8061

Self-replicating Robotic Systems, Figure 20
Two exploded views of the basic component. The handle and
base are individually cast in polyurethane, then bonded to-
gether with epoxy

Towards a Universal Constructor

Whereas other prototypes of self-replicating robotic sys-
tems use relatively few subsystems as the initial parts, and
connect these subsystems with magnets, the desire to cre-
ate machines that can reproduce from a large number
of basic parts requires thought about mechanical design,
manufacturing, and assembly issues. Therefore, in this sec-
tion the work of the second author in [20] is reviewed. In
this work, a novel set of mechanical components that can
be assembled into a wide variety of devices is presented.
The components are specifically designed to be handled
and assembled by devices made of the same type of com-
ponents. A 3-axis Cartesian manipulator built with these
components is presented. It is shown that in principle the
manipulator can assemble duplicates of itself in addition
to arbitrary devices when provided with properly oriented
components and controlled by a human operator.

All components in the component set are variants of
the “basic component”. Figure 20 shows a cutaway view
of two basic components. Each component consists of two
parts: an upper “handle” and a lower “base”. The base di-
mensions are 3.8 by 3.8 by 2.3 cm. The handle and base
are individually cast from polyurethane resin in a silicone
mold and then fixed together with epoxy adhesive. The
base contains four compliant snap tangs that are comple-
mentary to the four tapered surfaces of the handle. Fig-
ure 21 shows how the snap tangs of the base grasp the
undercut of the handle of another part. Additionally, the
convex tapered surfaces of the base mate with concave ta-
pered surfaces of the handle in order to provide rigidity

Self-replicating Robotic Systems, Figure 21
Steps in reversible assembly process. The tool (top part) grasps,
retrieves, and reconnects one component to another

with respect to shear and torsion between parts. Cham-
fers on the edges of the parts allow a certain amount of
positioning error during assembly. The tangs and handle
also contribute to error tolerance, since they are tapered
such that two parts need not be exactly positioned before
assembly. The slots cut in each side of the base allow the
part to be assembled onto other parts that have reinforc-
ing segments. The tangs are L-shaped, and the top part of
each tang is exposed by a slot cut in each side of the han-
dle.

The parts have a common handle, so they all can be
manipulated by a single grasping tool. A part can be con-
nected to another part by simply lowering it into place
such that the tangs engage the handle of the other part
(sliding components are slid sideways onto the handle
of the other part). Depending on the grasping tool used,
part connections can be reversible or irreversible. A sec-
tion view of the steps in reversible assembly are shown
in Fig. 21. The grasping tool (upper part) has thin tangs
and a releasemechanism. The process is initiated when the
grasping tool is lowered onto the part to be disconnected.
The releasemechanism is engaged, depressing the tangs of
the part to be disconnected. The upper part of the tangs
deflect, disengaging the tangs of the middle part from the
handle of the lower part (step 3). In step 4 the grasping tool
and middle part are lifted from the lower part. To re-con-
nect the part, the grasping tool and part are lowered onto
the destination part (step 7). The grasping tool is removed
simply by lifting it from the newly connected part. The
snap tangs in the grasping tool are thinner than normal
tangs, so they deflect first and disengage the grasping tangs
from the handle on the newly connected part (step 9).
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Self-replicating Robotic Systems, Figure 22
Steps in irreversible assembly process. The tool retrieves a part
from a special storage site and attaches it to another component

Irreversible assembly is also possible, as shown in
Fig. 22. In this case, the grasping tool has thin tangs like the
reversible tool, but there is no release mechanism. Parts
must be stored at a special “storage site” before assembly.
The storage site (lower part in steps 1–5) is a normal part
with reduced undercut on the handles. The amount of un-
dercut on the storage site handles and the thickness of the
tangs on the tool are carefully chosen so that the force re-
quired to disassemble two components is greatest between
two normal parts, and least between a normal part and the
storage site. This allows the grasping tool to pick a part
from a storage site and connect it to another part with two
simple up/down vertical movements. The irreversible as-
sembly method, due to its simplicity, is used in the manip-
ulator described below.

These basic components can be used to form a con-
structing machine capable of assembling a wide variety
of devices, including duplicates of itself. By “capable” is
meant kinematically capable - the machine can grasp, ma-
nipulate, and place all of the components required for con-
structing a duplicate of its “mechanical self ”. The ma-
chine’s “mechanical self ” includes the hardware required
to manipulate mechanical components, but excludes the
portion responsible for control. The machine lacks any
type of sensor or onboard control, and so must be con-
trolled either by a human operator or a sophisticated ex-
ternal controller. By “assemble” is meant the retrieval of
components from a storage site and subsequent connec-
tion of them to an assembly or operating plane. Compo-
nents must arrive at the storage site through action of an-
other entity – namely a human operator.

A total of 16 different variations on the basic compo-
nent were built. Most of these are used in the manipula-
tor, and the remainder are useful for constructing other

Self-replicating Robotic Systems, Figure 23
Sixteen variations on the basic component

Self-replicating Robotic Systems, Figure 24
A constructing machine made from parts in the component set

types of devices. Figure 23 shows a diagram of these parts.
Figure 24 shows a CAD model of a constructing machine
made from parts in the component set. It is essentially
a 3-axis Cartesian manipulator. The base of the machine
is a platform that slides along the x-axis, and is actuated
by a DC motor. A motor-driven boom rides on top of the
platform, and slides along the y-axis. The end-effector is
mounted to a vertically-linear motor on the end of the
boom. The reachable space of the end-effector is a rect-
angular volume of size 3 � 4 � 6 in units of component-
widths. Note that the tool does not rotate. This requires
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Self-replicating Robotic Systems, Figure 25
An initial physical implementation of auniversal constructor [20]

parts to be loaded at the storage site in their proper ori-
entation. The constructor has a total of 45 components of
eleven different types, not counting the operating plane.
The details of the assembly process of this machine can be
found in [20].

Figure 25 shows the experimental setup in its finished
state. Both devices are operable. A human operator con-
trols them through a switchbox that turns the various mo-
tors on or off. A topic that has been neglected so far is
that of running wires to the motors. As seen from the fig-
ure, this is done rather haphazardly. This prototype had
a number of problems that are worth mentioning which
are helping us to design better systems.

The first problems that were encountered dealt with
getting the constructor boom to move smoothly. When
the boom is extended, it applies high forces to the parts
that hold it to the platform. This results in more friction,
and requires a higher torque from the motor. In these con-
ditions the motor tended to separate from the platform,
and the drive gear would lose contact with the racks on
the boom. This problem was eventually “solved” by using
a metal screw and adhesive between certain parts to hold
them in place.

Most of the other problems occurred during assembly,
and centered around the extended boom. Figure 26 shows
the large downward deflection occurring in the extended
boom. This made it difficult to align parts. A human op-
erator could successfully place parts, using repeated effort
and visual feedback, but a simple controller surely could
not.

Deflection of the boom in the x-direction presented
problems for sliding the far racks into place (Fig. 27). This
would cause the sliding platform under the boom to jam.

Self-replicating Robotic Systems, Figure 26
Large downward deflection of extended boom

Self-replicating Robotic Systems, Figure 27
Sideways deflection of extended boom caused the sliding plat-
form to jam

In addition to sideways deflection, the boom would also
twist along the y-axis (Fig. 28). The constructor was able
to place the near racks, but the far racks had to be placed
by hand.

The torsion of the boom created problems in later
assemblies steps as well. The twisting deflection of the
boomwould tend tomisalign parts so that their snap-tangs
would not engage with the parts below them. For this rea-
son, the tool wasmounted to the slide in a rotating bracket.
This allowed the tool a small, passive amount of rotation
about the y-axis. With this feature, the boom could still
twist, but the parts would self-align and engage.

In many cases, the constructor could not develop the
necessary force to assemble components. This was espe-
cially true when assembling components withmultiple sets
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Self-replicating Robotic Systems, Figure 28
Torsion of boom

Self-replicating Robotic Systems, Figure 29
Upward deflection of boom

of snap tangs, and in parts where the tangs were offset
horizontally from the handle. Sometimes this occurred be-
cause the vertical linear actuator did not produce enough
force, and sometimes it occurred because upward deflec-
tion of the boom caused the parts to misalign (Fig. 29).
In a few cases, components in the boom would sepa-
rate (Fig. 30). This only occurred when the boom was
prevented from deflecting because it was engaged on the
growing assembly.

The extended boom indirectly caused another prob-
lem. Recall that two of the handles in the tracks on the op-
erating plane are modified as entry sites for racks. These
sites do not help hold the platform to the plane. This, in
combination with the high moment exerted on the plat-
form by the extended boom, would cause the platform to

Self-replicating Robotic Systems, Figure 30
Separation of components within the boom

Self-replicating Robotic Systems, Figure 31
Separation of sliding platform and operating plane

separate from the plane and get stuck on adjacent, non-
modified handles (Fig. 31).

Some aspects of the constructor worked well, such as
the stage-by-stage assembly of the boom and the retrieval
of parts from the storage site. The boom does not have
to extend to reach the storage site, so deflections are not
a problem and part retrieval was easy. The thickness of the
tool tangs was found by trial and error – the tangs of a ba-
sic part were successively machined until the disassembly
force fell within the correct range. Although no measure-
ments were taken, the distribution of assembly and disas-
sembly forces across various parts was fairly tight. The tool
could lift all of the parts. Once parts were connected to an
assembly, the tool could be separated from the connected
parts in all cases.
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In short, this initial concept of a desktop universal con-
structor provided us many valuable lessons about the im-
portance of mechanical design, parts assembly and manu-
facturability issues that we are incorporating in future de-
signs.

Discussion

Several self-replicating robot prototype have been con-
structed and tested. An autonomous prototype uses two
light sensors in its navigation system to detect objects and
also to track lines. Magnets and shape-constraining blocks
are used to aid in aligning and interlocking the subsys-
tems of the replica. As a result, the robot is capable of
automatically assembling its replicas. All of the replicas
are also capable of completing the same replicating pro-
cess. The autonomous self-replicating system presented
here has been recognized by authors of the book, “Kine-
matic Self-Replicating Machines” [25] that this prototype
is the world’s first fully functional autonomous self-repli-
cating robot. Self-replicating circuits, as well as self-repli-
cating robots whose controllers can be fully decomposed
into basic parts have also been reviewed here.

Whereas von Neumann’s architecture for self-repli-
cating kinematic automata is the most widely known ap-
proach, it is not the only one. Self-reproduction by self-
inspection in which a non-universal constructor “reads”
an original device and “writes” a copy by executing a very
small set of hardwired commands is an alternative. In our
experience observing students attempting to build self-
replicating devices, self-replication by self-inspection ap-
pears to be a more robust and less complicated alternative
to the universal constructor.

FutureWorks

In previous sections we discussed a series of mechanical
replicating prototypes in which programs are preloaded
onto control computers which are then treated as one of
several subsystems to be assembled.However, our ultimate
goal is to develop a self-replicating robotic system capable
of autonomously assembling its replicas from simple com-
ponents using only electro-mechanical intelligence, i. e.
a mechanical code, and transistor-based control circuits.
This eliminates complicated electronic components, such
as programmable micro-controllers, and makes the con-
cept more appropriate for future space systems that can
use in-situ resources for self-replication. The prototypes
reviewed here are one step in this direction. Other related
technologies are discussed in [33].
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Glossary

Cellular automaton A cellular automaton (CA) is
a mathematical framework modeling an array of cells
that interact locally with their neighbors. In this cel-
lular space, each cell has a set of neighbors, cells have
values or states, all the cells update their values simul-
taneously at discrete time steps or iterations, and the
new state of a cell is determined by the current state
of its neighbors (including itself) according to a local
function or rule, identical for all cells. In the article, the
term is extended to account for systems that introduce
variations to the basic definition (for example, systems
where cells do not update simultaneously or do not
have the same set of rules in every cell).
Following the historical pattern, in the article the same
term is also used to refer to an object or structure built
within the cellular space, i. e., a set of cells in a partic-
ular, usually active, state (overlapping with the defini-
tion of Configuration).

Configuration A set of cells in a given state at a given
time. Usually, but not always, the term refers to the
state of all the cells in the entire space. The initial con-
figuration is the state of the cells at time t D 0.

Self-replication The process whereby a cellular automa-
ton configuration creates a copy of itself in the cellu-
lar space. Incidentally, you will note that in the article
we use the terms self-replication and self-reproduction
interchangeably. In reality, the two terms are not really
synonyms: self-reproduction is more properly applied
to the reproduction of organisms, while self-replica-

http://www.ifi.unizh.ch/ailab/teaching/AL01/chap7.pdf
http://www.ifi.unizh.ch/ailab/teaching/AL01/chap7.pdf
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tion concerns the cellular level. The more correct term
to use inmost cases would probably be self-replication,
but since von Neumann favored self-reproduction, we
will ignore the distinction.

Self-reproduction See Self-Replication
Construction The process that occurs when one or more

cells, initially in the inactive or quiescent state are as-
signed an active state (in the context of this article, by
the self-replicating structure).

Definition of the Subject

Machine self-replication, besides inspiring numerous fic-
tional books and movies, has long been considered a pow-
erful paradigm to allow artifacts, for example, to survive in
hostile environments (such as other planets) or to operate
more efficiently by creating populations of machines work-
ing together to achieve a given task. Where the self-repli-
cation of computing machines is concerned, other motiva-
tions can also come into play, related to concepts such as
fault tolerance and self-organization.

Cellular automata have traditionally been the frame-
work of choice for the study of self-replicating comput-
ing machines, ever since they were used by John von
Neumann, who pioneered the field in the 1950s. In this
context, self-replication is seen as the process whereby
a configuration in the cellular space is capable of creating
a copy of itself in a different location.

As amathematical framework, CA allow researchers to
study the mechanisms required to achieve self-replication
in a simplified environment, in view of eventually applying
this process to real-world systems, either to electronics or,
more generally, to computing systems.

Introduction

The self-replication of computing systems is an idea that
dates back to the very origins of electronics. One of the
pioneers of the field, John von Neumann, was among the
first to investigate the possibility of creating machines ca-
pable of self-replication [1] with the purpose of achiev-
ing reliability through the redundant operation of “pop-
ulations” of computing machines.

Throughout the more than 50 years since von Neu-
mann’s seminal work, research on this topic has gone
through several transformations. While interest in apply-
ing self-replication to electronic systems waned because
of technological hurdles, the field of Artificial Life, start-
ing with the pioneering work of Chris Langton [14], be-
gan studying this process in the more general context of
achieving life-like properties in artificial systems.

Throughout its long history, cellular automata (CA)
have remained one of the environments of choice to study
how self-replication can be applied to computing systems.
In general, researchers in the domain (including von Neu-
mann) have never regarded CA as the environment in
which self-replication would be ultimately applied. Rather,
CA have traditionally provided a useful platform to test
the complexity of self-replication at an early stage, in view
of eventually applying this process to real-world systems,
either to electronics or, more generally, to computing sys-
tems.

Of course, the concept of self-replication has been ap-
plied to artificial systems in contexts other than comput-
ing. A classic example is the 1980 NASA study by Robert
Freitas Jr. and Ralph Merkle [10] (recently expanded in
a remarkable book [11]), where self-replication is used as
a paradigm for efficiently exploring other planets. How-
ever, this kind of self-replication, applied to physical ma-
chines rather then computing systems, does not com-
monly make use of cellular automata and is beyond the
scope of this article.

Following the historical progress of self-replication in
cellular automata (derived in part from [40]), we will first
examine in some detail von Neumann’s seminal work
(Sect. “Von Neumann’s Universal Constructor”). Then,
the use of self-replication as anArtificial Life paradigmwill
be discussed (Sect. “Self-Replication for Artificial Life”)
before dealing with some of the latest advances in the field
in Sect. “Other Approaches to Self-Replication”.

Von Neumann’s Universal Constructor

Many of the existing approaches to the self-replication of
computing systems are essentially derived from the work
of John von Neumann [1], who pioneered this field of re-
search in the 1950s.

Von Neumann, confronted with the lack of reliability
of computing systems, turned to nature to find inspiration
in the design of fault-tolerant computing machines. Let us
remember that the computers von Neumann was familiar
with were based on vacuum-tube technology, and that vac-
uum tubes were much more prone to failure than modern
transistors. Moreover, since the writing and the execution
of complex programs on such systems represented many
hours (if not many days) of work, the failure of a system
had important consequences in wasted time and effort.

In particular, Von Neumann investigated self-replica-
tion as a way to design and implement digital logic devices.
Unfortunately, the state of the art in the fifties restricted
von Neumann’s investigations to a purely theoretical level,
and the work of his successors mirrored this constraint.
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Indeed, it is not until fairly recently that some of the tech-
nological problems associated with the implementation of
such a process in silicon have been resolved with the intro-
duction of new kinds of electronic devices (see Sect. “Other
Approaches to Self-Replication”).

In this section, we will analyze von Neumann’s re-
search on the subject of self-replicating computing ma-
chines, and in particular his universal constructor, a self-
replicating cellular automaton [44].

Von Neumann’s Self-Replicating Machines

Natural systems are among the most reliable complex sys-
tems known to man, and their reliability is a consequence
not of any particular robustness of the individual cells (or
organisms), but rather of their extreme redundancy. The
basic natural mechanism which provides such reliability is
self-reproduction, both at the cellular level (where the sur-
vival of a single organism is concerned) and at the organ-
ism level (where the survival of the species is concerned).

Thus von Neumann, drawing inspiration from natu-
ral systems, attempted to develop an approach to the real-
ization of self-replicating computing machines (which he
called artificial automata, as opposed to natural automata,
that is, biological organisms). In order to achieve his goal,
he imagined a series of five distinct models for self-repro-
duction ([44], pp. 91–99):

1. The kinematicmodel, introduced by von Neumann on
the occasion of a series of five lectures given at the Uni-
versity of Illinois in December 1949, is themost general.
It involves structural elements such as sensors, muscle-
like components, joining and cutting tools, along with
logic (switch) and memory elements. Concerning, as it
does, physical as well as electronic components, its goal
was to define the bases of self-replication, but was not
designed to be implemented.

2. In order to find an approach to self-replication more
amenable to a rigorous mathematical treatment, von
Neumann, following the suggestion of the mathemati-
cian S. Ulam, developed a cellular model. This model,
based on the use of cellular automata as a framework
for study, was probably the closest to an actual realiza-
tion. Even if it was never completed, it was further re-
fined by von Neumann’s successors and was the basis
for most further research on self-replication.

3. The excitation-threshold-fatigue model was based on
the cellular model, but each cell of the automaton
was replaced by a neuron-like element. Von Neumann
never defined the details of the neuron, but through
a careful analysis of his work, we can deduce that it
would have borne a fairly close relationship to today’s

simplest artificial neural networks, with the addition
of some features which would have both increased the
resemblance to biological neurons and introduced the
possibility of self-replication.

4. For the continuous model, von Neumann planned to
use differential equations to describe the process of self-
reproduction. Again, we are not aware of the details
of this model, but we can assume that von Neumann
planned to define systems of differential equations to
describe the excitation, threshold and fatigue properties
of a neuron. At the implementation level, this would
probably correspond to a transition from purely digital
to analog circuits.

5. The probabilistic model is the least well-defined of all
the models. We know that von Neumann intended to
introduce a kind of automaton where the transitions
between states were probabilistic rather than deter-
ministic. Such an approach would allow the introduc-
tion of mechanisms such as mutation and thus of the
phenomenon of evolution in artificial automata. Once
again, we cannot be sure of how von Neumann would
have realized such systems, but we can assume they
would have exploited some of the same tools used to-
day by genetic algorithms.

Of all these models, the only one von Neumann developed
in some detail was the cellular model. Since it was the basis
for the work of his successors, it deserves to be examined
more closely.

Von Neumann’s Cellular Model

In von Neumann’s work, self-reproduction is always pre-
sented as a special case of universal construction, that is,
the capability of building any machine given its descrip-
tion (Fig. 1). This approach was maintained in the design
of his cellular automaton, which is therefore much more
than a self-replicating machine. The complexity of its pur-
pose is reflected in the complexity of its structure, based
on three separate components:

1. A memory tape, containing the description of the ma-
chine to be built, in the form of a one-dimensional
string of elements. In the special case of self-reproduc-
tion, the memory contains a description of the univer-
sal constructor itself (Fig. 2). It is interesting to note
that the memory of von Neumann’s automaton bears
a strong resemblance to the biological genome. This re-
semblance is even more remarkable when considering
that the structure of the genomewas not discovered un-
til after the death of von Neumann.
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Self-Replication and Cellular Automata, Figure 1
Von Neumann’s universal constructor Uconst can build a spec-
imen of any machine (e. g., a universal Turing machine Ucomp)
given its description D(Ucomp)

Self-Replication and Cellular Automata, Figure 2
Given its own description D(Uconst), von Neumann’s univer-
sal constructor is capable of self-replication

2. The constructor itself, a very complex machine capable
of reading the memory tape and interpreting its con-
tents.

3. A constructing arm, directed by the constructor, used
to build the offspring (i. e., themachine described in the
memory tape). The armmoves across the space and sets
the state of the elements of the offspring to the appro-
priate value.

The implementation as a cellular automaton is no less
complex. Each element has 29 possible states, and thus,
since the next state of an element depends on its cur-
rent state and that of its four cardinal neighbors, 295 D
20; 511; 149 transition rules are required to exhaustively
define its behavior.

If we consider that the size of von Neumann’s con-
structor is of the order of several hundred thousand ele-
ments, we can easily understand why a hardware realiza-
tion of such a machine is not really feasible. In fact, as part
of our research, we did realize a hardware implementation
of a set of elements of von Neumann’s automaton [3,35].
By carefully designing the hardware structure of each ele-
ment, we were able to considerably reduce the amount of
memory required to host the transition rules. Neverthe-

less, our system remains a demonstration unit, as it con-
sists of a few elements only, barely enough to illustrate the
behavior of a tiny subset of the entire machine.

It is also worth mentioning that von Neumann went
one step further in the design of his universal construc-
tor. If we consider the universal constructor from a bio-
logical viewpoint, we can associate the memory tape with
the genome, and thus the entire constructor with a single
cell (which would imply a parallel between the automa-
ton’s elements and molecules). However, the constructor,
as we have described it so far, has no functionality outside
of self-reproduction. VonNeumann recognized that a self-
replicating machine would require some sort of function-
ality to be interesting from an engineering point of view,
and postulated the presence of a universal computer (in
practice, a universal Turing machine, an automaton ca-
pable of performing any computation) alongside the uni-
versal constructor (Fig. 3). Von Neumann’s constructor
can thus be regarded as a unicellular organism, contain-
ing a genome stored in the form of a memory tape, read
and interpreted by the universal constructor (the mother
cell) both to determine its operation and to direct the con-
struction of a complete copy of itself (the daughter cell).

Von Neumann’s Successors

The extreme size of von Neumann’s universal constructor
has so far prevented any kind of physical implementation
(apart from the small demonstration unit we mentioned).
But further, even the simulation of a cellular automaton
of such complexity was far beyond the capability of early
computer systems. Today, such a simulation is starting to
be conceivable. Umberto Pesavento, a young Italian high
school student, developed a simulation of von Neumann’s
entire universal constructor [27]. The computing power
available did not allow him to simulate either the entire
self-replication process (the length of the memory tape
needed to describe the automatonwould have required too
large an array) or the Turing machine necessary to imple-
ment the universal computer, but he was able to demon-
strate the full functionality of the constructor.

Considering the rapid advances in computing power
of modern computer systems, we can assume that a com-
plete simulation could be envisaged with today’s tech-
nology. In fact, an effort is currently under way [4] to
implement a complete specimen of the constructor. To
achieve this goal, Buckley is revisiting and analyzing in de-
tail the operation of the constructor. To give an idea of the
scope of this work, Buckley’s results indicate that the in-
terpretercopier (without the tape) is bounded by a region
of 751 � 1048 D 787:048 cells.
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Self-Replication and Cellular Automata, Figure 3
By extension, von Neumann’s universal constructor can include a universal computer and still be capable of self-replication

The impossibility of achieving a physical realization
did not however deter some researchers from trying to
continue and improve von Neumann’s work [2,15,22].
Arthur Burks, for example, in addition to editing vonNeu-
mann’s work on self-replication [5,44], also made several
corrections and advances in the implementation of the
cellular model. Codd [9], by altering the states and the
transition rules, managed to simplify the constructor by
a considerable degree. Vitanyi [43] studied the possibility
of introducing sexual reproduction in von Neumann’s ap-
proach. However, without in any way lessening these con-
tributions, we can say that no major theoretical advance in
the research on self-reproducing automata occurred until
C. Langton, in 1984, opened a second stage in this field of
research.

Self-Replication for Artificial Life

While the implementation of von Neumann’s universal
constructor faced insurmountable (at the time) technolog-
ical hurdles, the same could not be said of the theoretical
contribution that his approach represented as an attempt
to study a biologically-inspired process within the world
of computing systems.

In this context, the main drawback of von Neumann’s
work lay in the inability to achieve self-replication without
resorting to an extremely complex simulation of a com-
plete machine. Von Neumann’s Universal Constructor
was so complex because it tried to implement self-repro-
duction as a particular case of construction universality,
i. e. the capability of constructing any other automaton,
given its description. C. Langton approached the prob-
lem somewhat differently, by attempting to define the sim-
plest cellular automaton, commonly known as Langton’s
loop [14], capable exclusively of self-reproduction.

Langton’s loop had a major impact on research in self-
replication by introducing a new way to think about this
process in more “abstract” terms as a study of the appli-
cation of biologically-inspired mechanisms to computing,
exemplifying the field known as Artificial Life. In this con-
text, rather than the replicating machine, it is the process
of self-replication itself that becomes the object of study.

This novel approach generated research that can be
considered fundamentally different from that of von Neu-
mann and started discussion on topics such as the anal-
ogy with cellular division and with the reproduction of in-
dividuals in a population (e.g, in [17], Section V.B), the
difference between trivial and non-trivial self-replication
in cellular automata (e. g., in automata such as those de-
scribed in [16]), or the connections between evolution and
self-replication (e.g, in the work of Sayama [17]).

Langton’s Loop

As a consequence of his approach, Langton’s Loop is or-
ders of magnitude simpler than von Neumann’s construc-
tor. In fact, it is loosely based on one of the simplest organs
(an organ in this context can be seen as a self-support-
ing structure capable of a single sub-task) in Codd’s au-
tomaton: the periodic emitter (itself derived from vonNeu-
mann’s periodic pulser), a relatively simple structure capa-
ble of generating a repeating string of a given sequence of
pulses.

Langton’s loop (Fig. 4) is named after the dynamic
storage of data inside a square sheath (red in the figure).
The data is stored as a sequence of instructions for di-
recting the constructing arm, coded in the form of a set
of three states. The data turns counterclockwise in perma-
nence within the sheath, creating a loop.
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Self-Replication and Cellular Automata, Figure 4
The initial configuration of Langton’s Loop (iteration 0)

The two instructions in Langton’s loop are extremely
simple. One instruction (uniquely identified by the yellow
element in the figure) tells the arm to advance by one po-
sition (Fig. 5), while the other (green in the figure) directs
the arm to turn 90 degrees to the left (Fig. 6). Obviously,
after three such turns, the arm has looped back on itself
(Fig. 7), at which stage a messenger (the pink element)
starts the process of severing the connection between the
parent and the offspring, thus concluding the replication
process.

Once the copy is over, the parent loop proceeds to con-
struct a second copy of itself in a different direction (to
the north in this example), while the offspring itself starts
to reproduce (to the east in this example). The sequential
nature of the self-reproduction process generates a spiral-
ing pattern in the propagation of the loop through space
(Fig. 8): as each loop tries to reproduce in the four cardi-
nal directions, it finds the place already occupied either by
its parent or by the offspring of another loop, in which case
it dies (the data within the loop is destroyed).

Self-Replication and Cellular Automata, Figure 5
The constructing arm advances by one space

Langton’s loop uses 8 states for each of the 86 non-
quiescent cells making up its initial configuration, a 5-cell
neighborhood, and a few hundred transition rules (the ex-
act number depends on whether default rules are used and
whether symmetric rules are included in the count). Fur-
ther simplifications to Langton’s automaton were intro-
duced by Byl [6], who eliminated the internal sheath and
reduced the number of states per cell, the number of tran-
sition rules, and the number of non-quiescent cells in the
initial configuration. Reggia et al. [29] managed to remove
also the external sheath, thus designing the smallest self-
replicating loop known to date. Given their modest com-
plexity, at least relative to von Neumann’s automaton, all
of the mentioned automata have been thoroughly simu-
lated.

Langton’s loop has been used as the basis for several
approaches, mostly aimed at studying the properties of
self-replication within a cellular system in the context of
artificial life. Sayama [32] introduced structural dissolu-
tion (whereby a loop can destroy itself, in addition to repli-
cating) to obtain colonies of loops that are dynamically
stable and exhibit a potentially evolvable behavior. Ne-
haniv [21] extended Langton’s approach to asynchronous
cellular automata, while Sipper [34] developed a self-repli-
cating loop in a non-uniform CA (i. e., a CA where the
transition rules are not necessarily identical in all cells).

Perrier’s Loop

In the context of applying self-reproduction to the repli-
cation of computing machines, and hence return to von
Neumann’s original goals, themain weakness of Langton’s
loop resides in the absence of any functionality beyond
self-reproduction itself. To overcome this limitation, Per-
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Self-Replication and Cellular Automata, Figure 6
The constructing arm turns 90 degrees to the left

rier and Zahnd developed a relatively complex automaton
(Fig. 9) in which a two-tape Turingmachine was appended
to Langton’s loop [26].

This automaton exploits Langton’s loop as a sort of
“carrier” (Fig. 10): the first operation of Perrier’s loop is to
allow Langton’s loop to build a copy of itself (iteration 128:
note that the copy is limited to one dimension, since the
second dimension is taken up by the Turingmachine). The
main function of the offspring is to determine the location
of the copy of the Turing machine (iteration 134). Once
the new loop is ready, a “messenger” runs back to the par-
ent loop and starts to duplicate the Turing machine (itera-
tions 158 and 194), a process completely disjoint from the
operation of the loop. When the copy is finished (iteration
254), the same messenger activates the Turing machine in
the parent loop (the machine had to be inert during the
replication process in order to obtain a perfect copy). The
process is then repeated in each offspring until the space is
filled (iteration 720: as the automaton exploits Langton’s
loop for replication, meeting the boundary of the array
causes the last machine to crash).

Perrier’s automaton implements a self-replicating Tur-
ing machine, a powerful construct which is unfortunately
handicapped by its complexity: in order to implement
a Turingmachine, the automaton requires a very consider-
able number of additional states (more than 60), as well as

an important number of additional transition rules. This
kind of complexity, while still relatively minor compared
to von Neumann’s universal constructor, is nevertheless
too important to be really considered for an actual imple-
mentation.

Tempesti’s Loop

Always in the context of achieving self-reproduction of
computing machines, and beside the lack of functional-
ity mentioned in Subsect. “Perrier’s Loop”, another prob-
lem of Langton’s loop is that it is not well adapted to finite
CA arrays. Its self-reproduction mechanism assumes that
there is enough space for a copy of the loop, and the entire
loop becomes nonfunctional otherwise (Fig. 8).

To overcome this limitation and move a step closer to
the realization of self-replicating machines, we developed
a self-replicating loop designed specifically to exist in a fi-
nite, but arbitrarily large, space, and at the same time ca-
pable, unlike Langton’s loop, to have a functionality in ad-
dition to self-replication.

In designing our self-replicating automaton [39,40],
we did maintain some of the more interesting features of
Langton’s loop. In particular, we preserved the structure
based on a square loop to dynamically store information.
Such storage is convenient in CA because of the locality of
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Self-Replication and Cellular Automata, Figure 7
The copy is complete and the connection from parent to offspring is severed

the rules. Also, we maintained the concept of construct-
ing arm, in the tradition of von Neumann and his succes-
sors, even if we introduced considerable modifications to
its structure and operation. While preserving some of the
more interesting features of Langton’s loop, we neverthe-
less introduced some basic structural alterations (Fig. 11):

� As in Byl’s version of Langton’s loop, we use only one
sheath. In addition, four gate elements (in the same
state as the sheath) at the four corners of the automaton
enable or disable the replication process.

� We extend four constructing arms in the four cardi-
nal directions at the same time, and thus create four
copies of the original automaton in the four directions
in parallel. When the arm meets an obstacle (either the
boundary of the array or an existing copy of the loop),
it simply retracts and puts the corresponding gate ele-
ment in the closed position.

� The arm does not immediately construct the entire
loop. Rather, it constructs a sheath of the same size as
the original. Once the sheath is ready, the data circulat-
ing in the loop is duplicated and the copy is sent along
the constructing arm to wrap around the new sheath.
When the new loop is completed, the constructing arm
retracts and closes the gate.

� As a consequence, we use only four of the elements cir-
culating in the loop to control the self-replication pro-
cess. The others can be used as a “program”, i. e., a set
of states with their own transition rules which will then
be applied alongside the self-reproduction to execute
some function.

� Unlike Langton’s loop, our loop does not “die” once
duplication is achieved, as the circulating data re-
mains untouched by the self-reproduction process.
This feature is a requirement for implementing func-
tions which work after the copy has finished.
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Self-Replication and Cellular Automata, Figure 8
Propagation pattern of Langton’s loop

We use a 9-element neighborhood (the element itself plus
its 8 neighbors) and the basic configuration of the loop
(Fig. 11) requires five states plus at least one data state.
State 0 (black) is the quiescent state: it represents the in-
active background. State 1 (white) is the sheath state, that
is the state of the elements making up the sheath and
the four gates. State 2 (red) is the activation state or con-
trol state. The four gate elements are in state 2, as are
the messengers which will be used to command the con-
structing arm and the tip of the constructing arm itself
for the first phase of construction, after which the tip of

the arm will switch to state 3 (light blue), the construc-
tion state. State 3 will construct the sheath that will host
the offspring, signal the parent loop that the sheath is
ready, and lead the duplicated data to the new loop. State
4 (green), the destruction state, will destroy the construct-
ing arm once the copy is completed. In addition to these
states, two additional data states (light and dark grey)
represent the information stored in the loop. In this ex-
ample, they are inactive, while the next section describes
a loop where they are used to store an executable pro-
gram.
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Self-Replication and Cellular Automata, Figure 9
A two-tape Turing machine appended to Langton’s loop (itera-
tion 0)

The initial configuration is in the form of a square loop
wrapped around a sheath. The size of the loop is variable,
and for our example is set to 8 � 8. Once the iterations be-
gin, the data starts turning counterclockwise around the
loop. Nothing happens until the first control element (red)
reaches a corner of the loop, where it checks the status
of the gate. Since the gate is open, the control element
splits into two identical elements: the first continues turn-
ing around the loop, while the second starts extending the
arm (Fig. 12).

The arm advances automatically by one position every
two iterations. Once the arm has started extending, each
control element that arrives to a corner will again split and
one of the copies will start running along the arm, ad-
vancing twice as fast. When the first of these messengers
reaches the tip of the arm, the tip, which was until then
in state 2, passes to state 3 and continues to advance at
the same speed. This transformation tells the arm that it
has reached the location of the offspring loop and to start
constructing the new sheath. The next three messengers
will force the tip of the arm to turn left, while the fourth
causes the sheath to close upon itself (Fig. 13). It then runs
back along the arm to signal to the original loop that the
new sheath is ready. Once the return signal arrives at the
corner of the original loop, it causes a copy of the data in
the loop to run along the arm and wrap itself around the
new sheath. Once the second copy has completed the loop

(Fig. 14), it sends a destruction signal (green) back along
the arm. The signal will destroy the arm until it reaches
the corner of the original loop, where it closes the gate to
avoid further copies.

After 121 time periods the gates of the original au-
tomaton will be closed and it will enter an inactive state,
with the understanding that it will be ready to reproduce
itself again should the gates be opened. The main advan-
tage of the new mechanism is that it becomes relatively
simple to retract the arm if an obstacle (either the bound-
ary of the array or another loop) is encountered, and there-
fore our loop is perfectly capable of operating in a finite
space.

In Fig. 15, we illustrate an example of how the data
states can be used to carry out operations alongside self-
reproduction. The operation in question is the construc-
tion of three letters, LSL (the acronym of Logic Systems
Laboratory, where the research was made), in the empty
space inside the loop. Obviously this is not a very useful
operation from a computational point of view, but it is
a far from trivial construction task which should suffice to
demonstrate the capabilities of the automaton.

As should be obvious, while our loop owes to vonNeu-
mann the concept of constructing arm and to Langton
(and/or Codd) the basic loop structure, it is in fact a very
different automaton, endowed with some of the properties
of both. We have seen that von Neumann’s automaton is
extremely complex, while Langton’s loop is very simple.
The complexity of our automaton is more difficult to esti-
mate, as it depends on the data circulating in the loop. The
number of non-quiescent elements making up the initial
configuration depends directly on the size of the circulat-
ing program. The more complex (i. e. the longer) the pro-
gram, the larger the automaton (it should be noted, how-
ever, that the complexity of the self-reproduction process
does not depend on the size of the loop). The number of
transition rules is obviously a function of the number of
data states: in the basic configuration (i. e., one data state),
the automaton needs 692 rules (173 rules rotated in the
four directions), assuming that, by default, all elements re-
main in the same state. The complexity of the basic con-
figuration is therefore in the same order as that of Lang-
ton’s and Byl’s loops, with the proviso that it is likely to
increase drastically if the data in the loop is used to imple-
ment a complex function.

Other Approaches to Self-Replication

Von Neumann’s and Langton’s structures represent the
main landmarks in the study of self-replication in com-
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Self-Replication and Cellular Automata, Figure 10
Self-replication of the Turingmachine

Self-Replication and Cellular Automata, Figure 11
The initial configuration of our loop (iteration 0)

puting machines. It can safely be said that all other ap-
proaches refer, directly or indirectly, to these two systems.
However, there exist some approaches to self-replication
that cannot be easily reduced to simple variations on one

of these two themes, either because they specifically take
into consideration some issues that are not addressed by
Langton and von Neumann, or because they occur in en-
vironments that are considerably different from the two
original approaches.

In this section, we will deal in depth with one example,
the TomThumb algorithm that, while referring back to von
Neumann insofar as its goal is the implementation of self-
replicating logic circuits, is specifically designed to operate
efficiently in the kind of digital devices that are available
today. The algorithm approaches cellular automata from
a slightly unconventional angle [37], with the objective
of a hardware realization of self-replication within a pro-
grammable logic device, or FPGA [41].

In the second part of the section, we will look at a set
of approaches to self-replication that represent notable ex-
tensions to the approaches of von Neumann and Langton,
because of different mechanisms (self-inspection), operat-
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Self-Replication and Cellular Automata, Figure 12
The constructing arm begins to extend

Self-Replication and Cellular Automata, Figure 13
The new sheath has been fully constructed and a copy of the data is sent from the parent to the offspring

Self-Replication and Cellular Automata, Figure 14
The copy is complete and the constructing arm retracts
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Self-Replication and Cellular Automata, Figure 15
The LSL automaton at different iterations

ing milieus (three-dimensional or self-timed CA), or de-
sign rules (evolutionary approaches).

Self-Replication in Hardware:
The Tom Thumb Algorithm

In past years, we have devoted considerable effort to re-
search on self-replication, studying this process from the
point of view of the design of high-complexity multi-pro-
cessor systems (with particular attention to next-genera-
tion technologies such as nanoelectronics). When consid-
ering self-replication in this context, Langton’s loop and
its successors share several weaknesses. Notably, besides
the lack of functionality of Langton’s loop (remedied only
partially by its successors), which severely limits its use-
fulness for circuit design, each of these automata is char-
acterized by a very loose utilization of the resources at its
disposal: the majority of the elements in the cellular array
remain in the quiescent state throughout the entire self-
replication process.

A new loop was then developed specifically to address
these very practical issues. In fact, the system is targeted to
the implementation of self-replication within the context
of digital circuits realizedwith programmable logic devices

Self-Replication and Cellular Automata, Figure 16
Tom Thumb algorithm: basic loop

(the states of the cellular automaton can then be seen as the
configuration bits of the elements of the device). The new
loop is based on an original algorithm, the so-called Tom
Thumb algorithm [18,19].

The minimal loop compatible with this algorithm is
made up of four cells, organized as a square of two rows
by two columns (Fig. 16). Each cell is able to store in its
four memory positions four hexadecimal characters of an
artificial genome (defined as the information required for
the construction of the loop). The whole loop thus embeds
16 such characters.

The original genome for the minimal loop is organized
as another loop, the basic loop, of eight hexadecimal char-
acters, i. e. half the number of characters in the minimal
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Self-Replication and Cellular Automata, Figure 17
a Graphical and hexadecimal representations of the 15 charac-
ters forming the alphabet of the artificial genome. b Graphical
representation of the status of each character

loop, moving counterclockwise by one character at each
time step.

The 15 hexadecimal characters that compose the al-
phabet of the artificial genome are detailed in Fig. 17a.
They are either empty data (0), message data (M D

1 : : : E), or flag data (F D 8 : : :D; F). Message data will be

Self-Replication and Cellular Automata, Figure 18
Construction of a first specimen of the loop

used to configure our final artificial organism, while flag
data are indispensable for constructing the skeleton of the
loop. Furthermore, each character is given a status and will
eventually be mobile data, moving indefinitely around the
loop, or fixed data, definitely trapped in a memory posi-
tion of a cell (Fig. 17b). It is important to note that, while in
this simple example the message data can take value from
1 to E, the Tom Thumb algorithm is perfectly scalable in
this respect, that is, the size of the message data can be in-
creased at will, while the flag data remain constant. This
is a crucial observation in view of the exploitation of this
algorithm in a programmable logic device, where the mes-
sage data (the configuration data for the programmable el-
ements of the circuit) are usually much more complex.

At each time step (t D 1; 2; : : :), a character of the orig-
inal loop is sent to the lower leftmost cell (Fig. 18). The
construction of the loop, i. e., storing the fixed data and
defining the paths for mobile data, depends on two rules:

� If the four, three, or two rightmost memory positions
of the cell are empty (blank squares), the characters are
shifted by one position to the right (rule #1: shift data).

� If the rightmost memory position is empty, the char-
acters are shifted by one position to the right (rule #2:
load data). In this situation, the two rightmost charac-
ters are trapped in the cell (fixed data), and a new con-
nection is established from the second leftmost position
toward the northern, eastern, southern or western cell,
depending on the fixed flag information (in Fig. 18, at
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Self-Replication and Cellular Automata, Figure 19
Creation of a new daughter loop to the north (rule #3)

Self-Replication and Cellular Automata, Figure 20
Creation of a new daughter loop to the east (rule #4)

time t D 4, the fixed flag F = F determines a northern
connection).

At time t D 16, 16 characters, i. e., twice the contents of the
basic loop, have been stored in the 16 memory positions
of the loop (Fig. 18). Eight characters are fixed data, form-
ing the phenotype of the final loop, and the eight remain-
ing ones are mobile data, composing a copy of the original
genome, i. e., the genotype. Both interpretation (the con-
struction of the cell) and copying (the duplication of the
genetic information) have been therefore achieved.

The fixed data trapped in the rightmost memory po-
sitions of each cell remind us of the pebbles left by Tom
Thumb for memorizing his way in the famous children’s
story, an analogy that gives our algorithm its name.

In order to grow loops in both horizontal and vertical
directions, the mother loop should be able to trigger the
construction of two daughter loops, northward and east-
ward. Two new rules are then necessary:

� At time t D 11 (Fig. 19), we observe a pattern of char-
acters which is able to start the construction of the
northward daughter loop; the upper leftmost cell is
characterized by two specific flags, i. e., a fixed flag in
the rightmost position, indicating a north branch (F =
C) and the branch activation flag (F = F), in the leftmost
position (rule #3: daughter loop to the north). The new
path to the northward daughter loop will start from the
second leftmost memory position (t D 12).

� At time t D 23 (Fig. 20), another particular pattern
of characters starts the construction of the eastward
daughter loop; the lower rightmost cell is character-

ized by two specific flags, i. e., a fixed flag indicating an
east branch (F = D), in the rightmost position, and the
branch activation flag (F = F), in the leftmost position
(rule #4: daughter loop to the east). The new path to the
eastward daughter loop starts from the second leftmost
memory position (t D 24).

When two or more paths are activated simultaneously,
a clear priority should be established between the different
paths. Three growth patterns were chosen (Fig. 21), lead-
ing to four more rules:

� For loops in the lower row a collision occurs between
the closing path, inside the loop, and the path entering
the lower leftmost cell. The westward path has priority
over the eastward path (rule #5).

� With the exception of the bottom loop, the inner path
(i. e. the westward path) has priority over the north-
ward path (rule #6) for the loops in the leftmost col-
umn.

� For all other loops, two types of collisions may occur:
between the northward and eastward paths (2-signal
collision) or between these two paths and a third one,
the closing path (3-signal collision). In this case, the
northward path will have priority over the eastward
path (2-signal collision), and the westward path will
have priority over the two other ones (3-signal colli-
sion)(rules #7 and #8).

We finally opted the following hierarchy: an east to west
path has priority over a south to north path, which has pri-
ority over a west to east path.
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Self-Replication and Cellular Automata, Figure 21
Growth of a colony of minimal loops represented at different time steps

The results of such a choice are as follows (Fig. 21):
a closing loop has priority over all other outer paths,
which makes the completed loop entirely independent of
its neighbors, and the loops will grow bottom-up verti-
cally. This choice is quite arbitrary and may be changed
according to other specifications.

Unlike its predecessors, the TomThumb loop has been
developed with a specific purpose beyond the theoretical
study of self-replication. We believe that, in the not-so-
distant future, circuits will reach densities such that con-
ventional design techniques will become unwieldy. Should
such an hypothesis be confirmed, self-replication could
become an invaluable tool, allowing the engineer to design
a single processing element, part of an extremely large ar-
ray that would build itself through the duplication of the
original element.

Current technology does not, of course, provide a level
of complexity that would render this kind of process
necessary. However, programmable logic devices (already
among the densest circuits on the market) can be used as
a first approximation of the kind of circuits that will be-

come available in the future. Our loop is then targeted to
the implementation of self-replication on this kind of de-
vice.

To this end, our loop introduces a number of features
that are not present in any of the historical self-replicat-
ing loops we presented. Most notably, the structure of the
loop (that is, the path used by the configuration data) is
determined by the sequence of flags in the genome, im-
plying that structures of almost any shape and size can be
constructed and replicated using this algorithm, as long
as the loop can be closed and that there is space for the
daughter organisms. In practice, this implies that, if the
Tom Thumb algorithm is used for the configuration logic
of a programmable device, any of its configurations, and
hence any digital circuit, can be made capable of self-repli-
cation.

In addition, particular care was given to develop a self-
replication algorithm that is efficient (in the sense that it
fully exploits the underlying medium, rather than leav-
ing the vast majority of elements inert as past algorithms
did), scalable (all the interactions between the elements are



8082 S Self-Replication and Cellular Automata

purely local, implying that organisms of any size can be
implemented), and amenable to a systematic design pro-
cess. These features are important requirements for the de-
sign of highly-complex systems based on either silicon or
molecular-scale components.

Different Techniques and Environments

Von Neumann’s and Langton’s automata share a common
basic technique to obtain self-replication: the construction
of the new machine is directed through the interpreta-
tion of a description, coded as a sequence of states. In the
case of von Neumann, this description (which, in biologi-
cal terms, is usually identified as the genome of the artifi-
cial organism) is stored within the memory tape, which is
read and interpreted by the universal constructor to build
a copy of the machine. In Langton’s case, the description
is stored in the mobile data that runs within the sheath of
the loop.

This mechanism of interpretation, while standard in
many approaches, is not however unique: some examples
of self-replicating CA exploit a different mechanism, that
of self-inspection. In these approaches, instead of read-
ing and interpreting a description, the self-replicating au-
tomaton inspects itself and produces a copy of what it
finds. While less general than the universal constructor
(obviously, the machine can only build an exact copy of
itself), the functionality of this approach is similar to that
of Langton’s loop. Indeed, the most representative exam-
ple of self-inspection is that of a self-replicating loop [12].
A more recent example is a variation of the Tom Thumb
algorithm, where self-inspection was used to self-replicate
a small processor within a field-programmable gate ar-
ray [30].

And while the Tom Thumb algorithm targets in pri-
ority silicon-based circuits, other approaches have tried to
explore alternative environments that, in some way, might
more closely resemble the kind of technologies that will be
available in the future. An example is Morita and Imai’s
study of self-replication in the context of reversible cellu-
lar automata [20] (in a reversible CA, every configuration
has at most one predecessor), inspired by reversible logic
in digital circuits.

Similarly, Peper et al. [24,38] have developed self-
replicating structures in Self-Timed Cellular Automata
(STCA). This kind of automata do not rely on a global syn-
chronization mechanism to update the states of the cells,
but rather the state transitions only occur when triggered
by transitions in neighboring cells. The basic assumption
in this work is that STCA is a model that might more
closely resemble molecular-scale nanoelectronic devices.

A final example in this context is the three-dimen-
sional extension of self-replication, usually based on the
assumption that silicon, with its rigidly two-dimensional
structure, will one day be superseded by a technology
that can exploit all three dimensions. In this context, Imai
et al. [13] have extended their reversible approach, with
the assumption that reversible logic is more amenable to
an extension to three dimensions than conventional logic
because of the greatly reduced power dissipation. Stauf-
fer at al. [36] have also shown that the Data and Sig-
nal Cellular Automaton (DSCA) approach, designed to
simplify the implementation of CA in digital hardware,
can be extended to realize self-replication in three dimen-
sions.

The study of self-replicating CA in the context of new
technologies holds the promise of one day bringing a ma-
jor contribution to computation. To determine how self-
replication might be useful in this context, some attempts
have been made at using self-replicating structures for
computation. An example of this approach is the work of
Chou and Reggia [8], who use self-replication as a mecha-
nism to obtain massively parallel machines which can po-
tentially be used to solve hard problems (the example used
in the paper is the NP-complete problem of satisfiability).

An attempt was alsomade to perform computation us-
ing Tempesti’s loops. In alternative to embedding a com-
plex program, this kind of loops are used to perform com-
putation by inter-loop communication. Using the colli-
sion-based computing paradigm, Petraglio et al. [28] have
shown that it is possible to implement arithmetic opera-
tions by passing messages from one loop to another af-
ter building a network structure through self-replication.
This approach, while valuable from a theoretical stand-
point, shares however the same weakness of other loop-
based computing approaches in that the poor utilization
of resources makes a physical realization of such a system
highly impractical.

Another problem to be solved for a practical imple-
mentation of self-replicating structures is their design: few
approaches have attempted to define a precise method-
ology to define and create self-replicating structures. In
this context, several researchers have attempted to use evo-
lutionary techniques to find automatically self-replicating
machines. In this context, the work of Sayama et al. has
gone through several iterations [31,32,33] in an attempt to
define loops that evolve through the self-replication pro-
cess towards “fitter” individuals. Chou and Reggia [7], on
the other hand, use evolution to find novel self-replicat-
ing structures within a CA, whereas Pan and Reggia [23]
studied the conditions in which self-replicating structures
might spontaneously emerge in a cellular space.
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Future Directions

Historically, self-replication in cellular automata began as
a paradigm to achieve fault tolerance in computing de-
vices. In the following decades, much of the emphasis
shifted towards a more “theoretical” approach where self-
replication was considered as part of a more general inves-
tigation into the application of biologically-inspired mech-
anisms to computing. And while the latter approach re-
mains an active research topic, the original paradigm was
somewhat set aside because technology would not allow
a practical implementation of self-replication in digital
hardware.

More recently, however, advances in electronic devices
(notably with the introduction of programmable devices,
or FPGAs), together with emerging technological issues
have rekindled interest in self-replication in a context sim-
ilar to von Neumann’s original work. In particular, the
drastic device shrinking, low power supply levels, and in-
creasing operating speeds, which accompany the techno-
logical evolution of silicon to deeper submicron levels,
significantly reduce the noise margins and increase the
soft-error rates [42]. In addition, the nascent field of na-
noelectronics holds great promise for the future of com-
puting devices, but introduces extremely high fault rates
(e. g., [25]) and complex layout issues.

Thus, self-replication is currently attracting a consid-
erable amount of attention for the same reasons that ini-
tially pushed von Neumann to investigate it as a possible
solution to reliability and layout issues. Fault tolerance and
self-organization are thus becoming the focal point of re-
search in the field and the features of molecular-scale elec-
tronics seem to imply that self-replication at the device
level will be an extremely useful paradigm in next-genera-
tion devices.
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Glossary

Dereferencing Dereferencing a URI is using the URI to
identify the object or resource it refers to.

Folksonomy ‘Folksonomy’ is a neologism applied to
structures that emerge from the practice of ‘tagging’
Web content. In some Web 2.0 applications, users
can apply a tag (a descriptive term) to content such
as a photograph or video clip. The tags need only
be meaningful to the individual tagger, but if a large
enough number of users tag content, descriptive struc-
tures analogous to more formal ontologies can emerge
that are meaningful to wide communities.

GRDDL Gleaning Resource Descriptions from Dialects
of Languages (GRDDL, pronounced ‘griddle’) is
a mechanism for helping bootstrap the Semantic
Web, by extracting RDF from XML documents, using
transformations expressed in XSLT. GRDDL became
a W3C recommendation in 2007.

Metadata Metadata is data about data. In the context of
the Semantic Web, metadata are also called ‘markup’
or ‘annotations’. Because one aim of the Semantic
Web is to support machine processing of information,
metadata are helpful in describing the content of data.
For example, metadata attached to a series of numerals
could explain that it represents a zip code or a height
or a population figure.

Ontology An ontology defines, describes and constrains
the concepts and relationships that are used in some
particular domain of knowledge. Ontologies may
therefore have an important role in data sharing, for
example by providing a means of expressing which
concepts (in the ontology) are referred to by particu-
lar terms (in a set of databases, which may use widely
differing vocabularies).

OWL The Web Ontology Language (OWL) is a language
for describing and sharing ontologies on the Web. It
is an extension of RDF, and has three variants. OWL
Full is maximally expressive and compatible with RDF
(any legal RDF document is a legal OWL Full docu-
ment), but is undecidable. OWL DL is based on a se-
ries of restrictions of OWL Full which support efficient
reasoning, at the cost of losing the strong connection
with RDF (not all RDF documents are legal OWL DL
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documents). OWL Lite is even more restricted in ex-
pressivity, but is easier to grasp. OWL became a W3C
recommendation in 2004.

RDF The Resource Description Framework (RDF) is
a standard framework for representing data on the
Web, representing it in a three-place relation, of sub-
ject-relation-object form, called a triple. It uses URIs to
refer not only to the two items related, but also to the
relationship asserted between them. In this way it ex-
tends the linking structure of the Web by allowing the
nature of the link asserted to be described. Its syntax is
XML-based, to support syntactic interoperability be-
tween the two. RDF became a W3C recommendation
in 1999.

RDF(S) RDF Schema (RDF(S) or RDFS) is a language for
representing information on the Web. It is an exten-
sion of RDF to allow the description of the relation-
ships which can be asserted between resources using
RDF. So, for instance, RDF allows the assertion of the
relationship ‘author’ between, say, ‘Herman_Melville’
and ‘Moby_Dick’, but RDF(S) is required to assert the
properties of the ‘author’ relationship (e. g. that ev-
ery document has at least one author, or that the ‘au-
thor’ relationship is the inverse of the ‘written_by’ re-
lationship). RDF(S) became a W3C recommendation
in 2004.

Rules and RIF Rules govern the transformation of, and
inference from, data. In particular, when data are be-
ing shared, it may be useful to make basic infer-
ences over the data (for example, to determinewhether
two names refer to the same object or different ob-
jects). Rule-based knowledge such as this cannot be ex-
pressed in individual data stores, and may be hard to
express in an ontology. The Rule Interchange Format
(RIF) is a language, not complete at the time of writing,
to express the most common or basic types of rule.

SPARQL SPARQL is a special query language designed
specifically for querying data stored in RDF (‘SPARQL’
is a recursive acronym standing for ‘SPARQL Proto-
col And RDF Query Language’, and is pronounced
‘sparkle’). SPARQL became a W3C recommendation
in January 2008.

Triples and triplestores A triple is a statement in RDF,
consisting of a subject, an object, and a binary predi-
cate that relates them. Each item of the triple is identi-
fied by a URI reference (or can be a string literal, such
as a date or a number or name). A knowledge reposi-
tory which contains RDF triples is called a triplestore.
Triplestores may need to contain several millions of
triples, and so need to be able to support fast querying
at these potentially very large scales.

URI A Uniform Resource Identifier (URI) is a string of
characters for identifying an abstract or physical ob-
ject or resource. There are different URI schemes (i. e.
different ways to restrict the syntax of a URI to make
it meaningful). A Uniform Resource Locator (URL) is
a particular type of URI that identifies its object by
means of its access mechanism or ‘location’ in the net-
work. URIs are important in that they act as a standard
way of referring to objects on the Web.

W3C TheWorld Wide Web Consortium (W3C) is an in-
ternational non-profit consortium which coordinates
the development of Web standards, founded in 1994
under the directorship of Sir Tim Berners-Lee. The
W3C groups together all the bodies involved in speci-
fying Semantic Web standards into the Semantic Web
Activity. A W3C working group works on a standard
for a particular formalism, and when the standard is
judged by the working group to be in a final form,
fit for purpose and properly interoperable with other
W3C standards, it ratifies the formalism by recom-
mending it. Hence a W3C recommendation is an im-
portant standard.

Web of data The Web of Data is another way of refer-
ring to or explaining the vision of the Semantic Web,
which emphasises the idea of creating links between
data rather than documents (as on the current World
Wide Web). Linking data, as with linking documents,
enables them to be reused in interesting or unexpected
contexts (when the data are interpreted using explicit
semantic theories of the sort provided by ontologies).
RDF is the anticipated mechanism for creating the
links between data; dereferencing one or more of the
URIs in an RDF triple will lead to descriptions of the
resources referred to, which in turn are likely to con-
tain further triples, which can again lead to dereferenc-
ing and so on.

Web science Web Science is the multidisciplinary activ-
ity of trying to understand the two-way dynamic rela-
tionship between Web technology and wider society,
in order to ensure that the technological changes made
to theWeb (including the SemanticWeb) are generally
beneficial rather than otherwise.

XML The eXtensible Markup Language (XML) is a lan-
guage for allowing users to tag or mark up content
using tags of their own devising (for instance based
on a particular vocabulary used in a small commu-
nity of practice). As such, XML can serve as a basic
data exchange format between applications. It is an ad-
vance on other well-known markup languages (such
as HTML, a standard language for marking up content
for display on theWeb) in that it separates instructions
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to do with content and document structure from those
to do with formatting. It is a basic language for repre-
senting and exchanging structured information.

Definition of the Subject

The Semantic Web is a proposed extension to the World
Wide Web (WWW) that aims to provide a common
framework for sharing and reusing data across applica-
tions. The most common interfaces to the World Wide
Web present it as a Web of Documents, linked in vari-
ous ways including hyperlinks. But from the data point
of view, each document is a black box – the data are not
given independently of their representation in the docu-
ment. This reduces its power, and also (as most informa-
tion needs to be extracted from documents by a human
agent) inhibits the use of automatic information process-
ing methods on the Web. The Semantic Web is an effort,
steered by the World Wide Web Consortium, to develop
a set of protocols, formalisms and standards to transform
theWeb into aWeb of Data. Links would be between data,
and data could be accessed independently of the applica-
tions that created them. This would allow both the shar-
ing of data, and the amalgamation of data from different
sources, using heterogeneous formats, in new contexts.

Introduction

The idea of the Semantic Web (SW), of exploiting the
possibilities for serendipitous reuse of linked data, dates
back at least to Sir Tim Berners-Lee’s plenary talk at the
first International World Wide Web Conference at CERN
in Geneva in 1994 [33]. In that talk, Berners-Lee argued
that there is too little machine-readable information on
the WWW as was currently constituted. “The meaning of
the documents is clear to those with a grasp of (normally)
English, and the significance of the links is only evident
from the context around the anchor. To a computer, then,
the Web is a flat, boring world devoid of meaning. This
is a pity, as in fact documents on the Web describe real
objects and imaginary concepts, and give particular rela-
tionships between them. . . . Adding semantics to the Web
involves two things: allowing documents which have in-
formation in machine-readable forms, and allowing links
to be created with relationship values. Only when we have
this extra level of semantics will we be able to use com-
puter power to help us exploit the information to a greater
extent than our own reading.” Indeed, the original vision
of the WWW was intended to support greater machine
understanding of people’s work and interactions; the ‘flat’
understanding of the world that the WWW produces in
machines is a first step towards the richer vision.

The SW was from the beginning conceived as a set
of layered standards and formalisms (see Sect. “The Lay-
ered Model of the Semantic Web” for details). The devel-
opment of the Resource Description Framework (RDF) in
the 1990s was a key technology [80]. RDF is an important
formalism, as it allows expression not only of the link be-
tween two objects, but also about the nature of the link it-
self. Hence, one can follow a chain of links not only via the
objects linked, but also the types of links involved. In the
WWWof documents, links connect documents written in
the Hypertext Markup Language HTML; in the SW, links
in RDF connect not only documents but arbitrary things
(objects and relationships) identified by the Uniform Re-
source Identifiers (URIs [38]) in the RDF triples represent-
ing the data.

The ability to move between data linked in such a way
opens up the possibility of exposing data to the Web,
and then being able to access such data from any appli-
cation. As a simple example, consider personal informa-
tion such as one’s bank statements, information-based re-
sources such as digital photographs, and an application
such as a calendar or diary. Each of these depends on data
which is controlled by the applications that use them. But
in a genuine Web of Data, we could link these data in
a productive way – something as simple as being able to
present one’s financial information in one’s calendar. The
metadata in one’s photographs often includes information
about the time of their creation; an application able to get
at the photograph metadata and the data on one’s calendar
might be able to suggest where the photo was taken, and its
possible location. The ability to use all these data in a con-
structive way is impossible without a Web of linked data
to enable applications to move between the data sources.

In this way, the SW changes our model of the value
of information. Currently, it is generally presumed that
the value of information stems from its scarcity – people
and organizations gain value from information they have
gathered, and are givenmonopoly rights to exploit that in-
formation via such legal contrivances as copyright, intel-
lectual property rights, licensing, and so on. Even when
organizations do not resort to the law, they will make
great investments in protecting trade secrets. However,
this scarcity-based model seems inadequate for the digital
age.

In the first place, as economist William Baumol has ar-
gued, the social benefits from unlicensed use of ‘protected’
knowledge and innovation, were already large in the pre-
digital economy, and indeed account for much of our
wealth today: “some 80 percent of the benefits [innova-
tion] may – i. e. change round brackets to square, as this is
an editorial interpolation by us plausibly have gone to per-
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sons who made no direct contribution to innovation. The
rather startling implication of all this is that the spillovers
of innovation, both direct and indirect, can be estimated to
constitute well over half of current [US] GDP – and it can
even be argued that this is a very conservative figure” (see
p. 135 in [32]). And secondly, the Internet and the Web
have made it harder to preserve monopoly rights to infor-
mation, as copying and distribution reduces the marginal
cost to producers to close to zero. Although many media
companies have taken rearguard action to protect their in-
tellectual property, so simple is the distribution model on
theWeb that the basis of the value of information is rapidly
switching from scarcity to abundance. It is the large quan-
tity of data, that can be placed in novel and unintended
contexts with little cost, that makes it increasingly valuable
in the age of digital technologies – and it is this abundance
that the SW is designed to foster.

One of the major drivers of the SW has been the trans-
formation of science into e-science, a computer-enabled,
data-heavy view of science as the analysis of the very large
quantities of information that improved instrumentation,
larger computer power, more prevalent sensor networks
and greater memory storage have released. Several disci-
plines have seized on the opportunity to exploit such data,
which are often available only in diverse and heteroge-
neous datasets. In particular, interdisciplinary research is
growing in importance, requiring data developed in dif-
ferent disciplines, using a confusion of vocabularies and
methods of collection. Methods for dealing with such large
and heterogeneous datasets are required inmany areas, in-
cluding the life sciences, climate research, medicine and
epidemiology, and genomics, to name but four, which ex-
plains the interest in many of these fields in the SW.

The use of the SW in such large, public projects was
perhaps predictable, but much debate and discussion has
focusedmore on the individual’s interface to it.We discuss
this in more detail below, but one reason for this was that
the landmark publication for the public view of the SW,
an article in Scientific American for 2001, written by Bern-
ers-Lee, JamesHendler andOra Lassila [37], developed the
idea of aWeb of Data with a number of household gadgets
interfacing with it. The possibilities envisaged in their sce-
nario included: a telephone that turned down the volume
of all local devices with volume controls when it rang; an
agent that could plan a program of medical care; and a cal-
endar that could integrate this information to adjust a set
of appointments. The point of the article was not the im-
pressive set of agents, but rather the Web of Data that sat
underneath them. However, many readers focused on the
gadgets, and – given that such gadgets are not at the time of
writing very common or effective – have concluded either

that the SW has been a failure, or that it was an unrealistic
vision from the beginning (see Sect. “Controversies”).

In 2006, a further publication by Berners-Lee, together
with Nigel Shadbolt and Wendy Hall, appeared in the
publication IEEE Intelligent Systems de-emphasising the
agents and focusing on the idea of the SW as a Web of
Data or actionable information [101]. This paper argued
that the agents described in 2001 could only flourish when
standards for data sharing are well-established. The need
for such standards, and for SW technologies in general,
was growing, thanks to developments such as e-science,
information-based medicine, and e-government.

Since the late 1990s, theWorldWideWebConsortium
(W3C), under the direction of Berners-Lee, has led the
drive to create the standards. Figure 1 shows a diagram-
matic representation of the progress of the SW in the de-
velopment of its layered standards (the hierarchically-ar-
ranged layers are marked in Fig. 1 down the left hand col-
umn as markup/data/ontology etc.). The development of
each layer goes through a long, sometimes tortuous, pro-
cess of research and discussion. Initial stages of research,
sometimes competitive, after some time produce a rough
consensus about the general properties of a formalism to
implement a layer. At that point, consideration is under-
taken about creating a Web standard by the W3C.

To create a standard, a group, representative of stake-
holders from academe and private enterprise, is assembled
by the W3C, which first creates a working draft, which is
released under that status for review by the community.
Commentary is welcomed, and the draft may be changed
dramatically. Once the group responsible for the standard
is satisfied that it is fully capable of doing what it required,
it is released as a candidate recommendation, when it is
critiqued in terms of the practicability of its implementa-
tion. The next stage is to become a proposed recommen-
dation, when it is submitted to the W3C advisory council.
Finally, it is released as a W3C recommendation. It gen-
erally takes years to negotiate these various stages. Cur-
rently, the markup language XML, the data representation
and interchange languages RDF and RDF(S), and the on-
tology language OWL are full recommendations. The next
layer up from the ontology layer is that of rules and query-
ing: the query language SPARQL became a W3C recom-
mendation in January 2008 [96], while the rule expression
language RIF is at the time of writing at the working draft
stage [41].

Figure 1 represents the historical progress of the SW
in terms of a ‘wave’ rolling over ‘dry land’. The depth of
the ‘sea’ indicates the extent to which SW standards have
been accepted and been deployed widely. The SW wave is
traveling from the bottom left of the diagram to the top
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Semantic Web, Figure 1
The wave of development of the Semantic Web [51]

right; the net result of this is that the lower levels of the
SW are coming into being and wide acceptance ahead of
the higher levels. RDF is, at the time of writing, reason-
ably widely deployed; SPARQL has recently become a rec-
ommendation; trust (the highest level represented here) is
still a research issue, and the consensus about what form
a standard to represent and promote trust in data is still in
the process of formation.

Linking Data

The underlying aim of the SW is to allow data to be ex-
plored and queried on the Web, analogously to the way
that documents are currently investigated online. One pre-
condition for this is obviously the publishing of data on
the Web, but another is to create the links that allow data
to be explored. RDF allows representation of data in such
a way that anything referred to in the data can be linked to,
and from. If URIs are used to name things, common nam-
ing schemes are allowed to emerge; one of the most im-
portant is the Hypertext Transfer Protocol (HTTP [59]),
which affords a straightforward mechanism for people to
look up the names. In a properly linked Web of Data, the
URI, once looked up, should provide access to useful in-
formation about the resource named, as well as useful links
out to other data.

Links can be made using variousmechanisms, the sim-
plest of which is to use a URI that points to another. For
example (taken from [35]), someone might describe some
relationships in RDF as follows:

<rdf:Description about="#albert"
<fam:child rdf:Resource="#brian">
<fam:child rdf:Resource="#carol">

</rdf:Description>

This RDF is about three resources given the local identi-
fiers ‘#albert’, ‘#brian’ and ‘#carol’, and might be placed
in a file called ‘<http://example.org/smith>’. The archi-
tecture of the Web can use these names to provide
a global identifier for the three resources; for instance
“http://example.org/smith#albert” refers to #albert, and so
on. And now there is a global identifier, links can be made.
For instance, a document ‘<http://example.org/jones>’
might contain the following RDF:

<rdf:Description about="#denise"
<fam:child rdf:Resource="#edwin">
<fam:child rdf:Resource=

"http://example.org/smith#carol">
</rdf:Description>

Here a series of relationships between resources #denise,
#edwin and #carol have been asserted, but the datum
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about #carol makes it possible to link to the data in
the other file. Someone following the link dereferences
the URI, i. e. decomposes ‘http://example.org/smith#carol’
into two parts: the part before the ‘#’ which gives the name
and location of the file; and ‘#carol’ which is the local iden-
tifier in that file. Hence the information about #carol in the
first file can be accessed thanks to the link included in the
second file. The series of links between different resources
can be represented, at least on a small scale, graphically, as
in Fig. 3. This is the simplest way of linking data, though
there are others [35]. And if the URI used for reference is
created under a widely-supported system in a community,
then the prospects for linking data are that much larger.

One of the main drivers of the SW is the vast quantity
of data available in the form of relational databases (RDBs)
(RDBs), which often exist in isolation from each other.
Each database has its own value, but as argued above, the
major source of informational value in the digital age is
abundance, the possibilities for serendipitous reuse of data
by placing it in fruitful contexts. To that end, a key aim
of the SW is to harvest the large amount of data held in
RDBs – a much larger quantity than is currently available
in the document Web – and to support its amalgamation.
The net result will be to facilitate the treatment of all the
data as, in effect, sitting in a single queryable database.

Much of the current Web is supported by larger
databases that sit below the level of what can be seen on
a webpage; these databases are known as the deep Web, as
opposed to the shallowWeb on webpages. So, for instance,
when one looks at one’s bank statement on the shallow
Web, the webpage that the bank’s site creates uses a much
larger quantity of data about one’s bank account than is
visible at any one time. Hence an alternative way of look-
ing at this role for the SW is as a method for allowing users
to query the whole of the deepWeb, rather than simply the
information released onto the shallowWeb by the current
set of implemented applications.

An RDB consists of a series of tables, which consist of
rows or records of individual data items. Each record con-
sists of a set of values of fields or attributes. The records
(rows) and fields (columns) together can be conceived as
a table or matrix (m records and n fields give us an m × n
matrix) [50]. So, for instance, each record may represent
an individual person, while a particular field may repre-
sent zip codes. The value placed in the zip code field of
a person’s record is therefore the value of that person’s
zip code. This tabular structure for RDBs can be mapped
straightforwardly into an RDF representation. The record
can be seen as the subject of an RDF triple, the field name
is a link or property type, while the value of that field is the
object of the triple. Hence the person who is represented

by the record in the example RDB above would be rep-
resented by the first item of the triple; the zip code field
would be represented by a zip_code property the second
item of the triple; and the value of the zip code would be
the third item. In that way, each cell of the RDB matrix is
represented by an individual RDF triple, and the total set
of triples would represent the entire database [34].

Having said that, there are additional factors about
RDBs that are harder to capture in the RDF, and there
are many open questions about the export of RDB. For in-
stance, it may be that the database is definitive – that is,
the institution holding the data has some responsibility for
the data. It may be that the State of Texas holds a database
of all Texas vehicle registration numbers; any car not on
the database is not, as a matter of definition, registered
in Texas. On a smaller scale, some RDBs allow a primary
field for a unique identifier for the record, which also holds
a significance beyond the particular piece of data. There
are various ways of modeling these context-based prop-
erties of RDBs, perhaps most likely devolving the repre-
sentation of such matters to the applications that use the
data, via the ontologies, rules or query types that they use.
See [34] for a worked example of methods to expose an
RDB to the Web.

The process of exposing databases to the Web should
not be too prescriptive – the whole point of the Web is as
a decentralized collection of linked information, whether
in the form of data or documents. The links are entirely
democratic, and can be made between any pair of data
items, or any pair of documents. This is where the power of
theWeb’s ability to promote serendipitous reuse comes in.
Attempting to fix themethods or languages used, or to ‘po-
lice’ the links made, will blur this vision, and create bottle-
necks impeding information flow. Indeed, the widespread
use of the Web is largely down to its non-prescriptive na-
ture – prescription will simply drive users, who will not
want particular informationmanagement strategies forced
upon them, from the Web.

The result is a particularly untidy situation, unusual in
the history of information management. If data, informa-
tion or knowledge is generated within a single organiza-
tion or affiliation (the usual situation for informationman-
agers before the growth of theWeb), then information sys-
tems can trade on a number of simplifying assumptions.
The size of such repositories can be assumed to be small or
medium, and representation schemes would be planned
and homogeneous. The quality of information would be
likely to be high, and managers’ trust in it correspondingly
high. But on the Web scale, these assumptions fail. The
amount of data available for query may be extremely high,
and represented in highly heterogeneous ways – rarely in
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the optimal way for the manager’s task in hand. Informa-
tion quality, and trust in that quality, would be very vari-
able. Linking data using common URI schemes will never
work perfectly, precisely because there are deliberately no
enforcement mechanisms on the Web, and people cannot
be forced to use any particular naming convention.

It is primarily for this reason that ontologies have al-
ways played a central role in the vision of the SW [57].
It is the ontology that puts the ‘semantic’ into ‘Semantic
Web’. Ontologies specify the vocabulary, concepts and re-
lationships of a domain. They must be a rationalization of
current practice, andmanaged and endorsed by a commu-
nity. They act as a specification of the terms used in dis-
cussion. But they should not be too prescriptive – terms
change over time, others are in constant dispute. Ontolo-
gies need to develop as a discipline or domain develops.
Different areas will have different requirements of ontolo-
gies; some sciences will have large, publicly-managed on-
tologies which act as a public vocabulary standard, while
others will make do with small, lightweight ontologies that
only define the relationships between a few terms. The on-
tological requirements of any individual application may
be quite small; the question for the application developer
is whether to develop a small special-purpose ontology for
her own individual purposes, or alternatively whether to
reuse a larger, better-known ontology that may overspec-
ify vocabulary for her purposes. Much will depend on the
usual practices of her wider community. It should be noted
that the SW project does not require a single overarching
ontology, referring to and prescribing everything.

The ontology is key to being able to deal with het-
erogeneous datasets as described above; the data, and the
terms used in it, must be mapped onto other terms held
in common. Once this has been done, then databases can
be understood in common terms – and, most crucially,
the information they hold amalgamated and processed by
machines. It is of course obvious to a human user that if
one database of people has a field ZC, while another has
a field zip_code, that there is at least a good chance that
the two fields refer to the same attribute of people, viz., the
zip codes of their addresses; a computer will merely try,
and fail, to match the strings identifying each field. But if
the computer is referred to an ontology and given map-
pings from the terms used in the two databases to the on-
tology’s terms, then it can be told about the equivalence,
and accordingly its inference space is opened up (for in-
stance, it could make some inferences from the fact that
ZC(X) = zip_code(y)). Machine processing of this hetero-
geneous, distributed data is made possible by ontologies.

There are, of course, several issues pertaining to the
use of ontologies in the SW, some of which will be dis-

cussed in greater detail in the Sect. “Controversies”. The
development of an ontology for an application is a (poten-
tially large) initial cost to an application developer, and it
is likely that ontologies, especially well-known ones, will
be reused. To that end, searching for ontologies is likely
to be a growth area in the future; there are already spe-
cialized search engines, such as Swoogle, dedicated to this
task [8,54]. It may also be that one application might use
several ontologies (for instance, an interdisciplinary sci-
entific application may well reuse well-known ontologies
from each discipline that it crosses). In that case, map-
pings between the ontologies will be important, and such
mappings, as opposed to the ontologies themselves, could
become the semantic basis for the application [78].

Building an ontology from scratch is always an op-
tion, especially if the application requires only relatively
lightweight ontological apparatus [89]; again, special-pur-
pose tools, such as Protégé are already available and well-
used in the SW community [6,90]. Generating an ontol-
ogy from an RDB can be done semi-automatically, and
then mappings (which will be fairly straightforward, given
the method of ontology generation) defined between the
database and the ontology [105]. The problem is more
complex if the aim is to map a legacy database onto an ex-
isting ontology. In particular, the mappings between the
database and the ontology can be expected to be quite
complex, and therefore very expressive languages will be
required to describe them, such as the language R2O [31].

The LayeredModel of the SemanticWeb

The Web, as a decentralized construction, cannot be cre-
ated by fiat or prescription, which would limit its growth
and create bottlenecks for information mobility. But to
allow the Web of Data to reach fruition at the scale
envisaged, several related tasks are required to be per-
formed [101]. As discussed above, the W3C has devoted
resources over the last few years to developing formalisms
and standards to allow these tasks to be addressed, and the
tasks themselves have also been arranged in a series of lay-
ers, depicted in a hierarchical diagram. The diagram has
evolved with the vision of the SW, but is not dissimilar to
its first incarnation, and at the time of writing is seen as in
Fig. 2.

As noted above, and in Fig. 1, the development of these
layers has been bottom-up, concentrating on the lower lev-
els before work begins on those further up. The lower lay-
ers are now often the subject of W3C recommendations,
while work on the upper layers remains generally more
theoretical, and contains more open research questions.
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Semantic Web, Figure 2
The layered view of the Semantic Web [39]

At the lowest level we have URIs (and IRIs, Interna-
tionalized Resource Identifiers, which are generalizations
of URIs allowing non-ASCII characters to be used [56]).
URIs identify resources in a global way – in other words,
they are interpreted consistently across applications, un-
like individual naming conventions, and therefore are cen-
tral to the vision of a Web of Data [38]. Using a URI to
identify a resource (whether that resource be a piece of in-
formation, a real-world object, an abstract concept, etc.)
allows others to use the same identifier to link to the re-
source, refer to it, or retrieve a representation of it; this
shifts the emphasis online from documents to data, and al-
lows direct machine processing of data. If the URI scheme
used is the Hypertext Transfer Protocol (http), then that is
particularly helpful as http guides the user as to the loca-
tion of the resource (although there are several other URI
schemes, and indeed users can invent their own).

This ability to refer globally is why the export of data
from RDBs to the SW should be facilitated, as noted above,
by exporting database objects as first-class objects iden-
tified with URIs. A number of SW applications have di-
verged from this vision by not releasing their data onto
the Web, but instead archiving them in inaccessible files
(at least sometimes because of privacy concerns); Berners-
Lee in particular has complained about this tendency [35].
However, this has happend at least sometimes because of
privacy concerns.

The next layer up from names is that of markup and
data interchange – the realm of XML and RDF. The eXten-
sible Markup Language (XML [44]) is a metalanguage for
markup – in other words, a way of supporting communi-
cation and data interchange within communities by defin-

ing specialized vocabularies – commonly used in a number
of sectors.

XML, like the Hypertext Markup Language (HTML)
that underpins the current Web, is descended from
the Standard Generalized Markup Language (SGML), an
international standard for defining system-independent
methods of representing information, and so has no con-
ceptual connection to the SW. The main language for data
interchange on the SW, on the other hand, RDF, is spe-
cially designed for the task, by assigning specific URIs to
the fields in its triples. Figure 3 shows an RDF graph of
nodes and arcs made up of several triples – each triple con-
sists of two labeled nodes, from which is pointing a labeled
directed arc. The two nodes are the first and third elements
of the triple; the arc is the second (it points from the first
element to the third). The use of URIs to refer to the prop-
erties as well as the objects is an important step to provid-
ing semantics – it enables us to reason about and link to
relationships as well as objects.

Figure 3 shows four triples, all ‘about’ an individ-
ual called Eric Miller, identified by ‘http://www.w3.org/
People/EM/contact#me’. If we look at these triples clock-
wise from the right, the first represents a connection be-
tween Miller, the property of ‘having the name . . . ’ (which
is referred to by the URI ‘http://www.w3.org/2000/10/
swap/pim/contact#fullName’), and a character string ‘Eric
Miller’. The second links Miller, by the property of having
a mailbox, to the value of that property, which is his email
address given using the common ‘mailto:’ URI scheme.
The third again links Miller with a personal title, the prop-
erty given as an http URI, and the title as a character string.
The fourth triple provides some vocabulary in RDF – it
refers to a namespace (an RDF document defining expres-
sive resources which are imported by the RDF graph in
Fig. 3) which defines some important relations – and in
effect says that Miller (the first object in the triple) is an
instance of (a relationship which is the second object in
the triple) a person (a class which is the third object in the
triple).

Based as it is on triples, RDF is simple yet pow-
erful, exploiting the resources of the common sub-
ject/predicate/object structure, and its basis in URIs is
very important for the SW. It is a minimalist knowledge
representation language for the Web – there are some
types of knowledge that cannot be represented in RDF, or
only represented with difficulty. For instance, a predicate
with more than two arguments has to be represented in
a somewhat awkward way as a conjunction of two-argu-
ment predicates, while statements about hierarchical class
relationships, say, need a further formalism. Furthermore,
although the graph structure is quite intuitive, the actual
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Semantic Web, Figure 3
An RDF graph representing Eric Miller [83]

syntax of RDF is based on XML (it is called RDF/XML)
and, although it is well-suited to machine processing, it is
not very easy for the human to read (see especially pp. 68–
69 in [27]).

The growth in use of RDF has led to the need for
special-purpose data stores for holding large quantities of
RDF triples (often a set of data will be represented by mil-
lions of triples). Such data stores are known as triplestores,
and need to provide not only storage, but efficient means
of reasoning over and retrieving the data that will scale to
the large sizes that will be needed. Examples of triplestores
include JENA [4], 3store [7,67] and Oracle 11g [16].

Greater expressivity is required than is given in RDF,
and to that end there another layer upwards which allows
the expression of important information about the vocab-
ularies used to express data. As we can see in Fig. 2, the
layer here is relatively complex, and contains four boxes,
RDFS, Ontology, Rules and Query. These between them
provide representation and capabilities that are essential
for putting the SW to use.

RDF Schema (RDFS, and sometimes RDF(S) [47])
provides a basic set of tools for producing structured vo-
cabularies that allow different users to agree on particular
uses of terms. An extension of RDF, it adds a few mod-
elling primitives with a fixed meaning (such as class, sub-
class and property relations, and domain and range re-
striction). It is a basic ontology language that has been
adopted fairly widely, and although fairly minimal it can
express important constraints on vocabularies.

RDFS is deliberately minimal, and concentrates on ex-
pressing subclass and property hierarchies, with various
restrictions on these, but the research community, includ-
ing the Web OntologyWorking Group of W3C, identified
a number of requirements for greater expressivity for on-
tologies. As a couple of examples, RDFS allows the stating
of subclass relationships, but not, say, that two classes are
disjoint; neither does it allow class cardinality restrictions
(e. g. a person has exactly two parents). As can be seen in
Fig. 1, early research efforts into ontology languages led to
two leading candidates being developed: DAML (DARPA
Agent Markup Language [84]), and OIL (Ontology Inter-
change Language orOntology Inference Layer [58]). These
two, combined as DAML+OIL [94], became the seed for
the W3C ontology language OWL. Unsubstantiated ru-
mor suggests that the fact that it is called ‘OWL’ and not
‘WOL’ is an arcane joke: in A. A. Milne’sWinnie-the-Pooh
stories, Owl, who is wise and unusually literate for a forest-
dweller, spells his name W-O-L. It is more likely that this
is a post hoc rationalization of the naming decision.

The needs of ontology languages are great and po-
tentially problematic. Expressivity is an issue. Even at the
level of RDF, its reification mechanism allows the mod-
eler to make statements about statements – an expres-
sive possibility that can lead to logical problems. RDFS
has even more powerful modelling primitives, including
‘rdfs:Class’, the class of all classes. OWL [85] is a strong
language for representing concepts and their relations, and
its creators needed to wrestle with the inevitable trade-
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off between expressivity and efficient reasoning support,
with two particular constraints demanded by the Seman-
tic Web. First, there is the strong decentralization and lack
of enforcement mechanisms on the Web, so that people
cannot be forced to use a language they do not want to.
Creating a language this powerful, for all purposes, may
well have resulted in it not being used at all. Those who
need great expressivity might be inclined to use their own
favorite non-standard language, while those who want ef-
ficient reasoning might prefer to revert to RDFS. The sec-
ond constraint is that the layered view of the SW (Fig. 2)
makes it desirable that OWL should be an extension of
RDFS – it should use the RDF interpretation of classes and
properties and add primitives to provide richer expressiv-
ity. However, this cannot be the basis for OWL, because
the addition of powerful reasoning to the expressive power
of RDFS (to define such items as the class of all classes)
would result in a language very hard to control.

To pick their way between these various pitfalls, the de-
velopers of OWL created three separate languages, OWL
Full, OWL DL and OWL Lite [85]. OWL Full is the
complete language, a full set of OWL primitives, which
can be combined with RDF and RDFS in arbitrary ways.
This includes the possibility that an OWL Full ontology
could augment or alter the meaning of a pre-defined RDF,
RDFS or OWL term (for instance, one could put a car-
dinality constraint on the size of the class of all classes,
thereby limiting the number of possible classes that could
be constructed). OWLFull is compatible with RDF, so that
any legal RDF document is an OWL Full document. The
downside of all this expressivity is that the language is un-
decidable, which rules out the possibility of complete rea-
soning support.

OWLDL is intended to be open to computational sup-
port, and is a sublanguage of OWL Full (so that any legal
OWL DL ontology is a legal OWL Full ontology). OWL
DL is so named because it is based on description logic,
a type of knowledge representation language used to de-
scribe the knowledge definitive of a particular application
domain [29], and is designed to be complete and decidable
(in particular, application of OWL’s constructors to each
other is restricted). This does mean that full compatibility
with RDF is lost: although every legal OWL DL document
is a legal RDF document, the inverse is not true.

OWL Lite is a very lightweight language to support
users requiring a classification hierarchy with simple con-
straints. Reasoning support should be relatively efficient,
and it is intended to provide a straightforward migration
route for bringing thesauri and taxonomies to the SW.
A legal OWL Lite ontology is also a legal OWL DL ontol-
ogy, but the cost of ease of reasoning is a lack of expres-

sivity, so for instance enumerated classes, statements of
disjointness and assignment of arbitrary cardinality con-
straints (i. e. restrictions of class cardinality to any number
other than 0 and 1) are disallowed.

Even though the relationship between OWL and RDF
is complex, its roots in RDF allow OWL to exploit RDF’s
linking capabilities to allow ontologies to be distributed
across systems. When constructing an ontology in OWL,
the developer can refer to terms in other ontologies, which
then encourages the sharing of terminology across dis-
tributed data sources. Sharing ontologies is not always suf-
ficient when it comes to data sharing – an organization
may find that nearly all of an imported ontology is ade-
quate, but it needs extra identifiers and descriptions, and
in such a case it should be allowed to add them, rather than
build a new ontology from scratch [70]. This ability to as-
semble distributed ontologies is central to the SW vision.

Expressing ontological relations vital, but having
achieved a representation of the domain with semantics,
one still needs to make inferences. OWL has some infer-
ential support, such as subsumption and classification, but
there are several inferential methods that will be required
on the SW. Hence, work is currently ongoing on the Rule
Interchange Format (RIF), which is intended to allow a va-
riety of rule-based formalisms, ranging from Horn-clause
logics, higher order logics and production systems, to be
used [41]. Various insights fromArtificial Intelligence (AI)
have also been adapted for use for the SW for various pur-
poses, including temporal (time-based) logic, causal logic
and probabilistic logics [30,75,101,102].

And given the domain description at its desired level
of expressivity and a means of making inferences, then the
next important function at this level is the ability to query
the data. Query language SPARQL works in effect by con-
structing a graph of RDF-like triples thatmay contain vari-
ables, which is then matched against the RDF graph to be
queried; the query is successful if there is a subgraph of the
RDF graph which matches the query when RDF terms are
substituted for its variables [96].

Sitting on top of these layers are further layers with
a unifying logic, proof systems and trust systems. As can
be seen from Fig. 1, these upper layers remain topics of
exploratory research.

Trust is perhaps key to widespread application of the
SW. If information is being drawn from heterogeneous
sources, then it is important that users are able to trust
such sources if they are to act on the inferences that result.
Trust will of course depend on the criticality of the infer-
ences – trust entails risk, and a risk-averse user will natu-
rally trust fewer sources [42,92].Measuring trust, however,
is a complex problem [62]. A key parameter is that of the
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provenance of data, a statement of the conditions under
which data were produced (including statements about
the methods of production and the organization that car-
ried them out). Methods are appearing to describe prove-
nance [63], but more needs to be discovered about how
information spreads across the Web, and therefore how it
can be tracked and understood [39].

Related issues include respect for intellectual property,
and the privacy of data subjects. In each case the reasoning
abilities of the SW can be of value, and initiatives are cur-
rently under way to try to exploit them [93]. Protocols that
allow users to express their own privacy preferences, and
to enable those who wish to reuse information to reason
about those preferences, are being created under the pro-
gram of research into the Policy Aware Web [108]. Cre-
ative Commons is an initiative for representing copyright
policies and preferences based on RDF to promote reuse
where possible (current standard copyright assumptions
are deliberately restrictive with respect to reuse) [2]. Cryp-
tography protocols to protect information and privacy will
also play an important role at all levels, as shown in Fig. 2.

Applications

The top layer of Fig. 2 is that of a user interface and appli-
cations. This recognizes the fact that if the SW cannot be
used easily, and integrated into people’s workflows in or-
der to add value to their informational transactions, then
it will not attract a large user base, without which the net-
work effects already seen in the development of the World
Wide Web will not transpire. Network effects are those
positive benefits that increase in certain communication
systems faster than its user base expands. In the same way
as a telephone system is of limited value to a handful of
people and enormous value to a large number, a few peo-
ple exposing data to the SW is unlikely to make much of
a difference, whereas if scalable SW technologies were ap-
plied to something like the quantity of data to be found
currently in the DeepWeb, the gains would be immense.

One not entirely frivolous way of expressing the need
for the top layer of the SW is to say that its user base needs
to grow quickly, and what is needed is a ‘killer app’, in
other words an application that will meet a felt need and
create a perception of the technology as ‘essential’. Less
ambitiously, the SW’s spread depends not only on having
an impressive set of formalisms, but also the tools to use
the linked data [26].

Bootstrapping

One particular user issue is the importance of bootstrap-
ping content for the SW. Even if RDF began to be pub-

lished routinely, the amount of legacy content on the Web
would dwarf new data for some time, and to make this
legacy accessible to SW technology some automation of
the process of creating RDF from other formats is re-
quired. CS AKTive Space [98], discussed in more detail
below, amassed a large quantity of information about the
state of computer science research in the United King-
dom through a relatively laborious process of harvesting
information from the webpages of computer science de-
partments in British universities without necessarily act-
ing as a source, and using natural language processing and
an ontology to interpret the data. The application was very
successful, but the researchers were SW researchers, and
the process is likely to be too onerous to be repeated on
a large scale by non-experts. Assumptions can be made
about webpage structure (for example, about regular lay-
outs generated from a database by an individual website),
and tools have been developed to exploit them [82].

An important development in this field is GRDDL
(Gleaning Resource Descriptions from Dialects of Lan-
guages) which became a W3C recommendation in
September 2007, and which allows the extraction of RDF
from XML and XHTML (a further markup language) doc-
uments using transformations expressed in XSLT, an ex-
tensible stylesheet language based on XML. It is hoped that
such extraction could allow bootstrapping of some of the
hoped-for SW network effects, given the amount of XML
and XHTML data in the DeepWeb [52].

Annotating documents and data with metadata about
their content, provenance and other useful dimensions
(even including the emotional dimension to content –
[100]) is also important for the effort to bring more con-
tent into the range of SW technologies [64]. Multimedia
are a particular focus for research into annotation [106].
Manual annotation is a great burden for information hold-
ers, and a major initial cost for the SW, so methods of au-
tomating annotation have been investigated by a number
of research teams in order to increase the quantity of an-
notated data available without excessive expenditure of re-
sources [64,65,107].

In addition, as a large quantity of the Web is actu-
ally written in natural language, some have seen a role for
natural language processing (NLP), and information ex-
traction (IE), for analyzing this text statistically. So large
is the Web’s store of written language (two thousand bil-
lion words) that it can function as a corpus which dwarfs
the most ambitious attempts of dedicated corpus builders
in computational linguistics of only a few years ago [79].
And given this, and the need for automating or semi-
automating annotation, NLP techniques, augmented by
ontologies and training with humans, can be used to
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extracted machine-readable structured information from
plain text [43,48,49,76]. There have also been attempts to
build ontologies using NLP techniques, another of the ma-
jor anticipated bottlenecks for the SW [45]. See also the
Subsect. “Commercial and Non-academic Applications”
for some examples of SW applications using NLP.

Application Areas

Predicting which particular applications will succeed is
unscientific and usually inaccurate. In fact, as it is the rich
information contexts that the web of linked data provides
that will increase the value of individual pieces of data,
one way in which such growth can be encouraged is to fo-
cus on small communities with pressing information-pro-
cessing requirements, and various more-or-less common
goals; such communities can be the ‘killer apps’, or, more
accurately, the early adopters of the technology, exactly as
the high energy physics discipline played a vital role in the
development of the WWW (cf. e. g. [20]). A series of case
studies and use cases is maintained at [21].

The most promising of these communities is e-sci-
ence, the data-driven, computationally-intensive pursuit
of science in highly distributed computational environ-
ments [72]. Large quantities of data are created by analy-
sis and experiments in disciplines such as particle physics,
meteorology and the life sciences. Furthermore, in many
contexts, different communities of scientists will come to-
gether to perform interdisciplinary work, so that data from
various fields (e. g. genomics, clinical drug trials and epi-
demiology) varying not only in vocabulary, but also in the
scale of description, need to be integrated. Many scien-
tific disciplines have created large-scale and robust ontolo-
gies for this and other purposes. The most well-known of
these is the Gene Ontology, a controlled vocabulary to de-
scribe gene and gene product attributes in organisms, and
related vocabularies developed by Open Biomedical On-
tologies. Others include the Protein Ontology, the Cell Cy-
cle Ontology, MeSH (Medical Subject Headings, used to
index life science publications), SNOMED (Systematized
Nomenclature of Medicine) and AGROVOC (agriculture,
forestry, fisheries and food). For more examples and refer-
ences see [101].

E-government is another important application area,
where heterogeneous information of varying quality is de-
ployed widely. Government information varies in prove-
nance, confidentiality and “shelf life” (some information
will be good for decades or even centuries, while other
information can be out of date within hours), while it
can also have been created by various levels of govern-
ment (national/federal, regional, state, city, parish). Pri-

vacy and security are also obviously important factors in
this space. Integrating government information in a timely
way is clearly an important challenge (see for instance a pi-
lot study for the United Kingdom’s Office of Public Sec-
tor Information, exploring the use of SW technologies for
disseminating, sharing and reusing data held in the public
sector [25]).

Academic Applications

Many applications for the SW have been developed with
the specific purpose of bringing the SW to maturity. These
are often written up in conferences such as the regu-
lar World Wide Web Conferences, the International Se-
mantic Web Conferences (ISWC), the European Semantic
Web Conferences (ESWC), as well as several one-off con-
ferences and workshops, and can be found in the proceed-
ings (usually online) of any of these. See also the Journal of
Web Semantics [22].

One initiative of interest here is the Semantic Web
Challenge [1], which runs annually alongside the ISWC.
This is a good-natured competition to find applications
that show SW technology in the best light and which can
act as benchmarks for the research community. These ap-
plications, therefore, are to some extent an objective list of
applications through the years that use semantic technolo-
gies to solve real-world problems involving heterogeneous
real-world data. The winners of the SW Challenges from
its inception, 2003, to the time of writing, 2007, are as fol-
lows.

2003: CS AKTive Space (University of Southampton) is
an application to explore the UK Computer Science Re-
search domain across multiple dimensions for multiple
stakeholders, allowing the tracking of the activities of all
agents from funding agencies to individual researchers,
using information harvested from the Web, and mediated
through an ontology [98].

2004: Flink (Vrije Universiteit Amsterdam) is a ‘Who’s
Who’ of the SW which allows the interrogation of infor-
mation gathered automatically from Web-accessible re-
sources about researchers who have participated in ISWC
conferences [86].

2005: CONFOTO (appmosphere web applications,
Germany) is a browsing and annotation service for con-
ference photographs [88].

2006: MultimediaN E-Culture Demonstrator (Vrije
Universiteit Amsterdam, Centre for Mathematics and



8096 S Semantic Web

Computer Science, Universiteit van Amsterdam, Digital
Heritage Netherlands and Technical University of Eind-
hoven) searches, navigates and annotates media collec-
tions interactively, using digital representations of items
from the collections of several well-known museums and
art repositories [99].

2007: Revyu.com (Open University) is a reviewing and
rating site specifically designed for the SW, allowing re-
views of any kind of resource, content or event to be
integrated and interlinked with data from other sources
(in particular, other reviews, which proliferate on the
Web) [69].

A typical SW application will generate a new ontology
for its application domain (e. g. art, as with MultimediaN
or computer science, as with CS AKTive Space), and use
it to interrogate large stores of data, whether legacy data
or freshly harvested. This strand of research is tending to
confirm the hypothesis that ontologies have an important
role in mediating the integration of data from heteroge-
neous sources.

Commercial and Non-academic Applications

SW applications are generally presented using custom-
built interfaces. This suggests a very important area for fu-
ture research, the development of scalable visualizers capa-
ble of navigating the graph of connected information ex-
pressed in RDF. As can be seen, the importance of applica-
tions and user interfaces was made clear in the layered SW
diagram (Fig. 2). However, we shouldn’t expect to ‘see’ the
SW in a special browser, in the way that we can see the
Web of Documents through browsers such as Internet Ex-
plorer, Netscape or Mozilla Firefox. Rather, SW technolo-
gies, facilitating the exploration of data, may well work at
the back end of websites to improve the user experience.
Examples of such sites pointed to by the W3C include
Sun’s white paper collection site [18], Nokia’s developers’
discussion forum [11], Oracle’s virtual press room [5], and
Harper’s online magazine [13].

There is an increasing number of applications support-
ing deeper querying of linked data. The DBpedia [28] is
based on the collaborative encyclopedia Wikipedia cre-
ated by volunteers, and is intended to extract structured
information fromWikipedia allowing much more sophis-
ticated querying. Sample queries given on the DPpedia
website include a list of people influenced by Friedrich
Nietzsche, and the set of images of American guitarists.
DBpedia uses RDF, and is also interlinked with other data
sources on the Web. When accessed in late 2007, the DB-
pedia dataset contained 103 million RDF triples. Other

examples of linked data applications include the DBLP
bibliography of scientific papers [23], and the GeoNames
database which represents descriptions of millions of geo-
graphical features in RDF [12].

As well as existing organizations using semantic tech-
nologies to improve user experience, and applications ex-
ploiting linked data, commercial firms are beginning to
appear whose business model is based on the possibili-
ties of the SW. Garlik [24] aims to provide individual con-
sumers with more power over their digital data. It reviews
what is held about people, harvesting data from the open
Web, and represents this in a people-centric structure.
Natural Language Processing is used to find occurrences
of people’s names, sensitive information, and relations to
other individuals and organisations (Declaration of inter-
est: Wendy Hall is Chair of the Garlik Advisory Board).
Twine [19] aims to facilitate knowledge and information
sharing, and to organize that information using various
SW technologies (also, like Garlik, using NLP). Twine’s
developer Nova Spivack coined the term ‘knowledge net-
working’ to describe the sharing process, analogous to the
Web 2.0 idea of ‘social networking’.

Controversies

The SWhas been controversial during its history, with sev-
eral commentators arguing that it is based upon unreal-
istic expectations, or repeats the mistakes of other initia-
tives. The arguments against the SW have tended to appear
more in the blogosphere rather than the academic world,
perhaps because people in the SW world are genuinely en-
thusiasts while those without confidence in the SW project
are doing other things. The pro-SW website GetSemantic
supports a wiki page of arguments against the SW, with
references and responses [3]. In this section, we will exam-
ine three of the most prominent arguments raised against
the SW.

The Semantic Web Repeats the Mistakes
of “Good Old-Fashioned Artificial Intelligence”

It has been argued that the SW is basically a throw-
back to the project to program machine intelligence [77]
which was jokingly christened by John Haugeland
‘GOFAI’ (Good Old-Fashioned AI). GOFAI proved im-
possible: so much of human intelligence is implicit, con-
text-dependent and situated that writing down everything
a computer needs to know to produce output that exhibits
human-like intelligence is out of the question [68].

One attempt to work around this problem is the Cyc
project, set up in 1984, which aims to produce a gigantic
ontology that will encode all common-sense knowledge,
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in order to support human-like reasoning by machines
(i. e. GOFAI) [81]. The project has always aroused contro-
versy, but it is fair to say that over two decades later, Cyc
is not nearing completion and has not widely perceived as
a solution for the GOFAI problem. The implicit nature of
common-sense knowledge arguablymakes it impossible to
write it all down.

Many commentators have argued that the SW is basi-
cally a re-creation of the (misconceived) GOFAI idea, that
the aim is to create machine intelligence over the Web, to
allowmachines to reason aboutWeb content in such a way
as to exhibit intelligence [77]. This, however, is a mis-
conception, possibly abetted by the strong focus in the
2001 Scientific American article on an agent-based vision
of the SW [37], although co-author of that article James
Hendler has stated very firmly that he believes that the ar-
ticle was radically misinterpreted, and that no-one “can . . .
say we’re advocates of the big AI vision when we explicitly
make it clear we’re pushing for something else” [71]. The
Scientific American article states that “Traditional knowl-
edge-representation systems typically have been central-
ized, requiring everyone to share exactly the same defini-
tion of common concepts such as ‘parent’ or ‘vehicle’. But
central control is stifling, and increasing the size and scope
of such a system rapidly becomes unmanageable” [37].

The SW is not GOFAI reheated, but rather an attempt
to facilitate sharing of, and context-based machine reason-
ing over, content (and therefore the provision of machine-
readable data on theWeb). The aim is not to bring a single
ontology, such as Cyc, to bear on all problems (implicitly
defining or anticipating all problems and points of view),
but to allow data to be interrogated in ways that were not
anticipated by their creators. Different ontologies will be
appropriate for different purposes; composite ontologies
can be assembled from distributed parts [78,85] and it
is frequently very basic ontologies (defining simple terms
such as ‘customer’, ‘account number’ or ‘account balance’)
that add most value to content. In this respect, the situ-
ation in the SW simply mirrors offline life where people
from different communities and disciplines can and do
interact without making any kind of common global on-
tological commitment [36,39,101]. The engineering chal-
lenge, as Berners-Lee et al. argue, is to allow independent
consistent data systems to be connected locally without re-
quiring global consistency [40].

Yorick Wilks, accepting that the SW is not an at-
tempt to recreate GOFAI, argues that this is both a gain
and a loss: a gain because the knowledge representation
structures the SW proposes are computationally tractable,
as opposed to the various GOFAI formalisms; a loss be-
cause DAML+OIL (and presumably by extension OWL)

is less sophisticated than those formalisms, and may not
have the representational power for the complexity of the
world, whether common-sense or scientific [109]. Equally,
as both Wilks and Berners-Lee point out, many in the SW
world began their research careers in artificial intelligence,
as Shadbolt et al. argue that “it will draw on some key in-
sights, tools and techniques derived from 50 years of AI
research” [101].

Ontologies

Ontologies, as we have seen, are vital for the SW vision
of a Web of Data, but are perceived by many as expen-
sive to develop and hard to maintain. The ideal conceptual
apparatus is relative to the task in hand, and different on-
tologies are appropriate for different tasks. Classifications
are also made relative to some background assumptions,
and impose those assumptions onto the resulting ontol-
ogy. To that extent, the expensive development of ontolo-
gies reflects the world view of the ontology builders, not
necessarily the users. They are top-down and authoritar-
ian, and therefore opposed to the Web ethos of decentral-
ization and open conversation. They are fixed in advance,
and so they don’t work very well to represent knowledge
in dynamic, situated contexts. [95] argues, for instance,
that ontologies do not capture the situated processes of
scientific research, the social construction of knowledge
or the emergence and evolution of understanding over
time, and presents an alternative way of representing this
knowledge. [104] implicitly endorses this view, showing
how there are issues in biology that OWL DL is not well-
equipped to handle.

Other papers have made the point that some types of
knowledge are more naturally modeled in ontologies than
others, and, while not opposing the use of ontologies, warn
against too strong a reliance on them for knowledge repre-
sentation. [61] argues that ontologies cannot be too ambi-
tious, and attempts to reify the context of an ontology (i. e.
to provide context-independent accounts of knowledge)
will be undermined by knowledge’s situated nature. [91]
argues that the social context of knowledge requires ap-
plication builders to be maximally receptive to diverse
types of heterogeneous reasoning, which might use knowl-
edge that is hard to capture in hierarchical structures. See
also [46] for a series of short essays debating this point.

A related critical point is that the Web as a decentral-
ized, linked information structure must reflect the prag-
matic needs of its large, heterogeneous user base which
includes very many people who are naive in their under-
standing of computing issues. The infrastructure has to be
usable widely, which argues for simplicity. The rich link-
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ing structure of the Web of Documents, combined with
statistically-based search engines such as Google, is much
more responsive to the needs of unsophisticated users. The
SW, in contrast, demands new information representa-
tion, markup and publishing practices, and corporations
and information owners need to invest in new technolo-
gies. Not only that, but current statistical methods will
scale up as the number of users and interactions grows,
whereas logic-based methods such as those advocated by
the SW, on the other hand, scale less well (cf. e. g. [111]).

The dispute has been fueled by the flowering since
2005 or so of the so-called ‘Web 2.0’ paradigm (of systems,
communities and services facilitating collaboration and
information-sharing among users). In particular, it has
been argued that the meaningful structures that emerge
when sufficiently large numbers of users ‘tag’ content
with key words, structures which have been called ‘folk-
sonomies’, resulting in a structure of connections and clas-
sifications emerging without central control, ‘really’ ex-
press the assumptions of the users, and furthermore in
such a way as to respect their familiar patterns of commu-
nication and workflow. Meanwhile, ontologies ‘really’ ex-
press the needs of the ontology developers and their spon-
sors [103].

However, folksonomies are much less expressive
than ontologies; they are basically variants on keyword
searches. A tag ‘SF’ may refer to science fiction or San
Francisco, even if we make the unrealistic assumption of
a monoglot English user community. In a multilingual en-
vironment such as the Web, further ambiguity is possi-
ble – for instance, ‘SF’ might refer to the Swiss television
station Schweizer Fernsehen. Furthermore, the semantics
of Web 2.0 are relatively shallow, with few links and very
sparse hierarchies.

When a community is large enough and the benefits
clear enough to provide incentives to work together, then
a large-scale ontology building and maintenance program
is justified. It is true that large fixed costs will tend to skew
the effort involved towards authorities who may be un-
representative [91], but Shadbolt et al. argue explicitly that
“the ontologies that will furnish the Semantics for the Se-
mantic Web must be developed, managed, and endorsed
by committed practice communities. Whether the subject
is meteorology or bank transactions, proteins or engine
parts, we need concept definitions we can use” [101].

It is of course an undecided question as to whether
this community involvement will transpire, but in a recent
note, Berners-Lee argues that such conditions will be per-
haps more frequently encountered than sceptics believe.
On the broad assumption that the size of an ontology-
building team increases on the order of the log of the size

of the ontology’s user community, and that the resources
needed to build an ontology increase on the order of the
square of community size, the cost per individual of on-
tology building will diminish rapidly as community size
increases. These assumptions are explicitly intended to be
indicative rather than realistic [36].

More to the point, not all ontologies need be of great
size and expressive depth. It is certainly not the case that
the SW requires a single ontology of all discourse on the
model of Cyc. Such an ontology, even if possible, would
not scale, and in a decentralized structure like the Web
its use could not be enforced. Even in complex scientific
domains, [74] argues, using a case study from the field
of medical informatics, that ontologies should be firmly
based on work practices in the domain. In more mundane
applications, we should expect a lot of use of small-scale,
shallow ontologies defining just a few terms that neverthe-
less are widely applicable [36].

For example, the machine-readable Friend-of-
a-Friend (FOAF) ontology is intended to describe peo-
ple, their activities and their relations to other people. It
is not complex, and publishing a FOAF profile is a fairly
simple matter for which there are dedicated tools [15]. The
resulting network of people has become very large indeed.
A survey performed in 2004 discovered over 1.5 million
documents using the FOAF ontology [55].

In any case, ontologies and folksonomies serve dif-
ferent purposes. Folksonomies are based on word tags,
whereas the basis for ontology reference is via a URI. One
of the main aims of ontology definition is to remove am-
biguity – not globally, for this may well be impossible,
but rather within the particular context of the application.
Folksonomies will necessarily inherit the ambiguity from
the natural language upon which they are based. Never-
theless, a strong possibility that has been considered is to
use cheaply-gathered folksonomies as starting points for
ontology development, gradually morphing the Web 2.0
structures into something with greater precision and less
ambiguity [73,87].

Symbol Grounding

An important aspect of the SW is that URIs must be in-
terpreted consistently. However, terms and symbols are
highly variable in their definitions and use through time
and space. The SW project will be boosted by processes
whereby URIs are given to objects by communities and
individuals, endorsed by the user community, who ensure
consistency. Responsible URI ‘ownership’ is critical to the
smooth functioning of the SW [101].
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But the process of ensuring a fixed and known link
between a symbol and its referent, which has been called
symbol grounding, is at best hard [66], and at worst im-
possible [110]. Meanings do not stay fixed, but alter, often
imperceptibly. They are delineated not only by logical defi-
nitions in terms of necessary and sufficient conditions, but
also by procedures, technologies and instrumentation, and
alter subtly as practice alters.

Any attempt to fix the reference of URIs is a special
case of symbol grounding, and is consequently hard to do
globally. Attempting to resist the alteration in community
practices and norms, and reformulation of meanings of
terms, would be doomed. This is understood by leading
developers of the SW, who agree that “communities and
practice will change norms, conceptualizations, and ter-
minologies in complex and sociologically subtle ways. We
shouldn’t be surprised or attempt to resist these reformu-
lations” [101]. But there is an important issue, as the same
authors concede. “The issue for a Semantic Web built (in
a community-driven way) is to know when parts need re-
vision” [101].

Yorick Wilks has argued that Natural Language Pro-
cessing techniques are essential for grounding the SW,
because of the preponderance of text-based content on
the Web. NLP is a vital procedural bridge from texts to
knowledge representation, usually via automatic informa-
tion extraction [109]. Berners-Lee has argued in response
to Wilks, at a Web Science Workshop in 2005 that the SW
was necessarily based on logic and firm definitions (even
if those definitions were imperfect, or highly situated and
task-relative), not words, use patterns or statistics. Though
meanings are not fully stable, they can be stable enough
relative to individual applications and in particular con-
texts to allow the SW approach to work [10]. In the case of
large-scale, deep ontologies describing sciences, that per-
haps will be where the SW is likely to add most value, the
Berners-Lee view is reminiscent of that of Hilary Putnam
that scientists are ‘guardians’ of meaning, who determine
the ‘true’ referent of a word like ‘water’ [97]. But Berners-
Lee agrees that ontologies will need to evolve – some quite
quickly, and that such meanings cannot be fixed irrevo-
cably; nevertheless, for the purposes of particular applica-
tions, this is unlikely to be a problem in practice [101].

Future Directions

The SW is a work in progress, though Shadbolt et al. ar-
gue that the need for shared semantics and a Web of Data
have increased, and furthermore that the SW is “attain-
able” [101]. This final section will sketch some of the an-
ticipated directions of future SW work.

Standards

The most obvious future direction is to continue the re-
search as planned. The development of the SW has been
conceived as a tide rolling over a beach, covering some
areas fully, enveloping other areas more slowly (Fig. 1).
As has been noted, the upper layers of the SW, looking
at trust, logic and proof, are relatively underdeveloped,
and are the focus for exploratory research at the cutting
edge. The lower layers of the SW are in place and deployed
widely. The middle layers are more or less in place; OWL
and SPARQL are complete, while RIF is progressing, and
should become a W3C recommendation in the fullness of
time.

The Semantic Grid

Grid computing is a type of distributed computing de-
signed to apply computational power from a number
of different distributed, complete computers working in
parallel, and in cooperation, on a single problem. For
some extremely data-heavy problems requiring a lot of
computation (particularly in e-science), grid computing
is an important time-saving solution. Particular issues in
grid computing include the problems of coordinated re-
source sharing, distributed problem-solving and the cre-
ation of ‘virtual organisations’ to pool data and share out-
comes. The SW, of course, is another distributed comput-
ing paradigm where data sharing is a key issue – with the
SW, a Web of Data, sharing is the whole point. A third
distributed paradigm – software agents – is also a relevant
factor.

This synergy has led to a research strand to apply se-
mantic technologies to the problems of grid computing,
adding meaning via ontologies and RDF metadata anno-
tations to the grid. Information and services for the grid
are thereby given well-definedmeaning, which enables the
interaction between humans and computers to be better
coordinated. In particular, all the components, services
and resources are adequately described for machine pro-
cessing. The use of semantics to describe grid resources
is known as the Semantic Grid, and research is ongo-
ing [17,53,60,72].

The Policy-AwareWeb

As is clear in Fig. 2, trusted systems are very important to
the development of the SW. There are two reasons for this.
First, if someone is reasoning with heterogeneous data
harvested from the Web, then they will need to trust the
data they have harvested and are using. As noted above,
research is ongoing into methods for specifying the prove-
nance of such data [63]. The second reason is that peo-
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ple will not release their data if they thought it would be
misused; the importance of data privacy in our digital age
is easily underestimated [93]. The policy-aware Web is an
initiative designed to rectify this problem.

The assumption behind the policy-aware Web is that
inflexible and simplistic security systems and access con-
trol for the decentralized environment of the Web has
hampered its development. Insufficiently sophisticated
controls have made people reluctant to share data, partic-
ularly with other parties with which they do not have pre-
existing information-sharing policies. Furthermore, the
Web of Documents is rather coarse-grained for detailed
security: the security decision to be made is to grant access
to an entire website or page, or not, because policy control
mechanisms for access at a finer-grained level aren’t avail-
able. Thus, despite increasing amounts of useful informa-
tion residing on the Web in a machine-retrieval form, re-
luctance to share that information remains.

The aim of policy-aware Web technology is to provide
for the publication of access policies in a way that allows
significant transparency for sharing among partners with-
out requiring pre-agreement. In addition, greater control
over information release can be placed in the hands of the
information owner, allowing discretionary (rather than
mandatory) access control to flourish. Policies would be
another kind of metadata attached to information, and
those wishing to use that information would be able to rea-
son about them. For instance, one should be able to specify
that the information can only be used by the agent gaining
access, and that that agent should not pass the information
on. Or it may be specified that the information should be
deleted after a certain period of time. Or if it is to be used
in a certain manner, then data should be anonymized.

Enforcement of these policies is another matter, but
at present the research effort is focused on how to ex-
press such policies, and on creating theorem provers to
reason about them. The result should be amuchmore fine-
grained security picture, with greater transparency and ac-
countability of information use [108].

Web Science

Although since its inception the Web has revolutionized
communication, collaboration and education (particularly
within science), relatively little is known about the way
it develops. There is a growing feeling among researchers
across a number of disciplines that a clear research agenda
aimed at understanding the current, evolving and poten-
tial Web is needed to assure its continued growth. Such
researchers want to model the Web, understand the ar-
chitectural principles that have provided for its growth,

and be as sure as possible that it supports the basic social
values of trustworthiness, privacy, and respect for social
boundaries, and their solution is to chart out a research
agenda that targets the Web as a primary focus of atten-
tion [39,40].

This agenda has been dubbedWeb Science, a combina-
tion of analysis of the Web and its dynamics, and synthe-
sis of new languages and protocols. The Web is an engi-
neered space created via formally specified languages but,
as humans are the creators of Web pages and links be-
tween them, their interactions form emergent patterns in
theWeb at a macroscopic scale. These human interactions
are, in turn, governed by social conventions and laws.Web
Science is, therefore, inherently interdisciplinary; its goal
is to both understand the growth of the Web and to cre-
ate approaches allowing new powerful andmore beneficial
patterns to occur.

Such a research area does not yet exist in a coherent
form. Within computer science Web-related research has
largely focused on information retrieval algorithms and
the algorithms for the routing of information through the
underlying Internet. Outside of computing, researchers
grow ever more dependent on the Web, but there is no
concerted agenda for exploring emerging trends on the
Web. Nor are those outside computer science fully en-
gaged with the emerging Web research community to fo-
cus more specifically on the needs of science and of society
as a whole, while preserving the essential invariants of the
Web experience: decentralization to avoid social and tech-
nical bottlenecks, openness to the reuse of information in
unexpected ways, and freedom and equality of informa-
tion as it passes across the Web.

Despite excitement about the SW, the majority of the
world’s data is locked in large data stores and is not pub-
lished as an open web of inter-referring resources. As a re-
sult, the reuse of information has been limited. Substan-
tial research challenges arise in changing this situation.We
have already discussed the need for policy controls, and for
tools to allow scientists to exploit data when it emerges.
But on top of that, releasing data is both a technical and
a social problem, and understanding how to free data to
the SW is a matter of understanding society in relation to
theWeb (in social, legal and economic terms) and theWeb
in relation to society. This is the foundation of the emerg-
ing Web Science agenda which it is hoped will inform the
development of the SW [101]. The recent foundation of
the Web Science Research Initiative (WSRI [9]), a joint
venture between the Massachusetts Institute of Technol-
ogy and the University of Southampton, is intended to
drive the agenda on, acting as a focus (e. g. advising in par-
ticular on curricula to support it).
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Abstract

This article discusses spin transport in systems with spin-
orbit interactions and how it can be understood in a semi-
classical picture. I will first present a semiclassical wave-
packet description of spin transport, which explains how
the microscopic motion of carriers gives rise to a spin cur-
rent. Due to spin non-conservation the definition of the
spin current has some arbitrariness. In the second part I
will briefly review the physics from a density matrix point
of view, which makes clear the relationship between spin
transport and spin precession and the important role of
scattering.

Glossary

Extrinsic effect An effect which has an explicit depen-
dence on the form or strength of the disorder poten-
tial.

Intrinsic effect An effect which does not depend explic-
itly on the form and strength of the disorder potential.

Semiclassical theory A theory in which a particle’s posi-
tion and momentum are considered simultaneously.

Spin-orbit interaction A relativistic interaction between
the spin of a particle and its momentum (which is as-
sociated with its orbital motion.)

Steady-state spin current A flow of spins induced by an
electric field.

Steady-state spin density A net spin density induced by
an electric field.

Definition of the Subject

Spin transport refers to the physical movement of spins
across a sample and, if spin were a conserved quantity, one
could make a straightforward distinction between spin-up
and spin-down charge currents. The recent upsurge of in-
terest in spin transport is, however, motivated by systems
in which spin is not conserved due to the presence of spin-
orbit interactions, which give rise to spin precession. Here,
due to non-conservation of spin the spin current is not
well defined [1,2,3]. Spin transport in these cases usually
does not involve charge transport as the charge currents in
the direction of spin flow cancel out. Finally, in certainma-
terials, spin currents are accompanied by steady-state spin
densities. The appearance of a spin density is not a trans-
port phenomenon, but it is a steady-state process and is
intimately connected to spin transport.

The word semiclassical as used in this work refers to
theories which consider the position and momentum of
a particle simultaneously. Semiclassical pictures are intu-
itive and useful in descriptions of transport, particularly in
inhomogeneous systems and in spatially dependent fields,
which typically vary on length scales much larger than
atomic size.

In recent years, steady progress has beenmade towards
realization of convenient semiconducting ferromagnets
and spin injection into semiconductors from ferromag-
netic metals [4,5,6,7] yet spin injection from a ferromag-
netic metal into a semiconductor is hampered by the resis-
tivity mismatch between the two [8]. This is one factor, in
addition to basic science, motivating the search for an un-
derstanding of the way spins are manipulated electrically.
The last few years have seen many experimental advances
in spin transport, and spin currents have been measured
directly [9,10] and indirectly [11,12,13,14,15].

Introduction

Novel physical phenomena that may lead to improved
memory devices and advances in quantum informa-
tion processing are closely related to spin-orbit interac-
tions [16]. Spin-orbit interactions are present in the band
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structure and in potentials due to impurity distributions.
Spin-orbit coupling is in principle always present in im-
purity potentials and gives rise to skew scattering. Band
structure spin-orbit coupling may arise from the inversion
asymmetry of the underlying crystal lattice [17] (bulk in-
version asymmetry), from the inversion asymmetry of the
confining potential in two dimensions [18] (structure in-
version asymmetry), and may be present also in inversion
symmetric systems [19].

Although many observations in this entry are gen-
eral, the discussion will focus on non-interacting spin-1/2
electron systems, which are pedagogically easier. The
Hamiltonian of these systems typically contains a ki-
netic energy term and a spin-orbit coupling term, Hk D

(„2k2)/(2m�) C Hso
k , where m* is the electron effective

mass. In spin-1/2 electron systems, band structure spin-
orbit coupling can always be represented as a Zeeman-like
interaction of the spin with a wave vector-dependent effec-
tivemagnetic field˝ k , thusHso

k D (1/2)	 �˝ k . Common
examples of effective fields are the Rashba spin-orbit in-
teraction, [18] which is often dominant in quantum wells
with inversion asymmetry, and the Dresselhaus spin-orbit
interaction, [17] which is due to bulk inversion asymme-
try. The spin operator is given by s
 D („/2)�
 , where �


is a Pauli spin matrix. The spin current operator in these
systems will be taken to be Ĵ
i D (1/2)fs
 ; vig, where the
velocity operator is vi D (1/„)@Hk/@ki .

An electron spin at wave vector k precesses about
the effective field˝ k with frequency˝k /„ � j˝k j/„ and
is scattered to a different wave vector within a charac-
teristic momentum scattering time �p . I will assume in
this work that "F�p/„ 	 1, where "F is the Fermi en-
ergy, which is equivalent to the assumption that the car-
rier mean free path is much larger that the de Broglie
wavelength. Within this range, the relative magnitude of
the spin precession frequency ˝k and inverse scattering
time 1/�p define three qualitatively different regimes. In
the ballistic (clean) regime no scattering occurs and the
temperature tends to absolute zero, so that "F�p !1 and
˝k�p/„ ! 1. The weak scattering regime is character-
ized by fast spin precession and little momentum scatter-
ing due to, e. g., a slight increase in temperature, yielding
"F�p/„ 	 ˝k�p/„ 	 1. In the strongmomentum scatter-
ing regime "F�p/„ 	 1	 ˝k�p/„. I will concentrate on
effects originating in the band structure, the observation
of which requires the assumption that the materials under
study are in the weak momentum scattering regime. Elec-
tric fields will be assumed uniform.

The first part of this article will present a semiclassical
theory of spin transport, identifying the terms responsible
for spin currents in the microscopic dynamics of carriers.

Spin non-conservation as a result of spin precession leads
to several possible definitions of the spin current, which
emerge out of the spin equation of continuity. The sec-
ond part presents a different point of view, which explains
aspects not easily captured in the semiclassical approach.
The steady-state density matrix is shown to contain a con-
tribution due to precessing spins and one due to conserved
spins. Steady state corrections / �p are associated with
the absence of spin precession and give rise to spin densi-
ties in external fields [20,21,22,23,24,25,26,27,28]. Steady
state corrections independent of �p are associated with
spin precession and give rise to spin currents in external
fields [1,2,3,9,10,11,12,13,14,15,29,30,31,32,33,34,35,36,37,
38,39,40,41,42,43,44,45,46]. Scattering between these two
distributions induces significant corrections to steady-
state spin currents.

Spin Currents in Electric Fields

Wave-Packet Picture of Spin Transport

This section presents a semiclassical theory of spin trans-
port valid for a general spin-orbit system. The semiclas-
sical method is a suitable approach to the study of trans-
port, because, typically, in the relevant systems the exter-
nal fields vary smoothly on atomic length scales. All infor-
mation about the system is taken to be contained in the
band structure, thus allowing a description of spin trans-
port which does not make reference to the detailed form
of the spin-orbit interaction.

The system under study is regarded as as a collection
of carriers, whose semiclassical dynamics in a non-degen-
erate band i are described by a wave packet [47], with its
charge centroid having coordinates (rc ; kc )

jwii D

Z
d3k a(k; t)eik�r̂jui (rc ; k; t)i : (1)

In the above, the function a(k; t) is a narrow distribution
sharply peaked at kc , the phase of which specifies the cen-
ter of charge position rc , while jui (rc ; k; t)i are lattice-pe-
riodic Bloch wave functions. The size of the wave packet in
momentum space must be considerably smaller than that
of the Brillouin zone. In real space, this implies that the
wave packet must stretch over many unit cells.

The external electric field drives the center of the wave
packet in k-space according to the semiclassical equations
of motion

„ṙc D
@"i

@kc
� qE �˝ i

„k̇c D qE ;
(2)
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with q the charge of the carriers, "i the band energy, and
the Berry curvature

˝ i D i
�
@ui
@k

ˇ̌
ˇ
ˇ �

ˇ̌
ˇ
ˇ
@ui
@k

	
: (3)

The electric field also gives rise to an adiabatic correction
to the wave functions, which mixes the states making up
the wave packet. The wave functions jui i therefore have
the following form:

jui i D j�ii �
X

j

h� jji„ d
dt j�ii

"i � " j
j� ji ; (4)

where the �i are the unperturbed Bloch eigenstates. The
jui i form a complete set and retain the Bloch periodicity.

The distribution of carriers is described by a func-
tion f . When scattering is present, the distribution func-
tion satisfies the following equation:

@ f
@t
C ṙc �

@ f
@rc
C k̇c �

@ f
@kc
D

�
d f
dt

�

coll
; (5)

where ( d fdt )coll is the usual collision term. In independent
bands, in the relaxation time approximation, the collision
term takes the form ( f0 � f )/�p , with f 0 the equilibrium
distribution and �p the momentum relaxation time. In the
Boltzmann theory, the change in the distribution function
with time arises through the drift terms, which are de-
termined from the semiclassical equations of motion, as
well as through scattering with other carriers, with local-
ized impurities or with phonons. For transport in a non-
degenerate band, it is consistent to ignore interband scat-
tering effects in the weak scattering limit. In this case the
relaxation time is a scalar quantity. The effects of inter-
band coherence due to scattering will be explored in the
next section.

In order to obtain expressions for macroscopic quan-
tities of interest, such as densities and currents, one needs
to carry out a coarse graining by averaging over micro-
scopic fluctuations. In classical dynamics this coarse grain-
ing is performed by means of a sampling function, which
is smooth and has a significant magnitude only in a finite
range [48]. This range is large compared to atomic dimen-
sions, but small compared to the scale of variation of the
distribution function. Moreover, it has a rapidly converg-
ing Taylor expansion over distances of atomic dimensions,
and its form does not need to be specified. This method
has a close analog in wavepacket dynamics, where the sam-
pling function is replaced by a ı-function.

Semiclassical Spin Transport in Spin-Orbit Coupled Systems, Fig-
ure 1
For a particle of finite extent the charge and spin distributions
in real space in general do not coincide. The same is true of the
charge and spin distributions in reciprocal space

It is crucial to recognize that, in general, the center of
spin and the center of charge are distinct (Fig. 1), since the
wave packet samples a range of wave vectors and the spin is
usually a function of k. Following the line of thought out-
lined above, the spin density is defined to be (henceforth
kc will be abbreviated to k)

S
 (R; t) D
“

d3kd3rc f (rc ; k; t) hı(R� r̂)ŝ
 i ; (6)

where the bracket indicates quantum mechanical aver-
aging over the wave packet with charge centroid (rc ; k).
As the ı-function has operator arguments, it will be re-
garded as a sampling operator, whose expectation value
yields a spatial average, evaluated at position r. To account
for the fact that spin is not conserved (Fig. 2), a new quan-
tity is introduced, which will be referred to as the torque
density, defined by

T 
 (R; t) D
“

d3kd3rc f (rc ; k; t) hı(R � r̂)�̂
 i : (7)

�̂
 in the above stands for the rate of change of the spin op-
erator, given by i/„[Ĥ; ŝ
 ], and symmetrization of prod-
ucts of non-commuting operators has been assumed. Fi-
nally, the microscopic spin current density is defined as:

J
 (R; t) D
“

d3kd3rc f (rc ; k; t)hı(R � r̂)ŝ
 v̂i : (8)

We obtain the following continuity equation for the spin
density and current:

@S


@t
Cr � J
 D T 
 CF
 : (9)

The equation of continuity contains a bulk source term,
which coincides with the torque density and acts as
a mechanism for spin generation. Similar source terms
are associated with nonconserved quantities, for example,
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Semiclassical Spin Transport in Spin-Orbit Coupled Systems, Fig-
ure 2
In the presence of spin-orbit interactions the spin distribution of
a particle changes in time. The horizontal axismay represent po-
sition or wave vector

in quantum electrodynamics and in Maxwell’s equations.
The last term in (9) represents the scattering contribution,
which will be discussed further below.

Let us discuss the terms in the equation of continu-
ity, beginning with the spin density. The argument of the
sampling operator can be expressed as [r � rc � (r̂ � rc)],
and, as the second term is of atomic dimensions, the sam-
pling operator can be written as a Taylor expansion about
(r̂ � rc). The density can therefore be re-expressed, in
terms of macroscopic quantities, as

S
 (R; t) D �s
 (R; t) � rR � Ps
 (R; t) ; (10)

where summation over repeated indices has been as-
sumed. In the above, the monopole density is given by

�s
 (R; t) D
“

d3kd3rc f (rc ; k; t)hŝ
 iı(R � rc)

D

Z
d3k f hŝ
ijrcDR ; (11)

where f in the second line, and henceforth, is to be under-
stood as f (R; k; t), and the dipole density is

Ps
 (R; t) D
“

d3kd3rc f h(r̂� rc)ŝ
 iı(R � rc)

D

Z
d3k f ps
 jrcDR : (12)

The average spin of the wave packet has been de-
noted by hŝ
 i, and the spin-dipole is defined to be
ps
 D h(r̂ � rc)ŝ
 ijrcDR. It will be seen that the first term
in the density is the average of a monopole density lo-
cated at rc , while the dipole term is the average of a point
dipole density located at rc , and similarly for higher or-
ders. The dipole must be understood as the average of the
quantum mechanical dipole operator, as an exact analogy
with the electric dipole of classical electrodynamics cannot
be made. The density can thus be viewed as a collection
of point multipoles, located at the centroid of each wave

packet. The microscopic distribution of spin is important
at the molecular level, but at the macroscopic level the ef-
fect of this molecular distribution is replaced by a sum of
multipoles. Since the center of spin is different from the
center of charge, in principle all multipoles are present.

Following a similar manipulation and using the Boltz-
mann equation, the torque density is re-expressed as:

T 
 (R; t) D ��
 (R; t) � r � P�
 (R; t) (13)

with the torque monopole density

��
 (R; t) D
“

d3kd3rc f (rc ; k; t)h�̂
 iı(R � rc)

D

Z
d3k f h�̂
 ijrcDR ; (14)

and the torque dipole density

P�
 (R; t) D
“

d3kd3rc f (rc ; k; t)h(R̂ � rc)�̂
 ijrcDR

D

Z
d3k f p�
 jrcDR :

(15)

In analogy with the spin dipole, the torque dipole has been
defined as p�
 D h(r̂ � rc)�̂
 ijrcDR. The torque density is
therefore also a sum of multipole moments, that is, the
moments of a point spin source located at rc . Even in the
case when the center of hŝ
 i coincides with the center of
charge, h�̂
 imay not be centered at rc , with the result that
the higher order terms in the torque density are in general
present. The second and higher terms of T 
 cancel ex-
actly the analogous terms in the continuity equation which
come from the current.

Since only the gradient of the spin current appears in
the equation of continuity, in the expansion of the sam-
pling operator we keep the leading term

J s(R; t) D
Z

d3k f hv̂ŝ
 ijrcDR : (16)

Keeping terms to first order in (r̂ � rc), the current can be
decomposed into the following:

J s
 D Cs
 C Ds
 � P�
 : (17)

The convective term Cs
 represents the spin being trans-
ported along with the wave packet

Cs
 (R; t) D
“

d3kd3rc f (rc ; k; t)ṙchŝ
 iı(R � rc)

D

Z
d3k f cs
 jrcDR ; (18)
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whileDs
 comes from the rate of change of the spin dipole,
which has already been introduced. It has the form:

Ds
 (R; t) D
Z

d3k f
dps


dt
jrcDR : (19)

P�
 is the torque dipole introduced above. The corre-
spondingmonopole term appears in the source term of the
continuity equation, as will emerge below. The presence of
the torque dipole here is to be contrasted with the absence
of an analogous term in classical electrodynamics. There,
an electric dipole arises from the placement of two charges
a small distance from each other, but the charge itself is
conserved.

Finally, we come to the source term in (9). The first
part, composed of the torque density, has already been dis-
cussed. The second term, denoted by F
 , becomes, in the
relaxation time approximation

F
 D S
0 � S


�p
D

1
�p

Z
d3k( f0 � f )hŝ
i ; (20)

where �p is the momentum relaxation time and f 0 the
equilibrium distribution, which is usually the Fermi–Dirac
distribution function.

Based on the continuity equation alone, there is some
flexibility in defining the current and the source. In sys-
tems in which spin is conserved, the torque density be-
comes, to first order in (r̂ � rc), a pure divergence, which
can be incorporated into a redefinition of the spin current.
This current, henceforth referred to as the spin transport
current, is only due to the convective and spin dipole con-
tributions:

Jt
 (R; t) D Cs
 (R; t)CDs
 (R; t) : (21)

With respect to this spin transport current, the continuity
equation takes the following form:

@S


@t
Cr � Jt
 D

d
dt

Z
d3k f hŝ
i : (22)

In the steady state under a constant electric field,
the distribution function is composed of an equilibrium
part, independent of the field, and a non-equilibrium part,
which is first order in the field. Henceforth, terms in the
spin current and source which depend on the equilib-
rium distribution function will be referred to as intrin-
sic, whereas the terms depending on the nonequilibrium
shift in the distribution will be referred to as extrinsic.
For example, the integrand in Eq. (16) can be decomposed
into a zero order spin-velocity, vhŝ
 i, where v is the usual
group velocity of the band, and a first order correction.

Therefore, there will be a contribution to the current from
the non-equilibrium part of the distribution and the zero
order spin-velocity, which has been discussed extensively
in previous work [29,30,31,32,33]. There will also be a con-
tribution from the equilibrium distribution and the first
order correction to the spin-velocity, which is referred to
as the intrinsic contribution. In the wave packet formal-
ism presented here this effect arises from the change in
wave functions induced by the electric field, rather than
from the change in distribution functions that is respon-
sible for most conventional transport effects. The intrin-
sic spin current is calculated from (16) using the equilib-
rium distribution and the expectation values of the spin
and spin dipole operators in a Bloch state perturbed to first
order in E.

In its turn, the source in (9) can be decomposed into
intrinsic and extrinsic contributions. The present entry
considers homogeneous systems, so that all the gradient
terms vanish, and the torque density is simply f h�̂
 i. The
zeroth order contribution to this term is null, as the Bloch
wave functions are eigenstates of the Hamiltonian. Thus,
to first order in the electric field, we find that h�̂
 i is sim-
ply given by (eE/„) � (@hŝ
 i/@k). One is thus justified in re-
placing f by its equilibrium value f 0, in which case this
term is purely intrinsic. The second term in the source,
F
 , which depends on the nonequilibrium shift in the dis-
tribution function, is entirely extrinsic.

The extrinsic source term takes into account the ef-
fect of scattering, and is a term which usually appears in
the equation of continuity. The intrinsic source accounts
for the effect of all spin-nonconserving terms, and must be
present even in a clean system, if the Hamiltonian contains
spin-dependent contributions. In general, in addition to
the rate of change of spin arising from the spin-dependent
terms in the Hamiltonian, scattering processes may alter
the orientation of the spin, with the result that any one spin
component is not conserved, and the orientation of spins
is randomized over a longer time period. For a uniform
steady-state system, the current is constant and the intrin-
sic source term must vanish. However, near the boundary
of the system, or at an interface with a different semicon-
ductor with (for example) weaker spin-orbit interactions,
the spin current driven by an electric field will vary spa-
tially and T must reach a non-zero value.

Let us take a closer look at the spin dipole and torque
dipole, which are seen to be the mainmechanisms respon-
sible for generating the spin current. Because of its nar-
row distribution in k, the mean spin of the wave packet is
hwi jŝ
 jwii D hui jŝ
 jui i, where it is understood that the
wave vector of the Bloch function is set at kc and ŝ
 is an
arbitrary projection of the spin vector operator. The spin
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dipole of the wave packet, defined relative to the charge
center of the wave packet is given, in terms of Bloch func-
tions, by the expression:

ps
i D
i
2

��
ui jŝ
 j

@ui
@k

	
�

�
@ui
@k
jŝ
 jui

	�

�

�
ui ji

@ui
@k

	
hui jŝ
 jui i : (23)

Interestingly, the spin dipole is independent of the wave
packet width. The expression is also invariant under a local
gauge transformation, in the sense that if jui i is modified
by a phase factor ei˛(k) the spin dipole is unchanged.

The torque dipole term has a special interpretation in
the case of spin transport. The rate of change of spin is
equivalent to a torque, and the torque dipole represents
the moment exerted by this torque about the center of the
wave packet. The semiclassical expression for the torque
moment is

p�
i D
i
2

��
ui j˙̂s
 j

@ui
@k

	
�

�
@ui
@k
j˙̂s
 jui

	�

�

�
ui ji

@ui
@k

	 D
ui j˙̂s
 jui

E
: (24)

The torque moment has the same gauge invariance prop-
erties as the spin dipole, and like the spin dipole it also does
not depend on the wave packet width.

It is important to note that the spin current, J
 , can be
simplified to:

J
 (R; t) D
Z

d3k f trhui jŝ
 v̂jui i ; (25)

which is the semiclassical equivalent of the Kubo formula
for spin currents.

Density Matrix Picture of Spin Transport

Semiclassical theory provides a straightforward, intuitive
picture of the way spin currents arise in the course of
carrier dynamics in an electric field. The theory was de-
veloped for independent bands. It turns out that inter-
band coherence arising from scattering is crucial in spin
transport, and is difficult to treat semiclassically. Although
the semiclassical theory can be generalized to multiple
bands [49,50], it is more instructive to examine spin trans-
port from a different point of view that is closer in out-
look to the philosophy underlying the Kubo formula (with
which the semiclassical theory agrees.) This will shed some
light on additional issues, such as the relationships be-
tween spin currents and spin precession, between spin cur-
rents and spin densities, the complex effect of disorder and
the vanishing of spin current in certain systems.

A large, uniform system of non-interacting spin-1/2
electrons is represented by a one-particle density operator
�̂. The expectation value of an observable represented by
a Hermitian operator Ô is given by tr(�̂Ô) and �̂ satisfies
the quantum Liouville equation

d�̂
dt
C

i
„
[Ĥ C Û ; �̂] D 0 : (26)

The Liouville equation is projected onto a set of time-
independent states of definite wave vector fjkisg, which
are not assumed to be eigenstates of the Hamiltonian Ĥ.
The matrix elements of �̂ in this basis will be written as
�kk0 � �ss

0

kk0 D hks�̂jk
0s0i. Spin indices are not shown ex-

plicitly, and �kk0 is a matrix in spin space, referred to as
the density matrix. In this work we require the expectation
values of operators which are diagonal in wave vector, and
will thus require the part of the density matrix diagonal
in wave vector, �kk � fk D nk1C Sk. In the presence of
a constant uniform electric field E, fk D f0k C fEk, where
the equilibrium density matrix f0k is given by the Fermi–
Dirac distribution, and the correction fEk is due to the
E.We subdivide f0k D n0k1C S0k and fEk D nEk1C SEk.
The spin-dependent part of the nonequilibrium correction
to the density matrix SEk is interpreted as the spin density
induced by E. The equations governing the time evolution
of nEk and SEk is [51]

@nEk
@t
C Ĵ0(nEk) D

eE
„
�
@n0k
@k

@SEk
@t
C

i
„
[Hk; SEk]C Ĵ0(SEk) D

eE
„
�
@S0k
@k
� Ĵs(nEk)

� ˙Ek ;

(27)

where the scalar part of the scattering operator Ĵ0 and
its spin-dependent part Ĵs have been defined in [51].
The equation for nEk has the well-known solution
nEk D (eE�p/„) � (@n0k/@k), in other words, nEk describes
the shift of the Fermi sphere in the presence of the electric
field E, with the momentum relaxation time �p . It is seen
from Eq. (27) that spin-dependent scattering gives rise to
a renormalization of the driving term in the equation for
SEk. This renormalization has no analog in charge trans-
port.

We need to find the expectation value of the spin cur-
rent operator Ĵ
i defined in the introduction. In the sys-
tems under study the spin current operator can be written
as Ĵ
i D „ki s
 /m� C (1/4„)@˝
 /@ki1. We need to deter-
mine SEk. To this end we remember that an electron spin
at wave vector k precesses about an effectivemagnetic field
˝k. The spin can be resolved into components parallel
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Semiclassical Spin Transport in Spin-Orbit Coupled Systems, Figure 3
Effective field˝ k at the Fermi energy in the Rashbamodel [18] awithout (E D 0) and bwith an external electric field (E > 0)

and perpendicular to ˝k. In the course of spin preces-
sion the component of the spin parallel to˝k is conserved,
while the perpendicular component is continually chang-
ing. Corresponding to this decomposition of the spin is an
analogous decomposition of the spin distribution SEk into
a part representing conserved spin and a part representing
precessing spin, denoted by SEkk and SEk? respectively.
There is an analogous decomposition of the source on the
RHS of Eq. (27) into˙Ekk and˙Ek?. This decomposition
is carried out by introducing projection operators Pk and
P? as described in [51], giving for SEkk and SEk? in the
weak momentum scattering limit

@SEkk
@t
C Pk Ĵ0(SEk) D ˙Ekk ; (28a)

@SEk?
@t
C

i
„
[Hk; SEk?] D ˙Ek? � P? Ĵ0(SEk) : (28b)

Equation (28b) shows that scattering mixes the distribu-
tions of conserved and precessing spins. This is so because
when one spin at wave vector k and precessing about˝k
is scattered to wave vector k0 and precesses about˝k0 , its
conserved component changes, a process which alters the
distributions of conserved and precessing spin. Equations
(28a,28b) can be solved straightforwardly if one assumes
the impurity potential to be short-ranged, obtaining [51]

SEkk D ˙Ekk�p C Pk(1 � P̄k)�1 ¯̇Ekk�p ; (29a)

SEk? D
˝k � (˙ Ek?�p C P?S̄Ekk) � 	 �p

2„(1C˝2
k�

2
p/„2)

�
(˙Ek?�p C P? S̄Ekk)

1C˝2
k�

2
p/„2

: (29b)

The correction SEkk does not give rise to a spin cur-
rent. Inspection of Eq. (29a) shows that integrals of the
form

R
d� Ĵ
i SEkk contain an odd number of powers

of k and are therefore zero. It can, however, give rise
to a nonequilibrium spin density, since integrals of the
form

R
d� ŝ
SEkk contain an even number of powers of

k and may be nonzero. Similarly SEk? does not lead to
a nonequilibrium spin density. The expectation value of
the spin operator yields integrals of the form

R
d� ŝ
S(0)Ek?,

which involve odd numbers of powers of k and are there-
fore zero. This term does, however, give rise to nonzero
spin currents, since integrals if the form

R
d� Ĵ
i SEk?

contain an even numbers of powers of k and may be
nonzero. Therefore, in the absence of spin-orbit cou-
pling in the scattering potential, nonequilibrium spin cur-
rents arise from spin precession (as outlined by Sinova
et al. [35]), and nonequilibrium spin densities from the
absence of spin precession. The dominant contribution to
the nonequilibrium spin density in an electric field ex-
ists because in the course of spin precession a compo-
nent of each individual spin is preserved. For an elec-
tron with wave vector k, this spin component is paral-
lel to ˝ k . In equilibrium the average of these conserved
components is zero. When an electric field is applied
the Fermi surface is shifted and the average of the con-
served spin components may be nonzero, as illustrated
in Fig. 1. This argument explains why the nonequilib-
rium spin density / ��1p and requires scattering to bal-
ance the drift of the Fermi surface. Although spin densities
in electric fields require band structure spin-orbit inter-
actions and therefore spin precession, the dominant con-
tribution arises as a result of the absence of spin preces-
sion.
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Systems in which ˝ k is linear in k are special, in that
the spin current as defined in this section vanishes [39,
40,41,42,43,44,45,46]. This is because of the renormaliza-
tion of the driving term on the RHS of Eq. (28b) for SEk?,
in other words because of scattering from the conserved
spin distribution to the precessing spin distribution. In
Eq. (29b) it is also clear that if ˙Ek?�p C P? S̄Ekk van-
ishes, then all the contributions to SEk? also vanish. Since
S̄Ekk effectively represents a steady-state spin density, we
see that the presence of this spin density tends to diminish
the spin current. In systems with energy dispersion linear
in k it cancels the spin current completely.

Future Directions

Whereas the community appears to be in agreement that
spin currents exist and are measurable, many questions
remain unanswered. Theoretically, intrinsic and extrin-
sic effects (such as due to skew scattering and side jump)
have not been studied on the same footing for an arbitrary
form of band structure spin-orbit interactions. The rela-
tive magnitude of intrinsic and extrinsic spin currents in
such a general system remains to be determined. Also, dif-
ferent definitions of the spin current give results that often
differ by a sign [1,2]. The relationship between spin cur-
rent and spin accumulation at the boundary is not clear,
again thanks to the non-conservation of spin. It appears
that what happens at the boundary is sensitive to the type
of boundary conditions assumed. Thus so far as quantita-
tive interpretation of experimental data is concerned, the-
ory has some way to go.

Despite tremendous progress, experiment is still
searching for a reliable way to measure, as opposed to
detect, spin currents directly. Practically, the question of
what to do with spin once it has been transported/
generated remains. The revolutionary electronic device
that harnesses spin currents for a practical purpose re-
mains to bemade, and the challenge of its design confronts
experimentalists and theorists alike.

The research at Argonne National Laboratory was sup-
ported by the US Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-
AC02-06CH11357.
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Glossary

Deep water A surface wave is said to be in deepwater if its
wavelength is much shorter than the local water depth.

Internal wave A internal wave travels within the interior
of a fluid. The maximum velocity and maximum am-
plitude occur within the fluid or at an internal bound-
ary (interface). Internal waves depend on the density-
stratification of the fluid.

Shallow water A surface wave is said to be in shallow wa-
ter if its wavelength is much larger than the local water
depth.

Shallow water waves Shallow water waves correspond to
the flow at the free surface of a body of shallow water
under the force of gravity, or to the flow below a hori-
zontal pressure surface in a fluid.

Shallow water wave equations Shallow water wave equa-
tions are a set of partial differential equations that de-
scribe shallow water waves.

Solitary wave A solitary wave is a localized gravity wave
that maintains its coherence and, hence, its visibility
through properties of nonlinear hydrodynamics. Soli-
tary waves have finite amplitude and propagate with
constant speed and constant shape.
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Soliton Solitons are solitary waves that have an elastic
scattering property: they retain their shape and speed
after colliding with each other.

Surface wave A surface wave travels at the free surface of
a fluid. The maximum velocity of the wave and the
maximum displacement of fluid particles occur at the
free surface of the fluid.

Tsunami A tsunami is a very long ocean wave caused by
an underwater earthquake, a submarine volcanic erup-
tion, or by a landslide.

Wave dispersion Wave dispersion in water waves refers
to the property that longer waves have lower frequen-
cies and travel faster.

Definition of the Subject

The most familiar water waves are waves at the beach
caused by wind or tides, waves created by throwing a stone
in a pond, by the wake of a ship, or by raindrops in a river
(see Fig. 1). Despite their familiarity, these are all different
types of water waves. This article only addresses shallow
water waves, where the depth of the water is much smaller
than the wavelength of the disturbance of the free surface.
Furthermore, the discussion is focused on gravity waves
in which buoyancy acts as the restoring force. Little atten-
tion will we paid to capillary effects, and capillary waves
for which the primary restoring force is surface tension are
not covered.

Although the history of shallow water waves [15,20,22]
goes back to French and British mathematicians of the
eighteenth and early nineteenth century, Stokes [71] is
considered one of the pioneers of hydrodynamics (see

ShallowWater Waves and Solitary Waves, Figure 1
Capillary surface waves from raindrops. Photograph courtesy of
E. Scheller and K. Socha

[21]). He carefully derived the equations for the motion of
incompressible, inviscid fluid, subject to a constant verti-
cal gravitational force, where the fluid is bounded below
by an impermeable bottom and above by a free surface.
Starting from these fundamental equations and by making
further simplifying assumptions, various shallow water
wave models can be derived. These shallow water models
are widely used in oceanography and atmospheric science.

This article discusses shallow water wave equations
commonly used in oceanography and atmospheric sci-
ence. They fall into two major categories: Shallow wa-
ter wave models with wave dispersion are discussed in
Sect. “Completely Integrable Shallow Water Wave Equa-
tions” Most of these are completely integrable equa-
tions that admit smooth solitary and cnoidal wave so-
lutions for which computational procedures are out-
lined in Sect. “Computation of Solitary Wave Solutions”.
Sect. “Shallow Water Wave Equations of Geophysical
Fluid Dynamics” covers classical shallow water wavemod-
els without dispersion. Such hyperbolic systems can admit
shocks. Sect. “Water Wave Experiments and Observa-
tions” addresses a few experiments and observations. The
article concludes with future directions in Sect. “Future
Directions”.

Introduction

The initial observation of a solitary wave in shallow wa-
ter was made by John Scott Russell, shown in Fig. 2. Rus-
sell was a Scottish engineer and naval architect who was
conducting experiments for the Union Canal Company to
design a more efficient canal boat.

In Russell’s [63] own words: “I was observing the mo-
tion of a boat which was rapidly drawn along a nar-
row channel by a pair of horses, when the boat suddenly
stopped – not so the mass of water in the channel which it
had put in motion; it accumulated round the prow of the
vessel in a state of violent agitation, then suddenly leav-
ing it behind, rolled forward with great velocity, assuming
the form of a large solitary elevation, a rounded, smooth
and well-defined heap of water, which continued its course
along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and over-
took it still rolling on at a rate of some eight or nine miles
an hour, preserving its original figure some thirty feet long
and a foot to a foot and a half in height. Its height gradually
diminished, and after a chase of one or two miles I lost it
in the windings of the channel. Such, in the month of Au-
gust 1834, was my first chance interview with that singular
and beautiful phenomenon which I have called the Wave
of Translation.”
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ShallowWater Waves and Solitary Waves, Figure 2
John Scott Russell. Source: [27]. Courtesy of John Murray Pub-
lishers

Russell built a water tank to replicate the phenomenon
and research the properties of the solitary wave he had ob-
served. Details can be found in a biography of John Scott
Russell (1808–1882) by Emmerson [27], and in review ar-
ticles by Bullough [15], Craik [20], and Darrigol [22], who
pay tribute to Russell’s research of water waves.

In 1895, the Dutch professor Diederik Korteweg and
his doctoral student Gustav de Vries [47] derived a par-
tial differential equation (PDE) which models the solitary
wave that Russell had observed. Parenthetically, the equa-
tion which now bears their name had already appeared
in seminal work on water waves published by Boussinesq
[13,14] and Rayleigh [59]. The solitary wave was consid-
ered a relatively unimportant curiosity in the field of non-
linear waves. That all changed in 1965, when Zabusky and
Kruskal realized that the KdV equation arises as the con-
tinuum limit of a one dimensional anharmonic lattice used
by Fermi, Pasta, and Ulam [29] to investigate “thermaliza-
tion” – or how energy is distributed among the many pos-
sible oscillations in the lattice. Zabusky and Kruskal [78]
simulated the collision of solitary waves in a nonlinear
crystal lattice and observed that they retain their shapes
and speed after collision. Interacting solitary waves merely
experience a phase shift, advancing the faster and retard-

Shallow Water Waves and Solitary Waves, Figure 3
Recreation of a solitary wave on the Scott Russell Aqueduct on
the Union Canal. Photograph courtesy of Heriot–Watt University

ing the slower. In analogy with colliding particles, they
coined the word “solitons” to describe these elastically col-
liding waves. A narrative of the discovery of solitons can
be found in [77].

Since the 1970s, the KdV equation and other equa-
tions that admit solitary wave and soliton solutions have
been the subject of intense study (see, e. g., [23,30,60]). In-
deed, scientists remain intrigued by the physical properties
and elegantmathematical theory of the shallowwaterwave
models. In particular, the so-called completely integrable
models which can be solved with the Inverse Inverse scat-
tering transform (IST). For details about the IST method
the reader is referred to Ablowitz et al. [3], Ablowitz
and Segur [2], and Ablowitz and Clarkson [1]. The com-
pletely integrable models discussed in the next section
are infinite-dimensional Hamiltonian systems, with in-
finitely many conservation laws and higher-order symme-
tries, and admit soliton solutions of any order.

As an aside, in 1995, scientists gathered at Heriot–
Watt University for a conference and successfully recre-
ated a solitary wave but of smaller dimensions than the one
observed by Russell 161 years earlier (see Fig. 3).

Completely Integrable
ShallowWaterWave Equations

Starting from Stokes’ [71] governing equations for water
waves, completely integrable PDEs arise at various levels of
approximation in shallow water wave theory. Four length
scales play a crucial role in their derivation. As shown in
Fig. 4, the wavelength  of the wave measures the distance
between two successive peaks. The amplitude a measures
the height of the wave, which is the varying distance be-
tween the undisturbed water to the peak of the wave. The
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ShallowWater Waves and Solitary Waves, Figure 4
Coordinate frame and periodic wave on the surface of water

depth of the water h is measured from the (flat) bottom
of the water up to the quiescent free surface. The fourth
length scale is along the Y-axis which is along the crest of
the wave and perpendicular to the (X,Z)-plane.

Assuming wave propagation in water of uniform (shal-
low) depth, i. e. h is constant, and ignoring dissipation,
the model equations discussed in this section have a set of
common features and limitations which make themmath-
ematically tractable [68]. They describe (i) long waves (or
shallow water), i. e. h
 , (ii) with relatively small am-
plitude, i. e. a
 h, (iii) traveling in one direction (along
the X-axis) or weakly two-dimensional (with a small com-
ponent in the Y-direction). Furthermore, the small effects
must be comparable in size. For example, in the deriva-
tion of the KdV and Boussinesq equations one assumes
that " D a/h D O(h2/2), where " is a small parameter
("
 1), and O indicates the order of magnitude.

The Korteweg–de Vries Equation

The KdV equation was originally derived to describe shal-
low water waves of long wavelength and small amplitude.
In the derivation, Korteweg and de Vries assumed that all
motion is uniform in the Y-direction, along the crest of the
wave. In that case, the surface elevation (above the equilib-
rium level h) of the wave, propagating in the X-direction,
is a function only of the horizontal position X (along the
canal) and of time T, i. e. Z D �(X; T):

In terms of the physical parameters, the KdV equation
reads

@�

@T
C
p
gh
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�
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�gh2

�
@3�

@X3 D 0 ; (1)

where h is the uniform water depth, g is the gravitational
acceleration (about 9:81m/sec2 at sea level), � is the den-
sity, andT stands for the surface tension. The dimension-
less parameter T /�gh2 is called the Bond number which
measures the relative strength of surface tension and the
gravitational force.

Keeping only the first two terms in (1), the speed of the
associated linear (long) wave is c D

p
gh. This is indeed

the maximum attainable speed of propagation of gravity-
induced water waves of infinitesimal amplitude. The speed
of propagation of the small-amplitude solitary waves de-
scribed by (1) is slightly higher. According to Russell’s em-
pirical formula the speed equals

p
g(hC k);where k is the

height of the peak of the solitary wave above the surface of
undisturbed water. As Bullough [15] has shown, Russell’s
approximate speed and the true speed of solitary waves
only differ by a term of O(k2/h2):

The KdV equation can be recast in dimensionless vari-
ables as

ut C ˛uux C uxxx D 0 ; (2)

where subscripts denote partial derivatives. The parame-
ter ˛ can be scaled to any real number. Commonly used
values are ˛ D ˙1 or ˛ D ˙6.

The term ut describes the time evolution of the wave
propagating in one direction. Therefore, (2) is called an
evolution equation. The nonlinear term ˛uux accounts
for steepening of the wave, and the linear dispersive term
uxxx describes spreading of the wave. The linear first-order
term

p
gh @�

@X in (1) can be removed by an elementary
transformation. Conversely, a linear term in ux can be
added to (2).

The nonlinear steepening of the water wave can be bal-
anced by dispersion. If so, the result of these counteracting
effects is a stable solitary wave with particle-like properties.
A solitary wave has a finite amplitude and propagates at
constant speed and without change in shape over a fairly
long distance. This is in contrast to the concentric group
of small-amplitude capillary waves, shown in Fig. 1, which
disperse as they propagate.

The closed-form expression of a solitary wave solution
is given by

u(x; t) D
! � 4k3

˛k
C

12k2

˛
sech2(kx � ! t C ı) (3)

D
! C 8k3

˛k
�

12k2

˛
tanh2(kx � ! t C ı) ; (4)

where the wave number k, the angular frequency !, and ı
are arbitrary constants.
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ShallowWater Waves and Solitary Waves, Figure 5
Solitary wave (red) and periodic cnoidal (blue) wave profiles

Requiring that limx!˙1 u(x; t) D 0 for all time leads
to ! D 4k3. Then (3) and (4) reduce to

u(x; t) D
12k2

˛
sech2(kx � 4k3t C ı)

D
12k2

˛
[1 � tanh2(kx � 4k3t C ı)] : (5)

The position of the hump-type wave at t D 0 is depicted in
Fig. 5 for ˛ D 6; k D 2, and ı D 0. As time changes, the
solitary wave with amplitude 2k2 D 8 travels to the right at
speed v D !/k D 4k2 D 16: The speed is exactly twice the
peak amplitude. So, the higher the wave the faster it travels,
but it does so without change in shape. The reciprocal of
the wavenumber k is a measure of the width of the sech-
square pulse.

As shown by Korteweg and de Vries [47], Eq. (2) also
has a simple periodic solution,

u(x; t) D
! � 4k3(2m � 1)

˛k
C
12k2m
˛

cn2(kx�! tCı;m);

(6)

which they called the cnoidal wave solution since they in-
volve the Jacobi elliptic cosine function, cn, with modulus
m (0 < m < 1). The wavenumber k gives the characteris-
tic width of each oscillation in the “cnoid.”

Three cycles of the cnoidal wave are depicted in
Fig. 5 at t D 0. The graph corresponds to ˛ D 6; k D
2;m D 3/4; ! D 16; and ı D 0. Using the property
limm!1 cn(� ;m) D sech(�); one readily verifies that (6)
reduces to (3) as m tends to 1. Pictorially, the individual
oscillations then stretch infinitely far apart leaving a sin-
gle-pulse solitary wave.

The celebrated KdV equation appears in all books and
reviews about soliton theory. In addition, the equation has
been featured in, e. g., Miura [52] and Miles [51].

Regularized Long-Wave Equations

A couple of alternatives to the KdV equation have been
proposed. A first alternative,

ut C ux C ˛uux � uxx t D 0 ; (7)

was proposed by Benjamin, Bona, andMahony [7]. Hence,
(7) is referred to as the BBM or regularized long-wave
(RLW) equation.

Equation (7), which has a solitary wave solution,

u(x; t) D
! � k � 4k2!

˛k
C

12k!
˛

sech2(kx�! tCı); (8)

was also derived by Peregrine [57] to describe the behavior
of an undular bore (in water), which comprises a smooth
wavefront followed by a train of solitary waves. An un-
dular bore can be interpreted as the dispersive analog of
a shock wave in classical non-dispersive, dissipative hy-
drodynamics [26].

The linear dispersion relation for the KdV equation,
! D k(1 � k2), can be obtained by substituting u(x; t) D
exp[i(kx � ! t C ı)] into ut C ux C uxxx D 0. The lin-
ear phase velocity, vp D !/k D 1 � k2, becomes negative
for jkj > 1, thereby contradicting the assumption of uni-
directional propagation. Furthermore, the group velocity
vg D d!/dk D 1 � 3k2 has no lower boundwhich implies
that there is no limit to the rate at which shorter ripples
propagate in the negative x-direction.

The BBM equation, where ! D k/(1 C k2); vp D
1/(1C k2), and vg D (1 � k2)/(1C k2)2; was proposed to
get around these objections and to address issues related
to proving the existence of solutions of the KdV equation.
The dispersion relation of (7) has more desirable prop-
erties for high wave numbers, but the group velocity be-
comes negative for jkj > 1: In addition, the KdV and BBM
equations are first order in time making it impossible to
specify both u and ut as initial data.

To circumvent these limitations, a second alternative,

ut C ux C ˛uux C uxtt D 0 ; (9)

was proposed by Joseph and Egri [45] and Jeffrey [43]. It
is called the time regularized long-wave (TRLW) equation
and its solitary wave solution is given by

u(x; t) D
! � k � 4k!2

˛k
C

12!2

˛
sech2(kx�! tCı): (10)

The TRLW equation sharesmany of the properties of both
the KdV and BBM equations, at the cost of a more compli-
cated dispersion relation, ! D (�1˙

p
1C 4k2)/2k with

two branches. Only one of these branches is valid because
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the derivation of the TRLW equation shows that (9) is uni-
directional, despite the two time derivatives in uxtt .

Bona and Chen [8] have shown that the initial value
problem for the TRLW equation is well-posed, and that for
small-amplitude, long waves, solutions of (9) agree with
solutions of either (2) or (7). As a matter of fact, all three
equations agree to the neglected order of approximation
over a long time scale, provided the initial data is properly
imposed (see also [9]).

Fine-tuning the dispersion relation of the KdV equa-
tion comes at a cost. In contrast to (2), the RLW and
TRLW equations are no longer completely integrable. Per-
haps that is why these equations never became as popular
as the KdV equation.

The Boussinesq Equation

The classical Boussinesq equation,

�TT�c2�XX�
3c2

h
�
�2X C ��XX


�
c2h2

3
�XXXX D 0; (11)

was derived by Boussinesq [12] to describe gravity-in-
duced surface waves as they propagate at constant (linear)
speed c D

p
gh in a canal of uniform depth h.

In contrast to the KdV equation, (11) has a sec-
ond-order time-derivative term. Ignoring all but the first
two terms in (11), one obtains the linear wave equation,
�TT � c2�XX D 0; which describes both left-running and
right-running waves. However, (11) is not bi-directional
because in the derivation Boussinesq used the constraint
�T D �c�X , which limits (11) to waves traveling to the
right.

In dimensionless form, the Boussinesq equation reads

utt � c2uxx � ˛u2x � ˛uuxx � ˇuxxxx D 0 : (12)

The values of the parameters c; ˛ > 0; and ˇ do not mat-
ter, but the sign of ˇ matters. Typically, one sets c D
1; ˛ D 3, and ˇ D ˙1.

A simple solitary wave solution of (12) is given by

u(x; t) D
!2 � c2k2 � 4ˇk4

˛k2

C
12ˇk2

˛
sech2(kx � ! t C ı) : (13)

The equation with ˇ D 1 is a scaled version of (11) and
thus most relevant to shallow water wave theory. Math-
ematically, (12) with ˇ D 1 is ill-posed, (even without
the nonlinear terms), which means that the initial value
problem cannot be solved for arbitrary data. This short-
coming does not happen for (12) with ˇ D �1, which is

therefore nicknamed the “good” Boussinesq equation [50].
Nonetheless, the classical and good Boussinesq equations
are completely integrable.

The “improved” or “regularized” Boussinesq equation
(see, e. g., [10]) has ˇ D 1 but uxxtt instead of uxxxx ,
which improves the properties of the dispersion relation.
Like (12), the regularized version describes uni-directional
waves. The regularized Boussinesq equation and other al-
ternative equations listed in the literature (see, e. g., Mad-
sen and Schäffer [49]) are not completely integrable.

Bona et al. [10,11] analyzed a family of Boussinesq sys-
tems of the form

wt C ux C (uw)x C ˛uxxx � ˇwxxt D 0 ;
ut C wx C uux C �wxxx � ıuxx t D 0 ;

(14)

which follow from the Euler equations as first-order
approximations in the parameters "1 D a/h
 1;
"2 D h2/2 
 1, where the Stokes number, S D "1/"2 D
a2/h3 � 1.

In (14) w(x, t) is the non-dimensional deviation of
the water surface from its undisturbed position; u(x, t) is
the non-dimensional horizontal velocity field at a height
�h (with 0 � � � 1) above the flat bottom of the water.
The constant parameters ˛ through ı in (14) satisfy the
following consistency conditions: ˛ C ˇ D 1

2 (�
2 � 1

3 ) and
� C ı D 1

2 (1 � �
2) � 0. Solitary wave solutions of various

special cases of (14) have been computed by Chen [18].
Boussinesq systems arise when modeling the propaga-

tion of long-crested waves on large bodies of water (such as
large lakes or the ocean). The Boussinesq family (14) en-
compasses many systems that appeared in the literature.
Special cases and properties of well-posedness of (14) are
addressed by Bona et al. [10,11].

1D ShallowWater Wave Equation

The so-called one-dimensional (1D) shallow water wave
equation,

vxx t C ˛vvt � vt � vx C ˇvx
Z x

1

vt(y; t)dy D 0 ; (15)

can be derived from the classical shallow water wave the-
ory (see Sect. “Shallow Water Wave Equations of Geo-
physical Fluid Dynamics”) in the Boussinesq approxima-
tion. In that approximation one assumes that vertical vari-
ations of the static density, �0, are neglected, except the
buoyancy term proportional to d�0/dz; which is, in fact,
responsible for the existence of solitary waves. The integral
term in (15) can be removed by introducing the potential
u. Indeed, setting v D ux , Eq. (15) can be written as

uxxx t C ˛uxuxt � uxt � uxx C ˇuxxut D 0 : (16)
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The equation is completely integrable and can be solved
with the IST if and only if either ˛ D ˇ [41] or ˛ D 2ˇ
[3]. When ˛ D ˇ; Eq. (16) can be integrated with respect
to x and thus replaced by

uxx t C ˛uxut � ut � ux D 0 : (17)

Closed-form solutions of (15), and in particular of (17),
have been computed by Clarkson and Mansfield [19].

The Camassa–Holm Equation

The CH equation, named after Camassa and
Holm [16,17],

ut C 2�ux C 3uux � ˛2uxx t C �uxxx
� 2˛2uxuxx � ˛2uuxxx D 0 ; (18)

also models waves in shallow water. In (18), u is the fluid
velocity in the x-direction or, equivalently, the height of
the water’s free surface above a flat bottom, and �; � and
˛ are constants. Retaining only the first four terms in (18)
gives the BBM Eq. (7). Setting ˛ D 0 reduces (18) to the
KdV equation.

The CH equation admits solitary wave solutions, but
in contrast to the hump-type solutions of the KdV and
Boussinesq equations, they are implicit in nature (see,
e. g., [44]). In the limit � ! 0, Eq. (18) with � D 0; ˛ D 1
has a cusp-type solution of the form u(x; t) D c exp(�jx�
ct�x0j). The solution is called a peakon since it has a peak
(or corner) where the first derivatives are discontinuous.
The solution travels at speed c > 0 which equals the height
of the peakon.

The Kadomtsev–Petviashvili Equation

In their 1970 study [46] of the stability of line solitons,
Kadomtsev and Petviashvili (KP) derived a 2D-generaliza-
tion of the KdV equation which now bears their name. In
dimensionless variables, the KP equation is

(ut C ˛uux C uxxx )x C �2uyy D 0 ; (19)

where y is the transverse direction. In the derivation of the
KP equation, one assumes that the scale of variation in the
y-direction (along the crest of the wave as shown in Fig. 4)
is much longer than the wavelength along the x-direction.

The solitary wave and periodic (cnoidal) solutions of
(19) are, respectively, given by

u(x; t) D
k! � 4k4 C �2 l2

˛k2
C
12k2

˛
sech2(kxCl y�! tCı);

(20)

Shallow Water Waves and Solitary Waves, Figure 6
Periodic plane waves in shallow water, off the coast of Lima,
Peru. Photograph courtesy of A. Segur

and

u(x; t) D
k! � 4k4(2m � 1) � �2 l2

˛k2

C
12k2m
˛

cn2(kx C l y � ! t C ı;m) : (21)

As shown in Fig. 6, near a flat beach the periodic waves
appear as long, quasilinear stripes with a cn-squared cross
section. Such waves are typically generated by wind and
tides.

The equation with �2 D �1 is referred to as KP1,
whereas (19) with �2 D 1 is called KP2, which describes
shallow water waves [67]. Both KP1 and KP2 are com-
pletely integrable equations but their solution structures
are fundamentally different (see, e. g., [65], pp. 489–490).

ShallowWaterWave Equations
of Geophysical Fluid Dynamics

The shallow water equations used in geophysical fluid dy-
namics are based on the assumption D/L
 1, where D
and L are characteristic values for the vertical and hori-
zontal length scales of motion. For example, D could be
the average depth of a layer of fluid (or the entire fluid)
and L could be the wavelength of the wave.

The geophysical fluid dynamics community (see,
e. g., [55,72,73]) uses the following 2D shallow water equa-
tions,

ut C uux C vuy C ghx � 2˝v D �gbx ; (22)

vt C uvx C vvy C ghy C 2˝u D �gby ; (23)

ht C (hu)x C (hv)y D 0; (24)
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ShallowWater Waves and Solitary Waves, Figure 7
Setup for the geophysical shallowwater wavemodel

to describe water flows with a free surface under the in-
fluence of gravity (with gravitational acceleration g) and
the Coriolis force due to the earth’s rotation (with angular
velocity ˝ .) As usual, u D (u; v) denotes the horizontal
velocity of the fluid and h(x; y; t) is its depth. As shown
in Fig. 7, h(x; y; t) is the distance between the free sur-
face z D s(x; y; t) and the variable bottom b(x; y). Hence,
s(x; y; t) D b(x; y)C h(x; y; t). Eqs. (22) and (23) express
the horizontal momentum-balance; (24) expresses conser-
vation of mass. Note that the vertical component of the
fluid velocity has been eliminated from the dynamics and
that the number of independent variables has been re-
duced by one. Indeed, z no longer explicitly appears in
(22)–(24), where u, v, and h only depend on x, y, and t.

A shortcoming of themodel is that it does not take into
account the density stratification which is present in the at-
mosphere (as well as in the ocean). Nonetheless, (22)–(24)
are commonly used by atmospheric scientists to model
flow of air at low speed.

More sophisticated models treat the ocean or atmo-
sphere as a stack of layers with variable thickness. Within
each layer, the density is either assumed to be uniform or
may vary horizontally due to temperature gradients. For
example, Lavoie’s rotating shallow water wave equations
(see [24]),

ut C (u � r )u C 2˝ � u D �r (h�)C 1
2 hr� ; (25)

ht C r � (hu) D 0 ; (26)

�t C u � (r�) D 0 ; (27)

consider only one active layer with layer depth h(x; y; t);
but take into account the forcing due to a horizon-

tally varying potential temperature field �(x; y; t). Vector
u D u(x; y; t)i C v(x; y; t) j denotes the fluid velocity and
˝ D ˝k is the angular velocity vector of the Earth’s ro-
tation. r D @

@x i C
@
@y j is the gradient operator, and i, j,

and k are unit vectors along the x, y, and z-axes.
Lavoie’s equations are part of a family of multi-layer

models proposed by Ripa [61] to study, for example, the ef-
fects of solar heating, fresh water fluxes, and wind stresses
on the upper equatorial ocean. A study of the validity of
various layered models has been presented by Ripa [62].
The more sophisticated the models become the harder
they become to treat with analytic methods so one has
to apply numerical methods. Numerical aspects of various
shallow water models in atmospheric research and beyond
are discussed in e. g. [48,75,76].

Computation of SolitaryWave Solutions

As shown in Sect. “Completely Integrable Shallow Water
Wave Equations”, solitary wave solutions of the KdV and
Boussinesq equations (and like PDEs), can be expressed
as polynomials of the hyperbolic secant (sech) or tangent
(tanh) functions, whereas their simplest period solutions
involve the Jacobi elliptic cosine (cn) function.

There are several methods to compute exact, analytic
expressions for solitary and periodic wave solutions of
nonlinear PDEs. Two straightforward methods, namely
the direct integration method and the tanh-method, will
be discussed. Both methods seek traveling wave solutions.
By working in a traveling frame of reference the PDE is
replaced by an ordinary differential equation (ODE) for
which one seeks closed-form solutions in terms of special
functions.

In the terminology of dynamical systems, the solitary
wave solutions correspond to heteroclinic or homoclinic
trajectories in the phase plane of a first-order dynam-
ical system corresponding to the underlying ODE (see,
e. g., [6]). The periodic solutions are bounded in the phase
plane by these special trajectories, which correspond to the
limit of infinite period and modulus one.

Other more powerful methods, such as the aforemen-
tioned IST and Hirota’s method (see, e. g., [40]) deal with
the PDE directly. These methods allow one to compute
closed-form expressions of soliton solutions (in particular,
solitary wave solutions) addressed elsewhere in the ency-
clopedia.

Direct IntegrationMethod

Exact expressions for solitary wave solutions can be ob-
tained by direct integration. The steps are illustrated for
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the KdV equation given in (2). Assuming that the wave
travels to the right at speed v D !/k, Eq. (2) can be put
into a traveling frame of reference with independent vari-
able � D k(x � vt � x0). This reduces (2) to an ODE,
�v� 0 C ˛�� 0 C k2� 000 D 0; for �(�) D u(x; t): A first in-
tegration with respect to � yields

� v� C
˛

2
�2 C k2� 00 D A ; (28)

where A is a constant of integration. Multiplication of (28)
by � 0, followed by a second integration with respect to �;
yields

�
v
2
�2 C

˛

6
�3 C

k2

2
� 0 2 D A� C B ; (29)

where B is an integration constant. Separation of variables
and integration then leads to

Z �

�0

d�
p
a�2 � b�3 C Ã� C B̃

D ˙

Z �

�0

d� ; (30)

where a D v/k2; b D ˛/3k2; ÃD 2A/k2; and B̃ D 2B/k2:
The evaluation of the elliptic integral in (30) depends

on the relationship between the roots of the function
f (�) D a�2 � b�3 C Ã� C B̃: In turn, the nature of the
roots depends on the choice of Ã and B̃. Two cases lead to
physically relevant solutions.

Case 1: If the three roots are real and distinct, then the
integral can be expressed in terms of the inverse of the
cn function (see, e. g., [25] for details). This leads to the
cnoidal wave solution given in (6).

Case 2: If the three roots are real and (only) two of them
coincide, then the tanh-squared solution follows. This
happens when ÃD B̃ D 0. Integrating both sides of
(30) then gives

Z �

�0

d�
�
p
a � b�

D �
2
p
a
Arctanh

"p
a � b�
p
a

#

C C

D ˙(� � �0) :
(31)

where, without loss of generality, C and �0 can be set
to zero. Solving (31) for � yields

�(�) D
a
b

�
1 � tanh2

�p
a
2
�

��
D

a
b
sech2

�p
a
2
�

�
:

(32)

Returning to the original variables, one gets

�(�) D
3v
˛
sech2

�p
v

2k
�

�
; (33)

or

u(x; t) D
3v
˛
sech2

�p
v
2

(x � vt � x0)
�
; (34)

where v is arbitrary. Setting v D !/k D 4k2, where k
is arbitrary, and ı D �kx0, one can verify that (34)
matches (5).

The TanhMethod

If one is only interested in tanh- or sech-type solutions,
one can circumvent explicit integration (often involving
elliptic integrals) and apply the so-called tanh-method.
A detailed description of the method has been given by
Baldwin et al. [5]. The method has been fully implemented
in Mathematica, a popular symbolic manipulation pro-
gram, and successfully applied to many nonlinear differ-
ential equations from soliton theory and beyond.

The tanh-method is based on the following obser-
vation: all derivatives of the tanh function can be ex-
pressed as polynomials in tanh. Indeed, using the identity
cosh2� � sinh2� D 1 one computes tanh0� D sech2� D
1 � tanh2�; tanh00� D �2 tanh � C 2 tanh3� , etc. There-
fore, all derivatives of T(�) D tanh � are polynomials in T.
For example, T 0 D 1 � T2; T 00 D �2T C 2T3; and T 000 D
�2T C 8T2 � 6T4.

By applying the chain rule, the PDE in u(x, t) is then
transformed into an ODE for U(T) where T D tanh � D
tanh(kx�! tCı) is the new independent variable. Since all
derivatives of T are polynomials of T, the resulting ODE
has polynomial coefficients in T. It is therefore natural
to seek a polynomial solution of the ODE. The problem
thus becomes algebraic. Indeed, after computing the de-
gree of the polynomial solution, one finds its unknown co-
efficients by solving a nonlinear algebraic system.

Themethod is illustrated using (2). Applying the chain
rule (repeatedly), the terms of (2) become ut D �!(1 �
T2)U 0; ux D k(1 � T2)U 0, and

uxxx D k3(1 � T2)
�
�2(1 � 3T2)U 0

� 6T(1 � T2)U 00 C (1 � T2)2U 000
�
; (35)

where U(T) D U(tanh(kx � ! t C ı)) D u(x; t); U 0 D
dU/dT; etc.

Substitution into (2) and cancellation of a common
1 � T2 factor yields

� !U 0 C ˛kUU 0 � 2k3(1 � 3T2)U 0

� 6k3T(1 � T2)U 00 C k3(1 � T2)2U 000 D 0 : (36)
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This ODE for U(T) has polynomial coefficients in T. One
therefore seeks a polynomial solution

U(T) D
NX

nD0

anTn ; (37)

where the integer exponent N and the coefficients an must
be computed.

Substituting TN into (36) and balancing the highest
powers in T gives N D 2. Then, substituting

U(T) D a0 C a1T C a2T2 (38)

into (36), and equating to zero the coefficients of the vari-
ous power terms in T, yields

a1(˛a2 C 2k2) D 0 ;

˛a2 C 12k2 D 0 ;

a1(˛ka0 � 2k3 � !) D 0 ;

˛ka21 C 2˛ka0a2 � 16k3a2 � 2!a2 D 0 :

(39)

The unique solution of this nonlinear system for the un-
knowns a0; a1 and a2 is

a0 D
8k3 C !
˛k

; a1 D 0; a2 D �
12k2

˛
: (40)

Finally, substituting (40) into (38) and using T D

tanh(kx � ! tC ı) yields (4).
The solitary wave solutions and cnoidal wave solutions

presented in Sect. “Completely Integrable Shallow Wa-
ter Wave Equations” have been automatically computed
with aMathematica package [5] that implements the tanh-
method and variants.

A review of numerical methods to compute solitary
waves of arbitrary amplitude can be found in Vanden-
Broeck [74].

WaterWave Experiments and Observations

Through a series of experiments in a hydrodynamic tank,
Hammack investigated the validity of the BBM equation
[35] and KdV equation as models for long waves in shal-
low water [36,37,38] and long internal waves [69]. Their
research addressed the question:Would an initial displace-
ment of water, as it propagates forward, eventually evolve
in a train of localized solitary waves (solitons) and an os-
cillatory tail as predicted by the KdV equation? Based on
the experimental data, they concluded that (i) the KdV
dynamics only occurs if the waves travel over a long dis-
tance, (ii) a substantial amount of water must be initially
displaced (by a piston) to produce a soliton train, (iii) the

water volume of the initial wave determines the shape of
the leading wave in the wave train, and (iv) the initial di-
rection of displacement (upward or downward piston mo-
tion) determines what happens later. Quickly raising the
piston causes a train of solitons to emerge; quickly lower-
ing it causes all wave energy to distribute into the oscilla-
tory tail, as predicted by the theory.

Several other researchers have tested the validity of the
KdV equation and variants in laboratory experiments (see,
e. g., [39,60]). Bona et al. [9] give an in-depth evaluation of
the BBM Eq. (7) with and without dissipative term uxx .
Their study includes (i) a numerical scheme with error
estimates, (ii) a convergence test of the computer code,
(iii) a comparison between the predictions of the theoret-
ical model and the results of laboratory experiments. The
authors note that it is important to include dissipative ef-
fects to obtain reasonable agreement between the forecast
of the model and the empirical results.

Water tank experiments in conjunction with the anal-
ysis of actual data, allows researchers to judge whether or
not the KdV equation can be used to model the dynam-
ics of tsunamis (see [67]). Tsunami research intensified
after the December 2004 tsunami devastated large coastal
regions of India, Indonesia, Sri Lanka, and Thailand, and
killed nearly 300,000 people.

Apart from shallowwater waves near beaches, the KdV
equation and its solitary wave solution also apply to inter-
nal waves in the ocean. Internal solitary waves in the open
ocean are slow waves of large amplitude that travel at the
interface of stratified layers of different density. Stratifica-
tion based on density differences is primarily due to varia-
tions in temperature or concentration (e. g. due to salinity
gradients). For example, absorption of solar radiation cre-
ates a near surface thin layer of warmer water (of lower
density) above a thicker layer or colder, denser water. The
smaller the density change, the lower the wave frequency,
and the slower the propagation speed. If the upper layer
is thinner than the lower one, then the internal wave is
a wave of depression causing a downward displacement of
the fluid interface.

Internal solitary waves are ubiquitous in stratified wa-
ters, in particular, whenever strong tidal currents occur
near irregular topography. Such waves have been stud-
ied since the 1960s. An early, well-documented case deals
with internal waves in the Andaman Sea, where Perry and
Schimke [58] found groups of internal waves up to 80 m
high and 2000 m long on the main thermocline at 500 m
in 1500 m deep water. Their measurements were con-
firmed by Osborne and Burch [53] who showed that in-
ternal waves in the Andaman Sea are generated by tidal
flows and can travel over hundreds of kilometers.
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ShallowWater Waves and Solitary Waves, Figure 8
Three solitary wave packets generated by internal waves from
sills in the Strait of Gibraltar. Original image STS41G-34-81 cour-
tesy of the Earth Sciences and Image Analysis Laboratory, NASA
Johnson Space Center (http://eol.jsc.nasa.gov). Ortho-rectified,
color adjusted photograph courtesy of Global Ocean Associates

Strong internal waves can affect biological life and in-
terfere with underwater navigation. Understanding the be-
havior of internal waves can aid in the design of offshore
production facilities for oil and natural gas.

The near-surface current associated with the internal
wave locally modulates the height of the water surface.
Hence, the internal wave leaves a “signature” or “foot-
print” at the sea surface in the form of a packet of solitary
waves (sometimes called current rips or tide rips). These
visual manifestations appear as long, quasilinear stripes
in satellite imagery or photographs taken during space
flights. Over 50 case studies and hundreds of images of
oceanic internal waves can be found in “An Atlas of In-
ternal Solitary-like Waves and Their Properties” [42].

Figure 8 shows a photograph of three solitary waves
packets which are the surface signature of internal waves in
the Strait of Gibraltar. The photograph was taken from the
Space Shuttle on October 11, 1984. Spain is to the North,
Morocco to the South. Alternate solitary wave packets
move toward the northeast or the southeast. The ampli-
tude of these waves is of the order of 50 m; their wave-
length is in the range of 500–2000 m. The separation be-
tween the packets is approximately 30 km.Waves of longer
wavelengths and higher amplitudes have traveled the fur-
thest. The number of oscillations within each packet in-
creases as time goes on. Solitary wave packets can reach
200 km into the Western Mediterranean sea and live for

more than two days before dissipating. A in-depth study
of solitary waves in the Strait of Gibraltar can be found in
Farmer and Armi [28].

The KdV model is applicable to stratified fluids with
two layers and internal solitary waves if (i) the ratio of
the amplitude a to the upper layer depth h is small,
and (ii) the wavelength  is long compared with the
upper layer depth. More precisely, a/h D O(h2/2)
 1.
A detailed discussion of internal solitary waves and addi-
tional references can be found in Garrett and Munk [31],
Grimshaw [32,33,34], Helfrich and Melville [39], Apel et
al. [4], and Pelinovsky et al. [56]. The last three papers
discuss a variety of other theoretical models including the
extended KdV equation (also known as Gardner’s equa-
tion or combined KdV-modified KdV equation) which
contains both quadratic and cubic nonlinearities. Solitary
wave solutions of the extendedKdV equation can be found
in Scott ([65], p. 856), Helfrich andMelville [39], and Apel
et al. [4]. A review of laboratory experiments with inter-
nal solitary waves was published by Ostrovsky and Stepa-
nyants [54].

As discussed in the review paper by Staquet and Som-
meria [70], internal gravity waves also occur in the at-
mosphere, where they are often caused by wind blowing
over topography and cumulus convective clouds. Internal
gravity waves reveal themselves as unusual cloud patterns,
which are the counterpart of the solitary wave packets on
the ocean’s surface.

Future Directions

For many shallow water wave applications, the full Euler
equations are too complex to work with. Instead, various
approximate models have been proposed. Arguably, the
most famous shallow water wave equations are the KdV
and Boussinesq equations.

The KdV equation was originally derived to describe
shallowwaterwaves in a rectangular channel. Surprisingly,
the equation alsomodels ion-acoustic waves andmagneto-
hydrodynamic waves in plasmas, waves in elastic rods,
mid-latitude and equatorial planetary waves, acoustic
waves on a crystal lattice, and more (see, e. g., [64,65,66]).
The KdV equation has played a pivotal role in the devel-
opment of the Inverse Scattering Transform and soliton
theory, both of which had a lasting impact on twentieth-
century mathematical physics.

Historically, the classical Boussinesq equation was de-
rived to describe the propagation of shallow water waves
in a canal. Boussinesq systems arise when modeling the
propagation of long-crested waves on large bodies of wa-
ter (e. g. large lakes or the ocean). As Bona et al. [10] point
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out, a plethora of formally-equivalent Boussinesq systems
can be derived. Yet, such systemsmay have vastly different
mathematical properties. The study of the well-posedness
of the nonlinear models is of paramount importance and
is the subject of ongoing research.

Shallow water wave theory allows one to adequately
model waves in canals, surface waves near beaches, and
internal waves in the ocean (see [4]). Due to their
widespread occurrence in the ocean (see [42]), solitary
waves and “solitary wave packets” (solitons) are of inter-
est to oceanographers and geophysicists. The (periodic)
cnoidal wave solutions are used by coastal engineers in
studies of sediment movement, erosion of sandy beaches,
interaction of waves with piers and other coastal struc-
tures.

Apart from their physical relevance, the knowledge of
solitary and cnoidal wave solutions of nonlinear PDEs fa-
cilitates the testing of numerical solvers and aids in stabil-
ity analysis.

Shallow water wave models are widely used in atmo-
spheric science as a paradigm for geophysical fluid mo-
tions. They model, for example, inertia-gravity waves with
fast time scale dynamics, and wave-vortex interactions and
Rossby waves associated with slow advective-timescale dy-
namics.

This article has reviewed commonly used shallow wa-
ter wave models, with the hope of bridging two research
communities: one that focuses on nonlinear equations
with dispersive effects; the other on nonlinear hyperbolic
equations without dispersive terms. Of common concern
are the testing of the theoretical models on measured data
and further validation of the equations with numerical
simulations and laboratory experiments. A fusion of the
expertise of both communities might advance research
on water waves and help to answer open questions about
wave breaking, instability, vorticity, and turbulence. Of
paramount importance is the prevention of natural disas-
ters, ecological ravage, and damage to man-made struc-
tures due to a better understanding of the dynamics of
tsunamis, steep waves, strong internal waves, rips, tidal
currents, and storm surges.
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Glossary
Babbling equilibrium An equilibrium in which the

sender’s strategy is independent of type and the re-
ceiver’s strategy is independent of signal.

Behavior strategy A strategy for an extensive-form game
that specifies the probability of taking each action at
each information set.

Behavioral type A player in a game who is constrained to
follow a given strategy.

Cheap-talk game A signaling game in which players’
preferences do not depend directly on signals.

Condition D1 An equilibrium refinement that requires
out-of-equilibrium beliefs to be supported on types
that have the most to gain from deviating from a fixed
equilibrium.

Divinity An equilibrium refinement that requires out-of-
equilibrium beliefs to place relatively more weight on
types that gain more from deviating from a fixed equi-
librium.

Equilibrium outcome The probability distribution over
terminal nodes in a game determined by equilibrium
strategy.
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Handicap principle The idea that animals communicate
fitness through observable characteristics that reduce
fitness.

Incomplete information game A game in which players
lack information about the strategy sets or payoff func-
tions of their opponents.

Intuitive criterion An equilibrium refinement that re-
quires out-of-equilibrium beliefs to place zero weight
on types that can never gain from deviating from
a fixed equilibrium outcome.

Nash equilibrium A strategy profile in a game in which
each player’s strategy is a best response to the equilib-
rium strategies of the other players.

Neologism-proof equilibrium An equilibrium that ad-
mits no self-signaling set.

Pooling equilibrium A signaling-game equilibrium in
which each all sender types send the same signal with
probability one.

Receiver In a signaling game, the uninformed player.
Self-signaling set A set of types C with the property that

precisely types in the set C gain from inducing the best
response to C relative to a fixed equilibrium.

Sender In a signaling game, the informed agent.
Separating equilibrium A signaling-game equilibrium in

which sender types sent signals from disjoint subsets of
the set of available signals.

Signaling game A two-player game of incomplete infor-
mation in which one player is informed and the other
in not. The informed player’s strategy is a type-contin-
gent message and the uninformed player’s strategy is
a message-continent action.

Single-crossing condition A condition that guarantees
that indifferent curves from a given family of prefer-
ences cross at most one.

Spence-Mirrlees condition A differential condition that
orders the slopes of level sets of a function.

Standard signaling game A signaling game in which
strategy sets and payoff functions satisfy monotonicity
properties.

Type In an incomplete information game, a variable that
summarizes private information.

Verifiable information game A signaling game with the
property that each type has a signal that can only be
sent by that type.

Definition of the Subject

Signaling games refer narrowly to a class of two-player
games of incomplete information in which one player is
informed and the other is not. The informed player’s strat-
egy set consists of signals contingent on information and

the uninformed player’s strategy set consists of actions
contingent on signals. More generally, a signaling game
includes any strategic setting in which players can use the
actions of their opponents to make inferences about hid-
den information. The earliest work on signaling games
was Spence [72]’s model of educational signaling and Za-
hari [76]’smodel of signaling by animals. During the 1980s
researchers developed the formal model and identified
conditions that permitted the selection of unique equilib-
rium outcomes in leading models.

Introduction

The framed degree in your doctor’s office, the celebrity en-
dorsement of a popular cosmetic, and the telephone mes-
sage from an old friend are all signals. The signals are po-
tentially valuable because they allow you to infer useful
information. These signals are indirect and require inter-
pretation. They may be subject to manipulation. The doc-
tor’s diploma tells you something about the doctor’s quali-
fications, but knowing where and when the doctor studied
does not prove that she is a good doctor. The endorsement
identifies the product with a particular lifestyle, but what
works for the celebrity may not work for you. Besides, the
celebrity was probably paid to endorse the product and
may not even use it. The phone message may tell you how
to get in touch with your friend, but is unlikely to contain
all of the information you need to find him – or to evaluate
whether you’ll meet to discuss old times or to be asked a fa-
vor. While the examples all involve signaling, the nature of
the signaling is different. The doctor faces large penalties
for misrepresenting her credentials. She is not required to
display all of her diplomas, but it is reasonable to assume
that degrees are not forged. The celebrity endorsement is
costly – certainly to the manufacturer who pays for the
celebrity’s services and possibly to the celebrity himself,
whose reputation may suffer if the product works badly.
It is reasonable to assume that it is easier to obtain an en-
dorsement of a good product, but there are also good rea-
sons to be skeptical about the claims. In contrast, although
a dishonest or misleading message may lead to a bad out-
come, leaving a message is not expensive and the content
of the message is not constrained by your friend’s infor-
mation. The theory of signaling games is a useful way to
describe the essential features of all three examples.

Opportunities to send and evaluate signals arise in
many common natural and economic settings. In the
canonical example (due to Spence [72]), a high-ability
worker invests in education to distinguish herself from
less skilled workers. The potential employer observers ed-
ucational attainment, but not innate skill, and infers that
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a better educated worker is more highly skilled and pays
a higher wage. To make this story work, there must be
a reason that low-ability workers do not get the education
expected of a more highly skilled worker and hence obtain
a higher wage. This property follows from an assumption
that the higher the ability the worker, the easier it is for her
to produce a higher signal.

The same argument appears in many applications. For
example, a risk-averse driver will purchase a lower cost,
partial insurance contract, leaving the riskier driver to pay
a higher rate for full insurance (Rothschild and Stiglitz [65]
or Wilson [75]). A firm that is able to produce high-qual-
ity goods signals this by offering a warranty for the goods
sold (Grossman [37]) or advertising extensively. A strong
deer grows extra large antlers to show that it can survive
with this handicap and to signal its fitness to potential
mates [76].

Game theory provides a formal language to study how
one should send and interpret signals in strategic environ-
ments. This article reviews the basic theory of signaling
and discusses some applications. It does not discuss related
models of screening. Kreps and Sobel [43] and Riley [64]
review both signaling and screening.

Section “The Model” describes the basic model. Sec-
tion “Equilibrium” defines equilibrium for the basic
model. Section “The BasicModel” limits attention to a spe-
cial class of signaling game. I give conditions sufficient for
the existence of equilibria in which the informed agent’s
signal fully reveals her private information and argue that
one equilibrium of this kind is prominent. The next three
sections study different signaling games. Section “Cheap
Talk” discusses models of costless communication. Sec-
tion “Verifiable Information” discusses the implications of
the assumptions that some information is verifiable. Sec-
tion “Communication about Intentions” briefly discusses
the possibility of signaling intentions rather than private
information. Section “Applications” describes some appli-
cations and extensions of the basic model. Section “Future
Directions” speculates on directions for future research.

TheModel

This section describes the basic signaling game. There are
two players, called S (for sender) and R (for receiver).
S knows the value of some random variable t whose sup-
port is a given set T. t is called the type of S. The prior
beliefs of R are given by a probability distribution �(�)
over T; these beliefs are common knowledge. When T is
finite, �(t) is the prior probability that the sender’s type
is t. When T is uncountably infinite, �(�) is a density func-
tion. Player S learns t and sends to R a signal s drawn from

some setM. Player R receives this signal, and then takes an
action a drawn from a setA. (It is possible to allowA to de-
pend on s and S to depend on t.) This ends the game: The
payoff to i is given by a function ui : T �M � A! R.

This canonical game captures the essential features of
the classic applications of market signaling. In the labor-
market signaling story due to Spence [72] a worker wishes
to signal his ability to a potential employer. The worker
has information about ability that the employer lacks. Di-
rect communication about ability is not possible, but the
worker can acquire education. The employer can observe
the worker’s level of education and use this to form a judg-
ment about the worker’s true level of ability. In this appli-
cation, S is a worker; R represents a potential employer (or
a competitive labor market); t is the student’s productivity;
s is her level of education; and a is her wage.

Equilibrium

Defining Nash equilibrium for the basic signaling game is
completely straightforward whenT, S, andA are finite sets.
In this case a behavior strategy for S is a function � : T �
M ! [0; 1] such that

P
s2M �(t; s) D 1 for all t. �(t; s)

is the probability that sender-type t sends the signal s.
A behavior strategy for R is a function ˛ : M � A! [0; 1]
where

P
a2A ˛(s; a) D 1 for all s. ˛(s; a) is the probability

that R takes action a following the signal s.

Proposition 1 Behavior strategies (˛�; ��) form a Nash
Equilibrium if and only if for all t 2 T

�(t; s) > 0 implies
X

a2A

US (t; s; a)˛(s; a)

D max
s02S

X

a2A

US (t; s0; a)˛(s0; a) (1)

and, for each s 2 S such that
P

t2T �(t; s)�(t) > 0,
if
P

t2T �(t; s)�(t) > 0, then

˛(s; a) > 0 implies
X

t2T

UR (t; s; a)ˇ(t; a)

D max
a02A

X

t2T

UR (t; s; a0)ˇ(t; a0) ; (2)

where

ˇ(t; s) D
�(t; s)�(t)

P
t02T �(t0; s)�(t0)

: (3)

Condition (1) states that the S places positive probability
only on signals that maximize expected utility. This condi-
tion guarantees that S responds optimally to R’s strategy.
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Condition (2) states that R places positive probability only
on actions that maximize expected utility, where is taken
with respect to the distribution ˇ(�; s) following the sig-
nal s. Condition (3) states that ˇ(�; s) accurately reflects the
pattern of play. It requires that R’s beliefs be determined
using S’s strategy and the prior distribution whenever pos-
sible. Equilibrium refinements also require that R has be-
liefs following signals s that satisfy

X

t2T

�(t; s)�(t) D 0 ; (4)

that is are sent with probability zero in equilibrium. Specif-
ically, sequential equilibrium permits ˇ(�;m) to be an ar-
bitrary distribution when Eq. (4) holds, but requires that
Eq. (2) holds even for these values of s. This restriction
rules out equilibria in which certain signals are not sent
because the receiver responds to the signal with an action
that is dominated.

The ability to signal creates the possibility that R will
be able to draw inferences about S’s type from the signal.
Whether he is able to do so is a property of the equilibrium.
It is useful to define two extreme cases.

Definition 1 An equilibrium (˛�; ��) is called a sepa-
rating equilibrium if each type t sends different signals.
That is, M can be partitioned into sets Mt such that for
each t,

P
s2Mt

�(t; s) D 1. An equilibrium (˛�; ��) is
called a pooling equilibrium if there is a single signal s�

that is sent by all types with probability one.

In a separating equilibrium, R can infer S’s private in-
formation completely. In a pooling equilibrium, R learns
nothing from the sender’s signal. This definition excludes
other possible situations. For example, all sender types can
randomize uniformly over a set of two or more signals. In
this case, the receiver will be able to draw no inference
beyond the prior from a signal received in equilibrium.
More interesting is the possibility that the equilibrium will
be partially revealing, with some, but not all of the sender
types sending common signals.

It is not difficult to construct pooling equilibria for the
basic signaling game. Take the labor market model and as-
sume S sends the message s� with probability one and that
the receiver responds to s� with his best response to the
prior distribution and to all other messages with the best
response to the belief that t is the least skilled agent. Pro-
vided that the least skilled agent prefers to send s� to send-
ing the cheapest alternative signal, this is a Nash Equilib-
rium outcome.

The Basic Model

The separating equilibrium is a benchmark outcome for
signaling games. When a separating equilibrium exists,
then it is possible for the sender to share her information
fully with the receiver in spite of having a potential conflict
of interest.

Existence of separating equilibria typically requires
a systematic relationship between types and signals. An
appropriate condition, commonly referred to as the sin-
gle-crossing condition, plays a prominent role in signal-
ing games and in models of asymmetric information more
generally.

In this section I limit attention to a special class of sig-
naling game in which there is amonotonic relationship be-
tween types and signals. In these models, separating equi-
libria typically exist.

I begin by stating the assumption in the environment
most commonly seen in applications. Assume that the
sets T, S, and A are all real intervals.

Definition 2 US (�) satisfies the single-crossing condi-
tion if US (t; s; a) � US (t; s0; a0) for s0 > s implies that
US (t0; s; a) < US (t0; s0; a0) for all t0 > t.

In a typical application, US (�) is strictly decreasing in its
second argument (the signal) and increasing in its third
argument (R’s response) for all types. Consequently in-
difference curves are well defined in M � A for all t. The
single-crossing condition states that indifference curves of
different sender types cross once. If a lower type is in-
different between two signal-action pairs, then a higher
type strictly prefers to send the higher signal. In this way,
the single-crossing condition links signals to types in such
a way as to guarantee that higher types send weakly higher
signals in equilibrium.

Note two generalizations of Definition 2. First, the as-
sumption that the domain of US (�) is the product of in-
tervals can be replaced by the assumption that these sets
are partially ordered. In this case, weak and strict order
replace the weak and strict inequalities comparing types
and actions in the statement of the definition. Second, it
is sometimes necessary to extend the definition to mixed
strategies. In this case, the ordering of A induces a partial
ordering of distributions of A through first-order stochas-
tic dominance.

When one thinks of the single-crossing condition geo-
metrically, it is apparent that it implies a ranking of the
slopes of the indifference curves of the sender. Suppose
that US (�) is smooth, strictly increasing in actions and
strictly decreasing in signals so that indifference curves are
well defined for each t. Writing the indifference curve as
f(s; ā(s; t))g, it must be that US (t; s; ā(s; t)) � 0, so that
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the slope of the indifference curve of a type t sender is

ā1(s; t) D �
US
2 (t; s; a)

US
3 (t; s; a)

; (5)

where ā1(s; t) is the partial derivative of ā(s; t) with respect
to the first argument, andUS

k (�) denotes the partial deriva-
tive of US (�) with respect to its kth argument. Under these
conditions, the single-crossing condition is implied by the
requirement that the right-hand side of Eq. (5) is decreas-
ing in t. The differentiable version of the single-crossing
condition is often referred to as the Spence–Mirrlees con-
dition. Milgrom and Shannon [57] contains general defi-
nitions of the single-crossing and Spence–Mirrlees condi-
tions and Edlin and Shannon [26] provides a precise state-
ment of when the conditions are equivalent.

To provide a simple construction of a separating equi-
librium, limit attention to a standard signaling game in
which the following conditions hold.

1. T D f0; : : : ;Kg is finite.
2. A andM are real intervals.
3. Utility functions are continuous in action and signal.
4. US (�) is strictly increasing in action and strictly decreas-

ing in signal.
5. The single-crossing property holds.
6. The receiver’s best-response function is uniquely de-

fined, independent of the signal, and strictly increasing
in t so that it can be written BR(t).

7. There exists s̄ 2 S such that US (K; s̄; BR(K)) < US (K;
s�0 ; BR(0)).

Conditions 1 and 2 simplify exposition, but otherwise are
not necessary. It is important that T, M, and A be par-
tially ordered so that some kind of single-crossing con-
dition applies. Conditions 4–6 impose a monotone struc-
ture on the problem so that higher types are more able to
send high signals, and that higher types induce higher (and
uniformly more attractive) actions. These conditions im-
ply that in equilibrium higher types will necessarily send
weakly higher signals. Condition 7 is a boundary condition
that makes sending high signals unattractive. It states that
the highest type of sender would prefer to be treated like
the lowest type rather than use the signal s̄. These prop-
erties hold in many standard applications. Condition 6
would be satisfied if UR (t; s; a) D �(a � t)2.

Separating Equilibrium

To illustrate these ideas, consider a construction of a sepa-
rating equilibrium.

Proposition 2 The standard signaling game has a separat-
ing equilibrium.

One can prove the proposition by constructing a possible
equilibrium path and confirming that the path can be part
of a separating equilibrium.

Step 1. t0 selects the signal s�0 that maximizes
US (t0; s; BR(t0)).

Step 2. Suppose that s�i have been specified for i D 0; : : : ;
k � 1 and let U�(ti ) D US (ti ; s�i ; BR(ti )). Define
s�k to solve:

maxUS (tk ; s; BR(tk)) subject to

US (tk�1; s; BR(tk)) � U�(tk�1) :

Provided that the optimization problems in Steps 1
and 2 have solutions, the process inductively produces
a signaling strategy for the sender and a response rule for
the receiver defined on fs�0 ; : : : ; s

�
Kg. When BR(�) is strictly

increasing, the single-crossing condition implies that the
signaling strategy is strictly increasing. To complete the
description of strategies, assume that the receiver takes
the action BR(tk) in response to signals in the interval
[sk ; skC1), BR(t0) for s < s�0 , and BR(tK ) for s > s�K . By
the definition of the best-response function, the receiver is
best responding to the sender’s strategy. When the bound-
ary condition fails, a fully separating equilibrium need not
exist, but whenM is compact, one can follow the construc-
tion above to obtain an equilibrium in which the lowest
types separate and higher types pool at the maximum sig-
nal inM (see Cho and Sobel [22] for details).

In the construction, the equilibrium involves ineffi-
cient levels of signaling. When US (�) is decreasing in the
signal, all but the lowest type of sender mustmake a waste-
ful expenditure in the signal in order to avoid being treat-
ing as having a lower quality. The result that expenditures
on signals are greater than the levels optimal in a full-
information model continue to hold when US (�) is not
monotonic in the signal. The sender inevitably does no
better in a separating equilibrium than she would do if
R had full information about t. Indeed, all but the low-
est type will do strictly worse in standard signaling games.
On the other hand, the equilibrium constructed above has
a constrained efficiency property: Of all separating equi-
libria, it is Pareto dominant from the standpoint of S. To
confirm this claim argue inductively that in any separat-
ing equilibrium if tj sends the signal sj, then s j � s�j , with
equality only if all types i < j send s�i with probability one.

Mailath [49] provides a similar construction when T is
a real interval. In this case, the Spence–Mirrlees formu-
lation of the single-crossing condition plays an important
role and the equilibrium is a solution to a differential equa-
tion.
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Multiple Equilibria and Selection

Section “Equilibrium” ended with the construction of
a pooling equilibrium. A careful reconsideration of the ar-
gument reveals that there typically are many pooling equi-
librium outcomes. One can construct a potential pool-
ing outcome by assuming that all sender types send the
same signal, that the receiver best responds to this com-
mon signal, and responds to all other signals with the
least attractive action. Under the standard monotonic-
ity assumptions, this strategy profile will be an equilib-
rium if the lowest sender type prefers pooling to sending
the cheapest available out-of-equilibrium message. Sec-
tion “Separating Equilibrium” ended with the construc-
tion of a separating equilibrium. There are also typi-
cally many separating equilibrium outcomes. Assume that
types t D 0; : : : ; r � 1 send signals s�(t), type r sends
s̃(k) > s�(k), and subsequent signals s̃�(t) for t > r solve:

maxUS (tk ; s; BR(tk )) subject to

US (tk�1; s; BR(tk)) � U(tk�1; s̃; BR(tk�1)) :

In both of these cases, the multiplicity is typically pro-
found, with a continuum of distinct equilibrium outcomes
(when M is an interval). The multiplicity of equilibria
means that, without refinement, equilibrium theory pro-
vides few clear predictions beyond the observation that the
lowest type of sender receives at least U�(t0), the payoff it
would receive under complete information, and the fact
that the equilibrium signaling function is weakly increas-
ing in the sender’s type. The first property is a consequence
of the monotonicity of S’s payoff in a and of R’s best re-
sponse function. The second property is a consequence of
the single-crossing condition.

This section describes techniques that refine the set of
equilibria. Refinement arguments that guarantee existence
and select unique outcomes for standard signaling games
rely on the Kohlberg–Mertens [42] notion of strategic sta-
bility. The complete theory of strategic stability is only
available for finite games. Consequently the literature ap-
plies weaker versions of strategic stability that are defined
more easily for large games. Banks and Sobel [8], Cho and
Kreps [21], and Cho and Sobel [22] introduce these argu-
ments.

Multiple equilibria arise in signaling games because
Nash equilibrium does not constrain the receiver’s re-
sponse to signals sent with zero probability in equilib-
rium. Specifying that R’s response to these unsent signals
is unattractive leads to the largest set of equilibrium out-
comes. (In standard signaling games, S’s preferences over
actions do not depend on type, so the least attractive ac-
tion is well defined.) The equilibrium set shrinks if one re-

stricts the meaning of unsent signals. An effective restric-
tion is condition D1, introduced in Cho and Kreps [21].
This condition is less restrictive than the notion of univer-
sal divinity introduced by Banks and Sobel [8], which in
finite games is less restrictive than Kohlberg andMertens’s
notion of strategic stability.

Given an equilibrium (˛�; ��), let U�(t) be the
equilibrium expected payoff of a type t sender and let
D(s; t) D fa : u(t; s; a) � U�(t)g be the set of pure-strat-
egy responses to s that lead to payoffs at least as great as
the equilibrium payoff for player t. Given a collection of
sets, X(t); t 2 T; X(t�) is maximal if it not a proper subset
of any X(t).

Definition 3 Behavior strategies (˛�; ��) together with
beliefs ˇ� satisfy D1 if for any unsent message s; ˇ(�; s) is
supported on those t for which D(s; t) is maximal.

In standard signaling games, D(s; t) is an interval: all ac-
tions greater than or equal to a particular action will be
attractive relative to the equilibrium. Hence these sets are
nested. If D(s; t) is not maximal, then there is another type
t0 that is “more likely to deviate” in the sense that there
exists out-of-equilibrium responses that are attractive to
t0 but not t. Condition D1 requires that the receiver place
no weight on type tmaking a deviation in this case. Notice
if D(s; t) is empty for all t, then D1 does not restrict beliefs
given s (and any choice of action will support the puta-
tive equilibrium). Condition D1 is strong. One can imag-
ine weaker restrictions. The intuitive condition (Cho and
Kreps [21]) requires that ˇ(t; s) D 0 when D(t; s) D �
and at least one other D(t0; s) is non empty. Divinity
(Banks and Sobel [8]) requires that if D(t; s) is strictly con-
tained in D(t0; s), thenˇ(t0; s)/ˇ(t; s) � �(t0)/�(t), so that
the relative probability of the types more likely to deviate
increases.

Proposition 3 The standard signaling game has a unique
separating equilibriumoutcome that satisfies ConditionD1.

In standard signaling games, the only equilibrium out-
come that satisfies Condition D1 is the separating outcome
described in the previous section. Details of the argument
appear in Cho and Sobel. The argument relies on two in-
sights. First, types cannot be pooled in equilibrium be-
cause slightly higher signals will be interpreted as coming
from the highest type in the pool. Second, in any separat-
ing equilibrium in which a sender type fails to solve Step 2,
deviation to a slightly lower signal will not lower R’s be-
liefs.

The refinement argument is powerful and the separat-
ing outcome selected receives prominent attention in the
literature. It is worth pointing out that the outcome has
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one unreasonable property. The separating outcome de-
scribed above depends only on the support of types, and
not on the details of the distribution. Further, all types
but the lowest type must make inefficient (compared to
the full-information case) investments in signal in order
to distinguish themselves from lower types. The efficient
separating equilibrium for a sequence of games in which
the probability of the lowest type converges to zero does
not converge to the separating equilibrium of the game in
which the probability of the lowest type is zero. In the spe-
cial case of only two types, the (efficient) pooling outcome
may be a more plausible outcome when the probability of
the lower type shrinks to zero. Grossman and Perry [38]
and Mailath, Okuno-Fujiwara, and Postlewaite [50] intro-
duce equilibrium refinements that select the pooling equi-
librium in this setting. These concepts share many of the
same motivations of the refinements introduced by Banks
and Sobel and Cho and Kreps. They are qualitatively dif-
ferent from the intuitive criterion, divinity, and Condition
D1, because they are not based on dominance arguments
and lack general existence properties.

Cheap Talk

Models in which preferences satisfy the single-crossing
property are central in the literature, but the assumption
is not appropriate in some interesting settings. This sec-
tion describes an extreme case in which there is no direct
cost of signaling.

In general, a cheap-talk model is a signaling model in
which ui (t; s; a) is independent of s for all (t; a). Two facts
about this model are immediate. First, if equilibrium ex-
ists, then there always exists an equilibrium inwhich no in-
formation is communicated. To construct this “babbling”
equilibrium, assume that ˇ(t; s) is equal to the prior inde-
pendent of the signal s. R’s best response will be to take an
action that is optimal conditional only on his prior infor-
mation. Hence R’s action can be taken to be constant. In
this case, it is also a best response for S to send a signal
that is independent of type, which makes ˇ(t; s) the ap-
propriate beliefs. Hence, even if the interests of S and R are
identical, so that it there are strong incentives to commu-
nicate, there is a possibility of complete communication
break down.

Second, it is clear that non-trivial communication re-
quires that different types of S have different preferences
over R’s actions. If it is the case that whenever some type t
prefers action a to action a0 then so do all other types, then
(ruling out indifference), it must be the case that in equilib-
rium the receiver takes only one action with positive prob-
ability. To see this, note that otherwise one type of sender

is not selecting a best response. The second observation
shows that cheap talk is not effective in games, like the
standard labor-market story, in which the sender’s pref-
erences are monotonic in the action of the receiver. With
cheap communication, the potential employee in the labor
market will always select a signal that leads to the higher
possible wage and consequently, in equilibrium, all types
of workers will receive the same wage.

A Simple Cheap-Talk Game

There are natural settings in which cheap talk is mean-
ingful in equilibrium. To describe examples, I follow the
development of Crawford and Sobel [24] (Green and
Stokey [35] independently introduced a similar game in
an article circulated in 1981). In this paper, A and T
are the unit interval and M can be taken to be the unit
interval without loss of generality. The sender’s private
information or type, t, is drawn from a differentiable prob-
ability distribution function, F(�), with density f (�), sup-
ported on [0; 1]. S and R have twice continuously dif-
ferentiable von Neumann–Morgenstern utility functions
Ui (a; t) that are strictly concave in a and have a strictly
positive mixed partial derivative. Let i D R; S; ai (t) de-
notes the unique solution to maxa U i (a; t) and further as-
sume that aS(t) > aR(t) for all t. (The assumptions on
Ui (�) guarantee that Ui (�) is well defined and strictly in-
creasing.)

In this model, the interests of the sender and re-
ceiver are partially aligned because both would like to take
a higher action with a higher t. The interests are different
because S would always like the action to be a bit higher
than R’s ideal action. In a typical application, t represents
the idea action for R, such as the appropriate expenditure
on a public project. Both R and S want actual expenditure
to be close to the target value, but S has a bias in favor of
additional expenditure.

For 0 � t0 < t00 � 1, let ā(t0; t00) be the unique solu-
tion to maxa

R t00
t0 UR (a; t)dF(t). By convention, ā(t; t) D

aR(t).
Without loss of generality, limit attention to pure-

strategy equilibria. The concavity assumption guarantees
that R’s best responses will be unique, so R will not ran-
domize in equilibrium. An equilibrium with strategies
(��; ˛�) induces action a if ft : ˛�(��(t)) D ag has posi-
tive prior probability. Crawford and Sobel [24] character-
ize equilibrium outcomes.

Proposition 4 There exists a positive integer N� such
that for every integer N with 1 � N � N�, there exists at
least one equilibrium in which the set of induced actions
has cardinality N, and moreover, there is no equilibrium
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which induces more than N� actions. An equilibrium can
be characterized by a partition of the set of types, t(N) D
(t0(N); : : : ; tN (N)) with 0 D t0(N) < t1(N) < : : : <

tN (N) D 1, and signals mi ; i D 1; : : : ;N, such that for all
i D 1; : : : ;N � 1

US (ā(ti ; tiC1); ti )) � US (ā(ti�1; ti); ti )) D 0 ; (6)

�(t) D mi for t 2 (ti�1; ti ] ; (7)

and

˛(mi ) D ā(ti�1; ti ) : (8)

Furthermore, essentially all equilibrium outcomes can be
described in this way.

In an equilibrium, adjacent types pool together and send
a common message. Condition (6) states that sender types
on the boundary of a partition element are indifferent be-
tween pooling with types immediately below or immedi-
ately above. Condition (7) states that types in a common
element of the partition send the same message. Condi-
tion (8) states that R best responds to the information in
S’s message.

Crawford and Sobel make another monotonicity as-
sumption, which they call condition (M). (M) is satisfied
in leading examples and implies that there is a unique
equilibrium partition for each N D 1; : : : ;N�, the ex-ante
equilibrium expected utility for both S and R is increasing
in N , and N� increases if the preferences of S and R be-
come more aligned. These conclusions provide justifica-
tion for the view that with fixed preferences “more” com-
munication (in the sense of more actions induced) is better
for both players and that the closer are the interests of the
players the greater the possibilities for communication.

As in the case of models with costly signaling, there
are multiple equilibria in the cheap-talk model. The mul-
tiplicity is qualitatively different. Costly signaling models
have a continuum of Nash Equilibrium outcomes. Cheap-
talk models have only finitely many. Refinements that im-
pose restrictions on off-the-equilibrium path signals work
well to identify a single outcome in costly signaling mod-
els. These refinements have no cutting power in cheap-talk
models because any equilibrium distribution on type-ac-
tion pairs can arise from signaling strategies in which all
messages are sent with positive probability. To prove this
claim, observe that if messagem0 is unused in equilibrium,
while message m is used, then one can construct a new
equilibrium in which R interprets m0 the same way as m
and sender types previously sendingm randomize equally
betweenm and m0.

In the basic model messages take on meaning only
through their use in an equilibrium. Unlike natural lan-
guage, they have no external meaning. There have been
several attempts to formalize the notion that messages
have meanings that, if consistent with strategic aspects of
the interaction, should be their interpretation inside the
game. The first formulation of this idea is due to Far-
rell [28].

Definition 4 Given an equilibrium (˛�; ��) with sender
expected payoffs u�(�), the subsetG � T is self signaling if
G D ft : US (t; BR(G)) > u�(t)g.

That is, G is self signaling if precisely the types in G gain
by making a statement that induces the action that is a best
response to the information that t 2 G. (When BR(t) is not
single valued it is necessary to refine the definition some-
what and permit the possibility thatUS (t; BR(G)) D u�(t)
for some t. See Matthews, Okuno-Fujiwara, and Postle-
waite [51].) Farrell argues that the existence of a self-sig-
naling set would destroy an equilibrium. If a subset G had
available a message that meant “my type is in G,” then rel-
ative to the equilibrium R could infer that if he were to
interpret the message literally, then it would be sent only
by those types in G (and hence the literal meaning would
be accurate). With this motivation, Farrell proposes a re-
finement.

Definition 5 An equilibrium (˛�; ��) is neologism proof
if there exist no self-signaling sets relative to the equilib-
rium.

Rabin [62] argues convincingly that Farrell’s definition
rules out too many equilibrium outcomes. Indeed, for
leading examples of the basic cheap-talk game, there are
no neologism-proof equilibria. Specifically, in the Craw-
ford–Sobel model in which S has a bias towards higher ac-
tions, there exist self signaling sets of the form [t; 1]. On
the other hand, Chen, Kartik, and Sobel [20] demonstrate
that the N�-step equilibrium always satisfies the no incen-
tive to separate (NITS) condition:

US (˛�(��(0)); 0) � US (aR(0); 0) ; (9)

and that under condition (M) this is the only equilibrium
that satisfies Condition (9).

NITS states that the lowest type of sender prefers her
equilibrium payoff to the payoff she would receive if the
receiver knew her type (and responded optimally). [41] in-
troduced and named this condition. The NITS condition
can be shown to rule out equilibria that admit if self-sig-
naling sets of the form [0; t]. Chen [19] and Kartik [41]
show that the condition holds in the limits of perturbed
versions of the basic cheap-talk game.
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Inequality (9) holds automatically in any perfect
Bayesian equilibrium of the standard signaling model.
This follows because when R’s actions are monotonic in
type and S’s preferences aremonotonic in action, the worst
outcome for S is to be viewed as the lowest type. This ob-
servation would not be true in Nash Equilibrium, where it
is possible for R to respond to an out-of-equilibirum mes-
sage with an action a < BR(0).

Variations on Cheap Talk

In standard signaling models, there is typically an equilib-
rium that is fully revealing. This is not the case in the basic
cheap-talk model. This leads to the question of whether it
is possible to obtain more revelation in different environ-
ments.

One possibility is to consider the possibility of sig-
naling over many dimensions. Chakraborty and Har-
baugh [18] consider a model in with T and A are multidi-
mensional. A special case of their model is one in which
the components of T are independent draws from the
same distribution and A involves taking a real-valued ac-
tion for each component of T. If preferences are additively
separable across types and actions, Chakraborty and Har-
baugh provide conditions under which categorical infor-
mation transmission, in which the S transmits the order of
the components of T, is credible in equilibrium even when
it would not be possible to transmit information if the di-
mensions were treated in isolation. It may be credible for S
to say “t1 > t2,” even if she could not credibly provide in-
formation about the absolute value of either component
of t.

Communication is non-trivial if some Sender type
strictly prefers to induce one equilibrium action over an-
other. Non-trivial communication requires that different
types have different preferences over outcomes. In stan-
dard signaling models, the heterogeneity arises because
different sender types have different costs of sending mes-
sages. In cheap-talk models, the heterogeneity arises with
one-dimensional actions if different sender types have dif-
ferent ideal actions. With multi-dimensional actions, het-
erogeneity could come simply from different sender types
having different preferences over the relative importance
of the different issues. Another simple variation is to as-
sume the existence of more than one sender. In the two-
sender game, nature picks t as before, both senders learn t
and simultaneously send a message to the receiver, who
makes a decision based on the two messages. The second
sender has preferences that depend on type and the re-
ceiver’s action, but not directly on the message sent. In this
environment, assume that M D T , so that the set of avail-

able messages (this is essentially without loss of general-
ity). One can look for equilibria in which the senders re-
port honestly. Denote by a�(t; t0) R’s response to the pair
of messages (t; t0). If an equilibrium in which both senders
report honestly exists, then R’s response to identical mes-
sages, a�(t; t) D aR(t), and it must be the case that there
exists a specification of a(t; t0) for t ¤ t0 such that for all
i D 1 and 2 and t ¤ t0,

USi (t; a�(t; t)) � USi (t; a�(t; t0)) : (10)

It is possible to satisfy Condition (10) if the biases of
the senders are small relative to the set of possible best
responses. Krishna and Morgan [45] studies a one-di-
mensional model of information transmission with two
informed players. Ambrus and Takahashi [1] and Bat-
tiglini [9] provide conditions under which full revelation
is possible when there are two informed players and possi-
bly multiple dimensions of information.

In many circumstances, enriching the communication
structure either by allowing more rounds of communica-
tion [2,29], mediation [10], or exogenous uncertainty [16]
enlarges the set of equilibrium outcomes.

Verifiable Information

Until now, the focus has been on situations in which the
set of signals available does not depend on the true state.
There are situations in which this assumption is not ap-
propriate. There may be laws that ban false advertise-
ment. The sender may be able to document details about
the value of t. Models of this kind were first studied by
Grossman [37] and Milgrom [56]. For example, if t is the
sender’s skill at playing the piano, then if there is a piano
available t could demonstrate that she has skill at least as
great as t (by performing at her true ability), but she may
not be able to prove that her skill is no more than t (the
receiver may think that she deliberately played the piano
badly).

To model these possibilities, suppose that the set of
possible messages is the set of all subsets of T. In this case,
messages have “literal” meanings: When the sender uses
the message s D C 2 T , this can be interpreted as a state-
ment of the form: “my type is in C.” If senders cannot lie,
thenM(t) must be the set of subsets of T that contain t. If
type t is verifiable, then ftg 2 M(t0) if and only if t0 D t. If
there are no additional costs of sending signals, this model
can be viewed as a variation of cheap talk models in which
the message space depends on t. In general, one can treat
verifiable information models as a special case of the gen-
eral signaling game in which the cost of sending certain
signals is so large that these signals can be ruled out. Lying
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is impossible if M(t) D fC � 2T : t 2 Cg. In this setting,
it is appropriate to require equilibria to be consistent with
the signaling structure.

Definition 6 The equilibrium (��; ˛�) is rationalizable if

˛(C; a) > 0 implies
X

t2T

UR(t; s; a)ˇ(t; a)

D max
a02A

X

t2T

UR (t; s; a0)ˇ(t; a0) ; (11)

where ˇ(t; a) D 0 if t … C.

Compared to (2), (11) requires that beliefs place positive
probability only on types capable of sending the message
“my type is an element of C.”

Proposition 5 Suppose that A and T are linearly ordered,
that the receiver’s best response function is increasing in
type, and that all sender types prefer higher actions. If ly-
ing is not possible, then in any rationalizable equilibrium
(˛�; ��) ; ˛�(s; BR(t)) D 1 whenever ��(t; s > 0).

Grossman [37] and Milgrom [56] present versions of this
proposition. Seidman and Winter [68] generalize the re-
sult.

Provided that the receiver responds to the signal ftg
with BR(t), each type can guarantee a payoff of BR(t). On
the other hand, if any type receives a payoff greater than
BR(t), then some higher type must be doing worse. An-
other way to make the same point is to notice that the
highest type ft̄g has a weakly dominant strategy to reveal
her type by announcing ft̄g. Once this type is revealed, the
next highest type will want to reveal herself and so on.
Hence verifiable information will be revealed voluntarily
in an environment where cheap talk leads to no revealing
and costly signaling will be compatible with full revelation,
but at the cost of dissipative signaling.

The full-revelation result depends on the assumption
that the sender and receiver share a linear ranking over
the quality of information. Giovannini and Seidmann [31]
discuss more general settings in which the ability to pro-
vide verifiable information need not lead to full revelation.

CommunicationAbout Intentions

In a simple signaling game, signals potentially provide in-
formation about private information. Another possibility
is to add a round of pre-play communication to a given
game. Even if the game has complete information, there is
the possibility that communication would serve to select
equilibria or permit correlation that would otherwise be

infeasible. Farrell and Rabin [63]’s review article discusses
this literature in more detail.

Aumann [3] argues that one cannot rely on pre-play
communication to select a Pareto-efficient equilibrium.
He considers a simple two-player game with Pareto-
ranked equilibria and argues that no “cheap” pre-play sig-
nal would be credible.

Ben-Porath and Dekel [11] show that adding a stage
of “money burning” (a signal that reduces all future pay-
offs by the same amount) when combined with an equi-
librium refinement can select equilibria in a complete in-
formation game. Although no money is burned in the se-
lected equilibrium outcome, the potential to send costly
signals creates dominance relationships that lead to a se-
lection.

Vida [74] synthesizes a literature that compares the set
of equilibrium outcomes available when communication
possibilities are added to a game to the theoretically larger
set available if there is a reliable mediator available to col-
lect information and recommend actions to the players.

Applications

Economic Applications

There is an enormous literature that uses signaling models
in applications. Riley’s [64] survey contains extended dis-
cussion of some of the most important applications. What
follows is a brief discussion of some central ideas.

In a simple signaling game, one informed agent sends
a single signal to one uninformed decisionmaker. This set-
ting is reach enough to illustrate many important aspects
of signaling, but it plainly limited. Interesting new issues
arise if there are many informed agents, if there are many
decision makers, and if the interaction is repeated. Several
of the models below add some or all of these novel features
to the basic model.

Advertising Advertisements are signals. Models simi-
lar to the standard model can explain situations in which
higher levels of advertisement can lead consumers to be-
lieve the quality of the good is higher. In a separating
equilibrium, advertising expenditures fully reveal quality.
As in all costly signaling models, it is not important that
there be a direct relationship between quality and signal,
it is only necessary that firms with higher quality have
lower marginal costs of advertising. Hence simply “burn-
ing money” or sending a signal that lowers utility by an
amount independent of quality and response can be in-
formative. The consumer may obtain full information in
equilibrium, but someone must pay the cost of advertis-



Signaling Games S 8135

ing. There are other situations where it is natural for the
signal to be linked to the quality of the item.Models of ver-
ifiable information are appropriate in this case. When the
assumptions of Proposition 5 hold, one would expect con-
sumers to obtain all relevant information through disclo-
sures without wasteful expenditures on signaling. Finally,
cheap talk plays a role in some markets. One would ex-
pect costless communication to be informative in environ-
ments where heterogeneous consumers would like to iden-
tify the best product. Cheap talk can create more efficient
matching of product to consumer. Here communication
is free although in leading models separating equilibria do
not exist.

Limit Pricing Signaling models offer one explanation
for the phenomenon of limit pricing. An incumbent firm
have private information about its cost. Potential entrants
use the pricing behavior of the firm to draw inferences
about the incumbent’s cost, which determines profitabil-
ity of entry. Milgrom and Roberts [54] construct an equi-
librium in which the existence of incomplete information
distorts prices: Relative to the full information model, the
incumbent charges lower prices in order to signal that the
market is relatively unprofitable. This behavior has the fla-
vor of classical models of limit pricing, with one impor-
tant qualification. In a separating equilibrium the entrant
can infer the true cost of the incumbent and therefore the
low price charged by the incumbent firm fails to change
the entry decision.

Bargaining Several authors have proposed bargaining
modelswith incomplete information to study the existence
and duration of strikes [30,71]. If a firm with private in-
formation about its profitability makes a take-it-or-leave
it offer to a union, then the strategic interaction is a sim-
ple signaling model in which the magnitude of the offer
may serve as a signal of the firm’s profitability. Firms with
low profits are better able to make low wage offers to the
union because the threat of a strike is less costly to a firm
with low profits than one with high profits. Consequently
settlement offers may reveal information. Natural exten-
sions of this model permit counter offers. The variation
of the model in which the uninformed agent makes offers
and the uninformed agent accepts and rejects is formally
almost identical to the canonical model of price discrimi-
nation by a durable-goods monopolist [4,39].

Finance Simple signaling arguments provide potential
explanations for firms’ choices of financial structure. Clas-
sic arguments due toModigliani andMiller [58] and imply
that firms’ profitability should not depend on their choice

of capital structure. Hence this theory cannot organize
empirical regularities about firm’s capital structure. The
Modigliani–Miller theorem assumes that the firm’s man-
agers, shareholders, and potential shareholders all have
access to the same information. An enormous literature
assumes instead that the firm’s managers have superior
information and use corporate structure to signal prof-
itability.

Leland and Pyle [47] assume that insiders are risk
averse so they would prefer to diversify their personal
holdings rather than maintain large investments in their
firm. The value of diversification is greater the lower the
quality of the firm. Hence when insiders have superior in-
formation than investors, there will be an incentive for the
insiders of highly profitable firms to maintain inefficiently
large investments in their firm in order to signal profitabil-
ity to investors.

Dividends are taxed twice under the United States tax
code, which raises the question of why firms would is-
sue dividends when capital gains are taxed at a lower
rate. A potential explanation for this behavior comes from
a model in which investors have imperfect information
about the future profitability of the firm and profitable
firms are more able than less profitable firms to distribute
profits in the form of dividends (see [14]).

Reputation Dynamicmodels of incomplete information
create the opportunity for the receiver to draw inferences
about the sender’s private information while engaging in
an extended interaction. Kreps and Wilson [44] and Mil-
grom and Roberts [55] provided the original treatments of
reputation formation in games of incomplete information.
Motivated by the limit pricing, their models examined the
interaction of a single long-lived incumbent facing a se-
quence of potential entrants. The entrants lack informa-
tion about the willingness of the incumbent to tolerate
entry. Pricing decisions of the incumbent provide infor-
mation to the entrants about the profitability of the mar-
ket.

In these models, signals have implications for both
current and future utility. The current cost is determined
by the effect the signal has on current payoffs. In Kreps–
Wilson and Milgrom–Roberts, this cost is the decrease
in current profits associated with charging a low price.
In other models (for example [59,70]) the actual signal is
costless, but it has immediate payoff implications because
of the response it induces. Signals also have implications
for future utility because inferences about the sender’s pri-
vate information will influence the behavior of the oppo-
nents in future periods. Adding concern for reputation to
a signaling game will influence behavior, but whether it
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leads to more or less informative signaling depends on the
application.

Signaling in Biology

Signaling is important in biology. In independent and
almost contemporaneous work, Zahavi [76] proposed
a signaling model that shared the essential features of
Spence [72]’s model of labor-market signaling. Zahavi ob-
served that there are many examples in nature of ani-
mals apparently excessive physical displays. It takes en-
ergy to produce colorful plumage, large antlers, or loud
cries. Having a large tail may actually make it harder for
peacocks to flea predators. If a baby bird makes a loud
sound to get his mother’s attention, he may attract a dan-
gerous predator. Zahavi argued that costly signals could
play a role in sexual selection. In Zahavi’s basic model,
the sender is a male and the receiver is a female of
the same species. Females who are able to mate with
healthier males are more likely to have stronger children,
but often the quality of a potential mate cannot be ob-
served directly. Zahavi argued that if healthier males could
produce visible displays more cheaply than less healthy
males, then females would be induced to use the sig-
nals when deciding upon a mate. Displays may impose
costs that “handicap” a signaler, but displays would per-
sist when additional reproductive success compensates for
their costs. Zahavi identifies a single-crossing condition
as a necessary condition for the existence of costly sig-
nals.

The development of signaling in biology parallels that
in economics, but there are important differences. Biology
replaces the assumption of utility maximization and equi-
librium with fitness maximization and evolutionary sta-
bility. That is, their models do not assume that animals
consciously select their signal to maximize a payoff. In-
stead, the biological models assume that the process of nat-
ural selection will lead to strategy profiles in which mu-
tant behavior has lower reproductive fitness than equilib-
rium behavior. This notion leads to static and dynamic
solution concepts similar to Nash Equilibrium and its re-
finements. Fitness in biological models depends on con-
tributions from both parents. Consequently, a full treat-
ment of signaling must take into account population ge-
netics. Grafen [34] discusses these issues and Grafen [33]
and Siller [69] provide further theoretical development of
the handicap theory. Finally, one must be careful in inter-
preting heterogeneous quality in biological models. Natu-
ral selection should operate to eliminate the least fit genes
in a population. To the extent that this arises, there is pres-
sure for quality variation within a population to decrease

over time. The existence of unobserved quality variations
needed for signaling may be the result of relatively small
variations about a population norm.

While most of the literature on signaling in biology
focuses on the use of costly signals, there are also situa-
tions in which cheap talk is effective. A leading example is
the “Sir Philip SidneyGame,” originally developed by John
Maynard Smith [53] to illustrate the value of costly com-
munication between amother and child. The child has pri-
vate information about its level of hunger and the mother
must decide to feed the child or keep the food for itself.
Since the players are related, survival of one positively in-
fluences the fitness of the other. This creates a common
interest needed for cheap-talk communication. There are
two ways to model communication in this environment.
The first is to assume that signaling is costly, with hun-
grier babies better able to communicate their hunger. This
could be because the sound of a hungry baby is hard for
sated babies to imitate or it could be that crying for food
increases the risk of predation and that this risk is rela-
tively more dangerous to well fed chicks than to starv-
ing ones (because the starving chicks have nothing to
lose). This game has multiple equilibria in which signals
fully reveal the state of the baby over a range of values
(see [46,53]). These papers look at a model in which both
mother and child have private information. Alternatively,
Bergstrom and Lachmann [13] study a cheap-talk version
of the game. Here there may be an equilibrium outcome
in which the baby bird credibly signals whether or not he
is hungry. Those who signal hunger get fed. The others do
not. Well fed baby birds may wish to signal that they are
not hungry in order to permit the mother to keep food for
herself. Such an equilibrium exists if the fraction of genes
that mother and child share is large and the baby is already
well fed.

Political Science

Signaling games have played an important role in for-
mal models of political science. Banks [7] reviews mod-
els of agenda control, political rhetoric, voting, and elec-
toral competition. Several important models in this area
are formally interesting because they violate the standard
assumptions frequently satisfied in economicmodels. I de-
scribe two such models in this subsection.

Banks [6] studies a model of agenda setting in which
the informed sender proposes a policy to a receiver (deci-
sion-maker), who can either accept or reject the proposal.
If the proposal is accepted, it becomes the outcome. If not,
then the outcome is a fall-back policy. The fall-back pol-
icy is known only to the sender. In this environment, the
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sender’s strategy may convey information to the decision
maker. Signaling is costly, but, because the receiver’s set
of actions in binary, fully revealing equilibria need not ex-
ist. Refinements limit the set of predictions in this model
to a class of outcomes in which only one proposal is ac-
cepted in equilibrium (and that this proposal is accepted
with probability one), but there are typically a continuum
of possible equilibrium outcomes.

Matthews [52] develops a cheap-talk model of veto
threats. There are two players, a Chooser (C), who plays
the role of receiver, and a Proposer (P), who plays the
role of sender. The players have preferences that are rep-
resented by single-peaked utility functions which depend
on the real-valued outcome of the game and an ideal point.
P’s ideal point is common knowledge. C’s ideal point is her
private information, drawn from a prior distribution that
has a smooth positive density on a compact interval, [t; t̄].
The game form is simple: C learns her type, then sends
a cheap-talk signal to P, who responds with a proposal.
C then either accepts or rejects the proposal. Accepted pro-
posals become the outcome of the game. If C rejects the
proposal, then the outcome is the status quo point.

As usual in cheap-talk games, this game has a babbling
outcome in which C’s message contains no information
and P makes a single, take-it-or-leave-it offer that is ac-
cepted with probability strictly between 0 and 1. Matthews
shows there may be equilibria in which two outcomes
are induced with positive probability (size-two equilibria),
but size n > 2 (perfect Bayesian) equilibria never exist. In
a size-two equilibrium, P offers his ideal outcome to those
types of C whose message indicates that their ideal point
is low; this offer is always accepted in equilibrium. If C
indicated that his ideal point is high, P makes a compro-
mise offer that is sometimes accepted and sometimes re-
jected.

Future Directions

The most exciting developments in signaling games in the
future are likely to come from interaction between eco-
nomics and other disciplines.

Over the last ten years the influence of behavioral
economists have led the profession to rethink many of its
fundamental models. An explosion of experimental stud-
ies have already influenced the interpretation of signal-
ing models and have led to a re-examination of basic as-
sumptions. There is evidence that economic actors lack the
strategic sophistication assumed in equilibrium models.
Further, economic agents may be motivated by more than
their material well being. Existing experimental evidence
provides broad support for many of the qualitative predic-

tions of the theory (Banks, Camerer, and Porter [5] and
Brandts and Holt [17]), but also suggests ways in which
the theory may be inadequate.

The driving assumption of signaling models is that
when informational asymmetries exist, senders will at-
tempt to lie for strategic advantage and that sophisticated
receivers will discount statements. These assumptionsmay
be reconsidered in light of experimental evidence that
some agents will behave honestly in spite of strategic in-
centives to lie. For example, Gneezy [32] and Hurkens
and Kartik [40] present experimental evidence that some
agents are reluctant to lie even when there is a finan-
cial gain from doing so. There is evidence from other
disciplines that some agents are unwilling or unable to
manipulate information for strategic advantage and that
people may be well equipped to detect these manipula-
tions in ways that are not captured in standard mod-
els (see, for example, Ekman [27] or Trivers [73]). Ex-
perimental evidence and, possibly, results from neuro-
science may demonstrate that the standard assumption
that some agents cannot manipulate information for their
strategic advantage (or that other agents have ability to
see through deception) will inform the development of
novel models of communication that include behavioral
types. Several papers study the implications of including
behavioral types into the standard paradigm. The reputa-
tion models of Kreps and Wilson [44] and Milgrom and
Roberts [54] are two early examples. Papers on commu-
nication by Chen [19], Crawford [23], Kartik [41], and
Olszewski [61] are more recent examples. New develop-
ments in behavioral economics will inform future theoret-
ical studies.

There is substantial interest in signaling in philosophy.
Indeed, the philosopher David Lewis [48] (first published
in 1969) introduced signaling games prior to the con-
tributions of Spence and Zahavi. Recently linguists have
been paying more attention to game-theoretic ideas. Benz,
Jäger and Van Rooij [12] collects recent work that at-
tempts to formalize ideas from linguistic philosophy due
to Grice [36]. While there have been a small number of
contributions by economists in this area (Rubinstein [66]
and Sally [67] are examples), there is likely to be more ac-
tive interaction in the future.

Finally, future work may connect strategic aspects
of communication to the actual structure of language.
Blume [15], Cucker, Smale, Zhou [25], and Nowak and
Krakauer [60] present dramatically different models on
how structured communication may result from learning
processes. Synthesizing these approaches may lead to fun-
damental insights on how the ability to send and receive
signals develops.
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Glossary

Atmospheric boundary layer The Atmospheric Bound-
ary Layer (ABL) is the lower part of the atmosphere
which is directly influenced by the presence of the
earth’s surface. As such its major characteristics are
turbulence and the diurnal cycle.

Diurnal cycle The depth of the dry atmospheric bound-
ary layer (ABL) can vary over land between tens of me-
ters during night up to kilometers during daytime (see
Fig. 2). Over sea the depth is often typical a few hun-
dred meters and rather constant on the time scale of
a day.

Turbulence Turbulence in the atmospheric boundary
layer is the three-dimensional, chaotic flow of air with
time scales typically between a second and an hour.
The corresponding length scales are from a millime-
ter up to the depth of the boundary layer (or more in
the case of clouds). Turbulence in the ABL originates
due to friction of the flow and heating (convection) at
the surface.

Definition of the Subject

In this article we deal with the single column modeling
of the Atmospheric Boundary layer (ABL) and the the
complex interactions which may occur with the land sur-
face. As such we review the major characteristics of the
ABL over land, and summarize the basic parameteriza-
tions for the represesentation of atmospheric turbulence
and the surface fluxes. The modeling principles are illus-
trated with the outcome of single-columnmodels for a va-
riety of conditions using field data and fine-scale model
results. Our emphasis is on stable conditions which oc-

cur over land at night-time under clear skies. For readers
not familiar with atmospheric turbulence andmeteorolog-
ical definitions, some background and basic definitions are
also given.

Introduction

The Atmospheric Boundary Layer (ABL) is generally char-
acterized by turbulence. Because of its capability to mix air
with different properties efficiently, the representation of
turbulence is directly relevant for atmospheric and envi-
ronmental modeling. For instance, turbulence directly im-
pacts on the transfer of momentum, sensible heat, water
vapor, ozone, and methane, among many other quantities,
between the earth’s surface and the atmosphere. Turbu-
lence also defines the mixing of properties inside the at-
mospheric boundary layer, the transfer of quantities be-
tween the boundary layer and the clear or cloudy atmo-
sphere aloft, and the mixing inside clouds.

Turbulence in the ABL is mainly due to the mechan-
ical turbulence by vertical wind shear and turbulence by
convection. Most of the atmosphere above the ABL is
not turbulent, although turbulence can occur throughout
the whole atmosphere. For instance, cumulus-type clouds,
which may grow into thunderstorms, are always turbulent
through convection produced by the heat released due to
the condensation of water vapor. Turbulence can also oc-
cur in clear air above the ABL; most of this is produced
in layers of strong vertical wind shear at the boundary be-
tween air masses (so-called ‘Clear-Air Turbulence’).

Because of the mixing capacity of turbulence, model-
ing atmospheric boundary layers is also relevant for many
practical applications. For instance, chimney plumes are
diluted and spread over larger volumes than they would
be without turbulence. As such, strong local peaks of pol-
lution are prevented and otherwise clean air is polluted. In
practice turbulence may also cause engineering problems,
because it shakes structures such as bridges, towers, and
airplanes, causing failure of such systems in extreme cases.
Turbulent fluctuations in the horizontal motions during
severe storms can be fatal to tall buildings or bridges, par-
ticularly if resonance (e. g., forcing of a system at its natural
frequency) occurs.

The correct formulation of the overall effects by tur-
bulence, either inside or outside the atmospheric bound-
ary layer, is an essential part of atmospheric models deal-
ing with the prediction and study of weather, climate and
air quality. These models are based on solving the equa-
tions dealing with atmosphere behavior. With state-of-
the-art computers, the number of grid points in atmo-
spheric models is limited to a number of typically 108 or
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so. This implies that on the regional and global scale the
atmospheric model equations are usually applied too fairly
large ‘air boxes’. Such boxes are often in the order of ten
to hundred kilometers wide and ten to a few hundred me-
ters thick. In these large boxes, smaller scale motions make
air parcels interact and mix. For example, if a hot parcel
is located next to a cold parcel, turbulent motion at their
boundaries will heat the cool and cool the hot parcel. Thus,
a closure formulation is needed to reproduce mixing by
the turbulent motions into the model-resolved scales us-
ing the equations for the larger-scale ‘mean’ motions. It is
important to realize that the closure formulation needs to
be expressed in terms of variables available in the model-
ing context. This is called a ‘parameterization’.

In this contribution we provide an overview of the
modeling principles, the turbulent closures and parame-
terizations in use for of the atmospheric boundary layer,
where we emphasize the modeling and parameterization
of turbulence in the atmospheric boundary layer without
clouds. Additionally we discuss the performance of mod-
els in current use [7,28], and we study the impact of the
surface boundary condition over land [18].

Background

Atmospheric models for the forecasting and study of
weather, climate, and air quality are typically based on
integration of the basic equations governing atmospheric
behavior. These equations are the gas law, the equation
of continuity (mass), the first law of thermodynamics
(heat), the conservation equations for momentum (the so-
called “Navier–Stokes equations”), and usually equations
expressing the conservation of moisture, trace gases and
air pollutants. At one extreme, atmospheric models may
deal with the world’s climate and climate change; at the
other, they may account for the behavior of local flows at
coasts, in mountain-valley areas, or even deal with indi-
vidual clouds. This all depends on the selected horizontal
modeling domain and the available computing resources.

Since there is an enormous range of scales in atmo-
spheric motion and turbulence, there is a need to separate
the scales of atmospheric turbulence from larger-scale mo-
tions. Let C denote an atmospheric variable, such as spe-
cific humidity. Then C represents a mean or “smoothed”
value of C, typically taken on a horizontal scale of order
10 (or more) km and a corresponding time scale in the or-
der of 10min to one hour. A local or instantaneous value
of C would differ from C. Thus, we have

C D C C c : (1)

Here c represents the smaller-scale fluctuations. Note that
we use lower case for the latter (often primes are used
as well to indicate fluctuations). In principle, the fluctu-
ations around the mean motion also reflect gravity waves
and other smaller scale motions, in addition to turbulence.
Gravity waves often co-exist with turbulence or are gener-
ated by turbulence. If the wind at the same time is weak,
there may be no turbulence at all. Anyhow, if turbulence
exists, it is usually more important for most atmospheric
applications, because it mixes more efficiently than the
other small-scale motions.

To make the mathematical handling of c tractable, it
must satisfy the so-called “Reynolds postulates”. These re-
quire, for example, that c D 0 and that small- and larger-
scale values must not be correlated. After a quantity has
been averaged to create a larger-scale quantity, further av-
eraging should produce no further changes, in order for
this postulate to apply. The mean of the summation of two
variablesA and C will produce A˙ C D A˙ C. A further
condition is that a mean variable C must be differentiable,
since differentials show up in the atmospheric equations
(see below). In practice, not all these conditions are rigor-
ously satisfied. If the Reynolds postulates are fulfilled, then
the averaging for the product of two variables provides

AC D AC C ac : (2)

The second term at the right hand side of Eq. (2) is known
as the turbulent covariance. Similarly, the turbulence vari-
ance of a quantity is given by C2 � (C)2 (which is the
square of the standard deviation).

If in Eq. (2), the variable A represents one of the veloc-
ity components (U;V ;W in the x; y; z direction, respec-
tively), then AC is the total flux of C and the second term
at the right hand side of Eq. (2) represents a turbulent flux
of C. For instance, uc and wc are the horizontal and verti-
cal turbulent fluxes of the variable C, respectively. Here u
and w are the turbulent fluctuations of the horizontal and
vertical velocities. Near the surface, the mean vertical wind
W is usually small, and thus the total vertical fluxes are
normally dominated by the turbulent contributions.

Atmospheric Boundary-Layer Structure

Turbulent fluctuations, variances and fluxes of variables
are influenced by the vertical boundary-layer structure.
Here the variation of temperature in the atmospheric
boundary-layer plays an important role. Since pressure
decreases with altitude, air parcels, which are forced to
rise (sink), do expand (compress). According to the first
law of thermodynamics, a rising (sinking) parcel will cool
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(warm) if there is no additional energy source such as con-
densation of water vapor. Then this is called a dry adiabatic
process.

It can be shown that in the atmospheric boundary
layer, the temperature (T) variation with height for a dry
adiabatic process is dT/dz D �g/Cp (here g is gravity con-
stant and Cp is specific heat at constant pressure). The
value for g/Cp is approximately 1K per 100 m. An atmo-
spheric layer which has such a temperature variation with
height, is called neutral for dry air (at least when there
is no convection arising from other levels). In that case
	 D T C (g/Cp)z is constant, where 	 is called the po-
tential temperature (Note that the previous definition for
potential temperature is not accurate above the bound-
ary layer). Since air normally contains water vapor and
because moist air is lighter than dry air, we have to cor-
rect for the influence of this on vertical motions. Con-
sequently, a virtual potential temperature is defined as
	v D 	(1C 0:61q), where q is the specific humidity (de-
fined as the mass of water vapor per unit mass of moist
air).

In a neutral layer with constant	v, vertical motions of
moist (not saturated) air can maintain themselves. If the
virtual potential temperature of the atmospheric layer in-
creases with height, vertical displacements are suppressed.
This is called a stable condition (or ‘inversion’). At the
other hand, when the virtual potential temperature de-
creases with height, vertical fluctuations may be acceler-
ated. Consequently this is called an unstable condition.
Thus in considerations with turbulent fluctuations and at-
mospheric stability, we have to deal with the virtual po-
tential temperature and not with the actual temperature.
Similarly, the vertical flux of sensible heat is connected to
turbulent fluctuations of (virtual) potential temperature;
e. g. it reads as w�v (in mK/s). The latter relates directly to
the energy per time and unit area H by H D �Cpw� v (in
W/m2), where � is density of the air (in kg/m3).

Figure 1 (after [30]), provides the typical, idealized,
mean vertical profiles for temperatureT, potential temper-
ature 	, specific humidity q, in addition to the horizontal
windM (defined byM2 D U2 C V2). These profiles apply
for an atmospheric boundary layer over land in clear sky
conditions in the afternoon and around midnight. Note
that in the free atmosphere the horizontal wind is mostly
a result of the acting of the larger scale pressure differences
and the Coriolis force due to the rotation of the earth (but
other effects may play a role as well). The resulting wind is
known as the ‘geostrophic’ wind and indicated with G in
Fig. 1 (see dashed line). In the daytime boundary layer the
actual wind is smaller due to surface friction, while at clear
nights the actual wind away from the surface may be sub-

Single Column Modeling of Atmospheric Boundary Layers and
the Complex Interactions with the Land Surface, Figure 1
Idealized vertical profiles of mean variables in the Atmospheric
Boundary Layer over land in fair weather (after [30]). See text for
additional information

stantially stronger than G due to inertial effects (resulting
in the so-called ‘low level jet’).

The temporal variation of the mean boundary-layer
profiles over land can be quite substantial due to the
strong diurnal variation of solar incoming radiation and
the nighttime cooling at the land surface. During daytime
the turbulent boundary layer may grow to several kilo-
meters into the non-turbulent ‘free atmosphere’ (indicted
as FA in Fig. 1). At night the turbulent part of the stable
boundary layer (SBL) may only extend up to a few hun-
dred meters or less (the lowest dashed line in the lower
figure). An idealized picture for the temporal variation of
the boundary layer over land is given in Fig. 2 (after [30]).
Here the arrows with local time indications refer to the day
and nighttime figures of Fig. 1.

Figure 1 also indicates that the boundary layer during
daytime shows a three-layer structure: an unstable ‘surface
layer (SL)’, a ‘well-mixed layer (ML)’ with rather uniform
(virtual) potential temperature, and a stably-stratified ‘en-
trainment zone (EZ)’. In the latter zone, turbulence acts to
exchange heat, momentum, water-vapor and trace gasses



Single ColumnModeling of Atmospheric Boundary Layers and theComplex Interactionswith the Land Surface S 8143

Single ColumnModeling of Atmospheric Boundary Layers and the Complex Interactions with the Land Surface, Figure 2
Idealized diurnal evolution of the Atmospheric Boundary Layer over land in fair weather (after [30])

between the boundary layer and the free atmosphere. Dur-
ing nighttime, often the vertical structure of the previous
day persists above the SBL. As such a ‘residual layer (RL)’
with sporadic turbulence (remaining from the previous
day) can be identified as well as a ‘capping inversion (CI)’.

Modeling Basics

The challenge of modeling the atmospheric boundary
layer is the prediction of the temporal variation of the ver-
tical and horizontal structures in response to the influence
of the major processes acting in the atmosphere and at the
earth’s surface. As such the governing equations have to be
integrated. In practice, the variables are split into ‘mean’
larger-scale motions and smaller-scale fluctuations as in
Eq. (1). Inserting this into the basic equations and after
averaging this provides a set of equations for the behavior
of the larger-scale (mean) variables. The larger-scale vari-
ables are then used explicitly in atmospheric models. This
can be demonstrated as follows below.

The general character of any of the budget equations
dealing with atmospheric motions is

DC
Dt
D Si : (3a)

Here Si represents the subsequent sources and sinks for
the variable C (such as radiation or chemistry effects). The
notation DC/Dt represents the total rate of change for
the variable C by local changes (@/@t), and changes trans-
ported with the fluid motion in the three directions. As
such, we have

@C
@t
C U

@C
@x
C V

@C
@y
CW

@C
@z
D Si : (3b)

Here U;V ;W are the wind speeds in the three directions
x; y; z, respectively.

If in the atmospheric motion each variable is split into
a mean component and a fluctuation then (3b) provides
after Reynolds-averaging, some algebraic manipulations
and simplifying assumptions, a budget equation for the
mean variable C. This reads as

DC
Dt
D
@C
@t
C U

@C
@x
C V

@C
@y
CW

@C
@z

D Si �
@uc
@x
�
@vc
@y
�
@wc
@z

: (4)

We may note that in the derivation of (4), single terms
representing fluctuations have disappeared (as above in
Eq. (2)). However, terms involving the product of two fluc-
tuations did remain.

Thus because the basic equations are nonlinear, the
budget equations for the mean variables contain terms in-
volving smaller-scale motions. The latter terms are of the
form of a divergence of fluxes produced by such motions
in the three directions and appear as the last three terms
in Eq. (4). These motions are said to be sub-grid and con-
sequently, closure formulations or parameterizations are
needed to introduce mixing by the smaller-scale, sub-grid,
motions into the equations for the larger-scale motions (as
resolved by the model). Note that additional terms may
also appear in (4) when the source or sink term Si incor-
porates nonlinear effects (such as in the case of chemistry).

The atmospheric model equations can also be applied
on much smaller spatial and temporal scales then dis-
cussed here, for instance by using vertical and horizontal
grid elements of 10 to 100m, and time steps of seconds
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only. It is important to realize that in such cases a sig-
nificant part of the turbulent fluctuations are resolved by
the model equations. This type of modeling is nowadays
known as ‘Large-eddy simulation (LES)’. This has become
a powerful and popular tool in the last decade to study tur-
bulence in clear and cloudy boundary layers under well-
defined conditions. It is important to realize that in the
case of LES the simplifying assumptions leading to Eq. (2)
are normally not valid.

A special and simple form of Eq. (4) arises for horizon-
tally homogeneous conditions. In such cases the terms in-
cluding horizontal derivatives are negligible. If in addition
the mean vertical wind is small and if there are no other
sources and sinks, then (4) provides

@C
@t
D �

@wc
@z

: (5)

This equation is known as the one-dimensional, vertical
diffusion equation. It shows that the local time rate of
change for the mean of a variable (such as temperature or
wind) at a certain height, is given by the divergence of the
turbulent (corresponding heat or momentum) flux in the
vertical direction. As such, information on the turbulent
fluxmay produce a local forecast of the variation of amean
variable (but only under the simplifications mentioned).

Equation (5) can be seen as the basis of a single-col-
umn model where only local information of the atmo-
sphere is relevant. However, normally the other terms
in (4) are also relevant, in particular the terms with mean
wind speed (the so-called “advection terms”). This means
that in general the budget equations for momentum, heat,
and the various scalars are closely coupled in any atmo-
spheric model. Still one can solve for the local time rate
of change in a single column model once the advection
terms are known form observations or other means. This
approach is widely adopted to study atmospheric bound-
ary layers in comparison with observations on a local scale.

Before we proceed with more detailed parameteriza-
tions for the fluxes in the boundary layer, let us deal with
the derivation of the surface fluxes. These fluxes enter as
boundary conditions when solving the budget equations
for all the relevant mean variables (in any approach). It
is important to realize that near the surface, the average
wind must vanish because the mean wind is zero at the
earth’s surface. At the other hand, we know from observa-
tions that the fluxes of heat, momentum and trace gasses
are nonzero. Consequently, it is convenient to model an
‘effective’ surface flux wc0 of a conserved variable due to
the combined effect of molecular diffusion and turbulence

at the surface. This can be achieved by writing

wc0 D ˇtwt(C0 � Ca) : (6)

Here C0, and Ca are the values of the transported variable
at the surface and in the air, respectively; ˇt is a transfer
coefficient, and wt is an effective transport velocity repre-
senting the turbulence. For example, in near-neutral con-
ditions the effective transport velocity is well represented
by the well-known surface friction velocity u�0. Then it
can be shown that ˇt D �/ ln(z/z0), where � is the ‘Von
Karman’ constant (often specified as � Š 0:4), z is the cor-
responding height of Ca in the lowest part of the boundary
layer and z0 is the so-called surface roughness length for
the variable C. We refer to the literature for a more de-
tailed treatment (e. g., Beljaars and Holtslag [4]).

Local Mixing Parameterization

To solve the budget Eq. (4) for all the mean atmospheric
variables involved, the terms involving turbulent fluxes
need to be parametrized. As mentioned before, this means
that the fluxes need to be expressed in terms of available
mean model quantities, both in the atmosphere and at
the surface. Once this has been achieved, the atmospheric
model equations can be integrated. Thus, starting with
proper initial values, new values can be calculated for the
following time step and so on.

The most frequently used parameterization for envi-
ronmental and atmospheric models, is known as first-
order closure or often also called K-theory. In this theory
it is assumed that the flux wc of a variable C in the verti-
cal direction z, is down the vertical gradient of the mean
concentration of C per unit mass. Thus

wc D �Kc
@C
@z

: (7)

Here, Kc is known as the ‘eddy-diffusivity’ or mixing co-
efficient for the variable C. Similarly, the horizontal fluxes
can be represented in terms of horizontal gradients. Note
that the corresponding eddy-diffusivities typically are not
constant, but that they generally depend on properties of
the flow and the variable of interest. This also means that
normally no analytic solutions are possible, not even for
the simple case in which Eqs. (5) and (8) are combined.

Wemay note that the dimension of an eddy-diffusivity
is a length scale ` times a velocity scale. These are propor-
tional to the products of effective eddy sizes and eddy ve-
locities in the corresponding directions. Often a diagnostic
expression is used for the eddy-diffusivity, on basis of what
is called ‘mixing length theory’ (in analogy with molecular
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diffusion). The result reads as

Kc D `
2S f (Ri) : (8)

Here S is vertical wind shear (that is the variation of mean
horizontal wind with height). Note that the combination
`S in Eq. (9) has units of velocity. In Eq. (8), f (Ri) denotes
a functional dependence on local stability as represented
by the gradient Richardson-number Ri defined by

Ri D
g
	v

@	v/@z
(@U/@z)2 C (@V /@z)2

: (9)

Here g is the acceleration due to gravity, and 	v is the
mean ‘virtual potential temperature’.

The specification of the length scale ` is not at all
straightforward, except near the surface where so-called
‘surface-layer similarity theory’ (see cited literature) pro-
vides that ` / z. A frequently used form for ` is:

1
`
D

1
�z
C

1

: (10)

Here  is a turbulent length scale, which should be valid
for the turbulence far above the surface. We note that the
latter has a rather empirical nature and consequently there
is no agreement on the specification of  in the literature.

Equation (8) is a diagnostic equation, which indi-
cates that the eddy-diffusivity may variy with height, wind
speed, stability, et cetera. In combination with the flux pa-
rameterization of Eq. (7), it follows that the flux at a cer-
tain height depends on the local gradient of the mean vari-
able involved. Consequently the approach is referred to
as a ‘diagnostic local mixing approach’. Such an approach
is mostly suitable for relatively homogeneous conditions
with neutral and stable stratification, and is not so suitable
for cases with convection (see non-local mixing parame-
terizations below).

More AdvancedMixing Parameterizations

Aphysically realistic alternative to the diagnostic approach
is to relate the eddy-diffusivity of Eq. (7) to the actual
turbulent kinetic energy of the flow, by using the prog-
nostic turbulent kinetic energy equation and an appro-
priate choice for the turbulent length scale. It is impor-
tant to realize that the kinetic energy of atmospheric mo-
tion per unit of mass E is given by the half of the sum of
the velocities squared in the three directions (as in clas-
sic mechanics), e. g. E D (U2 C V 2 CW2)/2. Similar as
with respect to Eq. (2), we can separate between the Mean
Kinetic Energy E of the mean atmospheric motions and
the Turbulent Kinetic Energy (TKE or e) of the smaller-

scale fluctuating motions by turbulence. Thus e is given by
e D (u2 C v2 C w2)/2.

The prognostic equation for e reads in its basic form
as:

De
Dt
D �uw

@U
@z
� vw

@V
@z
C

g
	v

w�v C D � " : (11)

Here De/Dt is the total variation of e with time (the sum
of local variations and those transported with the mean
air motion). The two terms at the immediate right hand
side of (11) represent the shear production of turbulence.
These depend primarily on vertical variations of wind or,
near the ground, on wind speed and surface roughness.
The terms are almost always positive. The third term in
Eq. (11) represents the rate of production or breakdown of
turbulence by buoyancy effects (such as heat convection).
It depends directly on density effects, which can be writ-
ten in terms of the virtual potential temperature 	v, and
its turbulent flux w�v. The term D in Eq. (11) represents
divergence and pressure redistribution terms. These have
a tendency to cancel near the surface. Finally, the term "

reflects the molecular dissipation of turbulence into heat
and this term is always positive. In fact " is typically pro-
portional to e/� , where � is the characteristic time scale for
the turbulent mixing process.

Using Eq. (11), turbulent kinetic energy can be cal-
culated for given mean profiles when the corresponding
fluxes are calculated using Eq. (7) for all fluxes involved. In
this approach the diffusivities are typically calculated with
equations of the form

Kc D ˛c`
p
e : (12)

Here ˛c is a constant depending on the variable of interest.
The length scale is typically calculated with a similar type
of diagnostic equation as (10) provides. This approach is
known as the ‘TKE-length scale approach’ and it is an ex-
ample of so-called 1.5 order closure. Sometimes a prognos-
tic equation is used for the length scale as well, but such an
approach is more popular in engineering applications then
in the atmospheric sciences.

It can be shown that Eq. (8) is a solution of (11)
and (12) in stationary conditions and when other simpli-
fications are made such as the neglect of the influences
by advection and turbulence divergence in the TKE equa-
tion. A more advanced turbulence scheme is known as
‘second-order closure’. In such an approach, prognostic
equations are developed for the fluxes and variances them-
selves. Such equations have a very similar structure as
Eq. (12) for kinetic energy. Unfortunately, new unknowns
are present in these equations. Thesemust be related to the
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other variables in the model equations, always involving
assumptions. Thus, second-order closure involves many
more than the original equations and is therefore com-
putationally more time consuming (‘expensive’) than first-
order and 1.5 order closure.

One may expect that a model with 1.5 or second-order
closure would produce more realistic results then a model
with a first order closure. However, in practice this is often
not the case, because of complex model interactions and
the difficulty of representing all the relevant details with
sufficient accuracy (see also below). That is the reason why
diagnostic approaches remain popular. Nevertheless, sec-
ond order equations are useful to gain insight in the gov-
erning physics, and after simplification useful extensions
of the basic parameterizations may be achieved.

We continue our discussion with mixing parameter-
izations which have been proposed for boundary-layers
with strong atmospheric convection. In such cases, the tur-
bulent flux of a conserved quantity is typically not propor-
tional to the local gradient alone as predicted by Eq. (7).
In fact, in a large part of the ABL the mean gradients are
small in conditions with dry convection, in particular for
potential temperature (see Fig. 1). Then the fluxes depend
mostly on the mixing characteristics of the large eddies
across the ABL. Theories are available, which have mod-
ified K-theory to allow for the influence of convection, for
example by including additional terms at the right hand
side of Eq. (8) For details we refer to the literature (e. g.,
Holtslag and Moeng [15]).

In the next sections we apply the modeling concepts
above and compare their results with field observations. In
addition we present results from model intercomparison
studies, and illustrate the role of boundary conditions.

Intercomparison of Single ColumnModels
for Stable Conditions

Atmospheric models for weather and climate need to
make an overall representation of the smaller-scale bound-
ary-layer and near surface processes. This appears to be
more successful during daytime (e. g. Ek andHoltslag [10];
Holtslag and Ek [17]) then during nighttime stable con-
ditions over land. The modeling of the stable boundary
layer over land is rather complex because of the many
different physical processes which are “at work” in stable
conditions [21]. These small-scale processes are: clear air
radiation divergence, drainage flow, generation of grav-
ity waves and shear instabilities, fog and dew formation,
the occurrence of a low-level jet and generation of discon-
tinuous or intermittent turbulence [33]. In addition, the
phenomenology of stable atmospheric boundary layers is

quite divers, e. g. shallow and deep boundary layers with
continuous turbulence through most of their depth, and
on the other hand boundary layers with intermittent tur-
bulence or even laminar flow.

The small-scale processes influence the vertical and
horizontal exchange of quantities between the surface and
the atmosphere as well as the mixing in the atmosphere on
a variety of scales. In addition, it is known that turbulent
mixing in stratified flow has an inherent non-linear char-
acter and may, as such, trigger positive feedbacks. These
positive feedbacks, in turn, may cause unexpected tran-
sitions between totally different SBL regimes (e. g. van de
Wiel et al. [34]).

Figure 3 depicts the interactions between relevant pro-
cesses in the stable boundary layer. The non-linear behav-
ior of the system is seen in e. g. the surface sensible heat-
flux (H). A sudden change of the surface temperature can
result in 2 different impacts on H. First, in weakly stable
conditions (with strong wind and sufficient turbulence),
a surface temperature decrease will provide a larger heat
flux since H is proportional to the temperature difference
between the surface and the atmosphere. The larger heat-
flux from the atmosphere to the surface compsensates for
the stronger cooling. In contrast for stronger stably strat-
ified conditions, a surface temperature decrease will pro-
vide a stronger stratification and inhibits turbulent mix-
ing, and consequently H will decrease. This allows for
even stronger surface cooling (positive feedback). Note
that a similar diagram for the daytime boundary layer can
be found in Ek and Holtslag [10].

Having in mind the above mentioned complexity,
one should not be surprised that atmospheric models en-
counter large forecast errors for stable conditions [20,24].
One strategy to improve model performance is to pro-
vide different models the same forecasting task, and an-
alyze which model descriptions are in favor for which
atmospheric stability. Recently such an intercompari-
son of boundary-layer schemes for stable conditions was
made within the GEWEX Atmospheric Boundary Layer
Study (‘GABLS’). This GEWEX project aims to improve
the understanding and the representation of the atmo-
spheric boundary layer in regional and large-scale cli-
mate models [14]. A rather simple case was selected as
a benchmark to review the state of the art and to com-
pare the skills of single column (1D) models [7] and
Large–Eddy Simulation models [3]. In this case a sta-
ble boundary layer is driven by an imposed, uniform
geostrophic wind, with a specified constant surface-cool-
ing rate over (homogeneous) ice. The case is initial-
ized with � D 265K for 0 < z < 100 and a lapse rate of
1 K/100m aloft.
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Single ColumnModeling of Atmospheric Boundary Layers and the Complex Interactions with the Land Surface, Figure 3
Interaction diagram for the processes and variables in the stable atmospheric boundary layer over land (after [26])

It turns out that with the same initial conditions and
model forcings, the models indicate a large range of re-
sults for the mean temperature and wind profiles. Fig-
ure 4 shows the mean profiles for several models after nine
hours of constant surface cooling (sufficient to achieve
a quasi-steady state). The variable results achieved are
strongly related to the details of the boundary-layer mix-
ing schemes [7]. An important finding is that the mod-
els in use at operational weather forecast and climate cen-
ters (as depicted at the left hand side of Fig. 4) typically
allow for enhanced mixing resulting in too deep bound-
ary layers, while the typical research models (at the right
hand sides) show less mixing in more in agreement with
the ‘Large Eddy Simulation’ results for this case [3].

Because of the enhanced mixing in weather and cli-
mate models, these models tend to show a too strong sur-
face drag, too deep boundary layers, and an underestima-
tion of the wind turning in the lower atmosphere [19]. At
the other hand, by decreasing the mixing and surface drag,
a direct impact on the atmospheric dynamics (‘Ekman
pumping’) is noted (e. g. Beljaars and Viterbo [5]). Con-
sequently, cyclones may become too active, corresponding
in too high extremes for wind and precipitation, etc.

Modeling Boundary Layers over Land

To study the interactions of the ABL with the land surface
we utilize the model by Duynkerke [9] with the extensions
and modifications by Steeneveld et al. [28]. This model
has been validated against tower observations at Cabauw,
The Netherlands and later with CASES-99 field observa-
tions [1,28], and also participated in the GABLS model
comparison in the previous section.

Instead of prescribing the surface temperature, and to
enable interaction between the ABL and the land surface,
the model is extended with a soil and a vegetation layer
The soil temperature evolution is calculated by solving the
diffusion equation (using a grid spacing of 1 cm) and the
heat flux Gh from the soil to vegetation is calculated by:

Gh � (1 � fveg)K# D rg (Tveg � Ts0) : (13)

In Eq. (13) K# is the incoming shortwave (solar) radia-
tion, Tveg represents the vegetation surface temperature,
and Ts0 the soil temperature just below the vegetation.
We use a vegetation fraction fveg D 0:9 and conductance
rg D 5:9Wm�2K�1, which are consistent with the obser-
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Single ColumnModeling of Atmospheric Boundary Layers and the Complex Interactions with the Land Surface, Figure 4
Modeled potential temperature and wind profiles by an ensemble of column models (after 9 h). Grey areas indicate the ensemble
of Large Eddy Simulation results [3]. Left panel shows the results for first order closure models and the right panel for higher order
closure models (after [7])

vations of CASES99 [28]. Initial soil and surface tempera-
tures are also taken from the CASES99 observations.

Subsequently, the evolution of Tveg is computed by
solving the surface energy budget for the vegetation layer:

Cv
@Tveg
@t
D Q� � Gh � H � LvE : (14)

Here Cv is the heat capacity of the vegetation layer per unit
of area (Cv D 2000 Jm�2K�1, van de Wiel [34]), Q� is the
net radiation, H is the sensible heat flux and LvE the la-

tent heat flux. The turbulent fluxes are calculated basically
with the format of Eq. (6) above. Finally, Q� is calculated
by adopting the Garratt and Brost [12] radiation scheme.
Note that Eqs. (13) and (14) provide a rather strong cou-
pling of the atmosphere to the vegetated land surface for
the current parameter setting which is found to be impor-
tant [28].

Model forecasts have been compared with CASES-99
observations for contrasting diurnal cycles (i. e. for differ-
ent wind speeds) for 23–26 Oct. 1999. Note that the model
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is only initialized once and that the total run comprises
three full days. We distinguish between “radiative nights”
with weak winds and small turbulent mixing, when radia-
tive cooling dominates the SBL development. On the con-
trary, so-called “continuous turbulent” nights are charac-
terized by strong winds. The final archetype is the so called
“intermittently turbulent” night where turbulent episodes
alternate with calm periods, when the radiative and turbu-
lent forcings are of similar order of magnitude. Here we
restrict ourselves to the results for surface fluxes, surface
vegetation temperature, and vertical profiles of tempera-
ture and wind speed during nighttime. The diurnal cycle
of the modeled net radiation Q� (the balance of all incom-
ing and outgoing short- and longwave radiative fluxes)
agrees with the observations (not shown). Net radiation
amounts typically Q� D 400Wm�2 during daytime and
Q� D �70Wm�2 during nighttime.

The friction velocity (u�) shows a clear diurnal cycle:
u� is large during the day and small at night, which is
in general well captured by the model (Fig. 5a). Looking
in more detail we find that during weak winds (1st and
3rd night) the model tends to overestimate u�. The model
lacks a clear turbulence collapse as observed during the
first (intermittent) night. In the period 24 Oct., 700 CDT –
25 Oct., 1700 CDT the model performs well, while during
the last (radiative) night u� is slightly too high until mid-
night but follows the collapse at the end of the night. The
overall bias amounts to 0.03ms�1 for the last night. So-
dar observations show much smaller wind speeds at 200m
AGL (which is above the SBL during this night) than the
imposed G. This may suggest that G was overestimated,
and this consequently may explain the bias in u�. In gen-
eral it is known that models correctly predict u� for strong
winds, but overestimate u� for weak winds [25,32].

The sensible heat flux differs substantially between day
(� 250Wm�2 here) and night (between 0 and –60Wm�2

depending on the wind speed). In the first (intermittent)
night, the modeled H D �14:1Wm�2 on average, while –
9.1Wm�2 was observed. However, the model does not
simulate the observed intermittent character of the surface
fluxes (Fig. 5b). Somemodels withmore resolution [23,36]
were also able to reproduce intermittent turbulence. On
the other hand, the models by Sharan and Gopalakrish-
nan [25] and Derbyshire [8] did not show any intermit-
tency. This subject needs further investigation.

Just after the day-night transition to the intermittent
night, the observed magnitude of H shows a clear max-
imum (see arrows in Fig. 5b), which is well reproduced
by the model. This maximum is caused by a sudden re-
versal of the stratification near the surface due to long-
wave radiation emission during the day-night transition,

Single Column Modeling of Atmospheric Boundary Layers and
the Complex Interactions with the Land Surface, Figure 5
Modeled and observed (+) friction velocity (a), surface sensible
heat flux (b), and surface vegetation temperature (c) for three
diurnal cycles in CASES-99 (after [28])

and is maintained by residual turbulence of the convec-
tive boundary layer. This is an often observed realistic fea-
ture (e. g. during 11 of the 30 nights for CASES-99 and in
FIFE observations shown by [6]). However, most model-
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ing studies rarely show these minima. The reproduction of
this detailed feature emphasizes the realism of the model
outcome.

During the turbulent night (24–25 Oct.), the pre-
dicted H follows the observations. The specific minimum
during the day-night transition (24 Oct., 1900 CDT) is
present here as well. Radiative flux divergence dominates
the last (radiative) night and the observed H is approx-
imately zero. The model slightly overestimates the mag-
nitude of H (–2.9Wm�2), mainly caused by an overesti-
mation of u�. This causes a weaker stratification and thus
a larger magnitude of H. The second half of this night the
model gives good results.

Reliable prediction of Tveg is a common problem for
large-scale models. Some models show unphysical decou-
pling of the atmosphere from the surface resulting in so-
called “runaway cooling” of Tveg. On the other hand, the
pragmatic enhancedmixing approach which is commonly
used for very stable conditions, leads to overestimation of
Tveg. For both day- and nighttime Tveg is simulated in very
good agreement with the data, despite the fact that we cover
a broad range of stability (Fig. 5c).

We conclude that the present model generates surface
fluxes which are in good agreement with observations, be-
cause of the detail in the description of the surface scheme,
the soil heat flux and radiation physics (with high resolu-
tion). In general, the model is also able to estimate tem-
perature and wind profiles (see results and discussion in
Steeneveld et al. [28]). To examine the robustness of the
results, we performed some sensitivity analysis on the ini-
tial conditions and model parameters. Disturbing the ini-
tial temperature (by 1K), wind profiles (by 5%), soil tem-
perature and vegetation temperature (both by 1K) do not
affect the results seriously. Also model re-initialization ev-
ery 24 h (1400 CDT) with observed radiosonde informa-
tion showed hardly any impact on the results (not shown).

Impact of Land Surface Conditions onModel Results

Inspired by the result in the previous section that a cou-
pling with the land surface is necessary to obtain satisfac-
tory model results, we now analyze the difference in vari-
ability of model results during model intercomparisons,
as function of the chosen boundary condition. At first we
use the first-order closure model and vary the parameters
in the turbulence scheme for stable conditions in a rea-
sonable range to mimic the apparent variability among
boundary-layer models. As such first model runs are per-
formed with a prescribed surface temperature as inspired
by (but not identical to) the observations in CASES99 [22]
and as described in the GABLS2 case description [31].

Subsequently, the model runs are repeated, but then us-
ing an interactive prognostic heat budget equation for the
surface temperature (Eq. (14)).

To study the impacts of parameter values on the model
results, reference runs are made for coupled and uncou-
pled cases with alternative permutations in some of the
parameter settings for stable conditions. The parameter
modifications are chosen such that they cover a realistic
range in comparison with existing models of the stable
boundary layer [7]. The local starting time in the model
runs is 14.00 LT onOctober 22, 1999 (rather than 16.00 LT
in the GABLS2 runs). The duration of all runs is 59 hours
(so that the axis of all the figures indicates 14.00 until
73.00 h, covering a period of 2.5 diurnal cycles). In all
model runs the roughness length for heat zoh andmomen-
tum zom (3mm and 3 cm respectively), and the canopy re-
sistance are constant, and the geostrophic wind is taken
at a reference value of 9.5ms�1 (as in Svensson and Holt-
slag [31]). The reference model set up has 50 logarithmi-
cally distributed layers and the first atmospheric model
level is at 2m.

The model results for all parameter permutations are
presented for the sensible heat flux (Fig. 6), In the upper
sub-frame of the figure (labeled a) the results achievedwith
the uncoupled model are given (using prescribed surface
temperature). Overall the variety of results in the upper
frame is comparable to the variety within the GABLS2 in-
tercomparison study in stable conditions for the uncou-
pled models (see Svensson and Holtslag [31]). Thus we
have a range of –15 to –50Wm�2 for the sensible heat
flux (at the end of the first night e. g. at the time of 30 h).
The variability is a result of the range of parameters cho-
sen above and the impact is apparently sufficient to mimic
the different parameterizations for stable conditions in the
models used within GABLS2.

Next we repeat all model runs and allow for surface
feedback using Eqs. (13) and (14). The results for the sen-
sible heat flux with the coupled model are given in the
lower frame (Fig. 6b). Now we have a range of –10 to –
25Wm�2 (again the values apply for the end of the first
night e. g. at the time of 30 h). Thus it appears that the va-
riety of model results is smaller for the sensible heat flux in
the coupled case. At the same time it appears that the vari-
ability appears to be somewhat larger for friction velocity
and boundary-layer depth, which seems to be related to
the larger variability in the near surface air temperature
and wind speed.

During daytime the sensible heat fluxes are rather sim-
ilar for all model runs within one category (either cou-
pled or uncoupled), but the maximum values differ. In ad-
dition, due to the coupling the sensible heat fluxes show
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Single Column Modeling of Atmospheric Boundary Layers and
the Complex Interactions with the Land Surface, Figure 6
Time series of an ensemble of model results for the sensible heat
flux in a model intercomparison study with a prescribed surface
temperatures, and b by solving the surface energy budget (af-
ter [18])

a more smooth behavior in the morning hours as com-
pared with the uncoupled results. Thus, surface feedback
is influencing the model results and is also able to com-
pensate for some variation in the model parameter values.
Note also that the variability in the friction velocities of
the first night remains during the morning hours in the
uncoupled runs, but not so much in the coupled case.

In Fig. 7 the surface temperatures are given as specified
for the uncoupled case (the dashed line), and the temper-
atures as calculated in the various interactive model runs
(various gray lines). It is seen that the latter ones are quite
different from each other (in particular at night). It is also
important to note that the surface temperature by the en-
semble of coupled model runs is clearly different from the
specified temperature in the uncoupled case. This impacts
also on the absolute values and the range of air tempera-
tures and the wind speeds.

Single Column Modeling of Atmospheric Boundary Layers and
the Complex Interactions with the Land Surface, Figure 7
Time series of an ensemble of modeled surface temperature for
coupled runs. Dash-dotted line: prescribed surface temperature
in the uncoupled case (after [18])

Thus it is apparent that the treatment of the sur-
face temperature impacts strongly on the outcome of the
boundary-layer model results and their variety (see also
Basu et al. [2]). By repeating the uncoupled model runs
with a specified surface temperature as given by the en-
semble mean value of the interactive runs, we achieve ba-
sically the same variety of model outputs for the poten-
tial temperature and wind as for the coupled cases. This
confirms that in model evaluation studies the surface tem-
perature should be taken consistent with the value of the
geostrophic wind (although this may be model depen-
dent).

Summary

In this paper a summary is given of the basic approaches
for the modeling and parameterization of turbulence in
the atmospheric boundary layer. The treated approaches
are in current use in regional and global-scale models for
the forecasting and study of weather, climate and air qual-
ity. Here we have shown the results of such approaches by
using single column models in comparison with field data
and fine-scale model results. We have also studied the im-
pact of the surface temperature condition on the variability
of results by an atmospheric boundary-layer model. From
the coupled model results we achieve that surface feed-
back can compensate for some of the variety introduced by
changing model parameters. Generally much work needs
still to be done before we have a full understanding of the
complexity of atmospheric turbulence and the interactions
with the land surface. A better understanding of atmo-
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spheric turbulence hopefully also contributes to our capa-
bility in refining and unifying the turbulence parameteri-
zations for modeling of the atmospheric boundary layer in
response to the different type of surfaces which are found
in reality.
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Glossary

Strombolian activity Is a kind of volcanic activity con-
sisting of discrete, intermittent ejections of gas and
magma fragments. The height reached by the ejecta
seldom exceeds a few hundred meters above the vol-
canic crater. They consist mostly of molten magma
fragments that partially quench as they fly. Strombo-
lian explosions are intermediate between small Hawai-
ian eruptions and stronger Plinian eruptions. This

kind of activity takes its name from the Stromboli vol-
cano (Southern Italy) famous for its perpetual activ-
ity consisting of repeatedmoderate explosions (usually
about 10 every hours).

Gas slug Abubble whose diameter is close to the diameter
of the conduit where it is flowing. The shape and the
motion of the slug is largely controlled by the conduit
walls.

Modeling A simplified representation of a system aimed
at reproducing some of its features. Mathematical
models describe a system through a set of variables re-
lated by analytical relations. When these relations are
too complex to be solved exactly, they can be solved
using approximate numerical methods. Actually these
numerical techniques often involve the massive use of
computers. An alternative kind of modeling (analogue
modeling) involves the use of versions of the system
under study rescaled to fit spatial and temporal labo-
ratory scales. Different materials are used to simulate
original ones. For instance silicon oil is often used to
simulate magma. The scaling relationships are rigor-
ously stated in order to get physically meaningful re-
sults.

Computational fluid dynamics A set of mathematical,
numerical and computational tools aimed at simulat-
ing complex fluid flows on computers. It developed si-
multaneously with computer science starting from the
1950smostly with the aim of solving engineering prob-
lems. Today CFD spans a wider range of fields, from
aeronautics to chemical engineering, to astrophysics to
geophysics and much more. The most recent develop-
ments of CFD are related with the increase in com-
puter performances and with the wider use of parallel
computers.

Diffuse interface theory A molecular theory for describ-
ing the variation of the chemical composition across
the interface on the basis of a rigorous thermodynam-
ical approach. Starting from the definition of a free-
energy function dependent on the chemical composi-
tion and its gradient, it is possible to compute all the
chemical-physical properties of the interface. Beyond
its physical meaning, this theory can be used also as
a numerical tool for modeling of multiphase flows.

Very-long-period events (VLP) Seismic events recorded
on active volcanoes and geothermal systems having
a typical period of 102–100 s. Their observation and
study began during the 1990s, with the spreading of
seismic broadband sensors and have shown to be one
of the most powerful tools for investigating the ge-
ometries of volcanic conduits and the dynamics of vol-
canic eruptions. Until now they have been observed
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in tens of volcanoes with different eruptive styles such
as: Aso (Japan), Erebus (Antarctica), Kilauea (Hawaii),
Popocatepetl (Mexico), Sakurajima (Japan), Stromboli
(Italy).

Moment-tensor Tensor representation of the force sys-
tems acting on seismic sources. It can be applied to
common earthquake sources (rupturing faults) as well
as to volcanic sources (fluid filled conduits). In the for-
mer case its trace is null, which from a physical point
of view, means that there is no netvolume change dur-
ing common earthquakes. On the other hand in vol-
canic sources volumetric variations are very common
and furthermore they are accompanied also by a sin-
gle force component, related to the net acceleration of
center of mass of the fluid filling the conduit.

Definition of the Subject

Among the eruptive styles, the Strombolian activity is one
of the more easy to study because of its repetitive behavior.
For this reason large amount of data can be comfortably
collected. Strombolian volcanoes are like natural laborato-
ries repeating the same experiment (individual explosions)
many times each day.

The development of quantitative models of eruptive
dynamics is driven by the comparison of experimental ob-
servations and synthetic data obtained throughmathemat-
ical, numerical or analogue modeling.

Since Strombolian activity offers a profuse amount of
interesting seismic signals, during the last decades there
has been growing attention on seismological techniques
aimed at retrieving the conduit geometry and the eruption
dynamics from the seismological recordings. One of these
techniques, the source function inversion, is able to re-
trieve a summary of the forces acting on the volcanic con-
duit during the VLP event generation [5]. The comparison
of observed source functions with synthetic ones, obtained
through numerical modeling, allow us to put constraints
on the proposed models.

Quantitative models, able to fit seismological observa-
tions, are a powerful tool for interpreting seismic record-
ings and therefor the seismological monitoring of active
volcanoes.

Introduction

In this paper we discuss the mechanism of generation of
Very-Long-Period events related to Strombolian explo-
sions. This eruptive style, occurring in many basaltic vol-
canoes worldwide, is characterized by the ascent and the
bursting of large gas slugs. The mechanism of formation,
ascent and explosion of bubbles and slugs and their rela-

tion to eruptive activity has been studied from a theoret-
ical point of view and by means of analogue simulations.
Here we introduce results from numerical simulations, fo-
cusing on the pressure variations induced on the conduit
walls and responsible for the generation of seismic signals.

We will first illustrate the main features of the fluid dy-
namics related to Strombolian eruptive activity (Sect. “Slug
Flow and Strombolian Activity”) and an overview of the
numerical modeling (Sect. “Numerical Modeling”) Then
we will show results obtained using simple conduit model
(Sect. “Bubble Ascent”, Sect. “Slug Ascent in a Vertical
Pipe” and Sect. “Slug Ascent in a Pipe with a Flare”) and
we will compare the synthetic source functions with actual
observations (Sect. “Seismological Constraints on Numer-
ical Models”).

Slug Flow and StrombolianActivity

A fundamental distinction can be made between eruptive
regimes on the basis of the magma viscosity. In silicic sys-
tems, the magma viscosity (>105 Pa s) is too high to al-
low an independent motion of gas bubbles [18]. They can
only grow by diffusion processes and expand under the ef-
fects of pressure variations until fragmentation occurs. In
basaltic magmas the viscosity (<103 Pa s) allows indepen-
dent motion of the gas bubbles leading to a different be-
havior with the possibility of bubble coalescence, splitting
and turbulent fluid flow [11]. Theoretical laboratory and
numerical studies have been published in order to under-
stand the dynamics of Strombolian eruption in terms of
gas/magma interaction [12,24].

The distinction between free bubble ascent and slug
flow can be made using the ratio between the average bub-
ble diameter d and the conduit diameterD [7]: the param-
eter  (Table 1). Values of  higher than 0.6 are related
to slug flow. The range of behavior exhibited by slug flow
depends on the physical properties of the fluids (density,
viscosity, surface tension) and on the geometry of the con-
duit (diameter, shape, inclination). It is possible to define
adimensional parameters for describing the particular flow
regime (see Table 1). The Reynolds number is the ratio
between inertial and viscous forces. Low values of Re are
typical of laminar flows, while higher values are related to
turbulent regimes. The Froude number Fr is the ratio be-
tween inertial and gravitational forces. The Eotvos number
Eo is the ratio between buoyancy and surface tension ef-
fects. The values of Eo determines the bubble shape. High
values of Eo are related to distorted bubble shapes, while
lower values to sub-spherical shapes. The Morton number
Mo has a similar meaning. The dimensionless inverse vis-
cosity Nf assess the relative importance of viscous effects.
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Slug Flow: Modeling in a Conduit and Associated Elastic Radiation, Table 1
Symbols used in the text

Symbol Meaning
d Average bubble diameter
D Conduit diameter
L Distance between the top of the bubble and the magma/air interface in the initial conditions.
U Terminal slug velocity
� � D d

D
g Gravity
� Liquid density
�� Difference between gas and liquid densities
� Dynamic viscosity
� Kinematic viscosity � D �

�


 Surface tension
� Isothermal expansion ratio
Re Reynolds number ReD Ud

�

Fr Froude number FrD U
p

gD

q
�
	�

Mo Morton numberMo D g�4	�
�2�3

Eo Eotvos number Eo D 	�gD2

�

Nf Dimensionless inverse viscosity Nf D


Eo3
Mo

� 1
4

Viscous flows are characterized by Nf < 2 while inertial
flows by Nf > 200 [9].

The ascent of gas in a basaltic system has been stud-
ied both from a theoretical and an experimental point
of view. Observations of basaltic systems have shown
that usually the flow conditions are transitional between
viscous dominated and inertia dominated systems [17].
This puts constraints on the parameter range to explore
both in numerical and analogue modeling. The range of
adimensional numbers for basaltic systems, summarized
from [17] and [9] is reported in Table 2.

For a basaltic system with given physical properties
another variable plays a fundamental role in determin-
ing the physics of the flow: the gas/magma volumetric ra-
tio. Flows are characterized by a low ratio consist of iso-
lated bubbles rising with minor interaction between them

Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Table 2
Range of adimensional numbers for flows related to basaltic sys-
tems (from [17] and [9])

Parameter Range
Fr 0.1� 0.345
Re 5� 313

Eo 515� 717

Mo 515� 10110

Nf 16� 5000

and the conduit walls (Fig. 1a). In this regime bubbles
rise assuming a shape that depends on their size and on
the magma viscosity. Surface tension effect depends on
the size of the bubbles and the ascent velocity depends
on both the bubble size and the magma viscosity. In the
range allowed for basaltic systems, larger bubbles have
shapes ranging from dimpled ellipsoidal cap to spheri-
cal cap, while smaller bubbles have shapes ranging from
spherical to ellipsoidal [7]. For higher gas/magma ratios
bubbles begin to interact and to coalesce forming gas slugs
occupying most of the conduit diameter (Fig. 1b). The as-
cent of gas slugs is strongly controlled by the conduit walls.
During their passage, the magma is completely mixed and
the motion of smaller bubbles is dominated by the fluid
vorticity released (in a transitional regime) in their wake.
For even higher gas/magma ratios (Fig. 1c) the slugs co-
alesce forming an almost continuous (turbulent) gas flow
at the center of the conduit, while walls remains wet with
a magma film. The high velocity of the flow produces in-
stabilities on the surface of the magma film pulling out
small fragments carried away from the gas.

Bubbly flows are related to effusive and to moderate
Hawaiian explosive activity. Each single bubble explodes at
the magma/air interface ejecting small magma fragments
resulting from the shattering of the liquid film around the
bubble. The bubble is usually overpressurized because of
surface tension, viscous and inertial effects [23]. Slug flows
are related instead to intermittent Strombolian activity.
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Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 1
Schematic representation of gas/magma flows in basaltic sys-
tems. a represents bubbly flow, b slug flow and c annular flow

Each slug exploding at the magma/air interface generates
a jet of gas of short duration (from a few seconds to some
tens of seconds) [24]. Themain Strombolian explosion can
be followed by minor bursts caused by the smaller bubbles
trapped behind the slug wake. Annular flows are related to
continuous lava fountains with the central gas jet carrying
molten magma fragments [11].

The nature of the flow can change along the conduit
because of the gas expansion due to the magmastatic pres-
sure decrease. This expansion makes the gas/magma volu-
metric ratio increase along the conduit. At the base of the
conduit, where the gas starts to exolve from the magma
there is always a bubbly flow. As the pressure decreases the
flow can change into slug flow. This can be made easier
by an inclined conduit [4] and by constrictions [12] that
force the bubbles to coalesce even at lower gas/magma ra-
tios than those required in a straight vertical conduit. The

total gas flow can change in the conduit because of varia-
tions in the deep feeding system or because of non-linear
instabilities due to the complex shape of the conduit sys-
tem [11,12].

The expansion of bubbles and slugs is a fundamental
factor to take into account when studying Strombolian ac-
tivity [17]. Assuming a simple ideal isothermal state equa-
tion for the gas we get the relative volumetric change for
a bubble rising in a magma with density �:

V0
V
D

Patm C �gh
Patm

: (1)

It is easy to show that the expansion ratio in the upper few
hundreds of meters is more than one order of magnitude.

The flow regime can change also horizontally, for in-
stance in a subvertical dike the flow rate can be higher on
one side, leading to a slug flow, and lower on the other
side, leading to a bubbly flow. This explains the coexis-
tence of effusive and Strombolian activity observed during
some basaltic eruptions.

Numerical Modeling

The aim of this work is to investigate the pressure vari-
ations induced by a gas bubble rising in a magma-filled
volcanic conduit. This phenomenon has been also inves-
tigated by means of analogue laboratory models [9,10,
12,17].

The major drawback of analogue modeling, in this
context, is that it provides only a limited number of pres-
sure time series: one for each sensor. Numerical model-
ing provides a different point of view giving the full set
of scalar (density), vector (velocity) and tensor (pressure)
quantities over the whole computational domain. This al-
lows quantitative inferences on the flow regimes and on
the elastodynamic wavefield generated (see Sect. “Seismo-
logical Constraints on Numerical Models”).

The modeling of two-phase systems as gas magma
is not a simple task in computational fluid dynamics
(CFD) [6]. Taking into account surface tension effects at
the liquid-gas interface can be done in two different ways.
The first consists in explicitly tracking the time evolu-
tion of the gas-liquid interface [22]. In situations involv-
ing complex flows with extensive occurrences of bubble
coalescence and splitting, these methods show a rapid in-
crease in computational effort. Another category of meth-
ods model the gas-liquid systems using the diffuse-in-
terface theory. These methods consider two scalar fields,
defining the relative local concentrations of the two com-
ponents and a modified advection-diffusion equation for
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Slug Flow: Modeling in a Conduit and Associated Elastic Radiation, Table 3
Description and adimensional numbers for the six simulations presented in the text

Sim. Description Comp. domain (pts.) � � Re log(Mo) Eo Fr Nf

1A Bubble ascent
(low viscosity)

60 � 600 0.5 5 1:93 � 103 0 9 � 104 0.37 5:19 � 103

1B Bubble ascent
(high viscosity)

60 � 600 0.5 5 1:90 � 102 4 9 � 104 0.36 5:19 � 102

2A Slug ascent in vertical pipe
(low viscosity)

30 � 600 0.8 5 1:82 � 103 0 9 � 104 0.35 5:19 � 103

2B Slug ascent in vertical pipe
(high viscosity)

30 � 600 0.8 5 1:54 � 102 4 9 � 104 0.30 5:19 � 102

3A Slug ascent in vertical pipe with a flare
(low viscosity)

60 � 600 0.8 5.3 1:83 � 103 0 9 � 104 0.35 5:19 � 103

3B Slug ascent in vertical pipe with a flare
(high viscosity)

60 � 600 0.8 5.3 1:68 � 102 4 9 � 104 0.32 5:19 � 102

modeling the physical-chemical interaction between them.
This is done using a thermodynamically consistent def-
inition of a free-energy function that takes into account
the phase equilibria. This approach leads to smooth inter-
faces where the concentration of one phase gradually de-
creases while the other increases. The thickness of these
interfaces depends on the numerical method and on the
surface tension value [25]. From a numerical point of view
this problem can be faced using Lattice Boltzmann Meth-
ods (LBM) [20] or by classic CFD [6]. Here we use the lat-
ter. Some details about the numerical method are reported
in the Appendices.

In our models we have not considered the mechanical
interaction between the fluid phases and the elastic con-
duit walls. The exchange of linear momentum between
them is a significant factor in the generation of seismic
waves [3] in seismo-volcanic sources. However in conduits
having ratios between the linear dimension and thickness
lower than 101–102 the effect of the motion of the conduit
walls does not affect significantly the fluid flow. Further-
more we show in Sect. “Seismological Constraints on Nu-
merical Models” that we will not compare the result of the
simulation directly with seismograms, but with an equiva-
lent system of forces acting on the conduit walls.

In the following we present results of some elementary
two-dimensional conduit models focusing on the slug flow
regime which occurs during Strombolian activity. The nu-
merical simulations generate snapshots of the physical
quantities (composition, density, pressure and velocity)
along all the point of the discretized computational do-
main. The effective computational domains for each sim-
ulation are showed in Table 3. In all the simulations we
start from a static fluid with a bubble in the lower part of
the conduit and a gas/magma interface in the upper part.
The boundary conditions keeps a constant pressure value

at the bottom and the top of themodel. The no-slip bound-
ary conditions are implemented along the conduit walls.

The adimensional numbers for each simulation are re-
ported in Table 3. Velocities for determining Re and Fr are
computed when the bubble/slug is moving in a steady state
after a transient due to the initial conditions. These veloc-
ity values U are also used for normalizing times:

t� D t
U
L
; (2)

where L is the distance between the top of the bubble and
the magma/air interface. So (2) represents a normalization
for the virtual time the bubble needs to reach the surface in
an ideal steady motion. We can also normalize distances:

x� D x
1
D
; (3)

where D is the conduit diameter. We can define then nor-
malized velocities as:

v� D
@x�

@t�
: (4)

In our simulations we have also defined an isothermal
expansion ratio � which is the ratio between the bubble
volume at the initial conditions and its volume at (simu-
lated) atmospheric pressure.

Bubble Ascent

We first consider the ascent of a single bubble in a ver-
tical conduit. In the first simulation (1A in Table 3) the
initial shape of the bubble is an ellipse (see Fig. 2). As the
simulation evolves the bubble becomes unstable splitting
into three smaller bubbles. The two smaller lateral bubbles
are embedded in a symmetric vortex structure. As the flow
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Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 2
Ascent and bursting of a gas bubble (simulation 1A in Table 3).
Time, height and velocity are normalized according to (2), (3)
and (4)

evolves the symmetry is broken and a turbulent wake de-
velops behind the largest bubble. This one rises with an al-
most steady velocity (Fig. 2 top) with a spherical cap shape.
In the final part of the simulation, the bubble suffers an
expansion that made the bubble accelerate (t > 0:8) and
causes the flow to become transitional toward the slug flow
regime. Then the bubble reaches the surface and a curved
liquid film develops above the bubble just before burst-
ing. This phase is accompanied by a sudden deceleration
of the bubble ascent (t > 1:0). The pressure variations in
the conduit are modest, with a lack of low frequency oscil-
lations. Also the pressure transients generated by the bub-
ble burst are limited (Fig. 3).

The adimensional number for this simulation (Ta-
ble 3) is in a range related to transitional flow regimes typ-
ical of basaltic systems [9,17]. An increase of an order of
magnitude of the viscosity (1B in Table 3) makes the flow
still in the transitional regime (Table 3). The high values of
the Eotvos number indicates that the surface tension effect
is not relevant in the flow dynamics [7] in both cases.

Slug Ascent in a Vertical Pipe

In these simulations (2A and 2B in Table 3) we model the
ascent of a single slug in a vertical pipe. Again we start

Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 3
Time series of pressure variations for simulation 1A. The rep-
resented pressure values are normalized by the external atmo-
spheric pressure P0. Each time series represents the recording of
a virtual sensor located at the center of the conduit at the height
of its first point (see scale on the left)

from an elliptical shape of the bubble. After an initial tran-
sient the typical slug shape develops (Fig. 4) and a turbu-
lent wake appears behind the slug. As the slug rises it suf-
fers a volume expansion. In the slug flow regime the liquid
is pushed upward causing an overall increase of the hy-
drostatic pressure in the conduit. After the bursting of the
slug the liquid film on the wall falls down to the original
hydrostatic level. The slug expansion causes a significant
acceleration of the liquid for t > 1:0 (Fig. 4). The velocity
drops as the slug reaches the bursting point and the liquid
film develops.

The major feature in the pressure pattern is the slow
ramp-like increase followed by a drop (Fig. 5). The in-
crease reflects the rise of the hydrostatic head above the
slug while the gradual decrease is related to the passage
of the slug. The bursting of the slug generates a moder-
ate pressure transient in the conduit (marker “T” in Fig. 5)
and damped resonant oscillations in the uppermost part of
the pipe, filled with gas (above norm. height 11 in Fig. 5).
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Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 4
Ascent and bursting of a single gas slug in a straight pipe (simu-
lation 2A in Table 3)

The simulated pressure pattern fits very well the ob-
servations of analogue modeling [9]. Both the pressure in-
crease linked to the rise of the hydrostatic head and the
pressure drop related to the passage of the slug are in
good agreement. Together with these long period varia-
tions they observe also oscillatory pressure transients just
before the slug approaches the surface and after the burst-
ing. The simulations presented here lack this feature be-
cause of an intrinsic limit in the numerical method that
does not model explicitly the interface (see Appendix).

The overall behavior of simulation 2B, where a tenfold
increase of the liquid viscosity (Table 3) is very similar to

Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 5
Time series of pressure variations for simulation 2A. T marks the
most significant transient in the pressure patterns

2A. The only remarkable difference is the lack of high fre-
quency oscillations in the pressure (as the transient “T” in
Fig. 5) due to the greater viscous damping effect.

Slug Ascent in a Pipe with a Flare

In this set of simulations (3A and 3B in Table 3) we model
again the ascent of a single slug in a pipe. However in this
case the width of the pipe doubles after a norm. height of
10. In the first part of the simulation, the behavior is simi-
lar to the one illustrated in Sect. “Slug Ascent in a Vertical
Pipe”. As the slug nose enters in the flare (Fig. 6) is starts
to expand rapidly making the fluid accelerate upward. The
expansion of the slug in the flare is followed by its breakup
because of the development of strong turbulence. The ve-
locity of the top of the slug increases until the slug passes
through the flare then it drops because of the change in the
conduit diameter.

The pressure pattern shows a major difference, com-
pared with simulation 2A (Fig. 7). As the slug passes
through the flare there is a sudden pressure increase



8160 S Slug Flow: Modeling in a Conduit and Associated Elastic Radiation

Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 6
Ascent and bursting of a single gas slug in a pipe with a flare
(simulation 3A in Table 3)

recorded along the whole conduit. The pressure then
drops when the slug expansion has terminated. This strong
pressure pulse is clearly related to the varying fluid flow
regime as the slug enters the upper conduit and it deserves
a closer analysis. In Fig. 8 we have represented the fluid
dynamic regime during the slug expansion together with
the related pressure variations. We observe that the pres-
sure rises when most of the slug has passed through the
flare. The strong acceleration induces turbulence both in
the lower and the upper sections of the conduit. The up-
ward acceleration first causes the disruption of the lower
part of the slug leaving behind the main bubble a set of
smaller ones, whose motion is driven by the fluid turbu-
lence. When the slug has entered in the upper conduit it
suffers another splitting due both to the induced vortic-
ity and to the change in the boundary conditions. The be-
havior of the slug for t� > 0:8 is characterized by a flow
regime with a smaller value of  and so it is similar to the
initial part (t� < 0:2) of simulation 1A.

Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 7
Time series of pressure variations for simulation 3A. E marks the
entering of the slug in the upper conduitwhileBmarks theburst-
ing of the main bubble at the magma surface

Similar fluid dynamics behavior and pressure patterns
have been observed in analogue simulations by [10]. In
particular, the breakup of the slug and the generation of
a positive pressure pulse as it passes through the flare are
observed in analogue models within a wide range of fluid
viscosities and conduit widenings.

As in the previous case the simulation with higher liq-
uid viscosity (3B in Table 3) shows a similar behavior.
Higher viscosities reduce the fluid vorticity leading to less
fragmented slugs.

Seismological Constraints on NumericalModels

Seismological data analysis is a powerful tool for putting
constraints on the geometry and the dynamics of volcanic
systems. Non-stationary fluid flow in volcanic conduits
generates pressure variations on the conduit walls and
then seismic waves propagating toward the Earth’s sur-
face where they are recorded by seismometers. The fre-
quency band of seismic signals recorded in volcanic ar-
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Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 8
Detail of the conduit during the slug expansion phase. Each
snapshot represents the normalized pressure variations (see the
color scale on the bottom) and the local fluid velocity vectors.
The thick contours are the bubble interfaces. The pressure values
represented above are measured at the virtual sensor indicated
by a black star in the snapshots

eas spans a wide range: from the Ultra-Long-Period (ULP)
band (>102 )s, the Very-Long-Period (VLP) band (102–
100 s) and the Long-Period (LP) band (100–101 s) [5].

From a formal point of view this can be expressed con-
sidering the elastodynamic field generated by a general ex-
tended source, whose external surface is˙ :

un (x; t) D
“

˙

[ fq  Gnp C mpq  Gnp;q]d˙ ; (5)

where un (x; t) is the nth component of the ground dis-
placement recorded at the position x, f q is the body-force
distribution over˙ ,mpq is the moment density tensor and
Gnp are the Green’s functions. In (5) we take into account
all the details of the source dynamics. However the density
of actual seismic networks is not sufficient for retrieving
every minor feature of the seismic sources. Volcano mon-
itoring networks usually have a limited extension (103–

104 m) and the wavelengths associated with ULP and VLP
signals are higher. Therefore the analysis of such signals
the seismic source (i. e. the part of the volcanic conduit re-
sponsible of seismic wave generation) can be represented
as a point [5]. Under the assumption of a point source we
can express (5) as [5]:

un (x; t) D Fq  Gnp C Mpq  Gnp;q ; (6)

where:

Fq D
“

˙

fqd˙ (7)

and:

Mpq D

“

˙

mpqd˙ : (8)

In common earthquake sources the single force compo-
nent Fq is null. In volcanic sources, the acceleration of the
center of mass of the fluidmakes this component notewor-
thy.

The inversion of the recorder waveforms u (x; t), af-
ter the numerical computation of the Green’s functions G
allows the retrieval of the single force and moment ten-
sor components of (6) [14]. F andM are a synthesis of the
force systems acting on volcanic conduits and then can be
used for discriminating among numerical models on the
basis of their fit with observations.

Numerical simulations provide the pressure tensor
field P over the whole computational domain. The pres-
sure tensor can be used for computing the forces acting on
each point of the conduit walls multiplying it for the unit
vector normal to the wall n̂:

f D Pn̂ : (9)

These values can be integrated numerically using an ex-
pression similar to (7) to get the single force component F.
Then using the definition of moment they can be used for
retrieving also the equivalent moment tensor:

Mpq D

“

˙

�
fq �

Fq
˙

�
rpd˙ ; (10)

where r is the arm formed by the force respect to an arbi-
trary origin O.

In Fig. 9 we have represented the vertical force compo-
nent and the moment tensor isotropic component (that is
the traceMxx CMzz) for the three simulations with lower
liquid viscosity. The represented values are normalized.
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Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 9
Vertical force and isotropic component for simulations 1A, 2A
and 3A of the moment tensor for simulations 1A, 2A and 3A (see
Table 3)

In the first case (1A) we note the absence of signifi-
cant signals. There are only minor oscillations related to
fluid dynamics instability during the bubble ascent. The
rise of a bubble smaller than the conduit dimension seems
not to be able to generate VLP signals. Therefore a repet-
itive bursting of small bubbles at the magma/air interface
can be responsible for the generation of continuous infra-
sonic and seismic tremor recorded in some basaltic volca-
noes [16].

In the second case, again, the signal amplitudes are
quite low. It is evident that there is an anticorrelation be-
tween the vertical force and the isotropic moment. The
vertical acceleration of the slug (1:0 < t� < 1:3 in Fig. 4)

causes a downward reaction force as well as an increase
in the conduit pressure. The bursting (t� > 1:3) causes
a downward acceleration of the liquid and a pressure de-
crease. A similar effect, although with a minor magnitude,
is also evident in 1A (Fig. 9).

In the third case the signal amplitude increases dra-
matically, about five times higher than 2A. The slug enter-
ing in the upper, wider portion of the conduit is marked
by a downward force and a positive moment. At the end
of the expansion phase (t� > 0:8) there is a sudden in-
version of the trends in both quantities, followed again by
a positive downward peak of the force and positive of the
momentum (1:0 < t� < 1:1). This peak occurs when two
pieces of the original slug coalesce again (Fig. 8) leading to
a sudden, but limited in time, upward acceleration. In real
cases the dynamics can be even more complex with multi-
ple slugs or slug fragments entering in the upper conduit
and interacting with each other. In this case during the
main expansion phase, the lower conduit is filled almost
exclusively with liquid (Fig. 6). If we suppose the simul-
taneous presence of many vertically aligned slugs in the
lower conduit, then the pressure variations induced by the
expansion of the topmost one would influence the lower
ones in a complex non-linear mechanism still to investi-
gate.

The signals presented in Fig. 9 need to be scaled to an
actual time scale to be compared with real seismic signals
source functions. In basaltic volcanoes the dimensions of
the upper conduit is of the order of 102 m while the ascent
velocities of the slugs are of the order of 100–101 m/s. This
gives a scaling factor of about 101–102 s. Since the simu-
lated transients have a normalized duration of about 10�1

the actual simulated signals should have a characteristic
period of 100–101 s. These values are within the range of
VLP and LP signals [5].

The patterns observed in simulation 3A (Fig. 9) closely
matches the results obtained by [4] for the source func-
tion of VLP events at the Stromboli volcano. Thus this
result, together with analogue simulations [10], strongly
supports the hypothesis that VLP events at Stromboli are
generated by the passage of a gas slug through a con-
duit widening and its subsequent expansion and bursting.
The long ramp-like signals in both force and moment for
t� < 0:8 in Fig. 9 has a characteristic period longer than
the VLP signals recorded and analyzed by [4]. Recordings
at Stromboli, using a seismic sensorwith a wider frequency
range [13] interestingly suggested in some seismic signals
a similar ramp having a length of more than 60 s, compat-
ible with our scaling. This long ramp is related to the slow
and gradual increase in the magmastatic head due to the
continuous expansion of the ascending slug.
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Conclusions

The rapid expansion of the gas slugs in the uppermost
part of the conduit plays a fundamental role, both in the
eruptive dynamics and the seismic wave generation pro-
cess. We have focused on the role of conduit geometry in
the fluid dynamics of gas slug ascent and its implication in
the generation of seismic signals. In one of the simulations
(3A) we have shown that the system of forces acting on the
conduit is able to generate seismic waves with a higher ef-
ficiency compared with other cases. This observation can
be generalized to more complex geometry such as an al-
ternating of widening and narrowing [10]. The passage of
slugs can occur also in very complex conduits [17]. In this
case it is possible that pressure transients are generated in
different positions along the conduit.

Future Directions

A deeper understanding of the relationship between slug
ascent dynamics and seismic signals generation would
require more advanced modeling techniques in various
three-dimensional geometries, testing how the effect of
changes in slug volumes and magma properties can affect
the generation of seismic signals.

These studies are an important step toward more ad-
vanced seismic monitoring techniques of active basaltic
volcanoes aimed at assigning in real time a volcanologi-
cal meaning to variations in observed LP and VLP seismic
signals.

Appendix A – FluidDynamics of a Two-Phase System

Definition of a Two-Phase System

A fluid two-phase system can be described using two scalar
fields na and nb, representing the local molar densities of
the two components a and b. The actual local density � is
then:

� D mana C mbnb ; (11)

where ma and mb are the molecular weight of the two
phases. As it will be shown in the following, it is conve-
nient to describe the system using an alternative represen-
tation based on the variables:

n D na C nb ; (12)

and

� D na � nb : (13)

� defines the local composition of the fluid. It can span the
range [�n;Cn] with the value �n representing a pure b

composition and Cn a pure a composition. The relation
between n, � and � is:

� D 1
2 [ma (nC �)C mb (n � �)] : (14)

The values of ma and mb are set so that in reference con-
ditions the value of n is always equal to 1. So for in-
stance, if we consider pure water at ambient conditions
mw D 1000 kg/mol.

State Equation

We assume that pure phases obey to a simple isothermal
ideal gas state equation like:

P D �c2 ; (15)

where P is the pressure and c is the sound speed. We as-
sume that the pressure is zero in the reference state, so the
state equation for the component a is:

P D ma (n � 1) c2a : (16)

A similar relation holds for b. Since along interfaces the
composition varies continuously, we should define a state
equation for a mixture that satisfies two requirements: the
state equation for pure phases must match (16) and the
isobaric contours in the (�; n) plane must be straight lines.
This second requirement follows from the consideration
that diffusion processes between the components follows
straight paths in this domain. In most of the actual Lat-
tice Boltzmann literature, this question is not issued be-
cause the proposed implementations are almost isobaric
(n ' 1) [21,25,26]. A suitable choice for the state equation
is then:

P (n; �) D
1
4

�
�C

q
16mambc2a c2b (n � 1)C�2

�
(17)

with:

� D mac2a (nC � � 2)C mbc2b (n � � � 2) : (18)

In Fig. 11 an example contour plot of isobaric lines is
shown. We can define another parameter � as:

� (n; �) D �1C 2

s
(� C B)2 C (n � B)2

(AC B)2 C (A� B)2
; (19)

where:

AD
P (n; �)
mac2a

C 1 ; (20)
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Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 10
Definition of�. See text for details

Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 11
In the upper panel, isolines of � (red lines) and P (black lines)
are represented in the

�
n;�

�
domain. In the lower panel iso-

lines of n (black lines) and � (red lines) are represented in the�
�; P

�
domain. These plots represent a two-phase systemwhere

mac2a D 5 andmbc2b D 1

and

B D
P (n; �)
mbc2b

C 1 : (21)

The actual meaning of � is shown in Fig. 10. It is the
rescaled ratio of the distance between the points (�; n)
and (�B; B) and the distance between the points (A;A)

and (�B; B). So � D �1 along the line � D �n and � D 1
along � D n. In practice � is related to the local compo-
sition of the fluid. In Fig. 10 the relation between � , n, P
and � is represented. This relation can be inverted and the
system (�; P) can be used as well as the (�; n) coordinate
system. In the following we show that the former is the best
choice for describing chemical equilibria.

Chemical Equilibria and the Diffuse Interface Theory

The chemical equilibrium between the two phases can
be described using a physically consistent thermodynamic
approach [2,8,26]. We define a Ginzburg–Landau free en-
ergy functional for an heterogeneous mixture as [15]:

F D
Z h

 (n; �)C
�n

2
(rn)2 C

��

2
(r�)2

i
dV ; (22)

where �n and �� are parameters related to the surface ten-
sion. The system reaches its final thermodynamical equi-
librium making the free energy minimum.

We can rewrite (22) in the (�; P) representation:

F D
Z h

 (�; P)C
��

2
(r�)2

i
dV : (23)

Note that we have set �P D 0. This implies that surface
tension effects are independent of the absolute pressure.
In this paper we set:

 (�; P) D ˛
�
�4

4
�
�2

2

�
C P ln

P
P0
; (24)

where P0 is an arbitrary reference pressure value. Using
this definition of we note that this function has twomin-
ima for � D ˙1, corresponding to the two equilibrium
compositions. Starting from an heterogeneous mixture,
the system evolves by creating domains having a quite ho-
mogeneous composition separated by interfaces where the
composition varies smoothly. The equilibrium is reached
when the chemical potential:

� D
ıF
ı�

; (25)

is everywhere equal to zero [2,26]. So, in our case, using
(23) and (24) we obtain the condition of chemical equilib-
rium for a plane interface orthogonal to the x-direction:

� D
@ 

@�
� ��

@2�

@x2
: (26)

Assuming the boundary conditions (x) D 0 and @�
@x D 0

for x D ˙1 and� (0) D 0, the previous ODE can be inte-
grated giving the expression of the spatial variation of the
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composition through an equilibrium interface:

� (x) D tanh
�
2x
�

�
; (27)

where the interface thickness � is the width where the 96%
of variation occurs. Its value is:

� D 2
r

�
2��
˛
: (28)

On the basis of the definition of surface tension � [25]:

� D

Z C1

�1

F (x) dx ; (29)

we can write:

� D
2
3
p
�2˛�� : (30)

Using (28) and (30) we can also retrieve useful inverse re-
lations:

˛ D 3
�

�
; (31)

and

�� D
3
8
�� : (32)

We should emphasize that in real physical systems ex-
pression (27) describes an actual interface having a thick-
ness whose order of magnitude is of molecular scale. In
this work we use the diffuse interface theory as a numerical
tool for modeling of two-phase systems. In other words,
we use unphysical interfaces having a macroscopic thick-
ness (usually 10�3�10�1m).

Cahn–Hilliard and Mass Conservation Equations

The time evolution under non-equilibrium conditions can
be expressed by two Cahn–Hilliard equations [2,26]:

Dn
Dt
D � r2�n ; (33)

D�
Dt
D � r2�� : (34)

These equations are similar to common advection-diffu-
sion equations with � being a diffusion coefficient and the
operator D/Dt the substantial derivative. The explicit ex-
pressions for the chemical potentials �n and �� are:

�n D
ıF
ın
D
ıF
ı�

@�

@n
D ��

@�

@n
; (35)

�� D
ıF
ı�
D
ıF
ı�

@�

@�
D ��

@�

@�
: (36)

with:

�� D
ıF
ı�
D ˛�(�2 � 1) � ��r2� : (37)

Then the Cahn–Hilliard Eqs. (33) and (34) can be rewrit-
ten as:

D
Dt

�
n
�

�
D � r2��

 
@�
@n
@�
@�

!

(38)

On the basis of the definitions of n (12) and � (13), we can
state that the previous equation expresses themass transfer
of components a and b because of chemical disequilibria.
Since we are dealing with a compressible flow, we should
obviously account for this in the mass balances. Then, fol-
lowing basic fluid dynamics [1], we can rewrite (38) in ex-
plicit form as:

@n
@t
D �vrn � nr � vC

@�

@n
� r2�� (39)

@�

@t
D �vr� � �r � vC

@�

@�
� r2�� : (40)

Thermodynamic Pressure Tensor

It can be shown, from statistical mechanics that the pres-
sure tensor can be obtained from (23) [8,15]:

Pth
i j D p0ıi j C ��

@�

@xi
@�

@x j
; (41)

where the isotropic component is:

p0 D P
ıF
ıP
C �

ıF
ı�
�
�
 (�; P)C

��

2
(r�)2


: (42)

so:

p0 D PC˛
�
3
4
�4 �

1
2
�2
�
� ��(r2�)�

�

2
(r�)2 (43)

The tensor Pth describes the stresses induced by spatial
variation in density and composition and has to be added
to the viscous stress tensor 
.

Conservation Equations

Let us now apply the results of the previous section for
building a system of fluid dynamics equations suitable
for a numerical implementation. Together with the mass
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conservation Eqs. (39) and (40) we need the conservation
equation for the linear momentum [1]:

�
dv
dt
D r � PC �g ; (44)

where P D �Pth C 
 is the full pressure tensor of (41), g
is the gravity and 
 is the viscous stress tensor that, for
a Newtonian fluid is:

�i j D ekkıi j C 2�ei j ; (45)

with  and � the bulk and shear viscosities and eij is the
strain rate tensor expressed by:

ei j D
1
2

�
@vi
@x j
C
@v j
@xi

�
: (46)

Appendix B – Numerical Implementation

Transformed Equations

A common problem in the numerical solution of the con-
servation Eqs. (33) and (34) is the output of values having
no physical meaning (for instance negative densities for
one of the components) with bad effects on the numeri-
cal stability of the code. This is due to the fact that both
variables are defined over a limited range of values that
are n 2 [0;C1[ and � 2 [�n;Cn]. These conditions are
not explicit in the conservation equations, but this prob-
lem can be overcome by making simple changes of vari-
able:

n D el ; (47)

� D el tanh q : (48)

Using the new variable l instead of n the conservation
Eq. (39) become:

@l
@t
D �v � r l � r � vC

1
el

�
@�

@n

�
� r2� : (49)

Substituting (48) in (40) we first obtain:

@q
@t
D �v � rq �

1
2
sinh 2q

�
@l
@t
C v � r l Cr � v

�

C
1
el

cosh2 q
�
@�

@�

�
� r2� : (50)

Using (49) and some algebraic manipulation the previous
expression become:

@q
@t
D� v � rq �

1
el

cosh q
�
@�

@n
sinh qC

@�

@�
cosh q

�

� � r2�

(51)

Boundary and Initial Conditions

Equations (49) and (51) have to be solved setting proper
boundary and initial conditions.

The no-slip boundary condition, implemented along
the conduit walls is:

v D 0 : (52)

Another boundary condition is set along the walls:

	
� � n D 0 : (53)

This is the neutral wetting condition [25] and it is needed
in order to avoid the wall to behave sticky respect to one
of the phases.

At the conduit top and bottom conditions of constant
pressure are implementer. On the top the pressure is kept
to a reference atmospheric value, while at the bottom it is
kept at the hydrostatic pressure value, computed on the
initial conditions.

In the initial conditions we set v D 0 and the computa-
tional domain is composed of domains having a homoge-
neous composition separated by smooth interfaces, close
to the equilibrium solution of (27). At the top of the model
a gas domain represents the atmosphere, while the remain-
ing part of the conduit is filled with magma. A small ellip-
tical gas bubble in hydrostatic equilibrium is placed in the
lower part of the conduit. The details are specified for each
set of simulations.

Finite Difference Implementation

Equations (49), (51) and (44) are discretized on a regu-
lar grid and the differential equations are transformed in
finite-difference equations [19]. Scalar, vector and tensor
quantities are discretized on staggered grids [6] (Fig. 12).
Scalar quantities (l, q,� and Pii) are defined at integer grid
steps (xi ; z j). Velocities are staggered half grid step along x
and z directions, that is vx is defined at (xiC1/2; z j) and
vz at (xi ; z jC1/2). The deviatoric part of the pressure ten-
sor Pxz is defined at grid points (xiC1/2; z jC1/2). This al-
lows a second-order accuracy in the computation of spatial
derivative.

We apply also a staggering in time. At the time step k
we first solve (49) and (51). Then the current values of l
and q are updated:

l (k)i; j D l (k�1)i; j C
dl
dt

(k)

t ; (54)

q(k)i; j D q(k�1)i; j C
dq
dt

(k)

t : (55)
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Slug Flow: Modeling in a Conduit and Associated Elastic Radia-
tion, Figure 12
Spatial scheme of the staggered grid used in the computation.
Circle represents the isotropic grid (density, composition and
isotropic pressure), rightward triangles are the grids for vx while
downward triangles are for vz . Squares are the grids used for dis-
cretizing Pxz

Using these new values the full pressure tensor P(k) is com-
puted using the discretized version of (41), (42) and (43).
At the time step k C 1/2 (44) is solved and the values of
the local velocities are updated.

The computation of dl
dt

(k)
and dq

dt
(k)

requires the val-
ues of l (k�1), q(k�1) and v(k�1/2). On the other hand the
computation of v(kC1/2) requires the values of l (k), q(k) and
v(k�1/2).

The time step
t is chosen in order to satisfy a stability
condition. Since we are dealing with isothermal flows with
a very low Mach number, the condition can be expressed
by:


x < 
t cmax ; (56)

where cmax is the highest sound speed among the two com-
ponents. In our simulations we have set:


x D 6 
t cmax ; (57)
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Glossary

Conservative, dissipative Conservative dynamical sys-
tems (on a compact phase space) are those that pre-
serve a finite measure equivalent to volume. Hamil-
tonian dynamical systems are important examples of
conservative systems. Systems that are not conserva-
tive are called dissipative. Finding physically meaning-

ful invariant measures for dissipative maps is a central
object of study in smooth ergodic theory.

Distortion estimate A key technique in smooth ergodic
theory, a distortion estimate for a smooth map f gives
a bound on the variation of the jacobian of f n in a given
region, for n arbitrarily large. The jacobian of a smooth
map at a point x is the absolute value of the determi-
nant of derivative at x, measured in a fixed Rieman-
nian metric. The jacobian measures the distortion of
volume under f in that metric.

Hopf argument A technique developed by Eberhard
Hopf for proving that a conservative diffeomorphism
or flow is ergodic. The argument relies on the Ergodic
Theorem for invertible transformations, the density
of continuous functions among integrable functions,
and the existence of stable and unstable foliations for
the system. The argument has been used, with various
modifications, to establish ergodicity for hyperbolic,
partially hyperbolic and nonuniformly hyperbolic sys-
tems.

Hyperbolic A compact invariant set � � M for a dif-
feomorphism f : M ! M is hyperbolic if, at every
point in�, the tangent space splits into two subspaces,
one that is uniformly contracted by the derivative of
f , and another that is uniformly expanded. Expand-
ing maps and Anosov diffeomorphisms are examples
of globally hyperbolic maps. Hyperbolic diffeomor-
phisms and flows are the archetypical smooth systems
displaying chaotic behavior, and their dynamical prop-
erties are well-understood. Nonuniform hyperbolicity
and partial hyperbolicity are two generalizations of hy-
perbolicity that encompass a broader class of systems
and display many of the chaotic features of hyperbolic
systems.

Sinai–Ruelle–Bowen (SRB) measure The concept of
SRB measure is a rigorous formulation of what it
means for an invariant measure to be “physically
meaningful”. An SRB measure attracts a large set of
orbits into its support, and its statistical features are
reflected in the behavior of these attracted orbits.

Definition of the Subject

Smooth ergodic theory is the study of the statistical and ge-
ometric properties of measures invariant under a smooth
transformation or flow. The study of smooth ergodic the-
ory is as old as the study of abstract ergodic theory, hav-
ing its origins in Bolzmann’s Ergodic Hypothesis in the
late 19th Century. As a response to Boltzmann’s hypoth-
esis, which was formulated in the context of Hamilto-
nian Mechanics, Birkhoff and von Neumann defined er-



Smooth Ergodic Theory S 8169

godicity in the 1930s and proved their foundational er-
godic theorems. The study of ergodic properties of smooth
systems saw an advance in the work of Hadamard and
E. Hopf in the 1930s their study of geodesic flows for
negatively curved surfaces. Beginning in the 1950s, Kol-
mogorov, Arnold andMoser developed a perturbative the-
ory producing obstructions to ergodicity in Hamiltonian
systems, known as Kolmogorov–Arnold–Moser (KAM)
Theory. Beginning in the 1960s with the work of Anosov
and Sinai on hyperbolic systems, the study of smooth er-
godic theory has seen intense activity. This activity contin-
ues today, as the ergodic properties of systems displaying
weak forms of hyperbolicity are further understood, and
KAM theory is applied in increasingly broader contexts.

Introduction

This entry focuses on the basic arguments and princi-
ples in smooth ergodic theory, illustrating with simple and
straightforward examples. The classic texts [1,2] are a good
supplement.

The discussion here sidesteps the topic of � Kol-
mogorov–Arnold–Moser (KAM) Theory, which has
played an important role in the development of smooth
ergodic theory. For reasons of space, detailed discussion
of several active areas in smooth ergodic theory is omit-
ted, including: higher mixing properties (Kolmogorov,
Bernoulli, etc.), finer statistical properties (fast decay of
correlations, Central Limit Theorem, large deviations),
smooth thermodynamic formalism (transfer operators,
pressure, dynamical zeta functions, etc.), the smooth er-
godic theory of random dynamical systems, as well as any
mention of infinite invariant measures. The text [3] cov-
ers many of these topics, and the texts [4,5,6] treat random
smooth ergodic theory in depth. An excellent discussion
of many of the recent developments in the field of smooth
ergodic theory is [7].

This entry assumes knowledge of the basic concepts
in ergodic theory and of basic differential topology. The
texts [8] and [9] contain the necessary background.

The Volume Class

For simplicity, assume that M is a compact, boundaryless
C1 Riemannian manifold, and that f : M ! M is an ori-
entation-preserving, C1 map satisfying m(Dx f ) > 0, for
all x 2 M, where

m(Dx f ) D inf
v2TxM;kvkD1

kDx f (v)k :

If f is a diffeomorphism, then this assumption is au-
tomatically satisfied, since in that case m(Dx f ) D

kDf (x) f�1k�1 > 0. For non-invertible maps, this assump-
tion is essential in much of the following discussion. The
Inverse Function Theorem implies that any map f satisfy-
ing these hypotheses is a covering map of positive degree
d � 1.

These assumptions will avoid the issues of infinite
measures and the behavior of f near critical points and sin-
gularities of the derivative. For most results discussed in
this entry, this assumption is not too restrictive. The exis-
tence of critical points and other singularities is, however,
a complication that cannot be avoided in many impor-
tant applications. The ergodic-theoretic analysis of such
examples can be considerably more involved, but contains
many of the elements discussed in this entry. The discus-
sion in Sect. “Beyond Uniform Hyperbolicity” indicates
how some of these additional technicalities arise and can
be overcome. For simplicity, the discussion here is con-
fined almost exclusively to discrete time evolution. Many,
though not all, of the the results mentioned here carry over
to flows and semiflows using, for example, a cross-section
construction (see Chap. 1 in [2]).

Every smooth map f : M ! M satisfying these hy-
potheses preserves a natural measure class, the measure
class of a finite, smooth Riemannian volume on M. Fix
such a volume � on M. Then there exists a continuous,
positive jacobian function x 7! jacx f onM, with the prop-
erty that for every sufficiently small ball B � M, and every
measurable set A � B one has:

�( f (A)) D
Z

B
jacx f d�(x) :

The jacobian of f at x is none other than the absolute value
of the determinant of the derivative Dx f (measured in the
given Riemannian metric). To see that the measure class
of � is preserved by f , observe that the Radon–Nikodym
derivative d f��

d� (x) at x is equal to
P

y2 f�1(x)(jacy f )
�1 >

0. Hence f�� is equivalent to �, and f preserves the mea-
sure class of �.

In many contexts, the map f has a natural invariant
measure in the measure class of volume. In this case, f
is said to be conservative. One setting in which a natu-
ral invariant smooth measure appears is Hamiltonian dy-
namics. Any solution to Hamilton’s equations preserves
a smooth volume called the Liouville measure. Further-
more, along the invariant, constant energy hypermani-
folds of a Hamiltonian flow, the Liouville measure decom-
poses smoothly into invariant measures, each of which
is equivalent to the induced Riemannian volume. In this
way, many systems of physical or geometric origin, such
as billiards, geodesic flows, hard sphere gases, and evolu-
tion of the n-body problem give rise to smooth conserva-
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tive dynamical systems. See � Dynamics of Hamiltonian
Systems.

Note that even though f preserves a smooth meas-
ure class, it might not preserve any measure in that
measure class. Consider, for example, a diffeomorphism
f : S1 ! S1 of the circle with exactly two fixed points,
p and q, f 0(p) > 1 > f 0(q) > 0. Let � be an f -invariant
probability measure. Let I be a neighborhood of p. ThenT1

nD1 f
�n(I) D fpg, but on the other hand, �( f�n(I)) D

�(I) > 0, for all n. This implies that �(fpg) > 0, and so �
does not lie in the measure class of volume. This is an ex-
ample of a dissipative map. A map f is called dissipative if
every f -invariant measure with full support has a singular
part with respect to volume. As was just seen, if a diffeo-
morphism f has a periodic sink, then f is dissipative; more
generally, if a diffeomorphism f has a periodic point p of
period k such that jacp f

k ¤ 1, then f is dissipative.

The Fundamental Questions

For a given smooth map f : M ! M, there are the follow-
ing fundamental questions.

1. Is f conservative? That is, does there exist an invariant
measure in the class of volume? If so, is it unique?

2. When f is conservative, what are its statistical proper-
ties? Is it ergodic, mixing, a K-system, Bernoulli, etc.?
Does it obey a Central Limit Theorem, fast decay of cor-
relations, large deviations estimates, etc.?

3. If f is dissipative, does there exist an invariant measure,
not in the class of volume, but (in some sense) natural
with respect to volume?What are the statistical proper-
ties of such a measure, if it exists?

There are several plausible ways to “answer” these ques-
tions. One might fix a givenmap f of interest and ask these
questions for that specific f . What tends to happen in the
analysis of a single map f is that either:

� the question can be answered using “soft” methods, and
so the answer applies not only to f but to perturbations
of f , or even to generic or typical f inside a class ofmaps;
or

� the proof requires “hard” analysis or precise asymp-
totic information and cannot possibly be answered for
a specific f , but can be answered for a large set of f t in
a typical (or given) parametrized family f ftgt2(�1;1) of
smooth maps containing f D f0.

Both types of results appear in the discussion that follows.

LebesgueMeasure and Local Properties of Volume

Locally, any measure in the measure class of volume is, af-
ter a smooth change of coordinates, equivalent to Lebesgue
measure inRn. In fact, more is true: Moser’s Theorem im-
plies that locally any Riemannian volume is, after a smooth
change of coordinates, equal to Lebesgue measure in Rn.
Hence to study many of the local properties of volume, it
suffices to study the same properties for Lebesguemeasure.

One of the basic properties of Lebesguemeasure is that
every set of positive Lebesgue measure can be approxi-
mated arbitrarily well in measure from the outside by an
open set, and from the inside by a compact set. A con-
sequence of this property, of fundamental importance in
smooth ergodic theory, is the following statement.

Fundamental Principle #1: Two disjoint, positive
Lebesgue measure sets cannot mix together uniformly at
all scales.

As an illustration of this principle, consider the follow-
ing elementary exercise in measure theory. First, some no-
tation. If � is a measure and A and B are �-measurable sets
with �(B) > 0, the density of A in B is defined by:

�(A : B) D
�(A\ B)
�(B)

:

Proposition 1 LetP1;P2; : : : be sequence of (mod 0) finite
partitions of the circle S1 into open intervals, with the prop-
erties: a) any element of Pn is a (mod 0) union of elements
of PnC1, and b) the maximum diameter of elements of Pn
tends to 0 as n!1.

Let A be any set of positive Lebesgue measure in S1.
Then there exists a sequence of intervals I1; I2; : : :, with
In 2 Pn such that:

lim
n!1

(A : In) D 1 :

Proof Assume that Lebesgue measure has been normal-
ized so that (S1) D 1. Fix a (mod 0) cover of S1 n A by
pairwise disjoint elements {Ji} of the union

S1
nD1 Pn with

the properties:

(J1) � (J2) � � � � ; and



� 1[

iD1

Ji
�
D

1X

iD1

(Ji ) < 1 :

For n 2 N , let Un be the union of all the intervals Ji that
are contained in Pn , and let Vn D

Sn
iD1 Un . This defines

an increasing sequence of natural numbers i1 D 1 <

i2 < i3 < � � � such that Un D
SinC1�1

iDin Jn and Vn D
SinC1�1

iD1 Jn .
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For each n, the interval In will be chosen to be an
element Pn , disjoint from Vn, in which the density ofS1

iDnC1Ui is very small (approaching 0 as n!1). Since
(S1 n A) \ In is contained in

S1
iDnC1Ui , this choice of In

will ensure that the density of A in In is large (approaching
1 as n!1).

To make this choice of In, note first that the density ofS1
iDnC1Ui inside of S1 n Vn is:

(
S1

iDnC1Ui )
(S1 n Vn)

D

P1
iDinC1

(Ji )

1 �
PinC1�1

iD1 (Ji )
D an :

Note that, since
P1

iD1 (Ji )1; one has an ! 0 as n!1.
Since the density of

S1
iDnC1Ui inside of S1 n Vn is at most

an, there is an interval In inPn , disjoint from Vn, such that
the density of

S1
iDnC1Ui inside of In is at most an. Then

lim
n!1

(A : In) � lim
n!1

1 � an D 1 :

�

In smooth ergodic theory, it is often useful to use a vari-
ation on Proposition 1 (generally, in higher dimensions)
in which the partitions Pn are nested, dynamically-de-
fined partitions. A simple application of this method can
be used to prove that the doubling map on the circle is er-
godic with respect to Lebesgue measure, which is done in
Sect. “LebesgueMeasure and Local Properties of Volume”.

Notice that this proposition does not claim that the in-
tervals In are nested. If one imposes stronger conditions on
the partitionsPn , then one can draw stronger conclusions.

A very useful theorem in this respect is the Lebesgue
Density Theorem. A point x 2 M is a Lebesgue density
point of a measurable set X � M if

lim
r!0

m(X : Br(x)) D 1 ;

where Br(x) is the Riemannian ball of radius r centered
at x. Notice that the notion of Lebesgue density point de-
pends only on the smooth structure of M, because any
two Riemannian metrics have the same Lebesgue density
points. The Lebesgue Density Theorem states that if A is
a measurable set andbA is the set of Lebesgue density points
of A, then m(A�bA) D 0.

Ergodicity of the Basic Examples

This section contains proofs of the ergodicity of two ba-
sic examples of conservative smooth maps: irrational rota-
tions on the circle and the doubling map on the circle. See
� Ergodic Theory: Basic Examples and Constructions for
a more detailed description of these maps. These proofs

serve as an elementary illustration of some of the funda-
mental techniques and principles in smooth ergodic the-
ory.

Rotations on the circle. Denote by S1 the circle
R/Z, which is an additive group, and by  normal-
ized Lebesgue-Haar measure on S1. Fix a real num-
ber ˛ 2 R. The rotation R˛ : S1 ! S1 is the translation
defined by R˛(x) D x C ˛. Since translations preserve
Lebesgue-Haar measure, the map R˛ is conservative. Note
that R˛ is a diffeomorphism and an isometry with respect
to the canonical flat metric (length) on S1.

Proposition 2 If ˛ … Q, then the rotation R˛ : S1 ! S1 is
ergodic with respect to Lebesgue measure.

Proof Let A be an R˛-invariant set in S1, and suppose
that 0 < (A) < 1. Denote by Ac the complement of A in
S1. Fix " > 0. Proposition 1 implies that there exists an
interval I � S1 such that the density of A in I is large:
(A : I) > 1 � ". Similarly, one may choose an interval J
such that(Ac : J) > 1 � ". Without loss of generality, one
may choose I and J to have the same length. Since ˛ is ir-
rational, R˛ has a dense orbit, which meets the interval I.
Since R˛ is an isometry, this implies that there is an integer
n such that (Rn

˛(I)� J) < "(I). Since (I) D (J), this
readily implies that j(A : Rn

˛(I)) � (A : J)j < ". Also,
since A is invariant, and R˛ is invertible and preserves
measure, one has:

(A : Rn
˛(I)) D (R

n
˛(A) : R

n
˛(I)) D (A : I) > 1 � " :

But for " sufficiently small, this contradicts the facts
that (A : J) D 1 � (Ac : J) < " and j(A : Rn

˛(I)) �
(A : J)j < ". �
Note that this is not a proof of the strongest possible state-
ment about R˛ (namely, minimality and unique ergodic-
ity). The point here is to show how “soft” arguments are
often sufficient to establish ergodicity; this proof uses no
more about R˛ than the fact that it is a transitive isometry.
Hence the same argument shows:

Theorem 1 Let f : M ! M be a transitive isometry of
a Riemannian manifold M. Then f is ergodic with respect
to Riemannian volume.

One can isolate from this proof a useful principle:
Fundamental Principle #2: Isometries preserve

Lebesgue density at all scales, for arbitrarily many iter-
ates.

This principle implies, for example, that a smooth ac-
tion by a compact Lie group on M is ergodic along typ-
ical (nonsingular) orbits. This principle is also useful in
studying area-preserving flows on surfaces and, in a re-
fined form, unipotent flows on homogeneous spaces. In
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the case of surface flows, ergodicity questions can be re-
duced to a study of interval exchange transformations. See
the entry � Ergodic Theory: Basic Examples and Con-
structions for a detailed discussion of interval exchange
transformations and flows on surfaces.� Ergodic Theory,
Introduction to contains detailed information on unipo-
tent flows.

Doubling map on the circle. Let T2 : S1 ! S1 be the
doubling map defined by T2(x) D 2x. Then T2 is a degree-
2 covering map and endomorphism of S1 with constant
jacobian jacx T2 � 2. Since d(T2)��

d� D 1
2 C

1
2 D 1, T2 pre-

serves Lebesgue-Haar measure. The doubling map is the
simplest example of a hyperbolic dynamical system, a topic
treated in depth in the next section.

As with the previous example, the focus here is on the
property of ergodicity. It is again possible to prove much
stronger results about T2, such as Bernoullicity, by other
methods. Instead, here is a soft proof of ergodicity that will
generalize readily to other contexts.

Proposition 3 The doubling map T2 : S1 ! S1 is ergodic
with respect to Lebesgue measure.

Proof Let A be a T2-invariant set in S1 with (A) > 0.
Let p 2 S1 be the fixed point of T2, so that T2(p) D p.
For each n 2 N , the preimages of p under T�n2 de-
fine a (mod 0) partition Pn into 2n open intervals of
length 2�n; the elements of Pn are the connected com-
ponents of S1 n T�n2 (fpg). Note that the sequence of
partitions P1;P2; : : : is nested, in the sense of Proposi-
tion 1. Restricted to any interval J 2 Pn , the map T2

n is
a diffeomorphism onto S1 n fpg with constant jacobian
jacx (T

n
2 ) D (Tn

2 )
0(x) D 2n .

Since A is invariant, it follows that T�n2 (A) D A. Fix
" > 0. Proposition 1 implies that there exists an n 2 N and
an interval J 2 Pn such that (A : J) > 1 � ". Note that
Tn
2 (A\ J) � A. But then

(A) � (Tn
2 (A\ J))

D

Z

A\J
jacx (T

n
2 ) d(x)

D 2n(A\ J)
D 2n(A : J)(J)
> 2n(1 � ")(J) D 1 � " :

Since " was arbitrary, one obtains that (A) D 1. �

In this proof, the facts that the intervals in Pn have con-
stant length 2�n and that the jacobian of T2

n restricted to
such an interval is constant and equal to 2n are not essen-
tial. The key fact really used in this proof is the assertion

that the ratio:

(Tn
2 (A\ J) : Tn

2 (J))
(A : J)

is bounded, independently of n. In this case, the ratio is 1
for all n because T2 has constant jacobian.

It is tempting to try to extend this proof to other
expanding maps on the circle, for example, a C1, -
preserving map f : S1 ! S1 with dC1 ( f ; T2) small. Many
of the aspects of this proof carry throughmutatis mutandis
for such an f , save for one. A C1-small perturbation of T2
will in general no longer have constant jacobian, and the
variation of the jacobian of f n on a small interval can be
(and often is) unbounded. The reason for this unbound-
edness is a lack of control of the modulus of continuity of
f 0. Hence this argument can fail forC1 perturbations of T2.
On the other hand, the argument still works for C2 pertur-
bations of T2, even when the jacobian is not constant.

The principle behind this fact can be loosely summa-
rized:

Fundamental Principle #3: On controlled scales, it-
erates of C2 expanding maps distort Lebesgue density in
a controlled way.

This principle requires further explanation and justifi-
cation, which will come in the following section. The C2

hypothesis in this principle accounts for the fact that al-
most all results in smooth ergodic theory assume a C2 hy-
pothesis (or something slightly weaker).

Hyperbolic Systems

One of the most developed areas of smooth ergodic the-
ory is in the study of hyperbolic maps and attractors.
This section defines hyperbolic maps and attractors, pro-
vides examples, and investigates their ergodic properties.
See [10,11] and � Hyperbolic Dynamical Systems for
a thorough discussion of the topological and smooth prop-
erties of hyperbolic systems.

A hyperbolic structure on a compact f -invari-
ant set � � M is given by a Df -invariant splitting
T�M D Eu ˚ Es of the tangent bundle over � and con-
stants C; � > 1 such that, for every x 2 � and n 2 N :

v 2 Eu(x) H) kDx f n(v)k � C�1�nkvk ;
and v 2 Es (x) H) kDx f n(v)k � C��nkvk :

A hyperbolic attractor for amap f : M ! M is given by an
open set U � M such that: f (U) � U , and such that the
set � D

T
n�0 f

n(U) carries a hyperbolic structure. The
set � is called the attractor, and U is an attracting region.
A map f : M ! M is hyperbolic ifM decomposes (mod 0)
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into a finite union of attracting regions for hyperbolic at-
tractors. Typically one assumes as well that the restriction
of f to each attractor�i is topologically transitive.

Every point p in a hyperbolic set � has smooth sta-
ble manifold W s(p) and unstable manifold W u(p), tan-
gent, respectively, to the subspaces Es (p) and Eu(p).
The set W s(p) is precisely the set of q 2 M such that
d( f n(p); f n(q)) tends to 0 as n!1, and it follows that
f (W s(p)) DW s( f (p)). When f is a diffeomorphism, the
unstable manifold W u(p) is uniquely defined and is the
stable manifold of f�1. When f is not invertible, local un-
stable manifolds exist, but generally are not unique. If� is
a transitive hyperbolic attractor, then every unstable man-
ifold of every point p 2 � is dense in�.

Examples of Hyperbolic Maps and Attractors

Expanding Maps The previous section mentioned
briefly the Cr perturbations of the doubling map T2. Such
perturbations (as well as T2 itself) are examples of expand-
ing maps. A map f : M ! M is expanding if there exist
constants � > 1 and C > 0 such that, for every x 2 M,
and every nonzero vector v 2 TxM :

kDx f n(v)k � C�nkvk ;

with respect to some (any) Riemannian metric on M. An
expanding map is clearly hyperbolic, with U D M, Es the
trivial bundle, and Eu D TM. Any disk inM is a local un-
stable manifold for f .

Anosov Diffeomorphisms A diffeomorphism f : M !
M is called Anosov if the tangent bundle splits as a di-
rect sum TM D Eu ˚ Es of two Df -invariant subbun-
dles, such that Eu is uniformly expanded and Es is uni-
formly contracted by Df . Similarly, a flow 't : M ! M is
called Anosov if the tangent bundle splits as a direct sum
TM D Eu ˚ E0 ˚ Es of three D't-invariant subbundles,
such that E0 is generated by '̇, Eu is uniformly expanded
and Es is uniformly contracted by D't . Like expanding
maps, an Anosov diffeomorphism is an Anosov attractor
with� D U D M.

A simple example of a conservative Anosov diffeomor-
phism is a hyperbolic linear automorphism of the torus.
Any matrix A 2 SL(n;Z) induces an automorphism ofRn

preserving the integer latticeZn, and so descends to an au-
tomorphism fA : Tn ! Tn of the n-torus Tn D Rn/Zn .
Since the determinant of A is 1, the diffeomorphism f A
preserves Lebesgue-Haarmeasure on Tn. In the case where
none of the eigenvalues of A have modulus 1, the re-
sulting diffeomorphism f A is Anosov. The stablebundle

Es at x 2 Tn is the parallel translate to x of the sum of
the contracted generalized eigenspaces of A, and the un-
stable bundle Eu at x is the translated sum of expanded
eigenspaces.

In general, the invariant subbundles Eu and Es of
an Anosov diffeomorphism are integrable and tangent to
a transverse pair of foliations W u and W s , respectively
(see, e. g [12]. for a proof of this). The leaves of W s are
uniformly contracted by f , and the leaves ofW u are uni-
formly contracted by f�1. The leaves of these foliations are
as smooth as f , but the tangent bundles to the leaves do
not vary smoothly in the manifold. The regularity proper-
ties of these foliations play an important role in the ergodic
properties of Anosov diffeomorphisms.

The first Anosov flows to be studied extensively were
the geodesic flows for manifolds of negative sectional cur-
vatures. As these flows are Hamiltonian, they are con-
servative. Eberhard Hopf showed in the 1930s that such
geodesic flows for surfaces are ergodic with respect to Li-
ouville measure [14]; it was not until the 1960s that er-
godicity of all such flows was proved by Anosov [15]. The
next section describes, in the context of Anosov diffeomor-
phisms, Hopf’s method and important refinements due to
Anosov and Sinai.

DA Attractors A simple way to produce a non-Anosov
hyperbolic attractor on the torus is to start with an Anosov
diffeomorphism, such as a linear hyperbolic automor-
phism, and deform it in a neighborhood of a fixed point,
turning a saddle fixed point into a source, while preserving
the stable foliation. If this procedure is carried out care-
fully enough, the resulting diffeomorphism is a dissipative
hyperbolic diffeomorphism, called a derived from Anosov
(DA) attractor. Other examples of hyperbolic attractors are
the Plykin attractor and the solenoid. See [10].

Distortion Estimates

Before describing the ergodic properties of hyperbolic sys-
tems, it is useful to pause for a brief discussion of distor-
tion estimates. Distortion estimates are behind almost ev-
ery result in smooth ergodic theory. In the hyperbolic set-
ting, distortion estimates are applied to the action of f on
unstable manifolds to show that the volume distortion of f
along unstable manifolds can be controlled for arbitrarily
many iterates.

The example mentioned at the end of the previous sec-
tion illustrates the ideas in a distortion estimate. Suppose
that f : S1 ! S1 is a C2 expanding map, such as a C2 small
perturbation of T2. Then there exist constants � > 1 and
C > 0 such that ( f n)0(x) > C�n for all x and n.
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Let d be the degree of f . If I is a sufficiently small open
interval in S1, then for each n, f�n(I) is a union of d dis-
joint intervals. Furthermore, each of these intervals has di-
ameter at most C�1��n times the diameter of I. It is now
possible to justify the assertion in Fundamental Principle
#3 in this context.

Lemma There exists a constant K � 1 such that, for all
n 2 N , and for all x; y 2 f�n(I), one has:

K�1 �
( f n)0(x)
( f n)0(y)

� K :

Proof Since f is C2 and f 0 is bounded away from 0,
the function ˛(x) D log( f 0(x)) is C1. In particular, ˛
is Lipschitz continuous: there exists a constant L > 0
such that, for all x; y 2 S1, j˛(x)� ˛(y)j < Ld(x; y). For
n � 0, let ˛n(x) D log(( f n)0(x)). The Chain Rule implies
that ˛n(x) D

Pn�1
iD0 ˛( f

i(x)).
The expanding hypothesis on f implies that for

all x; y 2 f n(I) and for i D 0; : : : ; n, one has d( f i (x);
f i(y)) � C�1�i�nd( f n(x); f n(y)) � C�1�i�n . Hence

j˛n(x)� ˛n(y)j �
n�1X

iD0

j˛( f i(x)) � ˛( f i(y))j

� L
n�1X

iD0

d( f i (x); f i(y))

� L
n�1X

iD0

C�1�i�n

< LC�1��1(1 � ��1)�1 :

Setting K D exp(LC�1��1(1 � ��1)�1), one now sees
that ( f n)0(x)/( f n)0(y) lies in the interval [K�1:K], proving
the claim. �

In this distortion estimate, the function ˛ : M ! R is
called a cocycle. The same argument applies to any Lips-
chitz continuous (or even Hölder continuous) cocycle.

Ergodicity of Expanding Maps

The ergodic properties of C2 expanding maps are com-
pletely understood. In particular, every conservative ex-
panding map is ergodic, and every expanding map is con-
servative. The proofs of these facts use Fundamental Prin-
ciples #1 and 3 in a fairly direct way.

Every C2 conservative expanding map is ergodic with
respect to volume. The proof is a straightforward adapta-
tion of the proof of Proposition 3 (see, e. g [2].). Here is
a description of the proof for M D S1. As remarked ear-
lier, the proof of Proposition 3 adapts easily to a general

expanding map f : S1 ! S1 once one shows that for ev-
ery f -invariant set A, and every connected component J of
f�n(S1 n fpg), the quantity

( f n(A\ J) : f n(J))
(A : J)

is bounded independently of n. This is a fairly direct con-
sequence of the distortion estimate in Lemma 6.1 and is
left as an exercise.

The same distortion estimates show that every C2

expanding map is conservative, preserving a probability
measure � in the measure class of volume. Here is a sketch
of the proof for the case M D S1. To prove this, con-
sider the push-forward n D f n� . Then n is equivalent
to Lebesgue, and its Radon–Nikodym derivative dn n d
is the density function

�n(x) D
X

y2 f�n(x)

1
jacy f n

:

Since f n�  is a probability measure, it follows thatR
S1 �n d D 1. A simple argument using the distortion es-
timate above (and summing up over all dn branches of f�n

at x) shows that there exists a constant c � 1 such that for
all x; y 2 S1,

c�1 �
�n(x)
�n(y)

� c :

Since the integral of �n is 1, the functions �n are uniformly
bounded away from 0 and1. It is easy to see that themea-
sure �n D 1

n
Pn

iD1 f
i
� has density 1

n
Pn

iD1 �i . Let � be
any subsequential weak* limit of �n ; then � is absolutely
continuous, with density � bounded away from 0 and1.
With a little more care, one can show that � is actually Lip-
schitz continuous.

As a passing comment, the ergodicity of � and posi-
tivity of � imply that � is the unique f -invariant measure
absolutely continuous with respect to . With more work,
one can show that � is exact. See [2] for details.

Ergodicity of Conservative Anosov Diffeomorphisms

Like conservative C2 expanding maps, conservative C2

Anosov diffeomorphisms are ergodic. This subsection out-
lines a proof of this fact. Unlike expanding maps, how-
ever, Anosov diffeomorphisms need not be conservative.
The subsection following this one describe a type of invari-
ant measure that is “natural” with respect to volume, called
a Sinai-Ruelle-Bowen (or SRB) measure. The central result
for hyperbolic systems states that every hyperbolic attrac-
tor carries an SRB measure.
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TheHopf Argument In the 1930sHopf [14] proved that
the geodesic flow for a compact, negatively-curved surface
is ergodic. His method was to study the Birkhoff averages
of continuous functions along leaves of the stable and un-
stable foliations of the flow. This type of argument has
been used since then in increasingly general contexts, and
has come to be known as the Hopf Argument.

The core of the Hopf Argument is very simple. To any
f : M ! M one can associate the stable equivalence rela-
tion �s , where x �s y iff limn!1 d( f n(x); f n(y)) D 0.
Denote by Ws (x) the stable equivalence class containing
x. When f is invertible, one defines the unstable equiva-
lence relation to be the stable equivalence relation for f�1,
and one denotes by Wu(x) the unstable equivalence class
containing x.

The first step in the Hopf Argument is to show
that Birkhoff averages for continuous functions are con-
stant along stable and unstable equivalence classes. Let
� : M ! R be an integrable function, and let

� D lim sup
n!1

1
n

nX

iD1

� ı f i : (1)

Observe that if � is continuous, then for every x 2 M
and x0 2 Ws(x), limn!1 j�( f n(x)) � �( f i(x0))j D 0. It
follows immediately that � f (x) D � f (x0). In particular, if
the limit in (1) exists at x, then it exists and is constant on
Ws(x).

Fundamental Principle #4: Birkhoff averages of con-
tinuous functions are constant along stable equivalence
classes.

The next step of Hopf’s argument confines itself to the
situation where f is conservative and Anosov. In this case, f
is invertible, the stable equivalence classes are precisely the
leaves of the stable foliationW s , and the unstable equiv-
alence classes are the leaves of the unstable foliationW u .
Since f is conservative, the Ergodic Theorem implies that
for every L2 function � , the function � f is equal (mod 0)
to the projection of � onto the f -invariant functions in
L2. Since this projection is continuous, and the continu-
ous functions are dense in L2, to prove that f is ergodic,
it suffices to show that the projection of any continuous
function is trivial. That is, it suffices to show that for every
continuous � , the function � f is constant (a.e.).

To this end, let � : M ! R be continuous. Since
the f -invariant functions coincide with the f�1-invariant
functions, one obtains that � f D � f�1 a.e. The previ-
ous argument shows � f is constant alongW s-leaves and
� f�1 is constant alongW u-leaves. The desired conclusion
is that � f is a.e. constant. It suffices to show this in a local
chart, since the manifold M is connected. In a local chart,

after a smooth change of coordinates, one obtains a pair of
transverse foliations F1, F2 of the cube [�1; 1]n by disks,
and a measurable function  : [�1; 1]n ! R that is con-
stant along the leaves of F1 and constant along the leaves
of F2.

When the foliations F1 and F2 are smooth (at least
C1), one can perform a further smooth change of coor-
dinates so that F1 and F2 are transverse coordinate sub-
space foliations. In this case, Fubini’s theorem implies that
any measurable function that is constant along two trans-
verse coordinate foliations is a.e. constant. This completes
the proof in the case that the foliations W s and W u are
smooth. In Hopf’s original argument, the stable and un-
stable foliations were assumed to be C1 foliations (a hy-
potheses satisfied in the examples he considered, due to
low-dimensionality. See also [16], where a pinching con-
dition on the curvature, rather than low dimensionality,
implies this C1 condition on the foliations.)

Absolute Continuity For a general Anosov diffeomor-
phism or flow, the stable and unstable foliations are notC1,
and so the final step in Hopf’s orginal argument does not
apply. The fundamental advance of Anosov and Anosov-
Sinai was to prove that the stable and unstable foliations
of an Anosov diffeomorphism (conservative or not) sat-
isfy a weaker condition than smoothness, called absolute
continuity. For conservative systems, absolute continuity
is enough to finish Hopf’s argument, proving that everyC2

conservative Anosov diffeomorphism is ergodic [15,17].
For a definition and careful discussion of absolute con-

tinuity of a foliation F , see [13]. Two consequences of the
absolute continuity ofF are:

1. (AC1) If A � M is any measurable set, then

(A) D 0 () F(x)(A) D 0 ;
for  � a.e. x 2 M ;

where F(x) denotes the induced Riemannian volume
on the leaf ofF through x.

2. (AC2) If � is any small, smooth disk transverse to a local
leaf of F , and T � � is a 0-set in � (with respect to the
induced Riemannian volume on �), then the union of
theF leaves through points in T has Lebesgue measure
0 inM.

The proof that W s and W u are absolutely continuous
has a similar flavor to the proof that an expanding map
has a unique absolutely continuous invariant measure
(although the cocycles involved are Hölder continuous,
rather than Lipschitz), and the facts are intimately related.
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With absolute continuity of the stable and unstable fo-
liations in hand, one can now prove:

Theorem 2 (Anosov) Let f be a C2, conservative Anosov
diffeomorphism. Then f is ergodic.

Proof By the Hopf Argument, it suffices to show that if
 s and  u are L2 functions with the following properties:

1.  s is constant along leaves ofW s ,
2.  u is constant along leaves ofW u , and
3.  s D  u a.e.,

then  s (and so  u as well) is constant a.e.
This is proved using the absolute continuity of W u

andW s . SinceM is connected, one may argue this locally.
LetG be the full measure set of p 2 M such that s D  u .
Absolute continuity ofW s (more precisely, consequence
(AC1) of absolute continuity described above) implies
that for almost every p 2 M, G has full measure in
W s(p). Pick such a p. Then for almost every q 2W s(p),
 s(q) D  u(p); defining G0 to be the union over all
q 2W s(p) \ G ofW u(q), one obtains that  s is constant
on G \ G0. But now, since W s(p) \ G has full measure
in W s(p), the absolute continuity of W u (consequence
(AC2) above) implies that G0 has full measure in a neigh-
borhood of p. Hence  s is a.e. constant in a neighborhood
of p, completing the proof. �

SRBMeasures

In the absence of a smooth invariantmeasure, it is still pos-
sible for a map to have an invariant measure that behaves
naturally with respect to volume. In computer simulations
one observes such measures when one picks a point x at
random and plots many iterates of x; in many systems,
the resulting picture is surprisingly insensitive to the ini-
tial choice of x. What appears to be happening in these
systems is that the trajectory of almost every x in an open
set U is converging to the support of a singular invariant
probability measure �. Furthermore, for any open set V ,
the proportion of forward iterates of x spent in V appears
to converge to �(V ) as the number of iterates tends to1.

In the 1960s and 70s, Sinai, Ruelle and Bowen rigor-
ously established the existence of these physically observ-
able measures for hyperbolic attractors [18,19,20]. Such
measures are now known as Sinai-Ruelle-Bowen (SRB)
measures, and have been shown to exist for non-hyper-
bolic maps with some hyperbolic features. This subsection
describes the construction of SRB measures for hyperbolic
attractors.

An f -invariant probability measure � is called an SRB
(or physical) measure if there exists an open set U � M

containing the support of � such that, for every continu-
ous function � : M ! R and -a.e. x 2 U ,

lim
n!1

1
n

nX

iD1

�( f i(x)) D
Z

M
� d� :

The maximal open set U with this property is called the
basin of f . To exclude the possibility that the SRB mea-
sure is supported on a periodic sink, one often adds the
condition that at least one of the Lyapunov exponents of f
with respect � is positive. Other definitions of SRB mea-
sure have been proposed (see [21]). Note that every er-
godic absolutely continuous invariant measure with pos-
itive density in an open set is an SRB measure. Note also
that an SRBmeasure for f is not in general an SRBmeasure
for f�1, unless f preserves an ergodic absolutely continu-
ous invariant measure.

Every transitive Anosov diffeomorphism carries
a unique SRB measure. To prove this, one defines a se-
quence of probability measures �n on M as follows. Fix
a point p 2 M, and define �0 to be the normalized re-
striction of Riemannian volume to a ball Bu in W u(p).
Set �n D 1

n
Pn

iD1 f
i
��0. Distortion estimates show that the

density of �n on its support insideW u is bounded, above
and below, independently of n. Passing to a subsequential
weak* limit, one obtains a probability measure � on M
with bounded densities onW u-leaves.

To show that � is an SRB measure, choose a point
q 2 M in the support of �. Since � has positive density on
unstable manifolds, almost every point in a neighborhood
of q inW u(q) is a regular point for f (that is, a point where
the forward Birkhoff averages of every continuous func-
tion exist). A variation on the Hopf Argument, using the
absolute continuity ofW s , shows that � is an ergodic SRB
measure.

A similar argument shows that every transitive hyper-
bolic attractor admits an ergodic SRB measure. In fact
this SRB measure has much stronger mixing properties,
namely, it is Bernoulli. To prove this, one first constructs
a Markov partition [22] conjugating the action of f to
a Bernoulli shift. This map sends the SRB measure to
a Gibbs state for a mixing Markov shift (see � Pressure
and Equilibrium States in Ergodic Theory). A result that
subsumes all of the results in this section is:

Theorem 3 (Sinai, Ruelle, Bowen) Let� � M be a tran-
sitive hyperbolic attractor for a C2 map f : M ! M. Then
f has an ergodic SRB measure � supported on �. More-
over: the disintegration of � along unstable manifolds of�
is equivalent to the induced Riemannian volume, the Lya-
punov exponents of � are all positive, and � is Bernoulli.
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Beyond UniformHyperbolicity

The methods developed in the smooth ergodic theory of
hyperbolic maps have been extended beyond the hyper-
bolic context. Two natural generalizations of hyperbolicity
are:

� partial hyperbolicity, which requires uniform expan-
sion of Eu and uniform contraction of Es, but allows
central directions at each point, in which the expansion
and contraction is dominated by the behavior in the hy-
perbolic directions; and

� nonuniform hyperbolicity, which requires hyperbolic-
ity along almost every orbit, but allows the expansion
of Eu and the contraction of Es to weaken near the ex-
ceptional set where there is no hyperbolicity.

This section discusses both generalizations.

Partial Hyperbolicity

Brin and Pesin [23] and independently Pugh and
Shub [24] first examined the ergodic properties of par-
tially hyperbolic systems soon after the work of Anosov
and Sinai on hyperbolic systems. One says that a diffeo-
morphism f : M ! M of a compact manifold M is par-
tially hyperbolic if there is a nontrivial, continuous split-
ting of the tangent bundle, TM D Es ˚ Ec ˚ Eu, invari-
ant under Df , such that Es is uniformly contracted, Eu is
uniformly expanded, and Ec is dominated, meaning that
for some n � 1 and for all x 2 M :

kDx f njEsk < m(Dx f njEc ) � kDx f njEck < m(Dx f njEu ):

Partial hyperbolicity is a C1-open condition: any diffeo-
morphism sufficiently C1-close to a partially hyperbolic
diffeomorphism is itself partially hyperbolic. For an exten-
sive discussion of examples of partially hyperbolic dynam-
ical systems, see the survey article [25] and the book [26].
Among these examples are: the time-1 map of an Anosov
flow, the frame flow for a compact manifold of negative
sectional curvature, and many affine transformations of
compact homogeneous spaces. All of these examples pre-
serve the volume induced by a Riemannian metric onM.

As in the Anosov case, the stable and unstable bun-
dles Es and Eu of a partially hyperbolic diffeomorphism
are tangent to foliations, again denoted by W s and W u

respectively [23]. Brin-Pesin and Pugh-Shub proved that
these foliations are absolutely continuous.

A partially hyperbolic diffeomorphism f : M ! M is
accessible if any point inM can be reached from any other
along an su-path, which is a concatenation of finitely many
subpaths, each of which lies entirely in a single leaf ofW s

or a single leaf ofW u . Accessibility is a global, topological
property of the foliationsW u andW s that is the analogue
of transversality of W u and W s for Anosov diffeomor-
phisms. In fact, the transversality of these foliations in the
Anosov case immediately implies that every Anosov dif-
feomorphism is accessible. Fundamental Principle #4 sug-
gests that accessibility might be related to ergodicity for
conservative systems.

Conservative Partially Hyperbolic Diffeomorphisms
Motivated by a breakthrough result with Grayson [27],
Pugh and Shub conjectured that accessibility implies er-
godicity, for a C2, partially hyperbolic conservative diffeo-
morphism [28]. This conjecture has been proved under the
hypothesis of center bunching [29], which is a mild spec-
tral condition on the restriction ofDf to the center bundle
Ec. Center bunching is satisfied by most examples of in-
terest, including all partially hyperbolic diffeomorphisms
with dim(Ec ) D 1. The proof in [29] is a modification of
the Hopf Argument using Lebesgue density points and
a delicate analysis of the geometric and measure-theoretic
properties of the stable and unstable foliations.

In the same article, Pugh and Shub also conjectured
that accessibility is a widespread phenomenon, holding
for an open and dense set (in the Cr topology) of par-
tially hyperbolic diffeomorphisms. This conjecture has
been proved completely for r D 1 [30], and for all r, with
the additional assumption that the central bundle Ec is one
dimensional [31].

Together, these two conjectures imply the third, cen-
tral conjecture: in [28]:

Conjecture 1 (Pugh–Shub) For any r � 2, the Cr, con-
servative partially hyperbolic diffeomorphisms contain a Cr

open and dense set of ergodic diffeomorphisms.

The validity of this conjecture in the absence of center
bunching is currently an open question.

Dissipative Partially Hyperbolic Diffeomorphisms
There has been some progress in constructing SRB-type
measures for dissipative partially hyperbolic diffeomor-
phisms, but the theory is less developed than in the con-
servative case. Using the same construction as for Anosov
diffeomorphisms, one can construct invariant probability
measures that are smooth along the W u foliation [32].
Such measures are referred to as u-Gibbs measures. Since
the stable bundle Es is not transverse to the unstable bun-
dle Eu, the Anosov argument cannot be carried through to
show that u-Gibbs measures are SRB measures.

Nonetheless, there are conditions that imply that
a u-Gibbs measure is an SRB measure: for example,
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a u-Gibbs measure is SRB if it is the unique u-Gibbs mea-
sure [33], if the bundle Es ˚ Ec is nonuniformly con-
tracted [34], or if the bundle Eu ˚ Ec is nonuniformly ex-
panded [35]. The proofs of the latter two results use Pesin
Theory, which is explained in the next subsection.

SRB measures have also been constructed in systems
where Ec is nonuniformly hyperbolic [36], and in (non-
invertible) partially hyperbolic covering maps where Ec is
1-dimensional [37]. It is not known whether accessibility
plays a role in the existence of SRB measures for dissipa-
tive, non-Anosov partially hyperbolic diffeomorphisms.

Nonuniform Hyperbolicity

The concept of Lyapunov exponents gives a natural way to
extend the notion of hyperbolicity to systems that behave
hyperbolically, but in a nonuniform manner. The funda-
mental principles described above, suitably modified, ap-
ply to these nonuniformly hyperbolic systems and allow
for the development of a smooth ergodic theory for these
systems. This program was initially proposed and carried
out by Yakov Pesin in the 1970s [38] and has come to be
known as Pesin theory.

Oseledec’s Theorem implies that if a smoothmap f sat-
isfying the condition m(Dx f ) > 0 preserves a probability
measure �, then for �-a.e. x 2 M and every nonzero vector
v 2 TxM, the limit

(x; v) D lim
n!1

1
n

nX

iD1

log kDx f i(v)k

exists. The number (x; v) is called the Lyapunov expo-
nent at x in the direction of v. For each such x, there are
finitely many possible values for the exponent (x; v), and
the function x 7! (x; �) is measurable. See the discussion
of Oseledec’s Theorem in� Ergodic Theorems.

Let f be a smooth map. An f -invariant probability
measure � is hyperbolic if the Lyapunov exponents of �-
a.e. point are all nonzero. Observe that any invariant mea-
sure of a hyperbolic map is a hyperbolic measure.

A conservative diffeomorphism f : M ! M is nonuni-
formly hyperbolic if the invariant measure equivalent to
volume is hyperbolic. The term “nonuniform” is a bit mis-
leading, as uniformly hyperbolic conservative systems are
also nonuniformly hyperbolic. Unlike uniform hyperbol-
icity, however, nonuniform hyperbolicity allows for the
possibility of different strengths of hyperbolicity along dif-
ferent orbits.

Nonuniformly hyperbolic diffeomorphisms exist on all
manifolds [39,40], and there are C1-open sets of nonuni-
formly hyperbolic diffeomorphisms that are not Anosov

diffeomorphisms [41]. In general, it is a very difficult prob-
lem to establish whether a given map carries a hyperbolic
measure that is nonsingular with respect to volume.

Hyperbolic Blocks As mentioned above, the derivative
of f along almost every orbit of a nonuniformly hyper-
bolic system looks like the derivative down the orbit of
a uniformly hyperbolic system; the nonuniformity can be
detected only by examining a positive measure set of or-
bits. Recall that Lusin’s Theorem in measure theory states
that every Borel measurable function is continuous on the
complement of an arbitrarily small measure set. A sort
of analogue of Lusin’s theorem holds for nonuniformly
hyperbolic maps: every C2, nonuniformly hyperbolic dif-
feomorphism is uniformly hyperbolic on a (noninvariant)
compact set whose complement has arbitrarily small mea-
sure. The precise formulation of this statement is omitted,
but here are some of its salient features.

If � is a hyperbolic measure for a C2 diffeomor-
phism, then attached to �-a.e. point x 2 M are transverse,
smooth stable and unstable manifolds for f . The collec-
tion of all stable manifolds is called the stable lamination
for f , and the collection of all unstable manifolds is called
the unstable lamination for f . The stable lamination is in-
variant under f , meaning that f sends the stable manifold
at x into the stable manifold for f (x). The stable manifold
through x is contracted uniformly by all positive iterates
of f in a neighborhood of x. Analogous statements hold
for the unstable manifold of x, with f replaced by f�1.

The following quantites vary measurably in x 2 M:

� the (inner) radii of the stable and unstable manifolds
through x,

� the angle between stable and unstable manifolds at x,
and

� the rates of contraction in these manifolds.

The stable and unstable laminations of a nonuniformly
hyperbolic system are absolutely continuous. The precise
definition of absolute continuity here is slightly different
than in the uniformly and partially hyperbolic setting, but
the consequences (AC1) and (AC2) of absolute continuity
continue to hold.

Ergodic Properties of Nonuniformly Hyperbolic Diffeo-
morphisms Since the stable and unstable laminations
are absolutely continuous, the Hopf Argument can be ap-
plied in this setting to show:

Theorem 4 (Pesin) Let f be C2, conservative and nonuni-
formly hyperbolic. Then there exists a (mod 0) partitionP of



Smooth Ergodic Theory S 8179

M into countably many f -invariant sets of positive volume
such that the restriction of f to each P 2 P is ergodic.

The proof of this theorem is also exposited in [42]. The
countable partition can in examples be countably infinite;
nonuniform hyperbolicity alone does not imply ergodic-
ity.

The Dissipative Case As mentioned above, establishing
the existence of a nonsingular hyperbolic measure is a dif-
ficult problem in general. In systems with some global
form of hyperbolicity, such as partial hyperbolicity, it is
sometimes possible to “borrow” the expansion from the
unstable direction and lend it to the central direction, via
a small perturbation. Nonuniformly hyperbolic attractors
have been constructed in this way [43]. This method is also
behind the construction of a C1 open set of nonuniformly
hyperbolic diffeomorphisms in [41].

For a given system of interest, it is sometimes possi-
ble to prove that a given invariant measure is hyperbolic
by establishing an approximate form of hyperbolicity. The
idea, due to Wojtkowski and called the cone method, is to
isolate a measurable bundle of cones in TM defined over
the support of the measure, such that the cone at a point
x is mapped by Dx f into the cone at f (x). Intersecting the
images of these cones under all iterates of Df , one obtains
an invariant subbundle of TM over the support of f that is
nonuniformly expanded.

Lai-Sang Young has developed a very general
method [44] for proving the existence of SRB measures
with strong mixing properties in systems that display
“some hyperbolicity”. The idea is to isolate a region X
in the manifold where the first return map is hyperbolic
and distortion estimates hold. If this can be done, then
the map carries a mixing, hyperbolic SRB measure. The
precise rate of mixing is determined by the properties of
the return-time function to X; the longer the return times,
the slower the rate of mixing.

More results on the existence of hyperbolic measures
are discussed in the next section.

An important subject in smooth ergodic theory is
the relationship between entropy, Lyapunov exponents,
and dimension of invariant measures of a smooth map.
Significant results in this area include the Pesin en-
tropy formula [45], the Ruelle entropy inequality [46],
the entropy-exponents-dimension formula of Ledrappier–
Young [47,48], and the proof by Barreira-Pesin-Schmel-
ing that hyperbolic measures have a well-defined dimen-
sion [49].�Hyperbolic Dynamical Systems contains a dis-
cussion of these results; see this entry there for further in-
formation.

The Presence of Critical Points
and Other Singularities

Now for a discussion of the aforementioned technical diffi-
culties that arise in the presence of singularities and critical
points for the derivative.

Singularities, that is, points where Df (or even f ) fails
to be defined, arise naturally in the study of billiards and
hard sphere gases. The first subsection discusses some
progress made in smooth ergodic theory in the presence
of singularities.

Critical points, that is, points where Df fails to be in-
vertible, appear inescapably in the study of noninvertible
maps. This type of complication already shows up for non-
invertible maps in dimension 1, in the study of unimodal
maps of the interval. The second subsection discusses the
technique of parameter exclusion, developed by Jakobson,
which allows for an ergodic analysis of a parametrized
family of maps with criticalities.

The technical advances used to overcome these issues
in the interval have turned out to have applications to
dissipative, nonhyperbolic, diffeomorphisms in higher di-
mension, where the derivative is “nearly critical” in places.
The last subsection describes extensions of the parameter
exclusion technique to these near-critical maps.

Hyperbolic Billiards and Hard Sphere Gases

In the 1870s the physicist Ludwig Boltzmann hypothe-
sized that in a mechanical system with many interact-
ing particles, physical measurements (observables), aver-
aged over time, will converge to their expected value as
time approaches infinity. The underlying dynamical sys-
tem in this statement is a Hamiltonian system with many
degrees of freedom, and the “expected value” is with re-
spect to Liouville measure. Loosely phrased in modern
terms, Boltzmann’s hypothesis states that a generic Hamil-
tonian system of this form will be ergodic on constant
energy submanifolds. Reasoning that the time scales in-
volved in measurement of an observable in such a system
are much larger than the rate of evolution of the system,
Boltzmann’s hypothesis allowed him to assume that phys-
ical quantities associated to such a system behave like con-
stants.

In 1963, Sinai revived and formalized this ergodic hy-
pothesis, stating it in a concrete formulation known as the
Boltzmann-Sinai Ergodic Hypothesis. In Sinai’s formula-
tion, the particles were replaced by N hard, elastic spheres,
and to compactify the problem, he situated the spheres on
a k-torus, k D 2; 3. The Boltzmann-Sinai Ergodic Hypoth-
esis is the conjecture that the induced Hamiltonian system
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on the 2kN-dimensional configuration space is ergodic on
constant energy manifolds, for any N � 2.

Sinai verified this conjecture for N D 2 by reducing
the problem to a billiard map in the plane. As background
for Sinai’s result, a brief discussion of planar billiard maps
follows.

Let D � Rs be a connected region whose boundary @D
is a collection of closed, piecewise smooth simple curves
the plane. The billiard map is a map defined (almost ev-
erywhere) on @D � [��; �]. To define this map, one iden-
tifies each point (x; �) 2 @D � [��; �] with an inward-
pointing tangent vector at x in the plane, so that the nor-
mal vector to @D at x corresponds to the pair (x; �/2). This
can be done in a unique way on the smooth components
of @D. Then f (x; �) is obtained by following the ray origi-
nating at (x; �) until it strikes the boundary @D for the first
time at (x0; � 0). Reflecting this vector about the normal at
x0, define f (x; �) D (x0; � � � 0).

It is not hard to see that the billiard map is conserva-
tive. The billiard map is piecewise smooth, but not in gen-
eral smooth: the degree of smoothness of f is one less than
the degree of smoothness of @D. In addition to singulari-
ties arising from the corners of the table, there are singu-
larities arising in the second derivative of f at the tangent
vectors to the boundary.

In the billiards studied studied by Sinai, the boundary
@D consists of a union of concave circular arcs and straight
line segments. Similar billiards, but with convex circu-
lar arcs, were first studied by Bunimovich [51]. Sinai and
Bunimovich proved that these billiards are ergodic and
nonuniformly hyperbolic. For the Boltzmann-Sinai prob-
lem with N � 3, the relevant associated dynamical system
is a higher dimensional billiard table in euclidean space,
with circular arcs replaced by cylindrical boundary com-
ponents.

In a planar billiard table with circular/flat boundary,
the behavior of vectors encountering a flat segment of
boundary is easily understood, as is the behavior of vectors
meeting a circular segment in a neighborhood of the nor-
mal vector. If the billiard map is ergodic, however, every
open set of vectors will meet the singularities in the table
infinitely many times. To establish the nonuniform hyper-
bolicity of such billiard tables via conefieds, it is therefore
necessary to understand precisely the fraction of time or-
bits spend near these singularities. Furthermore, to use the
Hopf argument to establish ergodicity, one must avoid the
singularities in the second derivative, where distortion es-
timates break down. The techniques for overcoming these
obstacles involve imposing restrictions on the geometry of
the table (evenmore so for higher dimensional tables), and
are well beyond the scope of this paper.

The study of hyperbolic billiards and hard sphere gases
has a long and involved history. See the articles [50]
and [52] for a survey of some of the results and techniques
in the area. A discussion of methods in singular smooth
ergodic theory, with particular applications to the Lorentz
attractor, can be found in [53]. Another, more classical,
reference is [54], which contains a formulation of proper-
ties on a critical set, due to Katok–Strelcyn, that are use-
ful in establishing ergodicity of systems with singulari-
ties.

Interval Maps and Parameter Exclusion

The logistic family of maps ft : x 7! tx(1 � x) defined on
the interval [0; 1] is very simple to define but exhibits an
astonishing variety of dynamical features as the parameter
t varies. For small positive values of t, almost every point
in I is attracted under the map f t to the sink at �1. For
values of t > 4, the map has a repelling hyperbolic Cantor
set. As the value of t increases between 0 and 4, the map
f t undergoes a cascade of period-doubling bifurcations, in
which a periodic sink of period 2n becomes repelling and
a new sink of period 2nC1 is born. At the accumulation
of period doubling at t � 3:57, a periodic point of period
3 appears, forcing the existence of periodic points of all
periods. The dynamics of f t for t close to 4 has been the
subject of intense inquiry in the last 20 years.

The map f t, for t close to 4, shares some of the features
of the doubling map T2; it is 2-to-1, except at the critical
point 1

2 , and it is uniformly expanding in the complement
of a neighborhood of this critical point. Because this neigh-
borhood of the critical point is not invariant, however, the
only invariant sets on which f t is uniformly hyperbolic
have measure zero. Furthermore, the second derivative of
f t vanishes at the critical point, making it impossible to
control distortion for orbits that spend toomuch time near
the critical point.

Despite these serious obstacles, Michael Jakobson [55]
found a method for constructing absolutely continuous
invariant measures for maps in the logistic family. The
method has come to be known as parameter exclusion and
has seen application far beyond the logistic family. As with
billiards, it is possible to formulate geometric conditions
on the map f t that control both expansion (hyperbolicity)
and distortion on a positive measure set. As these condi-
tions involve understanding infinitely many iterates of f t ,
they are impossible to verify for a given parameter value t.

Using an inductive formulation of this condition,
Jakobson showed that the set of parameters t near 4 that
fail to satisfy the condition at iterate n have exponentially
small measure (in n). He thereby showed that for a posi-
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tive Lebesgue measure set of parameter values t, the map
f t has an absolutely continuous invariant measure [55].
This measure is ergodic (mixing) and has a positive Lya-
punov exponent. The delicacy of Jakobson’s approach is
confirmed by the fact that for an open and dense set of
parameter values, almost every orbit is attracted to a peri-
odic sink, and so f t has no absolutely continuous invari-
ant measure [56,57]. Jakobson’s method applies not only
to the logistic family but to a very general class of C3 one-
parameter families of maps on the interval.

Near-Critical Diffeomorphisms

Jakobson’s method in one dimension proved to extend
to certain highly dissipative diffeomorphisms. The semi-
nal paper in this extension is due to Benedicks and Car-
leson; the method has since been extended in a series of
papers [59,60,61] and has been formulated in an abstract
setting [62].

This extension turns out to be highly nontrivial, but
it is possible to describe informally the similarities be-
tween the logistic family and higher-dimensional “near
critical” diffeomorphisms. The diffeomorphisms to which
this method applies are crudely hyperbolic with a one di-
mensional unstable direction. Roughly this means that in
some invariant region of themanifold, the image of a small
ball under f will be stretched significantly in one direc-
tion and shrunk in all other directions. The directions of
stretching and contraction are transverse in a large pro-
portion of the invariant region, but there are isolated “near
critical” subregions where expanding and contracting di-
rections are nearly tangent.

The dynamics of such a diffeomorphism are very close
to 1-dimensional if the contraction is strong enough, and
the diffeomorphism resembles an interval map with iso-
lated critical points, the critical points corresponding to
the critical regions where stable and unstable directions
are tangent.

An illustration of this type of dynamics is the Hénon
family of maps fa;b : (x; y) 7! (1 � ax2 C by; x), the orig-
inal object of study in Benedicks-Carlesson’s work. When
the parameter b is set to 0, the map f a;b is no longer a dif-
feomorphism, and indeed is precisely a projection com-
posed with the logistic map. For small values of b and ap-
propriate values of a, the Hénon map is strongly dissipa-
tive and displays the near critical behavior described in the
previous paragraph. In analogy to Jakobson’s result, there
is a positive measure set of parameters near b D 0 where
f a;b has a mixing, hyperbolic SRB measure.

See [63] for a detailed exposition of the parameter ex-
clusion method for Hénon-like maps.

Future Directions

In addition to the open problems discussed in the previous
sections, there are several general questions and problems
worth mentioning:

� What can be said about systems with everywhere van-
ishing Lyapunov exponents? Open sets of such sys-
tems exist in arbitrary dimension. Pesin theory car-
ries into the nonuniformly hyperbolic setting the basic
principles from uniformly hyperbolic theory (in partic-
ular, Fundamental Principles #3 and 4 above). To what
extent do properties of isometric and unipotent sys-
tems (for example, Fundamental Principle #2) extend
to conservative systems all of whose Lyaponov expo-
nents vanish?

� Can one establish the existence of and analyze in gen-
eral the conservative systems on surfaces that have two
positive measure regimes: one where Lyapunov expo-
nents vanish, and the other where they are nonzero?
Such systems are conjectured exist in the presence of
KAM phenomena surrounding elliptic periodic points.

� On a related note, how common are conservative sys-
tems whose Lyapunov exponents are nonvanishing on
a positive measure set? See [64] for a discussion.

� Find a broad description of those dissipative systems
that admit finitely (or countably) many physical mea-
sures. Are such systems dense among all dissipative sys-
tems, or possibly generic among a restricted class of
systems? See [41,65] for several questions and conjec-
tures related to this problem.

� Extend the methods in the study of systems with singu-
larities to other specific systems of interest, including
the infinite dimensional systems that arise in the study
of partial differential equations.

� Carry the methods of smooth ergodic theory further
into the study of smooth actions of discrete groups
(other than the integers) on manifolds. When do such
actions admit (possibly non-invariant) “physical” mea-
sures?

There are other interesting open areas of future in-
quiry, but this gives a good sample of the range of pos-
sibilities.
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Glossary

Attractor A sub space of the state space of a certain sys-
tem that the system does not leave anymore. If the sub
space consists of only one point it is a point attractor.

Dialectical relation A relation between two persons or
generally two sides representing a tension and a mu-
tual dependency. In more contemporary terms a di-
alectical relation is a certain form of feed back relation.

Homo oeconomicus An actor who acts according to the
assumptions of rational choice.

Homo sociologicus The assumption that man is basically
a being following social rules in contrast to homo oeco-
nomicus.

Meta rules Rules that operate on rules of interaction and
change these rules.

Rational choice The theoretical assumption that man is
a rational and egoistical actor, who tries to maximize
his profit and selects in a certain situation the best
strategies.

Socialization The biographical process by which an indi-
vidual learns and internalizes the cultural norms and
social rules of his specific society. The result is a social
actor.

Social-cognitive systems Complex dynamical systems
that consist of social actors and contain at least two
different levels, namely a social level and a cognitive
one.

Socio-cultural evolution The development of societies
in the mutually interdependent dimensions of social
structure and culture.

Universal modeling schema A schema that consists of
different interdependent levels and each level is mod-
eled as a complex dynamical system.

Definition of the Subject

Social-cognitive systems certainly belong to the most com-
plex systems that we know. The reason for this complexity
is due to the fact that social-cognitive systems at least con-
sist of two different levels, namely a social and a cognitive
one that permanently interact andmutually influence each
other. In terms of the social and cognitive sciences, social-
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cognitive systems consist of social actors who interact and
whose actions are determined by certain social rules. Yet
these actors are also complex dynamical systems, i. e., cog-
nitive ones. The cognitive processes of the individual ac-
tors also influence the specific actions. The social rules de-
termine in some part the cognitive processes that in turn
generate the according actions. But also in turn the cog-
nitive processes may determine the actions in such a way
that the social rules are influenced and even changed. That
is for example the case in times of revolutions and/or po-
litical reforms. In this sense social-cognitive systems are
determined by a permanent interdependent dynamics be-
tween these levels and that is why a modeling and precise
analysis of these systems is rather difficult. In addition, so-
cial-cognitive systems are able to adapt to changing envi-
ronmental conditions. This means that these systems are
able to change their rules and structure.

Introduction

Social-cognitive complexity, although of course not in this
term, has been the subject of social thinking since the be-
ginning of reflections on society and social actions. Al-
ready one of the earliest works on society in human his-
tory, namely Plato’s Politeia (The Republic), emphasizes
the importance of the interdependency of mind and social
structure: A certain desired social structure, i. e. the dif-
ferentiation of society into different social classes, can be
generated and reproduced only by influencing the minds
of the social actors via education. A suited education cares
for the adequate thinking of the individuals, which in turn
guarantees the production and reproduction of the class
structure by the social actions of the educated actors. The
class structure finally determines the minds of the individ-
uals and produces the wished forms of socially determined
thinking. Plato’s ideal society is certainly not a paradigm
for democratic societies but the logic of Plato’s arguments
already demonstrates the necessity to take account of both
social and cognitive levels if one wants to understand soci-
ety and the socially determined actions of human beings.
It is not by chance that all authors who thought about
utopian societies also stressed the importance of educa-
tion, i. e. the influencing of minds to produce and repro-
duce social structures, for example Huxley and Orwell.

More than two millennia later, Karl Marx in his the-
ory of Historical Materialism [27] dealt in a similar way
with the subject of social-cognitive complexity. He pos-
tulated a “dialectical” relation between consciousness or
mind respectively and social structure – the social condi-
tions (soziale Verhältnisse) in his terms. The social con-
ditions determine the minds of social actors and produce

that way an ideological consciousness; accordingly the so-
cial actors reproduce the social conditions by their ideo-
logically determined actions. That is the essence of Marx’s
famous base-superstructure theorem: the social conditions
determine the consciousness, which in turn produces the
ideological parts of society (In the German original: Das
gesellschaftliche oder materielle Sein bestimmt das Bewusst-
sein). Yet in times of societal crisis the consciousness of
certain social actors, namely the members of revolution-
ary classes, the consciousness is able to overcome the ide-
ological constraints and produces by the social actions of
revolution a new social structure. In such times historical
progress is generated by the determination of social struc-
tures by the social minds of the revolutionary actors. That
is why Marx called the relationship between mind and so-
cial structure a dialectical one: both sides of the relation-
ship form a dynamical tension, influence the other and
are influenced in turn by the other. If one substitutes the
philosophical term of dialectic by the more precise con-
temporary term of feed back, one may say that Marx pos-
tulated social-cognitive systems as systems whose dynam-
ics is characterized by permanent feed back loops between
a social and a cognitive level. To be sure, although Marx
frequently stressed the importance of mathematically for-
mulated theories he never could think of transforming the
venerable concept of dialectic into a mathematical frame-
work.

Marx had in principle captured the whole problem of
social-cognitive complexity although only in an informal
manner and formulated in classical philosophical terms.
Yet his monumental approach was certainly not suited as
a common foundation for the development of the social
and cognitive sciences. Nearly at the same time the French
sociologist Emile Durkheim, one of the founding fathers
of modern sociology, postulated that social phenomena
must only be explained by other social phenomena, which
is one of the most important theoretical premises of the
contemporary social sciences. As a consequence social sci-
entists only deal with social complexity and consciously
often neglect the influence of cognitive factors on social
processes. Accordingly cognitive scientists only deal with
cognitive complexity and neglect the impact of social fac-
tors on cognitive processes. Paradigmatic in this sense is
the great work of Jean Piaget [34,35] who defined cogni-
tive development as a principally autonomous process that
can only be slowed down or accelerated by its social envi-
ronment. With a famous expression of the German social
theorist Niklas Luhmann one can say that the different dis-
ciplines of social-cognitive complexity reduced the com-
plexity of their subject by concentrating on only one level
of the two-level problem [26].
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Matters became even more complicated when social
theorists discovered that society is not a homogenous sys-
tem but must itself be differentiated into different levels.
The most basic differentiation is of course that of a micro-
level and a macro-level [1,22]. In addition it is possible
and sometimes necessary to introduce a meso-level, that
is a middle range level of social reality. For example, if
the micro-level is constituted by individual social actors
or their actions respectively, if the macro-level is defined
as a whole society or even an aggregation of societies like,
e. g. the European Union, then a meso-level may consist of
certain institutions, political parties and the like.

An additional complication and hence another in-
crease of complexity must be accepted by taking account
of the fundamental difference between social structure and
culture. It is not possible for this article to mention all the
numerous definitions of culture social theorists have de-
veloped in the last century. Following Habermas [15] and
Giddens [12] it is sufficient to define the social structure of
a society as the set of all social rules that are valid in a cer-
tain society and culture as the sum of all accepted knowl-
edge, beliefs, world views, etc. in that society. By consid-
ering that fundamental distinction and by taking into ac-
count the different levels of society we apparently obtain
a multi-dimension system, namely a system consisting of
different levels that contain two dimensions – the socio-
structural one and the cultural one. It is no wonder that so-
cial theorists concentrated on the social level of social-cog-
nitive complexity, because this level is complex enough.

The main problem with such multi-level approaches
is of course that the relations between the different lev-
els and hence their interactions could usually be described
only in an informal and frequently metaphorical manner.
When a social theorist draws a graphical schema with dif-
ferent levels and additionally two dimensions the schema
itself explains nothing but just states a problem. Somehow
the levels interact and somehow individual actions are de-
termined by the levels above, but in general this somehow
cannot be precisely explained. To be sure, there are a lot
of empirical studies that try, e. g., to analyze the impact of
certain social structure on specific actions. But there is no
general precise theory of links between the different levels
of society [1].

Yet despite these difficulties in several fields of the so-
cial and cognitive sciences not only the different levels of
society but also the cognitive level of individual actors is
taken into account. That is especially the case in socio-
psychology and in particular in theories of socialization.
The analysis of processes of socialization indeed demands
that cognitive levels and social levels alike must be con-
sidered, if one understands socialization as the process by

Social Cognitive Complexity, Figure 1
Amulti-level model of socialization

which the individual mind is formed according to the so-
cial structure and the cultural norms and values of a partic-
ular society. Although in the general models of processes
of socialization the relation between the social levels and
the cognitive one is expressed only one-sided, i. e., only
the determination of the personality by social structure is
taken into account in contrast to Marx, at least it is suited
to speak of attempts to capture the whole social-cognitive
complexity of social reality. Such a model of socialization
is shown in Fig. 1; it is a shortened version of a more com-
plex model of Geulen and Hurrelmann [11].

The well-known classical study of Berger and Luck-
mann “The Social Construction of Reality” is a paradig-
matic example of such attempts [6] that in contrast tomost
one-sided models assumes a mutual interdependency of
social and cognitive levels: According to them there is, in
the tradition of Marx, a dialectical relation between the
subjective social reality and the objective one. The subjec-
tive social reality consists of the internalized social rules
and cultural values that constitute the personal identity,
i. e. the individual personality. The objective social reality
is generated by the according social actions and interac-
tions of the socialized individual actors. Because the struc-
ture of this reality mirrors that of the individual person-
ality the individual actions reproduce the objective reality,
which was the determining factor of the constitution of the
subjective reality. As in the case of Marx we have again
a permanent feedback between the social and the cogni-
tive level. Younger individuals participate in this process
by taking over the structure of objective reality from their
elders, by reproducing this structure in their own actions,
and so forth. Although the theory of Berger and Luckmann
does not deal with social progress, i. e., changes of so-
cial structure and culture, their model demonstrates how
in principle it is possible to describe the interdependency
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Social Cognitive Complexity, Figure 2
The general action system

of social and cognitive levels, even if only in an informal
manner.

The most famous attempt to capture social-cognitive
complexity in a whole model is certainly the well-known
model of Parsons [8,29,32] of the differentiation of the ac-
tion system. A simplified version is shown in Fig. 2.

The general assumption of Parsons is that each system
is differentiated into four subsystems according to the fa-
mous AGIL-schema; the same logic of differentiation is
valid for the subsystems and so forth. A means Adapta-
tion, G stands for Goal Orientation, I is Integration, and
L means Latent Pattern Maintenance. (The explanation of
the AGIL-schema cannot be done in this article [29,33]).
The picture shows that the social subsystems (social and
cultural systems) constitute together with the cognitive
subsystems (personality and behavioral system) the whole
action system. The specific form of interaction between the
four subsystems is called interpenetration, which roughly
means that the four systems influence each other. For ex-
ample, personalities are formed via socialization by the so-
cial and cultural subsystems, social and cultural systems
are reproduced by personalities and according behavior
and so on. Yet again we only have an informal theory, al-
though the general logic of the AGIL-differentiation is cer-
tainly a great achievement.

To put it into a nutshell, the problem of dealing with
social-cognitive complexity and not reducing the problem
to one level is seen by many theorists. Yet the theoretical
models are always just informal descriptions of the prob-
lem and programmatic foundations, if one looks at them
from a precise, i. e. mathematical point of view.

Social-Cognitive Complexity, Algorithms,
and BottomUpModels

Despite many attempts to formulate the complexity of so-
cial-cognitive systems in a mathematical way for a long
time it was not possible to transfer the mathematical tools
of, e. g., mathematical physics to the problems of social
reality. The use of statistical methods in empirical social
research and experimental psychology is of course a well
tested method since many decades. The problem was and
frequently still is the mathematical formulation of theoret-

icalmodels. Apparently the use of in particular differential
equations is not suited for the problems one has to deal
with in the social and cognitive realms. To be sure, sim-
ple cases can be analyzed in a mathematical way e .g. [5],
but the complexity of social-cognitive systems in the sense
of the great theorists mentioned in the preceding section
could not be captured by models founded on the classical
methods of the calculus.

The reasons for this are the peculiarities of social-cog-
nitive systems. They are constituted, as was mentioned in
the definition, by several levels that permanently interact
and thus must be characterized by a multi-dimensional
dynamics. In addition, social-cognitive systems are able
to change their specific rules and structure by adapting
to varying environmental conditions. It is of course pos-
sible to undertake a time series analysis in order to find
some regularity in the historical development of such sys-
tems, but a time series analysis just describes a system’s
behavior in a phenomenological manner and gives no ex-
planation. To make matters worse, even if one has found
some regularity by a careful time series analysis the system
may change its behavior via the varying of its rules; accord-
ingly the time series will change and the analysis becomes
worthless for the next time span. It is no wonder that more
than once social and cognitive scientists alike believed that
it would never be possible to develop a mathematical sci-
ence of social and cognitive systems.

Fortunately things have changed by the development
of new mathematical tools for the analysis of complex sys-
tems and in particular by the emergence of complex com-
puter programs. These new mathematical modeling tech-
niques, as cellular automata, Boolean networks, evolution-
ary algorithms, and artificial neural nets are on a first sight
rather different methods but on a second sight they have
much in common:

a) All modeling techniques are heuristically oriented to
some natural processes as the reproductive capacity
of living systems in the case of cellular automata and
Boolean nets, the logic of biological evolution in the
case of evolutionary algorithms, and the cognitive pro-
cesses of the brain in the case of artificial neural nets.
Sometimes these new mathematical tools are put to-
gether under the a bit misleading name of Soft Com-
puting [48] but it would be more appropriate to call
them nature oriented algorithms.

b) All these algorithms are very well suited for the con-
struction of so-called bottom upmodels [24]. This term
is used in contrast with top down models and means
that the model construction is done by starting at the
level of the elements of the system that shall be mod-
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eled. Accordingly the units of the models represent the
elements of the respective systems. The dynamics of
the empirical system is represented by certain rules of
interaction and the thus caused behavior of the whole
model. The model’s behavior is generated as an emer-
gent consequence of the local interactions of the units
of the model. This procedure allows constructing the
respective model by immediately transferring the em-
pirical observations of the system’s elements and their
rules of local interaction into the model. It is not nec-
essary to make an abstract representation of the whole
system by an aggregation of the elements.
For example, the modeling of a social group via a cel-
lular automaton [21] can be done the following quite
natural way: The cells of the cellular automaton rep-
resent the different individual members of the group
and their specific rules of interaction determined by the
group’s social hierarchy are represented by the rules of
transitions of the cellular automaton. It is then possible,
at least in some cases, to predict the group’s behavior
by according simulation runs of the cellular automa-
ton, as we did in several successful cases. The work of
many researchers demonstrated that in particular cel-
lular automata are very well suited for the analysis of
social groups [13,16,25,30,39,41,43].

c) The capability of social-cognitive systems to adapt, i. e.
to change their specific rules of interaction in order to
fulfill certain environmental conditions can be mod-
eled by the hybridization of the respective models, i. e.,
by the coupling of different modeling tools and such
the constructing of a hybrid model [14]. In order to
manage a successful adaptation adaptive systems must
have not only rules of interaction but also meta rules,
namely additional rules that operate on (meta) the rules
of local interaction and change them according to the
environmental demands. The best-known example for
such adaptive capabilities is of course the changing of
genomes by the genetic operators of mutation and re-
combination and by the force of natural selection in bi-
ological evolution. In this example the rules are those of
individual epigenesis and ontogenesis; the meta rules
are the genetic operators, steered by selection, that
change the genome by variation.
A mathematical model of these processes of adaptation
can be quite easily done by the construction of a hybrid
system, consisting of several Boolean or logical nets re-
spectively, representing the individual genotypes [18],
and a genetic algorithm that operates on the rules of
the Boolean nets and their specific topology.
Another example for adaptation is the case of political
reforms. In nearly all advanced societies the official so-

cial rules of interaction are defined by laws and bureau-
cratic prescriptions. In parliamentary societies themeta
rules are defined by the competence of the parliaments
to change the laws and prescriptions by discussions and
votes of majority. The meta rules then are given by the
rules of procedure by which the parliaments have to op-
erate. A variation of the rules of interaction by parlia-
mentary decisions is done when the internal or exter-
nal conditions of the society demand a changing of so-
cial structure. It can be demonstrated that democratic
societies are more adaptive than dictatorships because
dictatorial societies are both unwilling and unable to
change their structure because of the resulting unrest
and the danger for the ruling elite to lose its power [19].
An according model for such phases of political chang-
ing could, e. g. be constructed by the coupling of a cel-
lular automaton (the model for the population) and an
evolutionary strategy (the meta rules).

d) In contrast with a pure time series analysis bottom up
models are able to explain, i. e. they can reduce ob-
served phenomena to causes, namely to previous events
that are causally linked to the observed event. In cases
of complex systems such previous events can be ei-
ther a previous state of the system. In that case the ex-
planation consists of naming this particular previous
state and the rules that generated the present state from
the previous one. Or the previous event is an external
disturbance of the system. Then the explanation con-
sists of naming the disturbance and the reaction of the
system’s rules to the disturbance, i. e. to the externally
changed state of the system. The third and most diffi-
cult case is that of an operation of the system’s meta
rules, their variation of the rules of interaction, and the
generation of the present state via the changed rules of
interaction. To be sure, the analysis and explanation of
all different cases by the construction of an according
validmodel needs a lot of information about the empir-
ical system. Yet a thorough explanation of such com-
plex systems as socio-cognitive ones can only be done
by the construction of models and simulation runs that
use these new mathematical tools. To be sure, expla-
nations of this kind can principally also be done by
top down models and have been successfully done in
physics and chemistry. Only the third case needs the
distinction between rules and meta rules and hence de-
mands models constructed the way sketched above.

Theoretical Foundations

The social sciences are, unfortunately, characterized by
a multitude of different theoretical approaches that can-
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not be enumerated in this article. Yet for attempts to con-
struct mathematical models of social or even social-cogni-
tive processes there are two main approaches, namely the
Rational Choice approach (abbreviated RC) e .g. [17] and
a social systems theory approach, founded on social rules
and structure. Both are based on certain anthropological
foundations about the nature of man or social actors re-
spectively.

The RC-approach is based on the assumption that man
is basically an egoistical being who always tries to max-
imize his own profit without caring for others. This as-
sumption has a venerable tradition and it goes at least back
to the Leviathan of Hobbes, namely the question how so-
cial order is possible in a world of egoists. The term “ra-
tional” means that a social actor tries to find the optimal
strategies in each action situation, i. e., he analyzes, which
action as means could serve him best for his maximum
welfare as goal. Hence each social action situation is con-
sidered by an actor as a situation in a strategic game like
chess or poker: he rationally analyzes the different possible
strategies and chooses the best – therefore rational choice.

The RC-approach has a great advantage for the pur-
pose of mathematical model construction in the social sci-
ences, namely the famous Theory of Games by von Neu-
mann and Morgenstern [45]. Game theory was originally
developed for the mathematical analysis of economical de-
cision problems and already Max Weber stated that eco-
nomical actions are a paradigm of rational actions, ori-
ented to the most favorable proportion between different
means and the goal of profit maximizing e .g. [46] (Oscar
Morgenstern was an economist). But soon the partisans
of RC-approaches generalized this idea and tried to cap-
ture the logic of social action in general by game theoreti-
cal models.

Usually game theoretical models are based on a so-
called pay-off matrix. Because most RC-theorists distin-
guish only between two forms of behavior, namely cooper-
ation and defection, a pay-off matrix is a two-dimensional
one. A characteristic a pay-off matrix that is frequently
used for the analysis of social dilemmas, in particular the
famous Prisoner’s Dilemma (PD), is the following one:

C D
C 3 0
D 5 1

C of course stands for cooperation and D for defection.
As usual the matrix-values show the result of the com-
bination of the two different action strategies. For exam-
ple, the combination DC D 5means that a defective player
D gets five points while the cooperative player gets zero

points (CD D 0). Accordingly a cooperative player gets
three points if the other is also cooperative; the other gets
three points too (CC D 3). The absolute values of course
are arbitrary; the only condition for strategic games of the
PD-type is that DC > CC > DD > CD.

In a famous study about The Evolution of Coopera-
tion based on a tournament of different computer pro-
grams, i. e. programs that simulated winning strategies,
Axelrod [2] showed that the best strategy was Tit for Tat
(TFT). TFT can roughly be translated as “I do the same
to you as you to me”. TFT is a very simple strategy be-
cause the first player A always starts with a cooperative ac-
tion and waits for the response of the other player B. If B
is also cooperative then A keeps his cooperative actions.
If B is defective then A switches his strategy and becomes
defective too as long as B acts in a defective manner. The
first cooperative action of B then is answered by A with
an also cooperative action and so forth. Axelrod used for
his own analysis a cellular automaton and confirmed his
results later by using a genetic algorithm [3].

TFT is basically a cooperative strategy because each
player who acts according to TFT always takes account of
the strategies of his opponent and becomes defective only
if his opponent does the same. Hence Axelrod concluded
that the emergence of cooperation in a world of rational
egoists is not only possible but also even probable because
it can be mathematically shown that a cooperative strategy
like TFT is the most favorable one for an egoistic rational
player. In this sense the old question of Hobbes could fi-
nally be answered by the methods of mathematical game
theory.

Despite the fact that the results of Axelrod are not so
generally valid as Axelrod believed [9,19,31] it is no won-
der that many partisans of the RC-approach saw these re-
sults as confirmation for the RC-approach and for the ne-
cessity to study social dilemmas by game theoretical meth-
ods. Sometimes it seemed that the social sciences had to be
reduced to game theoretical analysis of decision problems.
Yet these studies neglect several important difficulties.

Some time ago Lord Dahrendorf [7] formulated the
important distinction between homo oeconomicus and
homo sociologicus. Homo oeconomicus is the rational and
egoistical actor, i. e. the basis of RC. Homo sociologicus in
contrast is the social actor who orientates his actions to
social rules and norms. He may be or not be an egoisti-
cal being but the important point is that his actions must
be understood as the consequences of certain social rules
that are valid in a specific situation. Homo oeconomicus
understands a social action situation as a decision prob-
lem for finding the optimal strategy; his rationality, there-
fore, is the calculation for the optimal proportion between
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means and ends. The rationality of homo sociologicus on
the other hand is an interpretative one: he must under-
stand the situation in order to know, which rules deter-
mine the situation and which according actions he has to
perform.

It is important to see that the question of Hobbes,
which Axelrod and other partisans of RC tried to answer
with a game theoretical analysis of social dilemmas, does
not arise with the assumption of homo sociologicus as the
basic nature of homo sapiens. Man is, according to this po-
sition, a social being by nature, i. e., his human nature is
defined not only by characteristics like language or con-
sciousness but also by his sociality. The basic question is
then not how social order is possible at all – the question
Hobbes answered by introducing the law enforcing state –
but how the construction of social order is performed and
how and why certain forms of social order were changed
and others were not. Dahrendorf of course named this pair
of concepts in this manner because he was convinced that
homo sociologicus is the normal aspect of man as a social
being; homo oeconomicus is a rather special case in situ-
ations where either no valid social rules exist, or where
some actors deliberately decide not to follow the respective
rules, or where social rules leave some space of freedom,
which must be filled out by individual decisions.

It is not an arbitrary decision if one chooses the op-
tion for one anthropological option or the other. There are
many reasons for the validity of the homo sociologicus po-
sition:

a) Studies in behavioral biology teach us that nearly all bi-
ological species consist of social beings, whether preda-
tors, prey, or plants; there are exceptions as, e. g., ot-
ters that live as loners but these are indeed exceptions.
From anthropological studies it is to be learned that all
our hominid ancestors lived in social communities and
that socio-cultural evolution would not have been pos-
sible without human sociality [37]. Therefore, one may
safely assume that human sociality is part of our bio-
logical heritage and not something humans had to cre-
ate [47].

b) Social rules, and in particular social institutions, are
important tools to reduce the complexity of the world
and in particular that of the social world. Without ac-
cepted rules each new situation would be a new deci-
sion problem that has to be calculated anew. In contrast
to that, social institutions offer a relief of the burden of
new decisions because they enable actions by just fol-
lowing the rules [6,10,44]. That is particularly favor-
able if the rules have been proven in past situations.
Hence, the evolution of social rules is more proba-

ble than Hobbes’ famous bellum omnium contra omnes
(“The war of all against all”).

c) By following social rules it is possible to gain a so-
cial reputation as being reliable. Such a reputation fre-
quently is favorable if others are undecided if they
should trust an actor or not.

d) Finally, countless social studies have demonstrated that
social actors mostly are rule-obeying beings. In a strict
sense the social sciences could not have been as success-
ful as they are if they would not have made the basic
assumption of homo sociologicus.

These considerations do not mean that RC is wrong
but that it is incomplete. There are certainly cases where
social actors indeed act as egoistical rational players in
a strategic game as for example in cases of social deviance
or political revolutions. In particular, it is obviously a char-
acteristic of modern democratic societies that the respec-
tive social rules nearly always leave a space of freedom for
individual decisions. The social role of a teacher, for exam-
ple, defines the necessity to act in a pedagogical way and
to evaluate the efforts of the pupils. But it is an individ-
ual decision of the teacher if he mainly fosters the pupils
or mainly acts as a critical evaluator of the pupils’ perfor-
mances. In this sense RC is an apt theory for some pecu-
liarities of modern societies but it is not a general theory of
human social action.

The consequence of these meta theoretical considera-
tions is the following: The construction of mathematical
models of social systems and of course of cognitive sys-
tems too must be founded on the basic logical unit of rule,
either social rules or cognitive ones. To be sure, the ele-
ments of social systems are individual actors if one fol-
lows the bottom up modeling approach. Yet these actors
are determined by the respective rules of their social sys-
tems; their actions, hence, must be understood as the re-
sult of the application of the rules valid in the respective
situation. Certainly actors can be in error about the spe-
cific rules and/or they can decide to be socially deviant. In
these cases it is particularly important to analyze the cog-
nitive processes that lead the actor to social deviance. Yet
the center of model construction andmodel interpretation
must be the according rules.

We shall see in one example below that also in cases of
social conformity the respective cognitive processes must
be taken into account if one wants to understand how cer-
tain conformity emerged. Therefore, the interdependency
of social and cognitive processes must be always be prin-
cipally taken into account, although frequently it is possi-
ble to understand and even predict social behavior without
considering the according cognitive processes.
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A UniversalModeling Schema

The considerations of the preceding sections can be sum-
marized in form of a universal modeling schema that cap-
tures the interdependency of different levels, the bottom
up principle, and the logical dominance of the rule con-
cept.

The basic social level of the schema consists of indi-
vidual social actors who interact according to certain so-
cial rules. One may visualize this level, e. g., as the grid of
a two-dimensional cellular automaton or the structure of
a Boolean net. The level constitutes a dynamical complex
system whose behavior depends, as usual, on the specific
interaction rules, the initial states, and eventually opera-
tions of certain meta rules. Figure 3 shows such a level,
which we may call level 1:

The concentration on this level and the neglect of
a cognitive one apparently follows the mentioned me-
thodical demand of Durkheim – social phenomena must
only be explained by other social phenomena. Social ac-
tions are exclusively understood by the reconstruction of
the respective rules that determined the actions. It is well
known that many social processes can be understood and
explained by taking into account only this level.

However, particularly in cases of social deviance, but
not only there, the knowledge about the respective rules
is not sufficient. Because social actors act with respect to
certain rules and their particular thinking, worldviews etc.
in many cases an according cognitive level must consid-
ered too. For example, the deeds of religious fanatics can
only be understood if one reconstructs their fundamen-
talist worldviews and the according individual legitimiza-
tion of criminal acts. In such cases social actors must also
be considered as complex dynamical systems, i. e. cogni-
tive ones with according cognitive rules and elements. The
schema has to be extended as is shown in Fig. 4; the cogni-
tive level may be called level 0.

Level 0 and level 1 already allow the modeling of many
social processes, in particular those where an interplay of
social and cognitive dynamics must be taken into account.
Yet often even these two levels are not enough, as was

Social Cognitive Complexity, Figure 3
The social level as a complex dynamical system

Social Cognitive Complexity, Figure 4
Social actors modeled as cognitive complex systems

Social Cognitive Complexity, Figure 5
Social actors (level 1) modeled as cognitive complex systems
(level 0) and as aggregations (level 2)

mentioned in the introduction, because it is frequently
necessary to model aggregations of individual actors. If,
for example, one wants to analyze the political situation in
a certain country with respect to the different political par-
ties, then the concept of party of course means a certain in-
stitution consisting of specific rules and all party members.
The interaction between such parties – coalitions, conflicts
and so on – should be modeled on another level, namely
level 2, the level of aggregations of actors (Fig. 5).

Note that level 2 must also be understood as a complex
dynamical system with its own specific rules and elements.
The elements there are usually called collective actors. All
the three levels, hence, constitute certain complex systems
whose dynamics is determined a) by the respective rules,
elements, and initial states, b) by the eventual operation of
meta rules that change the rules and in consequence the
generation of states, and c) the interdependency between
the different levels. This interdependency is visualized in
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the pictures by the arrows that represent the mutual influ-
ences.

In contrast to many schemas of multi levelmodels, e. g.
the schema shown in the introduction, it must be noted
that there is in principle a permanent feedback between
all different levels. The action of individual actors (level 1)
generate and reproduce the collective actors on level 2, yet
collective actors in turn influence and determine the indi-
vidual actors. A member of a political party acts as a party
member. Accordingly the cognitive processes of individ-
ual actors determine their actions but these cognitive pro-
cesses in turn are influenced by the result of the actions on
the one hand and the collective actors the individual ac-
tor is a part of on the other. A party member not only acts
but also thinks in concepts of the respective party. In addi-
tion, individual cognitive processes may directly influence
collective actors, particularly in times of social and/or po-
litical change. History is full of the impact of individual
cognitive processes on whole institutions, if the individual
actors operate as reformers or revolutionaries.

It is certainly possible to extend even the schema
shown in Fig. 5 by either adding a third social level, con-
sisting of aggregations of collective actors, or by adding
a second cognitive level by distinguishing between, e. g.
conscious and unconscious thinking. Such extensions
would lead to four- or even five-level models. Yet in most
cases of social-cognitive modeling it is sufficient to oper-
ate with one, two or three levels. To be sure, it is always
a question of the specific research interest how many lev-
els and which ones one must take account of. The schema,
after all, is just a schema, that is a frame work to guide
the modeling processes when dealing with socio-cognitive
processes – and not only these. The construction of a cer-
tain concrete model for a specific problem might be still
a difficult task, in particular if one has to evaluate the va-
lidity of the specific model.

It is rather evident that this modeling schema can
practically be applied to all complex social-cognitive pro-
cesses. Yet the schema is in an even more ambitious sense
a universal schema. This is a consequence from the math-
ematical characteristics of the algorithms mentioned in
Sect. “Social-Cognitive Complexity, Algorithms, and Bot-
tom UpModels”. Imagine for example that level 1 is mod-
eled by a cellular automaton, level 0 by one or several types
of artificial neural networks, and level 3 again by a cellu-
lar automaton or a Boolean net. It is known from math-
ematical investigations that cellular automata are poten-
tially equivalent to Universal Turing machines [36], which
roughly means that no formal system is more general than
such systems. This is the so-called Church–Turing thesis,
which no mathematician seriously doubts. A corollary, the

physical Church–Turing thesis, states that each physical,
i. e. empirical system can bemodeled via the use of a suited
Universal Turing machine or an equivalent system. Al-
though the physical Church–Turing thesis has not been
proven in an exact mathematical manner nobody doubts
this thesis either.

Without great difficulties it can be shown that each
neural net and each Boolean net is equivalent to an ac-
cording cellular automaton – the mappings between cel-
lular automaton and the two classes of nets are injective.
Hence principally each complex system can be modeled by
using this schema and by using one or several of the men-
tioned algorithms. An important consequence from these
considerations is the fact that a mathematical science of
social-cognitive systems is not only possible but also that
there is for each problem a general way how to treat it
in a mathematical manner. The schema, therefore, can be
understood as a constructive mapping from socio-cogni-
tive phenomena to mathematical structures. The univer-
sality of the modeling schema is a constructive proof of
the possibility of mathematical social and cognitive sci-
ences.

Examples

These considerations show that and how mathematical
models of social-cognitive processes can be constructed.
Yet the most convincing proof is of course the demonstra-
tion of concrete examples, i. e., the models of specific com-
plex social-cognitive systems. More detailed descriptions
of these and other examples can be found in [20] and [21].

The Differentiating of Social Groups into Subgroups

A certain social group that consist of more than, say, three
or four members is usually not a homogenous entity but is
differentiated into several subgroups. The criteria for the
generation of such subgroups are, of course, not always the
same. In working teams for example the different qualifi-
cations of the members might be a criterion for the form-
ing of specialized sub-teams. Yet in many informal groups
a principle is certainly valid that may be called Homans’
Principle [17] and that can be stated as follows: “Members
of a social group favor interactions with people they like
and they avoid interactions, if possible, with people they
do not like.” Everyday experience shows that this principle
is indeed in many social groups an important criterion.

Since the foundation of sociometry byMoreno [28] the
usage of a so-called sociomatrix or Moreno matrix respec-
tively for the representation of social relations has become
customary. If one wants to represent the mutual feelings
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of the members of a certain group via a sociomatrix the
matrix may be:

a b c
a 0 1 �1
b 1 0 1
c �1 0 0

The matrix is coded with three values. Value 1 means
a positive feeling or a liking respectively, value 0 means
neutral or indifferent feelings, and�1means negative feel-
ings or disliking respectively. Hence the matrix can be un-
derstood asmember a likes b and dislikes c, member b likes
a and c, and member c dislikes a and is indifferent to b.
The usage of such a sociomatrix as a mirror of the emo-
tional structure of a certain group can be very important
for, e. g. teachers, group leaders, group therapists or train-
ers of sport teams.

According to the Homans principle our research
group COBASC constructed a cellular automaton with the
goal to simulate and predict the emerging of different sub-
groups in specific groups, which we called in honor to
Moreno the Moreno-CA (COBASC is the abbreviation for
Computer Based Analysis of Social Complexity). It is a two-
dimensional cellular automaton whose cells represent the
members of the particular group that shall be modeled.
The state of the cells represent the emotional states of the
group member that range from “very dissatisfied” to “very
satisfied.” The cells state is dependent of the eight adja-
cent cells (a “Moore neighborhood”) in the following way:
the values of the emotional relations of the center cell to
the eight cells of the Moore neighborhood are summed
up; the emotional state of the center cell then is the arith-
metical mean of these values. (The cells are usually mod-
eled as squares; hence there are eight adjacent cells). The
values of the emotional relations are coded as 1, 0, or �1
as in the example above. The task of each cell is to find
a Moore neighborhood where its own emotional state is
a maximum. Accordingly the rules of the Moreno-CA are:

a) Place as many cells on the grid as there are groupmem-
bers; the rest of the grid’s cells are free places.

b) Compute the emotional state for each “member” cell;
vacant cells get the value 0.

c) Let each cell look on the grid for aMoore neighborhood
where it can obtain a maximum state value.

d) Move each cell into that neighborhood.
e) If an attractor state, preferably a point attractor, has

been reached, stop; if no attractor state could be
reached after a certain number of runs, stop too.
(A point attractor is a state the system will not leave

although the rules are still operating; an attractor of
longer period consists of several different states that the
system will generate in cyclic order.)

The last rule is necessary because it can happen that the
group reaches no attractor state at all or only those with
rather long periods [21]. Factually the rules are a bit more
complicated but this simplified version is the essence.

We validated this model with different social groups
and obtained in all cases very satisfactory results. One em-
pirical example shall serve to illustrate the methodical pro-
cedure:

With the permission of the teacher we asked a group
of eight pupils of a primary school, with which pupils they
would like to share a room in a youth hostel, with which
pupils they would not share a room under any circum-
stances, and with which pupils they would share or not,
according to the circumstances in the youth hostel. (It is
often problematic to ask children (in this case 10 years old)
directly if they like or dislike other children. That is why
we chose this procedure of asking). These answers were
transferred in the respective sociomatrix of the group. Af-
terwards the pupils were ordered to go into a strange class-
room and choose places in order to wait for the teacher.
The hypothesis was of course that the pupils would choose
places according to their emotional relations to the other
pupils. Then the values of the factual sociomatrix were in-
serted into the Moreno-CA; it reached a point attractor af-
ter 8 runs. The prediction of the program was then com-
pared with the factual sitting order of the pupils (Fig. 6).

The program of course did not predict the absolute
spatial distribution of the pupils in the classroom, for ex-
ample if one pupil prefers to sit at a window. TheMoreno-
CA just predicts the relative positions of the pupils, i. e.,
which pupils are sitting together or which pupils are out-
siders and are sitting alone. A comparison of the factual
distribution and the prediction of the cellular automaton
shows that the program indeed correctly prognosticated
the sitting order for nearly all pupils with the exception of

Social Cognitive Complexity, Figure 6
The factual sitting order of the pupils (left side) and the predic-
tion of the Moreno-CA
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pupil 3. He is factually sitting besides the outsider pupil 5.
However, the teacher of the children could give an expla-
nation for this error of the program: Pupil 3 is known to
be a practical jester who wanted to win the applause of the
other children by teasing the outsider. Such melancholy
character traits of course the program could not know.

We inserted the same sociomatrix into another pro-
gram, namely a so-called self-organizing map or Kohonen
feature map respectively (see next example). This is a spe-
cial type of artificial neural nets. This net obtained even
better results than the Moreno-CA because it placed pupil
3 beside pupil 5. An explanation for this result is given
in [21].

To be sure, we did not want to predict just sitting or-
ders of children in a classroom. The social experiment and
the simulation by the two programs should show which
subgroups existed in the whole group of children; this dif-
ferentiation would become visible in the little experiment.
The teacher, by the way, confirmed the results of the exper-
iment and the prediction because according to her thor-
ough knowledge the group of pupils factually consisted of
an outsider and a homogenous group of all other pupils.

With respect to the modeling schema of the previous
section this model uses only level 1, namely the social one.
To be sure, in an implicit way, the emotional state of the
children also plays a decisive role: there are no explicit so-
cial rules in this situation and the desire of the children to
be in the neighborhood of their friends and to avoid other
children is, according to Homans’ principle, the main de-
termination of the factual behavior. But in themodel it was
sufficient to represent the children as finite state automata,
i. e., units whose state values are a direct consequence of
their respective social milieu – in the model the Moore
neighborhood. TheMoreno-CA and the social experiment
with the children demonstrate that indeed in many cases
it is sufficient to construct models with only one level, in
particular the social one.

Socialization by Learning from aModel

In Sect. “Introduction” it was demonstrated why theories
of socialization always must take account of both social
level(s) and the cognitive one. The social level represents
the social milieu that is decisive for the specific socializa-
tion process; if one wants to explain the particular charac-
teristics of this milieu one must consider additional social
levels. The cognitive level of course represents the person-
ality or identity of the individual that is formed or influ-
enced by the respective milieu. The term formed though
does not necessarily mean that socialization is a passive
process. The socialized individual has the task to actively

construct a worldview consisting of cultural values, social
rules, and a culture specific knowledge.

One of the most known theories of socialization is the
theory of learning from a model by Albert Bandura [4].
This theory states that socialization is to a high degree de-
pendent on other people in the social milieu, who can act
asmodels, i. e. as paradigms. The socialized individual per-
ceives these models as positive or negative examples for its
form of thinking and behavior. In other words, young peo-
ple and children do not learn cultural values and specific
forms of social behavior by internalizing general rules but
by concrete examples they can observe and imitate. (There
is a striking similarity between the socialization theory of
Bandura and the cognitive theory of prototypes by Eleanor
Rosch [23], which can only be mentioned here.)

We applied this theory to a real case, namely a male
youth from the Ruhrgebiet, an industrial area in the West
of Germany. The youth, who shall be named Tom, of
course a fictitious name, grew up in a workers family; he
told us his story in an interview that was performed by one
of our students. The father was an aggressive and violent
man who often hit Tom’s mother and frequently got in-
volved in brawls and fights in the pubs. The mother was
a submissive person who tried to keep up the family by
working as a cleaner. Tom, therefore, had to care for his
two younger sisters, which he verymuch disliked although
he liked his sisters. When Tom was 10 years old his father
left the family and disappeared. At the time of the inter-
view Tom was 17 years old and had never heard any more
from his father. Because Tom joined a gang of hooligans
and got into trouble with the authorities and because the
mother was unable to care for the two girls and Tom alike,
Tom was admitted to a hostel of delinquent youths.

Despite the behavior of the father Tom adored him be-
cause the father was a real man. “Real” men are not afraid
of other men, they become violent and hit if they feel in-
sulted and in particular they dominate women, if neces-
sary also by violence. “Real” women, on the other hand,
are submissive and obedient to their men; they cook, wash
and care for the children while real men work outside the
house. As a consequence Tom developed a dichotomous
worldview: men are strong and women are weak; women
should obey and men command. The worlds of men and
women must not be mixed in the sense that women take
over tasks of men and men in turn care for the household.
Consequently Tom despises the educators in the hostel be-
cause the female educators try to give orders to young men
like Tom and the male educators perform household tasks
like cleaning and cooking.

Tom apparently obtained his worldview by learning
from the positive model of his father – “I want to be a man
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Social Cognitive Complexity, Figure 7
The reconstruction of a dichotomous worldview: female versus
male clusters

like my father” – and the negative model of his mother.
He also remarked that most men he met in his childhood
were similar to his father and the women were similar to
his mother. Hence he was early influenced by a homoge-
nous milieu, where men and women all occupied the same
gender specific roles.

For a simulation of Tom’s biography with the result
of a dichotomous worldview we used a Self-Organizing
Map (SOM) or Kohonen Feature Map respectively that
belongs to the class of neural networks, which learn in
a non-supervised manner. In contrast to the forms of su-
pervised learning non-supervised learning is not deter-
mined by externally given targets but the learning process
is characterized by an internal logic. To put it into a nut-
shell, non-supervised learning is the ordering of a set of
data according to certain internal criteria. There are dif-
ferent types of SOMs; we used a so-called Ritter–Kohonen
model [38]. The technical details do not matter here; they
can be looked up in any textbook on neural nets. Themain
intention of the simulation was to reconstruct the genesis
of Tom’s worldview and to demonstrate the according be-
havior in the present. Hence we inserted formal represen-
tations of the father and the mother as positive and nega-
tive models and inserted additional persons into the SOM.
The SOM then constructed clusters of the different per-
sons who are distinguished according to the criterion “real
men” versus “real women”. A first result is shown in Fig. 7.

The spatial nearness on the screen represents similar-
ities or differences between the clustered persons respec-
tively.

Afterwards we inserted other persons who differed
from the first in certain personal respects. In particular

Social Cognitive Complexity, Figure 8
Increasing the female cluster by adding other “real women” and
“false” men

we inserted formal representations of male educators who
had female characteristics like cooking or cleaning. The
SOM placed these men near the female cluster according
to Tom’s worldview: Tom does not accept these educators
as real men but sees themmore as women inmale disguise.
This is shown in Fig. 8.

The SOM apparently is able to simulate the impor-
tant parts of Tom’s socialization processes. As a SOM is
a purely deterministic algorithm the successful simulation
of Tom’s cognitive genesis must be seen as a determinis-
tic process too. Tom, so to speak, had no chance to be-
come another person because the social circumstances de-
termined his biography in a complete way.

The model uses only level 0, i. e., the cognitive one. Yet
the social level is implicitly present too because of the in-
puts we inserted to the program; these inputs represent the
social milieus in which Tom grew up and presently lives.
In addition, the worldview of Tom has certainly social con-
sequences not only for his biography. His membership in
a hooligan gang, where he feels at home, indicates that his
biography is representative for many youth members of
such gangs. The according consequences for societal prob-
lems are obvious. In this respect the example of Tom also
contains level 2, e. g. the level of collective actors like the
different hooligan gangs and the social institutions that
have to deal with them.

Modeling Social-Cultural Evolution

The last example is a rather complexmodel whose theoret-
ical foundations and historical arguments can be read up
in [20]. In contrast to the two preceding examples that be-
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Social Cognitive Complexity, Figure 9
Cognitive state of an individual actor and his place in the artificial society

long to the field of micro-sociology this model deals with
the evolution of whole societies. The basic assumption is
that socio-cultural evolution is generated by creative in-
ventions of individual actors and by the acceptance of
these new ideas by the respective society. The social struc-
ture and the cultural norms of a society may promote or
hinder the generation and acceptance of new ideas. In par-
ticular, the decisive factor is the degree of role autonomy
for the occupants of creative roles like engineers, artisans,
artists or scientists. If this degree is sufficiently high then
the respective society evolves, i. e. increases its cultural ca-
pacity and generates social structures that are more effi-
cient to deal with the problems of the society than old ones.
If the degree is low, then the society stagnates, i. e. it be-
comes caught in a cultural and socio-structural attractor.

Comparative studies of the history of many societies
always showed the same results, namely an early blossom-
ing and cultural growth, then a period of consolidation,
and finally stagnation or even regression, i. e. the return to
some previous states [40,42]. According to our theoretical
assumptions in these cases the degree of role autonomy
was not high enough to allow an unhindered evolution.
Only one case is known where apparently cultural evolu-
tion did not get caught in an attractor, namely the culture
of EuropeanModernity that was the historical basis for the
contemporary Western culture. Historical studies confirm
our hypothesis: In all cases of socio-cultural evolution the
degree of role autonomy was much lower than in the Eu-
ropean Modernity and the Western culture in general.

To validate these considerations by the use of a mathe-
matical model we constructed the so-called socio-cultural-
cognitive algorithm (SCCA). Themodel consists of a) a so-

cial level that is constructed as a cellular automaton. As
usual the cells represent individual actors, i. e. members
of a certain society. The rules of the cellular automaton
determine the degree of role autonomy, i. e. the propor-
tional ability of the actors to learn and create new ideas
on the second level. b) The second level is a cognitive
one: Each cell consists of a combination of different neural
networks, namely several so-called bi-directional associa-
tive nets (BAM) and a SOM from the type used in exam-
ple “Socialization by Learning from a Model”. The task of
the BAM is to associate observed characteristics from cer-
tain objects with the according semantic concepts – small,
furry, and meowing is associated with cat. The task of the
SOM is to order the concepts into a semantical network.
These cognitive processes can be performed either in the
way of learning, i. e. taking over new concepts from other
actors, or by creating new concepts. The sum of the results
of the individual cognitive processes is defined as the state
or level that the respective culture has reached. Figure 9
shows an individual actor and its place on the grid of the
cellular automaton.

The degree of role autonomy is inserted into the rules
of the cellular automaton. We did many experiments with
different values of this degree. The most important result
is that in most cases the according culture indeed showed
an evolutionary pattern known from human history, in
particular described by the great British historian Arnold
Toynbee (Fig. 10).

Only in the few cases with a high degree of role au-
tonomy our model showed an evolutionary path known
from the history of European Modernity. This is shown in
Fig. 11.
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Social Cognitive Complexity, Figure 10
A normal path (Toynbee path) of cultural evolution

Social Cognitive Complexity, Figure 11
A “Western development”

Societies with a sufficient high degree of role autonomy
are not hindered in their cultural development although of
course such societies may be stopped in their evolution by
external forces. That could have been the reason for the
final stagnation of the ancient Greek culture that also was
characterized by a high degree of role autonomy for the
occupants of the creative roles. Our model confirms that
such societies are very seldom, which may be indeed the
main reason for the fact, as Toynbee [42] observed, that
the overwhelming majority of historically known societies
stagnation was their inevitable fate.

The model is characterized by interplay of the two lev-
els with consequences for a third one because the social
structure determines the individual creative processes that
in turn determine the fate of the whole society. In addi-
tion, sufficient developments on the cognitive level may
also change the social structure: the better the cognitive
improvements are, the higher becomes the degree of role
autonomy on the social level. Such a rule is confirmed too
by historical observations of the European history: In the
Middle Ages the degree of role autonomy was not much
higher than in contemporary cultures like feudal China or
the Islamic societies. By the cultural progress during Euro-

pean Modernity the degree of role autonomy permanently
increased. The model, hence, shows the consequences of
such interdependent dynamics of the different levels that
may explain important courses of history with respect to
the fate of whole cultures.

Conclusions and Future Directions

The general possibility of amathematically formulated sci-
ence of social and cognitive processes was demonstrated
in the Universal Modeling Schema and the fact that suited
formal models like cellular automata or neural networks
are equivalent to Universal Turing Machines. How many
levels one needs for a concrete model, which ones, and
how the relations between the levels are to be formulated is
of course a question of the specific research problem. Con-
structing models of socio-cognitive processes will never be
a trivial task. The modeling schema gives general orien-
tations, but the detailed knowledge of the problem and
in particular of the empirical data is always a necessary
condition for the construction of social-cognitive models.
That is of course a truism if it is stated in such a gen-
eral manner but one that must always be taken into ac-
count. In particular, the knowledge about model construc-
tion and of suited algorithms never substitutes the pro-
found knowledge about the specific fields of research.

The general relation between a social level and a cog-
nitive one can also be stated in terms of individual actors.
If one takes for example a most basic social situation, i. e.
the communicative interaction between an actorA and an-
other actor B, and if one assumes that during the interac-
tion neither the social rules of this situation nor the cog-
nitive processes of the actors change, then this interaction
can be written the following way:

If f designates the set of social rules decisive for this
situation and if gA and gB designate the cognitive processes
of A and B respectively, then

f (A) D gB(B) :

In other words, the application of the social rules f on the
personality of A causes A to send an appropriate message
to B, who in turn is moved to perform the cognitive pro-
cesses gB. In this case the social level determines the cogni-
tive one, as is certainly the case in most forms of everyday
communication. Accordingly the equations can be writ-
ten if the cognitive processes determine the social rules,
for example if a student becomes more intelligent than his
professor by the teaching of the professor. (For general for-
mulations of these equations see also [21]).

The most important problem for a socio-cognitive sci-
ence that operates with mathematical models and accord-
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ing computer simulations is without doubt the proper re-
lation between theory, formal model and simulation pro-
gram.A complete research program that has to take care of
all three components follows the order: theory construc-
tion or theory selection respectively – transformation of
the theory into a suited model – construction of a simu-
lation program – comparing the results of the simulation
runs with known empirical data. If everything went right,
the last step will be a confirmation of the whole process.
Yet since Murphy’s law we know that each step may con-
tain errors and if the data are not compatible with the sim-
ulation results then the error(s) may be in the theory, the
model, the simulation program, or in several of the steps.

In particular the fundamental role of theory has fre-
quently been neglected in the many attempts to construct
a mathematical or computational respectively social sci-
ence by using computer models of socio-cognitive phe-
nomena. The mentioned dominance of RC-models on the
foundations of Game Theory is just one indicator for this
problem. Yet the social and cognitive sciences are much
more than theories about rational and egoistical players
in strategic games. Therefore, the most important prob-
lem for the future is the careful analysis of the research
program formulated in the three or four steps mentioned
above. Only then the use of mathematical models and
suited simulation programs will be the methodical basis
for a real socio-cognitive science.

Yet we have no alternative to the development of such
sciences. If this research program is not successful we will
always be the unconscious slaves of the social conditions
we produced ourselves, in particular of a future we did not
wish for. A science of the complex socio-cognitive reality
is certainly not a sufficient condition for the solving of all
our social problems. But it is a necessary condition for the
task that we must understand our own species, that is to
understand our own social and cognitive processes.
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Glossary

Self-organization Self-organization lies behind all struc-
ture and pattern formation in nature’s complex sys-
tems, including the human brain. Self-organization is
a principle governing a system where no agent-like
entity is ordering the elements, telling them where
and what to do. In self-organizing systems, low-di-
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mensional dynamics are revealed by changing one (or
more) control parameter(s) whose role is simply to
move the system through a series of state changes with-
out prescribing its behavioral patterns.

Coordination dynamics Coordination dynamics seeks
the laws, principles and mechanisms underlying the
coordinated behavior of different kinds of components
at multiple levels of description (molecules, cells, cir-
cuits, etc). It is an overarching conceptual framework
that describes, explains and predicts how patterns of
coordination form and change at multiple levels of
brain and behavior. The brain, mind and behavior are
linked by virtue of sharing a common underlying co-
ordination dynamics.

Information exchange A remarkable fact is that in con-
trast to classical dynamics that deal with fundamental
quantities such as mass, length and time and their re-
lations, coordination dynamics is informational in na-
ture, dealing with informational quantities of a rela-
tional kind that couple different parts of a system or
different systems.

Phase transitions Phase transitions are the true illustra-
tion that a system is self-organizing. They are spon-
taneous qualitative pattern changes occurring as pa-
rameters are changed quantitatively.When they occur,
abrupt switches from one coordinated pattern to an-
other are observed and the dynamics of the entire self-
organizing system is dominated by one or a few collec-
tive variables: the order parameters.

Stability Stability is a key concept in coordination dy-
namics. Here the stability is of coordination or collec-
tive variables. The (loss of) stability of a self-organiz-
ing system indicates whether a phase transition is to
occur. In order to evaluate the stability of a system,
one can perturb it and measure the time it takes for
the system to return to its initial state, i. e. its relax-
ation time. A number of other converging measures
have been used to measure stability in coordination
dynamics such as switching time (the time it takes for
the system to switch from one pattern to another when
phase transitions occur) and critical fluctuations (the
increase of variability of the collective variable in the
vicinity of the phase transition).

Definition of the Subject

Social Coordination Dynamics (SCD) explores, at both be-
havioral and neural levels, the mechanisms mediating the
formation and dissolution of bonds between individuals.
SCD applies the concepts, methods and tools of informa-
tionally coupled self-organizing systems (coordination dy-

namics) to quantify real time social processes. Just as co-
ordination dynamics deals with how the parts of com-
plex systems work together in a meaningful way to achieve
goals, so SCD aims to understand the interplay of forces
operating at both individual and collective levels to pro-
duce effective social behavior. SCD offers a novel perspec-
tive and new metrics to explore systematically a funda-
mental form of human bonding (or lack thereof), and the
self-organizing processes that underlie its persistence and
change over space and time. SCD therefore complements
recent developments in several fields such as sociology, so-
cial cognitive neuroscience, behavioral economics, game
theory and neuroeconomics.

Introduction

Coordination can be broadly defined as a functional or-
dering among interacting components in space and time.
Coming in many guises, coordination represents one of
the most striking features of living organisms. The sci-
ence of coordination, Coordination Dynamics (abbrevi-
ated CD) [36,37,38,41] stems from a complex systems
framework based on the theory and methods of informa-
tionally coupled self-organizing dynamical systems (see
� Coordination Dynamics). CD explores a number of ba-
sic coordination phenomena that cut across a wide range
of levels, creatures and functions. Of particular relevance
to social coordination are: (i) patterned states of coor-
dination remain stable in time despite perturbations; (ii)
component parts and processes (dis)engage in a flexible
fashion depending on functional demands and/or changes
in environmental conditions; (iii) multiple coordination
states exist rendering living things multi-functional, ef-
fectively satisfying the same (or different) set of circum-
stances; (iv) switching from partially to fully coordinated
states and vice versa is commonplace; (v) selection of co-
ordination patterns is tailored to suit the current needs of
the organism; (vi) coordination patterns adapt to chang-
ing internal and external contingencies; (vii) depending on
a balance between competitive and cooperative processes,
learning may take the form of abrupt transitions from one
coordinated pattern to another; and (viii) the system may
remain in the current pattern of coordination even when
conditions change thus exhibiting memory.

The foregoing list contains some of the core aspects of
CD reflecting its inherently nonlinear and emergent char-
acter. Such phenomena appear so spontaneously and so
consistently as to suggest the existence of an underlying
lawfulness or regularity that transcends the multitude of
differences between different systems and the settings in
which they can be observed [41,45].
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Coordination achieves its pinnacle in the vast array of
cells and connections called the human brain, and in the
collection of human beings we call society [41,45]. How
social interactions form and change in complex systems
and contexts is of great interest to many disciplines, par-
ticularly psychology, biology, physics, economics and the
social sciences. The primary focus of the present article is
to review recent work investigating the coordination dy-
namics of individuals interacting with each other in real
time. At the core of all personal relationships is how the
other becomes intertwined with the self. Social coordina-
tion is the tendency of two or more individuals to coordi-
nate their ongoing actions with each other based on mu-
tual information exchange. Social Coordination Dynam-
ics (abbreviated SCD) is a theoretical-empirical framework
that investigates the behavioral and neural dynamics of
bond formation between individuals, operationalized in
terms of how they spontaneously synchronize their behav-
ioral and neural patterns [82,99].

Synchronization is a form of spontaneous pattern
formation that operates according to general princi-
ples of self-organization described by nonlinear dynam-
ics [25,26,72]. Following on Huygens’s analysis of two
clocks synchronizing on a wall, many studies have framed
the problem of mutual synchronization in terms of a net-
work of oscillators each of whose individual behavior is al-
tered by nearest neighbor interaction [5,7,30,57,106,107].
Under that framework synchronization has been observed
among very different entities in a broad range of phys-
ical, biological and social systems. Human brains (and
behavior) have proven no exception to these princi-
ples [19,27,41,50,51,89]. Experiments have revealed that
humans exchange information – whether uni- or multi-
modal in nature – to spontaneously adopt and switch co-
ordination patterns (e. g. [37,53,58]).

The validity of the measures and constructs from co-
ordination dynamics are worth mentioning because they
speak to the appropriateness of a dynamical framework
for investigating social situations. Whereas it is easy to jus-
tify the physical existence of linkages between components
in the coordinated behavior of a single entity, no such
linkage typically exists between people. Social coordina-
tion occurs via information exchange, typically through vi-
sion, touch and sound. Emotional interactions may also be
involved. A natural measure that describes this informa-
tional exchange is the relative phase between coordinating
behaviors. The relative phase is an informational variable
whose dynamics and has been shown to capture quantita-
tively coordinated patterns of brain and behavior among
different kinds of components, events and processes (see
�Coordination Dynamics [26,40,41]). For coupled rhyth-

mic behaviors, the relative phase dynamics is often ade-
quate not only for uncovering basic mechanisms underly-
ing synergy formation and behavioral change but also the
strength and directionality of influences during social in-
teraction ([82,99]; see also [62,87]) for recent reviews.

Intentional Interpersonal Coordination

Among the many phenomena of human social coordina-
tion, one that most of us have experienced is the synchro-
nized clapping of an audience.Néda and colleagues [70,71]
have investigated why applause occurs in unison, with in-
dividual “clappers” sometimes acting as a single synchro-
nized ensemble. Although synchronized clapping may
vary little from one situation to another, the mechanisms
governing the phenomenon are nuanced and context-de-
pendent, even within the same audience. An illustration
of this context-dependence comes from the world-famous
New Year’s Concert given every year by the Vienna Philar-
monic Orchestra in Austria. Traditionally the concert ends
with the Radetzky March by Johann Strauss Jr. This piece
of classical music is performed in quite an unusual way.
For instance, the conductor leads not only the orchestra
but also the audience. Upon a visual cue from the mae-
stro, the audience claps in synchrony with the music. The
collective clapping is synchronized both with the music
and the visual signals given by the conductor. The reader
who is not really into classical music might prefer the ex-
ample of the song ‘We will rock you’ by Queen. Except
for a final and unique guitar solo, this song is constituted
by a powerful rhythm and a poignant vocal performance
by lead singer Freddie Mercury. When this very rhythmic
song was performed live, the audience intentionally coor-
dinated its movements with the sound of the drums and
the pattern of movements visually provided by the singer.
People were therefore intentionally clapping their hands
on the first two beats and extending their arms on the
third. In the coordination dynamics literature, this is re-
ferred to as intentional sensorimotor coordination of indi-
viduals with external events.

Several studies have employed the sensorimotor co-
ordination tasks to investigate interpersonal coordination
dynamics for the case when a person intentionally syn-
chronizes her movements with another by means of vi-
sual information exchange see [62] for a review. Follow-
ing the bimanual and sensorimotor paradigms introduced
by Kelso and colleagues [36,37,46,48], Schmidt, Carello
and Turvey [88] asked two individuals sitting next to each
other to swing their legs in an in-phase or antiphase fash-
ion with respect to the leg movements of the other mem-
ber of the dyad. As movement frequency was increased
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(or decreased) by means of an auditory metronome, they
found many of the predicted features of nonequilibrium
phase transitions [27,47,89]: (i) differential stability be-
tween the two coordination patterns; (ii) phase transitions
from the less stable coordination pattern (antiphase) to the
more stable one (in-phase); (iii) critical fluctuations (i. e.
increase in coordination variability) in the vicinity of the
transition region and (iv) hysteresis (i. e. a sensitivity to
the history of the system). All such hallmarks of coordi-
nation dynamics (and others such as critical slowing down
in the vicinity of transitions) have been repeatedly found
in a huge number of studies covering various experimen-
tal settings. Those settings include, but are not restricted to
inter- (e. g. [36,37]) and intra-limb coordination (e. g. [9])
and coordination beween a limb and its uni- (e. g. [3,9,48])
or multi-modal environment [58] to name only a few. The
main contribution of Schmidt and colleagues’ research
was to demonstrate that coordination phenomena found
within a person’s brain or body, extend to the interactions
between people. It is noteworthy that the observed effects
extend outside the typical laboratory setting to include co-
ordination phenomena between an individual and an ani-
mal as in Lagarde and colleagues’ investigation of the coor-
dination dynamics of the horse–rider system [59]. In this
unique experiment horses were riddenwhile walking, trot-
ting and running on a treadmill. The movement dynam-
ics of the horse, the rider and the horse–rider pair were
recorded and analyzed revealing that the human–animal
dyad exhibits similar coordination dynamics to human in-
terpersonal coordination [59]. In this respect, it cannot
be overemphasized that coordination dynamics deals with
emergent cooperative effects across very different coordi-
nating elements from neurons to muscles to limbs to peo-
ple and across the animal–environment divide ([41,42];
for an excellent discussion, see Turvey [100] and commen-
taries in Vallacher and Nowak [101]). Both the ‘intrinsic
dynamics’ of the individual elements and the nature of the
coupling between different elementsmust be identified for
a full account of the phenomena observed.

Several experiments by Schmidt and co-workers, as
well as by other groups, have explored the effects on in-
terpersonal coordination of variables such as the manip-
ulation of objects (e. g. hand-held pendulums) or visual
surroundings ([74,86]; see [87] for a recent review). Incor-
porating both aspects de Rugy and colleagues developed
a neuro-mechanical model of visually mediated inten-
tional interpersonal coordination [16]. Their model con-
sists of two cross-coupled neuro-mechanical units, each
composed of a neural oscillator driving a wrist-pendu-
lum system moved by a different person. Taken individu-
ally, each unit reproduces the natural tendency of the par-

ticipants to freely oscillate close to resonance frequency.
When cross-coupled through the vision of movements of
the other individual, each person entrains the other as they
adopt a common frequency influenced by their own me-
chanical properties. Although important, neuromechani-
cal properties are not the only factors that determine the
stability of coordination patterns between individuals: at-
tentional load and egocentric constraints also influence in-
terpersonal coordination dynamics [96,97].

A series of experiments has investigated whether the
motoric and perceptual constraints that shape the dy-
namics of inter- and intra-limb coordination play a sim-
ilar role in the coordination between people (e. g. [12,
13,53,58,66,78]). In intrapersonal bimanual coordination
the preference for co-activation of homologous muscles
appears to be mediated by general principles of symme-
try in neural organization such as reciprocal connectiv-
ity between homologous brain areas. In a study by Oul-
lier and colleagues [76] investigating the relative role of
visual/directional and motor (a) symmetries in interper-
sonal coordination, two participants made index finger
flexions while seated facing each other. One acted as
a driver (D) by synchronizing to a metronome that sys-
tematically increased in rate. The second participant, or
follower (F), was required to coordinate finger movements
with D via visual coupling only. F participated in four con-
ditions (Fig. 1) determined by a combination of coordi-
nation pattern (in-phase or antiphase) and hand posture
(supination or pronation). The relative phase requirement
was defined by the spatial configuration (i. e. the position
of the endpoint of the finger). In this way, co-activation of
homologous muscles (finger flexion by F and D) produced
both an in-phase and antiphase relationship between the
effector endpoints depending on the experimental condi-
tion. If purely directional constraints [92] determine the
stability of interpersonal coordination, and D functions
only as a generic rhythmic stimulus, perceptual antiphase
coordination should display decreased stability regardless
of the relative hand position of the participants. Contrary
to this hypothesis, a strong role was found for interper-
sonal homologous muscle co-activation. Coordination be-
tween individuals was most stable when they were activat-
ing similar muscle groups such that co-flexion was always
more stable regardless of the resulting spatial pattern. Di-
rectional constraints played only a modulatory role. These
initial results are at odds with the concept of social coor-
dination as a form of simple perceptual-motor coupling.
Rather, it appears that perception of homologous muscu-
lar activation acts as a constraint on coordinative stability,
creating a “functional homology” to bimanual coordina-
tion. Thus, social coordination may be differentiated from
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Social Coordination, from the Perspective of Coordination Dynamics, Figure 1
Participants show a preference for homologous muscular activation, irrespective of the visuospatial congruency of their movement.
Each column describes a possible configuration of interpersonal coordination. The left participant is pacedwith ametronome whose
frequency increases (driver). Oullier and colleagues [76] studied the frequency at which the right subject (follower) loses stability in
each condition. In columns a and b, both subjects are in the same hand position. The pattern a (both flex then both extend: in-
phase coordination) is more stable than the pattern b (when one extends the other flexes: anti-phase coordination). In columns c
and d, the participants adopt a different hand posture. The pattern d (both flex then both extend: anti-phase coordination) is more
stable than the pattern c (where both subjects move in the same direction). These results suggest that coordinative stability is not
purely governed by visuospatial congruency (cf. [67]). Rather, the embodiment of the other’s movement leads the follower to adopt
an anatomically homologous movement. This pattern of behavior is unique to the fact that the follower and the entity with which
he/she coordinates are both humans [76]

simple perceptual-motor coupling by virtue of the biolog-
ical and functional relevance provided when viewing an-
other person.

Although all these studies have employed compara-
ble experimental settings and the common theoretical
framework of coordination dynamics with the aim of bet-
ter understanding intentional interpersonal coordination,
it is not yet clear whether spontaneous mutual entrain-
ment actually occurs in a true two-way interaction, or
whether one individual simply acts as a pacing stimulus
or ‘driver’ for the other (e. g. [48]). A similar concern can
be raised regarding the behavior of the audience during
the Radetzky March at the New Year’s Concert in Vi-
enna. It seems unlikely that audience members sponta-
neously synchronized with each other while music was
played, since their primary intent was to respond by clap-
ping in rhythm with the music and with the visual cues
coming from the stage. This process has been well de-
scribed in human movement (neuro)science and coordi-
nation dynamics and occurs when an individual inten-
tionally coordinates his movements with external physical

stimuli [3,41,48]. A sensorimotor interpretation of audi-
ence participation is strengthened by results of an ex-
periment in which the auditory metronome used to pace
the interpersonal coordination was silenced at times [76].
The study revealed that the presence of an external pac-
ing stimulus (an auditory metronome in that case) actu-
ally reduced interpersonal coordinative stability regardless
of the adopted directional or muscular pattern adopted.
Oullier and colleagues [76] provided evidence for stronger
mutual entrainment when no external information could
perturb the dyadic interactions, analogous to what themu-
sic and the conductor would do during a concert. Hence,
from an experimental perspective, this phenomenon is not
social interaction per se but rather sensorimotor coordi-
nation to an external event. In the case of the “observed”
audience clapping in unison during the performance, one
could argue that the audience is constituted by a collec-
tion of individuals coordinating mainly with the music
and the conductor with little contribution from neighbor-
to-neighbor interactions, (A similar concern can be raised
in the study by Schmidt and co-workers [88] as partic-
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ipants were instructed to intentionally coordinate with
each other and with an auditory metronome. Hence, one
participant could serve as a visual metronome to the other
(and reciprocally) and/or the phase transitions observed
could either be interpersonal in nature (from interpersonal
antiphase to in-phase) or from syncopation to synchro-
nization as in a single individual coordinating with an au-
ditory metronome (cf. [48]).

A different scenario, however, is characteristic of the
end of the performance, when the audience expresses its
approval of the orchestra and conductor through applause.
At this moment each person applauds according to her
preferred/intrinsic pace with no driving stimuli – whether
visual or auditory – coming from the stage. In spite of the
absence of pacing information, the audience quickly and
spontaneously entrains to a common rhythm such that ev-
eryone is clapping in unison. Note that at this moment,
the only information that can alter an individual’s behav-
ior is the sound (and possibly the vision) of the move-
ments made by their neighbors [70,71]. Thus, we have
units involved in individual rhythmic behaviors commu-
nicating via, at least, one means of information exchange.
According to Winfree [108], this is a minimum require-
ment for self-organized spontaneous synchronization to
emerge (see also [41]). In that case, any collective pattern
that emerges is more likely to be unintentional compared
to situations where the audience follows the conductor and
the music.

Issues in Quantifying Spontaneous
Interpersonal Coordination

An abundant literature exists addressing unintentional in-
terpersonal coordination in experimental paradigms rang-
ing from people swinging pendulums [86], dancing [33],
walking [102] or rocking chairs [84] to performing joint
Fitts’ tasks [69], talking to each other [83,91] or even box-
ing [60]. However, many questions remain regarding the
nature of the behavioral and neural processes mediating
the formation and dissolution of unintended synchronous
behavior between individuals and how such processes may
be quantified [2,55].

Oullier and colleagues [82] have identified three major
problems in investigating spontaneous synchronization in
social settings. First, even when the source and nature of
the coupling has been identified, it is difficult to manip-
ulate experimentally relevant variables such as the cou-
pling strength (e. g. [71]). Almost by definition, sponta-
neous behavior is not externally goal directed or explic-
itly controlled. Most of the results reporting unintentional
synchronization in humans are based on observation and

categorization methods that rely primarily on the experi-
menter’s appreciation of a given exemplar behavior rather
than a quantitative measure of coupling and individual be-
havior (e. g. [4,14]).

A second problem is the challenge of complexity, both
in terms of the large number of units to analyze (e. g.
thousands of pairs of clapping hands [71]) and the com-
plexity of the behavior itself (e. g. mother-infant synchro-
nization [14]). Such compositional and behavioral com-
plexity has hindered experimental attempts to record and
quantify both the individual and social dynamics. Even the
reduction in dimensional complexity afforded in coordi-
nated behavior can only go so far in elucidating the rela-
tionship between group behavior and the individual units
of which it is composed.

A third problem comes from the possibility that any
change in a person’s behavior induced by interacting with
anothermay persist even after the encounter is over. So far,
there has been very little precise quantification of the mu-
tual influence people have on each other’s behavior a pos-
teriori, i. e. how individual behavior is affected after the so-
cial encounter when people no longer exchange informa-
tion (but see Sect. “Social Memory and the Dependence on
Initial Conditions”).

Human Spontaneous Synchronization

In behavioral experiments that revealed spontaneous in-
terpersonal synchronization, Oullier and colleagues [77,
80,82] explored coordinative patterns that emerge only
as a function of visual information exchange. The main
hypothesis was that even without instructions to do so,
spontaneous synchronization between partners would oc-
cur as soon as they coupled visually while moving in front
of each other. On the other hand, spontaneous interper-
sonal coordination should disappear whenever exchange
of information is no longer possible. In Oullier et al.’s be-
havioral experiments, pairs of participants executedmove-
ments while in full view (or not) of each other’s ongoing
actions as well as their own [77,80,82]. Each member of
the dyad executed movements at their own preferred fre-
quency and amplitude without any external pacing from
a metronome or any other sort. Movements were required
to be as smooth and continuous as possible throughout an
experimental trial. What is important here is that partici-
pants were not given any instructions regarding the way to
move with respect to each other. The experimental proto-
col consisted of participants moving with no vision of the
other’s movements before being allowed to see their own
actions at the same time as they saw the other person’s.
Finally, visual information was removed again. Experi-
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Social Coordination, from the Perspective of Coordination Dynamics, Figure 2
Relative phase between the movements of two individuals. a This panel illustrates the evolution of the relative phase as a function
of time in a representative trial of the SCD paradigm. Left column No visual information exchange, each individual moves indepen-
dently, movements are uncoordinated. Middle column as soon as people exchange visual information, they spontaneously couple.
Their relative phase is therefore close to 0° . Right column When visual information is removed, they are no longer synchronized.
b This panel represents distributions of relative phase for all the subjects and all the trials (adapted from [82])

mental trials were therefore equally partitioned into three
contiguous segments each of equal duration within which
both subjects either were allowed to exchange information
with each other or not.When visual informationwas avail-
able, participants looked at each other’s finger motion and
were also able to see their own finger [77,80,82].

In SCD, following theories of cooperative phenom-
ena in open systems [25,26] a central idea is that the be-
havior of a complex dyadic system may be captured by
the value of a low-dimensional collective variable known
as the order parameter. In the vicinity of critical points,
emergent behavior is governed by the dynamics of this
collective variable e. g. [25,41]. In experimental cases the
order parameters are not known in advance but have to
be discovered. For the situation of social coordination as
in many other cases treated by CD, an appropriate order
parameter describing the system dynamics is the relative
phase � between the movements of each member of the
pair [80,82]. The relative phase measure allows for a re-
duction of a potentially very high dimensional system (e. g.
where one has to consider, among other components, the
neurons, joints and muscles of both individuals) as it cap-
tures the macroscopic spatio-temporal behavioral pattern
(see Fig. 2). Even at an overt behavioral level, four de-

grees of freedom (position and velocity of each compo-
nent) may be compressed onto a single relative phase value
that summarizes the organization of the dyadic system.
Quantitative evaluation of spontaneous synchrony is also
provided by the FFT power spectrum overlap between the
movements of each person. The spectrum overlap mea-
sures the percentage of movement frequencies common to
both partners in a pair [82]. Defined as the area of intersec-
tion between each participant’s normalized spectral plots,
it serves an indicator of the strength of the frequency en-
trainment between the two participants (see Fig. 4).

When no visual exchange was allowed, each subject
produced movements independently at their own fre-
quency. As a result, the relative phase � between the sub-
jects’ finger motions exhibited phase wrapping (Fig. 2,
left column). However, following a simple auditory cue
to open their eyes, subjects spontaneously adopted in-
phase motion, � stabilizing around 0° (Fig. 2, middle col-
umn). On a signal to close the eyes again, the individ-
ual movement frequencies diverged and � fell back into
phase wrapping (Fig. 2, right column). These initial re-
sults were corroborated by a subsequent more extensive
study, in which the order of the vision and no-vision seg-
ments was changed. Once again, spontaneous synchro-
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nization emerged as soon as vision of the other’s move-
ments was allowed [82]. Overall, results reveal that with
visual information exchange, participants tend to mutu-
ally couple at a common phase and frequency, whereas in
the absence of vision, participants’ movement trajectories
diverge and behave independently. Such emergent mutual
coupling is truly a result of spontaneous social interaction
and may be distinguished from previous dyadic studies in
which one personmay simply be intentionally tracking (or
driving) the other [16,77,88,97] or maintaining their own
rhythm [86].

Why does spontaneous interpersonal coordination oc-
cur at all? Compelling examples stretching from human
evolution through religious ritual and sports to political,
war and economical strategy suggest that keeping together
in time is one of the most powerful ways to create and sus-
tain communities and communication [65]. Moreover, not
moving in synchrony may be too costly for the dyad see,
(e. g., [56]).

In order to better understand which features of vi-
sual information exchange may facilitate spontaneous so-
cial coordination one has to bear in mind that human
movements can be unintentionally affected by the vision
of an object oscillating in the environment. This is illus-
trated by experiments using the moving-room paradigm
in which the walls of the room move but not the floor
(e. g. [61,75,78]). Body sway of the observer’s couples in
time spontaneously with small oscillatory motions of the
room. In addition, experimental data show that the mere
observation of the movements of another person inter-
feres with one’s execution of a similar action [54]. In-
terestingly, such interference is less noticeable when the
movements observed are not generated by humans [15].
In the latter work, one of the members of the dyad was
replaced by a computer-generated moving hand, the tra-
jectory of which was driven either by a sinusoidal func-
tion or a pre-recorded real finger trajectory. The stimulus
movement frequency in the study by de Guzman and co-
workers [15] was fixed at either 10% below or 10% above
the subject’s self-paced rate as determined at the start of
the experiment. Results revealed that the human–avatar
coordination was strongest when the latter was an image
of a hand driven by real movement data. The weakest cou-
pling occurred when the visual stimulus followed a sinu-
soidal trajectory. Unlike the interpersonal situation [82],
spontaneous synchronization was not found for all trials
and, when it happened, was supported by a significantly
lower frequency overlap [15]. One may invoke a one-way
coupling to explain these findings, since the motion of the
computer generated hand could not be influenced by the
movement of the participant. Taken together, the forego-

ing results support the hypothesis that biological relevance
in general, and biological motion in particular – including
its natural variation– play a key role in social coordination.

Shared Behavioral and Neural
Social CoordinationDynamics

One explanation for the emergence of spontaneous so-
cial coordination may be found at the neurophysiological
level. For instance, some areas of the brain are known to
be associated with the perception (but not the execution)
of biological motion including the posterior superior tem-
poral sulcus (abbreviated STS) [1,23,24,31]. STS is known
to be a major source of visual information for the so-called
human mirror system (abbreviated HMS) [85]. Originally
identified in monkeys, mirror neurons are (sensori)motor
neurons discharging both when one performs a given ac-
tion and sees the same action performed by someone else.
They have been identified primarily in the ventral premo-
tor cortex and the rostral region of the inferior parietal lob-
ule [20]. The HMS constitutes a neural mechanism that is
automatically activated by the sight of somebody else’s ac-
tions, even when the observer does not make overt move-
ments. The main idea is that during observation the HMS
provides a simulation of the actions of other people poten-
tially providing a basis for understanding the intentions of
others [31].

Since the foregoing behavioral experiments allow par-
ticipants to both produce and observe movement at the
same time it seems possible that the HMS is at least par-
tially involved in the spontaneous coordination observed.
In order to investigate this question, Tognoli and col-
leagues [99] recorded brain activity of each member of the
dyad using a specially designed dual-electroencephalogra-
phy (EEG) system. Each participant wore a 60-electrode
EEG-cap that enabled simultaneous recording of their
brains to accompany kinematic measurements of their be-
havior.

To grasp the significance of the work by Tognoli and
colleagues, we need to revert to earlier studies conducted
within the framework of Coordination Dynamics have
employed instabilities in coordination as a means to un-
cover the link between the dynamics of behavior and
the dynamics of the brain [39,42], with the goal of relat-
ing levels by virtue of their shared dynamical properties
(e. g. [19,39,49,50,52]). In such research, the high tempo-
ral resolution of electroencephalography (EEG) and mag-
netoencephalography (MEG) was exploited to quantify
the relationship between the large scale neural dynamics
emerging from billions of interconnected neurons and the
behavioral dynamics revealed in experiments on coordi-



8206 S Social Coordination, from the Perspective of Coordination Dynamics

Social Coordination, from the Perspective of Coordination Dynamics, Figure 3
Relation between Phi2 and social coordination. a Time-frequency spectrum from electrode CP4 (located over parietal brain regions)
from a single trial. Phi2 is low before and after vision but increases during vision. b Corresponding relative phase between finger
movements. Synchronized in-phase behavior is observed during visual contact. Notice the temporary disengagement of the rhythm
when coordination is lost briefly (adapted from [99])

nation [41]. Observed features of the dynamics expressed
at both levels of description such as multistability and
phase transitions (i. e. the spontaneous switch from one
pattern to another due to loss of stability), were taken as
evidence that principles of self-organization govern pat-
tern formation in both brain and behavior [26,41]. Of par-
ticular initial interest was the identification of qualitative
changes in the pattern of neural activity that occurred
simultaneously with transitions between behavioral pat-
terns [19,49,50,63,104]. On the basis of this work, an ex-
citing hypothesis is that the transitions from uncoordi-
nated to spontaneous coordination observed in the SCD
paradigm may be accompanied by similar events at the
brain level.

In an effort to shed new light on how social processes
are integrated in the brain, Tognoli and colleagues [99]
identified several neural mechanisms or neuromarkers that
appear and disappear with the emergence and dissolu-
tion of coordinated behavior between two people. Interest-
ingly, these social neuromarkers consist of brain rhythms
in the 10Hz frequency range located over right centro-
parietal areas of the cerebral cortex. In particular, a so-
cial brain rhythm termed the Phi Complex consists of two
components: the first, Phi1, increases during independent
behavior i. e. before information exchange between mem-

bers of the dyad. When subjects saw each other’s finger
movements and coordinated together, Phi1 disappeared
and Phi2, a different rhythm within the same frequency
band appeared (Fig. 3) [99].

In a subsequent study, Tognoli and colleagues [98] ex-
plored the dynamics of the Phi Complex by instructing
participants to intentionally synchronize when visual in-
formation exchange was allowed. In this case, participants
interact to accomplish a shared goal. Again, Phi1 appeared
during uncoordinated behavior and Phi2 when social co-
ordination occurred. Analysis of dyads who participated
in both experiments [98,99] revealed that the amplitude of
Phi2 was higher during intentional than spontaneous co-
ordination. Thus, Phi2 appears to be a neural signature of
social coordination whether it emerges spontaneously or
not.

The cortical location of the Phi Complex appears to be
consistent with neuro-anatomical sources within the hu-
manmirror system. One of the conclusions drawn by Tog-
noli and colleagues is that Phi1 might have an inhibiting
role on the mirror system. Previous claims by Brass and
Heyes [8] have argued that the mirror system is always ac-
tive by default and thus must be inhibited in non-social
contexts. Hence Phi1 could inhibit Phi2, the latter being
seen as a facilitator of social coordination that participates
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in information exchange between themotor cortex and the
mirror system [98,99].

In summary, experiments using dual high density elec-
trode arrays to record andmeasure brain activity from two
persons in conjunction with motion capture technology,
have allowed an exploration of shared behavioral and neu-
ral social coordination dynamics [98,99]. Transitions from
uncoordinated dyadic behavior to interpersonal synchro-
nization have been demonstrated to accompany the emer-
gence of a new brain rhythm – the Phi complex – located
in the humanmirror system. Such work suggests that SCD
may serve as a novel framework for identifying behavioral
and neural signatures in reciprocal interactions and allows
for a more dynamical approach to the study of the mirror
neuron system.

SocialMemory and the Dependence
on Initial Conditions

At first blush, the emergence of spontaneous coordina-
tion between individuals [77,80,82,99] might be seen as
an instantiation of mutual entrainment that entails noth-
ing more than a couple of oscillators and a medium of in-
formation exchange [41,108]. In such generic cases, once
the coupling is removed, each oscillator should return to

Social Coordination, from the Perspective of Coordination Dynamics, Figure 4
Evidence for social memory. Illustrated is an example of frequency overlap between the movements of both subjects in a represen-
tative trial of the SCD paradigm. Left column no vision of each other’s movements; each individual moves at their own intrinsic fre-
quency so there is no frequency overlap.Middle column visual information is exchanged between participants, causing spontaneous
synchronization to occur at a common frequency (and phase, see Fig. 2). Right column visual information is no longer exchanged
but individuals do not revert back to their initial intrinsic frequency. This remnant of frequency overlap as a result of prior social
interaction suggests a kind of ‘social memory’ (adapted from [82])

its own intrinsic frequency, that is, any influence of the
interaction should disappear. However, the situation be-
tween two people is different (see Fig. 4). Theoretically, in
a typical coupled clocks scenario, there should be no dif-
ference between the movement periods of the ‘clocks’ be-
fore or after coupling-induced synchronization. However,
a serendipitous experimental finding [82] was the consis-
tent and persistent influence of the social interaction on
subsequent rhythmic behavior despite the absence of in-
formation exchange between the pair (Fig. 4). This rem-
nant of a prior social interaction may qualify as a kind of
social memory [82].

Social memory is thought to play an important role
in human actions, and, to a larger extent, on the way we
live [32]. In the context of SCD, social memory implies
that the intrinsic parameters of the individual components
have been altered by virtue of the social interaction. Math-
ematically [42], one may represent the situation before the
interaction as follows:

ẍ1 C i1(x1; ẋ1; a1)C !2
1x1 D 0

ẍ2 C i2(x2; ẋ2; a2)C !2
2x2 D 0 :

(1)

Where x1 and x2 represent the coordinating components,
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i1;2, a1;2 and !1;2 refer to individually chosen intrinsic pa-
rameters such as the chosen frequency and amplitude.

During the interaction, the system is visually coupled,
F1 and F2 representing a coupling function such as the
well-known HKB-coupling [27,44]:

ẍ1 C I1(x1; ẋ1;A1)C !2
1x1 D F1(x1; ẋ1; x2; ẋ2)

ẍ2 C I2(x2; ẋ2;A2)C !2
2x2 D F2(x2; ẋ2; x1; ẋ1) :

(2)

Now notice that the interactive context has formed a cou-
pling (the right hand side of Eq. (2)) but also led of a mod-
ification of the individual component parameters, I and A
(on the left hand side of Eq. (2)). One may say that the
boundary conditions of Eq. (1) have been altered by the
social interaction.

After the interaction, the coupling function disappears
(F1 and F2 terms on the right hand side are zero) and the
system is “uncoupled” (cf. Fig. 1):

ẍ1 C I1(x1; ẋ1;A1)C !2
1x1 D 0

ẍ2 C I2(x2; ẋ2;A2)C !2
2x2 D 0 :

(3)

However, notice in Eq. (3) the individual intrinsic param-
eters of the system which were modified by the interac-
tion are still in place. Though uncoupled, the individual
components are still affected by the interaction. How this
internalization process occurs remains open to empirical
investigation.

A benefit of the SCD paradigm is that one is able to
quantify the strength and persistence of prior social in-
fluences on an individual’s behavior. The finding that the
modification of the neural network depends on which
modality is engaged during the mutual encounter sug-
gests that additional cortical areasmay have been recruited
and included into the initial global neural assembly due
to social context [32]. However, beyond the Phi complex,
and perhaps due to inherent limitations in spatial reso-
lution, examination of the dual EEG data showed no ev-
idence of further cortical engagement. Another possibil-
ity (in line with the foregoing mathematical analysis) is
that the connectivity and dynamics of the initial network
is modified by social interaction, and the new organiza-
tion retained after the interaction is over. Recent evidence
in support of this hypothesis suggests that two people en-
gaging in a common task share a representation of each
other’s movement dynamics, including trajectory ampli-
tude and frequency [6,17]. Such a (shared) representation
may persist when vision is removed, i. e. when informa-
tion exchange is no longer possible [21]. Moreover, repre-
sentations at the neural level have been shown to be highly
flexible and context-dependent [34,35], influenced both by
environmental [105] and task demands [79].

The extent and duration of the carryover or rem-
nant effects observed in behavioral experiments may re-
flect many factors, including the strength of the bond that
is formed between people, place in the social hierarchy, the
willingness of each participant to cooperate, gender differ-
ences, personality characteristics and the significance each
participant attaches to the social encounter [32]. An ad-
ditional finding from our work favors a motor contribu-
tion to social memory as well: the persistence effect was
found to be independent of the duration of movement
that followed the social encounter [82]. This hypothesis
is strengthened by results showing that observation of an-
other person performing movements generates a kinemat-
ically specific memory of the observed motions in primary
motor cortex [95].

The systematic directionality effect observed in the
SCD paradigm is revealing also [82]: the extent to which
one member of the dyad is influenced by the other was
shown to depend on initial conditions. Obviously for
synchronization to occur, the person moving with the
lowest/highest intrinsic movement frequency must speed
up/slow down during information exchange. A surprising
result is that the difference between the initial and the final
intrinsic movement frequencies (vision absent) was always
greater for the person starting with the higher compared to
the lower movement frequency [82]. The extent to which
initial, so-called ‘intrinsic dynamics’ determine behavior
after the social encounter is over may be of great interest
to understanding social interactions in more complex set-
tings where hierarchical relations are involved.

An important problem in human social behavior con-
cerns understanding the degree to which an individual in-
fluences the actions of a group (e. g. peer group, family,
class) he/she is in. Due to several factors (personality, sit-
uational), a person (the leader) may affect the behavior of
others more than the others affect her or him. The con-
cept of leadership is commonly associated with interac-
tions taking place in hierarchical settings such as typical
organizations, but is actually broader than that. Strength
of behavioral influence is overlooked because behavioral
interactions have not been systematically studied. Con-
temporary complex systems approaches (e. g. [28]) view
the formation of leader-follower roles as interactive and
emergent but in so doingmay have undermined the signif-
icance of individual dimensions. The approach of SCD is
rather to ask:Whatmakes two people behave independently
and what makes them behave as a unit? The paradigm of
social coordination dynamics exploits inherent asymme-
try between two people during behavioral interactions and
gauges, e. g. using directional coupling measures, which of
the two has a stronger influence.
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Future Directions

Human beings are social by nature, and interactions with
others represent a substantial portion of their many daily
activities. A common and well described consequence
of interpersonal activity is that an individual’s behavior,
whether intentional or not, is modified by interactions
with others [32]. Alterations of individual and collective
behaviors range from imitation and mimicry to sponta-
neous synchronization, and have been observed in groups
varying in size from dyads to thousands of individuals
e. g. [4,68].

Social Coordination Dynamics investigates how the
natural (uninstructed) social influence of one person on
another evolves in real time and has led to a number of new
findings. The first is that humans immediately and spon-
taneously coordinate their actions with each other when
provided vision of the movements of the other together
with their own. The second is that a specific brain rhythm
underlies social coordination. Transitions from individual
to coordinated social behavior are observed at both behav-
ioral and brain levels.

The third finding is that an individual’s intrinsic be-
havior is altered by social interaction: the effect of the pre-
vious social encounter persists when vision of the other’s
movements is no longer available. A fourth and final find-
ing is that social coordination is affected by initial condi-
tions, enabling one to predict which individual is most af-
fected by the social encounter.

Insights into elementary forms of social interaction
have been obtained by applying the concepts, meth-
ods and tools of coordination dynamics. A notable fea-
ture of coordination dynamics is its ability to uncover
mechanisms and principles common to different kinds
of complex systems at different levels of observation
and to relate them by virtue of shared behavioral and
neural dynamics [41]. SCD and its dynamical measures
have proven to provide adequate quantification of the
spontaneous coupling between individuals, the transi-
tion to loss of entrainment and the effect of the so-
cial encounter at both behavioral and brain levels. The
same basic patterns of coordinated behavior and pat-
tern dynamics (multistability, critical fluctuations accom-
panied by a temporary loss of stability, phase transi-
tions, hysteresis and critical slowing down) have been ob-
served within an individual, between an individual and
the environment, and between individuals. In this respect
SCD complements recent developments in social cogni-
tive neuroscience, behavioral economics, game theory, so-
cio-economics and neuroeconomics (e. g. [10,11,18,73,81,
94,103]).

The field of social neuroeconomics serves to illus-
trate the benefits of considering SCD in contexts other
than interpersonal sensorimotor interaction. Social neu-
roeconomics investigates the neural correlates of econom-
ical decision making [18]. One particular feature of this
nascent field is that decision making processes are always
studied in a body- and movement-independent fashion.
Why is that? After all, from the very first months of life,
individuals live vicariously through one another adopt-
ing, if only temporarily, a similar posture or tempo during
interactions with a peer, or yawning [4,64,90]. As Henry
Greely [22] recently reminded the readership of Science
Magazine “Human society is the society of human brains.
Of course those brains are encased in, affected by, and de-
pendent on the rest of the body, but our most important
interactions are with other people’s brains, as manifested
through their bodies.” Although this statement sounds like
common sense, thus far the coordination dynamics be-
tween bodies has remained unexplored in the field of so-
cial neuroeconomics. Yet how many times have we expe-
rienced the feeling that trusting someone will be difficult
even before talking to them? Whether it was the way she
moved or some other factor, body-related cues play a key
role in modulating economic decisions (e. g. [93]). A sci-
entific approach to “body language” might aim to under-
stand how perceived actions of others affect the cognitive
and emotional processes involved in economical decision-
making. For instance, a finding such as the Phi Complex –
especially the modulation of Phi2 when individuals inten-
tionally coordinate [98,99] – could turn to be crucial to
better competition–cooperation mechanisms underlying
decision in economic contexts such as public coordina-
tion games [29]. In sum, as a conceptual framework that
encompasses the dynamics of both neural and behavioral
levels, SCD promises to bridge the gaps between levels of
analysis [41,81] and clear a path for newmulti-level, inter-
disciplinary investigations of social interactions. Like syn-
chronization itself, the function of SCD is to facilitate com-
munication across heretofore unrelated fields.
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Glossary

Network model A network model describes how an ob-
served network structure with its data could be gener-
ated from probabilistic assumptions.

Network population A network population is a finite or
infinite collection of existing or conceivable networks.
For instance, the population could consist of network
instances of a process changing with time, or the popu-
lation could consist of network realizations in different
sets of units.

Observation scheme An observation scheme describes
what variables are known or can be observed for units
and relations in the population and in the sample.

Population network A population network is a popula-
tion of units equipped with relational structure be-
tween them. Usually several attributes are attached
both to units and to pairs of units, and the network
can be described as a valued graph on the population
of units with vertex and edge or arc variables defined
in the graph.

Sampling design A sampling design describes how units
are sampled from a population of units and what the
selection probabilities are for all the possible sample
sequences or sample subsets. The sampling procedure

is usually controlled by the investigator. If the sam-
pling is not controlled by the investigator but volun-
tary or “controlled by nature”, the sample network can
be considered as an outcome of a probabilistic network
model, and there is no clear separation between de-
sign-based and model-based inference.

Sampling frame A sampling frame is a list of identifying
labels of all possible sample units.

Social network A social network is a network consisting
of units and relations of interest in the social sciences.
The term is used both for population networks and for
networks belonging to a network population.

Survey sampling Survey sampling of networks refer to
the investigation of networks sampled from a network
population while survey sampling in networks refer to
the investigation of sub-networks sampled from a pop-
ulation network. Survey sampling of networks is usu-
ally model-based with an infinite network population.
Survey sampling in networks is usually design-based
with a finite population network.

Definition of the Subject

Sampling in network analysis can refer either to the sam-
pling of networks from a population of networks or to the
sampling of one or more sub-networks from a population
network. Sampling designs and model approaches based
on probabilistic methods allow statistical tools to be devel-
oped for the analysis of data obtained in surveys carried
out in a network setting.

From about the 1960s the rapid development of com-
puters and computer power changed the scene for statis-
tics and applied mathematics in general. New possibilities
of processing large amounts of data by using fast com-
puter algorithms for calculations, sorting, and searching
contributed to an accelerated interest in computer sci-
ence and discrete mathematics. Simulation techniques and
other computer intensive numerical methods revolution-
ized the arsenal of tools available in statistics and other
parts of applied mathematics. Graph theory was estab-
lished not only as an expanding part of discrete mathe-
matics but also became applied as a tool for investigat-
ing relational structures in the social sciences. Friendship,
co-operation, dominance, support and other relations be-
tween individuals were studied as sociograms or as more
general networks in which both the individuals and the
relations were attributed with qualitative and quantitative
variables like gender and age of the individuals and type
and strength of the relations. Other network applications
include transmission of infectious diseases between peo-
ple, work scheduling and other planning, routing systems
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for transportation of goods, traffic flows in urban areas,
information flows in communication channels, adminis-
trative and organizational structure, capital transfer and
surveillance systems. Characteristic of such network appli-
cations is the inherent complexity of co-variation or cor-
relation that could exist within and between variables de-
fined for different elements of the network.

Introduction

Special sampling designs using network information for
successive link tracing or sample adjustment have been
described in the literature under various names such as
multiplicity sampling, snowball sampling, and Respon-
dent driven sampling. Such designs have been used for in-
vestigations of hard-to-reach populations of various kinds,
like drug addicts, homeless people and individuals at risk
for hiv-infection, tuberculosis, or hepatitis. Such designs
have also been proved useful in investigations of rare prop-
erties of individuals in populations that could be sampled
from available frames but would require very large sam-
ples with conventional sampling designs.

This presentation focuses on sampling designs in finite
population networks and network models developed for
survey sampling of social networks. Estimation methods
are described that can be applied under different assump-
tions about what population data are known and what
sample data can be observed.

The next three sections give background material of
various kinds. A brief historical background is given that
describes the development of a survey sampling theory for
networks. Basic terminology and some general notation
needed is then specified and serves the purpose of unifying
and simplifying some of the concepts and arguments used
later. A common and characteristic feature of network sur-
veys is that they allow non-orthodox sampling methods.
Hence it is important to specify when such methods are
justified. Some fundamentals about sampling designs are
given together with an overview of some standard designs.

After this background follows five sections on network
sampling designs. Sections “Snowball Sampling Designs”–
“Estimation Based onNetworkWalk Samples” treat snow-
ball sampling designs and the important sub-class of net-
work walk designs. For various special cases and modifi-
cations of basic snowball and walk samples, standard esti-
mation methods are discussed. Section “Methods for Esti-
mating Hidden Populations” is devoted entirely to the es-
timation of sizes and properties of hidden populations and
rare parts of large populations.

The discussion of network designs is followed by a pre-
sentation of various probabilistic network models used es-

pecially in the social sciences. Some of these models are
appropriate in combination with designs or as tools for
deriving so-calledmodel-assisted estimators. Themain in-
terest in these network models stems from their use when
an observed network is considered as an instant of a net-
work process or as a sample network from a super-popu-
lation of networks.

Next there are two sections on sampling designs and
models for bipartite networks. Bipartite networks have
units of two kinds which generally require very different
treatment so that it is not appropriate to consider them as
special cases of networks. Section “Bipartite Network Sam-
pling Designs” describes sampling designs and estimators
in bipartite networks. A combination of sampling designs
and random modeling in bipartite networks is illustrated
in Sect. “A Bipartite Network Model for Crime Participa-
tion” which treats a specific criminological application.

Finally, Sect. “Future Directions” comments briefly on
possible future directions for the development of network
surveys in the social sciences.

Background

Some early attempts to incorporate graphs in a statistical
investigation are the studies on sociograms [49], on snow-
ball sampling [33], and on sampling in graphs [3]. Of par-
ticular interest is a paper by Stephan [60] pointing to the
need for network methods in sample survey theory. He
suggests the term nexus sampling for surveys that consider
data from units as well as from relations between units.
Sampling in populations with graph structure is also dis-
cussed in the articles [6,14], and a comprehensive mono-
graph on statistical inference in graphs is the thesis [16].

An independent discussion of some first steps in net-
work sampling is given in [34,42]. Various problems in
survey sampling and estimation in networks were dis-
cussed in a series of papers during the 1970s and 1980s: [7,
17,18,19,20,21,22,23,24,25,26,27,48]. These papers use es-
sentially various network sampling designs and no elabo-
rate probabilistic model assumptions.

The theory of random graphs developed mainly from
two models introduced by Erdös and Renyi in 1959 and
1960 [12,13], the uniform graph with n vertices andN ran-
domly selected edges among the unordered pairs of ver-
tices, and the Bernoulli graph with n vertices and indepen-
dent insertions of edges with a common probability p for
all the unordered pairs of vertices. These random graphs
have challenged many mathematicians, and there is now
an extensive literature on combinatorial and asymptotic
results for random graphs. A brilliant comprehensive ref-
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erence on general graph theory is [11]. Monographs con-
centrating on random graphs are [4,37,46].

Statistical inference based on probabilistic network
models without explicitly addressing the sampling design
problem has been treated for some variants of Bernoulli
graphs, but generally such models have too little struc-
ture to be of interest in a statistical context with network
data. A network model with a more elaborate and flexible
parametrization that make it applicable in the social sci-
ences is the random digraph model of Holland and Lein-
hardt introduced in [36]. A comprehensive monograph
with many references to the social network literature
is [67]. The introduction of Markov graphs in [30] and
the log-linear modeling of random networks in [47,57,68]
have had a major impact on the development of statisti-
cal methods for social network analysis. The edited vol-
umes [5,8] are good sources for the methodological de-
velopment. Various aspects of network modeling and sta-
tistical inference from network samples are the topics of
several theses in recent years. Well known to me are the
following important contributions to the methodological
development: [10,35,38,40,42,55,59,62].

Basic Terminology and Notation

Survey sampling concepts of basic importance are popula-
tions of units, sample selection, sampling designs, obser-
vation schemes, and variables of interest defined on the
units. Two standard reference works for survey sampling
in finite populations are [54,63]. In order to make net-
work sampling possible, the population has to be equipped
with a relational structure between its units. Usually it is
given as a binary variable defined on the ordered pairs of
units. A population with a binary relation can be repre-
sented as a graph in which the vertices represent the units
and the edges (arcs) indicate the unordered (ordered) pairs
of units that are related. In a network setting vertices and
edges (arcs) are sometimes called nodes and links.

The population from which samples are drawn can
be different from the target population of the survey. It
can also be changing with time so that particular precau-
tions need to be taken. Disregarding such complications
we assume that there is a finite population of N units
labeled by integers 1; : : : ;N . The population is denoted
U D f1; : : : ;Ng. Samples are drawn from U either as or-
dered sequences of units with or without repetitions al-
lowed or as subsets of U. In the first case, a sample se-
quence ofm units drawn is denoted u D (u1; : : : ; um ), and
in the second case a sample subset is denoted S. Both u
and S are random entities when the sample is drawn ac-
cording to a probability design. The probability design of u

is given by a probability distribution over the set Um of all
orderedm-sequences of units from U, and the probability
design of S is given by a probability distribution over the
class of all subsets ofU. If the size n of S is fixed, all subsets
of other sizes have zero probability.

The observation scheme specifies which variables are
known or observable. A variable defined on the units
(a vertex variable) is given by a function x from U to some
range space R. Formally,

x D f(i; xi) : i 2 Ug ;

is a set of pairs (i; xi) assigning a value xi in R to each unit i
in U. If there is a specified ordering of the units, x could
also be represented as a sequence of values ordered in the
same way, e. g. an ordered sequence (x1; : : : ; xN ) corre-
sponding to the order 1; : : : ;N of the units. The first rep-
resentation is more convenient when restrictions to differ-
ent subsets of U are considered. For any subset A of U we
denote by

x(A) D f(i; xi) : i 2 Ag ;

the restriction of the variable x to units in A. In par-
ticular, x(U) D x and x(;) D ;. A binary variable x
with R D f0; 1g and, more generally, a K-category vari-
able x with R D f0; : : : ;K � 1g partitions the popula-
tion U into K disjoint subsets

Uj D fi 2 U : xi D jg for j 2 R :

A variable defined on the ordered pairs of units (an arc
variable) is given by a function y from U2 to some range
space R. Formally,

y D f(i; j; yi j) : i 2 U; j 2 Ug ;

is a set of triplets (i; j; yi j) assigning a value yij in R to each
ordered pair (i; j) in U2. If there is a specified ordering of
the units inU, y could also be represented as amatrix array
(yij) with N rows andN columns ordered according to the
unit-ordering. For any two subsetsA and B ofU we denote
by

y(A; B) D f(i; j; yi j) : i 2 A; j 2 Bg ;

the restriction of the variable y to ordered pairs of units
(i; j) with i 2 A and j 2 B. The set y(A; B) is simply re-
ferred to as the set of values of y from A to B. In particular,
y(U;U) D y and y(A;;) D y(;; B) D ; for any subsetsA
and B of U. A binary variable y with R D f0; 1g and, more
generally, aK-category variable ywith R D f0; : : : ;K � 1g
partitions U2 into K disjoint subsets

f(i; j) 2 U2 : yi j D rg for r 2 R :
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Sampling Designs

In order to gain general information about population
units with access only to the information from a sample
of units, it is evident that the sample should represent the
population in some specified way. Even if the population
is partitioned into subpopulations according to several at-
tributes of the units, and the sample is selected so that
some units from each subpopulation are included in the
sample, one cannot be sure that the sample allows infer-
ence to be drawn with confidence about collective proper-
ties of all the population units.

Survey sampling theory is based on information from
samples that are selected according to probabilistic de-
signs. A sampling design that gives all population units
a positive probability of being included in the sample is
required to achieve a sample that is representative of the
population. The essential property of a sampling design
that makes it appropriate for population inference is that
its inclusion probabilities should be known or estimable
for all units. This allows sample data to be weighted so
that they accurately represent population data. A proba-
bilistic sampling design not only makes inference possible;
it also makes it possible to specify how inference uncer-
tainty can be judged and quantified. During the early days
of survey sampling, the benefits of probabilistic sampling
designs were not always properly understood and had to
be emphasized. Today this is so well known that it may
seem dubious if someone tries to use non-probability sam-
ples.

Therefore, it is important to clarify the legitimacy
of network sampling designs that involve arbitrarily or
conveniently selected samples. The essential principle is
still that inclusion probabilities should be known or es-
timable. Some network sampling designs are based on an
initial probability sample followed by sequential samples
that may be systematically or probabilistically selected.
As a consequence, it might be hard to estimate inclusion
probabilities for the final network sample, but there are no
doubts about its legitimacy.

When the network sample is generated from an ini-
tial sample that is not a probability sample, it is important
that the sequential samples generated after the initial sam-
ple are selected according to specified probabilistic rules.
Under some fairly general assumptions to be specified, the
inclusion probabilities for the final network sample can be
proved to converge towards limits that are independent
of the way the initial sample was selected. Thus, the lack
of knowledge about the initial conditions is compensated
for by letting the network sample consist of several waves
of units sequentially selected according to a known or es-

timable probability design. This wave design determines
the limiting inclusion probabilities of the network sam-
pling design, and the accuracy of these probabilities in-
creases with the number of waves. As we will see later, it
is possible to modify the probabilistic wave design so that
the limiting inclusion probabilities of the network sample
become uniform or equal to any other desired probability
distribution over the population of units.

It is convenient to specify a few standard sampling de-
signs and their inclusion probabilities which are funda-
mental for some of the estimators discussed later. Con-
sider a population U of N units and a sample subset S
selected according to a uniform probability design over
the n-subsets of U. This design is specified as

S � Unif(n;U) :

It is often called simple random sampling without replace-
ment. Thus, the probability that S D s is equal to

P(s) D n!/N(N � 1) : : : (N � nC 1) ;

for any n-subset s of U. The probability of inclusion in S
of a fixed unit i from U is equal to the sum of the selection
probabilities P(s) over all s containing unit i. It is equal to
n/N and denoted by

�i D n/N ;

for any i in U. The probability of inclusion in S of two dis-
tinct units i and j from U equals

�i j D n(n � 1)/N(N � 1) ;

for any distinct i and j in U.
Another subset design called Bernoulli sampling with

parameter p(0 < p < 1) is specified as

S � Bern(p;U) ;

and is defined by selection probabilities

P(s) D pn(1 � p)N�n ;

for any subset s of U of size n for n D 0; 1; : : : ;N . Its in-
clusion probabilities are

�i D p ;

for any i in U, and

�i j D p2 ;

for any distinct i and j in U. An important property
of Bernoulli sampling is that its inclusion indicators
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Ii D I(i 2 S) are independent. The inclusion indicators
are 1 or 0 according to whether unit i is included in S or
in its complement U � S.

A generalization of Bernoulli sampling is obtained if
the inclusion indicators are independent but not neces-
sarily identically distributed Bernoulli variables. The sam-
pling design with independent Bernoulli(pi) distributed
inclusion indicators for i in U is sometimes called Pois-
son sampling (perhaps referring to the fact that the ran-
dom sample size is approximately Poisson distributed
with parameter  D p1 C � � � C pN ). We specify this de-
sign as a Bernoulli sampling with general parameter
p D f(i; pi ) : i 2 Ug satisfying 0 < pi < 1 for all i in U; in
short

S � Bern(pi : i 2 U) :

Its selection probabilities are

P(s) D
Y

i2s

pi
Y

j2U�s

(1 � p j) ;

for any subset s of U, and its inclusion probabilities are

�i D pi ;

for any i in U, and

�i j D pi p j ;

for any distinct i and j in U.
A probability design for a sample sequence u D

(u1; : : : ; um) ofm units independently drawn according to
a uniform distribution over U has selection probabilities

P(i1; : : : ; im) D 1/Nm ;

for any sequence (i1; : : : ; im) in Um. This design specified
by

uk � Unif(U) independent for k D 1; : : : ;m ;

is often called simple random sampling with replacement.
Its inclusion probabilities are given by

�i D 1 � (1 � 1/N)m ;

for any i in U, and

�i j D 1 � 2(1 � 1/N)m C (1 � 2/N)m ;

for any distinct i and j in U.
A generalization of this design tom independent iden-

tically distributed (IID) draws according to a probabil-
ity distribution with N arbitrary positive probabilities p(i)
summing to 1 for i in U has selection probabilities

P(i1; : : : ; im) D p(i1) : : : p(im) ;

for any sequence (i1; : : : ; im) inUm.We specify this design
by

uk � IID(p(i) : i 2 U) for k D 1; : : : ;m :

Its inclusion probabilities are

�i D 1 � [1 � p(i)]m ;

for any i in U, and

�i j D 1� [1� p(i)]m � [1� p( j)]mC [1� p(i)� p( j)]m ;

for any distinct i and j inU. A further generalization would
allow the sequence of independent draws to be made ac-
cording to different distributions.

For any probability design of a sample sequence u D
(u1; : : : ; um ) we define the inclusion count or multiplicity
mi of unit i as the number of draws equal to that unit. The
multiplicities sum tom, and a positive multiplicity of a unit
indicates its inclusion in the sample sequence. The set of
distinct units in a sample sequence u is denoted by s(u).
This is a random subset ofU of size n(u) and expected size

E n(u) D
X

i2U

�i ;

and variance

Var n(u) D
X

i2U

X

j2U

(�i j � �i� j) :

Any sample sequence u D (u1; : : : ; um ) with uk � IID
(p(i) : i 2 U) for k D 1; : : : ;m has multiplicities (m1; : : : ;

mN ) that are multinomially distributed with parametersm
and (p(1); : : : ; p(N)). The number of distinct units n(u)
in u is a sum of independent Bernoulli(� i)-variables,
which is asymptotically Poisson(

P
i �i). With dependent

draws it is generally difficult to derive the simultaneous
probability distribution of the multiplicities or the distri-
bution of the number of distinct units in u.

Snowball Sampling Designs

Let the population U D f1; : : : ;Ng have a graph structure
given by a binary variable y defined on the pairs of popu-
lation units. Let the sets of units adjacent after and before
unit i be

Ai D f j 2 U : yi j D 1g and Bi D f j 2 U : y ji D 1g ;

for i 2 U . For any subset s of U, we denote by A(s) the
union of theAi for i 2 s. A snowball sampling design starts
with an initial subset S0 of U. This subset can either be
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a convenience sample or the outcome of a probability sam-
pling design with a known or unknown probability distri-
bution P0 over the class of all subsets of U. In the latter
case there are selection probabilities P0(s) � 0 summing
to 1 for all subsets s of U. In the former case S0 is equal to
a fixed set s0, and it is convenient to put P0(s0) D 1. Note
that in either case we don’t even know that all units in the
population have positive probabilities of being included in
the initial sample.

The snowball sample is obtained by successively ex-
tending the initial sample S0 with units selected from the
sets of units that are adjacent after previously joined units.
More precisely, a first wave W1 is selected according to
a probability distribution over the class of subsets of

(U � S0) \ A(S0) :

The union of the initial sample S0 and the disjoint first
waveW1 is equal to the one-wave snowball S1. Generally,
the kth waveWk is selected according to a probability dis-
tribution over the class of subsets of

(U � Sk�1) \ A(Wk�1) ;

for k D 1; 2; : : : with W0 D S0. The k-wave snowball Sk is
the union of the (k � 1)-wave snowball Sk�1 and the kth
waveWk. The waves are disjoint and

Wk D Sk � Sk�1 for k D 1; 2; : : :

The k-wave snowball Sk is called saturated if the kth wave
Wk is the last wave that is non-empty, so that the sequence
of snowballs has reached an absorbing state

Sk D SkC1 D � � �

According to the selections of the waves, it follows that
the k-wave snowball Sk evolves as a stochastic process de-
pending on the (k � 1)-wave snowball Sk�1 and the kth
wave which depends on Sk�1 and Wk�1 D Sk�1 � Sk�2.
Thus, the snowball process Sk has a two-step memory: The
probability distribution of Sk conditional on S0; : : : ; Sk�1
depends on Sk�1 and Sk�2 only, for k D 2; 3; : : : Another
equivalent way to express this is to say that the stochastic
process with states consisting of the current snowball and
its last wave (Sk ;Wk) is a Markov chain.

The transition probabilities of this Markov chain are

P(SkC1 D skC1;WkC1 D wkC1jSk D sk ;Wk D wk)
D P(WkC1 D wkC1jSk D sk ;Wk D wk)
D P(wkC1jsk ;wk) ;

for skC1 equal to the union of sk and wkC1. The Markov
chain is assumed to be time-homogeneous so that the tran-
sition probabilities do not depend on the stage parame-
ter k. The transition probabilities do depend on graph pa-
rameters

y(wk ;U � sk) D f(i; j; yi j) : i 2 wk ; j 2 U � skg ;

governing possible wave selections and possibly also on
other parameters governing properties of the wave selec-
tions. Assume that saturation occurs at stage k or later.
Then the sequence of snowball samples (S0; S1; : : : ; Sk)
has a probability distribution given by

P(S0 D s0; S1 D s1; : : : ; Sk D sk) D P(s0; s1; : : : ; sk)
D P0(s0)P(w1js0;w0)P(w2js1;w1)

� � � P(wk jsk�1;wk�1) ;

for any strictly increasing subset sequence (s0; s1; : : : ; sk)
with s j � s j�1 D wj for j D 1; 2; : : : ; k and s0 D w0.

The probability distribution of the k-wave snow-
ball Sk is obtained by summing the probabilities
P(s0; s1; : : : ; sk) over all strictly increasing subset se-
quences (s0; s1; : : : ; sk�1) with sk�1 strictly included in sk.
The initial sample and each new wave need to contain at
least one unit, so that sk contains at least k C 1 units. If sk
contains more units, the sum is extended over all possible
distributions of the non-initial units among the k waves.

In order to be able to perform such calculations, we
need to specify the common sampling design of the waves.
At stage k, the next waveWkC1 has a probability distribu-
tion over the class of subsets of that part of U that is not
included in the current snowball Sk but is adjacent after
its last wave Wk. Now the selection of a subset for WkC1
can be considered as obtained by the recruitment of new
units made by units in Wk. Each unit i in Wk can recruit
only from Ai, the set of units adjacent after unit i. Assume
that the recruited set Ri is a Bernoulli sample with inclu-
sion probabilities pij for j in Ai. The recruited sets Ri are
assumed to be selected independently for all i in U. The
union of the sets Ri recruited by the units i inWk is the set
R(Wk ). This set is a subset of A(Wk ), and the part of it that
is not included in Sk is the new waveWkC1. Thus

WkC1 D (U � Sk)\ R(Wk ) ;

where R(Wk) as a union of independent Bernoulli samples
is itself a Bernoulli sample conditional onWk. The proba-
bility that unit j is included in R(Wk) equals the probability
that j is included in at least one of the Ri for i in Wk. This
probability is denoted

p(Wk ; j) D 1 �
Y

(1 � pi j) ;
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where the product is over i inWk and j is a unit in A(Wk).
It follows that conditional on the current state of the
Markov chain (Sk ;Wk), the next waveWkC1 is a Bernoulli
sample with inclusion probabilities

p(Wk ; j) for j in (U � Sk)\ A(Wk ) :

The transition probabilities of the Markov chain (Sk ;Wk)
can now be specified as

P(wkC1jsk ;wk) D
hY

p(wk ; j)
i hY

q(wk ; j)
i
;

where the first product is over j in wkC1 and the second
product is over j in U � skC1 with probabilities denoted
q(wk ; j) D 1 � p(wk ; j). The basic parameters here are the
probabilities pij that unit iwould recruit unit j. Only units j
in Ai can be recruited, and only units i included in the ini-
tial sample or any of the waves will have an opportunity
to recruit. We can interpret the parameters pij as proba-
bilities of independent recruitment arcs in the population
graph. When y is considered as specifying a fixed popu-
lation graph, pij is zero whenever yij is zero. If all units
in Ai should have the same probability of being recruited,
we could put pi j D ˛i yi j where ˛i is a probability gov-
erning the recruitment or co-operation activity of unit i.
If recruitment also depends on availability, status or at-
traction of the recruited unit, we could put pi j D ˛iˇ j yi j .
The parameters ˛i and ˇi for units i in U could be re-
lated to a categorical variable x defined onU. For aK-cate-
gory variable x the parameters ˛i D ˛(xi) and ˇi D ˇ(xi)
have K possible values each, and the parametrization in-
volves only 2K parameters.

Recruitment or selection of adjacent members of the
population can be considered as a sampling performed by
the investigator or by the respondent. The units of the pop-
ulation can be people that could be interviewed by the in-
vestigator. The units can also be geographical regions or
other entities for which the adjacent units can either be
observed directly or determined by interviews with some
unit representative. In such cases when the investigator
can get access to information about all units that are ad-
jacent after a sampled unit, then the recruitment of further
units can be made by the investigator. There are situations
when information about adjacent units might be sensitive
or embarrassing to the respondent. If the respondent is
unwilling to release information about all adjacent units,
a possibility might be to ask the respondent just to select
some of them at random. Such respondent driven sam-
pling might in some situations give more reliable data and
could provide a reasonable way to avoid some problems of
integrity. For a more thorough discussion of this, see, for

instance, [53]. There are techniques developed with distri-
bution of recruitment cards and various benefits to partic-
ipants in order to help the investigator to get new waves
of the sample. Even if respondent i provides only Ri and
not Ai, information could be collected about out-degrees
or other statistics needed for the respondent driven prob-
ability design of the wave sampling.

The combination of design based and model based
probabilities are standard in survey sampling and should
be so also when network sampling is applied. Respon-
dent driven sampling could be such a case when a ran-
dom graph approach would be appropriate for the wave
sampling. An illustration of combination of design-based
and model-based approaches to network surveys is given
in [66].

Estimation Based on Snowball Samples

Estimation of population data from snowball sample data
requires inclusion probabilities of all population units.
Any fixed unit j is included in a k-wave snowball sample if
it is included in the initial sample or in any of its k follow-
ing waves. Since the initial sample and the waves are dis-
joint, their inclusion events aremutually exclusive, and the
probability that the snowball includes j equals the sum of
the probabilities that the initial sample or any of the waves
include j:

P( j 2 Sk) D P( j 2 S0)C P( j 2 W1)C� � �C P( j 2 Wk) :

Obviously this inclusion probability increases strictly with
the number of waves until the snowball is saturated. If the
initial sample is a convenience sample, its inclusion proba-
bility is 1 or 0 depending on whether j belongs to it or not.
According to the results derived above for the conditional
distribution of the next waveWkC1 given the current state
(Sk ;Wk ), the conditional probability that a unit j not in Sk
should be included in WkC1 is given by

p(Wk ; j) D 1 �
Y

(1 � pi j) ;

where the product extends over units i inWk. Therefore

P( j 2 WkC1) D E [1 � I( j 2 Sk)]p(Wk ; j) ;

where the expectation is over outcomes of (Sk ;Wk ). The
probability of inclusion of unit j in SkC1 is obtainable as
the sum of the probabilities of inclusion in the waves, but
usually it is easier to first consider the conditional prob-
ability of inclusion of j in SkC1 given the current state
(Sk ;Wk ). This probability is given by p(Sk ; j) if we de-
fine p(Sk ; j) D 1 for j 2 Sk . This is achieved by defin-
ing p j j D 1 for j 2 U . Hence, the unconditional inclusion
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probability is given by

P( j 2 SkC1) D E p(Sk ; j) D 1�E
Y

i

[1�I( j 2 Sk)pi j];

where the expectation is over outcomes of Sk. Even if
the initial sample and all the recruitment samples are in-
dependent Bernoulli samples, it doesn’t follow that Sk is
a Bernoulli sample, and we cannot carry out the expec-
tation factor by factor to obtain a recurrence relation be-
tween single unit inclusion probabilities of the current and
the next snowball. In fact, it can be shown that for distinct i
and j in U

�i j(k) � �i(k)� j(k) ;

where � j(k) D P( j 2 Sk) and �i j(k) D P(i 2 Sk & j 2
Sk) for k D 0; 1; : : : Equality holds true if and only if there
are no units of positive probability of inclusion in S0,
which are k steps adjacent before both i and j. An approx-
imation that deserves to be further investigated for snow-
balls with few waves is

� j(k C 1) D 1 �
Y

i

[1 � �i(k)pi j] ;

or, equivalently, using logarithms

log[1 � � j(k C 1)] D
X

i

log[1 � �i (k)pi j] :

When the inclusion probabilities are not too close to 1, we
can obtain a linear approximation to the recurrence rela-
tion by series expansions of the logarithmic functions:

� j(k C 1) D
X

i

�i (k)pi j :

Since the inclusion probabilities are fundamental for many
estimators, it would be of interest to know if there are sam-
pling designs for which this recurrence relation is an ac-
ceptable approximation.

Consider a one-wave snowball with Bernoulli samples
as described above. There are several possibilities for data
collection that need to be distinguished. Assume that the
value of a vertex variable x and the degree are observed
for sample units. If the units are identifiable and individ-
ual recruitments are observed, data consist of (i; xi ; yi )
for i 2 S0 and ( j; x j ; y j) for j 2 Ri and i 2 S0. Units have
multiplicities 0 or 1 in S0, but their multiplicities in S1
might be larger and that applies also to units in S0 if they
are recruited in the first wave. If only collective recruit-
ments are observed, data consist of (i; xi ; yi) for i 2 S0
and ( j; x j ; y j) for j 2 R(S0). In this case, multiplicities in

S1 can be 0, 1, or 2, and 2 applies only to units in S0.
If only collective recruitments not included in S0 are ob-
served, data consist of (i; xi ; yi ) for i 2 S0 and ( j; x j; y j)
for j 2 W1. Now multiplicities are never larger than 1. If
units are not separated between S0 and W1, data consist
of (i; xi ; yi ) for i 2 S1. Also in this case multiplicities are
never larger than 1. If the units are not identifiable and in-
dividual recruitments are observed, data consist of (xi ; yi )
for i 2 S0 and (x j; y j) for j 2 Ri and i 2 S0 with no pos-
sibility to observe multiplicities and no possibility to re-
duce data to R(S0);W1, or S1. If only collective recruit-
ments are observed, we cannot separate S0 and W1 and
we don’t know S1 or any multiplicities. If only collective
recruitments of units not included in S0 are observed, we
can separate S0 andW1 and we know S1 and we know that
no multiplicities are larger than 1. Without identities and
without separation of S0 and W1, data consist of (x j; y j)
for j 2 S1. Depending on the observation scheme avail-
able, different estimators can be used.

To illustrate various estimators, it is convenient to use
snowball sample indicators Sk j D I( j 2 Sk) for j 2 U and
k D 0; 1; : : : and recruitment indicators zi j D I( j 2 Ri )
for i 2 U and j 2 U . According to our assumptions S0 j
are Bernoulli(pj) for j 2 U , and zij are Bernoulli(pij) for
i 2 U and j 2 U , and all these variables are independent.
Here 0 � p j � 1 for j 2 U , and by allowing the values 0
and 1 initial convenience samples are possible. Recruit-
ments are restricted by the presence of edges in the ac-
quaintance graph, which implies that 0 � pi j � yi j for
distinct i and j inU. For convenience we define p j j D 1 for
j 2 U . Note that even if the acquaintance graph is undi-
rected with yi j D y ji , the recruitment graph given by arc
indicators zij is directed.

Consider the total T D
P

xi of a vertex variable x and
the total D D

P
yi of degrees in the acquaintance graph.

Let us specify p j D y j/D and pi j D yi j/yi for i ¤ j. As-
suming D known and using only data from S0, we have an
unbiased estimator of T given by

T 0 D
X

i

(xi S0i /pi ) D
X

i

(xi S0i D/yi) :

Similarly the total population size N has an unbiased esti-
mator

N 0 D
X

i

(S0i D/yi) :

Without assuming D known, we have an asymptotically
unbiased estimator of the population mean of x according
to

T 0/N 0 D
X

i

(xi S0i /yi)
.X

i

(S0i /yi ) :
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Thus, the average of x-values in S0 is weighted by recipro-
cal degrees.

Using individual recruitment data, an unbiased esti-
mator of T is given by

T 00 D
X

j

 

x j
X

i

S0i zi j
.X

i

pi pi j

!

D
X

i

X

j

(x jS0i zi jD/y j) :

Also here the degree total D cancels from the asymptoti-
cally unbiased estimator of the population mean of x. We
get

T 00/N 00 D
X

i

X

j

(x jS0i zi j/y j)
.X

i

X

j

(S0i zi j/y j) :

Thus, the average of x-values in S1 is counted with multi-
plicities and weighted by reciprocal degrees.

Using collective recruitments and only data from S1,
an unbiased estimator of T is given by

T 000 D
X

j

[x jS1 j/� j(1)] ;

where

� j(1) D 1 �
Y

i

(1 � pi pi j)

D 1 �
Y

i

(1 � yi j/D) D 1 � (1 � 1/D)yi :

This time D does not appear as a factor in T 000 or in the
corresponding N 000, so it does not cancel in the population
mean estimator T 000/N 000. Replacing xj by yj in the estima-
tors T 0; T 00, and T 000, we obtain D0;D00, and D000 that all de-
pend on D. The first two wouldn’t provide any possibility
to iteratively determine a value of a D-estimator. For D000

an iterative method would start with an initial value of D
in � j(1), find D000, use this D000 for D in � j(1), find a new
D000, etc. Convergence properties of such algorithms and
properties of estimators that can be obtained from them
haven’t been explored. We will comment on similar itera-
tive methods in Sect. “Estimation Based on NetworkWalk
Samples”.

When data from snowballs with more than one wave
are available, it might be comparatively easy to set up es-
timators based on a first few waves, but more complicated
to find the required inclusion probabilities for snowballs
of many waves. An important technique described in [64]
is to use Rao-Blackwellization to improve estimators based
on data from only a few waves to obtain estimators based

on all data. Rao-Blackwellization of an estimator requires
extensive numerical calculations of its possible values for
all arrangements of available data that are consistent with
the reduced data remaining when multiplicities of sample
units and order between the sample units are ignored. The
expected value of an estimator conditional on a sufficient
statistic in the form of the reduced data is the improved es-
timator. Sufficiency in survey sampling from a finite popu-
lation was treated in [1]. More recent references are [9,44].

NetworkWalk Sampling Designs

Assume that the population U D f1; : : : ;Ng has a graph
structure given by a binary variable y defined on the set of
ordered pairs of population units. Let Ai and Bi be the sets
of units adjacent after and before unit i. The size of Ai is
the out-degree of unit i, and the size of Bi is the in-degree
of unit i. When the graph is undirected, Ai D Bi and out-
and in-degrees are equal and called degrees.

A sampling design based on a random walk in a graph
selects the sample as a sequence of units u1; u2; : : : accord-
ing to a time-homogeneous Markov chain with transition
probabilities

P(ukC1 D jjuk D i) D Pi j ;

that are independent of the stage parameter k for j in Ai
and k D 1; 2; : : : If the graph is directed and strongly con-
nected so that every unit has a directed path to every other
unit, and if not all cycle lengths are multiples of a com-
mon factor larger than one, then the Markov chain will
be irreducible and aperiodic. If the graph is undirected,
connected, and contains at least one cycle of length one or
three, then the Markov chain will be irreducible and ape-
riodic. A time-homogeneous, irreducible, and aperiodic
Markov chain has a unique limiting distribution

lim P(uk D jju1 D i) D p j > 0 ;

independent of the initial unit i as k tends to infinity. The
limiting distribution is equal to the stationary distribution
that can be obtained by solving the equation system

p j D
X

piPi j for j D 1; : : : ;N ;

subject to
P

p j D 1. For instance, let the transition prob-
ability be Pi j D yi j/yi for an undirected graph with de-
gree yi of unit i. This means that the transition from
unit i is made with equal probabilities to each one
of the yi units that are adjacent to it. It follows that
pi D yi /(y1 C � � � C yN). Hence, transition from any unit
to one of its adjacent units according to a uniform proba-
bility distribution implies that the limiting probabilities of
the units are proportional to their degrees.
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If the limiting probabilities pi for the units i in U can-
not be determined from known or observable data, ergodic
theory proves that they can be estimated by the relative
frequencies in a long sample sequence obtained accord-
ing to any time-homogeneous, irreducible, and aperiodic
Markov chain. To be more specific, consider a sequence
u D (u1; : : : ; um ) of length m. The multiplicities of the
units are mi for i in U. The relative multiplicity sequence
(m1/m; : : :;mN /m) converges towards the limiting distri-
bution (p1; : : : ; pN ) whenm tends to infinity.

Let n(u) be the size of the set s(u) of distinct units in u.
The probability � i that unit i is included in s(u) equals the
probability that mi > 0. The multiplicity sequence is a re-
duction of the information in the sample sequence u that
ignores the order of selection. The set s(u) is a further re-
duction that ignores both the order of selection and the
multiplicities of the units selected.

The graph employed for random walk sampling de-
termines the zero entries among the transition probabil-
ities P D (Pi j). These network-induced transition prob-
abilities determine the limiting stationary distribution
p D (p1; : : : ; pN ). If the initial unit u1 is selected accord-
ing to the stationary distribution p, this distribution ap-
plies to the marginal distribution of any position uk of the
walk. Another initial distribution implies that the station-
ary distribution is approached asymptotically on the walk
for positions uk as k increases. The limiting stationary dis-
tribution is important for appropriate weighting of data
collected by network walk samples. Therefore, it is of spe-
cial interest that it is possible to achieve any pre-assigned
limiting distribution by adjusting the transition probabili-
ties P induced by the network.

Assume that it is desirable to obtain a limiting distribu-
tion q D (q1; : : : ; qN ) that is different from the stationary
distribution p derived from the transition probabilities P.
Modified new transition probabilities Q D (Qi j) satisfy-
ing the reversibility condition qiQi j D qjQji would lead
to the stationary distribution q, which is also the limiting
distribution when transitions are made according to the
new Q. If we define Q by

Qi j D Pi j min(1; qjPji /qi Pi j) ;

for i ¤ j and

Qii D 1 �
X

i¤ j

Qi j ;

it follows that

qiQi j D min(qi Pi j; qjPji ) D qjQji ;

i. e. the reversibility condition is satisfied. To implement
transitions according to Q, we can tentatively apply P and

then decide to accept or reject a suggested transition from i
to j with probability Qi j/Pi j and 1 � Qi j/Pi j , respectively.
More specifically, if the walk at stage k is in position
uk D i, and the next transition according to P would lead
to unit j, the investigator might have to collect informa-
tion from j to be able to calculate Pji and compare it with
Pij. If qjPji � qiPi j , then the transition to j has a proba-
bility valid also according to Q, and the walk is allowed to
jump to ukC1 D j. Otherwise, the transition to j has not
a valid probability according to Q, and, unless a transition
is accepted, the walk has to stay at uk D i for another trial.
Equivalently we could put ukC1 D i and let the stage pa-
rameter count the number of trials instead of the number
of jumps to other positions. Note that the probability that
the modified walk stays for another trial equals the sum
of the probabilities that the walk according to P jumps to
a unit to be rejected, which is
X

i¤ j

Pi j(1 � Qi j/Pi j) D 1 �
X

i¤ j

Qi j :

Consider the following illustrations for a directed network
with transition probabilities Pi j D yi j/ai for j 2 Ai . Here
the stationary probabilities can be difficult to find. Assume
that we want a stationary distribution with probabilities q
proportional to the out-degrees: qj D a j/(a1 C � � � C aN).
The modified transition probabilities are

Qi j D Pi j min(1; qjPji /qi Pi j) D min(yi j ; y ji)/ai ;

and only jumps to mutual contacts are accepted. We need
to collect information about out-degrees and be able to
verify mutuality. Assume instead that we want a station-
ary distribution proportional to in-degrees: qj D bj/(b1C
� � � C bN ). Then

Qi j D (yi j y ji /bi )min(bi /ai ; bj/a j) :

Only jumps tomutual contacts are possible, and only those
with bi /ai � bj/a j have transition probabilities that are
valid also according to Q. Thus, unit j can be rejected un-
less it is a mutual contact with at least the same ratio of
out-degree to in-degree as unit i. In this case we need to
collect information about out- and in-degrees and be able
to verify mutuality. Finally, assume that a uniform limiting
distribution qj D 1/N is wanted. Then

Qi j D min(Pi j ; Pji ) D yi j y ji /max(ai ; a j) ;

and j can be rejected unless it is a mutual contact that has
at most the same out-degree as unit i. This case requires
information about out-degrees and mutuality. Further il-
lustrations are provided in [65]. A general presentation
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of methods for constructing transition kernels (probabil-
ities or probability densities) with desired properties, in-
cluding the Metropolis–Hastings algorithm and the Gibbs
sampler, can be found in Sect. 3.6 of [39].

The random walk sampling discussed so far has been
in undirected graphs that are connected or in directed
graphs that are strongly connected. If the connectedness
assumption is uncertain for the graph being employed, or
if it is known that it is not valid, then the Markov chain
is reducible, and the transitions cannot reach beyond the
connected component induced by the initial sample. In or-
der not to confine the chain to a part of the population
only, transitions to adjacent units could sometimes be re-
placed by transitions to other units.

A way to control the balance between staying on the
current walk and starting on a new one, is to use a mixture
distribution for the transitions. Let P0 D (P0i j) be a matrix
of probabilities for transitions to adjacent units, and let
P00 D (P00i j) be a matrix of probabilities for transitions to
arbitrary units in the population. A mixture distribution
with transition probabilities given by

P D ˛P0 C (1 � ˛)P00 ;

where 0 < ˛ < 1, is said to have a damping factor ˛ mea-
suring the proportion of transitions that are selected ac-
cording to P0. For instance, P0i j D yi j/ai for j in Ai and
P00i j D 1/N for j in U represent a mixture between uniform
transitions from i to Ai and uniform transitions from i
to U. The walk stops when it reaches a unit with ai D 0.
A slight modification is to define P0i j also when ai D 0, so
that the walk is never forced to stop. For ˛ close to 1, the
damping effect will be small, and a population with a dis-
connected graph will be poorly represented by walk sam-
ple data. For decreasing ˛, the damping effect increases,
the influence of the graph decreases, and the importance
of having an appropriate matrix P00 increases. It might be
appropriate to assume, for instance, that global transitions
are made with probabilities proportional to out-degrees or
in-degrees of the units, which would reflect that activity or
attraction of the units is likely to influence the selections.
In this way, the damping effect needed to handle a discon-
nected graph does not necessarily diminish the influence
of the graph.

When network walk sampling is applied to webpage
transitions in [70], a model is used that in our notation can
be given as P0i j D yi j/ai if ai > 0 and P0i j D 1/N if ai D 0,
and P00i j D p00j . Here p00j reflects the web surfer’s preferences
for various pages, and the damping factor ˛ reflects ten-
dencies to use page links for surfing rather than own pref-
erences.

Estimation Based onNetworkWalk Samples

Assume that sample data consist of the values of a vari-
able x defined on the population of units. When units in
the sample sequence can be identified, sample data con-
sists of m values of x that can be referred to the units. The
values (i; xi ;mi ) are known for all units i in s(u). When
units in the sample sequence cannot be identified, sam-
ple data consist of m values of x that cannot be referred to
the units. Neither the multiplicities nor the set of distinct
units can be determined. Sample data are restricted to the
frequency distribution of the x-values.

There is an intermediate situation that could appear
when sample data consist of the values of a variable x de-
fined onU. If units in the sample sequence cannot be iden-
tified, it could still be possible to successively mark them
in some way and observe when the same unit is sampled
again. Data then consist of a sequence of m values on x
that cannot be referred to the units but that can be par-
titioned into n sub-sequences of constant values belong-
ing to the same unknown unit. Notice that the same value
might appear in different sub-sequences. The multiplici-
ties are known but their unit affiliations are not, and the
number of distinct units is known but not their identi-
ties. The values (xi ;mi ) are known for n unknown distinct
units i in U. If x is a K-category variable, the frequency
distribution of these values (xi ;mi ) can be displayed in
a K by m array representing available sample data when
identities of units can not be observed but similarity be-
tween units is observed. Let (n1; : : : ; nm) be the marginal
frequency distribution of the multiplicities. Then

n1 C n2 C � � � C nm D n ;

and

n1 C 2n2 C � � � C mnm D m :

Knowledge of the frequencies (n1; : : : ; nm) represents
a reduction of the information in the multiplicity sequence
that ignores the identities of the units. The marginal fre-
quency distribution of theK-category variable x is the only
information left when neither similarities nor identities
between units can be observed.

Consider a network walk sample sequence u D (u1;
: : : ; um) obtained by a time-homogeneous, irreducible,
and aperiodic Markov chain with transition probabilities
Pi j D yi j/ai for j 2 Ai and initial probabilities equal to
the stationary probabilities p j D y j/(y1 C � � � C yN ) for
j 2 U . The following reasoning applies asymptotically for
large sample sequences even if the initial unit is not se-
lected according to the stationary distribution. Data con-
sist of the values of a vertex variable x and the degrees for
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each unit in the sample sequence u, but the units need not
be identified. The population mean of x is� D T/N where
T D x1 C � � � C xN . Themean of x in the sample sequence
is
X

i2u

(xi /m) D
X

i2U

(mixi /m) ;

where mi is the unknown number of units equal to i in u.
Since

E mi D mpi D myi /(y1 C � � � C yN ) ;

the sample mean is biased as an estimator of the popula-
tion mean� unless all degrees are equal. Now

T 0 D
X

i2u

(xi /mpi ) D
X

i2U

(mixi /mpi ) ;

has expected value T, and

N 0 D
X

i2u

(1/mpi ) D
X

i2U

(mi /mpi ) ;

has expected valueN. Moreover,

�0 D T 0/N 0 D
X

i2u

(xi /yi)
.X

i2u

(1/yi) ;

has asymptotically expected value � for large values onm.
The quantities T 0 and N 0 are not available from data
since they contain the unknown total D D y1 C � � � C yN
of all degrees. However, this total cancels in the ratio
�0 D T 0/N 0 so �0 is an asymptotically unbiased estimator
of �. We note that the estimator �0 is a weighted mean of
the values of x in the sample sequence u with weights that
are inversely proportional to the degrees.

The results obtained can be applied with xi D yi to get
an estimator of the average degree D/N in the population.
Its estimator is

D0/N 0 D m
.X

i2u

(1/yi ) ;

which is the harmonic mean of the degrees in the sample
sequence. The results can also be applied with xi D I(i 2
U1), i. e. with x as an indicator variable for a specific subset
U1 of U of unknown size N1. Then T D N1 and the rela-
tive size of U1 has an asymptotically unbiased estimator

N 01/N
0 D

X

i2u

(xi /yi )
.X

i2u

(1/yi ) ;

which is the ratio between the sum of inverted degrees of
units in the sample sequence that belong to U1 and the

sum of inverted degrees of all units in the sample sequence.
The average degree in U1 is given by

D1/N1 D

"
X

i2U

xi yi

#."X

i2U

xi

#

;

where xi D I(i 2 U1), and it can be estimated by

D01/N
0
1 D

"
X

i2u

xi

#."
X

i2u

(xi /yi)

#

;

which is the harmonic mean of the degrees of the units
in the sample sequence that belong to U1. We note that
the corresponding arithmetic mean is larger than or equal
to the harmonic mean and therefore over-estimates the
(arithmetic) population mean. This is because we over-
sample units with large degrees. The bias is reduced by tak-
ing the harmonic sample mean.

If the units in the sample sequence are identifiable, it
is possible to observe the multiplicities and the set of dis-
tinct sample units s(u). Should the inclusion probabilities
�i D P(i 2 s(u)) be known, this would allow the popula-
tion total T to be estimated by the unbiased estimator

T 00 D
X

i2s(u)

(xi /�i) :

Similarly, N would have an unbiased estimator

N 00 D
X

i2s(u)

(1/�i) ;

and � an asymptotically unbiased estimator

�00 D

2

4
X

i2s(u)

(xi /�i)

3

5
.
2

4
X

i2s(u)

(1/�i )

3

5 :

The inclusion probabilities �i D P(i 2 s(u)) are approxi-
mately 1 � exp(�mpi ) and according to our assumptions
about the Markov chain, the stationary probabilities are
p j D y j/D where D D

P
y j is the degree total. Now the

average degree D/N was shown above to be estimated by
the harmonic mean of the degrees in the sample sequence.
Altogether, this allows us to set up the estimator N 00 as
a function of N, and by replacing N by N 00 we might have
a possibility to solve iteratively for N 00 in the equations

N 00 D
X

i2s(u)

[1 � exp 1
ı
(�myi /D0)] ;

D0 D mN 00
.X

i2u

(1/yi ) :

Possibilities of finding estimators iteratively, when the in-
clusion probabilities are functions of some of the parame-
ters we want to estimate, deserve further study.
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Methods for Estimating Hidden Populations

Hidden populations usually refer to populations of human
individuals sharing a stigmatizing, illegal, risky, or embar-
rassing behavior that make them hard to find. There are
no lists or frames to sample them from. Investigation of
such populations might be of interest to society and nec-
essary for determining appropriate resources to be allo-
cated for social support and other types of social action.
Standard survey sampling methods that require popula-
tion frames cannot be used to study homeless people, drug
users, sexual workers, individuals exposed to criminal or
medical risks, etc. Various alternative approaches are dis-
cussed in [61].

Convenience samples of such hidden populations
might be obtained by social field workers or by the po-
lice. The information gained from such sources could in-
dicate the need for further study and data collection to ob-
tain reliable inference about the hidden population. Mem-
bers of the hidden population that are approached by so-
cial field workers might not be unwilling to co-operate and
give away information about other members of the hidden
population. Several practical methods described in the lit-
erature use various kinds of payments and other benefits
to individuals in the hidden population that help the in-
vestigator to reach other members of the population for
interview. When respondents are willing to reveal which
other members they know of, the investigator can select
the waves of a snowball sample. Respondents might be
more willing to co-operate if they are asked to select at ran-
dom one or two of the other members they know of. Thus,
respondent driven random walk or small wave snowball
sampling can be applied to the population network.

In cases when members of hidden populations are not
willing to reveal themselves, it might still be possible to get
information about them by applying network sampling.
Assume for instance that the hidden population of interest
is part of a larger population that can be sampled conven-
tionally. A respondent sampled from the larger population
might without revealing names or identities be able and
willing to give some information about how many mem-
bers of the hidden subpopulation she knows about. Such
local network information about the hidden subpopula-
tion can sometimes be used to infer information about the
entire hidden subpopulation. As an illustrative example,
consider the following setup considered in [41].

The hidden population U1 consists of an unknown
numberN1 of individuals. In order to estimateN1, a larger
population U of N individuals is defined so that it com-
prises U1 as a subset; U1 is embedded in U in such a way
that another subset U2 of U can be assumed to be equally

common in U1 and in U. The subset U2 should consist
of individuals having some easily identified characteristic.
Neither the size N of U nor the size N2 of U2 need to be
known. Select a sample S from U with positive inclusion
probabilities � i for all i in U. Each respondent is asked
whether she belongs to U2 and whether she has some ac-
quaintances inU2. She is not asked whether she belongs to
U1 but only whether she has some acquaintances in U1.
Let x1 and x2 be indicator variables of the sets U1 and
U2, i. e. x jk D I( j 2 Uk ) for j D 1; : : : ;N and k D 1; 2.
Let further y D (yi j) be the symmetric adjacency matrix
of the acquaintance graph with degree yi equal to the un-
known number of acquaintances of individual i in U. This
number is usually quite large and the respondent need not
be asked to estimate it but rather to concentrate on giving
reliable estimates of her numbers of acquaintances that be-
long to U1 and U2, say

aik D
X

j2U

x jk yi j ;

for i D 1; : : : ;N and k D 1; 2. If the independence as-
sumptions are met for x1; x2, and y, then it could be ex-
pected under a randomization model that proportionality
is valid according to

aik/yi D Nk/N for k D 1; 2 so that ai1/ai2 D N1/N2:

The sum of the numbers aik for i 2 U equals the degree
sum in Uk, i. e.
X

i2U

aik D
X

j2U

x jk y j D Dk :

The standard Horvitz–Thompson estimator of Dk is

D0k D
X

i2S

(aik/�i) ;

for k D 1; 2. Similarly Horvitz–Thompson estimators ofN
and N2 are given by

N 0 D
X

i2S

(1/�i ) and N 02 D
X

i2S

(xi2/�i ) :

From the proportionality assumption we get that the aver-
age degrees are equal in U;U1, and U2:

D/N D
X

i2U

yi /N D Dk/Nk ;

for k D 1; 2. Hence, N1 can be estimated by

N 01 D D01N
0
2/D
0
2 :
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By summing ai1/ai2 D N1/N2 over i in U2 and over i in U
we get
X

i2U

(ai1xi2/ai2) D N1 and
X

i2U

(ai1/ai2) D NN1/N2 ;

which leads to two alternative estimators of N1, namely

N 001 D
X

i2S

(ai1xi2/ai2�i )

and N 0001 D (N 02/N
0)
X

i2S

(ai1/ai2�i) :

Here the sums are understood to be over sample units
i 2 S with acquaintances in U2. Should ai2 D 0 we expect
yi D 0 and ai1 D 0. If the three estimators N 01;N

00
1 , and

N 0001 turn out to give very different estimates, the assump-
tions underlying the calculations are doubtful and another
approach is needed.

This example illustrates that properties of hidden
groups that are hard to access can still be estimated if
the hidden group is embedded in a convenient network.
While snowball sampling and random walk sampling use
the network to successively extend an initial sample, the
hidden group example uses randomization assumptions
about stable expected average network degrees as a possi-
ble bridge between different subgroup sizes. If the network
assumptions needed for the randomization procedure are
not valid, then a natural alternative approach would be
to combine the probability design of the sampling with
a probability model of the network.

An entirely different kind of hidden population are
animal populations. In wildlife surveys the technique of
catch-recapture sampling is an attempt to handle the lack
of population frames. Bird counting, for instance, relies on
marking the birds caught in a first sample by identifying
rings before they are released again. After some time a new
sample is taken, and the number of marked birds in the
first sample is divided by the proportion ofmarked birds in
the second sample to get an estimator of the size of the bird
population. This idea can be elaborated on by specifying
more carefully various assumptions about how the popu-
lation changes with time and how the risk of being caught
depends on different environmental factors that can be
controlled for. Catch-recapture techniques have also been
discussed as a tool in criminology surveys to estimate the
number of offenders of specific types of crimes in different
regions and in different periods of time. Such surveys can-
not be carried out without a thorough model specification
as a complement to the sampling design. In Sect. “Bipar-
tite Network Sampling Designs” an illustration is given of
utilizing network models and network sampling methods
in a criminological setting.

Area sampling is another technique that can be used
for counting animal populations and other populations
distributed over geographical areas. A population region is
partitioned into a number of area sites. Neighboring sites
can be considered as adjacent vertices in a graph. The size
of the area population is a vertex variable, and the total
population size is a vertex variable total that can be esti-
mated by a snowball sample of area sites with counts of
their area populations.

Probabilistic NetworkModels

Survey sampling in finite populations distinguishes be-
tween design-based and model-based inference. Design-
based inference uses probabilistic sampling designs but
considers population data as fixed, while model-based in-
ference also makes probabilistic assumptions about popu-
lation data. Essential properties of population data might
be summarized in a few parameters in an appropriate
model and thereby allow a convenient and simplified de-
scription of the population. The graph employed in a net-
work sampling design can be exposed to various unknown
influences and uncontrolled effects that make it natural
to try to capture its essential features in a random graph
model. Random graph models can also be used to describe
the outcome when a graph is sampled from a population
of graphs, or when an observed graph is generated by some
complex process, for instance, being an instant realization
of a network changing with time. Random graphs useful
for statistical data analysis need to be sufficiently rich in
parameters so that meaningful fits can be made. However,
too many degrees of freedom in the model make it vulner-
able to accidental fits with no explanatory power.

A simple Bernoulli graph on U D f1; : : : ;Ng with
a symmetric adjacency matrix y D (yi j) has N(N � 1)/2
independent edge indicators yij that are Bernoulli(p)-dis-
tributed for 1 � i < j � N. The only parameter p repre-
sents edge density. A block model variant of the Bernoulli
graph has a K-category vertex variable x and assumes yij to
be independent and Bernoulli distributed with a parame-
ter p(xi ; x j) D p(x j; xi) for 1 � i < j � N . Now there are
(K C 1)K/2 parameters representing edge densities within
and between different blocks of vertices. Depending on
whether block affiliation is known, can be observed, or is
not observable, the possibilities to estimate the parame-
ters are very different. Statistical inference for stochastic
block models is considered in many papers. An extensive
account with many references can be found in [67].

For a directed graph on U with adjacency matrix y
there are N(N � 1)/2 dyads (yi j; y ji ) for 1 � i < j � N .
The simple model with IID dyads has four parameters
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p00; p01; p10; p11 that are probabilities pkl D P(yi j D
k; y ji D l), and the probabilities sum to 1 leaving 3 de-
grees of freedom. More generally, with independent dyads
and probabilities Pijkl D P(yi j D k; y ji D l), there are
2N(N � 1) parameters subject to N(N � 1)/2 restrictionsP

k
P

l Pijkl D 1, which leaves 3N(N � 1)/2 degrees of
freedom. Assuming a block structure with a K-category
vertex variable x and Pijkl D pkl (xi ; x j) D pl k(x j; xi)
there are 2 degrees of freedom within each category of
size larger than one and 3 degrees of freedom between any
pair of distinct categories, in total 2K C 3K(K � 1)/2 D
K(3K C 1)/2 degrees of freedom. In particular, xi D i for
i D 1; : : : ;N implies that each category consists of only
one vertex, and there are 3 degrees of freedom for each
pair of vertices, i. e. 3N(N � 1)/2 degrees of freedom in
total in accordance with the previous result. Thus, a cat-
egorization of 20 vertices based on two binary vertex vari-
ables reduces the degrees of freedom from 570 to 26, and
a simple dichotomy reduces the degrees of freedom to 7,
so block models represent a substantial simplification of
dyad independencemodels. A practical approach might be
to start with a rather large number of tentative vertex vari-
ables and apply cluster analysis to their dyad distributions
in order to find how many of these distributions need to
be distinguished. This technique is applied in [31,32].

The block model approach can be considered even if
the category affiliation is uncertain and described by in-
dependent vertex variables xi with a probability distri-
bution P(xi D k) D pk for k D 1; : : : ;K. Let Nk be the
number of vertices in category k and Nkl the number of
pairs of vertices in categories k and l, i. e. Nkl D NkNl for
k ¤ l and Nkk D Nk(Nk � 1)/2. The log-likelihood func-
tion when vertex variables and graph adjacencies are ob-
served is given by

log L D
X

kD1;:::;K

Nk log pk

C
XX

1�k�l�K

X

mD0;1

X

nD0;1

Nklmn log pmn(k; l) ;

where

Nklmn D
XX

1�i< j�N

I(xi D k; x j D l ; yi j D m; y ji D n) :

This model has K � 1 degrees of freedom in addition to
the previous K(3K C 1)/2, so in total 3(K C 1)K/2 � 1
degrees of freedom. This model is treated for instance
in [45,58,69].

Consider now the model with independent dyads
and probabilities Pijkl D P(yi j D k; y ji D l). A conve-

nient way to re-parametrize this model is to introduce
odds and an odds ratio. Let aij be the odds of yij when
y ji D 0, and let bij be the odds of yij when y ji D 1:

ai j D Pi j10/Pi j00; bi j D Pi j11/Pi j01 :

The ratio between these odds is

ci j D bi j/ai j D Pi j11Pi j00/Pi j01Pi j10 :

The corresponding odds of yji are

a ji D Pji10/Pji00 D Pi j01/Pi j00 ;
bji D Pji11/Pji01 D Pi j11/Pi j10 ;

and the odds ratio is the same

c ji D bji /a ji D ci j :

The three parameters ai j; a ji ; ci j are arbitrary non-nega-
tive numbers, and together with the normalizing constant

Pi j00 D 1/(1C ai j C a ji C ai ja ji ci j) ;

we retain the other probabilities as

Pi j10 D ai jPi j00 ; Pi j01 D a ji Pi j00 ;
Pi j11 D ai ja ji ci jPi j00 :

Finally we put

i j D � log Pi j00 ; ˛i j D � log ai j ; �i j D � log ci j ;

where i j D  ji > 0 and �i j D � ji . Using the three pa-
rameters ˛i j; ˛ ji ; �i j and the normalizing constant ij de-
termined by them, it is possible to express the likelihood
function L according to

� log L D
XX

16i< j�N

(i j C ˛i j yi j C ˛ ji y ji C �i j yi j y ji ) :

There are 3N(N � 1)/2 degrees of freedom represented by
˛i j; ˛ ji ; �i j for 1 � i < j � N. By introducing an out-de-
gree effect ˛i, an in-degree effect ˇi, and a mutuality effect
� i for each vertex, we assume that

˛i j D ˛i C ˇ j ; �i j D �i C � j :

Since ˛i j D ˛ C ˇ C ˛i � ˛ C ˇ j � ˇ for arbitrary ˛
and ˇ; ˛i and ˇj are identifiable only up to a translation
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˛ D �ˇ. If we introduce an arc density effect ı and put
˛i j D ıC˛iCˇ j we can impose the restrictions

P
˛i D 0

and
P
ˇ j D 0. In this way we have reduced the degrees of

freedom from 3N(N�1)/2 to 3N � 1, and the likelihood L
is a log-linear function of the parameters given by

� log L D
XX

1�i< j�N

i jC ı
XX

i¤ j

yi jC
X

i

˛i
X

j

yi j

C
X

j

ˇ j
X

i

yi j C
X

i

�i
X

j

yi j y ji ;

with out-degree, in-degree, and number of mutual arcs at
each vertex as the sufficient statistics. A further reduction
is obtained by assuming all mutuality effects equal, �i D � ,
which leads to amodel with 2N degrees of freedom. This is
the original Holland–Leinhardt model for directed graphs
introduced and investigated in [36]. Various extensions
to valued graphs and block models are possible, and al-
gorithms for model fitting and parameter estimation are
described and illustrated in the reference book [67] and in
several references given there.

Random graph models with probability distributions
of exponential type have been suggested with more elabo-
rate network statistics. Some examples of investigations of
such models are [47,52,57,68].

Instead of specifying which statistics are likely to be
essential for the application considered and use an expo-
nential type model with these statistics as sufficient statis-
tics, Frank and Strauss in [30] derived the sufficient statis-
tics from basic assumptions about the dependence struc-
ture in the adjacency matrix. They specified a Markov de-
pendence structure for the adjacency matrix y and proved
that it implied a log-linear likelihood with certain suffi-
cient statistics. The Markov assumption is that yij and ykl
are independent whenever i; j; k; l are all distinct, but de-
pendence is possible between any arc indicators with some
common vertex. The sufficient statistics are then given by
star and triangle statistics. Adding a homogeneity assump-
tion saying that isomorphic structures have the same prob-
ability, the sufficient statistics are given by star counts and
triangle counts. Here stars and triangles should be under-
stood in a broad sense so that they can consist of dyads
of any type. The fundamental tool for this result in [30]
is a theorem of Besag given in [2] together with a depen-
dence graph specifying the dependencies among arc indi-
cators in y. This dependence graph is in fact the so-called
line-graph of the graph given by y. The maximal cliques of
the dependence graph are the minimal sufficient statistics
of y. Further exploration of these ideas can be found in the
thesis [50] and the article [51].

Bipartite Network SamplingDesigns

A bipartite network consists of vertices of two kinds and
vertex and edge variables defined on them. If U is a set
of N vertices of the first kind, and V is a set of M vertices
of the second kind, different vertex variables could be de-
fined on U and V . Edge variables are defined between U
and V . As a simple example, take U as a set of households,
V as a set of individuals, and define a binary edge variable
yij that indicates whether individual j belongs to house-
hold i for i 2 U and j 2 V . Each individual belongs to ex-
actly one household. Assume thatU is a target population,
and that we are interested in some variable x defined onU.
Only a sample S from V can be obtained. For each individ-
ual sampled, the value of x is reported that belongs to the
individual’s household. Thus
X

i2U

xi yi j ;

is reported by j 2 S. If the sampling design has inclusion
probabilities

� j D P( j 2 S) ;

the household total T D
P

i2U xi has a design unbiased
estimator

T 0 D
X

j2S

X

i2U

xi yi j/� j D
X

i2U

xi
X

j2S

yi j/� j :

If more than one individual from the same household are
sampled, the estimator contains this household value x
with multiplicity. If household identities are checked and
no repeated household values should be used, another de-
sign unbiased estimator is available as

T 00 D
X

i2B(S)

xi /P(i 2 B(S)) ;

where B(S) is the set of distinct households reported by
individuals in S. The probability P(i 2 B(S)) is equal to
P(S \ Ai ¤ ;), where Ai is the set of individuals belong-
ing to household i. This is the probability that none of
those individuals are included in the sample S. If we in-
troducemultiplicitiesmi for the number of individuals in S
belonging to household i, there is an alternative design un-
biased estimator

T 000 D
X

i2U

ximi /Emi ;

that requires the expected value of the multiplicity. Com-
parisons between these estimators and further results on
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bipartite network sampling can be found in Sirken’s pio-
neering paper on multiplicity sampling [56].

The possibility to use bipartite networks in survey
sampling is not confined to cases with sampling units that
are different from the units in the target population. As
an illustration of a more complex combination of sam-
pling from both U and V , we consider in the next section
a model approach to a simultaneous estimation of crime
rates and offender activity that relies on a bipartite net-
work model.

A Bipartite NetworkModel for Crime Participation

Consider crimes of a particular kind in a specified ge-
ographical region during a specified period of time, say
assaults in Canada during year 2000. Let M denote the
unknown total number of incidents and m the number
known to the police. Thus, M � m is an unknown so-
called “dark figure” of incidents, and m is the number of
identified incidents. The identified incidents involve r inci-
dents reported to the police andm � r incidents identified
by other means. Let mi be the number of identified inci-
dents having i identified offenders, and let ri be the num-
ber of reported incidents having i identified offenders for
i D 0; 1; : : : Incidents with at least one identified offender
are said to be cleared by the police. There are unidenti-
fied offenders for all the unidentified incidents, and there
are unidentified co-offenders for the identified incidents.
The unknown numbers of incidents Mij with i actual of-
fenders and j identified offenders for j D 0; 1; : : : ; i and
i D 1; 2; : : : involve many dark numbers in addition to
M � m. The unknown numbers of incidents

Mi D
X

jD0;:::;i

Mi j ;

with i actual offenders for i D 1; 2; : : : provide a partition
of M that specifies the distribution of incidents according
to size, i. e. their number of co-offenders.

The same offender can be involved in several offences.
Let N denote the unknown total number of distinct indi-
viduals participating in the M offences. The known num-
ber n of distinct offenders identified in the cleared inci-
dents imply that there is a dark number of N � n non-
identified offenders. The number of incidents in which an
offender participates is called the activity of the offender.
We need to distinguish between identified activity and
actual activity. Let Nij be the number of offenders with
activity i and identified activity j for j D 0; 1; : : : ; i and
i D 1; 2; : : :. The partition of N into the numbers

Ni D
X

jD0;:::;i

Ni j ;

of offenders of activity i for i D 1; 2; : : : specifies the distri-
bution of offenders according to activity. This distribution
involves further dark numbers that cause its discrepancy
from the known numbers nj of identified offenders partic-
ipating in j identified offences for j D 1; 2; : : :

In order to estimate the distribution of incidents ac-
cording to size and the distribution of offenders according
to activity, a bipartite network model can be defined with
the setU ofM incidents as vertices of the first kind and the
set V of N offenders as vertices of the second kind. Crimi-
nal participation can be specified by an edge from i 2 U to
j 2 V if incident i involves offender j. Let Ai be the subset
of V specifying the co-offenders of incident i, and let Bj be
the subset of U specifying the re-offences of offender j.

Now we can consider the set of identified incidents as
a sample S from U, and the set of identified co-offenders
of identified incident i 2 S as a sample Si from Ai. These
samples have sampling designs depending on factors gov-
erning how incidents are reported to the police or iden-
tified by other means and how the co-offenders are iden-
tified. In a situation like this when sampling is not deter-
mined by the investigator it is natural to incorporate the
sampling design in a probabilistic network model.

An approach taken in [28] specifies the incidents in U
as generated by a homogeneous Poisson process with pa-
rameter  representing the expected number of incidents
per time unit. The sample S of identified incidents is
a Bernoulli sample with inclusion probability ˛, which
means that identified incidents occur according to a ho-
mogeneous Poisson process with parameter ˛. The pa-
rameter ˛ measures the proportion of identified incidents.
At least for crimes with a victim, ˛ can be estimated by
comparing incidence reporting frequencies and incidence
identifications by other means with incidence frequencies
estimated from victimization studies.

The set V of offenders is assumed to consist of a fixed
numberN of individuals that have a positive probability of
offending. Independently for each incident i 2 U , a set Ai
of co-offenders in that incident is selected from V accord-
ing to some common probability sampling design with in-
clusion probabilities � j > 0 for j 2 V . The sampling de-
sign might involve unknown parameters reflecting what is
known about structure and behavior in the population V .
For each identified incident i 2 S, a set Si of identified co-
offenders is modeled as an independent Bernoulli sam-
ple of Ai with parameter ˇ governing the chance that the
police can identify an offender. An optimistic and a pes-
simistic view of this chance distinguishes betweenwhether
or not the identification of one co-offender in an incident
should imply the identification of all co-offenders in that
incident.
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With this model, it turns out to be possible to estimate
simultaneously both the distribution of incidents accord-
ing to size and the distribution of offenders according to
activity. The basic results are the following. From the dis-
tribution of identified size among identified incidents, it
is possible to estimate the parameter ˇ and the distribu-
tion of true size among all incidents. Furthermore, if �
is the average identified activity among identified offend-
ers and � D n/N is the unknown proportion of identified
offenders, then identified activity has a Poisson(�� ) dis-
tribution that is truncated at zero, and true activity has
a Poisson(�� /˛ˇ) distribution. This implies that

� D 1 � exp(��� ) ;

from which � can be solved, and N estimated by n/� .
An interesting feature of this bipartite network model

is that it makes explicit assumptions about both incident
size and offender activity, and these assumptions lead to
estimators of all the dark numbers related to unidentified
incidents, unidentified offenders, and unidentified co-of-
fenders in identified incidents. In particular, the estima-
tor of the hidden population size N of offenders provides
a special insight into how this estimator can be modified if
not all parts of the distribution of identified activity are re-
liable. This also makes interesting connections with the lit-
erature that derives or suggests such modifications by us-
ing other approaches.

Future Directions

It is likely that the development of more sophisticated net-
work models for specific applications will appear as im-
provements of Markov models and other network models
belonging to the exponential family. Such development is
also expected to contribute tomore efficient algorithms for
computer intensive estimation and goodness-of-fit testing
of network models.

The developments of design-based inference meth-
ods that are appropriate for sampling of sub-networks
from a finite population network are especially challeng-
ing for few-waves snowball sampling and for network walk
sampling. The iterative estimation methods discussed in
Sects. “Estimation Based on Snowball Samples” and “Es-
timation Based on Network Walk Samples” are examples
of problems that deserve to be investigated further. More
important is perhaps the need to develop efficient algo-
rithms for Rao-Blackwellization of various initially ob-
tained estimators and to gain more information about
minimal sufficient statistics in various snowball sampling
designs.
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Glossary

Adjacent Two vertices are adjacent if they are connected
by a line.

Arc An arc is a directed line. Formally, an arc is an or-
dered pair of vertices.

Attribute An attribute is a characteristic of a vertex mea-
sured independently of the network.

Bipartite network See: Two-mode network.
Clique A clique is a maximal complete subnetwork con-

taining three vertices or more.
Complete A (sub)network is complete if it has maximum

density: All possible lines occur.
Component A (weak) component is a maximal (weakly)

connected subnetwork.
Degree The degree of a vertex is the number of lines inci-

dent with it.
Density Density of a simple network is the number of

lines, expressed as a proportion of the maximum pos-
sible number of lines.

Digraph A digraph or directed graph is a graph contain-
ing one or more arcs.

Distance The distance from vertex u to vertex v is the
length of the geodesic from u to v.

Edge An edge is an undirected line. Formally, an edge is
an unordered pair of vertices.

Ego-network The ego-network of a vertex contains this
vertex, its neighbors and all lines among the selected
vertices.

Geodesic A geodesic is the shortest path between two ver-
tices.

Graph A graph is a set of vertices and a set of lines be-
tween pairs of vertices.

Incident A line is defined by its two endpoints, which are
the two vertices that are incident with the line.

Indegree The indegree of a vertex is the number of arcs it
receives.

Line A line is a tie between two vertices in a network: Ei-
ther an arc or an edge.

Loop A loop is a line that connects a vertex to itself.
Neighbor A vertex that is adjacent to another vertex is its

neighbor.
Network A network consists of a graph and additional in-

formation on the vertices or the lines of the graph.

One-mode network In a one-mode network, each vertex
can be related to each other vertex.

Outdegree The outdegree of a vertex is the number of
arcs it sends.

Path A path is a semipath with the additional condition
that none of its lines is an arc of which the end vertex
is the arc’s tail.

Reachable We say that a vertex is reachable from another
vertex if there is a path from the latter to the former.

Semicycle A semicycle is a closed semipath ending at the
vertex at which it starts.

Semipath A path is a closed sequence of lines such that
the end vertex of one line is the starting vertex of the
next line and no vertex in between the first and last
vertex of the sequence occurs more than once.

Signed graph A signed graph is a graph in which each line
carries either a positive or a negative sign.

Simple graph A simple undirected graph contains nei-
ther multiple edges nor loops. A simple directed graph
does not contain multiple arcs.

Star-network A star-network is a network in which one
vertex is connected to all other vertices but these ver-
tices are not connected among themselves.

Strong component A strong component is a maximal
subnetwork in which each pair of vertices is connected
by a path.

Strongly connected A (sub)network is strongly con-
nected if each pair of vertices is connected by a path.

Structural property A structural property is a character-
istic (value) of a vertex that is a result of network anal-
ysis.

Triad A triad is a (sub)network consisting of three ver-
tices.

Two-mode network In a two-mode network, vertices are
divided into two sets and vertices can only be related
to vertices in the other set.

Undirected graph An undirected graph does not contain
arcs: All of its lines are edges.

Vertex (vertices) A vertex (singular of vertices) is the
smallest unit in a network.

Weakly connected A (sub)network is weakly connected if
each pair of vertices is connected by a semipath.

Definition of the Subject

Social network analysis (SNA) focuses on the structure of
ties within a set of social entities or actors, e. g., persons,
groups, organizations, and nations, or the products of hu-
man activity or cognition such as semantic concepts, web
sites, and so on. In a graph theoretical approach, a social
network is conceptualized as a graph, that is, a set of ver-
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tices (or nodes, units, points) representing social actors
and a set of lines representing one or more social relations
among them.

A network, however, is more than a graph because it
contains additional information on the vertices and lines.
Characteristics of the social actors, for instance a person’s
sex, age, or income, are represented by discrete or contin-
uous attributes of the vertices in the network, and the in-
tensity, frequency, valence, or type of social relation are
represented by line weight or value, line sign, or line type.
Formally (see pp. 94–95, 127–128 in [1]), a network N
can be defined as N D (U; L; FU ; FL) containing a graph
G D (U; L), which is an ordered pair of a unit or vertex
set U and a line set L, extended with a function FU spec-
ifying a property of the units ( f : U ! X) and a function
FL specifying a property of the lines ( f : L! Y). The set
of lines L may be regarded as the union of a set of undi-
rected edges E and a set of directed arcs A(L D E [ A).
Each element e of E is an unordered pair of units u and v
(vertices) from U, that is, e(u : v), and each element a of A
is an ordered pair of units u and v (vertices) from U, that
is, a(u : v).

The application of graph theory to social relations can
be traced back to at least the 1940s (see pp. 69–72 in [2])
when the mathematician R. Duncan Luce and the engineer
Albert Perry teamed up with the social psychologist Leon
Festinger [3] and when the mathematician Frank Harary
started his collaboration with Leon Festinger and after-
wards with Dorwin Cartwright [4]. They extended pio-
neering work in SNA that had been done notably in so-
ciometry [5,6] and anthropology [7,8,9]. In the 1960s, ad-
vances in graph theoretical approaches to SNA such as the
contributions by Øystein Ore [10], Claude Flament [11],
FrankHarary [12], and innovative applications such as Ev-
erett M. Rogers’ work on the diffusion of innovations [13],
prepared the ground for the rise of SNA in both the
USA [14] and Europe [15] as a new set of methods or a new
methodology [16] in the 1970s.

Introduction

The conceptualization of social systems as graphs and net-
works offered the opportunity for systematic investigation
and theorizing of the structure of ties among social ac-
tors beyond the pair. Whereas classical sociology tended
to make a quantum leap from the individual and the pair
to the triple, group, or society [17], graph theory offered
the tools to formally describe and visualize social struc-
ture consisting of three and more actors. This led to a new
awareness of social structure as a system of ties that is both
the product of human action and the context and condi-

tion for human action. Because this point of view is very
relevant to the issue of complexity in social networks, it is
briefly presented in the next paragraph.

The prevalent action theory in SNA conceptualizes
collective behavior as the socially ‘orchestrated’ behavior
of individuals or other actors. Actors adjust their behavior
and attitudes, opinions, and beliefs to the behavior (etc.) of
other members of the social system in which they partici-
pate. The system itself is not supposed to behave but it con-
strains actor behavior: It is the social context within which
actors operate. As a network of ties, the system defines to
whom an actor is exposed. The immediate contacts – the
neighbors in graph theory – of an actor are usually most
important to its behavior, but indirect contacts such as the
neighbors’ neighbors may be taken into account as well.
In other words, an actor’s local context or ego-network is
likely to affect its behavior. At the same time, however, by
ending ties or creating new ones, the individual changes
both local network structure and overall network struc-
ture, that is, the system. Thus, individual action changes
the local context for its neighbors’ (neighbors’ etc.) action.
Complexity arises in the interplay between individual be-
havior and the system both as the overall structure of the
network of social ties and as the local context for each ac-
tor within the system. To the actors, the change of network
structure is not necessarily predictable, so the interplay be-
tween individual action and network structure may offer
surprising results.

Let us turn to an example now, which is one of the ear-
liest applications of graph theory to social networks. This
example nicely illustrates both the transition from a focus
on the tie within a single pair to the study of group struc-
ture in the social sciences and the interplay between local
action and overall network structure. In 1946, the psychol-
ogist Fritz Heider formulated the theory of psychological
balance [18], which stated among other things that a per-
son (P) feels uncomfortable when he or she disagrees with
his or her friend (O) on a particular topic (X). Person P
is hypothesized to be stressed and to try to change this
situation either by adapting its opinion on topic X, so it
matches O’s opinion, or by changing its opinion on O, re-
garding him or her no longer as a friend. Figure 1 repre-
sents both a situation of imbalance and a situation of bal-
ance as a signed digraph. The circles and arrows represent
the vertices and arcs of the graph and the valence of the
opinions or affections are shown both by the labels and
the style of the arrows: Solid arcs show positive opinions
or sentiments, dotted arcs show negative opinions or sen-
timents.

In 1956, the mathematician Frank Harary and the psy-
chologist Dorwin Cartwright realized that psychological
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Social Network Analysis, Graph Theoretical Approaches to, Fig-
ure 1
The principle of imbalance and balance conceptualized as
signed digraphs

balance in this triad (three vertices and the lines among
them) may be conceptualized as a specific pattern of arcs
in a signed graph, viz., in a balanced triad, the P � O � X
semicycle (a closed semipath) always contains zero or an
even number of negative arcs, whereas an imbalanced triad
is characterized by a semicycle with an uneven number of
negative arcs [4]. As a next step, replacing the topic by
a third person and perceptions of liking or disliking (by
the focal person P) by expressed liking or disliking as ties,
they easily generalized this idea to a network of arbitrary
size. They proved that a signed network is balanced if and
only if all semicycles contain no or an even number of neg-
ative arcs.

In addition, they proved that a balanced network either
contains one set of vertices with just positive arcs among
them, or two sets of vertices with all positive arcs within
the sets and all negative arcs between the sets, which is
a polarized network. In 1967, this result was generalized
to polarization among three or more groups by James A.
Davis, who showed that a network can be partitioned into
an arbitrary number of subsets of vertices such that all pos-
itive ties are within the subsets and all negative arcs are
among the subsets if the network does not contain semi-
cycles with exactly one negative line [19]. Figure 2 shows
an example from Samuel F. Sampson’s [20] study of a net-
work of sentiments among novices in a monastery. It de-
picts the situation at the fourth measurement wave, which
was highly polarized at that time. Vertex color indicates
whether the novice had previously attended one particular
seminary (black: Yes, white: No).

In this case, a mathematical relation was established
between a behavioral hypothesis at the level of the indi-
vidual, viz., adjusting ones affect relations such that ones
situation is balanced, and overall network structure, viz.,
polarization. Individual behavior proved to have an un-
expected outcome at the level of overall network struc-
ture and graph theoretical concepts, in this case semicy-
cles, provided the link. In many cases, however, the link

between individual behavior and overall network structure
has not been established formally and is sometimes even
hard to predict intuitively.

This entry of the encyclopedia aims to present an
overview of graph theoretical approaches to SNA, high-
lighting the complex relations between individual action
and overall network structure. It intends to explain why
current developments focus on local structure rather than
overall network structure to unravel the complexity of so-
cial networks. For each of the main topics in SNA (cohe-
sion, brokerage, and prestige), behavioral hypotheses are
presented stating why actors create, maintain or dissolve
ties. The typical local structure of ties produced by this be-
havior is sketched in combination with graph theoretical
indices for measuring it, and finally the expected conse-
quences to the overall structure of the social network are
discussed in combination with the graph theoretical mea-
sures developed for measuring them. Note that this ap-
proach more or less reverses the historical development
of SNA, which focused on overall network structure first
and gradually became more interested in the behavior of
actors that created, maintained, or changed network struc-
ture.

Cohesion

One of the first intuitions in SNA concerns the tendency of
human beings to form cohesive subgroups. This is a clas-
sical topic in the social sciences, see, for instance, George
C. Homans’ book The Human Group [21], and it was cen-
tral to the sociometry tradition [22]. But where do cohesive
subgroups come from and what do they do?

The first and most general behavioral hypothesis
merely states that similar people tend to interact more eas-
ily and people who interact tend to become or perceive
themselves as more similar provided that the interaction
is characterized as positive, friendly, and so on. In SNA,
this tendency is mainly known as homophily, a concept
coined by Paul F. Lazarsfeld and Robert K.Merton [23,24],
but it is known under other names in several scientific
disciplines, e. g., the phenomenon of attribution [25] and
affect control [26,27] in social-psychology, assortative or
selective mixing in epidemiology and ecology ([28], p. 2
in [29]), and assortative mating in genetics with efforts at
statistical modeling at least as early as 1985 [30].

It is important to note that there are two sides to this
behavioral hypothesis, a selection effect, that is, the impact
of similarities on the ties that are created, sustained, or
broken [31], and an influence effect [32], which hypoth-
esizes that perceived or actual similarities such as the so-
cially constructed identities or opinions [33] result from
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Social Network Analysis, Graph Theoretical Approaches to, Figure 2
Almost perfect polarization in the network of sentiments among novices

the ties among actors. According to these hypotheses, peo-
ple who are directly linked are or become more similar be-
cause of their interaction, so they become more likely to
engage in ties and maintain ties among them. Thus, so-
cial groups form and persist as tightly linked sets of people
that tend to share social and psychological characteristics,
producing solidarity.

If we concentrate on the graph theoretical aspects of
this behavioral hypothesis, that is, the structure of ties,
and ignore the (dis)similarities among the actors for the
moment, we find several characteristics of local structures
that measure cohesive subgroup formation. At the level of
a pair of actors, reciprocity of ties in directed networks sig-
nals subgroup formation: Both actors are hypothesized to
choose each other when they are similar. At the level of
the triple, transitivity results from tendencies toward co-
hesion. If actor u establishes a tie with actor v because they
are similar, and actor v establishes a tie to actor w for the
same reason, actors u and w are also similar, so actor u
is expected to establish a tie with w as well, creating a so-
called transitive triad (Fig. 3). Stated differently, the path
from u via v to w is closed by an arc from u to w. In gen-
eral, the closure of paths or semipaths both in directed
and undirected networks signals cohesive subgroup for-
mation at the local level. Closure within an ego-network
may be calculated as the percentage of all possible ties
among a vertex’ neighbors that are present, which is one of
the definitions of the clustering coefficient (see pp. 32–33
in [34]) but the concept of closure can be extended beyond
a vertex’ immediate neighbors, e. g., the number of semi-

Social Network Analysis, Graph Theoretical Approaches to, Fig-
ure 3
Reciprocity, transitivity, and closure in a directed ego-network

cycles of length 4 or larger in which a vertex is involved,
e. g., balanced semicycles in signed networks.

If we include vertex attributes in our measures of co-
hesive subgroup formation, we can calculate homophily
quite simply as the probability or ratio of ties between ver-
tices that share a particular characteristic to ties between
vertices that do not. Extending this idea to the ego-net-
work, the homogeneity of actors involved in an ego-net-
work may be taken as a measure of tendencies toward
homophily. For qualitative attributes of the actors, Blau’s
index of variability or heterogeneity [35] can be used
(1 �

P
p2i ) where p is the proportion of group members

in a particular category and i is the number of different
categories), which is conceptually related to the Herfind-
ahl–Hirschman Index in economics measuring the extent
of monopoly within an industry. It is interesting to note
that Blau’s theory hypothesizes that heterogeneity rather
than homogeneity of actors within a group enhances the
operation and efficiency of the group. If improving group
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efficiency is the aim of actors, we would have to use a be-
havioral hypothesis that is quite the opposite of the ho-
mophily hypothesis.

Tendencies toward cohesive subgroup formation at
the level of actor behavior are most likely to produce sets
of densely connected vertices in the overall network and, if
we add attributes of the actors, the vertices within sets tend
to have similar characteristics. In the most extreme case,
the sets are disconnected, so the network consists of sev-
eral weak components, that is, maximal weakly connected
subnetworks, or they are connected only by ties with a neg-
ative social meaning, as in the example of polarization pre-
sented in the Introduction.

In the history of SNA, the concept of relatively densely
connected subnetworks has yielded a large number of
graph theoretical ways for identifying cohesive subgroups
at the level of overall network structure. Limiting the
discussion to one-mode networks, that is networks in
which there can be a tie between any pair of vertices
(for two-mode or bipartite networks, � Social Network
Analysis, Two-Mode Concepts in), Wasserman and Faust
(see pp. 251–252 in [36]) distinguish 4 approaches to
defining cohesive subgroups.

In the first and strictest approach, a cohesive subgroup
is defined as a set of vertices in which all vertices are ad-
jacent, that is, directly linked, to one another. In other
words, cohesive subgroups are maximal complete sub-
graphs, which are called cliques [3].

The second approach is based on the notion of reacha-
bility and closeness of members within a subgroup. Mem-
bers of a subgroup must be reachable in the sense that
there are paths between them, i. e., a sequence of lines such
that the end vertex of one line is the starting vertex of the
next line (following the direction of the lines if they are
arcs) such that no vertex in between the first and last ver-
tex occurs more than once. In addition, the shorter the
geodesics (shortest paths) between them, the closer the
vertices are in a graph theoretical sense, so the more co-
hesive the subgroup is supposed to be.

The criterion of reachability does not necessarily yield
very dense subgroups. In sparse networks, any maxi-
mal connected subgraph (strong component) may repre-
sent a cohesive subgroup: There is a path between each
pair of vertices within a component. Increasing the re-
quired number of independent paths between any pair
of vertices within a cohesive subgroup yields slightly
denser subgroups, e. g., requiring at least two independent
paths produces bi-components, which may be generalized
to k-components for higher minimum numbers of inde-
pendent (vertex-disjoint) paths between all vertices within
a subgroup [37].

Focusing on graph-theoretical distance between ver-
tices usually yields denser subgroups. One may, for in-
stance, set a maximum n to the distance between any
two vertices within a subgroup, which is the concept of
an n-clique [38,39]. Adding the restriction that the diame-
ter of an n-clique is n or less, one obtains n-clans [38,40].
Alternatively, one may define a cohesive subgroup as
a maximal subgraph of diameter n, which is called
an n-club [40].

The third approach focuses on the minimum number,
strength, or multiplicity of ties among subgroup mem-
bers. Subgraphs that are maximal with respect to the
minimum number of neighbors within the subgraph are
called k-cores [41] and a maximal subgraph with respect
to the maximum number of vertices in the subgraph that
are not adjacent are known as k-plex [42]. In a simi-
lar vein, restrictions can be imposed on the minimum
strength or multiplicity of ties among members of a cohe-
sive subgroup, generalizing Seidman’s concept of a k-core
to a valued core, which is called an m-core (see pp. 115–
116 in [43]) or m-slice (see pp. 109–110 in[44]): Maxi-
mal connected subgraphs considering only lines withmin-
imum value (or multiplicity) m.

In the fourth approach, cohesive subgroups are based
on the relative frequency of ties among subgroup mem-
bers in comparison to non-members: Cohesive subgroups
are relatively dense sections within the network, that is,
relative to the sections outside (and between) subgroups.
An LS set [45] is a maximal subgraph such that any of
its subsets has more ties to its complement within the LS
set than to vertices outside the LS set. Borgatti, Everett
and Shirey [46] generalized this idea to the concept of the
lambda set, which requires the number of edge-disjoint
paths between any pair of vertices within the lambda set
to be larger than between any vertex within and any ver-
tex outside the lambda set. A probabilistic version of plus-
clusters in signed networks, discussed in the Introduction,
can also be subsumed under this approach as it requires
relatively many positive lines within cohesive subgroups
and relatively many negative lines among cohesive sub-
groups [47]. Finally, clustering techniques and some types
of blockmodels (see pp. 741–742 in [14]) also detect clus-
ters of vertices that have relatively many ties within clus-
ters and few among clusters. These models offer an alter-
native way for finding cohesive subgroups (see pp. 133–
246 in [1]), � Positional Analysis and Blockmodeling.

The large number of alternative measures for cohesive
subgroups attests to the fact that behavioral tendencies at
the actor level do not play out into nicely structured over-
all networks in a standard way. Especially the density of
the social relation under investigation has an impact on
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the extent and ways in which cohesive subgroups can be
found in the overall structure of the network. As a conse-
quence, measures of network cohesion such as the cluster-
ing coefficient (averaged over all vertices in the network)
can be quite uninformative about overall network struc-
ture: Loosely knit cohesive subgroups which are clearly
identified by some of the techniques presented above, yield
low clustering coefficients in a sparse network. Cohesion
in a network is better summarized by calculating the per-
centage of vertices that are part of identified subgroups, the
number and sizes of cohesive subgroups, and so on [48].

In addition to homophily, there is a second behavioral
hypothesis related to cohesion in SNA. This hypothesis is
based on the idea that social action is embedded in net-
works [49,50,51]. Named after the sociologist Georg Sim-
mel, Simmelian ties are ties that are embedded in other
ties, e. g., business ties are embedded in family ties, or in
complete triads and cliques. They are hypothesized to en-
force group norms and enhance trust, hence pressure peo-
ple into the same behavior because the two actors involved
in a tie share common neighbors who supervise their be-
havior.

Just as with the homophily hypothesis, the embedded-
ness hypothesis predicts that tightly connected actors will
be more similar in their behavior and attitudes. In addi-
tion, it predicts that embedded ties are more stable and
new ties are more likely to be established when they are
embedded in existing cliques or existing ties. Closure again
is an important indicator of tendencies to establish and
maintain embedded ties but so is the multiplicity of rela-
tions: The extent to which a tie on one social relation du-
plicates a tie on another social relation. At the level of over-
all network structure, we should expect relatively dense
sections, especially cliques, and in a multirelational net-
work, that is, a network containing ties on two or more
social relations, we should find that the same subsets of
vertices are clustered on each relation. Graph-theoretical
measures of the latter are rare. The stochastic blockmod-
eling technique developed by Krysztof Nowicki and Tom
A.B. Snijders [52] is an example. See � Social Networks,
Algebraic Models for.

If data on vertex attributes are available, especially if
they concern public behavior, that is, behavior that is easily
noticed by third parties such as publicly expressed opin-
ions and statements, Simmelian ties are hypothesized to
produce a special effect. Involvement in different groups
(cliques) then exposes actors to possibly conflicting sets
of norms and loyalties, which may urge them to cut their
ties with some or all of these groups [53]. In this case, ac-
tors are hypothesized to withdraw from stressful relations,
so they discontinue ties that incorporate them into cliques

(with a preference for cutting a minimum number of ties)
or they discontinue ties such that they are no longer con-
nected to actors voicing different opinions or norms. At
the macro level, this would produce disconnected sets of
cliques instead of overlapping cliques.

Centrality and Brokerage

The notion of centrality in social networks has a long his-
tory in SNA. It is attributed to Alex Bavelas [54]. In dis-
cussions of centrality, network ties are usually regarded as
channels for the exchange of information, goods, services,
and so on. Being central in this exchange systemhas always
been hypothesized to be related to influence and satisfac-
tion. Centralization, as a characteristic of a network, has
been linked to the efficiency of a network as an exchange
system. More centralized groups, for example, have often
been shown to be more efficient.

Linton C. Freeman [55] argued that the approaches to
centrality are based on three ideas about what being cen-
tral means: (1) being active within the network, that is,
maintaining many ties, (2) being efficient or independent
of go-betweens by having short distances to other vertices
in the network, and (3) being an important go-between,
that is, being part of many paths between other vertices in
the network. Although alternative classifications and ap-
proaches exist, for instance, Noah E. Friedkin’s alterna-
tive classification [56] and the formal graph theoretical ap-
proach to centrality by Stephen P. Borgatti and Martin G.
Everett [57], Freeman’s classification is used here, adding
concepts of brokerage that have been developed elsewhere
in SNA.

Activity

Being active or prominent in the network means that an
actor has many ties, hence access to many sources of in-
formation (etc.). As a consequence, this actor is more at-
tractive as a neighbor for other actors, which translates to
the behavioral hypothesis that actors have a preference for
ties with vertices that already havemany ties. The degree of
a vertex (the number of lines incident with a vertex), then,
is the relevant graph theoretical measure of local struc-
ture, which is also known as degree centrality. Note that
the concept of centrality expresses a structural property of
a vertex.

Centralization is the corresponding structural prop-
erty of a network and it is defined as the variation in the
centrality scores of the vertices in the network because this
variation shows the extent to which there is a center (very
central vertices) and a periphery (vertices with very low
centrality scores). The star and ring networks are defined
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ure 4
Centrality and centralization in a star network and a ring net-
work

as respectively themost and least centralized networks and
they are known to exhibit the highest and lowest variation
in centrality scores in simple networks, that is, networks
without multiple lines (and loops in the case of a directed
network). See Fig. 4 for an illustration, showing a star and
a ring network labeling the vertices with their degree cen-
trality scores.

From research on the power law in networks [58,59],
discussed in another entry of this encyclopedia, it is known
that preferential attachment to degree creates networks
with a peculiar degree distribution, including many ver-
tices with low or modest degree and few vertices with
high degree. According to the definition of centralization
in network analysis, this implies large variation in de-
gree centrality scores, hence high degree centralization. In
other words, the behavioral hypothesis of preference for
high degree actors produces centralized overall network
structure.

Note, however, that the way in which the ‘power law
networks’ are assembled – growing from an initial seed
without context – is hardly ever applicable to social net-
works, which usually have no discernable starting point
(networks originate from networks) and are always con-
strained by the historical context. It remains to be seen
whether power law distributions in empirical social net-
works are created by preferential attachment. Some results
indicate that even though the degree distributions of cross-
sectional snapshots of a large social network follow the
power law, there is hardly any continuity in degree cen-
trality of vertices over time, which does not suggest that
the actors are driven by preferential attachment [60].

Efficiency andWeak Ties

The second approach to centrality focuses on graph the-
oretical distances between vertices. The central idea here
is that actors try to improve access to information and ef-
ficient spreading of information by minimizing the num-

ber of go-betweens needed to reach or be reached by all
other actors in the network. The behavioral hypothesis
states that a vertex prefers to link to actors that give ac-
cess to parts of the network that are presently remote to
this vertex and that can only be reached through some
or many go-betweens that may withhold or distort infor-
mation. A minimum number of go-betweens yields max-
imum independence and maximum efficiency in the ex-
change network.

Graph theoretical measures of local structure focus on
graph theoretical distance, that is, the minimum length
of paths between vertices because path length equals the
number of go-betweens in the network plus one. Linton
Freeman’s closeness centrality [55] is a straightforward
implementation of this idea because it merely normalizes
the average graph theoretical distance between a vertex
and all other reachable vertices in the network. In addi-
tion, paths can be weighted by the centrality of the vertices
on them, which is done by Phillip Bonacich’s eigenvector
centrality [61,62]. Finally, the difference between incom-
ing paths and outgoing paths may be added, which is im-
plemented in the version of closeness centrality developed
by Thomas W. Valente and Robert K. Foreman [63].

Again, the normalized variation of closeness centrality
scores of the vertices in the network yields the appropriate
measure of centralization of overall network structure. It
is not known yet, however, whether and how tendencies
to reduce distances to other vertices at the level of indi-
vidual actors in the network play out into the closeness
centralization of the overall network. On the one hand,
if the network contains some vertices with high closeness
centrality, they offer rather short paths toward many ver-
tices so they should attract a lot of new ties. This would
enhance their centrality and possibly the variation in cen-
trality scores although a general rise in closeness centrality
scores of all vertices may also decrease the variation. On
the other hand, if the network has low centralization, it is
more likely that vertices connect directly to remote parts,
reducing path lengths among remote parts, which would
not raise the variation in closeness centrality scores and
yield or sustain low closeness centralization of overall net-
work structure.

The strength of weak ties argument proposed by Mark
Granovetter [64,65] may be regarded as a special applica-
tion of the notion of efficiency. In his research on finding
a job, Granovetter noticed that relatively superficial ties,
ties with infrequent contact, give access to new informa-
tion because they are more likely to link you to someone
with whom you are not linked directly or at a short dis-
tance. Strong or intense ties tend to be situated within co-
hesive subgroups, so they are more likely to offer redun-
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dant information already received through other ties. Gra-
novetter is only interested in the effects of havingweak ties,
but if we turn his idea into a behavioral hypothesis, it sug-
gests a preference to relate to distant vertices that are nei-
ther connected to yourself nor to your neighbors (or your
neighbors’ neighbors, and so on).

A tendency to connect to the most remote parts of the
network means that actors tend to establish links to ver-
tices at a large or maximum distance in the network. As in
the case of maximizing closeness centrality, it is not clear
whether this leads to identifiable patterns in overall net-
work structure. It is quite obvious, however, that this ten-
dency acts as a counterforce against tendencies toward co-
hesion as densely connected subnetworks: Actors are hy-
pothesized to span gaps rather than to close local con-
figurations. Different hypotheses must be developed for
strong ties, which are hypothesized to contribute to sub-
group formation, and weak ties linking remote parts. The
weak ties will probably increase the number of links be-
tween dense parts of the network, increasing the k-con-
nectivity (minimum number of node-independent paths
between any two vertices) of the network. If so, we should
expect high k-connectivity of the network if the weak ties
hypothesis is true [37].

Control and Structural Holes

The third approach to centrality focuses on control over
flows within the network: The more you are in between
other vertices in the network, the more they depend on
you to pass on information, the more you are able to con-
trol exchange within the network and profit from your
control. Using this type of control is called brokerage.

The notion of being in between other vertices has
a straightforward translation to graph theory as being
part of a path between two other vertices. Limiting paths
to the shortest paths between vertices both Linton C.
Freeman’s [55] betweenness centrality and Jac M. An-
thonisse’s [66] rush of a vertex are based on the proportion
of all geodesics between other vertices that include this
vertex. This measure has been extended to handle directed
ties [67,68]. Information centrality [69,70] takes into ac-
count all paths between vertices, not just the geodesics and
flow betweenness [71] or entropy [72] also consider the
values of lines. See Stephen P. Borgatti’s [73] classification
for more details.

Betweenness centralization as the normalized varia-
tion of betweenness centrality of the vertices in the net-
work offers ameasure of centralization at the network level
and so do center-periphery blockmodels (see pp. 741–742
in [14]), e. g., in the world trade system, central countries

are able to profit from the lack of trade among countries in
the periphery [74,75,76,77]. The link between strategies for
maximizing betweenness centrality by actors and the over-
all structure of the resulting network is unclear. It is not
to be expected that control behavior will produce a highly
centralized structure because no actor will be satisfied with
low betweenness centrality and as a consequence high be-
tweenness centrality for some vertices is unlikely. There-
fore, the variation in betweenness centrality scores will not
be high.

While betweenness centrality situates an actor with
respect to all other actors in the network, Ronald S.
Burt [78,79] proposed a local variant, focusing on con-
trol within the ego-network of an actor. His behavioral hy-
pothesis rests on the tertius gaudens principle: The bene-
fits that accrue to an actor that is in between two actors
that are not directly linked because of the opportunity to
broker information between them or, in a more malicious
variant, to divide and conquer.

This hypothesis translates quite easily into graph the-
oretical structure. The absence of a tie between two neigh-
bors of an actor is called a structural hole (Fig. 5a). The
behavioral hypothesis states that actors try to increase the
structural holes that they can exploit. At the same time,
however, they try to minimize the structural holes through
which they can be exploited. This means, among other
things, that an actor will not end a tie to one of its neigh-
bors if the two neighbors are directly linked (see Fig. 5b):
That would create an opportunity to broker at the expense
of the actor. In this situation, the actor is constrained in its
opportunities to change ties.

Structural holes and constraint are the flip sides of the
same coin. A tie with low constraint indicates that the tie
is involved in (many) incomplete triads (such as Fig. 5a),
so there are (many) structural holes offering the actor op-
tions for brokering. High constraint on a tie means that it
is part of (many) complete triads (as in Fig. 5b), so there
are few or no possibilities for brokerage. Because the pres-
ence or absence of ties among an actor’s neighbors is key

Social Network Analysis, Graph Theoretical Approaches to, Fig-
ure 5
A structural hole (a) and a triad with high constraint (b)
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to the argument, network analysts have also used the den-
sity of the ego-network without the ego as a proxy of con-
straint: The higher the density, the higher the constraint
on the ego. Alternatively, betweenness centrality for ego-
networks [80,81] can be used.

If the structural holes hypothesis governs actors’ be-
havior, what overall network structure should we expect
to find? A strong tendency toward brokerage at the micro
level is not likely to produce a centralized network because
each actor would try to maximize the number of structural
holes around itself, which would yield a bipartite graph in
the extreme case (no ties among any vertex’ neighbors), or
it wouldminimize its constraint by ending all ties to neigh-
bors that have contacts outside ego’s immediate neighbor-
hood, which would produce a highly clustered network
consisting of isolated cliques or isolated vertices in the ex-
treme case.

In summary, the relation between local action and
overall network structure is simple and clear only in the
case of preferential attachment to high-degree vertices.
Tendencies to maximize centrality that looks beyond the
immediate neighbors such as closeness and betweenness
centrality, do not necessarily yield centralized networks.
Even for local structures, alternative hypotheses for actor’s
behavior are available that are unlikely to produce central-
ized networks, e. g., a preference to avoid constraint. The
interplay between local action and overall structure is quite
complex.

Prestige and Ranking

The preceding sections have not distinguished between di-
rected and undirected networks. For prestige and ranking,
however, the direction of ties is crucial because asymmetry
in networks is assumed to be linked to social prestige [82].
The general idea here is that social inequalities are re-
flected and possibly created by asymmetric ties, e. g., ev-
eryone invites themost popular boy or girl in class but s/he
doesn’t return each invitation. Of course, the nature of the
social relation determines the direction of choices; ties like
“reports to” or “pays respect to” point toward higher lev-
els in a hierarchy while “beating up” points in the opposite
direction.

A central behavioral hypothesis concerns the popular-
ity or attractiveness of actors. Actors tend to (want to) re-
late to actors with attractive structural properties or at-
tributes, so attributes related to power or social status in-
crease the probability that an actor will be chosen. From
a constructivist point of view, however, being chosen often
is also interpreted as a sign of importance and prestige, so
receiving many choices (ties) increases the probability of

receiving even more. In this way, networks may produce
informal status hierarchies. The Matthew Effect, proposed
by Robert K. Merton [83], comes to mind here: “For unto
every one that hath shall be given, and he shall have abun-
dance: But for him that hath not shall be taken away even
that which he hath” (gospel of Matthew XXV, 29).

In graph theoretical terms, the structural attractive-
ness of an actor refers to the number of incoming arcs on
vertices, which is simply the indegree of a vertex. This is
called the popularity of a vertex and, of course, wemust re-
place it by the vertex’ outdegree if the relation is negative,
e. g., submission, beating up, criticizing. If indirect choices
must be taken into account as well, attractiveness is mea-
sured by proximity prestige [84], which is based on the
average distance from all other vertices in the network –
a directed variant of closeness centrality. Proximity pres-
tige captures the idea that nominations or choices by ac-
tors who are themselves popular, contribute more to ones
structural prestige. Bonacich’s measure of power [62,85]
adds the idea that power may also be derived from being
connected to powerless actors rather than to other power-
ful people.

The popularity hypothesis is another example of pref-
erential attachment to degree with the restriction that we
focus either on indegree or outdegree. Therefore, the in-
degree (or outdegree) distribution of the overall network
is expected to follow the power law and network structure
will be characterized by high degree centralization.

Adding data on social attributes that make some actors
more prestigious such as wealth, social class, beauty, and
so on, we should expect preferential attachment to ver-
tices that score high on these attributes. Note that vertex
attributes play a slightly different role here than in the case
of cohesion. Now we are concerned with attributes of (at
least) ordinal level, expressing prestige that an actor pos-
sesses to a higher or lower degree. In the case of cohesion,
we deal with nominal attributes, which merely express an
identity. In contrast to homophily, the attributes of the ac-
tor who initiates the directed tie (the tail of the arc) does
not matter here because the effect is solely related to struc-
tural characteristics or attributes of the actor at the receiv-
ing end of the tie (the arc’s head).

There is a second, slightly different behavioral hypoth-
esis relating to deference or submission rather than attrac-
tiveness. The idea is that actors mainly tend to create pos-
itive ties to other actors in their own status group or to
actors in a higher status group – the people they are look-
ing up to – to consolidate and improve their social posi-
tion. Similarly, they tend to direct negative ties to actors
in lower status groups. Note the difference with attractive-
ness: It is hypothesized that actors choose upwardly but
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they need not prefer the most attractive (top) actors in the
network as they are supposed to do according to the at-
tractiveness hypothesis.

The main difference between attractiveness and defer-
ence is that the former only takes into account structural
properties or attributes of the tie’s receiver, whereas the
characteristics of both the sender and receiver of the tie
matter to the latter. This distinction has important conse-
quences to the structure of the overall network. Whereas
the attractiveness hypothesis yields centralized networks,
the deference hypothesis yields layered networks. The lay-
ers consist of sets of vertices that are symmetrically linked,
e. g., by reciprocal ties, while the ties between layers are
asymmetric, all pointing in the same direction. This behav-
ior may be both a consequence of a formal hierarchy, e. g.,
positions within an organization with formalized relations
such as reports to, or actually show an informal social hi-
erarchy, e. g., status differences between men and women
in a particular social setting.

In simple directed networks, triads, that is, three ver-
tices and the lines among them, are the key to measuring
tendencies toward ranking at the local level. Translating
the concepts of balance and clusterability (see Sect. “In-
troduction”) from signed digraphs to unsigned digraphs,
James A. Davis and Samuel Leinhardt [86,87] replaced
positive ties by symmetric ties within cohesive subgroups
and negative ties by no ties among subgroups. Thus, ties
within a layer, either within clusters or among clusters,
are symmetric. They assumed that asymmetric ties repre-
sent the ranking of clusters into a hierarchy, introducing
the model of ranked clusters. Moreover, they showed that
a network with a perfectly fitting ranked clusters model
contains only certain types of triads, whereas other types
do not occur (Fig. 6).

The ranked clusters model requires arcs from each ver-
tex to all vertices on higher ranks. This requirement is usu-
ally too strict for empirical social networks and it is relaxed
in the transitivity model proposed by PaulW.Holland and
Samuel Leinhardt [88], which requires that clusters of ver-
tices on different ranks are either completely linked or not
linked at all, yielding a partial order, by simply adding one
type of triad to the set of allowed triads (Fig. 6). Later, Eu-
gene Johnsen [89] proposed themodel of hierarchical clus-
ters to account for asymmetries within clusters. Note the
nesting of the models for overall network structure, which
is why the sets of permitted triads is extended for more
general models. Finally, it was shown that the models de-
veloped for unsigned digraphs could also be detected in
incomplete signed digraphs using types of semicycles [90].

The triads characterizing ranked structures serve as
models for tie creation, maintaining, and breaking behav-

Social Network Analysis, Graph Theoretical Approaches to, Fig-
ure 6
Triad types and balance-theoretic models

ior of actors under the deference hypothesis. For instance,
triad 120U (Fig. 6) predicts that a member of a cluster is
likely to establish or maintain a tie to an actor at a higher
rank if its neighbors within the cluster have such a tie.
In the perfect case, there is a one-to-one relation between
sets of occurring types of triads and the overall structure
of the network. Therefore, triad census [91,92], which is
the frequency distribution of the sixteen types of triads in
a directed network, offers an indication of overall network
structure. In the imperfect case, the triad census of a net-
work may be compared to the frequency distributions of
triad types in randomly generated networks to test the ten-
dency toward ranking.

The triad census does not show the composition of
the clusters and ranks; it does not identify the vertices
belonging to particular clusters and ranks. This can be
done in several ways. Realizing that ranks should be con-
nected asymmetrically in directed networks, strong com-
ponents cannot include more than one rank because ver-
tices within strong components are by definition mutu-
ally reachable. Ties between strong components, then, are
asymmetric, so it is easy to establish the ranking among
strong components. Strong components, however, do not



8242 S Social Network Analysis, Graph Theoretical Approaches to

require a lot of symmetry in the ties; actually, no tie
needs to be reciprocated. The symmetric-acyclic decom-
position proposed by Patrick Doreian, Vladimir Batagelj
and Anuška Ferligoj [93] does require at least some sym-
metric ties (mutual choices) within clusters because they
define a symmetric cluster as a maximum subset of ver-
tices that are directly or indirectly linked by symmetric
ties. Generalized blockmodels [1] that are asymmetric with
respect to off-diagonal blocks offer another way to iden-
tify hierarchical relations (see � Positional Analysis and
Blockmodeling).

Analyzing Complexity in Social Networks

The preceding sections presented behavioral hypotheses
that have similar, different, or even opposite consequences
for overall network structure. It is not plausible that one
particular type of behavior dominates network formation.
Therefore, it is not likely that overall structure of empir-
ical social networks will display one particular form that
can be hypothesized in advance or that behavioral tenden-
cies can be adequately tested on particular characteristics
of overall network structure. It has been shown, for exam-
ple, that the degree distribution of a network does not re-
veal tendencies toward cohesive subgroup formation that
are operative during network evolution [94].

Even if overall network structure displays certain char-
acteristics, they may be produced by different types of be-
havior. Centralization in a social network, for instance,
may arise from a tendency of actors to minimize paths
to all other actors or from a preference for prestigious ac-
tors. Alternatively, it may be a by-product of cohesive sub-
group formation: Actors that are marginal to the cohe-
sive subgroups may directly or indirectly connect differ-
ent subgroups, which gives them a central position with
respect to betweenness. Furthermore, pronounced overall
network patterns may occur only temporarily in empiri-
cal social networks when they create socially unstable sit-
uations. The polarization predicted by balance theory in
Sampson’s network of novices, used as an example in the
Introduction, was only temporary. After this polarization
and most likely due to it, many novices left the monastery.
The network, so to speak, fell apart.

For these reasons, SNA increasingly focuses on local
structure using overall network structure merely as a col-
lection of (overlapping) local structures. Behavioral hy-
potheses translate much more directly to local structure,
that is, to the ties of the actor and those of its neighbors
(and possibly their neighbors), as we have seen in the pre-
ceding sections. Local structure is the part of the network
that an actor can easily survey and actually change.

The latest developments in techniques for modeling
network structure and evolution apply this actor-oriented
approach either in statistical models, see�Network Anal-
ysis, Longitudinal Methods of and� Social Networks, Ex-
ponential Random Graph (p*) Models for. The techniques
test behavioral tendencies by relating the creation, mainte-
nance, and ending of ties by individual actors to the local
configuration of ties, to previous ties between the actor and
the alter or to present ties on another social relation, and
to characteristics of both the actor and the alter.

In principle, the actor-oriented approach is able to test
all behavioral hypotheses presented in the preceding sec-
tions on characteristics of local structure in which the ac-
tors are embedded and properties of the actors themselves.
If hypothesized local configurations appear more often
than expected by chance, the underlying behavioral hy-
pothesis is assumed to guide individual behavior at least
to some extent. If the behavior in a set of actors or indi-
vidual actor’s behavior are in line with several behavioral
hypotheses at the same time, the effect of each behavioral
tendency can be separated. Thus, it is possible to link com-
plex overall network structure to compound behavior of
the actors in the network.

Future Directions

The techniques for analyzing local structure are in de-
velopment. Models for the co-evolution of relations and
quantitative attributes of vertices over time have just been
introduced [95]. Not all behavioral hypotheses have been
included yet, for instance, because they involve non-stan-
dard types of networks such as signed relations, and new
ones are bound to be proposed. Incomplete data and ex-
ternal constraints on data collection or conceptual con-
straints on network structure such as two-mode networks
(see � Social Network Analysis, Two-Mode Concepts in)
may limit the applicability of current models and spur the
development of new ones.

If the actor-oriented approach is successful, will over-
all network structure become completely redundant? Will
it only serve network exploration – looking for behavioral
hypotheses rather than testing them – and for analyzing
the consequences of network position on behavior, atti-
tudes, or esteem, for instance, does the subgroup to which
an actor belongs or its centrality correlate with its subse-
quent behavior or attitudes?

Let us return to the balance example, presented in
the Introduction. The high degree of polarization among
Sampson’s novices was followed by the voluntary or forced
exit of several novices. This suggests that people are able
to survey overall network structure and draw conclusions
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from it, rather than just react to their local network envi-
ronment. A highly polarized social group does not seem
to be the kind of situation that we like to be living in. An
actor’s perception of overall network structure may also
affect its behavior.

In this respect, the balance example is interesting be-
cause the original theory by Heider referred to percep-
tions of affect relations and unit relations (having charac-
teristics or possessing items) rather than objectively mea-
sured relations. The importance of perception to network
analysis is stressed in a more general way by Harrison
White, who argues that social ties are stories [96]. Ac-
cording to him, people are linked into social networks by
the stories that they tell about their ties. Thus, we should
expect people to react to the ties as they remember and
tell them rather than to the ties as they are observed by
the researcher or registered in, for instance, membership
lists.

A similar argument was made by David Krackhardt
when he reconsidered balance theory [97]. According to
him, we should measure each actor’s perception of net-
work structure, for which he proposed the concept of Cog-
nitive Social Structures, compare these perceptions, and
use them to explain why actors behave as they do. In
his approach, actors are assumed to be able and active in
forming impressions of overall network structure.

If humans are capable of imagining overall network
structure, then communication of these perceptions may
also play a role in network formation, including the acci-
dental and deliberate distortions or simplifications that are
likely to happen. This brings us to the link between net-
work structure and mental categories such as social clas-
sifications or culture in a more general sense as argued by
Ronald L. Breiger [98,99]. If, for example, members of the
network perceive and discuss cohesive subgroups, they as-
sign names and meanings to social configurations. Thus,
social meanings and identities are created in the process
of establishing social ties and interpreting them. The dual-
ity of social structure on the one hand and the structure of
symbolic categories on the other hand as proposed by John
W.Mohr [100], may be the essential condition for cultural
meanings that are social in the sense that they affect actors’
sense of identity and behavior.

These discrete and qualitative rather than continuous
and quantitative classifications are very likely to affect the
network behavior of actors: They define the categories that
are experienced as being similar or dissimilar in the case
of homophily and group formation, or superior versus
inferior in the case of prestige and ranking. As a conse-
quence, it is to be expected that the present focus on lo-
cal structure will be complemented by a focus on over-

all network structure, especially perceived and communi-
cated network structure.
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Glossary

For the basic notions on graphs and networks see the Ar-
ticlea Wouter de Nooy: � Social Network Analysis,
Graph Theoretical Approaches to.

Network consists of vertices linked by lines and addi-
tional data about vertices and/or lines.

Network decomposition identification of parts of net-
work and their interconnections. Usually it is de-
scribed by a partition of set of vertices or set of lines.

Time complexity of algorithm describes how the time
needed to run the algorithm depends on the size of the
input data.

Reduction of network a network obtained by shrinking
each cluster from a given partition into a vertex.

Condensation a reduction for strong connectivity parti-
tion.

Cut a subnetwork of vertices/lines with values of selected
property above given threshold.

Island a connected subnetwork of selected size of (lo-
cally) important, with respect to selected property, ver-
tices/lines.

Pattern searching identification of all appearances of se-
lected small subnetwork (pattern or fragment) in
a given network.

Topological sort procedure to determine a compatible
ordering in acyclic network.

Definition of the Subject

A network is based on two sets: a set of vertices (nodes),
that represent the selected units, and a set of lines (links),
that represent ties between units. Each line has two vertices
as its end-points; if they are equal it is called a loop. Vertices
and lines form a graph. A line can be directed – an arc, or
undirected – an edge.

Additional data about vertices or lines are usually
known – their properties (attributes). For example: name/
label, type, value, position, . . . In general

NetworkD GraphC Data :

The data can be measured or computed.
Formally, a network N D (V ;L;P;W ) consists of

the following:

� A graph G D (V ;L), whereV is the set of vertices and
L D E [A. E \A D ; is the set of lines.A is the set
of arcs and E is the set of edges.

� P – set of vertex value functions or properties:
p : V ! A

� W – set of line value functions or weights: w : L! B

The size of a network/graph is expressed by two numbers:
number of vertices n D jV j and number of linesm D jLj.
In a simple undirected graph (no parallel edges, no loops)
m � 1

2n(n � 1); and in a simple directed graph (no parallel
arcs) m � n2.

For a family of graphsG, we define a density of graphG
as � (G) D m(G)

mmax(G) .

Introduction

Small networks (some tens of vertices) can be represented
by a picture and analyzed by many algorithms (UCINET,
NetMiner). Also middle size networks (some hundreds of
vertices), if they are not dense, can still be represented by
a picture, but some analytical procedures can’t be used.

Till 1990 most networks were small – they were col-
lected by researchers using surveys, observations, archival
records, etc. The advances in IT allowed one to create net-
works from the data already available in the computer(s)
or by browsing on the Internet. Large networks became
reality. Large networks are too big to be displayed in de-
tail; special algorithms are needed for their analysis (Pa-
jek). The availability of large data sets also provided incen-
tives to the boost of theoretical research in (large) network
analysis (not only in the social sciences).

A recent overview of social network analysis software
is given in Huisman and Van Duijn [28].

Large Networks and Complexity of Algorithms

Large networks have several thousands or millions of ver-
tices. The upper limit to their size is technologically de-
pendent – they can be stored in computer’s memory; oth-
erwise we deal with a huge network (see Abello et al. [1]).

Large networks are usually sparse m
 n2; typically
m D O(n) or m D O(n log n), see Table 1.

A collection of large networks is available from Pajek’s
datasets.

The time complexity of an algorithm describes how
the time needed to run the algorithm depends on the size
of the input data. In computer science the problems for
which only algorithms of exponential (or higher) com-
plexity are known are considered hard or intractable, since
the speed-up of a computer only additively increases the
size of problems that can be solved in a given period of
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Social Network Analysis, Large-Scale, Table 1
Examples of large networks

Network n D jV j m D jLj Source
ODLIS dictionary 2909 18419 ODLIS online
Citations SOM 4470 12731 Garfield’s collection
Molecula 1ATN 5020 5128 Brookhaven PDB
Comput geometry 7343 11898 BiBTEX bibliogra-

phies
English words 2-8 52652 89038 Knuth’s English

words
Internet traceroutes 124651 207214 Internet Mapping

Project
Franklin genealogy 203909 195650 Roperld.com

gedcoms
World-Wide-Web 325729 1497135 Notre Dame

Networks
Internet Movie DB 1324748 3792390 IMDB
Wikipedia 659388 16582425 Wikimedia
US patents 3774768 16522438 Nber
SI internet 5547916 62259968 Najdi Si

time, but the problems for which an algorithm of polyno-
mial complexity exists are considered ‘nice’. When deal-
ing with large instances of problems this isn’t always true
anymore. Let us look to time complexities of some typical
algorithms in Table 2.

For the interactive use on large networks already
quadratic algorithms, O(n2), are too slow – we have to re-
strict our ‘toolbox’ to a selection of efficient, subquadratic
algorithms.

How can we deal with large structures? Already Ro-
mans knew – divide et impera (divide and conquer). In
case of networks divide means the use of (recursive) de-
composition of a large network into several smaller net-
works (see Fig. 1) that can be visualized and treated further
using more sophisticated methods; impera means that we
have to take care about the interlinks among so obtained
parts.

Another approach is the use of different statistical
quantities to describe the properties of a network and us-

Social Network Analysis, Large-Scale, Table 2
Complexities of some typical algorithms

Algorithm T(n) 1000 10 000 100 000 1 000 000 10 000 000
Alg-A O(n) 0.00 s 0.015 s 0.17 s 2.22 s 22.2 s
Alg-B O(n log n) 0.00 s 0.06 s 0.98 s 14.4 s 2.8m

Alg-C O(n
p
n) 0.01 s 0.32 s 10.0 s 5.27m 2.78 h

Alg-D O(n2) 0.07 s 7.50 s 12.5m 20.8 h 86.8 d
Alg-E O(n3) 0.10 s 1.67m 1.16 d 3.17 y 3.17 ky

ing probabilistic models to derive the answers to some
questions.

Decompositions

Decompositions of a network are usually described by
clusterings of vertices or lines. In the following we shall
use mainly the clusterings of vertices.

A nonempty subset C � V is called a cluster (group).
A nonempty set of clusters C D fCig forms a clustering.

Clustering C D fCig is a partition iff

[C D
[

i

Ci D V and i ¤ j) Ci \ Cj D ; :

Clustering C D fCig is a hierarchy iff Ci \ Cj 2 f;;Ci ;

Cjg. In other words, in a hierarchy two clusters are either
disjoint or is one contained in the other.

Hierarchy C D fCig is complete, iff [C D V ; and is
basic if for all v 2 [C also fvg 2 C.

Contraction of cluster C in a graph G is called
a graph G/C, in which all vertices of the cluster C

Social Network Analysis, Large-Scale, Figure 1
Decompositions
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Social Network Analysis, Large-Scale, Figure 2
Snyder and Kick’s international trade; matrix display and reduction

Social Network Analysis, Large-Scale, Figure 3
Graph and its subgraph

are replaced by a single new vertex, say c. More pre-
cisely: G/C D (V 0;L0), where V 0 D (V n C) [ fcg and
L0 consists of lines from L that have both end-points in
V n C. Beside these it contains also a ‘star’ with the cen-
ter c and: arc(v; c), if 9p 2 L; u 2 C : p(v; u); or arc(c; v),
if 9p 2 L; u 2 C : p(u; v). There is a loop (c; c) in c if
9p 2 L; u; v 2 C : p(u; v).

In a network over graph G, we have also to specify
how the new values/weights are determined in the shrunk

part of the network. Usually as the sum or maximum/
minimum of the original values.

For a given partition if we contract all clusters except
few selected we obtain their context; and if we contract all
clusters we obtain the reduction of a given network.

On the left side of the Fig. 2 the matrix display of Sny-
der and Kick’s [40] international trade network is pre-
sented. Vertices in the display are reordered according
to the partition by (sub)continents. On the right side the
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Social Network Analysis, Large-Scale, Figure 4
Africa cut-out and inter-links between South and Latin America

corresponding reduction of the network is presented. The
lines in the reduction have the thickness proportional to
the weights

w(Ci ;Cj) D
n(Ci ;Cj)

n(Ci ) � n(Cj )

where n(Ci ;Cj) is the number of lines from cluster Ci to
cluster Cj; and n(Ci ) is the number of lines inside the clus-
ter Ci.

A subgraph H D (V 0;L0) of a given graph G D

(V ;L) is a graph which set of lines is a subset of set of
lines of G, L0 � L, its vertex set is a subset of set of ver-
tices of G, V 0 � V , and it contains all end-vertices of L0.
The graph on the right side of Fig. 3 is a subgraph of the
graph on the left side.

A subgraph can be induced by a given subset of ver-
ticesV 0, thenL0 D LjV 0 consists of all lines fromLwhich
have both end-points in V 0; or lines L0, then V 0 D V jL0
consists of all end-points of lines from L0. It is a spanning
subgraph iffV 0 D V .

On the left side of Fig. 4 the cut-out of African coun-
tries from the Snyder andKick’s network is presented – the
induced subgraph by Africa cluster; and on the right side

Social Network Analysis, Large-Scale, Figure 5
Weak and strong components

the inter-links between Latin America and South Amer-
ica – the induced subgraph by Latin America and South
America clusters with inside cluster lines removed.
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Social Network Analysis, Large-Scale, Figure 6
Weak and strong components in matrix display

Social Network Analysis, Large-Scale, Figure 7
Condensation

Connectivity

A walk from vertex u to vertex v is a sequence of lines
l(vi�1; vi ), i D 1; : : : ; k such that v0 D u and vk D v. k is
called the length of the walk. If in the definition of a walk
we don’t care about the direction of its lines we get a semi-
walk. A walk is closed iff u D v. A graph is acyclic iff it
doesn’t contain any closed walk. A walk in which all ver-
tices are different is a path.

Vertex u is reachable from vertex v iff there exists
a walk with initial vertex v and terminal vertex u. Vertex v
is weakly connected with vertex u iff there exists a semi-
walk with v and u as its end-vertices. Vertex v is strongly
connected with vertex u iff they are mutually reachable.

Weak and strong connectivity are equivalence rela-
tions. Equivalence classes induce weak/strong components
(See Fig. 5).

Reordering the vertices of network such that the ver-
tices from the same class of weak partition are put together
we get a matrix representation (left side of Fig. 6) consist-
ing of diagonal blocks – weak components. The out-diag-
onal blocks are zero-blocks. Most problems can be solved
separately on each component and afterward these solu-
tions combined into final solution.

If we shrink every strong component of a given graph
into a vertex, delete all loops and identify parallel arcs
the obtained reduced graph, called also the condensa-
tion of a given graph, is acyclic [27]. For every acyclic
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Social Network Analysis, Large-Scale, Figure 8
Main component of arc cut at level 0.007 of the SOM citation network

graph an ordering/level function i : V ! N exists such
that (u; v) 2A) i(u) < i(v). The procedure to deter-
mine such ordering is called topological sort [19]. Re-
ordering in matrix display the vertices of a network by
this ordering we obtain a representation as at the right
side of Fig. 6 – the blocks below the diagonal are zero-
blocks.

A directed graph, its condensation and its topologi-
cally ordered matrix display are presented in Fig. 7.

For several network analysis problems more efficient
algorithms exist for acyclic networks.

Cuts

The basic approach to find interesting groups inside a net-
work is to express our intentions (question) with an ap-
propriate property/weight (measured or computed from
network structure) and then identify the substructures of
elements with the highest (lowest) values of the selected
property. This approach is known as a method of cuts.

There exist several measures of importance of vertices
in a network such as: degree, betweeness, closeness [16,24],
hubs and authorities [30], clustering coefficient, . . .
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Social Network Analysis, Large-Scale, Figure 9
Cores

The degree deg(v) of vertex v equals to the number of
lines having vertex v as their end-point. Themaximum de-
gree of a graph is denoted by �. Similarly the in-degree
indeg(v) of vertex v equals to the number of lines hav-
ing vertex v as their terminal point, and the out-degree
outdeg(v) . . .

The vertex-cut of a network N D (V ;L; p), for
a property p : V ! R, at selected level t is a subnetwork
N (t) D (V 0;L(V 0); p), determined by the set

V 0 D fv 2 V : p(v) � tg

and L(V 0) is the set of lines from L that have both end-
points inV 0.

Social Network Analysis, Large-Scale, Figure 10
Cores of orders 10–21 in Computational Geometry collaboration network

The line-cut of a network N D (V ;L;w), for
a weight w : L! R, at selected level t is a subnetwork
N (t) D (V (L0);L0;w), determined by the set

L0 D fe 2 L : w(e) � tg

andV (L0) is the set of all end-points of the lines from L0.
In the analysis of a cut N (t), we look at its compo-

nents. Their number and sizes depend on t. Usually there
are many small components. Often we consider only com-
ponents of size at least k and not exceeding K . The com-
ponents of size smaller than k are discarded as ‘less inter-
esting’; and the components of size larger than K are cut
again at some higher level.

The values of threshold t and size bounds k and K are
determined by inspecting the distribution of vertex/line-
values and the distribution of component sizes and con-
sidering additional knowledge on the nature of network
or goals of analysis.

The pS-core at level 46 (see Fig. 11) of the collabora-
tion network in the field of computational geometry is an
example of vertex cut.

The citation network analysis started in 1964 with the
paper of Garfield et al. [25]. In 1989 Hummon and Dor-
eian [29] proposed three indices – weights of arcs that are
proportional to the number of different source-sink paths
passing through the arc. In Fig. 8 the main component
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Social Network Analysis, Large-Scale, Figure 11
pS-core at level 46 in Computational Geometry collaboration network

of the arc cut at level 0.007 for SPC (search path count)
weights of the SOM (selforganizing maps) citation net-
work (4470 vertices, 12,731 arcs) is presented.

Dense Groups – Cores and Short Rings

Several notions were proposed in attempts to formally de-
scribe dense groups in graphs.

Clique of order k, k � 3, is a maximal complete sub-
graph (isomorphic to complete graph Kk – graph with k
vertices and all possible edges among them).

Other notions are: s-plexes, s-clans, LS sets, lambda
sets, cores, . . . (Wasserman and Faust [43]). For all of
them, except for cores, it turned out that they are difficult
(no fast algorithm exists) to determine.

The notion of core was introduced by Seidman in
1983 [38]. Let G D (V ;E) be a graph. A subgraphHk D

(W ;EjW ) induced by the setW is a k-core or a core of or-
der k iff for all v 2W : degHk

(v) � k, andHk is a max-
imal subgraph with this property. The core of maximum

order is also called themain core. The core number of ver-
tex v is the highest order of a core that contains this vertex.
In general graphs instead of the degree deg(v) we can also
use: in-degree, out-degree, in-degree C out-degree, etc.,
determining different types of cores.

From Fig. 9, representing 0, 1, 2 and 3 core, we can see
the following properties of cores:

� The cores are nested: i < j H)H j �Hi . They form
a hierarchy.

� Cores are not necessarily connected subgraphs.

An efficient algorithm for determining the cores hierarchy
is based on the following property: If from a given graph
G D (V ;E) we recursively delete all vertices, and edges
incident with them, of degree less than k, the remaining
graph is the k-core.

The Fig. 10 presents the cores of orders 10 to 21 in
the collaboration network (n D 7343,m D 11;898) for the
field of computational geometry – two authors are linked
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iff they wrote a paper together. The weight of the edge
equals to the number of joint papers.

The notion of core can be generalized to networks.
Let N D (V ;E;w) be a network, where G D (V ;E) is
a graph and weight w : E ! R is a function assigning val-
ues to edges. A vertex property function onN , or a p-func-
tion for short, is a function p(v;U); v 2 V ;U � V with
real values. Let NU (v) D N(v) \ U , where N(v) is the set
of neighbors of v. Besides degrees, here are some other ex-
amples of p-functions [13]:

pS (v;U) D
X

u2NU (v)

w(v; u); where w : E ! RC0

pM(v;U) D max
u2NU (v)

w(v; u); where w : E ! R

pk(v;U) D number of cycles of length k
through vertex v in (U;EjU)

p� (v;U) D
deg(v;U)

maxu2N(v) deg(u)
; if deg(v) > 0;

0; otherwise
pı (v;U) D max

u2NCU (v)
deg(u) � min

u2NCU (v)
deg(u)

pa(v;U) D
1

jNU (v)j

X

u2NU (v)

w(v; u); if NU (v) ¤ ;;

0; otherwise

The subgraphH D (C;EjC) induced by the set C � V is
a p-core at level p-core t 2 R iff for all v 2 C : t � p(v;C)
and C is a maximal such set.

The function p ismonotone, iff it has the property

C1 � C2 ) 8v 2 V : (p(v;C1) � p(v;C2))

The degrees and the functions pS ; pM ; pk ; p� and pı
are monotone; and pa is not. For a monotone function
the p-core at level t can be determined, as in the ordinary
case, by successively deleting vertices with value of p lower
than t; and the cores on different levels are nested

t1 < t2 )Ht2 �Ht1

The p-function is local, iff p(v;U) D p(v;NU (v)). The
degrees, pS ; pM ; p� ; pı and pa are local; but pk is not
local for k � 4. For a local monotone p-function an
O(mmax(�; log n)) algorithm for determining the p-core
levels exists, assuming that p(v;NC (v)) can be computed
in O(degC (v)).

Figure 11 presents the pS-core at level 46 of the collab-
oration network in the field of computational geometry.
Note, for example, that R. Klein (lower left) has in-core

degree only 2, but its in-core sum of weights is at least 46 –
he wrote most of his papers with C. Icking.

A k-ring is a simple closed chain of length k. Us-
ing k-rings we can define a weight of an edge e as
wk(e) D # of different k-rings containing the edge e 2 E.

Since for each edge e of complete graph Kr, r � k � 3
we have wk(e) D (r � 2)!/(r � k)!, the edges belonging to
cliques have large weights. Therefore these weights can be
used to identify the dense parts of a network. For example:
all r-cliques of a network belong to (r � 2)-edge cut for the
weight w3.

Related to triangular (3-rings) network is the notion of
triangular connectivity that can be used to operationalize
the notion of Granovetter’s strong and weak ties [26]. This
notion can be generalized to short cycle connectivity. For
details see [14]. For efficient algorithms for computing tri-
angles in networks see [10,39], and Latapy.

In Fig. 12 the edge-cut at level 16 of triangular network
of Erdős collaboration graph (without Erdős, n D 6926,
m D 11;343) is presented [9].

In directed networks there are two types of triangles or
3-rings (cyclic and transitive, see Fig. 14).

Let G D (V ;E) be a simple undirected graph. Clus-
tering in vertex v is usually measured as a quotient be-
tween the number of lines in subgraph G1(v) D G(N(v))
induced by the neighbors of vertex v and the number of
lines in the complete graph on these vertices:

C(v) D

8
<

:

2jL(G1(v))j
deg(v)(deg(v) � 1)

; deg(v) > 1

0; otherwise
:

For simple directed graphs, we have to omit the number 2.
So defined clustering coefficient attains largest values

mostly on vertices of low degree – it is not useful for data
analysis task. A better coefficient is obtained by the follow-
ing correction

C1(v) D
deg(v)
�

C(v)

where� is the maximum degree in graphG. This measure
attains its largest value in vertices that belong to an isolated
clique of size�.

Islands

Islands are very general and efficient approach to deter-
mine the ‘important’ subnetworks in a given network with
respect to a given property of vertices or lines. It is an im-
provement of the cuts approach. If we represent a given
or computed value of vertices/lines as a height of vertices/
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Social Network Analysis, Large-Scale, Figure 12
Edge-cut at level 16 of triangular network of Erdős collaboration graph

Social Network Analysis, Large-Scale, Figure 13
Vertex and edge triangular connectivity

Social Network Analysis, Large-Scale, Figure 14
K5 and cyclic and transitive 3-ring
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Social Network Analysis, Large-Scale, Figure 15
Cuts and islands

lines and we immerse the network into a water up to se-
lected level we get islands. Varying the level we get differ-
ent islands [45].

In the islands approach we select only maximal islands
of sizes inside the given size bounds k to K , but on dif-

Social Network Analysis, Large-Scale, Figure 16
Selected islands from The Edinburgh Associative Thesaurus

ferent levels. In this way we bypass the problems of the
cuts approach: determining the ‘right’ threshold value and
too small/large sizes of obtained components. Besides this
we can also identify locally important islands with small
heights – emerging groups. Very efficient algorithms exist
to determine the islands hierarchy and to list all the islands
of selected sizes. An island is simple iff it has only one peak.

As an example, let us take the Nber network of US
Patents. It has 3,774,768 vertices and 16,522,438 arcs.
We computed SPC weights in it and determined all
(2,90)-islands. The reduced network has 470,137 vertices,
307,472 arcs and for different k:C2 D 187;610,C5 D 8859,
C30 D 101, C50 D 30 islands. The main island turns out
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Social Network Analysis, Large-Scale, Figure 17
Marriages among relatives in Ragusa

Social Network Analysis, Large-Scale, Figure 18
(247,2)-core and (27,22)-core of IMDB – wrestling

to be the island on the theme LCD – Liquid crystal dis-
play. In Fig. 16 four islands for transitivity triangular
weight from The Edinburgh Associative Thesaurus net-
work (n D 23;219, m D 325;624) are presented. From the
left bottom island of words around the leader ‘WORK’ we
see that the data were collected asking students.

Pattern Searching

If a selected pattern determined by a given graph does
not occur frequently in a sparse network the straightfor-
ward backtracking algorithm applied for pattern search-
ing finds all appearances of the pattern very fast even in
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Social Network Analysis, Large-Scale, Figure 19
K4;5 and directed 4-rings

the case of very large networks. Pattern searching was suc-
cessfully applied to searching for patterns of atoms in large
organic molecula (carbon rings) and searching for relink-
ing marriages in genealogies (Batagelj and Mrvar [12];
Batagelj [6]).

The Fig. 17 presents three connected relinking mar-
riages in the genealogy (represented as a p-graph) of Ra-
gusan noble families. In a p-graph the vertices represent
married couples or nonmarried individuals. A solid arc in-
dicates the __ is a son of __ relation, and a dotted arc indi-
cates the __ is a daughter of __ relation. In all three patterns
a brother and a sister from one family found their partners
in the same other family.

TwoMode Networks

A network N D (V ;L;w) in which the set of vertices
V D V1 [V2 is composed of two disjoint setsV1 andV2,
and L is a set of lines linking V1 and V2 is called a two-
mode or bipartite network.

The two-mode networks often appear in applications,
but till recently no directed methods for analysis of larger
two-mode networks were available. To identify dense parts
of two-mode network, we can use the adapted cores and
short rings approaches (Ahmed et al. [3]).

The subset of vertices C � V is a (p; q)-core in a two-
mode networkN D (V1;V2;L),V D V1 [V2 iff
a. in the induced subnetworkH D (C1;C2;L(C)), C1 D

C \ V1, C2 D C \V2 it holds for all v 2 C1 :
degH (v) � p and for all v 2 C2 : degH (v) � q ;

b. C is the maximal subset ofV satisfying condition a.
The two-mode cores have the following properties:

� C(0; 0) D V
� C(p; q) is not always connected
� (p1 � p2) ^ (q1 � q2)) C(p2; q2) � C(p1; q1).

To determine a (p; q)-core an algorithm similar to the
ordinary core algorithm can be used: recursively remove
from the first set all vertices of degree less than p, and from
the second set all vertices of degree less than q. It can be
implemented to run in O(m) time.

Themain question when applying the bipartite cores is
what are the right values of p and q? The most interesting
are the values on the ‘border’ that don’t produce too large
cores.

In Fig. 18 the (247,2)-core and (27,22)-core from
the Internet Movie Database (two-mode network ac-
tors × movies, n D 1;324;748 D 428;440C 896;308 ver-
tices and m D 3;792;390 arcs) are presented. Both deal
with wrestling.

In 2-mode network there are no 3-rings. The densest
substructures are complete bipartite subgraphs Kp;q – see
K4;5 on the left side of Fig. 19. They contain many 4-rings

w4(e) D (p � 1)(q � 1) ; for e 2 Kp;q :

There are four types of directed 4-rings – see the right
side of Fig. 19. In the case of transitive rings we can count
also on how many transitive rings the arc is a shortcut.

In the Internet Movie Database, we obtained for w4
12,465 simple line islands on 56,086 vertices; 30 among
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Social Network Analysis, Large-Scale, Figure 20
Islands forw4 / Charlie Brown and adult

them have size at least 50. Two of them are presented on
Fig. 20.

Multiplicationof Networks

To a simple two-mode networkN D (I; J;E;w); where I
and J are sets of vertices, E is a set of edges linking I
and J , and w : E ! R is a weight; we can assign a net-
work matrix W D [wi; j] with elements: wi; j D w(i; j) for
(i; j) 2 E and wi; j D 0 otherwise.

Given a pair of compatible networks NA D (I;K;
EA;wA) and NB D (K; J;EB ;wB) with corresponding
matrices AI�K and BK�J we call a product of networks
NA and NB a network NA ? NB D NC D (I; J;
EC ;wC ), where EC D f(i; j) : i 2 I; j 2 J; ci; j ¤ 0g
and wC(i; j) D ci; j for (i; j) 2 EC . The product matrix
C D [ci; j]I�J D AB is defined in the standard way

ci; j D
X

k2K
ai;k � bk; j :

In the case when I DK D J we are dealing with ordinary
one-mode networks (with square matrices).

The standard matrix multiplication is too slow to be
used for large networks. For sparse large networks, we can
multiply much faster considering only nonzero elements.
In general the multiplication of large sparse networks is
a ‘dangerous’ operation since the result can ‘explode’ – it
is not sparse. But in many interesting cases, we can assure
that also the product is sparse. For example, we can prove:

If at least one of the sparse networksNA andNB has
small maximal degree on K then also the resulting product
networkNC is sparse.

A more detailed analysis gives: Let for k 2

K be dmin(k) D min(degA(k); degB(k)), �min D

maxk2K dmin(k), dmax(k) D max(degA(k); degB(k)),
K(d) D fk 2 K :dmax(k) � dg, and d� D argmind
(jK(d)j � d). If for the sparse networksNA andNB the
quantities �min and d� are small then also the resulting
product networkNC is sparse.

For example, using network multiplication we can in
a given genealogy from the basic relations (P – parent-of,
L – is a man, J – is a woman) compute all other kinship
relations. For details see [12].

An important application of network multiplication
is conversion of two-mode network to the correspond-
ing one-mode networks. Often we transform a two-
mode network N into an ordinary (one-mode) network
N1 D (I;E1;w1) or/andN2 D (J;E2;w2), whereE1 and
w1 are determined by the matrix W(1) D WWT, w(1)

i j DP
k2J wik � wT

k j andWT is the transpose of matrixW. Ev-

idently the matrixW(1) is symmetric w(1)
i j D w(1)

ji . There is
an edge (i; j) 2 E1 inN1, iff N(i)\ N( j) ¤ ;. Its weight
isw1(i; j) D w(1)

i j . The networkN2 is determined in a sim-
ilar way by the matrixW(2) DWTW.

The networksN1 andN2 are analyzed using standard
methods for one-mode networks.

Another very important application of network mul-
tiplication is producing different networks from data ta-
bles. A data table T is a set of records T D fTk : k 2Kg,
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Social Network Analysis, Large-Scale, Figure 21
Themain two islands in ProjInst

where K is the set of keys. A record has the form
Tk D (k; q1(k); q2(k); : : : ; qr (k)) where qi (k) is the value
of the property (attribute) qi for the key k.

Suppose that the property q has the range 2Q. For
example: Authors[WasFau] = {S. Wasserman, K. Faust},
PubYear [WasFau] = {1994}, . . . IfQ is finite (it can always
be transformed in such set by partitioning the set Q and
recoding the values) we can assign to the property q a two-
mode networkK � q D (K;Q;E;w) where (k; v) 2 E iff
v 2 q(k), and w(k; v) D 1.

Also, for properties qi and q j we can define a two-
mode network qi � q j D (Qi ;Q j;E;w) where (u; v) 2 E
iff 9k 2K : (u 2 qi (k) ^ v 2 qj(k)), and w(u; v) D

card
�
fk 2K : (u 2 qi (k) ^ v 2 qj(k))g


.

It holds [qi � q j]T D q j � qi and qi�q j D [K�qi ]T?
[K � q j] D [qi �K] ? [K � q j].

We can join a pair of properties qi and q j also with re-
spect to the third property qs : we get a two-mode network
[qi � q j]/qs D [qi � qs ] ? [qs � q j].

For the meeting The Age of Simulation at Ars Elec-
tronica in Linz, January 2006, a dataset of EU projects
on simulation was collected by FAS research, Vienna and
stored in the form of Excel table. The rows are the de-
scriptions of projects participants (idents) and columns
correspond to different their properties. From this table
three two-mode networks were produced: Project – P D
[idents � projects]; Country – C D [idents � countries];
and Institution – U D [idents � institutions]; where
jidentsj D 8869, jprojectsj D 933, jinstitutionsj D 3438,
and jcountriesj D 60.

Since all three networks have the common set (idents)
we can derive from them using network multiplication
several interesting networks, such as: ProjInst – W D

[projects � institutions] D PT ? U; Countries – S D
[countries � countries] D CT ? C; and Institutions –
Q D [institutions � institutions]/projects DWT ?W.

For identifying important parts of ProjInst network
the 4-rings weights were computed and in the obtained
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Social Network Analysis, Large-Scale, Figure 22
Collaboration among countries – graph and hierarchical clustering

network the line islands were determined. 101 islandswere
obtained, 18 of the size at least 5 (see Fig. 21). The twomost
important islands are: aviation companies and car compa-
nies.

In Fig. 22 the collaboration among countries is pre-
sented. For dense (sub)-networks we get better visualiza-
tion by using matrix display. To determine the ordering
of vertices we used Ward’s clustering procedure with cor-
rected Euclidean distance as dissimilarity measure [21].
The permutation determined by hierarchy can often be
improved by changing the positions of clusters in the clus-
tering tree.We get a typical center-periphery structure (see
Fig. 23).

Note that in matrix display some details become ap-
parent, such as the collaboration inside the peripherical
group Afghanistan, Morocco, Malta, Tunisia, Lebanon,
Jordan and Algeria; or a collaboration of Russian Feder-
ation with ex-Soviet republics Turkmenistan, Uzbekistan,
Moldavia, Kazakhstan, Azerbaijan and Japan.

Statistical Approach

There are many properties computed from the network
data that give us different information about it. For exam-
ple:

Global properties Number of vertices, lines (edges/arcs),
components; diameter; centralization; maximum core
number, . . .

Local properties Degrees, core numbers, indices (be-
tweeness, hubs, authorities, . . . ). Usually we look at
their distributions or inspect the values of interesting
elements.
Another interesting task is searching for associations

between computed (structural) data and input (measured)
data.

Paul Erdős and Alfréd Rényi introduced in 1959 the
notion of random graph in which each pair of vertices is
linked with a given probability p. The theory of ER ran-
dom graphs is well developed (see [15]). Some character-
istic results:

� The degree distribution is binomial (in the limit Pois-
son’s) and most of the vertices have degree (very) close
to the average degree;

� For p � 1
n cycles appear in the graph, and soon also the

giant component;
� For p � log2 n

n almost all graphs are connected.

Real-life networks are usually not random in the Erdős–
Rényi sense. The analysis of their distributions gave new
views about their structure.
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Social Network Analysis, Large-Scale, Figure 23
Matrix display of collaboration among countries

Social Network Analysis, Large-Scale, Figure 24
Distributions: ER-random and US patents
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On the left side of Fig. 24 a degree distribution in
ER graph on n D 100;000 vertices with average degree
deg D 30 is presented. On the right side a degree distribu-
tion for US patents citation network is presented (in log–
log scale). Evidently this distribution is very far away from
Poisson distribution.

In 1967 a psychologist Stanley Milgram made his ex-
periment with letters. The letter should reach a target per-
son. The persons involved in experiment were asked to
send the letter with these instructions to his or her ac-
quaintance that is supposed to be closer (in the acquain-
tances network) to the target person. The letter was sent
from Boston to Omaha. The average length of the success-
ful paths was six – six degrees of separation. The average
path length on the internet is 19 clicks.

The networks in which the average shortest path
length is small are called small worlds. Duncan Watts and
Steven Strogatz developed in late 90-ties a procedure for
construction of (random) small worlds by rewiring – an
edge is randomly selected and one of its endpoints is at-
tached to same other vertex. After each rewiring step the
average length of geodesics is usually decreased because
the rewiring creates shortcuts.

Albert-László Barabási fromUniversity of Notre Dame
in 1998 analyzed several networks and noticed:

� The degree distribution follows the power law – the
probability pd that a vertex has a degree d equals to
pd D cd�� . In a log–log scale diagram it is represented
by a line.

� In a network there exist some vertices with large degree
(very improbable in ER graphs). These vertices link the
network into a single component.

It turned out that most of real life networks (persons – e-
mail, phone calls, sexual contacts (drug users, AIDS), col-
laboration; movie actors – playing in the samemovie; pro-
teins – interactions; words – semantic relations; . . . ) have
such characteristics. Because for these networks their de-
gree distribution has no natural scale they were named
scale-free networks. For a discussion about the notion of
scale-free network see [33].

The following was the first explanation (Barabási) of
scale-free nature of many real-life networks:

� These networks are growing.
� In this process new vertices are added and linked with

new edges to already existing vertices. The random se-
lection of vertex to which a new vertex is attached is not
uniform but follows the preferential attachment rule –
the selection probability is proportional to the degree
of a vertex.

Based on this model it can be shown the following:

� The degree distribution is the power law.
� The average length of geodesics is O(log n).
� These networks are resilient against random vertex or

edge removals (random attacks), but quickly become
disconnected when large degree nodes (Achilles’ heel)
are removed (targeted attacks).

Mark Granovetter noticed in 1973 that in social networks
groups appear linked with strong ties [26]. They link in
larger networks with weak ties. Also in other real-life net-
works vertices often form groups – the clustering coeffi-
cient is larger than in ER networks.

Several improvements and alternative models were
proposed that also produce scale-free networks with some
additional properties characteristic for real-life networks:
copying [31], combining random and preferential attach-
ment [37], R-mat [18], forest fire [32], aging, fitness, non-
linear preferences, . . .

There are several applications of the scale-free net-
works theory. For example searching (Adamic et al. [2])
and spreading of epidemies (Barthélemy, Barrat, Pastor-
Sattoras, Vespignani, Complex Networks Collaboratory).

For general overviews see [4,22,35,36].

Future Directions

In 2005 the support for multi-relational networks was in-
troduced in Pajek. Combined with temporal networks it
enables analysis of new kinds of networks – such as KEDS
networks (Kansas Event Data System or Tabari). These
networks are usually small in terms of vertices but can be
(very) large in terms of lines – different interaction events
among actors.

The last developed approach for analysis of large net-
works is adaptation of hierarchical clustering with rela-
tional constraints based on Ferligoj and Batagelj [23] to
large networks. The basic idea to get a fast algorithm is to
compute the dissimilarities between units (vertices) only
for the linked pairs of units [11]. This approach is one of
the possible approaches to analysis of spatial networks.

There are still several fields of social network analysis
for which efficient approaches to deal with large networks
have to be developed such as blockmodeling, probabilistic
models, . . .

In the near future new versions of network analysis
software will appear using very large computer memories
enabled by the new 64-bit computer architecture. A spe-
cial challenge is development of methods and software for
analysis of huge networks.
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Glossary

Algebraic models Approaches to network analysis that
use algebraic methods for studying sets of points to
produce positional analyses such as blockmodels.

Agent-based computational models Models of dynamic
systems that focus on agent-level properties, seeing
system level changes as consequences of the interac-
tion of rule-following agents.

Balance theories A number of related theories concern-
ing both the psychological state of consonance or dis-
sonance found in a person’s ideas and affects and the
equilibrium or disequilibrium of one person’s rela-
tions with another. The exploration of the mathemati-
cal principles of these states.

Blockmodeling An approach to positional analysis that
uses algebraic methods to construct image graphs in
which blocks represent connections or the absence of
a connection between sets of points.

Graph theory A basic method for the analysis of net-
works in which the relational properties of the mem-
bers of a set are seen in terms of points and lines. Pair-
wise connections among points are used to generate
and explore system-level phenomena such as density
and centralization.

Diffusion processes The processes through which inno-
vations and other changes spread through a network,
the flow and pace of change being determined by the
structure of the network.

Scaling methods Geometrical techniques for displaying
and analyzing a network as a mapping of points lo-
cated in a multidimensional space.

Small-world models Network models based on graphs of
relatively low density but high reachability. Originated
in psychological experiments on the communicative
effectiveness of interpersonal acquaintance.
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Definition of the Subject

The formal idea of using a network as a tool of analy-
sis originated in electrical engineering as a way of envis-
aging and modeling the flows of electricity through na-
tional power grids and in domestic and industrial settings.
It was merely a short step to the application of the idea
in civil engineering, where water supply, drainage, roads
and railways could all be regarded as networks. Much later
this idea was central to electronic and computer systems
engineering. Parallel methodological innovations had oc-
curred in areas of physical geography, where river drainage
systems had been envisaged as networks of flows that
could be modeled in mathematical terms, and this led to
interest among human geographers about the potential for
applying the idea. The idea that social relationships could
be seen as forming a network or reticule of relations that
are capable of analysis in formal, mathematical terms sug-
gested novel ways of considering social phenomena and
promised insights that were unavailable through alterna-
tive approaches.

Social network analysis first emerged as an approach
distinctive from statistical analysis within anthropology,
social psychology, and sociology. It went on to influence
theoretical and methodological developments in many
other areas of social sciences. In all these areas, researchers
took up mathematical models from graph theory, which
they used to investigate structures of relations. Researchers
who were working in the area of social network analy-
sis soon began to broaden their framework of analysis by
exploring the implications of other mathematical models,
such as algebraic set theory, scaling methods, and statis-
tical and stochastic methods. In this way, social network
analysis became linked to the larger intellectual debates
going on in other areas of the natural and social sciences
where these same methods were being drawn upon, and
a number of social network analysts have contributed to
the development of these and other mathematical models.
Social network analysts have promoted and undertaken
the application of these ideas in many areas of sociology,
most notably in economic sociology, political sociology,
the study of family and kinship, community studies, the
investigation of world systems, and numerous other areas.

Investigation into social networks has now become far
more fashionable than ever before. However, it is in the
nature of intellectual fashions that much of the new inter-
est comes from those who are least familiar with the area.
This is certainly true of social network analysis, where
many newcomers were unaware of its long history. They
were influenced, in particular, by the exaggerated claims to
intellectual novelty that were being made by some physi-

cists who have advocated random-network and small-
world models as the basis of what they call a “new science
of networks”. Indeed, many people have assumed that so-
cial network analysis began de novo with these models
and they know little about the applications already made
using other models. Despite their exaggerated claims, the
work of the physicists has provided us with some powerful
new models, and these have had a major impact beyond
the specifically social sphere – this fact will be apparent
from considering chapters in a number of the sections in
this Encyclopedia. However, the physicists have not pro-
vided a complete replacement for social network analysis,
as they sometimes imply, but have offered a broadening of
its range and concerns.

This overview article will discuss the development of
social network analysis and will sketch the various mathe-
matical models that have been used to explore the nature
of complex social systems. It begins with an overview of
the history of social network analysis and its main applica-
tions. This is followed by a consideration of graph theory,
the earliest and principal approach to the study of social
networks. The following sections look at later and more
advanced methods: algebraic methods and blockmodel-
ing, scaling methods and visualization techniques, statisti-
cal methods, agent-based computational methods, and fi-
nally the small-world methods of the physicists. The latter
discussion will place the new social physics in the context
of earlier discussions and it will show the variety of math-
ematical models that have a part to play in contemporary
social network analysis. The various methods and models
are considered in outline and without technical detail. The
various specialist chapters included in this and other sec-
tions of the Encyclopedia cover these methods in greater
detail.

The Development of Social Network Analysis

Social network analysis has a long history, though it ap-
peared under its specific name only far more recently
(see Chap. 2, p. 23 in [51]). Although structural thinking
was central to classical sociology, the intellectual roots of
a specifically network perspective can be traced back to
those sociologists of the late nineteenth and early twen-
tieth centuries who used the idea of a network of relations
as a metaphor for understanding social relations as struc-
tures of relations. Georg Simmel and other German sociol-
ogists, in particular, wrote extensively on the “interweav-
ing” of actions to form complex configurations or “webs”
of connection. Their metaphorical usage of the idea drew
explicitly from the textile industry and its ideas of the weft
and warp of woven fabrics. The first proper usage of the
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actual word “network” in a sociological context, however,
was in the work of the anthropologist Alfred Radcliffe-
Brown [45], who used it to suggest a more formal focus
for structural analysis. Simultaneously with this, a number
of social psychologists working in the area of child study
and field theory began to construct diagrams of social re-
lations that they gradually formalized as “sociograms” to
show the chains of positive and negative connections that
they were finding among the individuals in their experi-
mental studies.

The crucial social psychological work on social net-
works was that of the psychotherapist Jacob Moreno [41].
Following his arrival in the United States he began to
combine psychodrama with studies of the influence of
friendship choices on personality development among
schoolchildren. His key innovation was to make use of
sociograms to depict the friendship patterns that he was
able to discover within small groups such as a school class
or a neighborhood peer group. Moreno made many in-
tellectual contacts, most importantly with the Gestalt psy-
chologist Kurt Lewin, who had himself recently migrated
to the United States. Moreno and Lewin exchanged many
ideas – and the nature of the exchange became a matter of
contention between them in later years. Lewin soon began
to move towards a more social form of psychology that
stressed the importance of looking at organized patterns
of group relations in particular spheres of activity as form-
ing systemic wholes. Such wholes could be seen, by anal-
ogy with electromagnetic and gravitational fields, as social
fields through which influences are able to flow from one
area or part to another. The aim of Lewin’s field theory
was to map and to explore the “dynamics” of these fields
of interpersonal influence.

Both Moreno and Lewin used diagrammatic represen-
tations of social relations, but it was Moreno who invented
the classic form of the sociogram. A sociogram consists
of points, representing individuals, and lines, representing
the social relationships among them. Moreno argued that
these patterns of points and lines – later described more
formally as “vertices” and “edges” – could be described
as “social configurations” in which could be charted such
things as the direction of friendship choices and their in-
tensity. This work came to be referred to as “sociome-
try”, and a journal with that name was founded in 1937.
Through the work published in this journal, the ideas of
Moreno and Lewin on configurations of social relations in
small groups gradually gave rise to a more mathematically
oriented approach that went under the name of “group dy-
namics”. It was in this school of thought that ideas from
graph theory – first formulated by René König [33] – be-
gan to be employed from the late 1940s, these ideas be-

coming the basis of a more formal and rigorous study of
the properties of the social networks of small groups. By
treating the sociogram as a graph, it proved possible to
chart dyadic, triadic, and more complex structures and
to analyze the states of “balance” and imbalance that ex-
isted among positive and negative relations within each
network [3,13,28].

It was during the 1930s and 1940s that anthropologi-
cal and sociological work also began to move in a similar
direction. In 1929, the anthropologist W. Lloyd Warner,
a former colleague of Radcliffe-Brown, had moved to Har-
vard University in order to work with the psychologist El-
ton Mayo on a series of experimental studies of work be-
havior. Their aim was to use the techniques already em-
ployed by anthropologists in studies of small tribes and
villages, but to carry out new studies of small groups in the
factory and office settings of urban societies. Influenced
also by the early system theory constructed by the phys-
iologists Lawrence Henderson and Walter Cannon, they
began a series of empirical studies at the Hawthorne elec-
trical works in Chicago. The so-called Hawthorne studies
became amilestone in social research – not least because of
their significance in developing the idea of the social net-
work.

The Hawthorne studies [47] had begun as manage-
ment-run investigations into worker efficiency and its re-
lationship to the physical conditions of work. The early ex-
periments examined such things as the consequences of
changes in levels of heating and lighting and the provision
of work breaks. The studies turned from physical to social
factors under Warner and Mayo, and Mayo famously re-
ported that the crucial factor in increasing worker produc-
tivity had been their involvement in the experiment itself.
The paradoxical results showing increased productivity
even when physical conditions worsened were interpreted
as showing the high levels of satisfaction that workers felt
simply from being part of the management experiment:
it was the first time that anyone from management had
shown any direct interest in them. Adopting more anthro-
pological methods of observation in the bankwiring room,
the researchers documented the gradual building of infor-
mal work group relations and forms of social solidarity
among those in the experimental group. These informal
relations ran in parallel with the formal relations of the
managerial organization chart, and the researchers used
sociograms to chart the informal social networks among
workers.

The sociograms drawn by the Hawthorne researchers
allowed them to identify “cliques” and other sub-groups
within the larger group, and Warner went on to inves-
tigate this kind of group structure further in a series of
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investigations into community relations in the New Eng-
land city of Newburyport (referred to as “Yankee City”
in [59,60,61,62]), the Mississippi city of Natchez (“Old
City” in [15]), and the Indiana city of Morris (“Jonesville”
in [58]). In this work, Warner and his colleagues used net-
work ideas to explore the formation of cliques, “crowds”,
and “circles” among those they studied, and they exam-
ined these in relation to the more formal structures of
economic and political life. Their investigations identified
these social circles through a rough and ready use of the
Venn diagrams of set theory and the methods of matrix
display. Using these simple methods, they were able to
identify such things as class divisions in clique member-
ship and the effects of ethnicity on the structure of network
relations.

It was during the late 1940s and early 1950s that a sig-
nificant consolidation of the social network approaches
that had been developing began to be forged. It was to
be another decade, however, before a recognizable tradi-
tion of social network analysis was properly established.
George Homans, a colleague of Warner and Mayo at Har-
vard, attempted a synthesis of the anthropological and so-
ciological ideas as the basis of an alternative sociology to
the system theory of Talcott Parsons [30]. Homans re-an-
alyzed some of the earlier data using rudimentary tech-
niques of matrix rearrangement, his aim being to bring
out the clique structure more clearly. Homans’ method of
manually “reshuffling” the 0s and 1s in a matrix to bring
out blocks of high and low density was a pioneering move
towards the more formal methods of blockmodeling that
developed during the 1970s. Homans himself interpreted
his data on social relations in terms of the frequency and
duration of the relationships involved and went on to de-
velop rational choice models of action to explain the find-
ings [31].

The early 1950s also saw the development of more
systematic anthropological work on social networks in
Britain. The Manchester University anthropologist Max
Gluckman established the Rhodes-Livingstone Institute in
Northern Rhodesia (now Zambia) to study African social
structures in village and town settings. An early associate
of the Institute was John Barnes, who undertook indepen-
dent fieldwork in Bremnes, Norway. It was here that he
recognized the importance of the network metaphor – fa-
mously while observing the repaired fishing nets of the
local fishermen – and he advocated the study of whole
communities as networks of points and lines [2]. Eliz-
abeth Bott, a student of Lloyd Warner and then work-
ing at the Tavistock Institute (associated with the Michi-
gan Research Center for Group Dynamics), took up this
metaphor in her own investigations into the kinship net-

works of London families [6,7]. Because of her position
at the Tavistock, she was encouraged to link this to the
work of Moreno and to the early field theory. This work
was systematized by Siegfried Nadel and Clyde Mitchell.
Nadel [42] aimed to establish a mathematical basis for so-
cial network research, but his early death prevented him
from carrying this further. Mitchell [39], however, made
the network idea the basis for a series of studies at the
Rhodes-Livingstone Institute and set out a number of con-
ceptual innovations – density, multiplexity, durability, di-
rection, reachability and so forth – that echoed and took
further the ideas of Homans.

By 1969, then, a clear body of network ideas had been
established. in anthropology and social psychology, and
this was coming to be organized around the mathemat-
ical theory of graphs. It was at this point, however, that
an alternative framework began to develop in the United
States, and this eventually subsumed the earlier approach
in a comprehensive framework of social network analysis.
John Boyd, François Lorrain, and Harrison White had be-
gun to explore some aspects of Lévi-Strauss’s analysis of
kinship structures using algebraic set theory [72], while
Edward Laumann [34] and Joel Levine [35] began to use
multidimensional scaling to investigate social structure.
White moved to Harvard University and brought together
a strikingly original group of young researchers who were
interested in using mathematical methods to explore as-
pects of social networks and social relations.

One of the earliest products of this group was Mark
Granovetter’s [26,27] influential argument about “the
strength of weak ties” – the first, and most important, of
the counter-intuitive results to come out of this more so-
phisticated form of network analysis. Granovetter’s argu-
ment held that the chances that a person will receive use-
ful information from those in his or her social network is
greater when a person has acquaintances rather than close
and intimate friends. One’s intimates tend to have access
to the same pool of information through their dense pat-
tern of mutual connections. Acquaintances, on the other
hand are connected to quite diverse and distant social net-
works and so can communicate a much greater range of
information. Paradoxically, then, it is the weak acquain-
tanceship ties that are the “strongest” or most important
carriers of information. Having a small number of ac-
quaintances can be more useful in a job search than having
a large number of intimates.

The ability of White’s group to pursue this program
of social network analysis was made possible by the ad-
vances that were being made in computing technology
and that were then becoming available in software pro-
grams. Earlier work had used manual techniques and so
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had been limited to relatively small groups. Mainframe
computers and Fortran programming made possible the
analysis of much larger data sets and the use of more
powerful mathematics. As the members of the Harvard
group spread to Graduate centers across North Amer-
ica, their work became a major influence within sociol-
ogy and encouraged the global spread of formal social
network analysis. Barry Wellman and Steven Berkowitz
were particularly active in setting up the International
Network for Social Network Analysis (http://www.insna.
org/) and this became the basis for the founding of the
journal Social Networks and for their own powerful syn-
theses in social network analysis [4,71] (see also [32]).
Powerful methodological ideas and sociological applica-
tions were developed in the United States by Ronald
Breiger, Ronald Burt [10,11], Patrick Doreian, and oth-
ers. Social network analysis was pursued in Canada by
Barry Wellman and Peter Carrington, by John Scott in
Britain [51], by Rob Mokken and Frans Stokman in the
Netherlands (the developers of the Gradap program used
in [29]), and by Charles Crothers and Malcolm Alexander
in Australia. Stanley Wasserman led the way in produc-
ing a standard textbook for social network methods [64]
and other consolidating texts appeared [24,37]. By the
1990s, social network analysis had become one of the
most strongly established research specialisms in Sociol-
ogy, with a strong intellectual base, advancedmethods and
texts [12,18], and a comprehensive range of exemplary
studies.

During the 1990s, however, a rather paradoxical de-
velopment occurred. The exhaustion of many of the con-
ventional research programmes in physics had led a num-
ber of theoretical physicists to search out new areas in
which to apply their theories. In 1998, Duncan Watts and
Steven Strogatz published a paper [68] that revisited some
of the ideas on random networks that had grown out of
Stanley Milgram’s work on “small worlds” [38,56]. This
caused a great stir among physicists and ledAlbértó-Laszlo
Barabási to propose the building of a “new science of net-
works” with the potential for applications across the social
sciences [1]. In apparent ignorance of the prior existence
of social network analysis, he claimed that it was only dur-
ing the 1990s – and thanks to physicists’ models – that in-
vestigators had become aware of the fact that social net-
works have structures and show orderly patterns of devel-
opment.

This claim startled and dumbfounded most sociolo-
gists working on social networks, for whom the existence
of social structure was a fundamental axiom. They re-
sented the ignoring of what they had already achieved
and the misrepresentation of sociological understandings

of the social world that it involved. Despite its shaky his-
toriography, the arguments of Bárabasi and other social
physicists had a major influence outside the discipline and
among those in sociological specialisms that were, so far,
untouched by social network analysis. Works by Duncan
Watts were particularly important [66,67]. The new so-
cial physics of networks was especially well-received in the
popular and scientific press and resulted in a number of
popularizing works (see, for example [8]).

It is, nevertheless, true that the work of the physicists
has certainly been responsible for a substantial growth of
interest in social network analysis during the last decade.
The reason for the appeal of this new work lies in its
promise to provide a dynamic model of social networks,
rather than the more static ones of the past. While the
claim that social network analysis lacks a concern for dy-
namic processes is, perhaps, overstated, it is certainly the
case that the new methods do seem to offer the possi-
bility of a nuanced account of structural change in so-
cial networks. While much of the work is still presented
without any recognition of prior sociological contribu-
tions, sociologists, for their part, are beginning to dis-
cuss how these ideas might enrich social network analy-
sis. The arguments about network dynamics are, in fact,
converging with some of the work on agent-based com-
putational models already being undertaken within Soci-
ology.

A very important issue that has arisen in the use of the
mathematics of graphs is that of whether it provides a sub-
stantive theory or simply a method of analysis. Some re-
searchers hold that the mathematical theorems that can
be derived from graph theory can be directly translated
into substantive theorems concerning particular domains
of application. According to this point of view, sociolog-
ical laws can be derived directly from mathematical laws.
Those who see social network analysis as a method – per-
haps a majority of those working in the area – hold that
mathematical theorems provide simply the formal con-
straints to which social processes must conform: a knowl-
edge of mathematics does not, in itself, obviate the need
to study social phenomena empirically in order to un-
derstand the implications of these theorems for particular
types of social relations.

The remainder of this overview article will set out the
main intellectual strands within contemporary social net-
work analysis. These areas are discussed in greater detail in
the specialist articles in this and other sections of the En-
cyclopedia, and their mathematical bases will not be pre-
sented in any detail. The overview will concentrate on the
general principles involved in each area and on the ways
in which they relate to each other.

http://www.insna.org/
http://www.insna.org/
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Graph Theory and Ideas of Balance

Graph theory, as already noted, is that branch of mathe-
matics that had the earliest influence on the development
of social network analysis (see � Social Network Analy-
sis, Graph Theoretical Approaches to). In graph theory,
a graph or network is simply a collection of points (ver-
tices) connected by lines (edges). Graph theory comprises
a set of mathematical axioms and derivations that describe
the actual and potential patterns formed by these points
and lines. This basic model of a graph can be applied
widely in many substantive domains: electrical wiring net-
works, river drainage networks, road and transportation
networks, and computer networks have all been investi-
gated using graph theory.

A basic graph consists of simple points and lines, but
the lines in a graph can be assigned positive or negative at-
tributes, directions, or numerical values, and the attributes
of points can be recorded. Complex mathematical theo-
rems can be constructed for each of the different types
of graph. Some of the earliest work to use these ideas fo-
cused on the question of “balance” in graphs. Balance is
a term that describes the pattern of signs and numerical
values in a graph in terms of the reciprocity and transi-
tivity of the relations. A graph of friendship relations, for
example, might be unbalanced if two people who each like
one another have opposite relationships to a third person.
If, on the other hand, all three people liked one another
with a similar intensity, the graph would be balanced. Bal-
ance theorists have analyzed complex graphs in terms of
such “triads” of relations. By producing a census of triads
and computing the balance or imbalance in each triad, it
is possible to arrive at a calculation of the overall balance
in the graph as a whole. Such ideas of balance have gen-
erally been assimilated to the idea of equilibrium analyzed
in classical mechanical models. A graph that is in a state of
disequilibrium, therefore, will be marked by tensions and
stresses that push and pull it towards a state of equilibrium.
Where a social network is mapped as an unbalanced graph,
it can be hypothesized that the participants in the network
will experience these stresses as push and pull factors on
the social relations that theymaintain with each other. The
overall network can, therefore, be seen as a dynamic field
of causal influences.

Much of the work that has been carried out using the
idea of balance has considered focal actors to be the points
of reference, and much of the early work that applied
graph theory pursued such “ego-centric” ideas. From this
point of view, the chosen actor is seen as a point that is
“adjacent” to certain other points that comprise its imme-
diate “neighborhood”. Each point can, therefore, be given

an adjacency score. Actors vary in terms of the number
of others with whom they are connected – the number
of friends, number of enemies, number of political as-
sociates, and so on. People or groups may, therefore, be
more or less connected into their neighborhood of others
and so they may be compared in terms of their adjacency
scores. The early work of Moreno had identified school
children as sociometric “stars” or “isolates” according to
the number of friends they had. The stars were the espe-
cially popular class members, while the isolates had few or
no friends in the class. The adjacent others may have more
or fewer connections among themselves: my friends may
or may not be friendly with each other, my business as-
sociates may or may not do business with each other, and
so on. Thus, a basic ego-centric measure is the “density”
of an actor’s neighborhood. This measure is the number
of links that actually exist among immediate contacts ex-
pressed as a proportion of the number of possible contacts
that they could, in principle, sustain among themselves.
Where a large proportion of connections intersect, the ac-
tor’s neighborhood has a high density.

Researchers recognized fairly early on the importance
of going beyond such ego-centric measures to more global
or socio-centric measures of the network as a whole. In
considering a village, for example, a researcher may want
to know not only the distribution of individuals accord-
ing to the densities of their friendship relations, but also
the density of friendship connections in the village consid-
ered as a whole. Such measures of density would indicate
the state of social cohesion or social solidarity in the net-
work. The basic ego-centric measure of density can easily
be extended to the network as a whole – if appropriate data
are available – by computing the proportion of possible
links within the village that are actually established. Cal-
culations of density can also be made for large social net-
works that must be studied through sample investigations.
If it can be assumed that the sample is representative, then
the distribution of adjacency scores for sample members
can be used to compute the overall density of the network.

Density has become one of the most widely used mea-
sures in studies that employ graph theory and it has been
used to indicate the changing character of social solidar-
ity and the state of “community” that exists in a group.
Wellman’s work [69,70] has demonstrated that growing
amounts of geographical mobility have not led to a com-
mensurate decline in community but have resulted, in-
stead, in the transformation of patterns of solidarity. Peo-
ple in large cities, he shows, are likely to interact less fre-
quently and less intensely with numerous others on a day
to day basis as they move to live and work in other parts
of the city. Thanks to cars, the telephone, and the internet,
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however, they are able to maintain more connections, but
on a less frequent and less intense basis.

Particularly important measures of global connected-
ness within a graph are based on the “distance” from one
point to another and the corresponding “centrality” that
points have in the overall pattern of connection. The dis-
tance between two points in graph theoretical terms is sim-
ply the number of lines that must be traversed in moving
from one point to another. Thus, two adjacent points stand
at distance 1 from each other, while two points that are
connected through a common neighbor are at distance 2
from each other. It is generally assumed that influence and
communication within a social network attenuates with
increasing distance. Nevertheless, the rate of attenuation
and the particular level of distance that it is reasonable to
regard as constituting a socially significant connection are
quite variable from one type of network to another. Dis-
tant friends of friends, for example, may be insignificant,
while distant financial donors to a political party or candi-
date may be more significant. The criteria of significance,
it will be apparent, rests always on a sociological judgment
and never on a mathematical measure alone.

The principal use of distance measures has been to
assess the relative centrality or peripherality of points in
a graph. A point whose average distance to all other points
in the graph is low can be regarded as occupying a cen-
tral position in the network as a whole, while a point with
a very high average distance from all others is peripheral to
it. Applications of these ideas in studies of interlocking di-
rectorships – the lines created when company directors sit
on two or more company boards – have made great use of
measures of centrality. They have to documented the ex-
istence of “hubs” within large spheres of adjacent compa-
nies. Such hubs – typically banks or other financial institu-
tions – are the focal centers for business decision-making
and for the allocation of credit at the level of the intercor-
porate network as a whole [50].

Users of graph theory have often distinguished be-
tween measures of centrality based on overall “closeness”
and an idea of centrality based on “betweenness” [22].
A betweenness measure of centrality is one that is based
on a calculation of the probability that any particular point
lies on a path between any two other points. This latter
measure can be used to operationalize the idea of the bro-
ker or intermediary, a person who may not be central in
the network as a whole, but is an important point of con-
tact between parts of the network.

A further extension of the ideas of distance and point
centrality has been the attempt to measure the overall cen-
tralization of the graph as a whole. A measure of central-
ity grasps the extent to which a whole graph is organized

around a small number of central points that constitute its
structural center.

The early work of Warner and his associates was con-
cerned with the formation of cliques within networks.
Their use of this idea of the clique was, however, relatively
loose and essentially commonsensical. Developments in
graph theory have since made possible the construction
of a number of structural concepts for sub-graphs that
are both precise and distinct from each other. The most
straightforward of these sub-graph concepts is that of the
“component”. A component is a maximally connected
sub-graph, the set of all those points that are connected,
directly or indirectly, by a continuous sequence of lines.
A graph will typically consist of a number of such compo-
nents, together with a variable number of completely iso-
lated points. Component boundaries may, therefore, in-
dicate the boundaries to the flow of communication, in-
fluence, or resources within the corresponding social net-
work. A mapping of the size distribution of components
will show the extent to which these flows are fragmented.
It is also possible to map the internal structures of the var-
ious components by taking account of the sign, value, and
direction of the constituent lines in order to uncover any
blockages or distortions in the flow of communication, in-
fluence, or resources. Using a measure of value, for exam-
ple, the nesting of intensely connected components within
more weakly connected components can be disclosed. The
“slicing” techniques available in many software packages
allow contour maps of component structure to be built,
the resulting map showing the peaks of intensity and the
troughs or valleys that separate them.

Component structure can also be studied through
an investigation of the “cycles” that it contains. A cy-
cle is a path that returns to its own starting point, and
a cyclic component consists of a set of intersecting cycles.
A component may consist of a number of such cyclic
components that are connected only through non-cyclic
“bridges”.

Cliques, as defined in graph theory, are sub-sets of
points in which every possible pair of points is connected
at a specified distance. Thus, a 1-clique is a sub-set of
point in which all points are directly connected to each
other. A 2-clique, on the other hand, is a sub-set of points
that are connected through common neighbors. There is,
therefore, a whole family of clique concepts based on vary-
ing distance measures. These are generically referred to as
n-cliques and any large component in a graphwill typically
consist of many overlapping n-cliques, as well-connected
points will tend to bemembers of large numbers of cliques.
An analysis of cliques must always specify the value of n
that will be used. Once more, the choice of a value for
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identifying cliques is not a matter that can be determined
on mathematical grounds alone. The investigator must al-
ways decide on the sociological meaning – if any – that can
be given to particular values of n.

This basic idea of the clique has been extended into
a variety of related ideas, most notably called clans, clubs,
plexes, and circles, each of which differs according to the
precise criterion that defines sub-set membership. These
various sub-graph and sub-set concepts are particularly
important in studies of diffusion processes in social net-
works as they define the “obstacles” and barriers that pre-
vent the smooth diffusion of ideas or resources. This was
the insight that lay behind Granovetter’s [26] recogni-
tion of the strength of weak ties: it is the possession of
“weak” connections that bridge a person into sub-graphs
that would otherwise be unable to transfer information to
the person.

Most uses of graph theory in social network analy-
sis have employed one-mode data. That is to say, they
have transformed the initial bipartite or two-mode data
into a simpler form. An initial incidence matrix show-
ing, for example, the memberships of people (as columns)
in particular organizations (as rows) is transformed into
a column-by-column adjacency matrix of people and
a row-by-row adjacency matrix of organizations. There-
after, the analyses of the people and the organizations pro-
ceeds separately (see � Social Network Analysis, Two–
Mode Concepts in). Recently, however, attempts have
been made to develop graph theory approaches to the
analysis of two-mode data, treating the bipartite data as if it
were one-mode data. The adjacency matrices are, in effect,
seen as sub-matrices of a larger adjacency matrix in which
people and organizations, for example, comprise both the
columns and the rows. Once the larger matrix is gener-
ated, many of the conventional graph theorymeasures and
visualization techniques can be applied to it. Not all such
measures, however, are sensibly or usefully seen in two-
mode terms.

Many of the more complex graph theoretical measures
for whole graphs can be difficult, if not impossible, to use
in large-scale networks where there is incomplete data.
This is typically the case where a sampling methodology
has been followed (see � Social Network Analysis, Esti-
mation and Sampling in).

Some network parameters can be estimated with sam-
ple data. If information on the neighborhood or neighbor-
hood density of individuals are collected from a sample,
for example, it is straightforward to compare estimates of
these measures for the whole population. It would also be
possible to estimate the density of the network as a whole
from such sample data, as density is an adjacency-based

measure. So long as the normal questions of sample size
and representativeness are considered, suchmeasures pose
few problems. Matters are more complex, however, with
many global network measures, where the structure of re-
lations is more likely to be lost in the process of sam-
pling. It is, for example, impossible to measure the num-
ber of separate components in a network using sample
data. Some ingenious methods of estimation have, how-
ever, been suggested as being useful for such measures, so
long as appropriate sampling designs are used.

An alternative to sampling is the adoption of explicit
methods of data reduction that allow large-scale networks
to be analyzed more easily. As Vladimir Batagelj shows
in � Social Network Analysis, Large-Scale, it is especially
useful to have methods of visualization for such networks.
The Pajek program [16] was designed specifically for this
purpose. Large networks are those with thousands, or per-
haps millions, of points and the computing time required
for such networks has been a barrier to studying them.
Batagelj uses recursive decomposition methods to divide
a large network into several smaller ones. This can be
achieved by the clustering of points or lines, compressing
them into compound points or lines. Varying forms of re-
duction can be achieved by adopting different criteria for
reduction: for example, collapsing all members of a com-
ponent onto a point, or collapsing all members of a clique
into a single point. Such reduced graphs can then be an-
alyzed with the familiar techniques of graph theory. He
also introduces a number of concepts specific to reduced
networks. The concept of an island, for example, refers to
peaks at specified cut-off levels on a measure of the prop-
erties of the compared points or lines.

Diffusion Processes

A key issue in sociological studies of influence has been the
ways in which innovations and other social changes are
diffused through the social relations that people have es-
tablished. Similar processes of diffusion were investigated
in geography and anthropology, and a number of investi-
gators began to explore mathematical models of diffusion,
that had already been begun to be applied in epidemio-
logical studies of the spread of disease through a popula-
tion [48,49] (see also [14]). Everett Rogers documented the
existence of an S-curve describing the pace of innovation:
a slow initial uptake was followed by more rapid adoption,
and then a tailing-off as diffusion produced a relative satu-
ration of the population and correspondingly fewer people
available to take up the changes. The key parameters were
the speed of the initial take-off and the speed of subsequent
adoption.



Social Network Analysis, Overview of S 8273

Contemporary approaches to diffusion [57] begin
from measures of spatial autocorrelation to investigate the
speed of the spread of innovations (see� Social Networks,
Diffusion Processes in). Spatial autocorrelation is the cor-
relation of a variable with itself measured spatially. That is,
its dependence on neighboring points. Such models mea-
sure the extent to which changes spread through contigu-
ous regions of space. Within networks, this idea is gen-
eralized to analyze contiguity in social network terms. It
is in this way that a “contagion” model of social influ-
ence can be operationalized. Network parameters can be
weighted in various ways in a model, taking, for exam-
ple, direct links as more significant than indirect links,
and predictive conclusions about the temporal and spatial
spread of changes can be drawn. As Tom Valente shows,
event history analysis has been used to allow more so-
phisticated temporal measures of diffusion, and this has
become a key area of innovation within the area of dif-
fusion studies. Such work is also now developing closely
with the agent-based computational models discussed be-
low.

AlgebraicModels and Blockmodeling

The early work on network structures that was carried out
by Harrison White and his associates [36,72] made use of
algebraic ideas to model graphs of social relations. Their
argument was that algebra provided a means for analyzing
the properties of sets of points. This work laid the basis for
what came to be known as blockmodeling. This is a way
of exploring the relations among structurally defined posi-
tions in social networks, the positions being understood as
“blocks” or sets of points with certain common relational
attributes that make them, in crucial respects, structurally
equivalent to each other [5,73]. This form of positional
analysis has subsequently been elaborated and enlarged in
a variety of ways, resulting in the production of a whole
family of models for network structure.

An algebraic representation of a social network in-
volves identifying a set of points that is defined by the
specific relation that unites its members [43] (see � So-
cial Networks, Algebraic Models for). Thus, a network
is seen as consisting of a set of ordered pairs. This ap-
proach can easily be generalized to explore situations in
which more than one relation is involved and units can be
understood as connected into multiple networks, each of
which is defined by a particular type of relationship. From
this point of view, a multiple network is a set of sets, and
each set is defined by a “primitive relation” or generator
that contributes to determining the overall network struc-
ture. Therefore, the individuals or groups that comprise

the points in a social network are treated as standing in
compound relations to each other. Paths in the network
may be composed from lines that represent a variety of
different relations. The basic step in identifying the struc-
ture of such a complex network is the multiplication of the
initial binary relations to convert them into binary com-
pound relations. The structure of relationships among all
possible paths in a multiple network is termed a partially
ordered semigroup and this comprises the underlying re-
lational structure of the network. As with graph theory,
this algebraic method allows such global properties of so-
cial networks to be linked to the local, egocentric proper-
ties of specific units within the network. Thus, the immedi-
ate environment of any particular member of the network
can be seen as a “local role algebra” that represents the role
set of the focal individual or group. Such an algebra defines
the vectors that slice through the whole network and so
summarize an ordering of the constituent relation vectors
in which the individual point is involved.

The basic elements of blockmodeling are based on
the ideas first set out by the anthropologist Nadel, who
held that social network analysis must take account of so-
cial positions and their associated roles rather than sim-
ply with individuals [42] (see � Positional Analysis and
Blockmodeling). Graph theory is especially well-suited to
the identification of individual-level phenomena and the
characteristics of the social groups formed by individuals.
It is much less well-suited to the identification of struc-
tural positions. For example, a large number of individu-
als may each occupy the socially determined position of
“father”, but a graph theoretical analysis of each individ-
ual male adult’s connections to children will not easily
identify this shared social role. This is because graph the-
ory searches for clusters of connections based on distance
measures. Blockmodeling, on the other hand, starts out
from a recognition that individuals that occupy the same
social position are “equivalent” or “substitutable” in some
way. Thus, each father relates in similar ways to particu-
lar children, but the fathers do not all relate to the same
children. Positions and their associated roles are endur-
ing structural regularities among sets of points and differ
markedly from cliques, components and other such sub-
graphs.

The typical strategy for constructing a blockmodel is
to apply an algorithm to a bipartite, two-mode, matrix of
individual-level data in order to reduce it to an “image
graph” that comprises blocks of equivalent points. Though
typically employing two-mode data, blockmodels can be
produced for one-mode data and, with greater difficulty,
for three-mode data. Simple binary data have been most
widely used in blockmodeling, with valued data being han-
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dled by slicing procedures that partition the matrix into 1s
and 0s on the basis of a chosen threshold of significance.
Attempts are being made, however, to extend blockmod-
eling directly to valued data. Approaches to blockmodel-
ing vary from each other in terms of the particular criteria
that are used in the algorithm. The earliest approach – the
CONCORmethod of White and his associates – used iter-
ated correlation measures to produce the image graph. In
this method, repeated correlations computed on the rows
and columns of the initial matrix converge towards a rear-
rangedmatrix that shows blocks of 0s and blocks of 1s. The
blocks of 0s – “zero-blocks” – are the structural holes in the
network that divide the various social positions (the blocks
of 1s) from each other. Later work associated with Ronald
Burt [9,10], has used simpler clustering approaches that
are based on Euclidean distance measures calculated from
path distances among pairs of points. Burt’s method also
allows the construction of an image graph for the identi-
fication of blocks of equivalent positions, and Burt terms
this a social topology.

Applications of these ideas to intercorporate business
connections has shown that blocks in networks of share-
holdings and interlocking directorships can be seen as
comprising structurally similar agents within the econ-
omy. The blocks uncovered in such an analysis are the
dominant investors and subordinate enterprises that stand
in similar relations to each other but may have few mu-
tual or reciprocal connections among themselves. They
are social positions but do not necessarily constitute social
groups. The key text on blockmodeling has been produced
by Doreian and colleagues [19].

The construction of an algebraic representation of
a social network comprises a depiction of the “deep struc-
ture” of the network in the sense that was intended by
Lévi-Strauss and many structuralist writers. The method
allows a formal construction and representation of the
deep structures that have, more typically, been identified
through more purely interpretative means. As in these
structuralist approaches, a key aim of algebraic network
analysis is the identification of isomorphic subgroups and
local role algebras across different empirical networks that
can be compared for commonalities of structure. This
comparative approach allows the formulation of state-
ments concerning generic processes in social systems,
modeled as lattices. Hierarchical structures, for example,
may be common to a number of different empirical do-
mains and may exhibit similar formal properties, regard-
less of their specific empirical content. Similarly, empiri-
cally variant role sets may exhibit a similarity of underly-
ing structure, such as patterns of conflict or cooperation
with different categories of others.

This approach does not, however, reduce the variation
found in actual social networks to invariant mathematical
properties. There can be no derivation of a network the-
ory directly from a mathematical theory. As Pattison (see
p. 135 in [43]) argues, algebraic approaches have sacrificed
mathematical power in order to reflect more adequately
the social relationships in the particular field under inves-
tigation. Algebraic methods have tended to be used – as
shown in the discussion of blockmodeling – as methods of
data reduction, as means for decomposing or fragmenting
networks into simpler structural components. The con-
struction of empirically relevant theories from these com-
ponents is far more difficult and has, so far, rarely been
pursued.

Scalingmodels and Visualization

Both graph theory and algebraic approaches offer rudi-
mentary techniques for the visualization of social networks
(see � Social Network Visualization, Methods of). Graph
theory, for example, is based around the idea of the so-
ciogram of connected points. For any but the smallest net-
works, however, sociograms become a confused jumble of
cross-cutting lines, and a rearrangement of points aimed
at reducing the amount of overlap can actually destroy
any visual representation of the structure of the network
by distorting the distances between and the relative loca-
tions of the points. A blockmodeling approach to large
networks reduces the amount of data to be handled and
allows simple image graphs of the relations among blocks
to be drawn, but this is limited to positional analysis and
loses sight of the details that are present in the relations
among the individual points. In both forms of analysis,
therefore, social network analysts have tended to rely on
the purely mathematical manipulation of large networks
and many have almost abandoned the attempt to visually
display whole complex social networks. The desire to re-
capture the simple visual impact of the sociogram, how-
ever, has motivated a number of researchers to investigate
ways of drawing network diagrams that retain the spa-
tial sense inherent in relational data. Unsurprisingly, per-
haps, the techniques discovered have followed the meth-
ods used in cartography to represent physical landscapes
on the page of a map or atlas.

The earliest and most influential visualization tech-
niques drew on multidimensional scaling (MDS), as this
was seen as a method for mapping data that retained
its fundamental metrics of space and distance. Essentially
similar techniques are those of principal component anal-
ysis or factor analysis. Instead of calculating distance sim-
ply by the number of lines connecting two points – “path
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distance” –MDS approximates to the measures of physical
distance used in conventional spatial thinking. MDS tech-
niques convert raw data on social networks into Euclidean
distances. In this conversion, points are regarded as “close”
to each other by virtue of their position in the overall con-
figuration of relations. This is typically measured on the
basis of a proximity measure such as the frequency of con-
tact between two points or the intensity of a relationship
between them, and these are usually given a strictly met-
ric form by computing correlation coefficients. For exam-
ple, two points with identical patterns of connection are
perfectly correlated with each other, and decreasing sim-
ilarity is reflected in declining closeness. Using such sim-
ilarity (or dissimilarity) data, MDS procedures search for
the best fit within a Euclidean space of specified dimen-
sions. Once a solution is obtained it can be displayed on
the page and rotated into an informative orientation that
discloses the meaning of the dimensions that have been
identified in the analysis. Non-metric MDS, using the rank
order of distances rather than imputed actual distances, is
particularly appropriate for much social network data and
operates in very much the same way. Useful implementa-
tions of this approach are now available in the major soft-
ware packages, and novel techniques such as multiple cor-
respondence analysis are also beginning to become avail-
able.

The use of MDS and similar scaling or dimensional
models provides a visual image of a network, but it also
provides measures of distance, direction, and location that
are not available within graph theory or algebraic ap-
proaches. This can allow a more rigorous embedding of
social networks in social space and can permit intriguing
hypotheses to be formed. For example, cliques and com-
ponents, centrality and density, can all be mapped onto an
MDS solution, and the relations among cliques or central
points appear strikingly and can be measured determi-
nately. The procedures made available within the Pajek
program [18] have been designed specifically to allow such
possibilities for large-scale networks. Graph theory and al-
gebraic methods can be used together with the spring em-
bedding of data through a variant ofMDS to produce pow-
erful network representations.

Particular problems of visualization occur when re-
search is concerned with two-mode data rather than sim-
ple one-mode data. The most easily interpretable results
are those that display a bipartite graph by using different
symbols or colors for the two sets of data. Such graphs
are a logical extension of graph theory approaches to two-
mode data. Some interesting work is now being under-
taken, however, using Galois lattices. Abandoning graph
theoretical and spatial representations, the lattices aim to

disclose the pattern of connections and their hierarchical
order of “containment” from core to periphery.

One particularly striking advance in visualization tech-
niques has been the use ofmodels that allow the tracking of
change over time. These have typically involved the adap-
tation of animationmethods. Further advances in this area
might be expected as some of the techniques discussed be-
low begin to offer improved ways of handling temporal
data on social networks.

StatisticalModels for Hypothesis Testing

Much work on social networks has remained at the level
of description and has failed to move towards explanatory
concerns. Only rarely have researchers gone beyond a de-
scription to formulate hypotheses and test theories aimed
at explaining the observed structures. One reason for this
absence of theoretical work and hypothesis testing has
been the weakness of the available statistical techniques
for undertaking this work.While attempts have sometimes
been made to use basic statistical measures of probability
and significance to test hypotheses about network struc-
ture, these involve a number of difficulties. Standard sta-
tistical procedures such as significance tests, regression,
and the analysis of variance all assume the independence
of observations. The relational data studied by social net-
work analysts, however, cannot be seen in this way. Re-
lational data are, by definition, non-independent observa-
tions. Thus, novel statistical techniques have been required
if methods of statistical inference are to be used. The most
important work in recent years has been the generaliza-
tion of Markov graphs to a larger family of models that
has been undertaken by Stanley Wasserman and his col-
leagues [44,46,65], building on earlier work by Frank and
Strauss [21]. Their p* models – now termed exponential
random graph models (ERG models or ERGM) – are de-
signed specifically to allow the easier formulation and test-
ing of theories. An ERGM defines a probability distribu-
tion on the set of all networks that can be constructed
on a given set of points in terms of a particular parame-
ter vector. ERGMs comprise a family of statistical mod-
els that promise a great advance in the understanding of
social networks and have the potential to connect with
the “small world” methods discussed below. The models
are discussed in � Social Networks, Exponential Random
Graph (p*) Models for.

For any set of points it is possible to generate through
simulation a set of all the possible graphs connecting them.
These randomly generated graphs vary along the full range
from completely unconnected to completely connected.
A very large number of such graphs can exist along that
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range, as the number of possible graphs varies with the size
of the network at an exponential rate. Thus, the number of
possible configurations for a three-point graph is 64, that
of a four-point graph is 1024, and the number for a five
point graph is in excess of a million. An actually observed
network can be treated as one realization from this set of
logically possible graphs. If its probability of occurring by
chance is low, then its actual occurrence may be regarded
as statistically significant.

To assess this statistical significance, it is necessary to
construct a probability distribution of the random graphs.
Each random graph has a specific probability of occur-
ring, depending on its particular structural properties. The
aim in constructing these distributions is to see whether
a particular structural property, such as a particular level of
density, centralization, or clustering, is more or less likely
to occur by chance than any other. These probabilities are
estimated through log linear analysis from the statistical
dependencies among the members of the network. The log
odds ratios of the conditional probabilities of the relational
ties associated with each element constructed from this de-
pendence graph are used to produce an approximate like-
lihood function that can be used with Monte Carlo esti-
mation techniques to produce maximum likelihood esti-
mates. In this process the successive approximations con-
stitute chains of graphs – a Markov chain – that converge
towards a stationary distribution and a stable estimate of
network parameters. Thus, ERGM provides a means for
testing the probability that the observed network will oc-
cur with precisely the structural characteristics that it has
on the basis of chance alone. This enables the researcher to
highlight the statistically significant – non-chance – results
apparent in the data.

Agent-Based ComputationalModels
and Temporal Processes

As well as its descriptive focus, much social network anal-
ysis has also concentrated on the static features of social
networks. This has also begun to change in recent years
as more attention has been given to the dynamic processes
involved in changes over time. A key advance in this direc-
tion has come from the use of models that depict the ways
in which the behavior of individual agents results in global
transformations of network structure. In so-called agent-
based computational models, agents (whether individuals
or groups) are seen as rule-following entities whose deci-
sions to act in one way or another are consequential for
the overall network by virtue of their concatenation with
the action consequences of others. Therefore, a knowledge

of the rules under which agents act can be used to predict
broad patterns of change in network structure.

Agent-based models originated in simulation studies,
where a simple and determinate set of rules can be applied
to generate specific network structures (see also pp. 99ff
in [25]; [40]). Applications of this idea to human so-
cial networks have tended to rely on assumptions drawn
from rational choice theory, according to which individual
agents are assumed to act on certain simple principles of
utility maximization. However, the more complex models
allow for the handling of different categories of agent, the
members of each category following a different set of rules,
and for a relaxation of the assumption of pure rationality
by modeling rules of non-rational or ritualistic behavior.
Such models are stochastic – specifying the probability of
certain courses of action but not implying a complete de-
terminism.

A particularly powerful example of such an approach is
that of Tom Snijders [52,53,54] (see � Network Analysis,
Longitudinal Methods of). Change in network structure
is regarded as a probabilistic process, describable by an
objective function that measures the attractiveness to the
agents of changes in their connectivity. The model sees an
incremental adjustment of individual action to the chang-
ing network structure, resulting in a continuous – but of-
ten non-linear – process of network evolution. It is as-
sumed that agents control the outgoing relations to others
within the constraints on their opportunities that are set by
the current network structure. However, they act “myopi-
cally” in relation to the immediate environment and the
immediate consequences of their actions, having no con-
ception of the wider consequences of their choices. At each
point in time, the outcome for the overall network is a re-
sult of the intersection of the courses of action pursued by
these myopic agents and so it will rarely correspond to the
intentions of any one actor. At the same time, each actor
has only a partial awareness of the changes that have re-
sulted from their actions and so their next acts must be re-
garded as equally myopic and as likely, once again, to have
unintended consequences at the network level. As a result
of the continual iteration of actions, there is a co-evolu-
tion of network and behavior. Complex patterns of change
are likely to occur. Snijders shows that small, incremental
changes can accumulate to a point of “crisis” [55], a tip-
ping point at which a radical, non-linear transformation
of network structure occurs.

Snijders’ longitudinal approach is especially powerful
as it explicitly takes account of global network parame-
ters such as density, reciprocity, distance, and balance. It
can also be reprogrammed to recognize a wide range of
different rule systems and decision procedures. Snijders
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also suggests that the approach can handle a greater degree
of far-sightedness in agents, though with a correspond-
ing decline in the determinateness of the analyses that can
be drawn. Current work is making important connections
with the early work ofWasserman [63] and the subsequent
development of ERGM procedures. The approach is im-
plemented in the SIENA program and has been used in
a number of simulation studies.

SmallWorldModels and Network Dynamics

The most recent area of development in social network
analysis is the investigation of small world networks in-
spired by a number of physicists interested in network dy-
namics (explored in various entries in other sections of this
Encyclopedia). Although this has, as yet, led to relatively
few empirical investigations, there is growing interest in
these applications. Many advocates of the approach have
failed to discover or to appreciate the amount of work al-
ready undertaken in social network analysis and have as-
sumed a very truncated history for the approach. There
are, however, some signs of a closer appreciation of social
science work, and the approaches are beginning to have an
impact in the mainstream of social network analysis.

The “small world” hypothesis suggests that any two
people chosen at random are likely to be connected to each
other by a path of relatively short length. The hypothesis
was formulated by Ithiel de Sola Pool andManfredKochen
in a working paper of 1958 that was not published for an-
other 20 years [17]. Their ideas achieved a wide currency
and in 1967 Stanley Milgram at Harvard undertook some
experimental studies to test the hypothesis [38]. He gave
experimental subjects the names of people initially un-
known to them and asked them to get a message to them
using only known persons as intermediaries. That is, the
messages were to pass through friend of friends of friends
until they reached their destinations. Milgram discovered
that subjects and targets were typically separated by paths
of distance 6, no matter what the physical distances sep-
arating them. This finding embodied the common excla-
mation “it’s a small world” uttered when people discover
a mutual connection. Milgram hypothesized that the den-
sity of links of acquaintanceship is such that a considerable
amount of redundancy is built into social networks: it is
level of density in a network that explains its small world
characteristics.

In the late 1990s, Watts and Strogatz [68] undertook
some empirical studies in the mathematics of random net-
works. The structural properties of random networks, pro-
duced through the random linking of one point to another,
had first been studied by Paul Erdös and Alfréd Rényi [20]

and had led to a number of interesting conclusions. Watts
and Strogatz discovered that a particular subset of ran-
dom graphs corresponded closely to those actually found
in natural and social phenomena, and they demonstrated
that these had the small world characteristics identified
by Milgram; though they were skeptical about the precise
finding of “six degrees of separation”. They showed, how-
ever, that the high levels of clique and sub-graph forma-
tion that were basic to the redundancy found in real net-
works gave them a number of characteristic features. Cru-
cial to the structure of these networks was the existence of
well-connected points – which they termed “hubs” – that
make the density and, therefore, the small world proper-
ties, possible. It is the existence of hubs that explains why
the density does not need to be extremely high for small
world conditions to apply. On the contrary, there is a mid-
dle range of density in which efficient communication is
possible.

The physicist Albértó-Laszlo Barabási, searching for
a new topic to investigate, began to look at the findings
of Watts and Strogatz. Barabási’s central idea was that of
the “power law” or “scale free” distribution, according to
which small world networks have a frequency distribu-
tion of point degrees showing a small number of well-con-
nected points and a large number of less well-connected
points. These well-connected points are the hubs that gen-
erate the small world properties. He concluded that these
findings provided the basis for a completely new approach
to networks [1]. As has already been noted, his claims to
novelty and to the revolutionary character of the work se-
riously underestimated the amount of prior work under-
taken on social networks and their properties. Neverthe-
less, he did formulate some intriguing ideas and the work
subsequently taken up by Watts does offer the prospect of
genuine advances in social network analysis.

Watts holds that a small world graph is one in which
there are a large number of “short cuts”. These are lines
that connect points that would otherwise be quite dis-
tant from each other. Neither a completely connected
graph nor a sparse graph have short cuts, and so small
world properties occur in an intermediate range of graphs.
They are locally clustered but globally sparse. It is for
these graphs, he holds, that precise mathematical con-
clusions about structure and structural development can
be drawn. He holds, for example, that relatively small
changes in network connectivity, such as the addition of
a small number of shortcuts, can dramatically change its
properties through “phase transitions” at critical thresh-
old points. There are considerable possibilities inherent in
using these ideas alongside those from agent-based com-
putational studies already discussed. The common thread
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is a concern for the investigation of longitudinal processes
in which micro-level incremental changes result in non-
linear macro-level transformations of structure.
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Glossary

2-Mode matrix A (2-dimensional) matrix is said to be
2-mode if the rows and columns index different sets
of entities (e. g., the rows might correspond to per-
sons while the columns correspond to organizations).
In contrast, amatrix is 1-mode if the rows and columns
refer to the same set of entities, such as a city-by-city
matrix of distances.

Blockmodel A blockmodel is a partitioning of the cells of
a matrix into blocks that is induced by the partitioning
the rows and columns into classes and sorting the ma-
trix such that rows (and columns) that belong to the
same class are next to each other. More specifically,
two matrix cells xi j and xmp are in the same block if
class(i) D class(m) and class( j) D class(p).

Centrality A family of concepts for characterizing the
structural importance of a node’s position in a net-
work.

Graph cohesion A family of concepts characterizing the
extent of connectedness of a graph, such as density (the
proportion of pairs of nodes that have ties with each
other), or average path distance.

Multidimensional scaling (MDS) A method of locating
points in space such that Euclidean distances between
the points correspond to a matrix of input similari-
ties/distances among objects. Used to provide visual
representations of 1-modematrices such as correlation
matrices or perceptual distances among objects.

Regular equivalence The definition of regular equiva-
lence is recursive. If two nodes are regularly equivalent,
then they are connected to regularly equivalent nodes.
Regular equivalence is used to identify nodes that are
playing the same structural role, even if they are not
connected to each other.

Social network (or, in graph theory, a graph) A collec-
tion of nodes (also referred to as vertices or actors) to-
gether with a set of ties (also known as edges or links)
that connect pairs of nodes. Typically used to repre-
sent social relations such as who is friends with whom,
or who is the supervisor of whom.

Structural equivalence At an intuitive level, a pair of
nodes is said to be structurally equivalent to the ex-
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DGG women-by-events matrix

tent that they occupy identical locations in a network,
meaning that they are connected to exactly the same
others. Structurally equivalent nodes are identical with
respect to all structural properties, such as centrality or
subgroup membership.

Definition of the Subject

In social network analysis, 2-mode data refers to data
recording ties between two sets of entities. In this con-
text, the term “mode” refers to a class of entities – typically
called actors, nodes or vertices – whose members have so-
cial ties with other members (in the 1-mode case) or with
members of another class (in the 2-mode case). Most so-
cial network analysis is concerned with the 1-mode case,
as in the analysis of friendship ties among a set of school
children or advice-giving relations within an organization.
The 2-mode case arises when researchers collect relations
between classes of actors, such as persons and organiza-
tions, or persons and events. For example, a researcher
might collect data on which students in a university belong
to which campus organizations, or which employees in an
organization participate in which electronic discussion fo-
rums. These kinds of data are often referred to as affilia-
tions. Co-memberships in organizations or participation
in events are typically thought of as providing opportu-
nities for social relationships among individuals (and also
as the consequences of pre-existing relationships). At the
same time, ties between organizations through their mem-

bers are thought to be conduits through which organiza-
tions influence each other.

Introduction

Perhaps the best known example of 2-mode network anal-
ysis is contained in the study of class and race by Davis,
Gardner and Gardner (henceforth DGG) published in the
1941 book Deep South [6]. They followed 18 women over
a nine-month period, and reported their participation in
14 events, such as a meeting of a social club, a church
event, a party, and so on. Their original figure is shown
in Fig. 1.

DGG used the data to investigate the extent to which
social relations tended to occur within social classes.

Basic Concepts

A typical data matrix has two dimensions or ways, cor-
responding to the rows and columns of the matrix. The
number of ways in a matrix X can be thought of as the
number of subscripts needed to represent a particular da-
tum, as in xi j. If we stack together a number of similarly
sized 2-dimensional matrices, we can think of the result as
a 3-dimensional or 3-way matrix.

The modes of a matrix correspond to the distinct sets
of entities indexed by the ways. In the DGG dataset de-
scribed above, the rows correspond to women and the
columns to a different class of entities, namely events.
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Hence, the matrix has two modes in addition to two ways;
it is 2-way, 2-mode. In contrast, a persons-by-persons ma-
trix A, in which ai j D 1 if person i is friends with person j,
is a 2-way, 1-mode matrix, because both ways point to the
same set of entities.

In a sense, what constitutes different modes is up to
the researcher. If we collect romantic ties among a group
of heterosexual people of both genders, we could construct
a 2-mode men-by-women matrix X in which xi j D 1 if
a romantic tie was observed between man i and woman j,
and xi j D 0 otherwise. Or, one could construct a larger
1-mode person-by-person matrix B also consisting of 1s
and 0s in which it just happens that 1s only occur in
cells where the row and column correspond to persons
of different gender. Use of the men-by-women matrix
would imply that same-gender relations were impossible,
whereas use of the person-by-person matrix would suggest
that same-gender relations were logically possible, even if
actually not observed.

Matrices recording relational information such as ro-
mantic ties can be represented as mathematical graphs as
well. A graph G(V ,E) consists of a set of nodes or ver-
tices V together with a set of lines or edges E that connect
them. An edge is simply an unordered pair of nodes (u, v).
(In directed graphs or digraphs we use ordered pairs to in-
dicate direction of the tie.) To indicate a tie between two
nodes u and v, we simply include the pair (u, v) in the set E.
The number of nodes in a graph is denoted by jV j or n.

A bipartite graph is a graph in which we can partition
all nodes into two sets, V1 and V2, such that all edges in-
clude amember ofV1 and amember ofV2. The number of
nodes in each vertex set is denoted n1 and n2, respectively.

Two-Mode Data in Social Network Analysis

Most social networks are conceived of as relations among
a set of nodes, and therefore represented as a 1-mode ma-
trix (typically of 1s and 0s) or a simple graph or digraph.
For example, we might collect data on who is friendly with
whom within an organization, or who injects drugs with
whom in a neighborhood.

However, 2-mode data are common in social network
contexts as well. Typical examples include, actor-by-event
attendance (as in the DGG data), actor by group mem-
bership (such as managers sitting on corporate boards),
and actor by trait possession (such as adjective checklist
data), and actor by object possession (such asmaterial style
of life scales in which inventories are made of household
possessions).

In many cases when 2-mode data are collected, the
analytical interest is focused on one mode or the other.

For example, in the DGG dataset, person-by-event atten-
dances were collected in order to understand social re-
lations among the women, specifically, whether women
tended to have social relations primarily within their own
social classes. In the interlocking directorate literature,
membership of executives on corporate boards is collected
mainly in order to understand how corporations are inter-
twined, and how the structure of this connectivity affects
corporate control of society.

However, it can also occur that neither mode domi-
nates our analytical focus and the primary interest is in the
correspondence of one mode to the other. For example,
a university might ask its faculty which courses they prefer
to teach. Here, the objective is typically not to understand
how faculty are related to each other through courses, nor
how courses are related via faculty, but in the optimal as-
signments of persons to courses so that courses are staffed
and faculty are not complaining.

Unimodal Approaches to Two-ModeData

One approach to handling 2-mode data in social network
analysis is to convert the data to 1-mode data. This is es-
pecially appropriate when the analytical interest focuses
primarily on just one of the modes. Consider, for exam-
ple, the case of a person by group membership matrix X
in which xi j D 1 if person i belongs to group j. Let us as-
sume that the groups are small and everyone in a group
knows everyone else. In that case, we could try to infer an
acquaintance network by constructing a 1-mode matrix A
such that ai j D 1 if person i is in at least one group with
person j. Better yet, we can construct a valued matrix A
such that ai j gives the number of groups that i and j are
both members of. In other words,

ai j D
X

k

xikx jk or AD XX0 : (1)

We might regard ai j as a proxy for the social proximity
of i and j, or perhaps as a rough indicator of the potential
for information flow between them. In this approach, we
analyze each mode of the data separately. Figure 2 shows
the values of A for the 2-mode data shown in Fig. 1.

It should be noted thatA can be seen as amatrix of pro-
file similarities or correlations among pairs of rows in X.
For example, the matrix of Pearson correlations among
rows of X is defined as follows:

ri j D

1
m
P

k
xikx jk � uiu j

si s j
; (2)

where ui is the mean of row i and si is the standard devi-
ation of row i. It is evident that the correlation ri j is es-
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Women-by-women matrix of overlaps across events

Social Network Analysis, Two-Mode Concepts in, Figure 3
Contingency table T

sentially ai j corrected for the number of groups that each
belongs to. This kind of correction seems eminently desir-
able, but of course there are many ways of doing this. For
example, consider a cross-tabulation T of row i and row j,
such that tuv gives the number of columns k of X for which
xik D u and x jk D v, as shown in Fig 3.

In the table, the first row marginal (aC b) gives the
number of groups that person i belongs to while the first
column marginal gives the number of groups that per-
son j belongs to. Note that ai j of Eq. (1) corresponds to a
in Fig. 3. An obvious approach is the Jaccard coefficient,
which may be defined as

ci j D
a

aC bC c
: (3)

Thus, ci j is essentially the cardinality of the intersection
of the groups belonged to by both persons, divided by the
cardinality of their union. The Jaccard coefficient is often
recommended when the number of columns in X is large
and the number of 1s in each row is highly limited.

An alternative specifically designed for 2-mode affili-
ation data is given by Bonacich [1]. It normalizes ai j as

Social Network Analysis, Two-Mode Concepts in, Figure 4
Multidimensional scaling of Jaccard coefficients among rows of
DGGmatrix

follows:

a�i j D
ai j �

p
adbc

ad � bc
; for ad ¤ bc : (4)

Unimodal Visualization of Two-Mode Data

Given that a 2-mode matrix has been transformed into
a 1-mode matrix by taking similarities among the rows (or
columns), one can visualize the network using all the usual
techniques for visualization of valued networks. For exam-
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Multidimensional scaling of Jaccard similarity coefficients, with
lines indicating similarity scores greater than 0.4. Actor Olivia is
obscured by Flora

ple, a standard approach is to usemetric multidimensional
scaling (MDS) on the matrix A, generating a map in which
points corresponding to nodes (e. g., persons) appear close
to each other to the extent that they share many groups.
Figure 4 shows such an MDS map based on Jaccard
similarities.

To highlight structure, it is common to overlay lines
between pairs of nodes with a similarity score greater than
a certain level. Figure 5 shows the result for similarities
greater than 0.4. The diagram effectively shows the bridg-
ing role of Ruth, who, based on ethnographic evidence,
was seen by DGG as a member of both groups of women.

Alternatively, one can use a standard graph layout al-
gorithm (GLA) to draw the graph induced by dichotomiz-

Social Network Analysis, Two-Mode Concepts in, Figure 6
Spring-embedding representation of Jaccard similarities dichotomized at> 0:4

ing the Jaccard similarity matrix. For example, define
(u; v) 2 E if and only if (iff) ci j > 0:4. Compared to mul-
tidimensional scaling representations, GLAs have the dis-
advantage that distances between points cannot strictly be
interpreted, but this property also means that nodes need
not obscure each other. Figure 6 shows the results of ap-
plying a spring-embedding [10] GLA to the dichotomized
data.

A similar analysis can be carried out on the events
rather than the women. Applying Eq. (3) to the columns of
the 2-mode matrix in Fig. 1 yields a matrix of Jaccard co-
efficients which can be visualized using the same methods
used for the women. Figure 7 shows events with Jaccard
overlaps greater than 0.35.

Unimodal Analysis of Two-Mode Data

In general, analysis of 2-mode data transformed into val-
ued 1-mode networks proceeds like any other valued net-
work. As with visualization, this often means generat-
ing a graph from the valued data via some rule such as
(u; v) 2 E iff ai j > q, where q is chosen by the researcher.
Typically, there is no theoretical reason for choosing any
particular value of q; hence a series of different values is
generally chosen and the analysis repeated for each.

There are, however, a few consequences that stem from
the 2-mode origin of the data. By their very nature, many
commonly used measures of similarity and dissimilarity
satisfy triangle inequality laws. For example, for Euclidean
distance, every triple of nodes i, j, k satisfy the following
rule:

dik � di j C djk : (5)
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Spring-embedding representation of “ties” among events (cij > 0:35)

As a result, the 1-mode data (especially if not di-
chotomized) artifactually exhibit a certain level of transi-
tivity that may be higher than baseline models built on
simple sociometric choice data would expect. Statistics
based on transitivity, such as structural holes and cluster-
ing coefficients, must similarly be interpreted with some
caution in such data.

Bimodal Approaches to Two-Mode Data

Another approach to working with 2-mode data seeks to
analyze both modes simultaneously. The data are seen to
represent relations between two sets of nodes, forming
a bipartite graph GB(V1 C V2; E) in which, or all u and v,
(u; v) 2 E if and only if u and v belong to different ver-
tex sets. In other words, all ties are between vertex sets
and none are within-group. The matrix representation of
such a graph can be a rectangular incidence matrix X (as
in Fig. 1) or a square bipartite adjacency matrix B with
n D n1 C n2 rows representing both modes, and an equal
number of columns, also representing both modes. In the
latter case, the original matrix X forms a submatrix of the
larger adjacencymatrixB in which both rows and columns
index the V1 C V2 entities. The matrix B is composed of
four blocks, two of which are empty, as shown in Fig. 8
Note that the original matrix X forms the top right quad-
rant of B, and its transpose forms the bottom left quad-
rant.

Bimodal Visualization of Two-Mode Data

All of the standard ways to visualize networks, such as
MDS and GLAs, apply to bipartite graphs. For example,

Fig. 9 shows a spring-embedding layout of the bipartite
graph represented by the matrix in Fig. 8.

In the representation, two nodes are near each other
roughly to the extent that the geodesic distance between
them is short. Thus, events are near each other if they are
attended by the same women (distance 2), and women are
near each other if they attend the same events. In this ex-
ample, the representation makes clear that there is a set
of women on the left (Mryna, Helen, Katherine, Nora,
Silvia, etc.) that attend a set of events exclusive to them
(events 10 through 13), and another set of women (Evelyn,
Theresa, Laura, Brenda, etc.) that have their own events
(E1 through E4), and finally a set of events that both “cir-
cles” of women attend (events E6 through E9).

For small datasets, this bimodal visualization is often
extremely effective for transmitting a holistic understand-
ing of the whole dataset.

It is worth noting that there is a simple mathemati-
cal relationship between pairwise overlaps ai j as defined
in Eq. (1) and paths in the bipartite graph. Specifically, the
number of 2-step paths between any pair of women i and j
in the bipartite graph is equal to ai j, the number of events
they attended in common. Of course, the number of 2-step
paths is simply the matrix product BB, the bipartite adja-
cency matrix multiplied by itself. As shown in Fig. 10, the
top left block and bottom right blocks of BB are the ma-
trices A as calculated by Eq. (1) for rows and columns re-
spectively of X.

Bimodal Analysis of Two-Mode Data
Given a bimodal perspective, one approach to analyzing
2-mode data is to develop entirely new metrics and algo-
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Bipartite adjacencymatrix B created from the original DGG 2-modematrix X

Social Network Analysis, Two-Mode Concepts in, Figure 9
Spring-embedding representation of bipartite graph

rithms designed specifically for 2-mode data. Such tech-
niques take cognizance of the fact that the observed net-
work is not just bipartite by happenstance, but could not
have been any other way. In other words, taking account of

the fact that the observed lack ties between certain nodes
(namely, those belonging to different modes) was by de-
sign – similar to the concept of structural zeros in log-lin-
ear modeling. To date, few techniques of this kind have
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Social Network Analysis, Two-Mode Concepts in, Figure 10
Matrix BB giving the number of paths of length 2 between all pairs of nodes

been developed, the exception being the area of 2-mode
centrality measures, which has received significant atten-
tion (e. g., [2]).

Another approach is to treat the bipartite graphs as or-
dinary graphs and apply all the standard algorithms and
techniques of social network analysis. Effectively this as-
sumes either that the special nature of the graphs will
not affect the techniques, or that we can pretend that ties
within modes could have occurred and just didn’t. This
approach works for a small class of methods, but by no
means all. For example, calculating transitivity fails be-
cause transitive triples are impossible in bipartite graphs
(all ties are between modes, which means that if a! b
and b! c then a and c must be members of the same
class, and therefore cannot be tied, making transitivity im-
possible). In contrast, if we were to adapt the definition of
transitivity to be based on quadruples such that a quad is
transitive if a! b, b! c, c ! d and a! d, this would
be an example of the first approach.

Finally, a compromise approach is to use the standard
metrics and algorithms that apply to general graphs, and
then either adjust the outputs via normalization or adjust
the baseline expectations for the results [5,9]. In the for-
mer case, we develop normalizations that adjust the met-
rics (typically by dividing by theoretical bipartite maxima),
and in the latter case we derive different theoretical distri-
butions for the statistics in question. In general, we choose
the former approach when statistics are bounded between

0 and 1 and can be interpreted as proportions ofmaximum
possible values. We choose the latter approach when the
statistics are unbounded and have direct interpretations
(see example of cohesion below).

Bimodal Approaches to Graph Cohesion The simplest
and most common measure of network cohesion is den-
sity – the number of edges divided by the number of pairs
of nodes (using ordered pairs in the case of directed graphs
and unordered pairs in the case of undirected graphs). In
bipartite graphs, of course, only edges between vertex sets
are possible. As a result, the maximum possible undirected
ordinary density is

n1n2
(n1 C n2)(n1 C n2 � 1)

: (6)

Thus, if density were calculated on a 2-mode network as
if it were an ordinary graph, we would probably want to
normalize the result by dividing by the sum above, oth-
erwise the calculated density would appear misleadingly
low. This is a case where the “compromise approach” dis-
cussed above is effective. (Of course, in terms of computa-
tion, it would be easier to simply calculate the average of
the 2-mode matrix X rather than convert to bipartite form
and then perform this adjustment.)

For measures of cohesion that are not expressed as
fractions of maximum possible values, such as average
geodesic path length, the need to renormalize is not as
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great, since the raw values are directly interpretable. In do-
ing so, however, we must be careful not to compare the
results with standard rules of thumb or theoretical mod-
els based on simple random graphs, as these have not as-
sumed the bipartite restrictions.

Bimodal Approaches to Centrality Four measures of
centrality are used with high frequency in social network
analysis today: degree, closeness, betweenness and eigen-
vector. We discuss each in turn.

Degree centrality, di, is defined as the number of ties
incident upon node i. Degree centrality is typically nor-
malized by dividing by the maximum number of ties pos-
sible, which in a graph of n nodes is n � 1. Hence

d�i D
di

n � 1
: (7)

However, in any (non-trivial) bipartite graph, no node can
be connected to all others, since this would mean within-
mode ties. Instead, for a node in V1, the maximum num-
ber of ties it could have is n2, whereas for a node inV2, the
maximum number of ties is n1. Hence a natural adjust-
ment is to provide two separate normalization formulas as
follows:

d�i D
di
n2
; for i 2 V1 ;

d�j D
dj

n1
; for j 2 V2 :

(8)

Closeness centrality is ordinarily defined as the sum of
geodesic distances from a node to all others, as shown in
Eq. (8), where di j is the length of the shortest path from i
to j and n D n1 C n2 is the total number of nodes. The
best (smallest) score possible occurs when the node has
a tie to every other node, in which case the total distance
to all others is n � 1. Thus, closeness centrality is usually
normalized by dividing ci into n � 1.

ci D
nX

j

di j

c�i D
n � 1
ci

:

(9)

In the bipartite case, the maximum number of nodes that
a node can be distance 1 from is the number of nodes in
the other class. For other nodes in its own class, the clos-
est it can be is two links away. Thus, the theoretical bipar-
tite minimum value of ci (where i 2 V1) is n2 C 2(n1 � 1)
and the minimum for cj (where j 2 V2) is n1 C 2(n2 � 1).

Therefore, closeness centrality can be normalized in bipar-
tite graphs as follows:

c�i D
n2 C 2(n1 � 1)

ci
; for i 2 V1 ;

c�j D
n1 C 2(n2 � 1)

c j
; for j 2 V2 :

(10)

Betweenness centrality refers to the sum of shares of short-
est paths that pass through a given node. The betweenness
of node k in an ordinary graph is defined by Eq. (11), where
gi j is the number of geodesic paths from node i to node j,
and gi k j is the number of geodesic paths from i to j that
pass through k.

bk D
1
2

nX

i¤k

nX

j¤k;i

gi k j
gi j

: (11)

Betweenness is ordinarily normalized by dividing by
(n � 1)(n � 2) D n2 � 3nC 2, which is the maximum be-
tweenness that any node can achieve in a graph with n
nodes, which occurs for the node at the center of a star-
shaped graph. This maximum is appropriate for bipar-
tite graphs only when one mode has just one node; oth-
erwise we must take account of the sizes of each vertex set.
Eq. (12) gives the maximums for nodes in each vertex set
as a function of the vertex set sizes. In the equation, x div y
refers to integer division of x by y and xmod y refers to the
remainder of an integer division of x by y.

bV1 max D
1
2
�
n22(sC 1)2 C n2(s C 1)(2t � s � 1)

� t(2s � t C 3)
�

s D (n1 � 1) div n2 ; t D (n1 � 1) mod n2
bV2 max D

1
2
�
n21(pC 1)2 C n1(pC 1)(2r � p � 1)

� r(2p � r C 3)
�

p D (n2 � 1) div n1; r D (n2 � 1) mod n1
(12)

Given these maxima, we can normalize standard between-
ness centrality for bipartite graphs by dividing by these
maxima, as shown in Eq. (13).

b�i D
bi

bV1 max
; for i 2 V1 ;

b�j D
bj

bV2 max
; for j 2 V2 :

(13)

Cohesive Subgroups Detecting cohesive subgroups is
somewhat more difficult in bipartite graphs than in ordi-
nary graphs. For example, one of the earliest formal def-
initions of a subgroup is the clique [11] which is defined
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Graph induced by Pearson correlations across biclique membership profiles. Edges indicate a correlation greater than 0.4

as a maximal complete subgraph – i. e., a set of nodes that
is as large as possible subject to the condition that every
pair is adjacent. However, in bipartite graphs, cliques are
impossible, since in any connected triple, two nodes must
be non-adjacent. Thus, cliques are not useful in this con-
text. In addition, relaxations of the clique concept based
on density or frequency of paths (such as k-plexes, lambda
sets and ls-sets) do not work well, due to the sparse nature
of bipartite graphs. For example, if we calculate k-plexes
for the DGG dataset, we find huge numbers of very small
groups. For k D 2, there are 394 2-plexes of size 3 or
greater. For k D 3, there are 5,553 3-plexes, and for k D 4,
there are 37,633 4-plexes of size 3 or greater.

However, other classical notions of cohesive sub-
groups makemore sense for bipartite graphs. In particular,
relaxations of the clique concept based on distance, such
as n-cliques, n-clans and n-clubs have good interpreta-
tions in bipartite graphs and work well in practice. In fact,
2-cliques defined on the bipartite graph have the property
of bipartite completeness, meaning that, within the bipar-
tite subgraph induced by the 2-clique, every node of one
mode has a tie with every node of the other mode, which
is to say that all possible ties are present. In this sense, for
bipartite graphs, 2-cliques capture the underlying idea of
a clique better than cliques do. This notion has been for-
malized in the definition of a biclique, which is defined
as a maximal complete bipartite subgraph. Mathemati-

cally, it is identical to a 2-clique computed on the bipartite
representation.

As a practical example, a biclique analysis of the DGG
dataset finds 68 bicliques, and a secondary analysis of sim-
ilarities of nodes across biclique membership profiles does
a good job of revealing structure, as shown in Fig. 11. In
the figure, an edge is shown between two nodes if the Pear-
son correlation between their biclique membership pro-
files is greater than 0.4 (i. e., (u; v) 2 E iff ri j > 0:4). The
two groups are women are clearly shown, as well as the
two groups of events that are associated with each of the
groups of women. In addition, the separation of Flora and
Olivia is clearly shown, as well as the bridging position of
Ruth and Pearl.

The success of bicliques as 2-mode analogues of cliques
suggests the possibility of creating 2-mode analogues for
other cohesive subgroup concepts that we previously dis-
missed as unusable in the 2-mode context. For example,
a k-plex is defined in ordinary network analysis as a max-
imal subgraph S(V ,E) of size n such that each member
of the k-plex is adjacent to at least n � k others. By anal-
ogy, for 2-mode networks we can define a (k1; k2)-biplex as
a maximal bipartite subgraph G(V1;V2; E) such that each
node in V1 is adjacent to jV2j � k2 others and each node
inV2 is adjacent is adjacent to jV1j � k1 others. Obviously,
a (0,0)-biplex is a biclique. A useful feature of this relax-
ation of a biclique is that we can set different standards of
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cohesiveness for each mode of the data network, perhaps
reflecting the relative sizes of the modes, or the affiliative
capabilities of the nodes themselves.

Bimodal Approaches to Positions and Roles Two con-
cepts of position and role are particularly well known in
social network analysis. These are structural equivalence
and regular equivalence. Generalizations to 2-mode (and
higher) data were developed by Borgatti [3] and Borgatti
and Everett [4] and Everett and Borgatti [7]. We consider
each of these in turn.

Structural Equivalence In the best definition of structural
equivalence [8], two nodes u and v are said to be struc-
turally equivalent if there exists a graph automorphism
that would be an identity except that u and v aremapped to
each other. In other words, given a diagram of the graph,
you could swap nodes u and v (and no other nodes) with-
out changing the structure of the network one iota. A key
implication of this definition is that structurally equiva-
lent nodes have identical relational environments – aside
from each other, they are connected and not connected to
exactly the same third parties. As a result, one approach
to identifying structurally equivalent nodes is to compute
a similarity measure among rows and columns of the ad-
jacency matrix defining the graph.

This approach requires no modification for the bi-
partite case. In fact, the unimodal analysis described in
Sect. “Unimodal Approaches to Two-ModeData” (applied
to each mode in turn) is precisely the same as comput-
ing structural equivalence on the 2-mode incidence matrix
(Fig. 1). In addition, for certain measures such as the Jac-
card coefficient, computing structural equivalence on the
bipartite adjacencymatrix B of Fig. 8 gives exactly the same
results as computing it on the 2-mode incidence matrix X.

Another approach to structural equivalence is known
as blockmodeling. Instead of (or as a result of) measur-
ing the extent of structural equivalence between nodes,
we partition the nodes into classes such that nodes in the
same class are structurally equivalent (or nearly so). Given
such a partition of nodes, we can reorder and partition
the corresponding rows and columns of the adjacencyma-
trix. This in turn induces to partition of matrix cells into
matrix blocks. A characteristic property of perfect struc-
tural equivalence partitions is that matrix blocks are nec-
essarily homogeneous with respect to cell values, and each
block will consist of all 1s or all 0s (known as 1-blocks and
0-blocks respectively). Figure 12 gives an example with
three equivalence classes.

In the 2-mode case, one approach is to blockmodel the
bipartite adjacency matrix B. This can be done, but the bi-

Social Network Analysis, Two-Mode Concepts in, Figure 12
Perfect structural equivalence blockmodel

partite structure imposes certain constraints. For example,
blocks involving within-mode tiesmust be 0-blocks. In ad-
dition, the best 2-block partition will almost certainly be
the mode partition (except in trivial cases), and in gen-
eral, all other partitions will be refinements of the mode
partition (i. e., they will be nested hierarchically within the
mode partition).

A more elegant (and computationally efficient) ap-
proach is to work from the 2-mode incidence matrix X.
In this case, we redefine a blockmodel to refer to a coordi-
nated pair of partitions, one for the rows and one for the
columns. We then redefine structural equivalence as fol-
lows. Given a 2-mode matrix X with modes V1 and V2,
a 2-mode blockmodeling consists of a pair of partitions
P1 and P2 such that (a) for all u, v in V1, p1(u) D p1(v)
iff xuw D xvw for all w in V2 and (b) for all a, b in V2,
p2(a) D p2(b) iff xza D xzb for all z in V1. (The nota-
tion p(u) indicates the equivalence class that node u be-
longs to in partition P.) Restating this in words, a 2-mode
structural equivalence blockmodeling is one in which row
nodes in the same class if and only if they have identi-
cal rows, and column nodes are in the same class if and
only if they have identical columns. An example involv-
ing 4 classes of rows and 3 classes of columns is shown
in Fig. 13.

In empirical work, of course, we do not expect to ob-
tain perfect 1-blocks and 0-blocks. Instead we seek parti-
tions that minimize the number of errors (where we de-
fine an error as either a 1 inside a 0-block or a 0 inside
a 1-block).

Regular Equivalence Two nodes are said to be regularly
equivalent (i. e., play the same structural role) to each other
to the extent that they have ties (lack of ties) to corre-
sponding others who are themselves regularly equivalent
to each other. That is, u and v are regularly equivalent
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A 2-mode structural equivalence blockmodel in which the row
partition has 4 classes and the column partition has 3 classes

if, (a) for all x such that u has a tie to x, there exists a y
that is regularly equivalent to x such that v has a tie to y,
and (b) for all x such that u has an incoming tie from x,
there exists a y that is regularly equivalent to x such that v
has an incoming tie from y. Whereas in structural equiv-
alence equivalent nodes are connected to the same others,
in regular equivalence equivalent nodes are connected to
the same types of others.

Alternatively, we can define regular equivalence in
terms of a partition C of nodes into labeled classes (known
as colors) such that regularly equivalent nodes are required
to have the same colors in their neighborhoods. That is, for
all nodes u and v,

C(u) D C(v) implies C(N(u)) D C(N(v)) ; (14)

where C(N(u)) is the set of distinct colors found among
the nodes constituting u’s immediate neighborhood.1 Tak-
ing a blockmodeling perspective, it can readily be seen
that Eq. (14) implies a blockmodel in which each matrix
block is either entirely zero (a “zeroblock”) or contains at
least one 1 in every column and in every row (a “regular
oneblock”), as illustrated in Fig. 14.

Equation (14) lends itself easily to the bipartite case.
Instead of seeking a single partition of nodes, we seek a dif-
ferent partition for each mode. Labeling these partitions R
and C, we modify our definition such that for all u; v 2 V1
and x; y 2 V2,

C(u) D C(v) implies R(N(u)) D R(N(v)) ; and
R(x) D R(y) implies C(N(x)) D C(N(y)) :

(15)

1For directed graphs, we require C(No(u))D C(No(v)) and
C(Ni (u))D C(Ni (v)), where No(v) refers to the set of nodes that
v sends a tie to, and Ni (u) refers to the set of nodes that v receives
a tie from.

Social Network Analysis, Two-Mode Concepts in, Figure 14
Perfect regular equivalence blockmodel on an ordinary graph

Social Network Analysis, Two-Mode Concepts in, Figure 15
A 2-mode regular equivalence blockmodel

Of course, the neighbors N() of any node consist en-
tirely of nodes belonging to the other mode. Thinking in
terms of the 2-mode incidence matrix shown in Fig. 1,
Eq. (15) implies that we can section the matrix into rectan-
gular blocks such that each block is zeroblock or a regular
1-block. An example of a 2-mode regular blockmodel is
shown in Fig. 15.

As with structural equivalence, in empirical work we
do not expect to obtain perfect 1-blocks and 0-blocks. In-
stead we seek partitions induce matrix blocks that are as
nearly regular as possible.

Conclusion

In this chapter we have considered methods of visualizing
and analyzing 2-mode network data. An examination of
the chapter suggests that four strategies are employed for
handling 2-mode data. First, there is converting the data
into two separate 1-mode datasets, and analyzing each sep-
arately. Second, there is using existing 1-mode methods
on a bipartite representation of the 2-mode data, and es-
sentially ignoring its special features. Third, there is using
1-mode methods but either adjusting the interpretation or
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applying some kind of normalization to adjust the results.
Finally, there is developing new methods designed specifi-
cally for the 2-mode case. The chapter has provided exam-
ples of all four strategies.

It is worth reminding the reader that only 2-mode
data viewed in a network context has been considered
here. In principle, most data dealt with by social scien-
tists is structured as a 2-mode matrix of cases (rows) and
variables (columns) and most statistical techniques as-
sume such data. This chapter obviously does not discuss
this vast pantheon of techniques, although it is clear that
many would be appropriate, particularly structure-find-
ing techniques such as factor analysis and correspondence
analysis.

Future Directions
Although it would be a mistake to think of 2-mode data
as an advance over 1-mode data, it is important to note
that there are many cases were extending network analysis
methodology tomore than 2modes is desirable. For exam-
ple, we might analyze membership in organizations over
time, yielding a 3-way, 3-mode data matrix of relations
that is person by organization by period. Similarly, we
might be interested in modeling the intellectual landscape
of an academic field, representing publications as k-mode
bundles of authors, journals, years, institutional affiliations
and topics.
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Glossary

Social network A social network comprises a set of rela-
tionships among members of a set N D f1; 2; : : : ; ng
of actors. It can be represented by an n � n binary ar-
ray X recording the presence or absence of a social re-
lationship, or tie, between each pair (or ordered pair)
of members of N D f1; 2; : : : ; ng. If there is a relation-
ship from actor k to actor l, we write X(k; l) D 1; oth-
erwise, X(k; l) D 0. If the relationship is a property
of a pair of actors, the network is nondirected; if it is
a property of an ordered pair, the network is termed di-
rected. The directed networkXmay also be regarded as
a binary relationRX on the setN with (k; l) 2 RX if and
only if X(k; l) D 1; equivalently, it may be construed
as a directed graph with node set N and arc set RX , with
an arc from node k to node l if and only if (k; l) 2 RX .

Affiliation network An affiliation network is an n � g
binary array X recording the membership of each
of a set N of actors in a prescribed set G of groups,
with X(k; l) D 1 if actor k is a member of group l, and
X(k; l) D 0 otherwise.

Multiple network A multiple network is a collection
of networks for each of a set of r relations. We
let Xm(k; l) D 1 if the tie from k to l corresponding
to the relation of type m is present; and Xm(k ; l) D 0
if the tie is absent. Nodes k and l are joined by a la-
beled walk with label Y1 Y2 : : : Yj if there is a sequence
of nodes k D k0; k1; : : : ; k j D l , for which Yh(kh�1;
kh) D 1 for h D 1; 2; : : : ; j.
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Local network The (1-)neighborhood of a subset P of ac-
tors in a network is defined to be the set P [ fl 2
N : Xm(k; l) D 1 for some k 2 P and some rela-
tion m}. The q-neighborhood of P is then defined re-
cursively as the 1-neighborhood of the (q � 1)-neigh-
borhood of P. The q-local network of the subset P
of N is the network restricted to its q-neighbor-
hood.

Algebra A (partially ordered) algebra is a triple [S; F;�],
where S is a nonempty set of elements (usually as-
sumed to be finite), F is a specified set of operations,
f˛ , each mapping a power Sn(˛) of S into S, for some
non-negative finite integer n(˛), and � is a partial or-
der on S. Each operation f ˛ is assumed to be isotone
in each of its variables: that is, if xi � yi (xi ; yi 2
S; i D 1; 2; : : : ; n(˛)), then f˛(x1; x2; : : : ; xn(˛)) �
f˛(y1; y2; : : : ; yn(˛)). A family of algebras is a collec-
tion of algebras each having the same set F of op-
erations and satisfying a specified set of postulates.
Two algebras belonging to the same family are termed
similar.

Partial algebra A partial algebra is a triple [S; F;�],
where S is a nonempty set of elements (usually as-
sumed to be finite), F is a specified set of partial op-
erations, f˛ , each mapping some subset T(˛) of Sn(˛)

into S, for some non-negative finite integer n(˛),
and� is a partial order on S. Each partial operation f ˛
is assumed to be isotone in each of its variables: that is,
if xi � yi (xi ; yi 2 S; i D 1; 2; : : : ; n(˛)), then f˛(x1;
x2; : : : ; xn(˛)) � f˛(y1; y2; : : : ; yn(˛)) provided that
both (x1; x2; : : : ; xn(˛)) ; (y1; y2; : : : ; yn(˛)) 2 T(˛).
A family of partial algebras is a collection of alge-
bras each having the same set F of partial opera-
tions defined on the same subsets T(˛) of the power
sets Sn(˛).

Semigroup A (partially ordered) semigroup is an algebra
[S; F;�] in which F comprises a single binary opera-
tion f satisfying the associativity condition:

f ( f (x; y); z) D f (x; f (y; z)) :

Lattice A lattice L is an algebra [S; F;�] in which F com-
prises two associative and commutative binary oper-
ations, ^ and _ (termed meet and join, respectively)
satisfying the identities:

x ^ x D x ; x _ x D x

and

x ^ (x _ y) D x _ (x ^ y) D x :

The operations are isotone, so that x � y is equivalent
to the pair of conditions:

x ^ y D x and x _ y D y ;

and the operations of meet and join may be interpreted
as the greatest lower bound and least upper bound, re-
spectively. A lattice L is distributive if the identity

x ^ (y _ z) D (x ^ y) _ (x ^ z)

holds. A lattice L ismodular if, whenever x � z, then

x _ (y ^ z) D (x _ y) ^ z :

Role algebra A role algebra is an algebra [S; F;�] in
which F comprises a single binary composition op-
eration satisfying the condition: s � t in S implies
su � tu in S, for any u 2 W .

Homomorphism An (isotone) homomorphism from an
algebra AD [S; F;�] onto a similar algebra B D
[T; F;�] is a mapping � : S ! T such that,

(i) for all f˛ 2 F and xi 2 S,

�( f˛(x1; x2; : : : ; xn(˛)))
D f˛(�(x1) ; �(x2); : : : ; �(xn(˛))) ; and

(ii) x � y in S implies �(x) � �(y) in T .

The algebra B is termed a (homomorphic) image
of A, and we write B D �(A). Each homomorphism �

from AD [S; F;�] onto B D [T; F;�] has a corre-
sponding binary relation � on S (termed here a �-re-
lation) in which (x; y) 2 � if and only if �(y) � �(x).
The equivalence relation �	 defined by (x; y) 2 �	 if
and only if (x; y) 2 � and (y; x) 2 � is termed a con-
gruence relation.

Homomorphism lattice The homomorphism lattice L(A)
of the algebra AD [S; F;�] is the collection of all
homomorphisms of A partially ordered by the rela-
tion: �1 � �2 if, for all x; y 2 S; �2(x) � �2(y) im-
plies �1(x) � �1(y). The lattice L	 (A) of �-relations
on A, dual to L(A), has the partial ordering: �1 � �2 if
(x; y) 2 �1 implies (x; y) 2 �2, for any x; y 2 S.

Definition of the Subject

Algebraic models have been proposed to represent struc-
ture in social networks. They are usually constructed from
a set of operations and relations defined on network con-
stituents such as paths or walks in the network, or vec-
tors of ties directed to or from individual network mem-
bers. The algebra represents the relationships among these
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constituents, for example, relations of ordering among
all possible walks in a multiple network, or relations of
overlap and ordering among profiles of group member-
ship. To date, they have been used to represent kinship
structures [6,9,48], role structures and stability in multi-
ple networks [1,5,8,36], states of diffusion processes in net-
works [30], informal hierarchy [17], connectivity struc-
tures [13] and the structure of membership in affiliation
networks [16,38]. In several cases, partial algebraic repre-
sentations have also been proposed [35,39,40].

Algebraic models have usually been proposed as ex-
act structural representations and, in many cases, there-
fore, their application to network data has been coupled
with some form of prior data aggregation such as block-
modeling [5,50]; see also the entry on � Positional Anal-
ysis and Blockmodeling. More rarely, algebraic construc-
tion and data aggregation have been combined into a sin-
gle step [8,33].

Introduction

Algebraic models for relational structures such as net-
works have their foundations in anthropology and were
developed for general network structures by Lorrain,
White and colleagues [5,26,27]. These general network
representations based on path structures in networks
emerged from more specific models for path structures in
kinship systems, including permutation group models for
Australian aboriginal kinship systems [48]. Boyd extended
this approach in an important way when he proposed that
the structural evolution of kinship systems could be an-
alyzed in terms of homomorphic mappings [6]; applica-
tions to network semigroups were described later [5,37].

Lattice representations for relational structures have
a long history in mathematics [2] and applications to rela-
tional data in many domains have been developed exten-
sively by Wille and collaborators in formal concept anal-
ysis [19,20,51]. They have also been applied to affiliation
network structures [16,45,47].

The form of algebraic structure regarded as appropri-
ate in a particular context is a matter for substantive con-
sideration. The largemajority of forms that have been pro-
posed to date have dependedupon the importance of paths
or walks in the network, the symmetric or asymmetric na-
ture of network ties, and the patterns of overlap among tie
partners. A focus on one or more of these features has re-
sulted in algebraic groups, semigroups, partially ordered
semigroups, local role algebras and lattices as representa-
tions of different aspects of structure inmultiple social net-
works and affiliation networks [5,8,14,16,29,36,48] and it
is on these forms that we focus here.

Algebras fromNetworks

A Language for Discriminating Among Relations

We begin with a finite set ˙ D fx1; x2; : : : ; xrg of r rela-
tional terms.We term˙ a relational alphabet and call each
term xi in˙ a letter of the alphabet. The letters x1; x2; : : :
denote relational terms such as “friendship”, “co-worker”,
“confidant”, and so on. If r D 1, the set˙ simply identifies
a single network relation.

In order to construct algebraic representations that are
sensitive to social structural form, claims in the social net-
work literature can be used to introduce a free word alge-
bra on the alphabet˙ . The algebra is intended to provide
a language for describing more complex relational terms
that can be constructed from the primitive set˙ and so to
provide the means for discriminating among social struc-
tural forms. The claims about appropriate ways of con-
structing new terms from the primitive set may be drawn
from a number of sources, but one set of such claims is
helpfully laid out by White [49]. White argues that there
are three universal ways in which types of tie (i. e., rela-
tional terms) are discriminated. The first is in terms of
patterns of overlap; the second in terms of asymmetry of
relation; and the third in terms of the institutionalization
of indirect ties. The overlap of two relational ties refers to
their joint occurrence and can arguably be described using
an intersection operation,\. The asymmetry of a tie can be
described by the relationship between the tie and its con-
verse, that is the coding of whether, for two individuals k
and l, there is a tie from k to l and from l to k. The tie is
symmetric if the tie from k to l occurs only in conjunction
with the tie from l to k, and the tie is strictly asymmetric if
a tie from k to l occurs only in the absence of a tie from l
to k.We use the expression x0 to denote the converse of the
relational term x. Indirect ties may be described by a com-
position, or concatenation operation, denoted ı. If x1 refers
to the term “friendship” and x2 to “coworker”, then the
concatenation x1ıx2 may be used to refer to a relation that
holds between a person and his or her friend’s co-work-
ers.

We denote by F the set of operations from which our
descriptive language is to be built. Unless otherwise spec-
ified, we assume here that F comprises the three oper-
ations just described; that is F D f\; 0;ı g. Each opera-
tion f ˛ in F possesses an arity, n(˛), that determines the
form of new terms created from ˙ by f ˛ : in particular,
f ˛ leads to expressions of the form f˛(y1; y2; : : : ; yn(˛));
ym 2 ˙;m D 1; 2; : : : ; n(˛). The operations\ and ı have
arity 2, that is, they are binary and lead to expressions that
can be written as y1 \ y2, and y1ıy2, respectively, whereas
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the converse operation 0 is unary (that is, it has an arity
of 1) and leads to an expression that can be denoted y01
(where y1; y2 2 ˙).

We describe a recursive construction of a free word al-
gebra W D [˙; F] from the alphabet ˙ and the set F of
operations [2].We call each letter in˙ an F-polynomial of
rank 0. For any positive integer �, we define an F-polyno-
mial of rank � recursively as an expression, termed aword,
of the form f˛(u1; : : : ; un(˛)), where each uj is an F-poly-
nomial of rank� � � 1 (and at least one uj is an F-polyno-
mial of rank � � 1). The (free) word algebra W D [˙; F]
comprises all distinct F-polynomials of finite rank
(where f˛(u1; : : : ; un(˛)) and fˇ (v1; : : : ; vn(ˇ )) are distinct
unless ˛ D ˇ and uk D vk for all k D 1; : : : ; n(˛)).

It is sometimes convenient to restrict attention to the
collection of words of rank no greater than some fixed in-
teger �. So we also define W� D [˙; F]� as the subset of
the free word algebra W D [˙; F] comprising words of
rank � �.

For example, suppose that F comprises the opera-
tions f\; 0;ı g and that ˙ D fx; yg. Then the elements
of rank 0 in the word algebra W D [˙; F] are fx; yg;
the elements of rank 1 are fx \ x; x \ y; y \ x; y \
y; x0; y0; xıx; xıy; yıx; yıyg; elements of rank 3 include
x \ x \ x; x \ (xıx); (xıx)\ x; x \ x0; x0 \ x, etc; and
so on. In this case, the free word algebra W D [˙; F]
comprises all composite relational terms that can be con-
structed from the primitive terms x and y using the inter-
section, converse and concatenation operations.

The free word algebra simply provides a language that
permits certain forms of discrimination among types of tie
to be encoded. It makes no structural assumptions what-
ever, although we might anticipate from the intended in-
terpretation of the terms in F that certain terms in W
will not need to be discriminated. For instance, we might
suppose that: the intersection operation can be assumed
to be idempotent (x \ x D x, for all x 2 W), commu-
tative (x \ y D y \ x, for all x; y 2 W) and associative
((x \ y)\ z D x \ (y \ z), for all x; y; z 2 W); that the
converse operation satisfies x00 D x, for all x 2W ; and
that the concatenation operation is also associative. Rather
than impose such postulates at this abstract level, though,
we move directly to the evaluation of the terms in W for
an empirical realization of a (multiple) network.

Algebras for Multiple Networks

The language provided by the free algebra W D [˙; F]
can be used to determine all possible discriminations
among ties that our structural claims suggest as appropri-
ate. To describe the structural forms to which observed

network ties give rise, each of the derived relations for
an observed multiple network can be computed. There
is a straightforward correspondence between the words u
in W D [˙; F] expressed in terms of letters in ˙ and op-
erations in F, on the one hand, and Booleanmatrix manip-
ulations of the binary constituents in themultiple network,
on the other. The correspondence is achieved by replacing:

� the relational term xm by the array Xm;
� the intersection operation\ by Boolean intersection of

arrays (i. e., element-wise Boolean multiplication, de-
noted �); and

� the composition operation ı by Boolean matrix multi-
plication.

Boolean intersection, transposition and composition are
defined for n � n binary arrays Y1 and Y2 by:

� Y1�Y2(k; l) D Y1(k; l)Y2(k; l);
� Y 01(k; l) D Y1(l ; k); and
� Y1Y2(k; l) D Y1(k; 1)Y2(1; l)CY1(k; 2)Y2(2; l)C � � �C

Y1(k; n)Y2(n; l).

The term u 2W then corresponds to an n � n Boolean
array, denoted Xu, with Xu(k; l) D 1 if and only if there is
a relational tie described by the word u from k to l. We also
define a partial order on the set of relations fXu : u 2Wg
by:

Xu � Xv if and only if Xu(k; l) � Xv (k; l)
for all k; l 2 N :

Suppose that we evaluate Xu for all u 2W . We define
a generalized version of the Axiom of Quality by setting
u � v inW whenever Xu � Xv [5].

Defining an induced partition � on W by (u; v) 2 � if
and only if u � v and v � u and letting S D W/� be the
set of associated classes with the induced partial order:

s � t in S if u 2 s ; v 2 t and u � v inW ;

we can then define a general (partially ordered) algebraic
structure on S.

A (partially ordered) algebra is a triple [S; F;�],
where S is a nonempty set of elements (usually assumed
to be finite), F is a specified set of operations, f ˛ , each
mapping a power Sn(˛) of S into S, for some non-nega-
tive finite integer n(˛), and � is a partial order on S. Each
operation f ˛ is assumed to be isotone in each of its vari-
ables: that is, if xi � yi (xi ; yi 2 S; i D 1; 2; : : : ; n(˛)),
then f˛(x1; x2; : : : ; xn(˛)) � f˛(y1; y2; : : : ; yn(˛)). A fam-
ily of algebras is a collection of algebras each having the
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same set F of operations and satisfying a specified set of
postulates. Two algebras belonging to the same family are
termed similar.

For F D fıg, the algebra [S; F;�] is a partially ordered
semigroup [36].

The Semigroup of a Multiple Network

Formultiple networks, a composite relation constructed as
the concatenation of observed relations records the pres-
ence of a particular form of labelled walk. Specifically, ac-
tor k is connected to actor l by a walk with label u if and
only if Xu(k; l) D 1. If Xu � Xv , two actors who are joined
by a walk with label u are also necessarily joined by a walk
with label v.

An algorithm for constructing the semigroup of amul-
tiple network [S; fıg;�] is as follows:

(S1) LetW1 D fX1; X2; : : : ; Xrg and set i D 1.
(S2) Construct the networks with edge sets WZ for each

W 2 Wi and each Z 2W1. Place WZ in WiC1 if
WZ ¤ Y , for any Y 2Wj ; j D 1; 2; : : : ; iC1; other-
wise,WZ D Y for some Y 2Wj ( j D 1; 2; : : : ; iC1)
is an equation in the semigroup S.

(S3) If WiC1 D ;, stop and compute the partial order
among elements in W1 [W2[ . . . ; otherwise, set i
to i+1 and return to step S2.

The equationsWZ D Y may be recorded in a right multi-
plication table in which Y appears as the table entry corre-
sponding to the row labelledW and the column labelledZ.
The partial ordering on S is constructed from the collec-
tion of networks inW1;W2, . . . .

Lattices from Networks

Lattice representations for networks arise in two impor-
tant ways. In the first, elements of the lattices are elements
of S D W/� for F � f\;ı g. The meet of two elements is
their intersection, and their join is the least relation in S
which is greater than or equal to both of them. Indeed, the
algebra [S; F;�] is both a lattice and a partially ordered
semigroup in this case.

In the second type of lattice construction, the ele-
ments correspond to rows or columns of an affiliation
network. Since the affiliation array provides an explicit
representation of the co-constitution of groups by actors
and actors by groups, the lattice structures to which it
gives rise can be used to analyze the duality of actors and
groups [10,15,16,31,33,38,47].

A lattice denoted L(X) is generated by the rows of
a matrix X under the intersection operation; it is termed

the Galois or concept lattice of X [20]. In L(X), the meet of
two elements is equal to their intersection, while their join
is the minimal element in the lattice which is greater than
or equal to both of them. A lattice can also be constructed
from the rows of the matrix X under the union operation.
In this lattice, termed the Zareckii lattice by Boyd, the join
of two vectors is equal to their union, and their meet is
the maximal vector which is less than or equal to both of
them [8].

To construct the Galois lattice, one simply needs to
compute all distinct intersections among rows of X, add
the vector [1 1 . . . 1] and compute the partial order among
the resulting set of row vectors.

Role Algebras from Networks

Role algebras have been proposed as local network ana-
logues of the semigroup representation of relational struc-
ture in an entire social network. The representation has
been presented in several slightly different forms but each
is derived from an original formulation proposed by Man-
del [11,29,53,54].

Denote by k  Xu the vector [Xu(k; 1); Xu(k; 2); : : : ;
Xu(k; n)] for u 2W . The vector indicates whether there is
a relationship of type u from actor k to each other actor in
the network. As before, we can envisage evaluating k  Xu
for all u 2 W. We then define a k-centered version of the
Axiom of Quality by setting

u � v inW whenever k  Xu � k  Xv

and an induced partition � onW by (u; v) 2 � if and only
if u � v and v � u. Also as before, we let S D W/� denote
the set of associated classes with the induced partial order:

s � t in S if u 2 s ; v 2 t and u � v inW :

The algebra [S; F;�] is termed a role algebra.
The local role algebra for actor k may be constructed

as follows.

(RA1) LetW1 D fX1; X2; : : : ; Xrg and set i D 1.
(RA2) Construct the vectors k WZ for each W 2 Wi

and each Z 2 W1. PlaceWZ inWiC1 if k WZ ¤
k  Y , for any Y 2Wj; j D 1; 2; : : : ; i C 1; other-
wise, k WZ D k  Y for some Y 2 Wj ( j D 1; 2;
: : : ; i C 1) and WZ D Y is an equation in the role
algebra.

(RA3) If WiC1 D ;, stop and compute the partial order
among elements in W1 [W2[ . . . ; otherwise, set i
to i+1 and return to step RA2.
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Partial Algebras

To achieve algebraic closure, it may be necessary to com-
pute relations corresponding to words of high rank in W
and, in the case of some representations at least, it can
be argued that some restriction on these repeated opera-
tions should be imposed. Mandel, for instance, made such
an argument for the composition operation in social net-
works; he claimed that short network paths are likely to be
more salient to the members of the network than longer
ones [29]. These considerations can be formalized with
the introduction of partial algebraic structures, whose ele-
ments are subject to rank restrictions on some or all of the
operations used to construct the algebra.

Let W� D [˙; F]� be the subset of the free word al-
gebra W D [˙; F] comprising words of rank � �. Define
a partial order on the elements of W� by the generalized
Axiom of Quality:

u � v inW� whenever Xu � Xv :

The relation � is clearly both reflexive (u � u for all
u) and transitive (u � v and v � w implies u � w for any
u; v;w), that is, a quasi-order. Further, each operation f ˛
is isotone in each of its variables whenever the result of the
operation is contained in W�; that is, if xi � yi (xi ; yi 2
W� ; i D 1; 2; : : : ; n(˛)), then f˛(x1; x2; : : : ; xn(˛)) �
f˛(y1; y2; : : : ; yn(˛)), provided that both f˛(x1; x2; : : : ;
xn(˛)); f˛(y1; y2; : : : ; yn(˛)) 2W� . Thus it follows that the
partial ordering � on W� gives rise to a partial algebra in
the following sense.

A partial algebra is a triple [S; F;�], where S is a non-
empty set of elements (usually assumed to be finite), F is
a specified set of partial operations, f ˛ , each mapping
some subset T(˛) of Sn(˛) into S, for some non-negative fi-
nite integer n(˛), and� is a partial order on S. Each partial
operation f ˛ is assumed to be isotone in each of its vari-
ables: that is, if xi � yi (xi ; yi 2 S; i D 1; 2; : : : ; n(˛)),
then f˛(x1; x2; : : : ; xn(˛)) � f˛(y1; y2; : : : ; yn(˛)) pro-
vided that both (x1; x2; : : : ; xn(˛)); (y1; y2; : : : ; yn(˛)) 2
T(˛). A family of partial algebras is a collection of algebras
each having the same set F of partial operations defined on
the same subsets T(˛) of the power sets Sn(˛).

Partial semigroup algebras may be constructed from
labelled walks in a multiple network of some maximum
length � [40]. For role algebras, the partial role algebra for
a node k derived from W� is the role algebra associated
with the �-local neighborhood of k [39].

Algebraic Structure

In some cases, it is possible to analyze the structural prop-
erties of algebraic representations of networks.

The Semigroup of a (Single) Network
Under Composition

We first consider the semigroup for a single network ar-
ray X. We say that there is a walk from actor k to ac-
tor l if X(k; l) D 1. There is a walk of length p from k
to l if there is a sequence of actors k D k0; k1, . . . , kp D l
such that X(ki�1; ki ) D 1, for i D 1; 2; : : : ; p. It is read-
ily seen that Xp(k; l) D 1 if and only if there is a walk of
length p from k to l. The sequence X; X2; : : : generated by
the composition operation is therefore a sequence record-
ing the presence of walks of different lengths between all
pairs of network actors. The semigroup structure of this
sequence therefore describes relations of equality and or-
dering among walks in the network.

The sequence can be described with the help of the fol-
lowing definition. Let p be the least integer such that

Xp D Xq for some q > p :

Also let q D pC d (d � 1) be the least integer satisfying
this relation. The integers p and d are termed the index
and period of the network, respectively. It can readily be
seen that the sequence has the form

X; : : : ; Xp�1; Xp; : : : ; XpCd�1; Xp; : : : ; XpCd�1; : : : :

The set fX; X2; : : : ; XpCd�1g defines a semigroup S of
which G D fXp; : : : ; XpCd�1g is a group (defined below).

It is natural to ask what is the relationship between
properties of a network and its index and period.

For a strongly connected network X (that is, a network
in which there is a walk of some length from each actor
to each other actor), the period d is the greatest common
denominator of all integers m such that m is the length
of a cycle in X (that is, a walk with the same initial and
final node). If X has more than one strong component, its
period is the least commonmultiple of the periods of those
strong components [24].

A networkX with index 1 and period 1 is termed idem-
potent; for a network of index p and period 1, the net-
work Xp is idempotent. It may be shown that every idem-
potent network is a pseudo-order, defined as follows [43].
Let Z be a quasi-order on N and let eZ D Z \ Z0. An actor
k 2 N is termed Z-strict if there is no distinct actor l ¤ k
such that Z(k; l)D 1. The subsetH ofN is Z-permissible if
each of its actors is Z-strict and there are no pairs k; l 2 N
such that k covers l or l covers k (recall that k covers l if
Z(k; j) D 1 and Z( j; l) D 1 implies j D k or j D l). De-
fine the relation ZH by

ZH(k; l) D 1 iff k D l and k 2 H :
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Then a network X is a pseudo-order if

X D ZnZH

for some quasi-order Z and Z-permissible subsetH of N.

Structure of Multiple Network Semigroups

In some cases, networks define semigroups with certain
structural features.

An element s in a semigroup S possesses a (general-
ized) inverse if there exists some t 2 S such that sts D s
and tst D t. The element t is termed the inverse of s. If
every s 2 S possesses an inverse, then S is termed an in-
verse semigroup. If, in addition, S possesses an identity el-
ement, that is, an element e such that for any s 2 S, there
exists some t 2 S such that ts D e, then S is a group. The
element t is termed a (group-)inverse of s. An element s in
a semigroup S is regular if there exists some t 2 S such that
sts D s. The semigroup S is regular if each of its elements
is regular.

It is clear from these definitions that any group is also
an inverse semigroup and that any inverse semigroup is
also regular. The results below describe some of the con-
ditions under which mutiple networks give rise to regular
semigroups, inverse semigroups and groups.

We first describe the conditions under which S is
a group [28,42]. Let X be a network relation having
a group-inverse Y , that is, a relation Y such that XY 0 D I
where I is the identity relation (for which I(k; l) D 1
if k D l ; I(k; l) D 0 otherwise). Then it follows that
(i) XX 0 D I D X 0X and Y D X (that is, X 0 is a two-sided
group-inverse for X and is unique); and (ii) X is a permu-
tation relation (that is a relation in which, for each node k,
there is exactly one node l for which X(k; l)D 1 and ex-
actly one node j for which X( j; k) D 1). Hence if each re-
lation Xi of a multiple network is a permutation relation
and X 0i is included in S for each i, then the semigroup S is
a group.

An important class of social relations which are con-
structed as permutation relations are “marriage class sys-
tems”. These systems were proposed by White as mod-
els for kinship relations in certain Australian aboriginal
tribes [48]. In such systems, persons are uniquely and per-
manently assigned to a clan and clans are related to one
another by marriage and descent rules which can be rep-
resented as permutation relations. The marriage relation
specifies the clan containing the wives of the male mem-
bers of each clan, while the descent relation identifies the
clan containing the children of male members of each
clan. It follows that marriage class systems give rise to

groups that represent the kinship structures of the societies
concerned.

Another structure arising in the description of kin-
ship systems is the inverse semigroup [9]. One can verify
whether a network semigroup is an inverse semigroup by
determining whether each of its elements has an inverse
in S. The following is a characterization of conditions un-
der which a relation possesses an inverse [24].

A network relation X has a Thierrin–Vagner inverse
if there exists a relation Y satisfying XYX D X and
YXY D Y . Clearly, X has a Thierrin–Vagner inverse if
and only if X possesses an inverse in S. If X is a regu-
lar element of S, so that XYX D X for some Y in S, then
YXY is a Thierrin–Vagner inverse for X. Thus determin-
ing whether X is regular will reveal whether X has an in-
verse. The regularity of X can be ascertained as follows.

The network relation Y is a subinverse of X if XYX �
X. The set of subinverses of X is closed under union
(that is, if Y and Z are subinverses of X then so is
the relation Y [ Z); hence there is a largest subin-
verse X� for any relation X. The largest subinverse X�

of a relation X can be calculated from X according
to X� D (XTXcXT )c where Xc denotes the complement
of X. It therefore follows that a network X is regular if and
only if X � X(XTXcXT)c X, and that the largest Thierrin–
Vagner inverse of a regular relation X is X�XX� [24,44].

The Algebraic Structure of Local Role Algebras

Less is known of the general algebraic properties of local
role algebras. It is easily seen, however, that any orderings
among relations present in the semigroup of a multiple
network are also present in the local role algebra of each
actor in the network. As a result, a number of the alge-
braic properties of local role algebras are inherited from
the “parent” network semigroup. For example, if s � t in
the partially ordered semigroup S constructed from the
composition operation, then s � t in the local role algebra
of every node in the network. Indeed, the converse is read-
ily seen to also hold, so that s � t in S if and only if s � t
in the local role algebra of every node in the network.

Algebraic Analysis

In order to describe an algebraic representation, general
procedures for analyzing finite algebraic representations
into simpler, independent components have been devel-
oped [20,36,37,39]. These procedures have been applied to
the decomposition of lattice representations [20], partially
ordered semigroups and local role algebras [34,35,36]. The
procedures extract maximally independent components
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of a given algebraic representation and lead to a detailed
structural analysis.

The account of these procedures for decomposing a fi-
nite algebra into simpler components is based on defi-
nitions adapted from [2,18]. Clearly, any decomposition
procedure depends on the synthesis rules by which the
components are assumed to be combined to produce the
algebra. Two important synthesis rules are the direct and
subdirect product.

Let A1 D [S1; F;�]; A2 D [S2; F;�]; : : : ;Aq D

[Sq ; F;�] be a collection of similar algebras. The direct
product A1 � A2 � � � � � Aq of A1;A2; : : : ;Aq is the al-
gebra comprising the set S1 � S2 � � � � � Sq and the opera-
tions f˛ 2 F given by

f˛([x1; x2; : : : ; xq]; : : : ; [z1; z2; : : : ; zq])
D [ f˛(x1; : : : ; z1); : : : ; f˛(xq ; : : : ; zq)] :

The partial order for A1 � A2 � � � � � Aq is given by

[x1; x2; : : : ; xq] � [z1; z2; : : : ; zq]

if and only if

x1 � z1; x2 � z2 ; : : : ; and xq � zq :

An algebra B D [T; F;�] is a subalgebra of AD [S; F;�]
if T is a subset of S (possibly empty) which is closed un-
der the operations of F (that is, f˛(x1; x2; : : : ; xn(˛)) 2
T , for any x1; x2; : : : ; xn(˛) 2 T , and any f˛ 2 F); in ad-
dition, x � y in B if and only if x � y in A, for any
x; y 2 T . A subalgebra C D [S; F;�] of a direct product
A1�A2�� � ��Aq of similar algebras Ai D [Si ; F;�] (i D
1; 2; : : : ; q) is a subdirect product of A1;A2; : : : ;Aq if for
each xi 2 Si , there exists an element c 2 S having xi as its
component in Ai.

In the case of both the direct and subdirect product of
algebras, the operations in the composite algebra are per-
formed as the conjunction of their independent operation
in the component algebras. The difference between the two
constructions lies in the set on which these operations are
defined. For the direct product, the appropriate set is the
full Cartesian product of elements from each component
algebra; in the subdirect product case, the appropriate set
is simply a subset of the full Cartesian product with the ad-
ditional condition that each element in each component
algebra appears in some element of the subset.

Some well-known theorems in universal algebra estab-
lish that the existence and nature of direct and subdirect
representations of an algebra are determined by the lat-
tice of homomorphisms of the algebra, or, equivalently, by

a lattice of relations on the algebra associated with its ho-
momorphisms.

An (isotone) homomorphism from an algebra A D
[S; F;�] onto a similar algebra B D [T; F;�] is a map-
ping � : S ! T such that,

(i) for all f˛ 2 F and xi 2 S,

�( f˛(x1; x2; : : : ; xn(˛)))
D f˛(�(x1); �(x2); : : : ; �(xn(˛))) ; and

(ii) x � y in S implies �(x) � �(y) in T.

The algebra B is termed a (homomorphic) image of A, and
we write B D �(A).

Further, each homomorphism � from AD [S; F;�]
onto B D [T; F;�] has a corresponding binary relation �
on S (termed here a �-relation) in which (x; y) 2 � if and
only if �(y) � �(x); it may readily be established that �
is transitive and reflexive (and hence a quasi-order) and
that the equivalence relation �	 defined by (x; y) 2 �	 if
and only if (x; y) 2 � and (y; x) 2 � has the substitution
property, namely:

(x1; y1); (x2; y2); : : : ; (xn(˛); yn(˛)) 2 �	

implies

( f˛(x1; x2; : : : ; xn(˛)); f˛(y1; y2; : : : ; yn(˛))) 2 �	 :

The relation �	 is termed a congruence relation. The col-
lection of�-relationsmay be partially ordered by: �1 � �2
if (x; y) 2 �1 implies (x; y) 2 �2, for any x; y 2 S. Under
this partial ordering, the relations � form a lattice L	 (A),
the lattice of �-relations on A.

The conditions under which an algebra Amay be rep-
resented as a direct or subdirect product of similar alge-
bras A1;A2; : : : ;Ar (that is, possesses direct or subdirect
representations) can be described as follows.

Let X D f�1; �2; : : : ; �qg be a set of � relations
in L	 (A) for which

�1 ^ �2 ^ � � � ^ �q D �min;

where �min is the minimal element of L	 (A). Then A
may be represented as a subdirect product of the alge-
bras �1(A); �2(A); : : : ; �q(A), where �i(A) is the image
of A under the homomorphism � i corresponding to the
relation �i (i D 1; 2; : : : ; q). If, in addition, for all i,

(a) �1 ^ �2 ^ � � � ^ �i�1 and � i are permutable (i. e.,
(�1 ^�2 ^ � � � ^�i�1)�i D �i(�1 ^�2 ^ � � � ^�i�1));
and
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(b) (�1 ^ �2 ^ � � � ^ �i�1) _ �i D �max, where �max is
the maximal element of L	 (A), then A may be
represented as the direct product of the alge-
bras �1(A); �2(A); : : : ; �q(A) [2].

An algebra which possesses no nontrivial representation
as the direct product of similar algebras is termed directly
irreducible, while an algebra which cannot be expressed as
a nontrivial subdirect product of similar algebras is subdi-
rectly irreducible. Pattison and Bartlett advocated the use
of subdirect representations, but sought to restrict atten-
tion to a small set of such representations rather than to
the (possibly large) class of all subdirect representations
of the algebra [37]; see also [7]. Their restriction entailed
(a) identifying all irredundant subdirect representations of
an algebra, and then (b) defining a partial ordering on the
irredundant representations and selecting only minimal
members of the resulting partially ordered set. The result-
ing set of minimal, irredundant subdirect representations
were termed the factorizations of the algebra.

More formally, an element x of a lattice L is meet-irre-
ducible if x D x1 ^ x2 implies x D x1 or x D x2. A subset
of lattice elements X D fx1; x2; : : : ; xrg is irredundant if

a) each xi is meet-irreducible; and
b) x1 ^ � � � ^ xi�1 ^ xiC1 ^ � � � ^ xq ;¤ xmin, for each i D

1; 2; : : : ; q; where xmin is the minimal element of the
lattice L.

The collection of all irredundant subsets of a lattice Lmay
be partially ordered by the relation:

X � Y iff, for each j D 1; 2; : : : ; p, there exists
some i (i D 1; 2; : : : ; q) such that y j � xi in L, where X D
fx1; x2; : : : ; xqg and Y D fy1; y2; : : : ; ypg.

A factorization of an algebra A is then the subdirect
representation corresponding to any minimal, irredun-
dant subset of elements of L	 (A) whose meet is the mini-
mal relation �min.

An Algorithm for Factorization

A general algorithm for constructing the set of all fac-
torizations of an algebra has also been developed [37].
The algorithm operates on a subset of relations in the lat-
tice L	 (A) and conducts a reasonably efficient search for
subsets of � relations which satisfy the conditions of the
factorization definition. In particular, the algorithm con-
structs the set of factorizations of an algebra A from the
atoms of its lattice L	 (A) of �-relations and their maxi-
mal meet-complements.

An atom of a lattice L is an element that covers xmin.
A meet-complement of an element x 2 L is an element x�

such that x� > xmin and x ^ x� D xmin. A meet-comple-
ment x� of x is maximal if x has no other meet-comple-
ment z such that z > x�.

Let Z D fz1; z2; : : : ; zag be the set of atoms of L	 (A).
Define the collection of sets of the form fz�1 ; z

�
2 ; : : : ; z

�
a g

where z�i is a maximal meet-complement of zi. Then it
can be shown that any factorization ofA is a subset of such
a set [36]. This result is the basis for the algorithm for find-
ing factorizations. Under certain circumstances, we can
write down an explicit expression for �-relations in the
factorization of A.

Let A be an algebra with �-relation lattice L	 (A).
Let �ab be the least �-relation in which a � b for ele-
ments a; b 2 A; we term �ab the �-relation generated by
the ordering a � b.

Let z be an atom of L	 (A); define the relation
�(z) D f(a; b) : �ab ^ z D �ming. If z has a unique max-
imal meet-complement, then �(z) is a �-relation and is
a unique maximal meet-complement of z. Conversely, if
�(z) is a �-relation, then it is the unique maximal meet-
complement of z. Further, if Z D fz1; z2; : : : ; zag is the
set of atoms of L	 (A) and if, for each zi 2 Z; zi has
a unique maximal meet-complement �(zi ), then the fac-
torization of A is unique and corresponds to the �-re-
lations f�(z1); �(z2); : : : ; �(za)g [36]. In other words, if
the factorization is unique, it can be identified immedi-
ately from the maximal meet-complements of the atoms
of L	 (A).

Under some circumstances, we canmakemore general
claims about the uniqueness of factorizations. Not surpris-
ingly, the structure of the lattice L	 (A) plays a major part.
It is known, for instance, that if the lattice L	 (A) is dis-
tributive, then A possesses a unique irredundant subdirect
representation, and hence a unique factorization. In par-
ticular, since the lattice of �-relations for a lattice is nec-
essarily distributive, any finite lattice has a unique factor-
ization. If the lattice L	 (A) is modular, then any irredun-
dant subdirect representation of A has the same number
of components [2].

Factorization for Partial Algebras

Analogous decompositions can be described for partial al-
gebras. An (isotone) homomorphism from a partial alge-
bra A D [S; F;�] onto a similar partial algebra B D
[T; F;�] is a mapping � : S ! T such that,

(i) for all f˛ 2 F and xi 2 S,

�( f˛(x1; x2; : : : ; xn(˛)))
D f˛(�(x1); �(x2); : : : ; �(xn(˛)))
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whenever the operations on both sides of the expres-
sion are defined; and

(ii) x � y in S implies �(x) � �(y) in T.

The algebra B is termed a (homomorphic) image of A, and
we write B D �(A).

Further, each homomorphism � from AD [S; F;�]
onto B D [T; F;�] has a corresponding binary relation �
on S (termed here a �-relation) in which (x; y) 2 � if and
only if �(y) � �(x); it may readily be established that �
is transitive and reflexive (so that � is a quasi-order). Fur-
ther, the equivalence relation �	 defined by (x; y) 2 �	 if
and only if (x; y) 2 � and (y; x) 2 � has the substitution
property, namely:

(x1; y1); (x2; y2); : : : ; (xn(˛); yn(˛)) 2 �	

implies

( f˛(x1; x2; : : : ; xn(˛)) ; f˛(y1; y2; : : : ; yn(˛))) 2 �	

whenever the latter term is defined. The relation �	 is
often termed a congruence relation. The collection of
all �-relations form a lattice L	 (A), the lattice of �-re-
lations on A, under the partial ordering: �1 � �2 if
(x; y) 2 �1 implies (x; y) 2 �2, for any x; y 2 S.

In the case of partial algebras, it is convenient to ex-
press the algebra as an intersection of the �-relations cor-
responding to maximally independent homomorphic im-
ages of the algebra. Recall that theminimal element�min of
the lattice L	 (A) corresponds to the algebra A itself. Thus,
any expression of �min in the form

�1 ^ �2 ^ � � � ^ �q D �min

expresses A as the intersection of �-relations correspond-
ing to homomorphic images of A. Any such expression
that involves �-relations f�i ; i D 1; 2; : : : ; qg satisfying
the conditions of the factorization definition yields an ex-
pression in terms of a set of simple and maximally in-
dependent images of the algebra. Further, the same algo-
rithm for constructing factorizations of an algebra that was
described earlier may be used to find expressions of this
type.

Algebraic and NetworkMappings

The semigroup of a multiple network records the order-
ings and equations among different types of labelled paths
in the network. A natural question to arise is how prop-
erties of a multiple network constrain the relational struc-
ture of its semigroup. We therefore review some general
conditions under which the semigroup of one network is
a homomorphic image of the semigroup of another.

We define two multiple networks to possess the same
structure if their semigroups are isomorphic, that is, if the
network relations are in one-to-one correspondence and
they have identical right multiplication tables and partial
orders.

One strategy for investigating whether networks have
similar structures is to determine the conditions un-
der which network homomorphisms induce homomor-
phisms of the network semigroup [4]. A network ho-
momorphism from a multiple network fX1; X2; : : : ; Xrg

on actor set N to a multiple network fY1;Y2; : : : ;Yrg
on actor set M is a mapping  from N onto M such
that: (a) Xm(k; l) D 1 implies Ym( (k);  (l)) D 1, for
any k; l ;m; and (b) Ym (i; j) D 1 for some i; j implies
that Xm(k; l) D 1, for some k; l such that  (k) D i and
 (l) D j. The network on M is termed the image of the
network on N under the mapping  .

The mapping  satisfies the structural equivalence
condition if for any m, and for any k; l 2 N;  (k) D  (l)
if and only if:

� Xm(k; j) D 1 iff Xm(l ; j) D 1 for any j 2 N; and
� Xm( j; k) D 1 iff Xm( j; l) D 1 for any j 2 N.

Lorrain and White observed that if two multiple networks
are related by a network homomorphism satisfying the
structural equivalence condition, then their semigroups
are isomorphic and we may argue that they possess the
same relational structure [27]. More generally, we can ask
whether a homomorphism between two networks induces
a homomorphism between their semigroups. It is readily
seen that a homomorphism is not always guaranteed.

Network homomorphisms induced by certain block-
models lead to semigroup homomorphisms (see the entry
on � Positional Analysis and Blockmodeling). More gen-
eral conditions under which a semigroup homomorhism
is guaranteed were established by Kim and Roush [25].

A network homomorphism  satisfies Kim and
Roush’s condition Gi if the following holds for any pair of
equivalence classes �1 and �2 on N induced by the map-
ping  (so that k; l 2 �h for some h iff  (k) D  (l)). Let
the number of elements in �1 and �2 be n1 and n2, re-
spectively. Let D be any subset of �1 of i elements or, if
i > n1, let D D �1. Then, for any m D 1; 2; : : : ; r, the set
fl : l 2 �2 and Xm(k; l) D 1 for some k 2 Dg has at least
min(i; n2) elements. The conditionG1 is also known as the
outdegree condition andGn is also termed the indegree con-
dition. A network homomorphism that satisfies both G1
and Gn is termed regular.

Kim and Roush demonstrated that if  is a network
homomorphism from one multiple network onto another
that satisfies the condition Gi, then there is a homomor-
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phism mapping the semigroup of the first onto the semi-
group of the second.

A more general condition combines the condition Gi
with what Pattison termed the central representatives con-
dition [34]. Let  be a network homomorphism. Then  
satisfies the condition Gim if, for each class � of elements
of N induced by  ,

� there exists a central subset C of � such that for any Xm
� Xm(k; l) D 1 for some k 2 � implies Xm(k�; l) D 1

for some k� 2 C, and
� Xm(l ; k) D 1 for some k 2 � implies Xm(l ; k�) D 1

for some k� 2 C; and
� if C* denotes the union of central subsets C, then the

central subsets C satisfy Kim and Roush’s condition Gi
on the network defined on C*.

If each central subset C comprises a single actor, then the
condition is equivalent to Pattison’s central representa-
tives condition, while if each central subset C comprises
the whole of the equivalence class on N induced by  , it
is equivalent to the condition Gi. Kim and Roush showed
that if one network can be mapped onto another by a net-
work homomorphism satisfying the condition Gim, then
there is a homomorphism from the semigroup of the first
to the semigroup of the second [25]. The condition Gim
is the most general condition known that guarantees the
existence of such a homomorphism.

Comparing Network Semigroups

Two network semigroups S1 and S2 are strictly com-
parable only if S1 � S2 or S2 � S1. Loosely speaking,
though, they are “similar” if they share many homomor-
phic images. Boorman andWhite proposed that the largest
shared homomorphic image (the so-called joint homo-
morphism) is a useful construction for comparing net-
work semigroups [5]. Bonacich and McConaghy, on the
other hand, argued that the smallest semigroup contain-
ing each of S1 and S2 (the common structure semigroup)
was a more appropriate representative of common semi-
group structure [3,32]. The resolution of the problem of
finding a representative of common structure depends on
how a semigroup is viewed [36]. If a semigroup is seen as
a list of the homomorphic images that it admits, then the
joint homomorphism corresponds to the list of shared fea-
tures, while if it seen as a collection of semigroup equa-
tions and orderings, then the common structure semi-
group serves as a representation of shared structure. The
common structure semigroup of two network semigroups

is the semigroup of the disjoint union of the underlying
networks.

Both the joint homomorphic image and common
structure semigroup constructions have been shown to be
useful in particular applications, the former in identifying
common reductions of the networks giving rise to iden-
tical semigroups, and the latter in identifying shared cul-
tural forms (such as “the friend of a friend is always an
associate”).

Linking Algebraic and Network Homomorphisms

The factorization of an algebra identifies relatively inde-
pendent components of the algebra generated by con-
stituents of the data array under the selected operation.
It is natural to ask whether this analysis induces a corre-
sponding decomposition of the network itself. That is, if
an algebra A has a homomorphic image B (such as one of
the factors of A), is it possible to find one or more homor-
phisms of the network that is consistent with the congru-
ence relation � for the homomorphism and that generates
the algebra B? If so, we can argue that there is an asso-
ciation between such a reduction of the network and the
homomorphic image.

In the case of the lattice of an affiliation network, such
a reduction can always be uniquely found [20]. For semi-
groups and role algebras, there is no guarantee that such
a reduction can be found, but it is possible to identify the
smallest homomorphic image of the network whose alge-
bra contained B as a homomorphic image [34].

Examples

We illustrate a number of the algebraic constructions just
described for a multiple network blockmodel and an ap-
proximation to an affiliation network.

Network Semigroup

Table 1 corresponds to a multiple network on 7 nodes
with two kinds of edges, F and N. The network is a block-
model reported by Vickers for relations of friendship and
negative ties among members of a high school class in an
Australian country town [46]. The questions from which
the blockmodel was constructed were (a) “Who are your
best friends?” and (b) “Who would you rather not have as
a friend?”.

The semigroup generated by the multiple network in
Table 1 has the right multiplication table and partial order
shown in Table 2. The process of constructing the semi-
group generates the sets W1 D fF;Ng;W2 D fF2; FN;
NF;N2g;W3 D fF3; FNF; FN2;NF2;N2F;N3g;W4 D
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Social Networks, Algebraic Models for, Table 1
Amultiple network on 7 nodes

Block Block
Relation Block 1 2 3 4 5 6 7 Relation Block 1 2 3 4 5 6 7
F 1 1 1 1 0 0 0 0 N 1 0 0 0 1 1 1 1

2 0 1 0 0 0 0 1 2 0 0 0 1 1 1 0
3 1 1 1 0 0 0 0 3 0 0 0 1 1 1 0
4 0 0 0 1 0 0 0 4 0 1 1 0 0 1 1
5 0 0 0 0 1 0 0 5 0 0 0 0 0 0 1
6 1 0 0 0 0 1 0 6 0 0 0 1 0 0 1
7 1 1 1 0 0 0 1 7 0 0 0 1 1 1 1

Social Networks, Algebraic Models for, Table 2
Right multiplication table and partial order for the semigroup of the multiple network of Table 1

Right multiplication table Partial order
Generators Elements

Element Word F N 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 F 3 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 N 5 6 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 FF 7 4 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0
4 FN 8 9 4 0 1 0 1 0 0 0 0 0 0 0 0 0 0
5 NF 10 9 5 0 1 0 0 1 0 0 0 0 0 0 0 0 0
6 NN 11 12 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0
7 FFF 7 4 7 1 0 1 0 0 0 1 0 0 0 0 0 0 0
8 FNF 8 9 8 0 1 0 1 1 0 0 1 0 1 0 0 0 1
9 FNN 13 12 9 0 0 0 0 0 1 0 0 1 0 0 0 0 0

10 NFF 14 9 10 0 1 0 0 1 0 0 0 0 1 0 0 0 0
11 NNF 11 12 11 1 0 1 0 0 1 1 0 0 0 1 0 0 0
12 NNN 13 12 12 0 1 0 1 0 1 0 0 1 0 0 1 0 0
13 FNNF 13 12 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 NFFF 14 9 14 0 1 0 0 1 0 0 0 0 1 0 0 0 1

fFN2F;NF3g and W5 D ;; equations include F2N D

FN;NFN D FN2, and F4 D F3.
It is evident from Table 2 that the relations F and N

both have index 3 and period 1. The relation F is regular,
whereas the relation N is not.

Each of the equations of Table 2 specifies the empiri-
cal coincidence of potentially distinct labelled walks. The
equation F2N D FN, for example, indicates the those in-
dividuals nominated by one’s friends as preferred non-
friends coincide with individuals so nominated by the
friends of one’s friends.

Role Algebra

The role algebra for block 4 in the network of Table 1 is
presented in Table 3. Equations in the right multiplica-
tion table indicate equalities among labelled paths having
block 4 as the source. For example, the equation FF D F

indicates that friendship paths of length 2 emanating from
block 4 reach exactly the same set of blocks as direct
friendship ties. Likewise, the equation FN D N allows us
to infer that, namely block 4 would prefer not to have
as friends precisely those blocks so nominated by their
friends. The partial order diagram indicates that block 4’s
friendship ties are a subset of those to whom block 4 has
negative tie paths (block 4) of length 2.

The role algebra of block 4 has a unique factorization.
The lattice of �-relations has two atoms and each atom
possesses a unique maximal meet-complement; the atoms
and their maximal meet-complements are shown in Ta-
ble 4. These unique maximal meet-complements are asso-
ciated with the role algebras shown in Table 5. In the first
factor, both FN and NF ties from block 4 coincide with N
ties, and NNF ties include all others. In the second factor,
any path from block 4 whose last tie is labelledN coincides
with an N tie.
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Social Networks, Algebraic Models for, Table 3
The role algebra for block 4 in the network of Table 1

Right multiplication table Partial order
Generators Elements

Element Word F N 1 2 3 4 5 6
1 F 1 2 1 1 0 0 0 0 0
2 N 3 4 2 0 1 0 0 0 0
3 NF 3 4 3 0 1 1 0 0 0
4 NN 5 6 4 1 0 0 1 0 0
5 NNF 5 6 5 1 1 1 1 1 1
6 NNN 5 6 6 1 1 0 1 0 1

Social Networks, Algebraic Models for, Table 4
Atoms and unique maximal-meet complements for the block 4
role algebra

Partial order Partial order
Elements Elements

Ele-
ments

1 2 3 4 5 6 Ele-
ments

1 2 3 4 5 6

Atom 1 1 0 0 0 0 0 1 1 0 0 0 0 0
2 0 1 0 0 0 0 2 0 1 0 0 0 0
3 0 1 1 0 0 0 3 0 1 1 0 0 0
4 1 1 0 1 0 0 4 1 0 0 1 0 0
5 1 1 1 1 1 1 5 1 1 1 1 1 1
6 1 1 0 1 0 1 6 1 1 1 1 0 1

Maximal
meet-com-
plement

1 1 0 0 0 0 0 1 1 0 0 0 0 0

2 0 1 1 0 0 0 2 1 1 0 1 0 1
3 0 1 1 0 0 0 3 1 1 1 1 1 1
4 1 0 0 1 0 0 4 1 1 0 1 0 1
5 1 1 1 1 1 1 5 1 1 1 1 1 1
6 1 1 1 1 1 1 6 1 1 0 1 0 1

Lattice of an Affiliation Network

The affiliation network in Table 6 is an approximation
to the so-called “Southern Women” data [12,23]. The ap-
proximation was obtained by a method described in [52],
and is akin to a form of dual clustering of the rows and
columns of the original data array. The Galois lattice of
the (approximate) affiliation array is presented in Fig. 1.
In Fig. 1, known as the line diagram of the lattice, one ele-
ment s is drawn above and connected to another element t
if s covers t, (that is if s � t and there is no element u dis-
tinct from s and t for which s � u � t) [51]. The meet of
two elements is the greatest element lying below both ele-
ments and connected to them by a descending path. The
join of two elements is the least element to which they are
both connected by an ascending path.

Social Networks, Algebraic Models for, Table 5
Factors of the role algebra for block 4

Factor 1 Right multiplication table Partial order
Generators Elements

Element Word F N 1 2 3 4
1 F 1 2 1 1 0 0 0
2 N 2 3 2 0 1 0 0
3 NN 4 4 3 1 0 1 0
4 NNF 4 4 4 1 1 1 1

Factor 2 Right multiplication table Partial order
Generators Elements

Element Word F N 1 2 3
1 F 1 2 1 1 0 0
2 N 3 2 2 0 1 0
3 NF 3 2 3 0 1 1

Social Networks, Algebraic Models for, Table 6
An affiliation network: an approximation to the Southern
Women data; the approximation differs from the original data
in the 20 underlined values

Event
Woman 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 0 0 0 0 0
3 1 1 1 1 1 1 1 1 1 0 0 0 0 0
4 0 0 1 1 1 1 1 1 0 0 0 0 0 0
5 0 0 1 1 1 1 1 1 0 0 0 0 0 0
6 0 0 1 0 1 1 0 1 0 0 0 0 0 0
7 0 0 0 0 0 0 1 1 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 1 0 0 0 0 0
9 0 0 0 0 0 0 1 1 1 0 0 0 0 0

10 0 0 0 0 0 0 1 1 1 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 1 0 1 0 0
12 0 0 0 0 0 0 0 1 1 1 0 1 1 1
13 0 0 0 0 0 0 0 1 1 1 0 1 1 1
14 0 0 0 0 0 0 1 1 1 1 1 1 1 1
15 0 0 0 0 0 0 1 1 0 1 1 1 0 0
16 0 0 0 0 0 0 0 1 1 0 0 0 0 0
17 0 0 0 0 0 0 0 1 1 0 0 0 0 0
18 0 0 0 0 0 0 0 1 1 0 0 0 0 0

The rows and columns of the affiliation array may be
mapped to lattice elements in such a way that any row el-
ement (in this case, a woman) is at or above any column
elements (in this case, events) with which it is affiliated;
likewise, any column element (event) is at or below any af-
filiated row elements (women). It can be seen from Fig. 1,
for example, that all women attend event e8, whereas only
womenW1, W2 and W3 attend events e1 and e2.
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Social Networks, Algebraic Models for, Figure 1
The line diagram of the Galois lattice of Table 4

The lattice displayed in Fig. 2 is a maximal homomor-
phic image of the lattice of Fig. 1 and provides a simplifica-
tion of the lattice. In this diagram, a division of the women
in the network into three ordered clusters is apparent. One
cluster comprises the womenW1 toW6, with womenW4,
W5 andW6 attending only a subset of the events attended
by women W1, W2 and W3. A second cluster comprises
women W11 to W15, with women W11 and W15 attend-
ing only a subset of the events attended by women W12,
W13 andW14. The third cluster of women comprises W7,
W8, W16, W17 and W18 and is again divided into two
sub-clusters, one of whom (W7) attends a subset of the

Social Networks, Algebraic Models for, Figure 3
Largest homomorphic image of the lattice of Fig. 2

Social Networks, Algebraic Models for, Figure 2
Largest homomorphic image of the lattice of Fig. 1

events attended by the other (W8, W16, W17, W18). It is
also clear from the lattice of Fig. 2 that the first two clusters
of women attend a mixture of distinct events (e1 to e6 in
the case of the first cluster, and e10 to e14 in the case of
the second) as well as common events (e7 to e9), whereas
the third cluster of women attend only those events also
attended by women in the first two clusters (e7 to e9). This
structural feature of the affiliation network is drawn out
very clearly in the unique maximal homomorphic image
of the lattice of Fig. 2, shown in Fig. 3.

Future Directions

The algebraic constructions described above provide ex-
act and detailed representations of structural relationships
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among network constituents. Of course, this level of de-
tail assumes that the relational observations comprising
the network are accurate, as no allowance is made for vari-
ability or error. This is often a tenuous assumption, and
two important directions for further development utilize
the structural sensitivities of algebraic representations in
the presence of network tie variability.

The first direction is to use statistical criteria to gen-
erate (partial) algebraic structures that summarize key
structural features of a network [1,8,39,40]. Instead of the
generalized Axiom of Quality introduced earlier, an Ap-
proximate Axiom of Quality is proposed in which u � v
in W whenever there is “sufficient evidence” that the
relation Xu � Xv holds. Such an approach can lead to
a theoretically-guided and structurally-focused form of ex-
ploratory data analysis for multiple networks. Theoretical
guidance comes from choice of operations in the set F,
while structural focus resides in the (partial) algebra to
which the approach gives rise.

The second direction is to understand how exact alge-
braic representations can emerge as special, so-called de-
generate, cases of statistical models such as exponential
random graphmodels for networks (see the entry on� So-
cial Networks, Exponential Random Graph (p*) Models
for for Networks). An exponential random graph model
defines a probability distribution on the set of all networks
on a node set N as a function of some parameter vec-
tor. For any parameter vector, a subset of networks have
what can be defined as minimum “energy”. As the pa-
rameter vector is scaled by an increasingly large multi-
plier, the probability associated with any network whose
energy exceeds the minimum tends to zero. The mini-
mum energy networks can therefore be seen as highly
constrained or “frozen” structural forms associated with
the stochastic model [21,22,41]. The structure of these
forms will often warrant algebraic analysis of the type de-
scribed earlier; in addition, we can understand the non-
frozen models as stochastic generalizations of these struc-
tural forms.
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Glossary

Adoption A person’s change in behavior.
Agent based models Creation of hypothetical (some-

times prototypical) network structures and the simu-
lation of diffusion within those structures.

Homophily Tendency for people to be connected to oth-
ers like themselves.

Incidence The percent of new adopters at each time pe-
riod.

Internal versus external influence Internal influence
posits that adoption is driven by person-to-person per-
suasion whereas external influence posits it is driven
by sources outside the network such as mass media.

Event history analysis Transformation of data to repre-
sent person-time observations.

Network exposure The degree of behavioral adoption in
each person’s network neighborhood.

Network threshold The number or percent of adopters
in a person’s neighborhood necessary for a person to
adopt the innovation.

Rate The speed of diffusion.
Prevalence The cumulative percent of adopters in the

population.
Weight matrix Any N×N matrix representing potential

distances or similarities that models potential path-
ways for adoption influence (e. g., a structural equiv-
alence matrix derived from an adjacency matrix to
model influence of structural equivalence relations on
adoption).
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Definition of the Subject

Diffusion of innovations is the study of how new ideas and
behaviors spread within a population, both within and be-
tween communities. Diffusion research spans many disci-
plines since understanding how new ideas and behaviors
spread is an important aspect in many different fields of
study. For example, marketers are often interested in how
and why people change their purchasing habits and soci-
ologists concerned with how people come to accept new
norms. The first empirical investigations date back 100
years, while contemporary studies mark the beginning to
the 1943 study of diffusion of hybrid seed corn in Iowa.
A subset of the hundreds of empirical diffusion studies
have focused specifically on the collection and analysis of
social network data combined with data on when individ-
uals adopted selected behaviors.

Introduction

Diffusion of innovations theory attempts to explain how
new ideas and practices spread within and between com-
munities. The theory has its roots in anthropology, eco-
nomics, geography, sociology, marketing, mathematics,
among other disciplines [1,2,3,4], and has in some ways
been adapted from epidemiology [5,6]. The premise, con-
firmed by empirical research, is that new ideas and prac-
tices spread through interpersonal contacts largely con-
sisting of interpersonal communication [1,7,8,9,10,11].

In their 1943 pioneering study, Ryan and Gross [10]
laid the groundwork for the diffusion paradigm by
showing that, among other things, social factors rather
than economic ones were important influences on adop-
tion [11]. Hundreds of diffusion studies were conducted in
the 1950s and early 1960s to examine the diffusion process
in more detail across a variety of settings [1]. Many studies
sought to understand how information created in govern-
ment or otherwise sponsored programs could be dissem-
inated more effectively. Diffusion research peaked in the
early 1960s, but has been reinvigorated recently with the
advent of more sophisticated network models and tech-
nology making it possible to study the diffusion process
more explicitly.

Most diffusion studies focus on trying to understand
the factors that lead some members of a population to
adopt a new idea, while others do not. Further, studies
try to understand why some people adopt the behavior
early while others wait a substantial amount of time be-
fore accepting the new practice. For example, Ryan and
Gross [10] wanted to know why some farmers purchased
hybrid seed corn almost immediately upon its availabil-
ity while others waited until almost all the farmers in the

area purchased it before they were willing to do so. Simi-
larly, Coleman and others [12] wanted to know why some
physicians began prescribing tetracycline as soon as it was
available, while others waited until most physicians pre-
scribed it before they were willing to do so.

This chapter describes a variety of mathematical and
network models used to study the diffusion of these and
other innovations. The Coleman and others [12] study
provided a conceptual leap from other diffusion studies
by explicitly measuring who talked to whom within the
community about the innovation. Rogers [13] also col-
lected network data to study the diffusion of weed spray
in Iowa in his dissertation. Burt [14] unearthed the data
and made it available to the network community so that
scholars could debate various models used to describe the
network diffusion process. Although having data has been
useful for clarifying diffusion models, the limitations of
these data and this study, make it a poor choice for study-
ing adoption behavior. Rather, scholars should have fo-
cused on collecting better data, or reanalyzing diffusion
network data in which contagion was more likely.

This chapter chronicles the development of network
diffusion models and indicates where such progress is be-
ing made. I first present macro models used to estimate
the speed of diffusion and, with the Bass [15] model, to es-
timate rates of innovation and imitation. Next, spatial au-
tocorrelation is presented which is used to estimate the de-
gree contiguous nodes adopt innovations. Spatial autocor-
relation led to the network autocorrelation model which
is presented statically (cross-sectional data only) and then
with one time lag. I then discuss event history analy-
sis applications of network autocorrelation and its exten-
sion by including time-based network interaction terms.
Throughout the chapter, I attempt to provide a review of
recent research conducted in a variety of domains, but
mostly drawn from the public health field.

Macro Models

One consistent finding of diffusion research has been
that the cumulative pattern of diffusion follows a growth
pattern approximated by a simple one-parameter logistic
function such as:

y t D b0 C
1

1C e�b1 t
; (1)

where y is the proportion of adopters, b0 the y intercept, t is
time, and b1 the rate parameter to be estimated. This sim-
ple model can be used to compare growth rates for various
innovations, but is extremely limited in its applicability.
A considerable improvement was advanced by Bass [15]
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Social Networks, Diffusion Processes in, Table 1
Diffusion Rate Parameter Estimates and Moran’s I Estimates for
Two Data Sets

Medical
Innovation

Cameroon Tontine 1
Simulation

One ParameterModel
Coefficient (95%
Confidence Intervals)

0.23 (–.053–0.51) 0.06 (.01–0.12)

N 17 50
R2 0.76 0.71
Two Parameter (Bass)
Model
Innovation
Coefficient (95% C. I.)

–0.43(–0.83–0.03) –0.20 (–0.30–0.09)

Imitation Coefficient
(95% C. I.)

4.09 (3.05–5.12) 2.96 (2.58–3.34)

N 16 49
R2 0.89 0.89
Moran’s I –.13 –.08
z-score –6.73 –7.80

and many others [16,17,18] by creating a two parameter
model:

y t D b0 C (b1 � b0)Yt�1 � b1(Yt�1)2 ; (2)

where y is the proportion of adopters, b0 a rate parameter
for innovation, and b1 a rate parameter for imitation (the
degree of adoption due to prior adopters). The Bass model
incorporates the percentage adopters at each time point
and thus makes a better estimate of the growth attributable
to personal network persuasion. The mathematical model
in Eq. 2 can be used to: (1) forecast expected levels of dif-
fusion [17], (2) estimate the rate of diffusion attributed to
different theoretical aspects of the diffusion processes, b0,
external influence or innovativeness, and b1, internal in-
fluence or interpersonal persuasion [15,16,18]. This model
can be used to estimate rate of disease spread from a cen-
tral source such as contaminated food or from infectious
spread through interpersonal contact. In the social realm,
one can use the model to estimate rate of adoption from
a mass media advertisement or from interpersonal influ-
ence. Rate parameter estimates from both models for two
diffusion datasets are provided in Table 1. Interpretation
of these estimates is highly dependent on the time scale
used to measure diffusion.

These rate parameter estimates can be used as out-
comes to study factors associated with diffusion at the
macro-level by comparing rates between groups and/or
populations. For example, parameter estimates for differ-
ent countries can be compared to study factors associ-
ated with the spread of behaviors in different countries.

Modeling at this macro-level, however, is imprecise at best
because it assumes perfect social mixing, everyone inter-
acting with everyone else [19,20]. These macro models
do not measure whether people who are connected to
one another engage in the same behaviors. Geographers
have devoted considerable attention to trying to determine
whether innovations spread between contiguous areas.

Spatial Autocorrelation

Rather than just estimate rate of diffusion, spatial mod-
els measure whether artifacts, diseases, farming prac-
tices, and other behaviors spread between contiguous ar-
eas [2,21,22]. Proximity data are easy to obtain and are
relatively unambiguous, thus providing a network of con-
nections based on distance. Moran’s I was an early model
developed to test for spatial association, geographic clus-
tering of adoption:

I D

N
NP

i

NP

j
Di j(y i � ȳ)(y j � ȳ)

S
NP

i
(y i � ȳ)2

; (3)

where N is the sample size, D a distance matrix (as prox-
imities), y indicates adoption, and S the sum of the dis-
tances in the distance matrix. Moran’s I measures the de-
gree nodes that are connected to one another deviate from
the average behavior in the network similarly or differ-
ently. Moran’s I is high when connected nodes (positive
elements of D) are either positively or negatively differ-
ent from the average score. The statistical significance of
Moran’s I can be calculated in two ways: via permutation
methods or analytically.

To use a permutation method to calculate the signifi-
cance of Moran’s I assume adoption (yi) is randomly dis-
tributed and calculate I repeatedly to get a sample of esti-
mates based onD and the number of adopters. If Moran’s I
calculated is significantly different than the random sam-
ple generated,Moran’s I is considered significant (z-scores
can be obtained). The logic then is to calculate the de-
gree neighbors (however defined) have similar adoption
behavior compared to that expected if adoption were dis-
tributed randomly. Variance estimators for Moran’s I can
be found in spatial statistics textbooks [21,23] and used to
calculate exact significance tests. Moran’s I is useful, and
has been extended considerably, yet this approach often
assumes that geographic proximity equates with commu-
nication and influence, which may not be true.

The spatial autocorrelation methodology was seen as
a useful approach to measuring network autocorrelation,
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the bias inherent in a regression model when “y” appears
as both the dependent and independent variable. Erbing
and Young [24] wrote an influential paper on measuring
network effects and using network autocorrelation meth-
ods. Dow [25,26] demonstrated the effects of network au-
tocorrelation on estimate errors, and Doriean and oth-
ers [27] found considerable bias in the point estimates and
their standard errors. Exactly how network autocorrela-
tion applied to diffusion of innovations was not clear since
spatial autocorrelation measured diffusion at the macro
level, but did not show whether specific individuals were
more or less likely to adopt based on their network po-
sition. Further, spatial autocorrelation did not show how
network structure influenced diffusion. To do so, we turn
to network models.

NetworkModels

Figure 1 displays two networks from a study conducted in
Cameroon amongwomen in voluntary organizations [28].
Women were asked to name their friends in the organi-
zation in an attempt to determine if friendship ties were
associated with contraceptive choices (they were). The
diffusion network model posits that initial contraceptive
choices would be made by some women based on their
innovativeness and exposure to outside sources of influ-
ence such as their cosmopoliteness, media use, or greater
need for the innovation. The new idea, and its practice,
then spreads through the network as users persuade non-
users to adopt either by exhortation, entreaty, enticement,
or example.

These influences are captured by an exposure or con-
tagion model (Fig. 2), each individuals likelihood of adop-
tion increases as the proportion (or number) of users in
his/her personal network increases. Personal network ex-
posure is the proportion or number of adopters in each
person’s network that provide information and influence
with regard to some behavior. The equation for non-ran-
dommixing, or personal network exposure is:

Ei D

P
wi jy jP
wi

; (4)

where w is the social network weight matrix, and y is vec-
tor of adoptions. For an individual who reported five con-
tacts, network exposure (Ei) is the proportion of those
contacts that have adopted (Fig. 2). When network expo-
sure is measured on direct contacts it captures social in-
fluence conveyed through overt transmission of informa-
tion, persuasion or direct pressure. Alternatively, exposure
can be calculated by transforming the social network, W,
to reflect other social influence processes. For example,

Social Networks, Diffusion Processes in, Table 2
Social network influence weightings

Relational Positional Central
1. Direct Ties 1. Percent

Positive Matches
(Tie Overlap)

1. Degree

2. Indirect Ties 2. Euclidean
Distance

2. Closeness

3. Joint Participation
in Groups or Events

3. Regular
Equivalence

3. Betweenness

4. Flow
5. Integration/radiality
6. Information
7. Power

W can be transformed to represent the degree of struc-
tural equivalence (similarity in network position) among
people in the network. Exposure calculated on this net-
work captures social influence conveyed via comparison
to equivalent others such as by social comparison or com-
petition [14]. Exposure can also be weighted by network
properties such as centrality to reflect social influence by
opinion leaders.

These three social influence processes are modeled
with three different classes of network weight matrices
(relational, positional, and central), constructed from the
same social network data (Table 2). All three can be justi-
fied theoretically as sources of influence on adoption be-
havior and all three can be calculated various ways (there
are at least 10 centrality measures). It is possible that all
three operate for different people or at different times dur-
ing the diffusion process.

In addition to the social influence process, a second di-
mension to these influence mechanisms is the weights at-
tached to each based on social distance. For example, in
relational influence models, different weights can be as-
signed to direct ties, ties-of-ties, and even the ties-of-ties-
of-ties; in positional equivalence models, different weights
can be assigned to those that aremore equivalent than oth-
ers [7]. A potential line of diffusion network research then
is to compare different network weighting mechanisms to
model and compare different social influence processes.

Diffusion was simulated through the two Cameroon
networks in Fig. 1 to illustrate how network exposure and
network structure influence diffusion. At each time pe-
riod, adoption occurred for the non-adopter with the most
nominations received, then network exposure was calcu-
lated, all nodes with exposure of 50% or higher were cat-
egorized as adopters and the process repeated. We com-
pared diffusion in this network to that simulated in a net-
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Social Networks, Diffusion Processes in, Figure 1
Networks 1 and 2 from the Cameroon Voluntary Association Study
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Social Networks, Diffusion Processes in, Figure 2
Personal network exposure from direct contacts

work of the same size and density, but with links allo-
cated randomly. Both conditions were averaged across
1000 runs. Figure 3 shows that, in Network 1, initially the
diffusion trajectories are similar, but at about time 10, dif-
fusion in the actual network accelerated.

The network accelerated diffusion because it is some-
what centralized (in-degree 21.7%) and once diffusion
reaches the center of the network it can propagate rapidly.
Notice that at about time 20 diffusion slowed, accelerated
again at about 25, and then slowed from about time 30 to
40. These “fits and starts” are a product of the network
structure: diffusion reaches pockets of inter-connectivity
and spreads rapidly within these dense pockets, but slows
between groups. Network 2 (Fig. 3) had more rapid and
sustained diffusion because it was even more centralized
(in degree, 47.2%). Note that in the spatial autocorrelation
model adoptions were randomized to measure statistical
significance and in this simulation, the network structure
was randomized to illustrate its influence on the rate of
diffusion.

Simulation assumptions regarding influences on adop-
tion could easily be changed to achieve different outcomes.
For example, when adoptions were assigned randomly,
diffusion was constant in network one (and saturation
lower) and similar to the random network in network two.
The validity of these diffusion models rests partly on de-
termining whether network exposure influences adoption.
To that end, a number of empirical studies have been con-
ducted to measure the degree social network exposure is
associated with adoption.

Empirical Studies

Empirical support for an association between individual
own behavior and that of his/her peers can be found
throughout the behavioral sciences literature. While many
scholars assume adoption is associated with network ex-
posure, few studies have traced an innovation through
a network of social contacts to empirically validate this

proposition. The lack of data on diffusion within an en-
tire network stems largely from the difficulty of trying
to collect data over a time period long enough for diffu-
sion to occur. Consequently, most studies have relied on
retrospective data which introduces some but not much
bias [29,30]. It has also meant that several scholars have
re-analyzed two studies that collected network and adop-
tion data, (1) medical innovation study [12], reanalyzed
by Burt [14], Marsden and Podolny [31], Strang and
Tuma [32], Valente [7,33], and Van den Bulte and Lil-
lien [34]; (2) Korean family planning study [35], rean-
alyzed by Dozier [36], Valente [7,33], Montgomery and
Chung [37], and Kohler [38]. Recent studies in the fields
of reproductive health [39] and substance abuse [40] have
provided new data, but these classics remain classic.

Because collecting complete network data can be diffi-
cult, most empirical research has been ego-centric [41,42],
based on respondent reports of their behavior and that of
their network peers who are not necessarily connected to
one another and not interviewed. Social influence is often
based on respondent reports of perceptions of peer behav-
ior or perceptions of peer influence [43,44]. Comparison
of exposure scores based on respondent perceptions with
alters’ reports in one study found that perceptions were
more strongly related to behavior than exposure based on
alter reports [28,37,45].

Sociometric studies interview members of a bounded
community and attempt to gather information from ev-
eryone in the community (typically conducted in schools,
organizations, and small communities) and record their
time of adoption [1,12,46,47,48]. Sociometric studies are
useful for understanding how an innovation flows within
the community and how certain network structural vari-
ables influence the diffusion process. Sociometric data cap-
ture network influences by the alters’ reports since they
were also interviewed. For example, sociometric studies
can determine whether structural positions such as cen-
trality are associated with adoption and/or whether cen-
tralization is associated with more rapid diffusion [7].

A number of recent diffusion network studies have
been cross-sectional and in many cases retrospective in-
volving only one time point. For example, a study in Thai-
land by Entwisle and others [49] found that contraceptive
choices made by early adopters contributed significantly
to the contraceptive choices made by later adopters (also
see [35]). Valente and others [28] collected sociometric
data on contraceptive use among women in voluntary as-
sociations in Cameroon and showed that perceptions of
these friends’ behavior, and in particular perceptions that
these friends encouraged contraceptive use, were signifi-
cantly associated with behavior. In general, statistical ana-
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Social Networks, Diffusion Processes in, Figure 3
Simulated diffusion in twonetworks, each compared to randomnetworks of the same size anddensity. Network 2 ismore centralized
than Network 1

lyzes use the following model:

log
Pr(y t D 1)

(1 � Pr(y t D 1))
D ˛C

X
BkXk C B(kC1)!yt ; (5)

where y is a binary vector of adoption behavior, ˛ is the
intercept, ˇk are parameter estimates for vectors of K so-
cio-demographic characteristics (Xs), and! represents the
social network matrix. The !yt term represents the cal-
culation of contemporaneous network exposure and this
vector is usually divided by a count of the number of nom-
inations sent (alternatively the number of nominations can
be entered into the regression separately).

Significant estimates for ˇkC1 indicate contagion ef-
fects by showing that network exposure is associated with
adoption. The variances for these estimates, however, are
usually biased since the observations are not indepen-

dent and hence the errors in prediction are not inde-
pendent. One partial solution is to obtain robust esti-
mates by controlling for clustering. Clustering is the de-
gree that elements from the same cluster are similar com-
pared to those of different clusters. For example, two in-
dividuals chosen at random from the same organization
are more likely to be similar than two chosen at ran-
dom from different organizations. Table 3 reports regres-
sion results of the Cameroon data with and without cor-
rection for clustering. Without correction, network expo-
sure is strongly and significantly associated with adop-
tion, but with the correction it is only marginally sta-
tistically significant (p=.04). Controlling for clustering is
particularly important in network exposure models be-
cause network choices are often restricted to the clus-
ter.
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Social Networks, Diffusion Processes in, Table 3
Logistic regression on the likelihood of contraceptive behavior
on controls and network exposure with and without correction
for clustering (N=555; Groups=9)

Contraceptive Method Use
Without Correction With Correction
Adjusted Adjusted
Odds Raios P-value Odds Raios P-value

Age 0.97 0.001 0.97 0.010
Education 0.91 0.247 0.91 0.184
Possessions 1.39 0.000 1.39 0.000
Network Exposure 1.14 0.005 1.14 0.047

Even with clustering controlled, social influence as
measured through social networks seems to be strongly
associated with behavior. For example, a school-based so-
ciometric study was conducted by Alexander and col-
leagues [50] using the Adolescent health data [51] to show
that students with a majority of network ties who were
smokers were almost two times as likely to smoke them-
selves with an additional two times greater likelihood of
smoking for those with best friends who smoke. Clustering
was controlled and the multi-level model accurately cap-
tured micro-level effects within the context of macro-level
influences. The study measured the influence of peers on
smoking while conditioning on the smoking rate within
the school [50].

Estimating the network exposure (autocorrelation)
term with a multi-level model can provide contagion esti-
mates across settings and estimate the degree it varies be-
tween settings (i. e., communities, schools, organizations,
and so on). The models are incomplete however, because
there may be factors that influence both adoption and
choice of social network contacts. For example, the deci-
sion to smoke and to nominate friends who smoke may
both be a function of delinquency or rebellion. Hence
an association between behavior and peer behavior can
be spurious. Testing social influence with network meth-
ods then requires longitudinal data involving at least two
time points. Boulay and Valente [52] collected data among
women in three villages of Nepal and found that having
discussion partners who used contraception influenced
information seeking behavior and contraceptive choice.
Having data from two time points allows testing of a sim-
ple dynamic model on adoption:

log
Pr(y t D 1)

(1 � Pr(y t D 1))

D ˛C
X

BkXk C B(kC1)!ty tCB(kC2)!(t�1)y(t�1);
(6)

where y is a binary indicator of behavior, ˛ is the inter-
cept, ˇk are parameter estimates for vectors of K socio-de-
mographic characteristics (Xs), and! represents the social
network matrix. A positive and significant ˇkC2 indicates
that respondents with high network exposure at baseline
were more likely to adopt at time two. A positive and sig-
nificant ˇkC1 indicates that change in network exposure
is associated with change in behavior. This may indicate
contagion but still may be a product of some omitted fac-
tor. Panel data collected at two time periods is adequate
for most research needs, and can provide evidence of net-
work influences on behavior. However, since there is often
a considerable time between the two measures, many fac-
tors may account for simultaneous change in behavior and
network exposure. To cope with this threat, data can be
collected on time of adoption, expanding the micro level
dynamic analysis by using event history analysis [53].

Event History Analysis

Event history analysis techniques have been developed to
analyze data with a substantive number of time points,
estimating coefficients with maximum likelihood estima-
tors [32,53,54,55,56]. There are two types of event history
analysis, discrete time, in which the outcome is binary,
and continuous time, in which the outcome is time-to-an-
event. Since diffusion occurs over time, there is an explicit
time dimension in diffusion studies captured by both dis-
crete and continuous time models. The time of adoption
variable is the dependent variable and may be influenced
by both time-varying and time-constant factors. Some in-
dividuals may not have adopted by the time of data col-
lection giving rise to time-censored observations. Right
censoring occurs when data are collected before the in-
novation has finished diffusing or does not diffuse to all
members of the community or study. Left censoring oc-
curs when the data are incomplete at the beginning of the
process. For example, adoption data for the period 1993
to 2000 may have some people who adopted in 1989–1992
classified as 1992 adopters.

There are a variety of event history techniques includ-
ing hazard models developed in epidemiology used to un-
derstand the hazard or risk to disease or injury over time.
Hazard and/or event history analysis generally requires
that the data be reshaped from simple observations to
a case-time format such that there is a case in the data for
each individual at each time period of study up to and in-
cluding that person’s time of adoption. The time-varying
and time-constant independent variables are included in
each case as well as a binary indicator for whether the in-
dividual adopted or not (got sick or not).
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Maximum-likelihood estimation can determine
whether the independent variables are associated with
the dependent variable (adopt/not adopt) [57]. A study
of 100 people with an average adoption time of seven
translates into 700 person-time cases. Each person-time
case has a variable for the network exposure at that time
period plus an indicator for whether the person adopted
or not (plus additional time-constant and time-varying
covariates as desired). The event history model is:

log
Pr(y t D 1)

(1 � Pr(y t D 1))

D ˛ C
X

BjX j C
X

BktXkt C
X

B(kC1)!yt ;
(7)

where y is a binary indicator of behavior, ˛ is the inter-
cept, ˇj are parameter estimates for vectors of J socio-de-
mographic characteristics (Xj), and ˇkt are parameter es-
timates for the matrix of time-varying socio-demographic
characteristics (Xkt) and ! represents the social network
weight matrix, and t a time indicator. Note here we have
assumed a static (constant) network. Standard statistical
packages allow testing of event history or survival data in
a relatively straightforward manner, once the data are re-
formatted. Event history analysis requires the construction
of exposure matrices for each time period which can be
a formidable task particularly if one uses more than one
network weight matrix.

Marsden and Podolny [31] used event history analysis
and tested network exposure’s association with adoption
in the medical innovation data. Results showed that expo-
sure was not associated with adoption in that study. Strang
and Tuma [32] revisited the issue with the same data by
postulating time variance in network influence, (i. e., how
much lag time, if any, is there in the influence). They found
evidence of contagion. Van den Bulte and Lillien [34] sup-
plemented the medical innovation data with archival data
on media promotion by pharmaceutical firms at the time
of the original study and showed that network contagion
effects disappear once these data are added. Their analy-
sis demonstrates the importance of omitted variableswhen
studying diffusion through networks. The rapid diffusion
measured in the medical innovation study indicates that
contagion was probably not the primary factor driving dif-
fusion.

Event history analysis of the three classic diffusion net-
work datasets has been conducted [58]. The analysis con-
trolled for within village and within person covariation,
and terms for time and a logistic transformation of time
were included to control for macro-level effects. Terms
for infection and susceptibility [32,59] were included to

measure whether adoption by central individuals (high
in-degree) influenced subsequent adoption, infection, and
whether centrality (out-degree) influenced a person’s like-
lihood to adopt as diffusion occurred, susceptibility. In-de-
gree and out-degree were also included in the model. Two
network exposure terms were computed, direct ties and
structural equivalence. Structural equivalence was com-
puted as in Burt’s [14] measure, Euclidian distance raised
to the 16th power. For this analysis, network exposure was
calculated using contemporaneous measures since two of
the datasets recorded adoption in one-year intervals. Two
control variables representing individual characteristics
were included. Analysis was conducted only on those who
adopted. The following model was estimated:

log(Pr(y t D 1)) D ˛ C
X

ˇlmXlm C
X

ˇlmtVlmt

C
X

ˇlmt!s y tClm1CD(yC)C lm2CD(yC) ;
(8)

where y is a binary indicator of behavior, ˛ is the inter-
cept, Xs are vectors or time-constant socio-demographic
and network characteristics, V represents vectors of time-
varying terms, in this case time and its transformation,
!s represents the social network matrices, and  esti-
mates the effects of centrality degree variables multiplied
by the time varying proportion of adopters in the net-
work (infection and susceptibility). Results were mixed,
but seem to indicate that both infection and susceptibility
effects are present. In all three datasets, infection is pos-
itively associated with adoption indicating that as those
with high in-degree adopt, the likelihood others in the net-
work will adopt increases. In two studies, Brazilian farmers
and Korean women, susceptibility is associated with adop-
tion indicating that those with a high number of nomi-
nations sent are more likely to adopt as the innovation
diffuses. Ties sent and received are marginally associated
with adoption, and only for the Brazilian data is exposure,
through structural equivalence, associated with adoption.
These results, however, change dramatically when non-
adopters are included or when a term for the average ex-
posure at each time period is included such that infection
and susceptibility effects disappear.

The event history analysis approached has also been
used by Montgomery and others (2001) using ego-centric
data to study network exposure’s influence on contracep-
tive use in Ghana. Current analysis of four rounds of data
over two years has shown that contraceptive use is strongly
associated with use by social network peers. The Ghana
field study provides some of the most conclusive evidence
of the magnitude of social influence on behavior change
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by showing that as the number of social network contacts
who use contraceptives increases, the likelihood of contra-
ceptives use by ego also increases. Of all the variables, the
network exposure variables were the most significant in-
fluences on contraceptive adoption. Another longitudinal
field study in Kenya found similar results, again based on
ego-centric network data [60].

Montgomery and others [61] also report preliminary
analysis in which network influences are weighted by tie
characteristics such as the frequency of communication.
They found that adding these weights did not change the
strength of peer influence. Similar results have been re-
ported in Valente [7] and Valente and Saba, p. 109 in [43].
Consequently, it seems that the influence of social net-
works on behavior (contraceptive use in these cases) seems
broad in nature, and are not conditioned on specific fac-
tors such as the frequency of communication between
dyads or the their socio-demographic equality. These fac-
tors may play a strong, and even pervasive role in deter-
mining who is connected to whom [62], but they do not
seem to determine the degree of influence social contacts
provide.

Network exposure and adoption may not always be
strongly correlated for a number of reasons. First, expo-
suremay not be associated with adoption for everyone, but
may be most influential during the middle stages of dif-
fusion, when awareness is high, but uncertainty about its
relative advantages is also high [63]. Exposure may have
less of an effect early in the process when there are few
adopters and obvious advantages to waiting; and late in the
process when most people have a majority of adopters in
their personal network anyway. Second, individuals may
have varying thresholds to adoption such that some are
innovative and others are not [19]. Valente [7,33] posited
a social network threshold model in which contagion (ma-
jority rule) is a special case. Most simulation models as-
sume majority influence on adoption decisions as was
done in the beginning of this chapter. It is reasonable,
however, to expect that individuals vary in the amount
of network exposure needed to adopt an innovation. Dis-
proving thresholds may not be possible, but construct va-
lidity for the concept has been demonstrated [33]. Valente
and Saba [43] replicated the threshold model using ego-
centric data and showed that people with a minority of
network members using contraception had higher cam-
paign recall indicating that the media campaign could sub-
stitute for interpersonal sources of influences. If thresholds
vary, network exposure is needed for people to reach those
thresholds, if they do not and the special case of contagion
exists, network exposure will determine when individuals
adopt.

In spite of the impressive list of studies showing some
support for an association between individual behavior
and network exposure, and the theoretical simulations
of network structure and thresholds, significant work re-
mains to be done. Most scholars and lay people would
agree that social networks influence behavior. The bar-
riers to demonstrating this effect, however, have been
challenges of data collection and agreement on appro-
priate statistical methodology. The most commonly ana-
lyzed dataset, Medical Innovation, is 45 years old, consists
only of 125 respondents and arguably is not a diffusion
study at all. The limitation of available data has forced re-
searchers to rely on simulations and agent based modeling
approaches to understand theoretical mechanisms driving
diffusion.

Agent BasedModels

Agent basedmodels (ABM) are computer simulations cre-
ated to understand how actors (usually though not neces-
sarily people) behave given a set of preexisting conditions
and rules for their behavior [64]. A researcher can hypo-
thetically pose a population of people who have some de-
gree of connectedness and some structure to those connec-
tions. Model parameters may be set that vary those struc-
tural conditions or they may be taken as fixed and other
properties varied. To model the diffusion of innovations
one might be interested in how network structure affects
the rate of diffusion. So a simulation can be created which
varies network structure and then simulates the spread of
an innovation within those structures. One could also vary
other properties of the diffusion by varying the number
of initial adopters or the transmissibility of the innova-
tion.

To illustrate, an empirical dataset was used to sim-
ulate theoretical network structures and potential diffu-
sion within those structures. Data were collected among
adolescents in ninth grade and they were asked to write
the names of their five closest friends. A computer pro-
gram was written to match the names to the roster in the
school so a network could be constructed from the data.
The network had 150 nodes with 327 friendship links. The
agent basedmodel had 2 parameters: (1) the initial 7% seed
adopters would vary under 3 conditions: (a) randomly se-
lected seeds, (b) the most central nodes, and (c) peripheral
nodes; (2) the type of network structure would vary by 4
conditions (a) the real network, (b) a random one with the
same links, (c) a centralized one, and (d) a clustered one.

A simple diffusion model was then run setting a low
threshold for adoption such that at each time interval af-
ter the initial seeding those nodes connected to 15% other
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Social Networks, Diffusion Processes in, Figure 4
Comparison of simulated diffusion trajectories for a real network, and 3 simulated ones based on the real network’s density. The
three simulated networks are random links, centralized links (centralization = 3%), and clustered links (clustering coefficient=12%).
Diffusion occurs most rapidly in random and centralized networks

nodes would become adopters. The model was run for 20
time periods which was generally long enough for diffu-
sion to occur in most situations. After a run of 20 time pe-
riods was completed, results were tabulated and then the
simulation for each condition run 25 times and the results
aggregated. The model was run 25 times for each condi-
tion to ensure that the results were not the product of some
anomaly. It is customary in agent based models to run the
simulations for hundreds or thousands to times to guaran-
tee the results are robust.

Figure 4 shows illustrative findings by plotting the dif-
fusion trajectories in the different conditions. The data
show that simulated diffusion occurs most rapidly in the
random and centralized networks. It is slowest in the real
network. The network structure of real networks retards
diffusion because of homophily – the tendency for people
to be friends with others like themselves. This homophily
tendency creates clustered networks so that diffusion gets
trapped in these pockets of interconnectivity. Real net-
works also retard diffusion because they are symmetric (If
A! B then B! A) and so adoption by a pair leads to
reinforcement, not more diffusion. Bridges are needed to
carry the innovation across the gap between clusters and
these bridges act as bottlenecks that slow diffusion.

Statistical analysis can be conducted on the data to de-
termine the effect on diffusion. Outcomes can be the fi-

nal cumulative percent of adopters (the prevalence), or the
number of time periods till diffusion has reached 50%, or
the rate of adoption estimated using one of the mathemat-
ical models described above. In these data we find that all
3 simulated networks have more rapid diffusion than the
real network, and we find that seeding the network with
central adopters accelerates diffusion while seeding it with
peripheral actors slows diffusion.

Conclusions

Much progress has been made since 1943 when Ryan and
Gross first laid the foundation for diffusion of innovations
theory. Rogers [1] chronicled the many studies conducted
since then and helped shaped a general diffusion model
with wide applicability now being renewed and reinvigo-
rated with fresh theory and analytic models. Overall, re-
sults indicate that social network influences on behavior
are important and have consequences for the health and
well being of populations and individuals. These new in-
sights have shed light on important aspects of how new
ideas and practices spread within and between communi-
ties.

Along with new insights have come new questions and
new perspectives to be addressed. It is clear that a lack of
data on time of adoption coupled with information on net-
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work relations has hampered developments. Few diffusion
or behavioral studies collect information on networks,
conversely few network studies record time of adoption.
There are advantages to marrying these two ideas, how-
ever, and future research will hopefully try to collect both
types of data.

It is also clear that our understanding of how diffusion
occurs is still somewhat limited. The Medical Innovation
data have often been used to demonstrate the importance
of networks in adoption yet analyses by Valente [7] and
by Van den Bulte and Lillien [34] have shown that conta-
gion via social influence in this setting was unlikely. Given
the number of confounding factors, and some of the data
requirements, it may be prohibitively difficult to substan-
tiate the role of social networks in innovation adoption via
survey methods alone. Purposively intervening on social
networks, however, may prove to be a fruitful avenue of
research. If network-based interventions can be used to ac-
celerate innovation diffusion, then a stronger case can be
made for the importance of social contagion in the diffu-
sion process.

Nonetheless, it is clear that networks are important in-
fluences on behavior since most people acknowledge that
they receive information and influence via their social net-
works and that they model the behavior of others. What is
less clear is how to capture that influence in quantitative
terms that mimic the theoretical progress made in the net-
work field. Further, verbal accounts on how people make
decisions and adopt behaviors usually reveal non-lineari-
ties, chance circumstances, and whims that are not inde-
pendent of networks, but not easily captured in social in-
fluence models.

The link between micro and macro levels of analysis
represents an opportunity for study of diffusion processes.
The opportunity lies in the fact that multi-level modeling
techniques enable the separation of micro-level network
exposure influences from macro-level contextual factors.
Yet both are social network influences and both represent
elements of the diffusion paradigm. It is hoped that by
controlling for contextual effects we don’t “throw the baby
out with the bathwater,” by eliminating the micro-level in-
fluences that provide expressions for those contextual ef-
fects.

In spite of controls for macro-level contextual effects,
micro-level associations between peer network behavior,
and those of respondents are still sometimes strong. De-
bate remains about the meaning of these associations, is
it peer influence, peer selection, or further contextual ef-
fects? More rigorous studies may eventually tease this out,
in the interim, better study designs and interventions will
need to be created. This review has attempted to point out

some of the challenges diffusion scholars face and some of
the promising new directions it may take.

Scholars have turned to agent based modeling as
a technique to investigate diffusion properties. Agent
based models (ABM) allow the theoretical exploration of
how network structure can be varied and shown to in-
fluence diffusion. ABM also enables us to study diffusion
parameters such as thresholds, transmissibility, or the im-
portance of initial adopters on diffusion speed and preva-
lence. Until empirical data can be gathered and analyzed
ABM represent a promising approach to understanding
how diffusion processes occur on networks.

Future Directions

Future developments in diffusion processes are likely to
occur along two interrelated fronts. First, increasingly
scholars are using network data to propose and implement
social change practices [65]. These activities may involve
organizational change in the business context or health
promotion and treatment in the medical context. These
network based interventions provide the opportunity to
change networks and measure the resulting changes in
performance or behavior. Thus, scholars can more defini-
tively link changes in networks to changes in outcomes.

Second, considerable progress has been made in ad-
vancing statistical models that measure network evolution
and behavioral changes that account for multiple struc-
tural influences [66]. For example, scholars can test the
degree of similarity in behaviors while simultaneously esti-
mating the influence of social network characteristics such
as whether two people nominate one another or are part
of a linked triad. These models (known as P* or exponen-
tial random graph models) provide a statistical estimation
of concepts such as network influence, and network selec-
tion.
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Exponential random graph models, also known as p�

models, constitute a family of statistical models for so-
cial networks. The importance of this modeling frame-
work lies in its capacity to represent social structural effects
commonly observed in many human social networks, in-
cluding general degree-based effects as well as reciprocity
and transitivity, and at the node-level, homophily and at-
tribute-based activity and popularity effects. The models
can be derived from explicit hypotheses about dependen-
cies among network ties. They are parametrized in terms
of the prevalence of small subgraphs (configurations) in
the network and can be interpreted as describing the com-
binations of local social processes from which a given net-
work emerges. The models are estimable from data and
readily simulated. Versions of the models have been pro-
posed for univariate and multivariate networks, valued
networks, bipartite graphs and for longitudinal network
data. Nodal attribute data can be incorporated in social se-
lection models, and through an analogous framework for
social influence models.

The modeling approach was first proposed in the sta-
tistical literature in the mid-1980s, building on previous
work in the spatial statistics and statistical mechanics lit-
erature. In the 1990s, the models were picked up and ex-
tended by the social networks research community. In this
century, with the development of effective estimation and
simulation procedures, there has been a growing under-
standing of certain inadequacies in the original form of the
models. Recently developed specifications for these mod-
els have shown a substantial improvement in fitting real
social network data, to the point where for many network
data sets a large number of graph features can be success-
fully reproduced by the fitted models.

Glossary

Alternating independent-2-paths A parameter (and sta-
tistic) in new specification models; a particular com-
bination of k-independent-2-path counts into the one
statistic.

Alternating k-stars A Markov parameter (and statistic)
in the new specification models; a particular combi-
nation of Markov k-star counts into the one statistic;
equivalent to geometricallyweighted degree counts; use-
ful for modeling the degree distribution.
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Alternating k-triangles A parameter (and statistic) in the
new specification models; a particular combination
of k-triangle counts into the one statistic; equivalent to
weighted shared partners.

Cyclic triad A Markov graph configuration: in a directed
network, ties ij, jk and ki are observed among actors
i; j, and k.

Degeneracy (or near-degeneracy) When a model im-
plies that very few distinct graphs are probable, of-
ten only empty or complete graphs; degeneratemodels
cannot be good models for social network data.

Dependence assumption Theoretical assumption about
dependencies among possible network ties; determines
the type of parameters in the model.

Dyad independence Assumes that dyads are indepen-
dent of one another; the model includes edge and reci-
procity parameters, and possibly also node or dyad at-
tributes.

Dyad-wise shared partners Aparameter (and statistic) in
the higher order models; equivalent to alternating in-
dependent 2-paths.

Edge-wise shared partner distribution Distribution of
the number of dyads who are themselves related and
who have a fixed number of shared partners.

Edge-wise shared partners A parameter (and statistic) in
the higher order models; equivalent to alternating
k-triangles.

Geometrically weighted degree counts A statistic (and
parameter) in the new specification models: a sum of
degree counts with geometrically decreasing weights;
equivalent to alternating k-stars.

Homogeneity assumption Assumption about which pa-
rameters to equate, to make a model identifiable.

k-independent-2-paths Configurations in the higher or-
der models; equivalent to k-triangles but without the
base.

k-in-star A Markov graph configuration: in a directed
graph, k arcs are directed to the one actor.

k-out-star A Markov graph configuration: in a directed
graph, k arcs are expressed by the one actor.

k-triangle A configuration in higher order models; in
a non-directed graph, the combination of k triangles,
each sharing the one edge (the base of the k-triangle).

k-star A Markov graph configuration: in a non-directed
graph, k edges are expressed by the one actor.

Markov dependence assumption Introduced by Frank
and Strauss [9], proposes that, conditional on the rest
of the graph, two possible ties are independent of each
other unless they share an actor.

Mixed-star A Markov graph configuration: a two path in
a directed graph.

Monte Carlo Markov chain maximum likelihood
estimation (MCMCMLE) Method of estimation based

on computer simulation; more principled than pseu-
dolikelihood.

Network configuration A small subgraph that may be
observed in the data and that is represented by param-
eters in the model: e. g. reciprocated ties, triangles.

Parameters Relate to specific network configurations that
may be observed in the graph; a large positive param-
eter is interpreted as the presence of more of the con-
figurations than might be expected from chance (given
the other effects in the model); a large negative param-
eter signifies the relative absence of the configuration.

Partial dependence assumption Assumption for depen-
dencies among possible ties created by the presence of
other ties; permits models with higher order configu-
rations than Markov configurations.

Pseudo-likelihood estimation An approximate method
of estimation using logistic regression; does not pro-
duce reliable standard errors.

p1 Model An early dyad independence model, including
popularity and expansiveness effects.

p2 Model Elaboration of p1 model, where popularity and
expansiveness effects are random, and independent
variables may be used to predict ties.

Simple random graphs, Bernoulli graphs, Erdös–Rényi
graphs Assume that edges are independent of one an-

other and are observed with a given probability.
Social circuit dependence Two possible ties are condi-

tionally dependent when, if observed, they would cre-
ate a 4-cycle.

Transitive triad A Markov graph configuration: in a di-
rected network, ties ij, jk and ik are observed among
actors i; j, and k.

Triangle A Markov graph configuration: in a non-di-
rected network, a clique of three actors, ties ij, jk and
ik are observed among actors i; j, and k.

Definition of the Subject

Exponential random graph models, also known as p�

models, constitute a family of statistical models for social
networks. These models take the form of a probability dis-
tribution of graphs:

Pr(X D x) D (1/�) expf�0gg ;

for a set of tie indicator variables X on a network of fixed
node size n, where x is a realization, with a parameter vec-
tor � and a vector of network statistics g. Each value of the
parameter vector corresponds to a probability distribution
on the set of all graphs with n nodes.
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Introduction

As noted in [34], statistical approaches to social networks
have quite a long history, stretching at least back to the
work of Moreno in the 1930s [24]. Yet, that history is
rather sparsely scattered across various literatures and dif-
ferent eras and, as a result, even today we see that older
techniques and approaches are reinvented and repack-
aged as new. The statistical modeling of a social network –
as distinct from the use of statistically-based approaches
to understanding particular properties of a social net-
work – has a shorter and somewhat more coherent pedi-
gree.

Criteria for a successful statistical model of a social net-
work have been proposed by [34]: it should be possible to
estimate the parameters of the model from data in a prin-
cipled way, and the fitted model should be a good repre-
sentation of that data; the model should provide theoreti-
cally plausible interpretations about the type of effects that
might have produced the network; and using the estimated
model parameters it should be possible to draw inferences
about competing explanations for the data. Most, perhaps
all, models for social networks fall short of completely
meeting these requirements. Some models are “thought
experiments”, intended to illuminate but with an uncer-
tain link to data. Some models are estimable from data
but still cannot adequately represent important features of
the network. Models may imply interpretations that are
just not theoretically plausible in terms of social science;
and some models cannot include different effects simulta-
neously in order to test one against the other. Of course,
by definition all models are imperfect (else, they are not
“models”). So these criteria direct the aim in model devel-
opment, even under the knowledge that we cannot always
hit the target exactly.

A major insight in the statistical modeling of social
network structure has been that structural effects can be
detected as some form of deviation from what would be
expected as “randomness”. This was in fact the original
proposal of Moreno and colleagues [24] who were the first
to compare observed network data to what would be ex-
pected from null distributions. More explicitly, Rapoport’s
biased net theory [32,33] proposed certain structural “bi-
ases” away from random tie formation, including the im-
portant notions of transitivity (later to be described as
clustering), the propensity for human social networks to
exhibit a high proportion of triangulated ties.

Of course, in the graph theory literature the best-
known model for randomness is the simple random graph
model, often known as the Erdös–Rényi graph [7] or uni-
form Bernoulli graph distribution. This model proposes

that for a given number of nodes network ties are observed
between pairs of nodes independently and with a fixed
probability p. Properties of this model have been exam-
ined extensively, utilizing its analytic tractability. It has
also been used as a null model for various sampling dis-
tributions (e. g. see the summary in [8].) For an observed
network, p can be readily estimated (the maximum like-
lihood estimate is simply the density of the network), but
unfortunately this model is not a good representation of
almost any human social network. There are no structural
effects here, only randomness.

For directed networks, [15] extended the Bernoulli
model in the early 1980s by parametrizing structural ef-
fects for reciprocity and for differential node-level activ-
ity (out-degree) and popularity (in-degree). Possible net-
work ties within dyads were dependent on one another,
but were independent between dyads. This dyad-indepen-
dence assumption permitted the model to be estimated as
a straight-forward loglinearmodel. Holland and Leinhardt
called this model p1, the subscripted ‘1’ implying a pro-
gram of further research, with progressively enlarged de-
pendence assumptions (within arcs, within dyads, within
triads, etc.). However, Holland and Leinhardt were uncer-
tain how to progress beyond dyads. The problem was that
standard statistical estimation required some level of in-
dependence and triads, unlike dyads, overlapped. (A sub-
sequent, more sophisticated extension, the p2 model, also
has dyadic independence at its heart, but conditional on
random node-level effects, so that the random effects in-
directly introduce dependencies that may extend beyond
dyads [53].)

Ove Frank and his colleague, David Strauss, provided
the crucial insight: in the world of complex networks, it
was dependence that mattered, and assumptions involv-
ing traditional statistical independence, although helpful
for fitting models, were likely to be inadequate empiri-
cally [9]. In contrast, their approach centered on condi-
tional independence, whereby contingencies among net-
work tiesmay transmit across the network in the sense that
the presence of one network tie may affect the presence of
any other, but most pairs of ties were in some sense “re-
mote”, so that the contingencies affecting a given network
tie had to be transmitted through “neighboring” ties. So
once one had a concept of “neighboring ties”, that is, some
notion of which possible ties were conditionally indepen-
dent after taking into account other observed network ties,
the form of a model could be specified. Approaches from
spatial statistics and statistical mechanics, with notions
of dependence within neighborhoods (broadly defined)
could be translated in this way into social network models.
Frank and Strauss proposed Markov random graph mod-
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els, based on an explicit argument about conditional in-
dependence among networks ties, that could be regarded
as theoretically plausible for the first time. These models
incorporated reciprocity, degree-based effects and various
forms of triangulation or clustering.

In the 1990s, Markov random graph models became
the accepted form of exponential random graph mod-
els and they have only recently been superseded. They
could be estimated through the rough and ready proce-
dure of pseudo-likelihood [52], a not particularly sophis-
ticated approach but enough to get the field started em-
pirically. Wasserman and Pattison popularized thesemod-
els among social networks researchers as p� models [55]
and added further generalizations, with extensions tomul-
tivariate [29] and valued networks [36]. Nodal attributes
were introduced in social selection [37] and social influ-
ence models [38].

In the last decade, especially with more principled
methods of estimation and simulation, it has been shown
that homogeneous Markov random graph models face
considerable, often insurmountable, difficulties in dealing
with real network data. Data with inhomogeneities – for
instance, very high degree nodes, or dense regions of mul-
tiple triangulation, both of which are not uncommon in
real social networks – typically result in degeneracy for
Markov random graph models, where no set of param-
eter estimates can adequately represent the data. Newer
specifications have been proposed by Snijders and col-
leagues [48] that help considerably with these issues of
degeneracy, and have the capacity to enhance our abil-
ity to model small-scale to medium-sized social networks,
in some cases remarkably well. These advances are based
on new theorizations of dependence among network ties,
echoing the original project of Holland and Leinhardt with
a notion of increasingly extended dependence assump-
tions.

This article begins with a presentation of notation and
terminology and then discusses how dependence hypothe-
ses lead to the general form of the model. Specific exam-
ples of dependence hypotheses, and the resulting models,
are then presented: Bernoulli graph distributions; dyadic
independence models; and Markov random graph mod-
els. Methods of simulation are briefly introduced before
a discussion of degeneracy issues, particularly as they ap-
ply to Markov random graph models. Recently proposed
dependence hypotheses are introduced, including the so-
called “social circuit” dependence, leading to additional
specifications for exponential random graph models that
substantially improve model performance. Estimation and
goodness of fit approaches are discussed before a short
empirical example is presented. Extensions are briefly de-

scribed followed by some concluding remarks about future
directions.

Notation and Terminology

A network comprises a set of relational ties between pairs
of individual actors (be they people or other social enti-
ties). A network can be represented as a graph G with
node set N D f1; 2; : : :; ng representing the individuals
and edge set E representing the relational ties. For the sta-
tistical models of this article, relational ties are construed
as a set of binary random variables Xi j such that Xi j D 1
if a tie is observed from node i to node j, for i ¤ j, and
Xi j D 0, otherwise. For a nondirected network Xi j and
Xj i are equivalent, whereas for a directed network the two
variables are distinct. Xi i is undefined (or may be consid-
ered as a structural zero). A nondirected tie is an edge and
a directed tie an arc.We specify xi j as the observed value of
the variable Xi j and we let X be the matrix of all variables
with x being a realization (where the diagonals of the ma-
trices are forced to be zero). X and x are necessarily sym-
metric for nondirected networks, but not so for directed
networks. More generally, x may be valued but in this ar-
ticle we restrict attention to binary ties.

There are natural extensions to this basic notation, de-
pending on the data structures. For instance, suppose the
data is in the form of a bipartite network, with two distinct
sets of nodes and ties between nodes of different types but
not between nodes of the same type (e. g. such a data struc-
ture can represent people’s membership of clubs). Then X
may comprise a set of variablesXpa indicating the presence
or absence of a tie between a node p of the first type and
a node a of the second type. The data may involvemultiple
ormultivariate networks, with r different types of relations
among the one set of nodes. In that caseXmay be thought
of as a three-way array of variables Xi jr such that Xi jr D 1
indicates that presence of a tie of type r from node i to
node j. An analogous three-way array may represent net-
work data collected for the same set of nodes at different
time points such that Xi jt D 1 indicates that presence of
a tie at time t from node i to node j.

Nodes themselves can have certain properties (at-
tributes) that may be measured as binary, categorical or
continuous variables.We denote an attribute variable with
the vector Y, where Yi D yi indicates that for attribute Y
node i has a value yi.

Dependence Hypotheses

Following work in spatial statistics [1], Frank and Strauss
introduced the notion of a dependence graph into social
network modeling [9] in order to represent possible de-
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pendencies among network variables Xi j. The nodes of
the dependence graph are the network variables Xi j and
an edge between two nodes indicates dependence between
the respective variables, even when the observed values
for all remaining variables are known. These edges specify
a neighborhood relationship between pairs of variables and
the cliques of the dependence graph can be thought of as
local social neighborhoods for the set of tie variables [27].
Conversely, the absence of an edge in the dependence
graph indicates that two network variables are condition-
ally independent, and are not neighbors, so that their in-
teraction need not be taken into account in a model based
on local social neighborhoods. (A more technical discus-
sion on dependence graphs for social network models can
be found in [35]).

The previous paragraph describes one important re-
sult from the Hammersley–Clifford theorem [1], that the
form of a probability distribution for a set of interacting
variables relates solely to the neighborhood structure (or
clique structure) of the dependence graph (with a single
network variable also taken as a clique). For a given node
set N, once a dependence hypothesis is specified and the
dependence graph is defined, it follows necessarily from
the Hammersley–Clifford theorem that:

Pr(X D x) D (1/�(�)) expf˙A�AgA(x)g ; (1)

where:

(i) the summation is over all neighborhoods A;
(ii) �A is a parameter corresponding to the neighbor-

hood A (and there is no non-zero parameter for any
set of ties that do not constitute a neighborhood);

(iii) gA(x) D
Q

xi j2A xi j is the network statistic corre-
sponding to neighborhood A and indicates whether
all the ties in A are observed in the network x;

(iv) � is a normalizing quantity, that is a function of the
parameter vector �, to ensure that (1) is a proper
probability distribution.

All exponential random graph models take this gen-
eral form, describing a probability distribution of graphs
on n nodes. Neighborhoods A are subsets of possible ties,
so they represent possible subgraphs that may or may not
be observed in the network x. There is one, and no more
than one, parameter for each distinct neighborhood (al-
though one neighborhood may be a subgraph of another
and so both may have separate parameters).

The form of the model in (1) is too general to be
identifiable and some homogeneity constraint needs to be
imposed on what is otherwise a large number of neigh-
borhoods A (and hence a large number of parameters).

The original proposal [9] was that parameters should be
equated across subsets of ties that were isomorphic to each
other (that is, subgraphs that are indistinguishable once
node labels are removed). With some further constraints
(noted below), this assumption can produce identifiable
models that can be fitted to data. (Other possible ways to
constrain the number of parameters are also described be-
low). Following the terminology first used byMoreno [24],
we term these isomorphic neighborhoods as network con-
figurations (although some of the network literature of the
last decade has adopted the termmotif ). Counts of config-
urations become the sufficient statistics of the model.

Examination of the parameters for the various configu-
rations of a fitted model can provide insight into the social
processes that may underpin the network. The strength
and direction of any particular parameter value will af-
fect how frequently the corresponding configuration is ob-
served. If the parameter is large and positive, we expect
to observe the corresponding configuration to occur more
frequently than if the parameter value were zero [40].

Obviously, good dependence hypotheses are necessary
for this approach to work, as they crucially shape the na-
ture of the model by defining the possible configurations.

Bernoulli RandomGraph (Erdös–Rényi) Models

Suppose we hypothesize that there are no dependencies
within the network, so that the dependence graph has no
edges and the only neighborhoods are single tie variables
Xi j. Then (1) becomes:

Pr(X D x) D (1/�) exp(˙i; j�i j xi j) :

Constraining parameters to be equal for isomorphic
neighborhoods here implies equating all the parameters
�i j D � , as there is only one type of neighborhood. Then
we have:

Pr(X D x) D (1/�) exp(˙i; j�xi j) D (1/�) exp(�L(x)) ;

where L(x) is the number of edges (arcs) in the network
x and � is a density or edge parameter (sometimes called
a choice parameter in older literature). This graph distri-
bution is equivalent to that of a distribution of simple ran-
dom graphs where the probability of a tie between a pair
of edges is exp � /(1C exp �).

The dependence assumption here is unrealistic and
this model will fit few, if any, real networks, but it is of-
ten a useful null or baseline model.

Dyadic IndependenceModels

For directed networks, a dyadic independence hypothesis
implies edges in the dependence graph between variables
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Xi j and Xj i. Neighborhoods then take the form of single
edges and dyadic pairs fXi j; Xjig. Applying constraints in
the form of the one density parameter � to all single edge
neighborhoods and the one reciprocity parameter � to all
dyadic neighborhoods results in the following two param-
eter model:

Pr(X D x) D (1/�) exp(�L(x)C �M(x)) ;

where L(x) is the number of arcs andM(x) the number of
mutual dyads (i. e. where Xi j D Xji D 1) in the network
x. This model has the capacity to model reciprocity effects
in directed networks. Slightly less sweeping homogeneity
constraints result in the p1 model [15].

The interpretation of a single parameter in an expo-
nential random graph model is relative to other effects in
the model, so that in this case, the presence of a large and
positive � parameter is relative to the density effect. This
is an advantage: in this model, for instance, we can infer
that there is substantial reciprocity given the density of the
graph. It is of little use to talk about a large reciprocity
effect in absolute terms, because the number of arcs in
the graph (i. e. the density) establishes the preconditions
for reciprocity. In other words, graphs of very low den-
sity have very little opportunity to demonstrate reciprocity
anyway, and the absence of mutual dyads in a low density
graph may simply be a feature of the low density. Similarly
the presence of manymutual dyads in a high density graph
may simply be explained by the high density, without the
need to infer a reciprocity effect. A large positive �, on the
other hand, shows that the number of arcs in a graph are
arranged in sufficiently many mutual dyads to suggest that
a separate and substantial reciprocity process is required
to explain the structure of this network, over and above
any density effect.

Once again, the dyadic independence assumption does
not do a good job of reproducing real networks, because
the model has no capacity for triangulation. The model
may be useful as a baseline model.

Markov RandomGraphs

Frank and Strauss [9] proposed Markov dependence, by
postulating that a possible tie from i to j is assumed to be
contingent on any other possible tie involving i or j, even
if all other ties in the network are fixed. Markov depen-
dence implies that two possible network ties are condition-
ally independent unless they share a common actor. They
showed that this assumption resulted in models with con-
figurations for nondirected graphs of single edges, star-like
structures and triangles (or 3-cycles). For directed graph
models, configurations include directed counterparts of

these as well as reciprocity (see [55] for a fuller description
of directed graph parameters). Frank and Strauss termed
theseMarkov random graph models.

Once homogeneity is imposed across isomorphic
neighborhoods, we obtain configurations (and related pa-
rameters) for nondirected networks as depicted in Fig. 1.
The resulting model is:

Pr(X D x) D (1/�) exp(�L(x)C˙rD2;n�1�r Sr(x)
C �T(x)) ; (2)

where:

(i) � is a density parameter, and L(x) the number of
edges in x, as before;

(ii) � r is a parameter for a star of size r, and Sr(x) is the
number of stars of size r in x;

(iii) a star of size r is a configuration centered on a single
node i such that there are r edges emanating from i
(note that stars of size larger than r contain many
stars of size r, so that this is not simply a partition
into nodes of different degrees, although the full set
of counts Sr(x) can be converted into the degree dis-
tribution, and vice versa);

(iv) � is a triangle or clustering parameter and T(x) is
a count of the number of triangles in x.

This model still has too many star parameters to be iden-
tifiable. Note that the expression �L(x)C˙rD2;n�1�r Sr (x)
completely parametrizes the degree distribution (so the �
parameter can be interpreted as the strength of transitivity
conditional on the degree distribution of the graph). An
identifiable model can be obtained by restricting the num-
ber of star parameters to be substantially less than n – 2,
for instance, to less than four (an alternative approach is
described below). Then the model becomes:

Pr(X D x) D (1/�) exp(�L(x)C �2S2(x)C �3S3(x)
C �T(x)) : (3)

The parameters can be interpreted in ways that represent
plausible social processes [39]:

(i) � is a baseline propensity for social ties to form;
(ii) �2 represents a tendency for individuals to seek mul-

tiple partners (if it is positive);
(iii) whereas �3 (if negative as it often is when this model

is fitted to real data) represents a ceiling effect against
having too many partners; so, together the balance
between �2 and �3 represents the benefits of multiple
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Configurations for a nondirectedMarkov random graphmodel

contacts against the costs of maintaining too many
contacts;

(iv) while � represents tendencies towards clustering.

An alternative interpretation is to consider the �; �2 and
�3 parameters as controlling for the first three moments
of the degree distribution, so that while model (2) in ef-
fect presents a full parametrization, model (3) provides
a more parsimonious control over the degree distribution
(saturated models of the degree distribution are discussed
by [43] and [47], see also [11]). Of course, for any data set
it is an empirical question whether the first three moments
are sufficient to capture the degree distribution adequately.
Below, we describe ways to investigate that question.

Extensions of this basic Markov random graph model
include models for multivariate networks [29], for val-
ued networks [36] and for affiliation networks [42] (see
also [28]).

By tuning parameter values even the simple four pa-
rameter model (3) can represent many different types
of networks, including small world networks, networks
with long paths, and highly clustered (“caveman”) net-
works [39]. For some parameter values, however, themod-
els became “frozen” into certain unchanging highly struc-
tured patterns. This effect is an illustration of degeneracy

for these models, which was a research issue given im-
portant attention in the early years of the 21st century.
The upshot of this body of research was that homoge-
neous Markov random graph models were recognized as
frequently inadequate to deal with real social network data.

Simulation andModel Degeneracy

The problems of degeneracy became apparent through
a number of simulation studies. Strauss was the first
to describe a rather straightforward application of stan-
dard statistical simulation techniques (e. g. Metropolis or
Metropolis–Hastings algorithms) to simulateMarkov ran-
dom graph models for a fixed set of nodes and given set of
parameter values [51]. More recent treatments and some
important results are given in [13,14,17,39,45]. These
methods provide a principled statistical means to produce
a distribution of graphs with probabilities of each graph
being observed in the distribution consistent with any par-
ticular model in the form of (1). Typically the simulation is
run for a large number of iterations and a sample of graphs
is extracted and examined to understand typical properties
of the graphs in the distribution.

A graph distribution is termed as near degener-
ate [13,14] if it implies only a very few (possibly only one
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or two) distinct graphs with substantial non-zero proba-
bilities. For instance, certain parameter values for Markov
random graph models place almost all of the probability
mass on either the empty or the full graph. These can-
not be good models for human social networks. For cer-
tain parameter values, there may be two quite separate
regions where graphs are most likely (possibly one re-
gion of low density and another of high density graphs),
with the possibility of a dramatic phase transition from
one region to the other (for instance, as parameter val-
ues change very slightly). Such phase transitions and other
aspects of degeneracy have been studied for a variety of
simple Markov random graph models by a number of au-
thors [2,12,13,14,19,26,39,41,45,48].

Issues of degeneracy call into question whether
Markov random graph models can adequately represent
most network data. It would not matter if some regions of
the parameter space produced degenerate models, as long
as those regions applicable to empirical data were non-de-
generate. Experience shows the opposite applies: for some
data, Markov random graph models turn out to be well-
behaved, but for many empirical networks they are de-
generate. When applied to social networks with a few very
high degree nodes, or with some regions of high triangu-
lation, degeneracy frequently occurs for Markov models.
Models such as (3) reflect homogeneity constraints, and
they appear to have difficulty when the data presents in-
homogeneity in the distribution of degrees or triangles. It
is not entirely certain whether the problem with the mod-
els arises because of the Markov dependence assumption
or the assumption of homogeneity. In any event, to deal
more effectively with real networks, a different approach to
these models seems necessary. To date, attention has been
directed to revisiting the dependence assumption.

Snidjers and colleagues [48] drew two conclusions
from the tendency for Markov random graph models to
be degeneratewhen fitted to real networks with a high level
of clustering: (1) the Markov dependence assumptionmay
be too restrictive; (2) the representation of the social phe-
nomenon of transitivity by the total number of triangles
might be too simplistic. They proposed specifications that
drew on both these possibilities. Before we introduce these
new specifications, however, we turn to higher order net-
work dependencies.

Social Circuit Dependence:
Partial Conditional Dependence Hypotheses

There are several ways in which network dependence
assumptions could be extended beyond Markov depen-
dence [27]. One approach is of partial conditional depen-

Social Networks, Exponential RandomGraph (p*)Models for, Fig-
ure 2
Social circuit dependence (Broken lines represent possible edges;
full lines represent observed edges Xru is conditionally depen-
dent on Xsv)

dence, whereby the presence of certain network ties cre-
ated dependence among other possible network ties. This
assumption permits the emergence of dependence struc-
tures as ties come into and go out of existence. This type
of dependence can be incorporated into a version of the
Hammersley–Clifford theorem and hence into exponen-
tial random graph models [27].

A particular hypothesis about this type of emergent de-
pendence was used by [48] and described by [41] as social
circuit dependence. Social circuit dependence is defined as
two possible network ties being conditionally dependent if
their observation would lead to a 4-cycle. This type of de-
pendence is depicted in Fig. 2. Here Xrs D Xuv D 1, that
is, in the network data there are observed edges between
nodes r and s, and between nodes u and v. The presence of
these edges leads to conditional dependence between vari-
ables Xru and Xsv because if edges were also observed be-
tween r and u, and between s and v, a 4-cycle would result
in the graph.

Interpretation of this hypothesis is discussed by [41].
Generally we would expect two distinct possible edges
(r; u) and (s; v) to be conditionally independent. If, how-
ever, person r knows person s, and person u knows per-
son v, then the presence of a tie between r and u can make
the presence of a tie between s and v more likely, that is,
they are conditionally dependent. It is simple to think of
real social circumstances where this happens: for instance,
in families the presence of a friendship between two chil-
dren increases the chances of the two mothers coming to
know one another; or in a business, cooperation between
two bosses may lead to their employees working together;
or in research, two postdoctoral researchers might discuss
issues with each other because their academic mentors
have been collaborators. In all of these cases, what makes
the dependence come into effect is the presence of ties that
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constitute part of the 4-cycle. Without those ties, the de-
pendence does not arise. So, the mothers are the mothers
of the two particular children, not the mothers of entirely
different children; the employees are employed by those
particular bosses; and the two post-docs are supported by
those two mentors.

Social Circuit Specifications

Snijders and colleagues [48] proposed three new statis-
tics for exponential random graph models for nondirected
networks: alternating k-stars, alternating k-triangles, and
alternating independent two-paths. To derive these statis-
tics they use: (1) social circuit dependence in addition to
Markov dependence; and (2) a non-linear functional form
combining various configurations into the one statistic.

Alternating k-Stars

The alternating k-star parameter uses the second idea
alone and does not extend dependence beyond the class
of Markov random graph models. Rather than adopt the
usual practice of limiting the number of higher order
stars – as for example in model (3) where the star param-
eters are deliberately limited to no more than 3-stars –
Snijders and colleagues returned to model (2), keeping all
� r in the model but imposing constraints among these
parameter values. Specifically, the alternating k-star as-
sumption proposes that for all k � 2; �(kC1) D ��k/ for
some greater than 1. Then in (1) there is one parameter �
for all star effects, with an associated statistic:

u D
n�1X

kD2

(�1)k
Sk
k�2

; (4)

where the parameter � is referred to as the alternating
k-star parameter. As  is greater than 1, the direct impact
of higher order stars (that is, very high degree nodes) is re-
duced for higher k. Of course, as noted above, high degree
nodes still have substantial effect in the model as they pro-
duce many 2- and 3-stars, and so on. The alternating sign
helps balance these overlapping star counts for high degree
nodes. In [48]  is set at 2 but [17] show how to estimate
an optimal value of  (see also [16]). The alternating k-star
parameter is equivalent to a geometrically weighted degree
parameter that explicitly models the degree distribution
but puts more weight on the numbers of nodes with lower
degrees, with weights decreasing geometrically as the de-
grees increase [16].

The interpretation of the parameter is as follows [41,
48]. If the alternating k-star parameter is positive, then
highly probable networks are likely to contain some higher

degree nodes. A positive alternating k-star parameter (to-
gether with a negative density parameter) implies graphs
that exhibit preference for connections between a larger
number of low degree nodes and a smaller number of
higher degree nodes, akin to a core-periphery structure.

Alternating k-Triangles

The alternating k-triangle assumption incorporates both
social circuit and Markov dependence. Snijders and col-
leagues show that with both these dependence assump-
tions operating simultaneously, configurations more com-
plex than simple triangles are possible [48]. In particular,
they introduced the notion of a k-triangle, a combination
of k individual triangles that all share one edge (the com-
mon base of the k triangles), as represented in Fig. 3.

Let Tk be the count of k-triangles in a graph. Then the
alternating k-triangles assumption combines these counts
into the one statistic in an analogous way as for the alter-
nating k-stars, that is:

t D 3T1 C
n�3X

kD1

(�1)k
TkC1

k
; (5)

where the factor of 3 for T1 is due to symmetry considera-
tions in a non-directed triangle [48].

This is the alternating k-triangle statistic with an asso-
ciated alternating k-triangle parameter � . A positive k-tri-
angle parameter indicates triangulation in the network but
also tendencies for triangles themselves group together in
larger higher order “clumps”. A positive alternating k-tri-
angle effect combined with a negative alternating k-star ef-
fect can produce a web of multiple smaller regions of tri-
angulation [41,48].

[16] shows that the alternating k-triangle parameter is
equivalent to the edge-wise shared partner (or ESP) param-
eter that models the distribution of shared partners of tied
actors, but with weights decreasing geometrically as the
number of shared partners increase.

Alternating k-Two-Paths

Snijders and colleagues also proposed a parameter that
represents a lower order configuration for a k-triangle,
namely a k-two-path which is a k-triangle without the
base [48]. These configurations, represented in Fig. 4, de-
scribe the number of distinct two-paths between a pair of
nodes. The motivation was to provide a parameter that, in
conjunction with k-triangles, would distinguish between
tendencies to form edges at the base, or at the sides of
a k-triangle.
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Social Networks, Exponential Random Graph (p*) Models for, Figure 3
Various k-triangles

Social Networks, Exponential Random Graph (p*) Models for, Figure 4
Various alternating k-independent 2path configurations

Again the counts of these configurations are combined
into the one alternating statistic in an analogous way as in
the previous two cases, to produce an alternating 2-path
statistic and parameter for the model. [16] shows that this
new parameter is equivalent to the dyad-wise shared part-
ner (or DSP) parameter that models the distribution of
shared partners of actors who may or may not be tied,
but with weights decreasing geometrically as the number
of shared partners increase.

The parameter can be interpreted as representing lo-
calized multiple connectivity between nodes. When this
parameter is negative, together with a positive alternating
k-triangle parameter, there is a tendency against 4-cycles
in the network, unless those cycles include triangles (alter-

natively, the presence of many 2-paths between nodes is
related to the formation of triangles).

Specifications for Directed Graphs

Counterpart statistics and parameters for directed graphs
have also been proposed. We do not discuss these here but
refer readers to [48].

Estimation

Pseudo-likelihood estimation [52], based on logistic re-
gression techniques, was commonly used until more prin-
cipled methods became available in recent years. Pre-
ferred methods of estimation involve simulation proce-
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dures (Monte Carlo Markov chain maximum likelihood
estimation – MCMCMLE) which for these models has
been discussed by a number of authors [4,5,6,17,45,47,56].
Software for Monte Carlo estimation techniques has re-
cently become publicly available ([41] provides a review).
The observed graph statistics are compared with those ex-
pected under a set of provisional parameter values, using
a stochastic simulation based on those values. The goal
is to find a set of parameter values whereby the observed
statistics are equal to the expected statistics. Parameter val-
ues are refined until the observed and expected statistics
can be equated, when the model is said to converge. If the
parameter estimates never converge, the model is degen-
erate. Standard errors can also be estimated.

Goodness of Fit and Comparisons
withMarkovModels

Simulation also provides an innovative means to assess
how well the model can represent the data. By simulat-
ing the model from the parameter estimates, and extract-
ing a sample of graphs it is possible to examine any graph
statistic of interest (whether there is an associated param-
eter in the model or not). Any graph statistic for the ob-
served graph can be compared to the distribution of such
graph statistics from the simulated graphs. If the observed
graph statistic is not extreme in the distribution of simu-
lated statistics, then it is plausible that that particular fea-
ture of the observed graph could have come from the dis-
tribution of graphs implied by the model. In this way, it is
possible to check which graph features the model success-
fully captures. This procedure is described in detail by [18]
(see also [41]).

[11] provides a compelling example of how this pro-
cedure may be used to make decisions about model selec-
tion. On the basis of applying the new parametrization to
a large school-based network of over 1000 nodes, [11] con-
cludes that for this data Markov models were degenerate,
but the newer parametrization had similar underlying in-
terpretations, avoided degeneracy and was empirically val-
idated. Other comparisons with Markov models demon-
strate substantial improvements for the new parametriza-
tion in overcoming degeneracy [41].

A Simple Empirical Example

Figure 5 presents an empirical network of social relation-
ships among 16 actors, in this case families from medieval
Florence [25].

Markov models do not converge for this network. Ta-
ble 1 provides parameter estimates and standard errors for
models involving the social circuit parameters. The third

Social Networks, Exponential RandomGraph (p*)Models for, Fig-
ure 5
Social relationships among 16 actors

Social Networks, Exponential RandomGraph (p*) Models for, Ta-
ble 1
Parameter estimates: Florentine families network (NB:� = 2)

Parameter Estimate Standard
error

Convergence

Edge �0.04 2.09 0.01
Alternating k-star �1.01 0.78 0.02
Alternating k-triangle 0.68 0.33 0.02
Alternating k-2paths 0.18 0.17 0.03

column in the table provides a convergence statistic which
indicates good convergence if it has an absolute value less
than 0.1 [41]. In this case, themodel exhibits excellent con-
vergence.

A parameter may be inferred as important if its esti-
mate in absolute terms is more than twice its standard er-
ror. So in this simple model, there is a substantial effect
for alternating k-triangles. In Fig. 5, regions of triangula-
tion can be seen, consistent with the alternating k-trian-
gle effect, perhaps combined with the negative alternat-
ing k-star effect (although the reliability of that negative ef-
fect is not certain, given that the estimate is not more than
twice the standard error). In sum, there is good evidence
here that this network differs substantially from a simple
random network, in particular, that there is substantially
more triangulation in this network thanwould be expected
in a simple random graph.

Table 2 shows the goodness of fit analysis for graph
features other than those in the model. This analysis was
based on extracting 1,000 sampled graphs from a simu-
lation of 1,000,000 (after a burn-in of 100,000), using the
parameter estimates in Table 1. The goodness of fit statis-
tic takes the form of a t-ratio, calculated as the differ-
ence between the graph statistic and the mean from the
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Social Networks, Exponential RandomGraph (p*) Models for, Ta-
ble 2
Goodness of fit analysis: Florentine families network model

Graph feature Goodness of fit
Number of 2-stars �0.10
Number of 3-stars �0.25
Number of triangles �0.17
Standard deviation, degree distribution �0.10
Skew, degree distribution �0.12
Number of isolates 1.06
Clustering coefficient �0.09

simulated graphs divided by the standard deviation as es-
timated from the sample. For graph features not in the
model, the model is considered to reproduce the data well
if the goodness of fit statistic is not extreme (for instance,
with t-ratios of less than 2). As can be seen, on the features
examined, including counts of various Markov configu-
rations, aspects of the degree distribution, and clustering,
the model reproduces the data well. There is one isolate in
the data, whereas 71% of simulated graphs had no isolates,
hence the rather larger goodness of fit statistic. Neverthe-
less, with 29% of graphs in the sample having at least one
isolate, the data cannot be said to be extreme in this regard.

The clustering coefficient in the Table refers to the pro-
portion of actual to possible triangles and is calculated as
thrice the number of triangles as a ratio of the number
of two-paths (the factor of three applies because there are
three two-paths in any one triangle).

Table 2 does not show features of the geodesic distri-
bution but a separate analysis reveals that the observed
geodesic distribution is consistent with those from the
simulated graphs: none of the geodesic quartiles of the ob-
served graph is extreme compared to the distribution of
quartiles from the simulated graphs. Overall, the model
can be said to fit the data well.

Further Extensions and Future Directions

Multiple Networks

It is possible to use the same general framework as (1)
when X is a three-way array representing multiple rela-
tions on the one set of nodes. The parametrization, how-
ever, becomes more complex. [29] showed how to develop
Markov models along these lines, with these models sub-
sequently used in some interesting empirical work, prin-
cipally in organizations [22,23]. This empirical research,
however, utilized pseudo-likelihood estimation and did
not take into account possible model degeneracy. See
also [20].

Early work on adapting the new specifications pro-
posed by Snijders and colleagues to multiple networks has
concentrated on the case of two networks, by using the al-
ternating k-star, -triangle, and -2path parameters for ef-
fects within networks and then investigating dyadic asso-
ciations between networks [57].

Bipartite Networks

Again (1) may be used as a basis for models for bipartite
networks. [42] were the first to do this withMarkov depen-
dence. [28] proposed additional parameters that derived
from partial conditional dependence assumptions. [54] in-
corporated these and other parameters, combined with
an alternating combination of configuration counts analo-
gous to those in the newer specifications, into a model for
bipartite networks.

Longitudinal Networks

Perhaps the major approach to modeling network data
collected at multiple time points is the actor-oriented
models of Snijders and colleagues [44] which utilize a con-
tinuous time Markov chain technique. Certain specifica-
tions of actor-oriented dynamic models have exponential
random graphmodels as their stationary distribution [44],
so the links between the two approaches are quite strong.
Accordingly, it is possible to develop longitudinal versions
of exponential random graph models to investigate net-
work dynamics. The conceptual difference with the ac-
tor-oriented approach is quite subtle: exponential random
graph longitudinal models suppose that ties change in re-
sponse to particular social neighborhoods of other ties,
rather than in response to actors seeking to optimize par-
ticular structural positions. Early work along these lines,
including the evolution of multiple networks, has been re-
ported by [30]. For further discussion on the links between
the actor-oriented and tie-based versions of the models,
see [46].

Nodal Attributes

One of the important issues that researchers often wish to
examine is whether and how nodal attributes relate to net-
work structure. For instance, there are good empirical and
theoretical grounds for expecting that people who have
social relationships are more likely to be similar to each
other (known as homophily). Conceptually, two possible
processes apply: individuals may develop ties because they
are similar (social selection) or individuals who are tied
may influence each other to be similar (social influence).
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Of course, both of these processes may occur simultane-
ously and it is a methodological challenge for a given set
of data to disentangle the two to determine the respective
strengths of selection and influence effects, respectively.
Snijders and colleagues [31,49,50] have recently developed
innovative methods for investigating this question for lon-
gitudinal data within actor-oriented longitudinal models.

[37] proposed social selection models within the
framework of (1), having the form:

Pr(X D xjY D y) D (1/�) expf˙A�AgA(x; y)g ; (6)

where Y is a vector of attribute variables (binary, categor-
ical or continuous). Here the configurations A relate to
combinations of nodal attributes and network subgraphs,
and the network is modeled conditional on a fixed dis-
tribution of attributes. The intent of such models may be
various: accounting for heterogeneity (that may otherwise
cause difficulties in fitting models) as well as assessing se-
lection, homophily, and covariate activity and popularity,
while controlling for dependencies naturally occurring in
the network setup.

An analogous approach to social influence models and
network contagion was proposed by [38] where the pat-
terns of attributes were modeled conditional on a fixed
network:

Pr(Y D yjX D x) D (1/�) expf˙A�AgA(x; y)g : (7)

Future Directions

Not only have the new specifications shown a remarkable
improvement in the successful modeling of real networks,
they have opened up a wide range of network model-
ing possibilities. The discussion of model extensions men-
tioned above gives some indication of current work in this
area. Of course, the possibility of further improvements in
model specification has not been closed. Future directions
may include methods to examine very large, community-
based networks, not only in terms of data collection (for
instance, the development of model-based samplingmeth-
ods) but also theoretical issues based on possible differ-
ences in dependence between very large scale and smaller
scale structures. Model-based approaches to missing net-
work data, perhaps within a Bayesian framework, are also
in prospect [10,21].

The use of exponential random graph models in em-
pirical research, especially in combination with multiple
measures on individuals, opens a wide prospect for net-
work statistical modeling to make a substantial contribu-
tion in many applied contexts.
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Glossary

Granulation The process of drawing a set of objects (or
points) together by indiscernibility, similarity, proxim-
ity, or functionality.
Functional granulation The granulation process is

functional if it is based on the attributes of the
objects. It is called functional granulation because
each attribute is a function from the set of objects
to the set of values.

Relational granulation The granulation process is re-
lational if it is based on the relationships between
objects.

Rough set A rough set is defined by the lower and up-
per approximations of a concept. The lower approxi-
mation contains all elements that necessarily belong to
the concept, while the upper approximation contains
those that possibly belong to the concept. In rough set
theory, a concept is considered a classical set.

Social network A social network is comprised of a set of
actors, called the domain, and a family of relations on
the domain. It is usually represented as a graph, where
each node represents an actor and an edge between two
nodes represents a relational tie between these two ac-
tors. An edge can be labeled with the relation it repre-
sents.

Positional equivalence Two actors are in equivalent po-
sitions if their “pattern” of relationships with other ac-
tors is the same.
Structural equivalence Two actors are structurally

equivalent if they are related to the same actors.
Regular equivalence Two actors are regularly equiva-

lent if they are equally related to equivalent actors.
Exact equivalence Two actors are exactly equivalent if

they are related to the same number of equivalent
actors.

Modal logic Modal logic was originally developed as
a type of philosophical logic for reasoning about ne-
cessity and possibility. However, it has been extended
to broadly cover a family of logics for reasoning
about modalities including tense, obligation, belief,
and knowledge. Semantically, it is also a powerful
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mathematical discipline that deals with (restricted) de-
scription languages for discussing various kinds of re-
lational structures, where a relational structure com-
prises a set of elements and a collection of relations on
that set.

Hybrid logic Hybrid logic is a branch of modal logic that
allows direct reference to the elements in a relational
structure. Traditionally, only the properties of the el-
ements could be represented by modal logic formu-
las.

Definition of the Subject

Granular computing (GrC) is a problem-solving concept
deeply rooted in human thinking. Hence, it has played
amajor role in solvingmany important problems through-
out the history of mathematics. GrC is concerned with
the processing of information granules, which are groups
of objects drawn together by indiscernibility, similarity,
proximity, or functionality [37]. The process of forming
information granules is called granulation. If the process
is based totally on the attributes of the objects, it is called
functional granulation, since attributes are mathematical
functions from the set of objects to the set of values; if, in
addition, the granulation process is also based on the re-
lationship between objects, it is called relational granula-
tion [11,20].

Interestingly, social scientists have applied the tech-
niques of relational granulation (albeit by different names)
to positional analysis in social networks [7,8,10,19,35]. So-
cial network analysis (SNA) is a methodology used ex-
tensively in social and behavioral sciences, as well as in
political science, economics, organization theory, and in-
dustrial engineering [15,31,34]. Positional analysis of a so-
cial network tries to find similarities between actors in the
network. While many traditional clustering methods are
based on the attributes of the individual actors, SNA is
more concerned with the structural similarity between the
actors. In SNA, a category, called a social role or social po-
sition, is defined in terms of the similarities of the patterns
of relations among the actors, rather than the attributes of
the actors.

Analyzing a social position from a GrC perspective has
two major advantages. On the one hand, it extends the
application scope of the GrC methodology. On the other
hand, we can logically transform relational granulation of
social networks into functional granulation; as a result, the
well-developed techniques of data table analysis can be ap-
plied to social position analysis. Thus, this is an important
cross-fertilization of GrC and SNA.

Introduction

GrC encompasses a wide range of techniques in compu-
tational intelligence, such as interval computing, classifi-
cation, cluster analysis, and fuzzy and rough set theories.
Among them, rough set theory [26,27] is one of the most
well-known methods with successful applications in data
analysis and uncertaintymanagement. The theory was first
proposed by Z. Pawlak as a mathematical tool to deal with
vague concepts [26]. The basic assumption of the theory is
that the effective use of knowledge is based on the capabil-
ity to classify objects. Thus, knowledge consists of a family
of classifications of a domain of interest. A classification
of a domain is represented as a partition of (or an equiv-
alence relation on) the domain. Each equivalence class of
a classification is the elementary knowledge about the clas-
sification. For example, if the domain is classified accord-
ing to colors, then the elementary knowledge may include
“red”, “green”, “blue”, etc. In this sense, a classification is
derivable from a set of features or attributes of objects. An
important task of data analysis is to define a concept via
a set of features. If the concept can be precisely defined as
the objects with some specific attribute values, then it is an
exact concept with respect to the given attributes. How-
ever, in practice, most concepts are vague and can not be
defined precisely by a given set of attributes. In such cases,
rough set theory provides an effective way to approximate
the vague concepts with some exact concepts in the do-
main. Because of its applications in data mining, rough set
theory has flourished since 1990.

At about the time rough set theory was proposed, the
pioneer of fuzzy set theory, L.A. Zadeh, emphasized the
importance of information granularity in fuzzy reason-
ing [36]. Subsequently, T.Y. Lin proposed the term “GrC”
to unify different techniques developed for processing in-
formation granules. From the GrC perspective, both clas-
sification in rough set theory and fuzzification in fuzzy set
theory are types of granulation.

In rough set theory, objects are partitioned into equiv-
alence classes based on their attribute values. While such
values essentially represent functional information associ-
ated with the objects, more complicated information can
be utilized in the classification of objects. In particular, re-
lational information between objects can play an impor-
tant role in the granulation process. The information is
defined by general binary relations, which are extensions
of the functional attributes of the objects. Geometrically,
such granulation is derived from the neighborhood sys-
tem of topological spaces [32], where each point/object is
assigned at most one neighborhood/granule. This kind of
granulation is called relational granulation, while granu-
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lation based on attribute values only is called functional
granulation [11,20].

Relational granulation is especially useful for the anal-
ysis of network data because a network is a collection of re-
lations between nodes. A concrete instance of the applica-
tion of relational granulation is positional analysis of social
networks. Positional analysis attempts to find actors occu-
pying the same position in a social network based on the
pattern of their relationships to other actors. Depending
on the different patterns of relationships, different notions
of positional equivalence have been proposed [19]. These
notions can be easily regarded as instances of relational
granulation. In this article, we consider three of the most
important notions of positional equivalence – structural
equivalence, regular equivalence, and exact equivalence.

Recently, it was shown that social positions based on
regular equivalence can be syntactically expressed as well-
formed formulas (wff) in a kind of modal logic [22]. Thus,
actors occupying the same social position based on regu-
lar equivalence will satisfy the same set of modal formulas.
Traditionally, modal logic has been considered the logic
for reasoning about modalities, such as necessity, possibil-
ity, time, action, belief, knowledge, and obligation. How-
ever, semantically, it is essentially a language for describ-
ing relational structures [5]. A relational structure is sim-
ply a set combined with a collection of relations on that
set. Thus, social networks are mathematically equivalent
to relational structures. The logical characterization of so-
cial positions implies that relational granulation for posi-
tional analysis can be transformed into a functional granu-
lation process. Indeed, since each actor in a social network
may satisfy or falsify a modal formula, a modal formula
can be seen as a binary attribute associated with each actor.
Therefore, based on the results in [22], two actors are reg-
ularly equivalent if they have the same values with respect
to all attributes defined by the language of the particular
modal logic.

By extending previous results, we can find logical
characterizations of different positional equivalences and
transform them into a functional granulation process.
Consequently, the techniques of rough set-based data
analysis can also be applied to positional analysis. How-
ever, since the set of wffs of a modal logic is usually in-
finite, the functional granulations corresponding to posi-
tional equivalences need to consider infinite sets. To cir-
cumvent this problem, we also propose a new definition
of positional equivalence, called observational equivalence.
Let˙ be a set of wffs in a logical language that denotes the
set of observable properties of the actors in a network. Two
actors a and b are observationally equivalent with respect
to˙ , if for each wff ' 2 ˙ , a satisfies ' iff b satisfies '.

Social Networks and Granular Computing, Figure 1
A rough set: the set delimited by the curve (the set boundary)
can not be represented exactly as a union of the basic building
blocks. The blocks totally included in the set form the lower ap-
proximation of the set, while the blocks that intersect with the
set (including the lower approximation) form the upper approx-
imation of the set

Social Networks and Granular Computing, Figure 2
Structural equivalence: the social network contains 4 actors de-
noted by the nodes and a single binary relation denoted by
the arcs. Both the out-neighborhoods of x1 and x2 are fx3; x4g,
and their common in-neighborhood is the empty set. On the
other hand, both the in-neighborhoods of x3 and x4 are fx1; x2g,
and their common out-neighborhood is the empty set. Thus,
x1 Šs x2 and x3 Šs x4. The green shadowed areas indicate the
equivalence classes

The remainder of this article is organized as follows.
In Sect.“ Mathematical Preliminaries”, we introduce the
background knowledge and mathematical notations of
sets and relations. In Sects. “Rough Set Theory – Func-
tional Granulation” to “Modal Logic – The Bridge”, we
review rough set theory, social positional analysis, and
modal logic respectively. In Sect. “From Relational Gran-
ulation to Functional Granulation”, we present the logi-
cal characterizations of three main positional equivalences
and the definition of observational equivalence. Finally, in
Sect. “Conclusion and Future Directions”, we present our
conclusions and indicate some future research directions.
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Social Networks and Granular Computing, Figure 3
Regular equivalence in a tree-structured social network: the root x0 is discernible from other nodes because its in-neighborhood is
empty, whereas all the other nodes have nonempty in-neighborhoods. Nodes x1; x2; x3 are discernible from other nodes because
they are the only nodes connected to x0. Moreover, they are mutually discernible, since x2 has no children, x1 has children and
grand-children, and x3 has children, but not grand-children. Note that x4 and x5 are indiscernible, since they have the same in-
neighborhood and equivalent out-neighborhoods; x6 and x7 are indiscernible, since they have the same in-neighborhood and both
have empty out-neighborhoods; and x8; x9, and x10 are indiscernible, since they have equivalent in-neighborhoods and all have
empty out-neighborhoods

Social Networks and Granular Computing, Figure 4
Exact equivalence: the social network is a undirected graph. In
other words, the binary relation is symmetry. The exact equiv-
alence partitions the nodes into two classes, C0 D fx0; x1g and
C1 D fx2; x3; x4; x5g. To verify that it is indeed an exact equiva-
lence, we can check that both x0 and x1 connect to one C0 node
and two C1 nodes, and all of x2; x3; x4, and x5 connect to one C0
node

Mathematical Preliminaries

In this section, we introduce the basic knowledge about
sets and relations used in this article.

Sets

A set is a collection of objects, called the elements of the
set. We use capitals A, B, U, X, etc. to denote sets. The el-
ements of a set are denoted by lower-case letters and we
write x 2 U if x is an element of the set U. We usually

Social Networks and Granular Computing, Figure 5
A social network represented as a Kripke model: we assume
the underlyingmodal language contains one propositional sym-
bol p and one relational symbol r. Since fx0; x1; x2g is an equiva-
lence class in the shown regular equivalence, the three nodes all
satisfy the same set of PMML wffs. For example, they all satisfy
:p^ hrip. However, they are not exactly equivalent, so they are
distinguishable by GMLwffs. For example, x0 satisfies both hri1p
and hri2p, x1 does not satisfy hri1por hri2p, and x2 satisfies hri1p
but not hri2p

use two notations to denote a set. The first one lists its
elements. For example, we can write fx1; x2; : : : ; xng for
a finite set, where n is a positive integer, and fx1; x2; : : :g
for an infinite set. The second notation specifies the
defining property of the set. For example, we can write
fx j x D 2n; n 2 Zg for the set of even numbers. The
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number of elements in a set is called its cardinality. The
cardinality of U is denoted by jUj. A set U is called an
empty set if jUj D 0, and a singleton if jUj D 1. We de-
note the empty set by ;.

The basic operations on sets are defined as follows:

1. Intersection of X and Y : X \ Y D fu j u 2 X and
u 2 Yg,

2. Union of X and Y : X [ Y D fu j u 2 X or u 2 Yg,
3. Cartesian product ofX and Y : X � Y D f(x; y) j x 2 X

and y 2 Yg, and
4. Difference ofX by Y : X � Y D fu j u 2 X and u 62 Yg.

Since intersection, union, and the Cartesian product are
associative (i. e., (X \ Y) \ Z D X \ (Y \ Z) etc.), we
can eliminate the parentheses and apply the operations to
more than two sets. For example, the Cartesian product of
the sets U1;U2; : : : ;Uk is denoted by

U1 � U2 � � � � � Uk D f(x1; x2; : : : ; xk)
j xi 2 Ui ;81 � i � kg ;

where each element is called a k-tuple. A 2-tuple is also
called a pair. If U1 D U2 D � � � D Uk D U , the Cartesian
product is written as Uk. A set X is said to be a subset
of another set Y , denoted by X � Y , if for all x 2 X, it is
also the case that x 2 Y . A function f from the set X to
the set Y , denoted by f : X ! Y , is a mapping that asso-
ciates each element in X with an element in Y . The set X
is called the domain of the function, and Y is called the
range of f . For each x 2 X, we write f (x) for the element
in Y that is associated with x by f and call it the image
of x under f . Also, the image of X under f is defined as
f (X) D f f (x) j x 2 Xg.

Multisets

For sets, repeat occurrences of the same elements are
only counted once. Thus, the set fx; xg is the same as
the set fxg. Sometimes, the number of occurrences of an
element is important. In such cases, we consider multi-
sets (or bags). A multiset is formally defined as a pair
M D (U;m), where U is some set and m : U ! N is
a function from U to the set N D f0; 1; 2; 3; : : :g of nat-
ural numbers. U is called the universe and for each el-
ement x 2 U , m(x) is the multiplicity (that is, the num-
ber of occurrences) of x in M. A set can be considered
as a special multiset in which m(x) D 0 or 1 for each x
in the universe. By generalizing the notation of set mem-
bership, we can write x 2 M if m(x) > 0. The cardinality
of M is defined as jMj D

P
x2U m(x). Let M1 D (U;m1)

and M2 D (U;m2) be two multisets in the same universe;

then, M1 � M2 iff m1(x) � m2(x) for all x 2 U . The in-
tersection, union, and difference between M1 D (U;m1)
and M2 D (U;m2) are defined as follows:

1. M1 \ M2 D (U;m), wherem(x) D min(m1(x);m2(x))
for all x 2 U ,

2. M1 [ M2 D (U;m), where m(x) D max(m1(x);m2
(x)) for all x 2 U ,

3. M1 � M2 D (U;m), where m(x) D (m1(x) � m2(x)) �
�(m1(x) � m2(x)) for all x 2 U , and

�(k) D
�

1; if k > 0;
0; if k � 0 :

The Cartesian product of M1 D (U1;m1) and M2 D

(U2;m2) is defined as M1 � M2 D (U1 � U2;m), where
m(x; y) D m1(x)m2(y) for all x 2 U1 and y 2 U2.

Relations

In mathematics, a subset of U1 � U2 � � � � � Uk is called
a k-ary relation among the sets U1;U2; : : : ;Uk , and a sub-
set of Uk is called a k-ary relation on U. We are particu-
larly interested in binary relations. According to the defi-
nition, a binary relation on U is a set of pairs of elements
in U. A pair (x; y) in a binary relation means that x is re-
lated to y by the relation. We use lower-case Greek letters,
˛; ˇ; �, etc. to denote relations. The basic operations on
binary relations include the three aforementioned set-the-
oretic operations – intersection, union, and difference, as
well as converse and composition. The converse of a bi-
nary relation ˛ � U1 �U2 is ˛� � U2 � U1 such that

˛� D f(x; y) j (y; x) 2 ˛g :

The composition of two binary relations ˛ � U1 � U2 and
ˇ � U2 � U3 is ˛ˇ � U1 � U3 such that

˛ˇ D f(x; y) j 9z 2 U; (x; z) 2 ˛ ^ (z; y) 2 ˇg :

A binary relation � � U2 is said to be reflexive if
(x; x) 2 � for all x 2 U ; � is symmetric if for all x; y 2 U ,
(x; y) 2 � implies (y; x) 2 �; � is anti-symmetric if for all
x; y 2 U , (x; y) 2 � and (y; x) 2 � implies x D y; and �
is transitive if for all x; y; z 2 U , (x; y) 2 � and (y; z) 2 �
implies (x; z) 2 �. A binary relation that is reflexive, anti-
symmetric, and transitive is called a partial order. Let� be
a partial order on the universe U and X � U , then, u 2 U
is called an upper bound (resp. lower bound) of X if for all
x 2 X, x � u (resp. u � x). The least upper bound (resp.
the greatest lower bound) of X is the upper bound (resp.
lower bound) u of X such that for any upper bounds (resp.
lower bounds) u0 of X, u � u0 (resp. u0 � u). The least up-
per bound (resp. the greatest lower bound) of X is called
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its supremum (resp. infimum), and is denoted by sup(X)
(resp. inf(X)). For any X (even though X is finite), sup(X)
and inf(X) do not necessarily exist. If for all x; y 2 U ,
sup(fx; yg) and inf(fx; yg) exist, then sup(fx; yg) is called
the join of x and y and denoted by x t y, while inf(fx; yg)
is called the meet of x and y and denoted by x u y. The
structure (U;u;t) is called a lattice. A subset X � U is
a sublattice of U if for any x; y 2 X, x u y and x t y 2 X.

A binary relation that is reflexive, symmetric, and tran-
sitive is called an equivalence relation, which yields a par-
tition of the universe. A partition of U is a class of subsets
ofU, fXi j i 2 Ig for some index set I, where

S
i2I Xi D U

and Xi \ Xj D ; for any i 6D j. Let � be an equivalence
relation on U, and let x 2 U ; then, the equivalence class
containing x is defined as

[x]� D fy 2 U j (x; y) 2 �g :

Obviously, f[x]� j x 2 Ug forms a partition of the uni-
verse. For any X � U , we denote [X]� by the set f[x]� j
x 2 Xg and [jXj]� by the multiset ([U]� ;m) such that
m([x]�) D j[x]� \ Xj for all x 2 U .

Equivalence relations on a fixed domain are partially
ordered by set-inclusion. Let �1 and �2 be two equivalence
relations and define �1 � �2 iff �1 � �2; then,� is a partial
order on the set of all equivalence relations on a fixed do-
main. We say that �1 is finer than �2 or �2 is coarser than
�1 if �1 � �2. Given a binary relation ˛, the composition
of ˛ with itself k times is denoted by ˛k and the transi-
tive closure of ˛ is defined as ˛1 D

S
k�1 ˛

k . Let �1 and
�2 be two equivalence relations; then it can be shown that
�1 \ �2 and (�1 [ �2)1 are, respectively, the meet and the
join of �1 and �2.

Rough Set Theory – Functional Granulation

The basic construct of rough set theory is the approxima-
tion space, which is a pair (U; �), where U is a finite set
of objects (the universe) and � is an equivalence relation
on U. From the GrC perspective, the equivalence classes
of � are information granules of the approximation space.

In rough set theory, a concept is represented as a subset
of the universe. For any concept X � U , we can associate
the following two subsets with X,

�X D fx 2 U j [x]� � Xg

�X D fx 2 U j [x]� \ X 6D ;g ;

where �X and �X are called the �-lower and �-upper
approximation of X, respectively. From a practical view-
point, � can be considered as an indiscernibility relation;

thus, for a given concept X, we can only know that X con-
tains all the elements in �X and does not contain any el-
ement outside �X. In other words, the concept X cannot
be defined exactly in the approximation space. The pair
(�X; �X) is considered a rough approximation of X, and
any such pair is called a rough set (see Fig. 1). A concept X
is called an exact concept in the approximation space if
�X D X D �X; otherwise, it is called a rough concept.

Rough set theory is very useful in the analysis of data
tables. A data table is a pair S D (U; F), where U is a non-
empty, finite set (the universe) and F is a nonempty, finite
set of primitive attributes. Every f 2 F is a total function
f : U ! Vf , where Vf denotes the possible values of f . If
E D f f1; : : : ; fng � F, thenVE D Vf1 � � � � � Vfn . Thus, E
is also considered a function from U to VE. An equiva-
lence relation IND(E) is associated with every subset of at-
tributes E � F , and defined by

(x; y) 2 IND(E), f (x) D f (y) 8 f 2 E :

IND(E) is called an indiscernibility relation. We write
IND(f ) instead of IND(f f g) for all f 2 F. It is easy to show
that IND(E) D

T
f2E IND( f ). Since IND(E) is an equiva-

lence relation, (U; IND(E)) is an approximation space and
we can define the IND(E)-lower and IND(E)-upper ap-
proximation of X for any X � U . We write EX and EX in-
stead of IND(E)X or IND(E)X. Obviously, exact concepts
in (U; IND(E)) are those definable using only attributes
in E. In effect, the indiscernibility relation IND(E) granu-
lates (or partitions) the universe according to the functions
in E; thus, it results in a functional granulation of the uni-
verse.

The definitions are used in the analysis of depen-
dency between attributes in a data table. Let us say that
attribute E2 depends on E1, denoted by E1 ) E2, iff
IND(E1) � IND(E2), i. e., any two objects in U with the
same attribute values in E1 will also have the same attribute
values in E2. It is easy to show that E1 ) E2 iff E1X D X
for all X that are equivalence classes of IND(E2). Given
an attribute f 2 F, if F � f f g ) f f g, then f can be elim-
inated from F without influencing the definability of F.
In other words, by using the set of attributes, f is redun-
dant for classification purposes. By repeated elimination
of redundant attributes, we can eventually obtain an irre-
ducible set of attributes with the same classification capa-
bility as the original set of attributes. Such an irreducible
set of attributes is called a reduct in rough set theory. Note
that the definition of dependency is relative to a data table,
so it does not necessarily mean that an intrinsic connec-
tion exists between the inter-dependent attributes.
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Positional Analysis – Relational Granulation

Social networks are defined by actors and relations (or
nodes and edges in terms of graph theory) [15]. A so-
cial network is generally defined as a relational structure
N D (A; (˛i )i2I), where A is the set of actors in the net-
work, I is an index set, and for each i 2 I, ˛i � Aki is
a ki-ary relation on the domain A. If ki D 1, then ˛i
is also called an attribute. In practice, most SNA litera-
ture considers a simplified version of social networks with
only binary relations. For ease of presentation, we focus
on a social network with only unary and/or binary rela-
tions. Thus, the social network considered in this article is
a structure N D (A; (Pi )i2I; (˛ j) j2J ), whereA is a finite set
of actors, Pi � A for all i 2 I, and ˛ j � A� A for all j 2 J.
In terms of graph theory, N is a labeled graph, where A is
a set of nodes labeledwith subsets of I, and each ˛j denotes
a set of (labeled) edges. For each a 2 A, the out-neighbor-
hood and in-neighborhood of a with respect to a binary
relation ˛, denoted respectively by NC˛ (a) and N�˛ (a), are
defined as follows:

NC˛ (a) D fb 2 A j (a; b) 2 ˛g ;
N�˛ (a) D fb 2 A j (b; a) 2 ˛g :

If � is an equivalence relation on A and a is an actor,
the �-equivalence class of a is equal to its neighborhood,
i. e., [a]� D NC� (a) D N�� (a). Note that the latter equality
holds because of the symmetry of �.

Several equivalence relations have been proposed for
exploring the similarity between actors’ roles. The simplest
definition of positional equivalence is the concept of struc-
tural equivalence proposed in [21], which states that two
actors are positionally equivalent if they are related to the
same individuals (see Fig. 2).

Definition 1 Let N D (A; (Pi )i2I ; (˛ j) j2J ) be a social
network and � be an equivalence relation on A; then �
is a (strong) structural equivalence with respect to N if
(a; b) 2 � implies

1. a 2 Pi iff b 2 Pi for all i 2 I, and
2. NC˛ j

(a) D NC˛ j
(b) and N�˛ j

(a) D N�˛ j
(b) for all j 2 J.

By the definition, there may exist more than one struc-
tural equivalence for a given network. However, it has been
shown that there always exists a maximum (i. e., coars-
est) structural equivalence for a network [19]. In fact, the
set of all structural equivalences form a sublattice of all
equivalence relations on A. Indeed, if �1 and �2 are struc-
tural equivalences with respect to N, so too are �1 u �2
and �1 t �2. Since the set of all equivalence relations on

a finite domain is finite, the join of all structural equiva-
lences is the coarsest structural equivalence with respect
to a network. Let N D (A; (Pi )i2I; (˛ j) j2J ) be a social net-
work and � be the coarsest structural equivalence with re-
spect to N; then, two actors x; y 2 A are said to be struc-
turally equivalent, denoted by x Šs y, if (x; y) 2 �.

Although structural equivalence is conceptually sim-
ple, it is sometimes restrictive. Regular equivalence relaxes
the requirement that equivalent actors must be connected
with identical actors, and suggests that actors occupy the
same position if they are connected to positionally equiv-
alent actors. Regular equivalence has been studied exten-
sively [7,8,10,19,35], and there are several alternative def-
initions of the concept. We present two here. The first
is based on the characterization given by Boyd and Ev-
erett [8], which states that an equivalence relation � is
a regular equivalence with respect to a binary relation ˛
if it commutes with ˛, i. e.

˛� D �˛ :

By this definition, if � is a regular equivalence with respect
to ˛ and (a; b) 2 �, then for each c 2 NC˛ (a)(resp:N�˛ (a)),
there exists c0 2 NC˛ (b)(resp:N�˛ (b)) such that (c; c0) 2 �.
The property naturally leads to an alternative definition of
regular equivalence [19], which states that an equivalence
relation � is a regular equivalence with respect to a binary
relation ˛ if for a; b 2 A,

(a; b) 2 �) [NC˛ (a)]� D [NC˛ (b)]�
and [N�˛ (a)]� D [N�˛ (b)]� :

According to this definition, if a and b are regularly equiv-
alent, then they are connected to equivalent neighbor-
hoods (see Fig. 3). Obviously, the above definitions are
equivalent. Thus, we have the following definition.

Definition 2 LetN D (A; (Pi )i2I; (˛ j) j2J ) be a social net-
work and � be an equivalence relation onA; then � is a reg-
ular equivalence with respect to N if

1. (a; b) 2 � implies a 2 Pi iff b 2 Pi for all i 2 I; and
2. � is a regular equivalence with respect to ˛j for all j 2 J.

Analogous to the case of structural equivalences, the join
of two regular equivalences is still a regular equivalence,
even though their meet is not necessarily a regular equiv-
alence. Consequently, we can find the coarsest regular
equivalence of a network. Then, two actors, x and y, are
regularly equivalent, denoted by x Šr y, if (x; y) is in the
coarsest regular equivalence of the network.



8340 S Social Networks and Granular Computing

For regular equivalence, only the occurrence or non-
occurrence of a position in the neighborhood of an ac-
tor matters. However, the number of occurrences is some-
times an important factor in positional analysis. In such
cases, a number restriction can be added to the definition
of regular equivalences. An equivalence relation � is an ex-
act equivalence with respect to a binary relation ˛ if for
a; b 2 A,

(a; b) 2 �) [jNC˛ (a)j]� D [jNC˛ (b)j]�
and [jN�˛ (a)j]� D [jN�˛ (b)j]� :

By replacing the set equality in the definition with themul-
tiset equality, the number of equivalent neighbors must be
the same for two actors to be considered position-equiva-
lent (see Fig. 4).

Definition 3 LetN D (A; (Pi )i2I; (˛ j) j2J ) be a social net-
work and � be an equivalence relation on A; then, � is an
exact equivalence with respect to N if

1. (a; b) 2 � implies a 2 Pi iff b 2 Pi for all i 2 I; and
2. � is an exact equivalence with respect to ˛j for all j 2 J.

The set of all exact equivalences also forms a lattice, but it
is not a sublattice of the set of all equivalence relations [10].
Consequently, the coarsest exact equivalence for a network
exists and we can define two actors x and y as exactly
equivalent, denoted by x Še y, if they belong to the coars-
est exact equivalence. The partition produced by an exact
equivalence is called an equitable partition or a divisor of
a graph [19].

From the above definition, it is clear that all the at-
tributes in a social network are binary. In other words, for
each attribute Pi, an actor either satisfies Pi (has the value
1) or falsifies Pi (has the value 0). When a social network
N D (A; (Pi )i2I ; (˛ j) j2J ) has the property J D ;, it is in
fact a kind of data table. In this case, all three kinds of po-
sitional equivalence are reduced to the indiscernibility re-
lation. This means that, if information about the actors’ re-
lationship is not available, social positions are fully deter-
mined by the attributes of the actors. Thus, without rela-
tional information, functional granulation is sufficient for
positional analysis. However, if relational information is
available, two actors can be further differentiated by their
relationship with other actors, even though all their at-
tributes have the same values. In this sense, the definition
of positional equivalence is based on the process of rela-
tional granulation.

Modal Logic – The Bridge

Modal logics were originally developed as formalizations
for reasoning about modalities. The formal study started
with alethic modal logics (the logics of necessity and pos-
sibility). Themodalities� (for necessity) andÞ (for possi-
bility) have now become standard notations inmodal logic
literature, and many variants of modal logic have been
proposed to deal with different classes of modalities; for
example, temporal logic for tense operators, deontic logic
for obligation and permission, dynamic logic for actions,
and epistemic logic for beliefs and knowledge. The devel-
opment of these logics was motivated by philosophical en-
quiry as well as by technical applications in computer sci-
ence, artificial intelligence, and economic game theory.

Whilemodal logics were initially presented in the form
of reasoning systems, the invention of relational seman-
tics has been influential in the continuing development of
the field [17,18]. The semantics, proposed independently
by J. Hintikka, S. Kanger, and S. Kripke, and now known
as Kripke semantics, show that modal logics are in fact
logics for reasoning about relational structures. From this
semantic perspective, standard modal logics can be re-
garded as fragments of first-or second-order predicate log-
ics, whereby the necessity and possibility modalities corre-
spond to universal and existential quantifiers, respectively.
In spite of this correspondence, quantification in modal
logic tends to be bounded in some way to worlds that are
“relevant to” or “accessible from” the current one. Conse-
quently, although a number of properties of modal logics
follow immediately from those of their classical quantifica-
tional counterparts, themodal operators typically have less
expressive power than full quantification. This results in
many interesting properties not available in classical pred-
icate logic. One of the most striking results is that semantic
invariances between models are actually various forms of
bisimulation, which preserve the local properties of worlds
and their transition patterns [5]. Interestingly, it has been
shown that bisimulation in Kripke models corresponds ex-
actly to regular equivalence in social networks [22]. The
implication of the results is that position-equivalent actors
can be characterized by an appropriate set of modal for-
mulas. As each modal formula can be regarded as a binary
attribute, from the GrC perspective, such characterization
transforms relational granulation into functional granula-
tion.

In this section, we present threemodal logics – amulti-
modal logic, a graded modal logic, and a hybrid logic. The
presentation of a modal logic, as with any other formal
logic, requires the specification of its syntax and semantics.
The syntactic aspect includes the language of the logic – its
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alphabet and formation rules for wffs, as well as a deduc-
tive system for logical reasoning. For the purpose of this
article, we need only present the language part. For the se-
mantic aspect, we have to define the models within which
the wffs can be interpreted, as well as the satisfaction of
a wff in a model.

Propositional Multi-Modal Logic

We start with propositional modal logic (PML) [9]. The
alphabet of PML consists of a set of propositional sym-
bols, PV , and the logical symbols :(negation), ^(and),
_(or), �(material implication), and Þ(possibility); :, ^,
_, and� are called Boolean connectives, whereas Þ is the
only primitive modality of PML. The set of wffs of PML is
the smallest set containing PV that satisfies the following
conditions:

� if ' is a wff, then:' and Þ' are wffs,
� if ' and  are wffs, then ' ^  ; ' _  , and ' �  are

wffs.

As usual, we abbreviate (' �  ) ^ ( � ') as ' �  ;
:Þ :' as �'; any tautology p _ :p as >; and any con-
tradiction p ^ :p as?. A Kripke model for PML is a triple
M D (W; ˛;V), where W is a set of possible worlds, ˛ is
a binary relation onW, called an accessibility relation, and
V : W � PV ! f0; 1g is a truth assignment for evaluating
the truth value of each propositional symbol in each world.
The satisfaction of a wff ' in a world w of the model M,
denoted by M;w ˆ ', is defined by the following clauses:

1. M;w ˆ p if V(w; p) D 1 for each p 2 PV ;
2. M;w ˆ :' iff M;w 6ˆ ';
3. M;w ˆ ' ^  iff M;w ˆ ' and M;w ˆ  ;
4. M;w ˆ ' _  iff M;w ˆ ' or M;w ˆ  ;
5. M;w ˆ ' �  iff M;w 6ˆ ' or M;w ˆ  ;
6. M;w ˆ Þ' iff there exists (w; u) 2 ˛ such that

M; u ˆ '.

Propositional multi-modal logic (PMML) is an extension
of PML that allowsmore than one modality [16]. PMML is
particularly suitable for reasoning about relational struc-
tures that contain a number of binary relations, e. g., so-
cial networks. The alphabet of PMML consists of a set of
propositional symbols PV , a set of relational symbols REL,
the Boolean connectives, the relational converse symbol
�, and the modality-forming symbol hi. The set of wffs of
PMML is the smallest set containing PV that satisfies the
following conditions:

� if ' is a wff, then:' is a wff;
� if ' is a wff and r is a relational symbol, then hri' and
hr�i' are wffs;

� if ' and  are wffs, then ' ^  ; ' _  , and ' �  are
wffs.

We abbreviate :hri:' and :hr�i:' as [r]' and
[r�]' , respectively. A Kripke model for PMML is
M D (W; (˛r )r2REL ;V), whereW and V are the same as
above, and for each r 2 REL, ˛r is a binary relation onW.
The satisfaction of PMML wffs is defined in the same way
as that of PML wffs, except that clause 6 is replaced by

6. M;w ˆ hri' iff there exists (w; u) 2 ˛r such that
M; u ˆ ';

7. M;w ˆ hr�i' iff there exists (u;w) 2 ˛r such that
M; u ˆ '.

Note that we need the converse modalities hr�i because
all positional equivalences are defined with respect to their
in-neighborhoods and out-neighborhoods. The modali-
ties hri allow us to access the out-neighborhood of a world,
whereas hr�i is needed to access the in-neighborhood.

Graded Modal Logic

Graded modal logic (GML) is a generalization of PMML
that allows us to consider the number of worlds accessible
from a given world [33]. The alphabet of GML is the same
as that of PMML; however, the second formation rule of
wffs is replaced by the following rule:

� if ' is a wff and r is a relational symbol, then hrin' and
hr�in' are wffs for each natural number n.

We also write [r]n' and [r�]' as the abbreviations of
:hrin:' and :hr�in:', respectively.

The Kripke models for GML are the same as those for
PMML, but clauses 6 and 7 for the conditions of satisfac-
tion of PMML wffs are modified as follows:

6. M;w ˆ hrin' iff jfu 2 W j (w; u) 2 ˛r and M; u ˆ
'gj > n;

7. M;w ˆ hr�in' iff jfu 2 W j (u;w) 2 ˛r and M;

u ˆ 'gj > n.

According to the semantics, the modalities hri0 and hr�i0
in GML are respectively equivalent to hri and hr�i in
PMML. Intuitively, M;w ˆ hrin' means that ' is true in
more than n worlds that are r-accessible from w, whereas
M;w ˆ [r]n' means that ' is false in no more than n
worlds that are r-accessible from w. Thus, we abbreviate
hrin�1' ^ [r]n:' (resp. hr�in�1' ^ [r�]n:') as (r)n'
(resp. (r�)n') to denote that there are exactly n r-acces-
sible (resp. r�-accessible) worlds that satisfy '.
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Hybrid Logic

Hybrid logics (HL) are extensions of modal logics that in-
clude symbols to name possible worlds in models. The de-
velopment of HL dates back to A. Prior’s 1951 work, which
had a philosophical foundation [29,30] (see [1] for a brief
overview). The main idea is to use a special kind of atomic
formula, called a nominal, to refer to possible worlds in
models. The idea was adopted by the Sofia school in the
late 80s and early 90s [14,24,25]. Subsequently, Blackburn
and Seligman, who have been influential in the recent de-
velopment of HL, adopted it in the late 90s [4,6].

Here, we only need the simplest hybrid logic (SHL).
The alphabet of SHL is the same as that of PMML plus a set
of nominals NOM that is disjoint with the set PV . The set
of wffs of SHL is the smallest set containing PV [ NOM
that satisfies the formation rules of PMML. The key se-
mantic idea of HL is that each nominal must be true in
exactly one possible world in any model. In other words,
a nominal names a world by being true in that world
and nowhere else. The idea can be easily formalized by
extending PMML models with a component that assigns
a nominal to a possible world. A hybrid model is then
M D (W; (˛r )r2REL ;V ; f ), where (W; (˛r )r2REL;V ) is
a PMML model and f : NOM ! W is the mapping that
assigns a nominal to a possible world. The satisfaction of
SHL wffs is defined by clauses 1–7 for PMML, with the ad-
dition of the following clause for nominals:

8. M;w ˆ i if f (i) D w for each i 2 NOM.

From Relational Granulation
to Functional Granulation

In this section, we explain how to transform positional
equivalences from relational granulation to functional
granulation. Given a social network N D (A; (Pi )i2I;
(˛ j) j2J), the steps are as follows:

1. For each kind of equivalence, find a corresponding
modal language based on N. The three kinds of posi-
tional equivalence discussed earlier correspond to the
following logical languages:
(a) Structural equivalence: SHL
(b) Regular equivalence: PMML
(c) Exact equivalence: GML.

2. Consider N as a model in the corresponding logic by
a simple transformation. The set of actors is the set of
possible worlds in the resultant model.

3. Find a sublanguageL of the corresponding logic. Prove
that for any two actors x and y, x Š y iff x and y satisfy

the same set of wffs in L, whereŠ isŠs ,Šr , orŠe (see
Fig. 5).

Structural Equivalences and Hybrid Logics

We use SHL to characterize structural equivalences. Given
a social network N D (A; (Pi )i2I; (˛ j) j2J ), we define an
SHL language with the following alphabet:

1. PV D fpi j i 2 Ig;
2. REL D J;
3. NOM D A.

The social network N is transformed into a hybrid
model MN D (A; (˛ j) j2J ;V ; id), where V is defined by
V (x; pi ) D 1 iff x 2 Pi for all x 2 A and i 2 I, and
id is the identity function on A. Let us now define
a sublanguage HN of the SHL as the set of wffs
PV [ fh jia; h j�ia j j 2 REL; a 2 NOMg. We say that
two actors, x and y, areHN-equivalent with respect to N

if for all ' 2HN, (MN; x ˆ ' iff MN; y ˆ '). Then, we
have the following characterization theorem.

Theorem 1 Let N D (A; (Pi )i2I; (˛ j) j2J ) be a social net-
work; then, for all x; y 2 A, x Šs y in N iff x and y are
HN-equivalent with respect to N.

Proof By the satisfaction condition, (MN; x ˆ h jia iff
(x; a) 2 ˛ j . Thus, x and y are HN-equivalent iff the fol-
lowing two conditions are satisfied

1. x 2 Pi iff y 2 Pi for all i 2 I (as PV �HN),
2. for all j 2 J and a 2 A, (x; a) 2 ˛ j iff (y; a) 2 ˛ j and

(a; x) 2 ˛ j iff (a; y) 2 ˛ j (since both h jia; h j�ia and
h jia; h j�ia are inHN).

These two conditions are exactly the same as those in Defi-
nition 1. Since x Šs y iff (x; y) is in the coarsest structural
equivalence, x Šs y iff these two conditions are satisfied.�

Regular Equivalences andMultimodal Logics

The first logical characterization of positional equivalences
is that of regular equivalences by dynamic logic – a partic-
ular type of PMML. This is shown in [22] by the connec-
tion between regular equivalence and the well-known no-
tion of bisimulation in modal logics. We present the result
here by following the general procedure of the transforma-
tion from relational granulation to functional granulation.

Given a social network N D (A; (Pi )i2I; (˛ j) j2J ), we
define a PMML language with the following alphabet:

1. PV D fpi j i 2 Ig;
2. REL D J.
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The social network N is transformed into a Kripke
model MN D (A; (˛ j ) j2J ;V ), where V is defined by
V(x; pi ) D 1 iff x 2 Pi for all x 2 A and i 2 I. Let LN be
the set of wffs of the PMML and LN-equivalence be de-
fined the same asHN-equivalence.

Theorem 2 ([22]) Let N D (A; (Pi )i2I ; (˛ j) j2J ) be a so-
cial network; then, for all x; y 2 A, x Šr y in N iff x and y
are LN-equivalent with respect to N.

Proof It is shown in [22] that regular equivalences are ex-
actly bisimulations, i. e., x Šr y iff x and y are bisimular.
By Theorems 2.20 and 2.24 in [5], x and y are bisimular iff
they are LN-equivalent with respect to N. �

Exact Equivalences and Graded Modal Logics

Following the procedure used in the previous subsection,
we define GN as the set of wffs of the GML based on the
given network N. Then, we have the following theorem.

Theorem 3 Let N D (A; (Pi )i2I; (˛ j) j2J) be a social net-
work; then, for all x; y 2 A, x Še y in N iff x and y are
GN-equivalent with respect to N.

Proof

1. ()): Assume that x Še y; then, there exists an ex-
act equivalence � on N such that (x; y) 2 �. We
show that MN; x ˆ ' implies MN; y ˆ ' by induc-
tion on the complexity of ' (the proof of the con-
verse direction is exactly the same). The case where
' 2 PV follows from condition 1 of Definition 3.
The cases for Boolean connectives are straightfor-
ward by the induction hypothesis. For formulas of
the form h jin or h j�in , we prove the case for
h jin by using the condition [jNC˛ j

(x)j]� D [jNC˛ j
(y)j]�.

The case for h j�in is proved similarly by apply-
ing [jN�˛ j

(x)j]� D [jN�˛ j
(y)j]�. Now, if MN; x ˆ h jin ,

then there exist more than n worlds in NC˛ j
(x) that

satisfy  . Assume u0; u1; : : : ; un are among these
worlds. Since [jNC˛ j

(x)j]� D [jNC˛ j
(y)j]�, there exist

u00; u
0
1; : : : ; u

0
n 2 NC˛ j

(y) such that (ui ; u0i ) 2 � for
0 � i � n. By the induction hypothesis, MN; u0i ˆ  
for 0 � i � n; thus, MN; y ˆ h jin .

2. ((): Let us define an equivalence relation � on A by

(x; y) 2 �
iff x and y are GN-equivalent with respect to N:

We prove that � is an exact equivalence. The first con-
dition of Definition 3 is straightforward. For the second
condition, let us assume that (x; y) 2 �; [jNC˛ j

(x)j]� D

([A]�;m1), and [jNC˛ j
(y)j]� D ([A]�;m2) for some

j 2 J. Assume also that [A]� D f[zi ]� j 1 � i � kg.
First, we consider z1 as an example. For each 2 � i � k,
since [z1]� is an equivalence class distinct from [zi ]�,
there exists a GN-wff  i such that MN; zi ˆ  i , but
MN; z1 ˆ : i . If m1([z1]�) D n1 > 0, then there
exist exactly n1 ˛ j-successors of x that are GN-equiv-
alent to z1. Thus, MN; x ˆ ( j)n1 ( ^

Vk
iD2 : i)

for all  satisfied in z1. Since (x; y) 2 �, it is that
MN; y ˆ ( j)n1 ( ^

Vk
iD2: i) for all  satisfied in

z1. This means there are exactly n1˛ j-successors of y
that satisfy

Vk
iD2: i (by letting  D >). Thus, these

n1 ˛ j-successors of y must satisfy all  satisfied in z1
and be GN-equivalent to z1. Since no other ˛j-succes-
sors of y can be GN-equivalent to z1 (otherwise there
would be more than n1˛ j-successors of y satisfying
Vk

iD2: i), m2([z1]�) D n1. In the same way, we can
prove that if m2([z1]�) > 0, then m1([z1]�) > 0.
Thus, m1([z1]�) D m2([z1]�). Similarly, we can prove
m1([zi ]�) D m2([zi ]�) for 2 � i � k. Consequently,
we have m1 D m2 and [jNC˛ j

(x)j]� D [jNC˛ j
(y)j]� . The

proof of [jN�˛ j
(x)j]� D [jN�˛ j

(y)j]� is analogous, except
that the modality ( j)n1 is replaced by ( j�)n1 . �

Observational Equivalences

We have presented the logical characterizations of three
kinds of positional equivalence. The theoretical implica-
tion of these characterizations is that positional equiva-
lences based on relational granulation can be transformed
into indiscernibility relations based on a set of binary at-
tributes. Let N D (A; (Pi )i2I; (˛ j) j2J ) be a social network
and let F denoteHN,LN, orGN. Then, (A; F) is a (gener-
alized) data table such that IND(F) is the corresponding
positional equivalence. However, from a practical view-
point, since both LN and GN are infinite sets, it is gen-
erally difficult (if not impossible) to decide IND(F) based
on such a data table representation. This motivates us to
define a new kind of positional equivalence based on ob-
servations.

Let N be a social network and F be a finite set of wffs in
an appropriate logic language. Then, two actors, x and y,
are F-observationally equivalent, denoted by x ŠF y, if for
any wff ' 2 F, x satisfies ' iff y satisfies '. The wffs in F
denote the observable properties of the actors in the net-
work. Due to the limited capability of the observer, the
set of observable properties is usually finite. Depending on
the observable properties chosen, we can focus on different
parts of the social network. For example, positional anal-
ysis for a genealogical study and a political investigation
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may have to consider different relationships between ac-
tors. As shown by the above results, the choice of an ap-
propriate logic language is also crucial, since it may result
in different notions of positional equivalence.

A recent approach to structural equivalence that con-
forms with our definition of observational equivalence is
reported in [28]. In that approach, a set of institutions E is
given and each actor may belong to several institutions.
Two actors are structurally equivalent if they belong to
the same set of institutions. To avoid confusion with the
structural equivalence defined in Sect. “Positional Analy-
sis – Relational Granulation”, we call the equivalence re-
lation defined in [28] institutional equivalence. Note that
institutional equivalence is in fact the same as structural
equivalence defined in Sect. “Positional Analysis – Rela-
tional Granulation”, if we consider the universe as the
union of A and E and represent the network as a bipar-
tite graph. A place (social position) is then defined as an
equivalence class of actors (or equivalently, the set of in-
stitutions that those actors belong to). Here, our set of ob-
servation sentences corresponds to the set of institutions
in [28]. While institutions are primitive entities, our ob-
servation sentences are formed from the social relations
and attributes of actors. In fact, a wff in F can also be re-
garded as an intensional definition of an institution. In this
sense, observational equivalence is a kind of intensionally
institutional equivalence.

Conclusion and Future Directions

This article starts with an introduction to rough set the-
ory – the basic theory of functional granulation. We then
review several notions of positional equivalence in social
network analysis and consider them as relational granu-
lation from the GrC perspective. By using modal logics
as a bridge, we transform the relational granulation-based
positional equivalences into functional granulation. How-
ever, the transformation is mainly theoretically interest-
ing, since the set of functional attributes used to granulate
a social network may be infinite. This practical consider-
ation motivates us to propose the notion of observational
equivalence. It conforms with an alternative definition of
structural equivalence, which we call institutional equiva-
lence to avoid confusion.

More generally, both observational equivalence and
institutional equivalence can be analyzed in the framework
of formal concept analysis (FCA) [13]. FCA is a concep-
tual knowledge representation and data analysis method
in which a formal context is defined as a triple (A; F; R),
where A and F are sets of objects and attributes respec-
tively; and R � A�F is a binary relation betweenA and F,

called the incidence of the formal context. For A0 � A and
F 0 � F , let us denote R(A0) D f f 2 F j 8a 2 A0; (a; f ) 2
Rg and R�(F 0) D fa 2 A j 8 f 2 F 0; (a; f ) 2 Rg. Then,
a formal concept is defined as a pair (A0; F 0) such that A0 �
A, F 0 � F , R(A0) D F 0 and R�(F 0) D A0. Here, we call A0

the extent and F 0 the intent of the formal concept. The ap-
plication of FCA to sociology has been proposed in [12]. In
that application, the formal context (also called the Galois
lattice) is used to model two-mode network data, where
the set of actors is a mode of the data, the set of events is
the other mode of data, and the relation between the two
modes is the participation relationship between the actors
and events. When we regard A as the set of actors, F as
the set of observation sentences (resp. institution), and R
as the satisfaction (resp. membership) relation, a formal
context can be constructed out of a social network. How-
ever, a social position (or place) defined by observational
or institutional equivalences may not be the extent of
a formal concept. Thus, it is tempting to define a social
position alternatively as a formal concept of such formal
contexts. Unlike other positional analysis techniques that
define a social position as an equivalence class of some po-
sitional equivalence, the extents of different formal con-
cepts may overlap. This means that social positions may
not be disjoint in such a definition. The theoretical and
practical implications of such positional analysis requires
further research.

Another future research direction concerns the practi-
cal computation of positional equivalences. As mentioned
earlier, when a social network is transformed into a data
table (A; F) for positional analysis and F is infinite, it is dif-
ficult to decide if two actors are IND(F)-equivalent by ex-
haustively comparing the satisfaction of all wffs in x and y.
While observational equivalence provides a practical ap-
proximation of the computation, we would like to know
if precise computation is possible. To answer this ques-
tion, the inference of themost specific concept (msc) in de-
scription logics [2] may be helpful. Description logics are
a family of knowledge representation formalisms that have
strong connections with modal logics [3,23]. Indeed, the
description languages ALC and ALCN correspond to
the sublanguages of PMML and GML respectively [3,23].
Given a network represented in a description language,
the msc of an actor x, denoted by msc(x), corresponds to
a wff that satisfies x and implies any wffs that satisfy x.
Thus, if msc(x) and msc(y) are logically equivalent, then x
and ywill satisfy the same set of wffs, i. e., (x; y) 2 IND(F).
The problem for researchers is to find logical languages
that can characterize the aforementioned positional equiv-
alences adequately and whose msc problems can be solved
effectively.
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In summary, we have proposed a logical approach to
positional analysis in social networks from a GrC perspec-
tive. The approach facilitates a connection between more
complicated relational granulation and simpler functional
granulation. While there remain problems to be solved in
the research programme, the approach seems promising
for cross-fertilization between the fields of GrC and SNA.
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Glossary

Adjacent A node is adjacent to another if there is an edge
connecting them.

Arrow A line directed from one node to another.
Binary relation A two valued yes/no or on/off relation.
Bipartite graph A graph, B D hN; Ei where N is a finite

set of nodes and E is a collection of pairs of nodes in
which N is partitioned into two disjoint subsets, N1
and N2, and no edge in E has both end points in the
same subset.

Blockmodeling A procedure for clustering actors such
that the actors in each cluster share similar patterns of
ties both within and between clusters.

Connected Any two nodes in a graph are said to be con-
nected if there is a path from one to the other; a graph
is connected if there is a path connecting every pair of
nodes.

Cycle Any path that begins and ends at the same node.
Digraph A directed graph.
Directed graph A graph D D hN;Ai where N is a finite

collection of nodes and A is a set of pairs linked by di-
rected lines or arrows.

Directed line A line going from a node to another repre-
senting a non-reciprocated link.

Edge A line connecting two nodes representing a recipro-
cated link.

Edge labeled graph A graph in which at least two kinds
of connections between nodes are identified.

Formal concept analysis Amethod of data analysis based
on Galois lattice structure.

Galois lattice A dual structure that displays the depen-
dencies of both objects and their properties.

Geodesic The shortest path between two nodes.
Graph A graph G D hN; Ei where N is a finite set of

nodes and E is a collection of pairs of nodes repre-
sented as edges.

Hyperedge An edge in a hypergraph that can enclose
more than two nodes.

Hypergraph A hypergraph, F D hN;Hi, consists of a set
of nodes N and a collection of hyperedges,H.

Indegree The indegree of a node is the number of directed
lines it receives.

Irreflexive A relation in which no edge connects any node
with itself.

Multidimensional scaling A search procedure designed
to represent an observed set of proximities or distances
in a small number of dimensions.

Node A point in a graph.
One mode matrix A data matrix in which the rows and

columns both represent the same objects.
Outdegree The outdegree of a node is the number of di-

rected lines it sends out.
Path A path is a sequence of nodes and edges beginning

with a node that has an edge connecting it to the next
node in the sequence and so on.

Path length The length of a path connecting two nodes is
the number of edges it contains.

Permutation A reordering of the rows, columns, or rows
and columns of a matrix.

Principle diagonal The set of cells in a square matrix that
runs from the upper left to the lower right.

Relation A collection of ordered or unordered pairs of
nodes.

Singular value decomposition an algebraic procedure
that decomposes a data matrix into its “basic struc-
ture”.

Sociometry An early version of social network analysis
introduced by Jacob Moreno and Helen Jennings.

Spring embedder A kind of multidimensional scaling
based on a model in which it is assumed that nodes
are connected by springs that pull and push on them.

Symmetric A relation in which if a node a is adjacent to
another, b, then b is adjacent to a.

Tree A graph is a tree if it is connected and contains no
cycles.

Twomode matrix A data matrix in which the rows and
columns represent different objects.

Definition of the Subject

Social network visualization refers to the practice of con-
structing pictorial images of the connections linking social
actors. The use of such images provides two benefits. It al-
lows investigators to gain new insights into the patterning
of social connections, and it helps investigators to commu-
nicate their results to others.

Introduction

Social network analysis did not emerge as a systematic field
of research until early in the twentieth century [1]. But vi-
sual images of social networks were produced more than
a millennium earlier. The earliest of these images that I
have uncovered was produced in Spain in the middle of
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Tree of consanguinity with six degrees of relationship

the ninth century. That image is attributed to the prolific
writer and Roman Catholic Saint, Isidore de Séville. It is
reproduced here as Fig. 1.

The image shown in Fig. 1 displays relationships based
on genealogical descent. From the earliest times, people
have been interested in kinship ties – in who is related to
whom. This interest is evident in the descent lists found
in the Christian bible and in the oral genealogies that were
required to be memorized by Hawaiian nobles [2].

The fact that Fig. 1 takes the form of a tree shows that
as early as the ninth century people saw the analogy be-

tween the branching structure of descent and that of trees.
This notion was captured in a mathematical formaliza-
tion in 1857 by Arthur Cayley [3]. Cayley defined a tree
in mathematical graph theoretic terms. Biggs, Lloyd and
Wilson (p. 38 in [4]) characterized Cayley’s definition by
saying that his “. . . use of the word ‘tree’ in this context is
presumably derived from the diagrammatic form of these
graphs, and is akin to the traditional use of the word in
describing genealogical or ‘family’ trees.”

The use of trees to depict descent was, of course, con-
tinued. As time passed, however, their form became sim-
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Descent in ancient Rome

plified. Lewis Henry Morgan [5] was an attorney and an
anthropologist. He was interested in comparing how dif-
ferent peoples reckoned kinship and in 1871 he published
a mammoth work containing a collection of kinship trees.
Each tree depicted descent as conceived by a society some-
where in the world. Morgan’s trees are quite simple. Fig-
ure 2 shows descent as it was reckoned in ancient Rome.

Twelve years later a mathematician-physicist, Alexan-
der Macfarlane [6], produced a different kind of graphic
image based still on kinship. Macfarlane set out to exam-
ine British marriage prohibitions and he represented them
both algebraically and visually. His visual images depict
males using plus signs (+) and females with circles (o).
Earlier generations he placed higher on the page. Descent
is shown by lines connecting points. A short line crossing
a descent line indicates another person, of either sex, in
an intermediate generation. And the lowest point is always
the prohibited offspring.

The illustration shown in Fig. 3 displays all the two-
step marriage relations that are prohibited by British law.
The left image shows that amalemay not marry his grand-
daughter. The middle image shows that he may not marry

Social Network Visualization, Methods of, Figure 3
Macfarlane’s images of two-step marriage prohibitions

Social Network Visualization, Methods of, Figure 4
Hobson’s image of corporate interlocks

his sister. And the right image shows that he may not
marry his grandmother. Or, put the other way, a woman
may not marry her grandfather, her brother or her grand-
son.

Macfarlane’s paper also included algebraic expressions
that captured all of the same marriage prohibitions. But
Sir Francis Galton [7], who attended Macfarlane’s presen-
tation, declared that his “diagrammatic form” seemed “the
most distinctive and self-explanatory” of the two treat-
ments.

Finally, in 1894, John Hobson [8] produced a visual
image of a social network that was not based on kin-
ship. He had collected two mode (corporation by director)
data on interlocking corporate directorates. He reasoned
that, to the degree that corporations shared directors, they
could be expected to cooperate and work together.

Hobson’s illustration was designed to show the inter-
lock among, as he put it, “the small inner ring of South
African finance.” Corporations are depicted as circles, and
interlock is shown by overlapping or by a line connecting
two circles. Hobson’s image is reproduced here as Fig. 4.
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The important feature of this image is that it displays
a connection linking more than two corporations. Hob-
son’s data showed that three corporations, Charter, Rand
and De Beers, all shared directors in common. And, at
the same time, Rand and De Beers also both shared di-
rectors with coalmines, telegraphs, rails, and others. The
overlaps in his image allowed him to display which com-
panies shared with which others.

It is clear, then, that a concern with connections
among social actors and the use of visual images have
a long history of intimate association. It should come as
no surprise therefore that images played an important part
in the development of social network analysis when it did
emerge as an organized field of research.

Visualization in Social Network Analysis

In the book cited above (p. 3 in [1]), I described the mod-
ern science of social network analysis as possessing four
defining properties. They were:

1. It embodies ideas about the importance of social ties
linking social actors.

2. It collects data reflecting those ties.
3. It involves the use of graphic imagery.
4. It employs mathematical and/or computational mod-

els.

Pre-network research often included one or two of those
properties, but in the late 1920s each of two independent
research teams came up with efforts that included all four.

One took place in the early 1930s. It involved a psychi-
atrist, Jacob L. Moreno, and a psychologist, Helen H. Jen-
nings. Together, they developed an approach they called
“sociometry.” They reported two huge studies, both fo-
cused on examining the structure of social ties. One was
conducted among prisoners at Sing Sing Prison in Ossin-
ing, New York [9] and the other among young delinquents
at the New York State Training School for Girls in Hud-
son, New York [10].

Both Moreno–Jennings studies involved the extensive
use of graphic images. The image shown in Fig. 5 was in-
cluded in their report on the research at Sing Sing prison
(Moreno, 1932). In that figure, individuals or other kinds
of social actors are represented as points or nodes and links
between pairs of social actors are lines or edges connecting
pairs of nodes. In Fig. 5 Moreno was concerned with the
positions of individuals and the patterning of their ties. As
he put it, the individuals at the top and the bottom were
“dominant” and the image showed that those dominant
individuals were linked both “directly” and “indirectly”.

Social Network Visualization, Methods of, Figure 5
Image of a Pattern of Linkages

Most of the data collected by Moreno and Jennings
involved asking individuals whom they liked or disliked.
In data of that sort, choices are seldom reciprocated. So
Moreno and Jennings drew lines with arrowheads to reveal
who chose whom. Mutual choices were drawn without ar-
rowheads and they also included a small line bisecting the
main line connecting the two nodes.

Moreno and Jennings often required subjects to report
both their likes and their dislikes. By using different colors,
red for likes and black for dislikes, a single image could dis-
play both. The image shown in Fig. 6 was published in the
Moreno–Jennings report on the Hudson School (Moreno,
1934). It depicts positive and negative choices among 13
members of an American football team. Moreover, it con-
tains another innovation. The various team members are
placed in the drawing in approximately the same relative
locations that they occupied on the football field. That ar-
rangement shows the players’ positions and permits the
viewer to evaluate the impact of physical proximity on the
patterning of social linkages.

Figures of the sort used by Moreno and Jennings had
a major impact on the style of graphic imagery used subse-
quently in social network analysis. For themost part, social
network analysts have represented social actors as nodes
and links between actors as edges or as directed lines with
arrowheads.

The second introduction of the social network ap-
proach also occurred in the early 1930s. An anthropol-
ogist, W. Lloyd Warner, and a collection of his col-
leagues and students at Harvard, conducted three elab-
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Positive and Negative Choices in a Football Team
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Friendships linking factory workers

orate network analytic projects. One was a study of an
industrial factory, the Western Electric plant in Cicero,
Illinois [11]. The other two were studies of communi-
ties: one focused on a New England town, Newburyport,
Massachusetts [12], and the other on a southern town,
Natchez, Mississippi [13].

The image shown in Fig. 7 was produced as part of the
factory study. It displays observed friendship ties among
pairs of individuals who worked together in the same
workroom. It was drawn using nodes and two-headed
lines instead of edges, but it is very similar to the images
produced byMoreno and Jennings. In addition, as in Fig. 6
above, the impact of physical space was displayed; workers
were placed in the drawing in positions that reflected the
locations of their workstations.

In reporting their study of Newburyport, Warner and
Lunt used the kind of drawing of overlapping circles that

Social Network Visualization, Methods of, Figure 8
An idealized pattern of overlapping ‘cliques’

Hobson had used to construct Fig. 4. But here that image
was introduced, not to describe data, but to propose an
idea they had about social structure. The diagram in Fig. 8
represents the investigators’ idealized version of the ex-
pected structure of overlaps among subgroups in the pres-
ence of social class. The idea is that only subgroups that
are close to one another in class ranking are likely to have
overlapping memberships.

In their study of Natchez Davis, Gardner and Gard-
ner [13] employed the same diagrammatic form to dis-
play two mode data reflecting on the earlier Newburyport
hypothesis. Figure 9 shows subgroups of black males and
their overlaps. In that image themen are arranged in terms
of both social class and age. Both, it turned out, provided
important bases for grouping.

Finally, in that same report, Davis, Gardner and Gard-
ner also introduced an entirely different kind of social net-
work image. Like Hobson, they had collected two mode
data. Eighteen women were designated in the rows of their
datamatrix and fourteen social events were depicted in the
columns. That matrix is reproduced here as Fig. 10.

The data shown in Fig. 10 were all collected during
a single year. But, by examining the column headings, it
is clear that Davis and his colleagues did not arrange the
social events according to the dates upon which they took
place. Instead, they listed both the events and the women
who attended them in such a way that the arrangement
itself suggests that these women were organized into two
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Stratification, age and overlapping groups

groups. The two groups overlap, but for the most part
they are distinct. Most of the women in the top half of
the matrix attended the leftmost five events. And most of
the women in the bottom half attended the rightmost five
events. The middle four events apparently brought both
groups of women together.

This arrangement of women and events was self-con-
sciously produced by the authors. Davis, Gardner and
Gardner were convinced that these womenwere organized
into two groups and they presented their data matrix in
a way that would illustrate that conclusion. The interest-
ing thing is that these authors never commented explicitly

Social Network Visualization, Methods of, Figure 10
The Davis, Gardner and Gardner data on women’s attendance at social events

about how they had rearranged the columns and rows in
their matrix. They simply organized their display in a way
that would make the point.

From the outset, then, four kinds of images have
played important parts in the development of social net-
work analysis. These first network graphics included draw-
ings displaying (1) one mode undirected relations, (2) one
mode directed relations, (3) two mode relations and (4)
one or two mode data matrices. A few other kinds of net-
work images have been used since then, but the four orig-
inals – particularly those based on one mode undirected
and one mode directed relations – still dominate the field.
In the next four sections we will examine the four original
kinds of images and how their use has evolved in the social
network context.

Images Based on OneMode Undirected Relations

Mathematically speaking, the node and edge images in-
troduced by Moreno and Jennings in Fig. 5 are graphs.
A graph G D hN; Ei where N is a finite set of nodes and E
is a collection of pairs of nodes. In graph visualizations,
a pair of nodes in E is presented as a line connecting the
two nodes in question. Two nodes are called adjacent if
there is an edge directly connecting them to each other.
A graph embodies a binary (yes/no or on/off) relation that
is irreflexive (no node is adjacent to itself) and symmetric
(if a node a is adjacent to another, b, then b is adjacent
to a).

A path is a sequence of nodes and edges, beginning
with a node that has an edge connecting it to the next node
in the sequence. The length of a path between two nodes
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Links in the network of a homeless woman I

is the number of edges it contains. And the shortest path
connecting two nodes is called the geodesic.

Any two nodes in N are connected if there is a path
from one to the other. And a whole graphG is connected if
every pair of nodes in N is connected. If a path begins and
ends at the same node, that path is a cycle. Finally, a graph
is a tree if it is both connected and it contains no cycles.

The image in Fig. 11 is a graph. It is based on data
recorded by J. Clyde Mitchell [14] on the social ties among
the 19 individuals involved in the personal network of
a homeless woman in Britain. I used a program called Net-
Draw to place the nodes representing individuals in Fig. 11
in random positions. That calls attention to the impor-
tance of the locations of points in graphic displays. Given
the locations of the points in Fig. 11 it is very difficult for
the viewer to see anything interesting in the patterning of
this woman’s network.

Compare the image in Fig. 11 with that in Fig. 12. Fig-
ure 12 was also produced using NetDraw, but this time the
points were placed using a spring embedder [16]. A spring
embedder is a computer algorithm that, in effect, places
a spring of unit length between every pair of adjacent
nodes and a much longer spring between nodes that are
not adjacent. It starts with a random placement of nodes,
then the whole apparatus is set in motion and the various
springs push and pull until they reach an equilibrium.

The advantage of using a spring embedder is that it
does not require the investigator to make ad hoc judg-
ments in locating nodes in a graph. It uses a standard com-
puter algorithm to place the nodes automatically. Thus,
every user will get the same result. There are several dif-
ferent spring embedding algorithms. And they are all ex-
amples of amore general class of computer algorithms that

Social Network Visualization, Methods of, Figure 12
Links in the network of a homeless woman II

search for optimal locations for nodes in relatively few di-
mensions. This general class of search algorithms is called
multidimensional scaling [17].

An alternativemethod for placing nodes automatically
is grounded in algebra. It is called singular value decom-
position [18]. Singular value decomposition is not search
based. Instead, it uses matrix operations to produce a lin-
ear transformation of the data, and thus to position the
nodes in one, two or three or more dimensions. There is
no guarantee that it will always be effective, but often sin-
gular value decomposition provides very good placements
of the nodes in few enough dimensions that visualization
is possible [19]. A NetDraw image based on singular value
decomposition of Mitchell’s data is shown in Fig. 13.

The images in Figs. 12 and 13 both show that the whole
network is organized into three densely connected groups
that are only loosely linked to one another. That is inter-
esting, but it does not tell us anything about the bases for
the groupings. By adding a little information, and continu-
ing to use NetDraw, we can transform the graph of Fig. 12
into a node labeled graph, see Fig. 14.

Given the labels, we can identify the homeless woman,
the “respondent.” We can also see how her network is split
up. One division includes her original family, another her
friends along with her social worker, and the third con-
tains her estranged husband and his family, her in-laws.

Mitchell’s report, however, included evenmore details.
It included estimates of the strength of the tie linking each
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Links in the network of a homeless woman IV

of the pairs of individuals. He classified each tie as either
strong or weak. We can embody this additional informa-
tion in our NetDraw image by an adding another compo-
nent to our graph. Figure 15, then, was produced using the
spring embedder, it is node labeled, and, in addition, it is
an edge labeled graph.

In Fig. 15 strong ties are indicated by wide edges. By
examining their patterning, we learn that the individuals
within each family are linked together mostly by strong
ties, while the homeless woman’s friends have fewer strong
ties linking them together. This result is not surprising, but
it does provide additional insight about the structural po-

Social Network Visualization, Methods of, Figure 15
Links in the network of a homeless woman V

sition of the woman in question. Clearly, it would be easier
for either family to achieve consensus and provide support
than it would be for the respondent’s loosely connected
collection of friends [20].

It should be clear, then, that the placement of nodes
and the labeling of both nodes and edges are critical for the
ability of a graph to communicate important information.
Good images can provide investigators with new insights
about the structural properties of the social networks they
are studying. And they can, of course, help to communi-
cate the results of social network research to outsiders.

Images Based on OneMode Directed Relations

It was obvious from the outset that these simple graphs
would not permit many kinds of displays of interest to so-
cial network analysts. Even Moreno and Jennings saw the
need to display the direction of choice in their sociograms.
The direction of connections can be expressed using di-
rected graphs or digraphs.

A digraph D D hN;Aiwhere N is a finite collection of
nodes and A is a set of pairs shown as directed lines or ar-
rows. When an arrow is directed from node a to node b in
a digraph, then a is the tail of the arrow and b is the head;
a is the immediate predecessor of b and b is the immediate
successor of a. The outdegree of a node is the number of
arrows for which it is the tail and its indegree is its number
for which it is the head.

In any study that involves social links that are not sym-
metric, digraphs provide a natural representation. Con-
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Influences on some founders of social network analysis

sider Fig. 16 that was produced by a program called Pa-
jek [21]. In preparing a book on the development of social
network analysis, I interviewed a number of the founders.
Each was asked to name others who had influenced them
to think in network terms. The result is a data set that ob-
viously lacks symmetry.

My interest, however, was with clusters, or blocs, of
influentials and nominees. So I placed the nodes using
a spring embedder designed by Kamada and Kawai [22].
The resulting figure shows that there seem to be two fairly
well defined subgroups, one on the left and one on the
right. The two groups are relatively dense but they are only
loosely connected together. The people on the left are al-
most entirely sociologists and those on the right aremostly
from other fields. And from the patterning one can sus-
pect that there was some kind of split between these two
groups.

For some kinds of data the search for clusters or groups
is not appropriate. For example, when we are dealing with
data that should embody some sort of ordering, digraph
representations are particularly important. To illustrate
how digraphs can be used to display ordering, consider the
data collected by Forkman and Haskell [23]. They studied
several communities, each made up of six domestic hens.
In five of these communities the hens formed strict peck-
ing orders in which the top hen pecked all the others; the
second pecked all but the top, and so on. Figure 17 shows
a visone [24] image of the data from one of those five

Social Network Visualization, Methods of, Figure 17
Dominance among six hens

communities. There the nodes are arranged, top down, in
terms of their outdegrees and the pecking order is obvious.

Often data approach, but do not achieve, a strict order.
David Krackhardt [25], for example, collected data on who
sought advice from whom among 14 employees in the in-
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Social Network Visualization, Methods of, Figure 18
Visone image of advice seeking (from [26])

ternal auditing staff of a large company. Krackhardt’s data
could not be drawn with all the arrows pointing in one di-
rection. So, in Fig. 18 he arranged the individuals in such
a way that as many arrows as possible were pointing up.
The viewer, then, can immediately see there is an impor-
tant hierarchical element displayed by these data. From
the image, it appears that Nancy is at the top of the ad-
vice chain and Bob, Wynn, Carol, Harold and Susan are at
the bottom.

There is, however, an important limitation in this fig-
ure. Nancy seeks advice from Donna, Donna seeks advice
from Manuel and Manuel seeks advice from Nancy. Thus,
these three form a directed cycle of advice seeking. Given
such a circular arrangement, no possible hierarchy among
these three individuals can be established. Any order in
which they were arranged would be misleading. In addi-
tion, Stuart and Charles cannot be ordered because they
chose each other. The same is true for Kathy and Tanya.

The apparent ordering of nodes in Krackhardt’s im-
age was imposed by human judgment. There are computer
algorithms that can automatically arrange the nodes into
a hierarchical form [26]. They are, however, not as well
grounded or reliable as multidimensional scaling and sin-
gular value decomposition.

Images Based on TwoMode Relations

Any time we deal with a relation that can link more than
two social actors, we cannot use graphs or directed graphs.
Both graphs and directed graphs can deal only with links
between pairs. Two mode data, however, allow for rela-
tions that link three or more actors. So, whenever we have

two mode data, like that collected by Hobson [8] or Davis,
Gardner and Gardner [13] we need another way to con-
struct images.

There are several ways to construct images of two
mode data. I will consider three of them in the present
section, hypergraphs, bipartite graphs and lattices. Then,
in the next section, I will discuss the use of matrix repre-
sentations for both one mode and two mode data.

Hobson [8] collected two mode data on corporations
and their directors. He produced the image shown in Fig. 4
showing corporate interlocks as overlapping areas. Math-
ematically, images like Hobson’s are hypergraphs. A hy-
pergraph, F D hN;Hi, consists of a set of nodes N and
a collection of hyperedges,H.While an edge in an ordinary
graph connects two nodes, a hyperedge in a hypergraph
may link any arbitrary subset of the nodes in N. Pictori-
ally, hyperedges are represented as boundaries enclosing
sets of nodes.

The use of hypergraphs was demonstrated in a recent
report by Estrada and Rodríguez-Velázquez [27]. They
began with one mode data that showed the patterning
of predation among the members of eleven species in
a Malaysian rain forest. Their graph, showing who preys
on whom, is shown in Fig. 19.

Figure 19 shows which species preys on which other
species. But if the investigator is interested, as those who
study food webs often are, in defining ecological niches in
terms of co-predation, Fig. 19 makes the overall pattern
less than obvious. As an alternative we can build a hyper-
graph.

The matrix shown in Fig. 20 is based on the data in
Fig. 19. It was built by considering each of the species in
turn as prey. Then all of the species that share each given
prey are pooled together. Species 1, 6 and 9 have no prey

Social Network Visualization, Methods of, Figure 19
Who preys on whom in aMalaysian Rain Forest
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Social Network Visualization, Methods of, Figure 20
Twomodematrix of co-predation

Social Network Visualization, Methods of, Figure 21
Hypergraph of co-predation

in the set. And species 4, 1 and 9 are the targets of co-pre-
dation. So the new matrix is two mode. It has the three
targets of co-predation as columns and the eight predators
as rows.

That matrix is captured visually by the hypergraph in
Fig. 19. It immediately reveals that there are three niches.
The one labeled E1 includes all the species who preyed on
species 4, E2 those who preyed on species 1 and E3 those
who preyed on 9. Thus, each edge in Fig. 21 encloses a col-
lection of species that compete directly for at least one
prey.

There are, however, other ways to picture two mode
data. In a more recent study of corporate interlocks, Joel
Levine [29] reported data on the board memberships of
seven major American corporations. Those corporations

turned out to have ten directors who appeared on two
or more of their boards. Levine presented his interlock
data using a bipartite graph. A bipartite graph, B D hN; Ei
where N is partitioned into two disjoint subsets, N1 and
N2, and no edge in E has both end points in the same
subset. He used singular valued decomposition to place
the nodes representing both corporations and boardmem-
bers and produced a bipartite image similar to the one dis-
played in Fig. 22. I prepared that figure using NetDraw.
There, the corporations are shown as red circles and the
board members are blue squares. Thus, both the colors
and the shapes of the nodes stress the bipartite nature of
the graph.

There is still another form of graphic display, one
that reveals even more structural information about a two
mode data set. It is based on an algebraic procedure
called Galois lattice analysis or formal concept analy-
sis [30,31,32,33]. A Galois or formal concept lattice is de-
fined on an object by property, matrix. LetO be a set of ob-
jects and A be a set of attributes. The binary matrix O � A
indicates which objects possess which attributes.

We can define a pair hOi ;Ai i such that Oi is a subset
ofO andAi is a subset ofA and every object inOi has every
attribute in Ai. Moreover, both O and Amust be maximal.
Thus, for every attribute in A that is not in Ai, there is an
object inOi that does not have that attribute. And for every
object in O that is not in Oi, there is an attribute in Ai that
the object lacks.

These pairs are dual and they can be partially ordered
by inclusion. Given two pairs hOi ;Ai i and hOj;Ajiwe say
that hOi ;Ai i is less than hOj;AjiwhenOi is a subset ofOj
or, equivalently, when Aj is a subset of Ai. Since all these
pairs have unique least upper bounds and greatest lower
bounds they form a dual (Galois) lattice.

I will illustrate by considering again the woman by
event data collected by Davis, Gardner and Gardner [13].
Let the women (1 through 18) be the objects and the events
(A through N) be the attributes. The data, arranged into
a Galois lattice by a program called GLAD, are shown in
Figure into a lattice in Fig. 23.

The lattice displays the same three classes of events
that define the same two groups of women that we saw in
Fig. 10. But, in addition to the classes of events and groups
of women, we can now see the containment structures of
both events and women. To begin with, by following lines
up from the bottom we can see which women attended
which events. When we get to the top we hit the set of all
events and, at the same time, because no woman attended
all 14 events, it is also the null set of women.

The uppermost events (E–L) involved the largest sets
of women. Other events are contained in the lower inter-
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Social Network Visualization, Methods of, Figure 22
A NetDraw Image of Levine’s interlock data as a bipartite

Social Network Visualization, Methods of, Figure 23
The Davis, Gardner and Gardner data as a Galois lattice

sections of these events. Event C, for example, is contained
in E; everyone who attended C was present at E. And, at
the next lower level, B and D are both contained in C. The
events, then, can be seen as varying in their “openness”.

At the same time, the figure shows the upward con-
tainment structure of the women in terms of their patterns
of attendance. Because no event attracted all 18 women,
the lowest point represents the set of all women as well as
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the null set of events. Then, the lowest set of women (1, 2,
3, 4, 13, 14 and 15) are the “core” attendees, so to speak.
The next level contains woman 9 who never attended un-
less woman 3 was also present, and woman 5 whose atten-
dance depended on that of women 4 and 3.Women 6, 7, 8,
10, 11, 12, 17 and 18 are also at this second level. In some
sense, these are all secondary or peripheral participants in
these events. And, finally, woman 16 turns out to be a third
level participant; she was extremely peripheral. Woman 16
attended events only when secondary attendees 8–12 and
core attendees 1, 3 and 13 were all present. All in all, then,
the image of the Galois lattice reveals a great deal about the
internal structure of attendance.

In this section I have shown three ways of visualizing
two mode data. All three of them, however, share one im-
portant limitation. That limitation stems from the fact that
all three of them can only be used for very small data sets.
As the number of cases grows, they all produce images that
become increasingly difficult to read.

Images Based on One or TwoMode DataMatrices

WhenDavis, Davis andGardner [13] first usedmatrix per-
mutation, they did so without calling attention to the pro-
cess. But since that first use a number of contributors have
suggested procedures explicitly designed to rearrange the
rows and columns of matrices. As time has passed, the
overall tendency has been to come up with more effective
procedures. And, with the introduction of computers, it
has become possible to manipulate ever larger matrices.
Presently, there is no end in sight.

Matrix permutations, moreover can be used with ei-
ther one mode or two mode data. Five years after Davis,
Gardner and Gardner introduced matrix permutation in
their two mode data set, Elaine Forsyth and Leo Katz [34]
explicitly proposed permuting matrices as a way to un-
cover and display social groups in a one mode data set.
They illustrated using data from one of Moreno’s [10] so-
ciometric studies. The young women in a residence hall
had each been asked to name others in their hall for whom
they had positive feelings and those for whom their feel-
ings were negative. Positive choices were recorded using
plus signs and negative choices were recorded as minus
signs.

Forsyth and Katz adopted a brute-force procedure that
involved rearranging rows and columns and redrawing the
image again and again until as many of the plus signs fell
as close to the principle diagonal as possible. At that point,
cohesive groups become visible as clusters of plus signs
around the diagonal. Their result is shown in Fig. 24.

Social Network Visualization, Methods of, Figure 24
The Forsyth and Katz image of sociometric choices

Obviously, the Forsyth and Katz procedure was ex-
tremely cumbersome. But Beum and Brundage [35] soon
came up with a systematic iterative procedure for find-
ing groups by rearranging the rows and columns of a one
mode matrix. And, by the late 1950s, when computers
emerged on the scene, Coleman and MacRae [36] devel-
oped a series of Univac programs at the Operations Anal-
ysis Laboratory at the University of Chicago that were de-
signed to uncover the groups in large networks.

An entirely different kind matrix permutation proce-
dure was proposed by Harrison White and his students.
They introduced the idea of blockmodeling [37]. In so do-
ing, they provided a theoretical basis for reordering net-
work data matrices, and they developed a number of algo-
rithms for doing so.

The aim of this new thrust was to reorder the matrix
in such a way that it could be partitioned to reveal two
or more collections of social actors who were not linked
by some social relation of interest. So, instead of arraying
actors along the diagonal of a matrix, White et al. sought
permutations that would define zero blocks – sets of actors
between which there were no social links. They used their
approach to examine a great many network data sets. One
example is shown in Fig. 25.

The data in Fig. 25 were collected by Sampson [38] in
his study of a monastery. Sampson asked each of a collec-
tion of 18 novices to report their relationships with each of
the others. Figure 25 shows an 18 by 18 matrix of their re-
sponses to a question asking the novices about which oth-
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Social Network Visualization, Methods of, Figure 25
Sampson’s data on who was a negative influence on whom

ers had negative influences on them. A response of 3 in-
dicated a first choice. A 2 was a second choice and a 1 was
a third choice. White et al. reasoned that only first and sec-
ond choices represented strong responses, so they ignored
the third choices and treated the entries of 1 as if they did
not exist.

One of the several procedures procedure White et al.
introduced was called CONCOR. CONCOR is a recursive
procedure that begins by calculating correlations between
the rows (or columns) of a network data matrix. Then
correlations are calculated between the rows of the result-
ing correlation matrix. That procedure continues until it
produces a matrix of correlations that uniformly displays
values of +1 and �1. Those positive and negative values
are used to partition the individuals into two subsets. The
CONCOR procedure can be repeated using the data con-
tained within each of the partitions. Thus, the original ma-
trix can thus be refined to any desired degree.

White and his students used CONCOR on the data
shown in Fig. 25 in an attempt to uncover blocks that con-
tained only 0s. They could then use these zero blocks to
reduce the complexity of the data matrix. That matrix pro-
duced three zero blocks. They are shown in Fig. 26.

In the reduced model in Fig. 27 each cell represents
one of the blocks in Fig. 26. Thus, the 18 by 18 matrix is
reduced to a 3 by 3 array. The reduction is consistent with
Sampson’s original ethnographic description of subgroups
among the novices. Moreover, its pattern of zero blocks in
the principle diagonal indicates that no block member saw
any fellow block member as having a negative influence.
But the members of each block saw at least some of the
members of both of the other blocks as negative influences.
This makes sense in the light of the ongoing conflict that
Sampson described in his report.

Since that time, displays based onmatrix permutations
have grown in size, complexity and sophistication. One

Social Network Visualization, Methods of, Figure 26
White, Boorman and Breiger’s partitioning of the negative influ-
ence data matrix from Sampson

Social Network Visualization, Methods of, Figure 27
The CONCOR reduction of the Sampson matrix

particularly striking example was produced by Richards
and Seary [39]. Their data were drawn from a study of
participants in a needle exchange program in Baltimore,
Maryland [40]. Richards and Seary examined data on 4259
individuals who picked up and returned needles at each of
four exchange sites over a 30 month period. Each cell in
the matrix is a record of the number of needles picked up
by the individual in that row and returned by the individ-
ual in that column. About a third of all needles fall in the
principle diagonal of the matrix.

Richards and Seary used the data from the largest
weak component in the data set. That component in-
volved 100 000 needle exchanges among 36 000 individu-
als. Richards and Seary used their program MultiNet [41]
scaled the data using a form of singular value decomposi-
tion called correspondence analysis [18]. They used the co-
ordinates provided by the first Eigenvector to reorder the
rows and columns of the matrix. They then colored the
entries in terms of frequencies. The color scale is logarith-
mic: gray is 1 needle, blue 2–3, green 4–7, red 8–15, ma-
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Social Network Visualization, Methods of, Figure 28
The largest component in the Baltimore needle exchange data

Social Network Visualization, Methods of, Figure 29
VRML image of friendship among teens in a Dublin suburb

genta 16–31, yellow 32 and above. Their image is shown in
Fig. 28.

Figure 28 dramatically illustrates the utility of images
based on matrix permutation. It shows that there was not
a single community of needle users in Baltimore. Instead,
there were two distinct communities of individuals who
regularly obtain, return and exchange needleswith one an-
other. These two relatively large communities were cen-
tered around two of the four needle exchange sites.

Future Directions

Overall, the long range the trend in visualizing social net-
works has been to rely on computers to do more and
more of the job. First, computers used a version of sin-

gular value decomposition to locate nodes in two dimen-
sional images [42]. Then, soon thereafter, Coleman and
MacRae [35] programmed a computer both to permute
rows and columns of a matrix and to print out an image of
the result. And, in the early 1970s, Alba [43] wrote a pro-
gram that performed calculations to place nodes and then
went on to draw node and edge images of the results [44].

Since the 1970s, then, network analysts have increas-
ingly used computers both for calculations and to draw
images. And increasingly, multidimensional scaling and
singular value decomposition have been used to determine
locations for nodes. Moreover, when two dimensions are
not enough to display network structure, three dimen-
sional images are being produced.

Whenmicrocomputers became available it quickly be-
came possible to produce images that gave the appear-
ance of being three dimensional. Moreover, with the ad-
vent of color screens, color images began to be produced.
Figure 29 represents data collected by Kirke [45] on social
links among teenagers in a suburb of Dublin. Nodes were
first located in three dimensions using multidimensional
scaling. And then the virtual reality modeling language
(VRML) was used to produce the appearance of three di-
mensions. Figure 27 was produced as a cover design for
a book [46] and the colors were used simply make the im-
age more attractive.

Colors can, however, be used to enhance the ability
of an image to communicate important information. In
Fig. 30 Höpner and Krempel [47] used a spring embed-
der and Krempel’s own programs to arrange the nodes in
two dimensions. The nodes represent the 100 largest Ger-
man corporations in the year 2000. They used color to la-
bel both nodes and directed lines. In their image each com-
pany is represented as a node and an arrow pointing from
one node to another means that the first node holds shares
in the second. The size of a node indicates the number
of connections to other nodes it has. Financial companies
are shown as yellow nodes and industrial companies are
red. Links between financial companies are yellow, those
between industrial companies are red and links between
financial and industrial companies are orange. Bu using
color, then, his directed graph reveals a great deal of in-
formation about the organization of German industry and
finance.

The image in Fig. 31 was made using a program
called MAGE [48]. MAGE was written by Richardson and
Richardson [49]. It is designed as a display on computer
screens, and it allows the viewer to move into the picture
as well as to spin and rotate it. It is useful, then, for ex-
ploring the patterning of structural data in three apparent
dimensions.
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Social Network Visualization, Methods of, Figure 30
Links among German corporations in 2000

In Fig. 31 students in a university professional school
program reported who their friends in their class were.
Nodes were placed using a multidimensional scaling pro-
gram and then they were colored according to their pro-
gram in the school. It turned out that most of their friend-
ship choices linked those that shared a program.

Richards and Seary’s [50] program, Multinet, pro-
duces a wide range of graphic images. Included are im-
ages that actually can be viewed in three dimensions using
anaglyphic glasses in which one lens is red and one is blue.
Obviously, I cannot illustrate their program here, but any-
one who wants to see real 3D images should exploreMulti-
net.

The most recent development in visualizing social net-
works involves the production of animated graphics. As
more andmore process data are collected and asmore pro-
cessmodels are constructed, animated images are a natural
development. A group at Stanford University has written
a Java program, SoNIA [51], that makes it quite simple to
produce animated node and edge and node and directed
line images [52,53]. These images allow users to explore
the changing structural forms generated by process data.

Overall then, in the period between Moreno’s hand
drawn ad hoc images and the latest animations of dynamic
network processes, there has been a dramatic growth in
our ability to visualize social network structure. The major
contribution has come from computers. Today we can use
a wide variety of readily available computer programs to

Social Network Visualization, Methods of, Figure 31
MAGE image of friendship among classmates

both design images and to produce screen images and/or
printed output.

But, as the job of producing images becomes easier, we
must be careful not to lose our sense of why we are pro-
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ducing then in the first place. From the very beginning,
the important point has always been that the visual images
of social networks are not produced simply to be decora-
tive. In every case, the early images were drawn in order
to dramatize some feature of social structure. Moreno pro-
duced Fig. 5 to illustrate the importance of considering the
number of connections in evaluating the structural posi-
tion of an individual. In Fig. 6 the number of negative ties
received by one of the running backs showed, as Moreno
(p. 213 in [10]) put it, “It is easy to see that when 5/RB is
running with the ball he is not apt to get the maximum of
cooperation in interference and blocking.”

Figure 7 was a pictorial statement byWarner and Lunt
that when cohesive subgroups overlap, they should not be
expected to bridge wide differences in social class. Fig-
ure 8, from Davis, Gardner and Gardner, demonstrated
that the Warner–Lunt hypothesis was supported by data
with respect to both social class and age. And, finally,
Fig. 9 illustrated the presence of cohesive groups and of
the variation of different individuals in their involvement
in those groups. In every case each of these early authors
had a point to make, and in every case the image helped
to make that point. That is the key to the effective use of
visual materials in social network analysis.

In future we can expect to see continued development
of computer programs designed to aid in visualizing social
networks.We can look forward to continued refinement of
algorithms for displaying group structure that are based on
multidimensional scaling, particularly spring embedding.
We can anticipate better algorithms for displaying hierar-
chies and approximate hierarchies. We can expect to have
more powerful programs for animation. And, at the same
time, we can expect to be able to produce higher quality
and more refined visual displays of all sorts.
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Glossary

Many of these terms are commonly understood by
complexity theorists; these definitions, however, de-
scribe their meaning within the context of social or-
ganizations.

Adaptive behaviors Perturbations (creative ideas, pres-
sures, etc.) in a system that foster some observable level
of phase transition. Change leading to systemic reac-
tion.

Adaptive tension Pressures external or internal to the
organization that perturb an organization thus pres-
suring it toward phase transitions and structural or
ideational elaboration.

Administrative leadership behaviors related to such
things as strategic planning, policy making, and re-
source acquisition and distribution.

Agent An entity that is the smallest unit of interest in
a complex dynamic. An agent could be a person, idea,
task, knowledge, etc.

Aggregation Coevolutionary emergence of diverse ideas,
agents, etc.

Aggregation mechanisms
Macro-level complexity mechanisms. Refers to the
dynamic interactions of perturbations (see initiating
mechanisms), amplifications (expansion and elabora-
tion of a perturbed state), and phase transition (non-
linear, form-shift in some part of an organization).

Coevolution A process in which “reciprocal selective
pressures operate to make the evolution of . . . (one
agent in an interactive process) partially dependent on
the evolution of (other agents)” [67]. Coevolution oc-
curs when heterogeneous agents in a niche are inter-
dependent such that they dynamically adjust to each
others changes.

Commodity-based economy Refers to a manufacturing
economy in which the major assets are physical com-
modities.

Complexity organizational knowledge Systemic knowl-
edge that imbues organization with capacity for adap-
tive and creative responses; attributable to the strength
and viability of the system’s complex structures and to
the viability of the relationship between the organiza-
tion’s complex structures and its bureaucratic struc-
tures.

Complexity mechanism Social mechanisms that under-
lie complexity dynamics.

Complexity theory In organizational sciences, the study
of emergent dynamics in neural-like networks of adap-
tive, vision-oriented agents.

Conflicting constraints Conflict that emerges when the
preferences of one agent challenges the preferences of
another. In complex networks, conflicting constraints
generate pressure to elaborate.

Dissipative structures Structures that emerge when far
from equilibrium systems release excess energy in
a phase transition.

Emergence The appearance of new structures or ideas
from the actions of complex interactions.

Enabling behaviors Activities that foster conditions
(e. g., interdependency, enabling rules, adaptive ten-
sion) in which complex dynamics can emerge.

Enabling rules Rules that govern interactions among
adaptive agents in complex systems. Contrast with bu-
reaucratic rules, which delimit the responsibilities of
agents in a closed system bureaucracy.

Entanglement A dynamic relationship between the for-
mal administrative forces and informal complexly
adaptive, emergent forces of an organizational sys-
tems.

Equilibrium A stable, predictable relationship among
agents and structures of a relationship. Related to ther-
modynamic concept of a low energy state.

Extreme event Instances of dramatic change that occur
infrequently in social organizations; the US govern-
ment’s experience of the Katrina hurricane in NewOr-
leans illustrates. Extreme events typically require rapid
action and can be minimally responsive to top-down
control.

Far from equilibrium Typically defined as a high energy
state; defined here for organizational studies as an in-
tensely complex, dynamic state driven by excess levels
of pressure and perturbations.

Heterogeneity A diversity of skills, worldviews, prefer-
ences, beliefs, goals, (etc.) among interactive agents in
a complex system.

Initiating mechanisms Micro-level complexity mecha-
nisms. They include coevolutionary interaction and
perturbations (an unexpected change in an interaction
relationship; attributable to complex, interactive dy-
namic).

Interdependency Network conditions in which the ac-
tions of one agent are influenced by the actions of an-
other.

Knowledge economy Refers to a production economy in
which the major assets are the knowledge possessed
by individuals and networks of individuals (organiza-
tional knowledge).
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Meso theory Variously defined as theory that bridges
macro and micro level theory; different levels of hier-
archy; or different levels of analysis (individual, dyadic,
group).

Multi-agent based modeling Agent based modeling pro-
cedure that analyzes different types of networks si-
multaneously (e. g., agent networks, task networks,
etc.)

Organizational level From Jaques [40], the level of bu-
reaucracy that lies between the upper echelon levels
and the work production level; includes middle man-
agement.

Perturbations Events that disturb normal organizational
interactions and generate pressures that can lead to
phase transitions.

Phase transition Sudden, nonlinear form shifts at-
tributable to the dissipation of accumulated pressure
in complex systems. Phase transitions can occur at
multiple levels of intensity.

Postmodernism In general, a rejection of scientific mod-
ernism. For organizational science, it represents a re-
alization that organizational behaviors cannot be
adequately expressed as mathematical relationships
among variables. Complexity theory adds that organi-
zation is an ultimately unpredictable dynamic whose
causal structure is based on interactions among com-
plexity mechanisms.

Production level From Jaques [40], the level of bureau-
cracy responsible for line production.

Requisite complexity McKelvey and Boisot’s [65] modi-
fication of Ashby’s requisite variety; they maintain that
viable organizations are at least as complex as their
competition.

Requisite variety Ashby’s [5] dictum that viable organi-
zations have at least the same degree of flexibility as
their competition.

Spaces between A proposal that creative ideas emerge
from interactive dynamics. Creative emergence is gen-
erated when agents work to resolve tension; such ten-
sion is product of conflicting constraints, heteroge-
neous preferences, ideas, and knowledge, etc.

Social mechanism A process attributable to dynamic in-
teractions among multiple people, variables, ideas,
physical limitations, etc. Mechanisms describe “a set
of interacting parts – an assembly of elements produc-
ing an effect not inherent in any one of them” p. 336
in [27], p. 74 in [37].

Strategic level From Jaques [40], the upper echelon level
of bureaucracy; responsible for organizational strategy,
policy making, resource acquisition and allocation,
etc.

Swarm behavior Study of the dynamics of swarms in bi-
ology and in organizations. Scientists are finding that
amazingly complex, “intelligent” behavior can emerge
from complex behaviors that are structured by a few,
simple enabling rules. Useful in organizations for im-
proving such things as distribution efficiency or flexi-
ble response to environmental conditions.

System dynamics Network simulations in which rela-
tionships among agents are defined mathematically.

Top-down administration Administrative practices in
which decisions are made by superiors to be carried
out by subordinates.

Vision A teleological view of the future. Vision can be
highly specific, or determinate, as when an organiza-
tion projects future markets (such visions are more
properly, goals; see Sharp Corp.’s strategy statement in
this paper for an example). Vision statements appro-
priate for complex systems are indeterminate in that
they do not preclude the future; for example, “This
company will strive to enhance its competitive advan-
tage by optimizing its flexibility.”

Definition of the Subject

Complexity theory for organizations examines the in-
fluence of complex dynamics on (among many things)
organizational structure, leadership, power and control,
influence, and strategy. It is applicable not only to un-
derstanding but of practice in any organizational type
whose primary commodity is knowledge and application
of knowledge. The core outcomes of complex dynamics
are creativity, adaptability, and learning. Complexity the-
ory is particularly germane in what has come to be called,
the knowledge economy.

This paper defines basic premises underlying complex
dynamics in organizations, and argues in particular that
organizational complexity is best understood as the inter-
actions among complexity mechanisms (causal process at-
tributable to dynamic interactions amongmultiple people,
variables, ideas, etc.) rather than as the outcome of de-
fined variables. We explore the relationship between bu-
reaucracy and complexity, and define three levels of be-
havior in complex organizations: administrative, enabling,
and adaptive. We apply these ideas along with complex
premises underlying complexity to strategic leadership.
The paper describes how complexity produces its core out-
comes – creativity, adaptability, and learning – and ar-
gues that these outcomes are particularly pertinent to to-
day’s economy. It concludes with a discussion of unique
research methodologies that can be used to study a pro-
cess based on mechanisms rather than on variables.
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Introduction

The science of complexity offers interesting solutions to
some difficult challenges in organizations. These chal-
lenges affect nearly all economic sectors of society, from
electronics to education, computer programming to au-
tomotives, banking, government, and the armed forces.
They include hyper-competitive environments [38], glob-
alization, unequal global distribution of wealth and pro-
duction costs, rapid technological and social change,
highly complex operations (e. g., the complexity of so-
phisticated software programming), and the changing na-
ture of the workforce (less loyal, comfortable with elec-
tronic communication, demanding of flexible work ar-
rangements). To address these challenges, practitioners
and scholars recognize the need for radically new lead-
ership paradigms [81], revised perspectives of organiza-
tional strategy [81], flexible structures [83], rapid adapt-
ability [16], and decentralized problem-solving struc-
tures [25]. Complexity science is applicable to these chal-
lenges because, among other things, it focuses on flexi-
ble, interactive dynamics rather than top-down control,
it offers unique descriptions of change in dynamic sys-
tem, it reveals important clues about creativity, adaptabil-
ity, and learning in organizations, and it shifts attention
from central tendency variables to causality based on dy-
namic mechanisms [50,81].

Traditional thought in organization science was ori-
ented toward efficient production and top-down coor-
dination. It assumed that organizational behavior was
intimately dependent upon structure provided by posi-
tional leaders, rational plans and goals, centralized coor-
dination, organizational evolution, and vision [35]. It has
explored the nature and impact of power [41], institu-
tional forces [28], and charisma [23]. Traditional thought
has, like complexity theory, described change but has as-
sumed that organizational change and innovation must
be planned, that effective action must be coordinated, and
that organization must be structured in the board room.

By the 1990s, this “top-down” notion began losing
credibility among organizational scholars and practition-
ers (e. g., [35]). The major culprit in this demise was the
knowledge economy – the globalization, rapid change, and
hyper-competitive environments described above. Top-
down perspectives of organization had been oriented to-
ward more stable, commodity based environments [9],
and the emerging knowledge economy is oriented toward
creativity, adaptability, and learning.

Complexity theorists in the organizational sciences
seek relevant strategies for dealing with the knowledge
economy. Complexity theory is useful for this because it

does not merely improve traditional perspectives of doing
organization but rather addresses different sets of behav-
iors than are typically addressed by organizational theo-
rists. In particular, it focuses on informal interactive pro-
cesses within an organization, on processes that emerge
from informally interacting people and groups, and on
productive relationships between informal and formal ac-
tivities within an organization. It asks such questions as,
“How can organizational decision making and interactive
patterns be restructured and reorganized to increase flexi-
bility” [49]? “How can leadership be re-conceptualized in
a way that is effective for complex organizations” [70]? Or,
“How do we re-focus organizational strategy for a knowl-
edge economy” [58]?

In this paper, we look first at basic premises under-
lying the application of complexity theory to organiza-
tions, then look at how complexity can inform under-
standing of bureaucracy and strategic leadership. We ex-
amine the organizational outcomes of complex dynamics
(hence the rational for applying this science), and con-
clude with a discussion of research methodologies that are
useful for studying complex organizational behaviors.

Basic Premises

Studies have found that, like biological [30], economic [4],
and physical [45] systems, emergent dynamics are readily
observed among interacting people, or agents [20,68,69].
Interactive dynamics and emergence are common denom-
inators in complexity studies, and while there are disci-
pline-specific variations (organizational agents, for exam-
ple, make learned, adaptive choices while weather systems
react primarily to the interactions of physical properties),
all are shaped by these defining dynamics. Agents interact
and the interaction changes them (emergence).

Complexity organization researchers are interested in
understanding how these dynamics operate in human sys-
tems. Lichtenstein and Plowman [51] have found, for ex-
ample, that certain interactions among individuals and
groups lead to perturbations, or pressure to elaborate.
Consistent with Kauffman [43], these tensions pressure
the system to adapt and to change. Perturbed, interac-
tive systems also tend toward self-organization [57,62].
This phenomenon was first systematically observed in the
1940s and 1950s as informal groups [39] and was ex-
panded by complexity theorists to include any situation
in which ideas or people spontaneously, and without ex-
ternal motivation, act in some degree of synchrony with
one another. Chiles et al. [20] identified dissipative struc-
tures – fluctuation, positive feedback, stabilization and re-
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combination – in the emergence of the music industry at
Branson, Missouri.

Researchers are also interested in understanding the
conditions that enable emergent, self-organizing behav-
ior in social systems [82]. Interaction, of course, is sine
qua non. Schreiber, Marion, Uhl-Bien, and Carley [74],
drawing fromKauffman [43], found that interactive agents
must possess a requisite level of interdependency to enable
learning outcomes (too much or too little will suppress
complex dynamics; [43]). This interdependency generates
conflicting constraints, which are important sources of per-
turbations in a complex system. McKelvey [64] adds that
such pressure is also generated by external sources such
as leadership behavior or economic pressures; he refers to
this as adaptive tension. Uhl-Bien et al. [82] adopted this
term to refer to both internal and external pressures.

Bonabeau and Meyer [10] have developed fascinating
insights into the nature of swarm behavior in human or-
ganizations, and have used it to solve efficiency problems
involving such things as package delivery and local surges
in phone traffic [10]. Swarms are a function of a set of
simple, enabling rules, such as “fill orders [in a distribu-
tion warehouse] until the next person in line takes over”,
or “drop ‘digital’ pheromone trails for subsequent mes-
sages to track” (in computerized instructions for phone
systems).

Complex behaviors in social systems are enabled by
heterogeneity of skills, preferences, outlooks, etc. Tradi-
tionally, organizational theorists, particularly those who
study leadership, have sought to align employees to cen-
tralized goals [56]; complexity theory suggests that or-
ganizations whose employees pursue a diversity of goals
(within the context of an interactive, interdependent net-
work) will have a diversity of ideas to draw from as they
seek creativity and adaptable changes.

Finally, Schreiber, Marion, Uhl-Bien, and Carley [74]
found in a multi-agent based simulation that moderate
levels of vision (or general organizational focus) are con-
ducive to complex behaviors. High centralization of vi-
sion (in combination with high interdependency among
agents) was counter-productive for complexity outcomes
in their simulation, as was low levels of vision (low vision
was more problematic to outcomes than was high vision).

Emergence and Phase Transitions

Emergence refers to the generation of new structures or
ideas due to the actions of complex interactions. This phe-
nomenon is important because it allows the system to
rapidly produce adaptive, creative responses to environ-
mental conditions. It occurs in social structures when het-

erogeneous agents or ideas act in relative synchrony with
one another. The emergence of riot conditions out of the
behaviors of just a few people illustrates (the emergence
of a riot also illustrates that emergence is not necessar-
ily a functional response to environmental contingencies;
the notion of counter-productive emergence has been dis-
cussed by Uhl-Bien, Marion and McKelvey [82]).

One form of emergence involves the accumulation of
different ideas or agents. Anderson [1] and Marion [55],
for example, described the emergence of technology that
led to the invention, in 1975, of the microcomputer. It be-
gan with disparate advances – transistors, printed boards,
LEDs, etc. Engineers began using these isolated compo-
nents together, as they did in the transistor radio popular
in the 1960s. Accumulation took a big leap with the intro-
duction of the handheld calculator in the late 1960s, which
added such things as processors and information storage
capacity. The microcomputer was the ultimate “accumu-
lation” or emergence event.

Importantly, the components of such emergence pro-
cesses accumulate because they “coevolve.” Coevolution is
defined by Pianka, p. 329 in [67], as a process in which
“reciprocal selective pressures operate to make the evolu-
tion of either . . . [agent in the interactive process] partially
dependent on the evolution of the other” see also McK-
elvey [64]. Coevolution occurs when heterogeneous agents
in a niche are interdependent such that they dynamically
adjust to each other’s changes. It raises the important ob-
servation that an organizational species’ fitness – the ca-
pacity to survive and thrive – is influenced by supporting
roles from other organizational species [43].

A second form of emergence is called phase transi-
tion. Phase transitions are sudden, nonlinear form-shifts
(changes in structure, knowledge, worldview, etc.). The
sudden demise, in 1989, of the USSR illustrates this
phenomenon. Phase transitions like that experienced by
the USSR result from a build up of tension or pres-
sure [32,64,71]. Haken [32], for example, illustrated phase
transition in terms of slowly heated oil; eventually the heat
(tension) reaches a point at which the oil precipitously
transitions to a new state, observed as a gentle boil.

Phase transitions, occur at multiple levels of intensity,
and a number of researchers have observed that, in com-
plex systems, intensity of transitions plotted against their
frequency describes a power law relationship (1/ f x ); [2,
7,75]. Power law curves are steeply descending slopes that
quickly bottom out into a more gently descending slope;
when intensity and frequency are converted to log equiv-
alents, the slope becomes a straight line descending left to
right like a negative regression line in statistics. Power law
curves describe situations in which high intensity events
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occur infrequently while low intensity events occur of-
ten.

This has opened a line of exploration into what are
called, extreme events, or analyzes of phenomena that are
highly intense but of low frequency (the 2008 Organiza-
tion ScienceWinter Conference was devoted to this topic).
Stephenson and Bonabeau [76] concluded, for example,
that bottom-up, or adaptive, leadership strategies may be
more effective in extreme events such as Katrina or the
Twin Tower attacks of 9/11 than are top-down leadership
strategies.

Far from Equilibrium

The accrued tension described by Haken generates what
Prigigine [71] calls, a far from equilibrium (FFE) state. At
FFE; the system will often act spontaneously to release (or
dissipate) built up tension by moving to a new structural
state [64].

In organizational studies, the far from equilibrium no-
tion is unique, for organizations have traditionally been
described in terms of equilibrium structures ([12]; see
Maruyama [60], for a notable exception). The idea that far
from equilibrium states exist suggests an equilibrium con-
tinuum for organizations that stretches from an equilib-
rium state to far from equilibrium conditions. Hazy and
Marion [34] argue, however, that while this may be true
for some physical systems, it is not true of human systems.
Human systems always function in a state of change, al-
beit with varying degrees of complexity, and it makes no
sense to juxtapose such systems against an equilibrium end
point. They conclude, then, that far from equilibrium in
a social system occurs when the dynamical conditions and
resulting complexity of a social system are increased be-
yond a certain point, not when it moves away from equi-
librium.

Even so, the assumption that organization exists in
a state of equilibrium is common in the traditional liter-
ature on organizations. Although it has been clarified by
earlier organizational theorists to be a moving equilibrium
(called homeostasis) that adjusts to environmental con-
ditions (the influential classics of this argument are [12];
and [84]), the basic premises in organizational studies have
implicitly or explicitly equated organization with adapted
variations of the equilibrium view from thermodynam-
ics. Complexity theory contradicts this notion, arguing in-
stead that adaptive systems can only survive and thrive in
a state variously called far from equilibrium [64], complex-
ity, edge of chaos [42], or Type IV order [47]. If Hazy and
Marion [34] are correct, perhaps the better terms for this
are those that do not imply an equilibrium state at all.

Complexity Mechanisms

Complexity is unique in organizational studies because
it is oriented around social processes rather than around
variables. A variable, or measure of central tendency, is
static and it reveals little about the evolutionary social
processes in which the variable is embedded. Complexity
seeks to understand and to describe the behaviors of those
social processes, or what Davis andMarquis [27] andHed-
ström and Swedberg [36] and others have labeled, social
mechanisms.

Mechanisms are defined as commonly observed pat-
terns of behavior [29]; they describe “a set of interact-
ing parts – an assembly of elements producing an effect
not inherent in any one of them” p. 336 in [27]; see also
p. 74 in [37]. Mechanisms are processes, or dynamic inter-
actions among agents, ideas, and structures. Elster’s [29]
definition proposes that certain mechanisms can be “com-
monly” observed across multiple phenomena (that is, they
are not necessarily unique to given conditions). They illus-
trate by arguing that the logistic curve (emergence begins
slowly, picks up speed, then levels off) is a mechanism and
that it can be observed in numerous situations (Mozart’s
lifetime productivity, emergence of product popularity,
etc.)

Uhl-Bien and Marion [81] identify two broad, inter-
dependent categories of universal mechanisms that they
call, complexity mechanisms: These are initiating mech-
anisms, or interactive processes that generate perturba-
tions, or disturbances, in a system, and aggregation mech-
anisms, which include accumulation mechanisms (accru-
ing of ideas or structures) and phase transitions (described
earlier as nonlinear changes that generate new order). Ini-
tiating mechanisms are more micro level while aggrega-
tion mechanisms are more macro level.

Practitioners who grasp this notion of complexity
mechanisms do not perceive organization in terms of aver-
age motivation or efficiency, but rather perceive organiza-
tion as sets of interacting, evolving processes. They do not
ask, for example, whether satisfaction will increase if lead-
ers engage in certain specific acts, or whether high leader-
ship scores on a transformational scale will enhance pro-
ductivity. Rather they want to know how interactive, in-
terdependent mechanisms influence the capacity of social
networks within organizations to generate unpredictable
but creative outcomes. These contrasting sets of illustra-
tive questions differ in that the former are based on sci-
entific assumptions about linear relationships among cen-
tral tendencies and the latter are based on postmodern
assumptions regarding complex interactions that are in-
determinate in the detail but determinate in the general
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nature of their outcome. For example, we can predict dy-
namic creativity capacity but we cannot predict what that
creativity will look like.

Understanding Organizationwith Complexity

We turn now to an examination of some specific applica-
tions of complexity to organizational theory and behavior.
This discussion is framed around the relationship of com-
plexity to bureaucracy and around strategic leadership.

Bureaucracy and Complexity

The discussion to this point has implicitly portrayed orga-
nization as an adaptive dynamic, or as a system driven ex-
clusively by agents acting informally within complex net-
works to produce emergent outcomes. In reality, organiza-
tions are bureaucratic structures, and despite predictions
by some of a post-bureaucratic economy [31,35,54], it is
unrealistic to ignore this pervasive element of organization
(as Weber [85], said, bureaucracy will be with us until the
last shovel of coal is dug from the earth).

For this reason, complexity theorists Uhl-Bien et
al. [82] have chosen to depict informal, complex dynam-
ics as embedded within each of Jaques’ (1989) three lev-
els of bureaucracy: production, organizational, and strate-
gic. They observe that, while bureaucratic functions dif-
fer at each level, the nature of complex dynamics differ
only in the tasks they address. That is, complex behavior is
similar across the system, whether observed in the board
room or in the production divisions. Dynamic, complex
behaviors are pervasive, and are universally driven by the
enabling conditions described in the last section. Specific
complex processes are entangled with one another and
even across bureaucratic level. Further, the inter-influ-
ences across these dynamics is more horizontal than hi-
erarchical: Dynamics on the shop floor – Jaques’ [40] pro-
duction level – can directly and quickly influence dynam-
ics in the executive suite – Jaques’ strategic level. Using
complexity terminology, complex dynamics in organiza-
tions are, therefore, fractal in nature. From an organiza-
tional perspective, they represent a meso view of organiza-
tion; that is, they describe the linkages that unite micro, or
individual, level structures with macro, or organizational
level, analysis [26]. Uhl-Bien and Marion [81] also argue
that they are meso in that they link different hierarchical
levels.

From this, Uhl-Bien, Marion, and McKelvey [82] pro-
pose three key dynamics within organizations (which they
describe relative to leadership): administrative, adaptive,
and enabling. Administrative leadership is related to tra-
ditional perspectives of leaders as those who generate or-

ganizational strategy, gather and distribute resources, and
create policy. They differ from traditional perspectives in
that their actions must serve to nurture the somewhat frag-
ile, bottom-up (or adaptive) complex leadership processes
(fragile in that they are somewhat sensitive to political
power behaviors).

Adaptive leadership is defined as any interactive be-
havior that creates a perturbation which leads to a phase
transition. The key elements are interaction, perturbation,
and phase transition. Uhl-Bien et al. argue that change
originates in the “spaces between” interacting agents (see
also [52]); that is, it is the product of the push and shove
that can occur between or among agents with heteroge-
neous skills or worldviews. Perturbations are resulting dis-
turbances in a network (change, new ideas or perspectives,
inventions, etc.) that reshape the interaction patterns in
that network [81]. Phase transitions are nonlinear shifts
within a network (these are described more fully below).

Enabling leadership, the third of Uhl-Bien et al. [82]
types, refers to individuals who foster the enabling condi-
tions described above (interaction, interdependency, het-
erogeneity, enabling rules, etc.) and who mediate the rela-
tionship between adaptive and administrative functions.

Emergence, Niche, and Strategic Leadership

The earlier discussion of emergence and phase transitions
help us re-visualize the role of another strand in organi-
zation sciences: strategic leadership. Strategic leadership
theorists study upper echelon behaviors of leader/agents
responsible for positioning an organization in its environ-
ment. Traditional literature has perceived strategic leader-
ship as a top-down, goal oriented process [13] in which
the leader manages the organization’s environment. For
example, Sir Howard Stringer articulated the strategic goal
of Sony Corporation at the 2006 International Consumer
Electronics Show in Las Vegas, as:

Sharpening our focus, shattering internal silos,
streamlining our product offerings and growing
ever more consumer-centric. We have analyzed our
product lines and reorganized our corporate struc-
ture to become more nimble and better able to
deliver champion products and a focused product
line-up. [78].

The website for Sharp Corporation articulates both its
philosophy and its business strategy in terms of expanding
its market (sharp-world.com/corporate/info/philosophy/
index.html). Strategic goals from other companies could
be cited, but most will, like these, focus on the company’s
competitive position in its environment.

http://sharp-world.com/corporate/info/philosophy/index.html
http://sharp-world.com/corporate/info/philosophy/index.html
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Given such assumptions, traditional strategic leader-
ship literature has examined such things as the personal-
ity and decisions of top echelon leaders, relationships be-
tween the CEO and his or her board of directors, transfor-
mational leadership, and visionary leadership (see [13], for
a summary).

More recent work by strategic leadership scholars is
still concerned about position in the environment, but has
focused not on upper echelon behavior but on the internal
dynamics of organizations and how organizational flexi-
bility contributes to organizational strategy [8]. Interest-
ingly, Sharp has heeded this call: Stringer’s articulation
of their goal (above) includes a call for a “more nimble”
firm. However, a review of the complexity literature has
revealed little that has addressed this issue, despite the
fact that it seems a natural subject for complexity analysis.
One exception is an article by Marion and Uhl-Bien [58],
which argues that flexible, complex structuring is key to
organizational strategy. They propose that firms work to
increase interaction, interdependency, and adaptive ten-
sion.

Marion and Uhl-Bien [58] also suggest that that tra-
ditional external-oriented strategic leadership has missed
an important point. Much of this literature is, at least im-
plicitly, about dominating the environment or beating the
competition. Complexity theory argues that different or-
ganizations coevolve [43], and in doing so, they grow to
depend upon one another. That is, coevolving systems ag-
gregate and form a niche, or interdependent infrastructure
upon which each part of the niche depends to some extent.
Automobile makers depend upon fuel outlets and auto-
motive repair shops, for instance – and vice versa. Auto-
motivemakers even depend on one another, for their com-
petitive relationship generate pressures that foster struc-
tural and ideational elaboration and generate a heteroge-
neous set of creative solutions that foster even greater cre-
ativity. External strategy, then, may be about more than
competition; it may also be about fostering effective infras-
tructure: Marion and Uhl-Bien called this, survival of the
cooperative.

Complexity Outcomes:
Creativity, Adaptability, Learning

From all this, we can generalize the outcomes of com-
plex dynamics for organizations as creativity, adaptabil-
ity, and learning. Creativity is defined as an ideational
phase transition in which an outcome reasonably could
not have been predicted based on preexisting conditions
or paradigmatic assumptions. Described more basely, it is
something that “no one saw coming.” Since it is a phase

transition, it can be a minor bit of creativity or a major
insight.

The major creative insights, of course, capture our
imagination and dramatically change our way of seeing
things (e. g., Einstein’s relativity or Schrödinger’s cat).
However, small creative events are more common and,
arguably, just as important. Creative ideas exist within
complex networks that enable them to coevolve and ag-
gregate. That is, they become part of the emergence dy-
namic within an organization. Creative ideas and asso-
ciated structures change, aggregate with other creative
ideas or structures, and generate adaptive pressures that
maintain or increase the complexity of a system. With-
out the pressures that creative ideas generate, an organiza-
tion would move towards increased isomorphism and de-
creased complexity – they move to a state that some would
mistakenly call, homeostasis.

Adaptability is enhanced when an organization in-
creases its level of complexity. This translates into (among
other things) increased heterogeneity of skills and prefer-
ences. Traditional organizational theory has assumed that
everyone should be on the “same page” (e. g., “Leaders . . .
are responsible for the dissemination of strategic organi-
zational goals, as well as for convincing their constituents
to effectively implement those goals” p. 626 in [6]). Com-
plexity theorists argue that, although organizational agent
should be united by a vision, dynamic heterogeneity en-
ables organizations and agents to rapidly and effectively
deal with environmental exigencies. Ashby [5] refers to
this as “requisite variety;” he defines it by stating that it
takes variety to defeat variety. McKelvey and Boisot [65]
call it “requisite complexity,” thus underscoring the dy-
namic, co-evolving nature of complex systems and their
adaptive response capabilities.

Learning is defined for organizations in several ways.
Many of us would define it as something that an individ-
ual does. Some organizational theorists [3,22,66], includ-
ing some complexity scholars (e. g., [9]), argue that learn-
ing is best understood as an organizational process. The
functioning of the brain exemplifies this logic (see [44]).
Individual neurons “learn” only small pieces of an envi-
ronmental event; it is only when those pieces are put to-
gether within a network of pieces that we began to make
sense of that event. This, crudely, is what is meant by or-
ganizational learning. Organizational knowledge can be
defined as a network of different but synchronized bits
of individual knowledge. Organizational learning is re-
lated to the complex nature of those networks – that is,
to its dynamic, changing capabilities. If, then, a system
increases its complexity, it will increase its capacity to
learn.
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Still others propose that organizational learning is
a function of the capacity of the network to disseminate
information [15]. Like the complexity perspective of orga-
nizational knowledge in the previous paragraph, this per-
spective is intimately linked to the degree of complexity in
the organizational network.

Methodology for Studying Complex Organizations

Before developing the methodological strategies that are
useful for studying complex organizational system, it will
be helpful to summarize a few of the assumptions that un-
derlie complexity, all of which have been stated or implied
in this manuscript. These assumptions guide our selection
of methodological strategies in organizational studies.

1. Complexity science examines the dynamics of interac-
tions among large numbers of adaptive agents [24].

2. Complex systems evolve dynamically and change non-
linearly (unpredictably; [21]).

3. Human systems do not exist in a state of equilibrium.
4. Complex systems are best described in terms of inter-

actions among complexity mechanisms rather than as
interaction among variables.

5. Complex dynamics are enabled rather than planned or
controlled.

Traditional Methodologies in the Social Science

Perhaps the most common methodology used to study
organizations involves field research strategies and re-
gression statistical procedures. Field strategies permit re-
searchers to draw conclusions in non-laboratory condi-
tions. Regression techniques are based on assumptions of
regular, predictable relationships among variables; if one
finds such a relationship between variable A and variable
B, the relationship was true yesterday and it will be true
tomorrow [61]. Such relationships are predictable in that
they assume that if you increase variable A, then a result-
ing change in variable B can be calculated.

While statistical methodology is certainly useful, it
cannot deal with many of the conditions posed by com-
plexity science. It is not suited, for example, for explor-
ing dynamic aggregation in organizations, nor is it help-
ful for explaining nonlinear changes that occur at far from
equilibrium states. In particular, its usefulness lapses when
one seeks to understand interactions among, and out-
puts of, complexity mechanisms. Complexity mechanisms
are a function of dynamic interactions among numer-
ous agents, ideas, and even variables. Traditional statisti-
cal methodology is just not suited for this type of analy-
sis. Statistical assumptions are better suited to equilibrium

systems in which desired outcomes involve planning and
control. Complexity science is not particularly interested
in such outcomes.

A growing trend in organizational studies involves
the use of qualitative strategies. Qualitative research re-
quires careful observation of a social dynamic followed
by thorough analysis of what was observed. Qualitative
methodology is useful for observing dynamic activities and
social mechanisms, and is rather widely used for that pur-
pose [20,49,68,70]. Its drawbacks are that it is time and re-
source intensive and it does not allow one to freely exper-
iment with, or freely change, a social mechanisms – one
cannot readily play what – if games in qualitative analysis.

Methodologies for Complexity

The most widely used methodologies in complexity study
in organizations are agent-based modeling (ABM), sys-
tems dynamics, and qualitative research. ABM replicates
or mimics interactive dynamics among organizational
agents. ABM is a simulation procedure in which individu-
ally programmed agents interact in a computer according
to certain rules. Commonly used examples are NetLogo
by Uri Wilinsky, Dynamic Network Analysis by Kathleen
Carley, and Repast Agent Simulation Toolkit by Michael
J. North. These simulations allow researchers to simulate
interactions under a variety of conditions and to test the
effects of various changes in those conditions. ABM has
been used to explore such things as the dynamics that un-
derlie personnel turnover [14], organizational design and
performance under stress [19], and leadership as enabler
of complex organizational functioning [73].

System dynamic analysis is similar to ABM in that it
examines evolving relationships among agents. It differs
in that those relationships are not governed by social rules
as they are with ABM’s, rather they’re governed by math-
ematical defined relationships. Like ABM, it permits the
researcher to experiment with various conditions. Ster-
man [77], for example, has used it to examine interactions
among individual decisions and the effects of feedback on
the decision process.

Both ABM and system dynamic computer programs
permit researchers to base their simulations on data col-
lected in real-world situations. Once that data is entered,
however, the quality of the subsequent simulation is only
as good as the quality of the rules or the equations that
govern it. However the intent is not to predict specific out-
comes; rather, the intent is to understand how dynamic
relationships can affect outcomes. Carley’s Dynamic Net-
work Analysis, for example, permits a user to evaluate the
effects of an evolving network on the capacity of the or-
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ganization to diffuse knowledge. One can play with such
things as the degree of interdependency among agents or
the degree of centrality around vision (as Schreiber et al.
did in their [74] study) to see how they influence the learn-
ing dynamic.

Qualitative research performs generally the same
things that ABM and system dynamic analysis do, but
it allows the researcher to continuously examine real life
events rather than merely simulating those dynamics. The
benefit is a closer description of reality; the drawbacks are
that it is highly resource and time intensive (especially if
one wants to obtain results as in-depth as are results avail-
able through simulations), and it does not generally permit
much control over conditions that might influence out-
comes. Interesting qualitive studies of complex dynamics
have been conducted by such organizational theorists as
Plowman, Baker et al. [68], who examined emergent con-
ditions in an inner-city church, and Chiles, Meyer, and
Hench [20], who studied the complex evolution of Bran-
son, Missouri.

Conclusions

I believe that the best definition of complexity behavior is
provided by Paul Cilliers [21]. To frame that definition,
he argues that we often confuse complicated with com-
plexity. A complicated system is one with many compo-
nents interacting to perform complicated tasks, but all of
those components maintain their original integrity. A jet
plane, he said, is complicated: the components of the plane
are unchanged by their relationship. Complex systems
are composed of many interacting units, all of which are
changed by that interaction such that they quickly loose
their original form and function. Organizational theorists
who study complex dynamics are seeking to observe and
explain that dynamic [48,63]; to understand how organi-
zations might be restructured to improve their capacity for
complex outcomes [11]; to improve general leadership in
organizations [51,57,80]; to restructure our understanding
and implementation of strategic leadership [58], and to re-
structure how we think about reality, understanding, pre-
dictability, and scientific methodology [16,17,18,53,72].

Complexity is genuinely an interdisciplinary science,
applicable equally to biology, physics, and the social sci-
ences. Organizational sciences have experienced a num-
ber of cumbersome imports in the past: systems theory
borrowed from biology [12], as did population ecology
theory [33], and scientific management theory borrowed
from mechanics [79]. Complexity theory, however, is not
about biology or mechanics, it is about interaction dynam-
ics – and this is common across multiple phenomena. It is

also about change, not gradual change but change that sur-
prises. It helps us understand how systems learn and adapt
to their environment. It comes at a good time for organiza-
tional studies, and will help us adapt organizations to the
dramatic, knowledge-oriented changes being experienced
in world economies.

Future Directions

One is tempted to argue that organizational complexity
theory represents a paradigm shift in the way we think
about reality (in the Kuhnian sense; [46]), and there is con-
siderable reason to do so. Complexity theorists, for exam-
ple, acknowledges that the problems facing organizations
are far too complex to be solved by rational thinking and
planning, and that organizations must engage the interac-
tive, complex capacity of all its employees to solve those
problems [59]. Because of this, organizational complex-
ity theory is probably one of the first truly postmodern
theories of organization. Organizational complexity the-
ory is premised on complexity mechanisms rather than on
variables, thus the questions that emerge from this per-
spective are dramatically different from any that have been
asked in the past (e. g., “how does level of interdependency
interact with level of vision to influence temporal emer-
gence of, and phase transitions in, organizational learn-
ing”). Complexity theory clearly separates itself from the
notions of equilibrium that have so influenced 20th cen-
tury organizational theory. It moves us away from the
centrality of administration and focuses on the central-
ity of bottom-up, adaptive leadership. Its notions of lead-
ership do not revolve around interpersonal relationships,
as does most of leadership theory in the 20th century;
rather, it revolves around interactive dynamics. Complex-
ity theory proposes that organizational strategy should
seek effective relationships, rather than competition, with
other members of its niche. Simply put, complexity the-
ory is a dramatically different way to understand organi-
zation.

Complexity theory has captured the attention of aca-
demics and practitioners. Important indications of this in-
clude the large number of articles on the subject that are
appearing in scholarly journals (e. g., the August, 2007,
edition of The Leadership Quarterly was a special issue
on complexity leadership) and the fact that complexity-
related articles are being published in top-tier journals
(e. g., [11,68]); the increasing number of complexity-re-
lated grants in organizations (NSF began a complexity cat-
egory for organizational scholars in 2007); and a signifi-
cant surge in the number of practitioners who are seeking
consultant relationships with complexity theorists.
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A number of interesting research questions are
emerging from the complexity paradigm. Andriani and
McKelvey’s work on extreme events could have signifi-
cant implications for the way we approach Katrina-like
tragedies in the future, for example. The work to develop
methodologies such as agent based modeling can have
tremendous impact on how we analyze organizational dy-
namics. The idea that organizational behavior is about
the actions of mechanisms is beginning to sink in among
scholars, and could dramatically realign the way we think
about organization. Complexity leadership theory poses
unique questions for the role of strategic leadership and
challenges the very way we perceive leadership.

Arguably, there has not been a true paradigm shift in
organization studies since Weber introduced his concept
of bureaucracy [59]. At the risk of being overly optimistic,
organizational complexity theory may be changing this.
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Glossary

Agent (or software agent) A self-contained entity that
has a state and that is situated (able to perceive and

act) in an environment. In addition, agents are often
assumed to be rational and autonomous.

Cellular automaton A mathematical structure modeling
a set of cells that interact with their neighbors. Each cell
has a set of neighbors and a state. All the cells update
their values simultaneously at discrete time steps. The
new state of a cell is determined by the current state of
its neighbors according to a local function or rule.

Microlevel simulation A type of simulation in which the
specific behaviors of specific individuals are explicitly
modeled.

Definition of the Subject

Social phenomena simulation in the area of agent-based
modeling and simulation concerns the emulation of the
individual behavior of a group of social entities, typi-
cally including their cognition, actions, and interaction.
Agent-based social simulation constitutes the intersection
of three scientific fields, namely, agent-based computing,
the social sciences, and computer simulation [6]. Agent-
based computing is a research area mainly within com-
puter science and includes, e. g., agent-based modeling,
design, and programming. By the social sciences we here
refer to a large set of different sciences that study the in-
teraction among social entities, e. g., social psychology,
management science, policy, and some areas of biology.
Computer simulation concerns the study of different tech-
niques for simulating phenomena on a computer, e. g.,
discrete-event, object-oriented, and equation-based simu-
lation.

Introduction

Computer simulation consists of three main steps: (i) de-
signing a model of an actual or theoretical system, (ii) ex-
ecuting the model on a computer, and (iii) analyzing the
execution output. Already in the early days of computer
development, simulation was used in different research
areas to predict the behavior of complex systems. Such
simulations were typically based on differential equations
and focused on results at the aggregate level. These mod-
els of, for instance, predator-prey populations could re-
sult in fairly accurate models but were limited in the
sense that the models excluded individual behavior and
decision making, as well as interaction between individ-
uals, and were based on homogeneous agents. The de-
velopment of agent-based modeling offers a possible so-
lution to this problem with its (seemingly) natural map-
ping onto interacting individuals with incomplete infor-
mation and capabilities, no global control, decentralized
data, asynchronous computing, and inclusion of hetero-

http://www.hsaj.org/?article=3.1.3
http://www.sony.com/SCA/speeches/060105_stringer.shtml
http://www.sony.com/SCA/speeches/060105_stringer.shtml
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geneous agents. Agent-based simulation models also offer
the possibility of studying the dynamics of the interaction
processes instead of focusing on the (static) results of these
processes [16,26].

Agent-based modeling can be traced back to von Neu-
mann, who in the 1950s invented what was later termed
cellular automata. These were used by Conway in the
1970s when he constructed the well-known Game of Life.
It is based on very simple rules determining the life and
death of the cells in a virtual world in the form of a 2-D
grid. Inspired by this work, researchers developed more-
refined models, often modeling the social behavior of
groups of animals or artificial creatures. One example is
the Boid model by Reynolds [24], which simulates coordi-
nated animal motion such as bird flocks and fish schools.
With respect to human societies, Epstein and Axtell [8] de-
veloped in the 1990s one of the first agent-based models,
called Sugarscape, to explore the role of social phenomena
such as seasonal migrations, pollution, sexual reproduc-
tion, combat, and transmission of disease. This work is in
spirit closely related to one of the best-known and earliest
examples of the use of simulation in social science, namely,
the Schelling model [27], in which cellular automata were
used to simulate the emergence of segregation patterns
in neighborhoods based on a few simple rules expressing
the preferences of the agents. Another pioneer from the
1950s worth mentioning is Barricelli [2], who to some ex-
tent used agent-based modeling for simulating biological
systems.

The cellular automata models closely resemble the
models used in statistical physics, which has inspired
physicists to include the simulation of social phenomena
in large-scale social systems in their research agenda. In
this area, sometimes referred to as sociophysics, phenom-
ena such as opinion spreading in a society and competi-
tion between languages have been studied. These models
originally described the behavior of atoms and molecules,
which are quite simple objects, and the macrolevel phe-
nomena caused by their interaction (rather than by com-
plex behavior of the individual as in the case of hu-
mans). Thus, in these models little attention is paid to in-
dividual variation and the individual decision making is
rather primitively modeled. A prominent example of so-
ciophysics is the work of Galam [10].

To sum up, we can identify two main approaches to
social simulation:

� Macrolevel (or equation-based) simulation, which is
typically based on mathematical models. It views the
set of individuals (the population) as a structure that
can be characterized by a number of variables.

� Microlevel (or agent-based) simulation, in which the
specific behaviors of specific individuals are explicitly
modeled. In contrast to macrolevel simulation, it views
the structure as emerging from the interactions be-
tween individuals and thus exploring the standpoint
that complex effects need not have complex causes.

As argued by Van Parunak et al. [21], agent-based
modeling is most appropriate for domains characterized
by a high degree of localization and distribution and dom-
inated by discrete decision. Equation-based modeling, on
the other hand, is most naturally applied to systems that
can be modeled centrally and in which the dynamics are
dominated by physical laws rather than information pro-
cessing. We will here focus on agent-based models, par-
ticularly those that have a richer representation of the in-
dividual than the cellular automata and statistical physics
models.

Why Simulate Social Phenomena?

Simulation of social phenomena can be done for different
purposes, e. g.,

� Supporting social-theory building;
� Supporting the engineering of systems, e. g., validation,

testing, etc.;
� Supporting planning, policy making, and other deci-

sion making;
� Training, in order to improve a person’s skills in a cer-

tain domain.

It is possible to distinguish between four types of end
users: scientists, who use social phenomena simulation in
the research process to gain new knowledge, policymak-
ers, who use it for making strategic decisions,managers (of
systems), who use it to make operational decisions, and
other professionals, such as architects, who use it in their
daily work. We will now describe how these types of end
users may use simulation of social phenomena for differ-
ent purposes.

Supporting Social-Theory Building

In the context of social-theory building, agent-based sim-
ulation can be seen as an experimental method or as theo-
ries in themselves [26]. In the former case, simulations are
run to test the predictions of theories, whereas in the latter
case simulations in themselves are formal models of theo-
ries. Formalizing the ambiguous, natural-language-based
theories of the social sciences helps to find inconsisten-
cies and other problems, and thus contributes to theory
building.
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Using agent-based simulation studies as an experi-
mental tool offers great possibilities. Many experiments
with human societies are either unethical or even im-
possible to conduct. Experiments in silico, on the other
hand, are fully possible. These can also breathe new life
into the ever-present debate in sociology on the micro–
macro link [1]. Agent-based models mostly focus on the
emergence of macrolevel properties from the local interac-
tion of adaptive agents that influence one another [17,26].
However, simulations in computational organization the-
ory [4,22], for example, often try to analyze the influence
of macrolevel phenomena on individuals. Using agent-
based models to simulate the bidirectional relation be-
tween micro- and macrolevel concepts would provide
tools to analyze the theoretical consequences of the work
done by theorists such as Habermas, Giddens, and Bour-
dieu, to name a few [26].

Supporting the Engineering of Systems

Many new technical systems are distributed and involve
complex interactions between humans and machines. The
properties of agent-based simulation make it especially
suitable for simulating these kinds of systems. The idea is
to model the behavior of human users in terms of soft-
ware agents. In particular, this seems useful in situations
where it is too expensive, difficult, inconvenient, tiresome,
or even impossible for real human users to test out a new
technical system. Of course, also the technical system, or
parts thereof, may be simulated. For instance, if the tech-
nical system includes hardware that is expensive and/or
special purpose, it is natural to simulate also this part of
the system when testing out the control software. An ex-
ample of such a case is the testing of control systems for
“intelligent buildings,” where agents simulate the behavior
of the people in the building [5].

Supporting Planning, Policy Making,
and Other Decision Making

Here the focus is on exploring different possible future sce-
narios in order to choose between alternative actions. Be-
sides this type of prediction, simulation of social phenom-
ena may be used for analysis, i. e., to gain deeper knowl-
edge and understanding of a certain phenomenon.

An area in which several studies of this kind have been
carried out is disaster management, such as experiments
concerning different roles and the efficiency of reactions
to emergencies [18]. Based on individuals’ observations,
personal characteristics and skills, past experience and role
characteristics, and social network, the agents create a plan
to execute. Each agent represents a human being (acting

in a particular role). The effect of adding a role (floor war-
den) in a fire alarm scenario upon the evacuation efficiency
in an abstract environment is analyzed. In another ap-
proach, the agents are placed in an environment based on
GIS (geographical information system) data, thereby tying
the simulation closer to the physical reality [29]. In yet an-
other study, real-world data were used for both the envi-
ronment and the agents’ internal decision-making model
to analyze the effect of different insurance policies on the
willingness of agents to pay for a disaster insurance pol-
icy [3].

Another application area for this type of simulation
study is disease spreading. Typically, agents are used to
represent human beings and the simulation model is
linked to real-world geographical data. One study [32] also
included agents that represent towns acting as the epicen-
ter of disease outbreak. The town agent’s behavior reper-
toire consisted of different containment strategies. The
simulation model can be quickly adapted to local circum-
stances via the geographical data (given that there is data
on the population as well) and is used to determine the
effects of different containment strategies.

A third area where agent-based social simulation has
been used to support planning and policy making is traffic
and transport. An example of this is the simulation of all
car travel in Switzerland during morning peak traffic [23].

Training

The main advantage of using simulation for training pur-
poses is to be part of a real-world-like situation without
real-world consequences. Especially in the military the use
of simulation for training purposes is widespread. Also in
medicine, where mistakes can be very expensive in terms
of money and lives, the use of simulation in education is
on the rise.

An early product in this area was a tool to help train
police officers to manage large public gatherings such as
crowds, demonstrations, and marches [31]. Another early
example of agent-based simulation for training purposes
is Steve [19,25]. Steve was an agent integrated with voice
synthesis software and virtual reality software providing
a very realistic training environment for controlling the
engine room of a virtual US Navy surface ship.

An example of a more recent project is the PSI
agent [15]. Whereas in most cases the simulator training
is aimed at training practical skills or decision making,
this work focuses on acquiring theoretical insights in the
realm of psychological theory. The simulation enables stu-
dents to explore psychological processes without ethical
problems.
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Simulating Social Phenomena

One of the first, and most simple, way of performing mi-
crolevel simulation is often called dynamic microsimula-
tion [11,12]. It is used to simulate the effect of the passing
of time on individuals. Data from a (preferably large) ran-
dom sample from the population to be simulated is used to
initially characterize the simulated individuals. Some ex-
amples of sampled features are: age, sex, employment sta-
tus, income, and health status. A set of transition proba-
bilities are used to describe how these features will change
over a given time period, e. g., there is a probability that an
employed personwill become unemployed over the course
of a year. The transition probabilities are applied to the
population for each individual in turn and then repeatedly
reapplied for a number of simulated time periods. Some-
times it is necessary to also model changes in the popula-
tion, e. g., birth, death, and marriage. This type of simula-
tion can be used to, e. g., predict the outcome of different
social policies. However, the quality of such simulations
depends on the quality of:

� the random sample, which must be representative, and
� the transition probabilities, which must be valid and

complete.

In traditional microsimulation, the behavior of each indi-
vidual is regarded as a “black box.” The behavior is mod-
eled in terms of probabilities and no attempt is made to
justify these in terms of individual preferences, decisions,
plans, etc. Also, each simulated individual is considered in
isolation without regard to their interaction with others.
Thus, better results may be gained if cognitive processes
and communication between individuals are also simu-
lated.

Opening the black box of individual decision making
can be done in several ways. The first layer to add is often
individual psychology; for instance, the so-called beliefs,
desires, and intentions (BDI) model is often used. Models
of individual cognition used in agent-based social simula-
tion include the use of Soar (a computer implementation
of Allen Newell’s unified theory of cognition [20]), which
was used in Steve (discussed in Sect. “Why Simulate Social
Phenomena?”).

For the simulation of social behavior the agents need
to be equipped with mechanisms for reasoning at the so-
cial level (unless the social level is regarded as emerg-
ing from individual behavior and decision making). Sev-
eral models have been based on theories from economics,
social psychology, sociology, etc. An example of this is
provided by Guye-Vuillème [13], who has developed an
agent-based model for simulating human interaction in

a virtual-reality environment. The model is based on so-
ciological concepts such as roles, values, and norms and
motivational theories from social psychology to simulate
persons with social identities and relationships. Another
example is the Consumat model [14], a metamodel com-
bining several psychological theories on decision making
in a consumer situation, used, for instance, to investigate
different flood-management policies [3]. Also, nonsym-
bolic approaches such as neural networks have been used
to model agents’ decision making [18].

Future Directions

In a recent study of applications of agent-based simula-
tion [7], it was concluded that even if agent-based simu-
lation seems a promising approach to many problems in-
volving the simulation of complex systems of interacting
entities such as social phenomena, it seems that the full
potential of the agent concept often is not utilized. For in-
stance, most models have very primitive agent cognition,
in particular if the number of agents involved is large.

Regarding future applications, Fiedrich and Burg-
hardt [9] argue that agent-based simulation is a very
promising approach to disaster management practice. In
particular, agent-based social simulation in combination
with sophisticated visualization techniques, such as virtual
reality, in the form of “serious games,” has the potential to
provide very powerful training environments. In the con-
text of military training, Stone [28] provides some inter-
esting applications.

Further Reading

Classic books in the area of simulation of social behavior
include “Growing Artificial Societies: Social Science from
the Bottom Up” by Epstein and Axtell [8] and “Simulation
for the Social Scientist” by Gilbert and Troitzsch [12].

More recent findings can be found in, e. g., the Journal
of Artificial Societies and Social Simulation (http://jasss.
soc.surrey.ac.uk) and the proceedings of, e. g., the Inter-
national Workshop series on Multi-Agent-Based Simula-
tion (MABS) (http://www.pcs.usp.br/~mabs/), the World
Congress in Social Simulation (WCSS) [30], the con-
ference of the European Social Simulation Association
(ESSA) (http://www.essa.eu.org/), and the series of Agent
Workshops in Chicago (http://www.agent2005.anl.gov/).
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Glossary

Absorbing state In a stochastic process, a state from
which there is no way out. Once the system reaches
the absorbing state, it stays there forever.

Complete graph A graph where every pair of vertices is
connected by an edge.

Configuration space The ensemble of all allowed states
(configurations) a model system can reach. Any point
in configuration space represents one such state.

Graph an assembly of points (vertices), some of which are
connected by lines (edges).

Hypercubic lattice A generalization of a rectangular
plane mesh; a graph embedded in a space of arbitrary
dimensionality d. Assuming rectangular coordinates
x1; x2; : : : ; xd , the coordinates of the vertices in a hy-
percubic lattice are all whole numbers.

Markov process A special type of stochastic process. In
a Markov process the system changes its state ran-
domly and, most importantly, the changes of state are
independent of history. A Markov process is a memo-
ryless system.

Random walk A stochastic process describing hops of
a particle to randomly chosen neighbor sites on a lat-
tice.

Stochastic process A sequence of random events. At each
time t, which may be either discrete (t D 1; 2, etc.) or
continuous, a new random variable is introduced rep-
resenting the outcome of the process in that time. Also
called a random process.

Definition of the Subject

Modeling social phenomena as if they were manifestations
of mutual interactions of physical objects is the ultimate
goal of the reductionist approach to reality. Both the inan-
imate and animate worlds, including all the behavior of
humans, would be traced back to the properties of atoms
and molecules. This program is absolutely unrealizable,
though. On the other hand, the discipline of sociophysics
tries to bypass the brute-force approach by developing
schematically effective models which aim at describing re-
ality at a “macroscopic”, rather than microscopic, level.

For example, when one wants to model the behav-
ior of a large assembly of humans facing the necessity of
choosing between two options, it is customary to neglect
all details of the behavior of the people involved and de-
scribe their states by two-value quantities, such as s D C1
or s D �1; physicists call them spins. The interactions are
often expressed using a cost function, which physicists call
energy. The state with lowest energy is favored, but there
are also external perturbations, or noise, which prevent the

system from settling in that state. Physicists call the mea-
sure of the noise the temperature. The system of interact-
ing spins at a certain temperature then serves as a model
of the particular situation in human society.

It is a non-trivial question if such approach could work
and if so, why. The essential ingredient for its function-
ing is universality. This notion, borrowed from statistical
physics, means, that the behavior of the system does not
ultimately depend on the details of that system, but only
on its generic features. In plain words, for the description
of the human mind, the behavior of a driver on a high-
way, or of a stockbroker, it is irrelevant whether the mat-
ter is composed of quarks, strings or whatever elementary
particles may be discovered. The description of the world
at the “macroscopic” level is detached from “microscopic”
details.

It is the task of sociophysics to develop suitablemacro-
scopic models that conform to observed facts about society
and, at the same time, yield themselves to the methods of
theoretical physics. There are non-negligible successes in
this effort, yet still many areas remain unexplored. Conse-
quently, the subject is alive and in a state of rapid progress.

Historical Introduction

It has been nearly two hundred years since the notion
of social physics was introduced by the French philoso-
pher Auguste Comte [1] in his attempt to revolutionize
all thinking under the banner of positive philosophy. He
himself abandoned that term later [2], but the idea of con-
necting social and physical phenomena in a unified frame
has been around since. Later on, it somehow degenerated
into a purely descriptive science, borrowing from physics
nothing more than the tendency to exactitude in measure-
ments; a prominent name to cite in this context is the Bel-
gian statistician Adolphe Quételet. Little use stems from
twopenny analogies, advocated by some later followers of
Hegelian philosophy, between phase transitions, such as
boiling water, and abrupt changes, mostly violent ones,
in human society. Nonetheless, you may still find these
considerations, based on the “quantity turns into quality”
principle, in popular-philosophy brochures.

Skipping ahead a little more than a century and
half since Comte, the first modern attempt to bridge
the gap between social sciences and physics was marked
by a memorable conference scheduled to take place in
Moscow, 1 to 5 July 1974. Scientists both from the West
and from the USSR were to discuss implications of physics
for other fields, including social sciences and humani-
ties. The organizing committee included people such as
Kenneth Arrow, Nobel laureate for Economy and Hans
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Bethe, Nobel laureate for Physics. Among the speakers
was Andrei Sakharov, the well-known dissident and No-
bel laureate for Peace. However, the Communist author-
ities stepped in, the conference was banned, most of the
Russian participants were arrested, and a majority of them
were exiled. However, many of the manuscripts were
smuggled from the USSR to the West, and eventually the
contributions were published in a proceedings volume [3].
A small sample of it appeared in [4].

In the 1980s, a very fruitful and general concept of syn-
ergetics was developed by H. Haken and his followers. The
main idea consists in spontaneous emergence of coher-
ent structures. In addition to being illustrated by examples
from several branches of physical sciences (e. g. lasers) the
idea was also elaborated in the context of social phenom-
ena [5].

About the same time, the science of complexity started
to gain wider popularity (and continues to do so to this
day). The Santa Fe Institute in Santa Fe, USA, pioneered
this research; it was here that complex system theory be-
gan to be systematically applied to economics and, more
generally, to all human social behavior. Another Physics
Nobel laureate, P. W. Anderson [6], has played a promi-
nent role in promoting this path.

To finish this historical overview, the journey returns
to France, where since the early 1980s the group of Serge
Galam has been busy developing genuine physical mod-
els of social phenomena, also using he term sociophysics
consistently [7,8,9]. Let us stop here and turn to several
selected topical problems, where physically based models
may help answer social scientists’ questions.

Individualism Versus Cooperation

People never earn their living alone. From the darkest pre-
historical past they have joined together to form gangs,
stalking and hunting their prey. Without communication
within the band, our ancestors could hardly have caught
a mammoth, language would never have evolved and hu-
man brain capacity would probably never have exceeded
that of a lemur. In short, cooperation between humans has
been decisive in shaping the world around us. A tendency
to cooperation is an inherent feature of human nature.

It was not until the middle of the eighteenth century or
so that a different view started to spread. In this view, peo-
ple are presented as selfish profit-seekers and if any coop-
eration is observed, it occurs despite the natural tendency
to maximize personal gain, or as a by-product of that ten-
dency. Under vague names such as neo-liberalism and so-
cial Darwinism, these and related ideas pervade the cur-
rent thinking on human society.

On the other hand, empirically, cooperation is much
more evolved now and assumes more sophisticated and
complex forms than in the old times when it was consid-
ered self-evident. To detect this more complex coopera-
tion, however strong it may be, requires external explana-
tion. The starting point is a zero hypothesis of non-coop-
eration, from which cooperation emerges by some non-
trivial mechanism to be discovered.

Prisoner’s Dilemma Game

Games in General Game theory [10,11], introduced in
1940s by John vonNeumann andOskarMorgenstern pro-
vides very fertile ground on which to model the starting
assumption of selfish individuals. In this model, agents
are not only utterly selfish, but also absolutely rational.
In a typical setup, agents meet in pairs and each of them
chooses one of S possible strategies. If the first agent adopts
strategy i and the second agent strategy j, then the first one
gains an amount denoted Aij, while the other’s gain is Aji.
The matrix A is called a payoff matrix, and various types
of games are distinguished according to its properties. For
example, if the gain of one agent equals the loss of the other
agent, so Ai j C Aji D 0 for all i and j, it is a zero-sum
game. If the gain of the winning party is always smaller
than the loss of the adversary, the game is a negative-sum
one, so it holds that Ai j C Aji < 0 for all i and j.

It is assumed that the rules of the game, quantified in
the matrix A, are known to both players. Therefore, they
can build their strategies on rational analysis of the pay-
off matrix. It may happen that one strategy gives highest
gain, irrespective of the action taken by the opponent. For-
mally, the first player’s strategy, k, is such that Ai j � Ak j
for any strategy i of the first player and any strategy j of
the second player. The same may also hold for the second
player. Suppose that l is her best strategy, irrespective of
the action of the first player. Obviously then, the first per-
son always plays k while the second always plays l. If ei-
ther player changes his or her strategy unilaterally, he or
she is instantly worse off. Such a situation, if it happens,
is called Nash equilibrium, after John F. Nash, a mathe-
matician who devoted much of his career to applications
of game theory in economics [12,13].

It is vital to understand that the notion of Nash equi-
librium differs fundamentally from the usual equilibrium
studied in various branches of physics. Whether the prob-
lem is to find the equilibrium of solid bodies on a lever
or thermodynamic equilibrium in a system of steam, wa-
ter and ice, the situation is formalized by finding a unique
function to be minimized (energy, for example). On the
contrary, Nash equilibrium means that every player maxi-
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mizes his or her own function, with state of all other play-
ers fixed [14].

Introduction to Prisoner’s Dilemma Collaboration has
been studied using a very simple two-player game with
two strategies, called the prisoner’s dilemma game. Imag-
ine that the police have arrested two accomplices for a bur-
glary, but do not have enough evidence to prove that they
actually committed the crime. The prisoners are kept well
separated and the investigator offers a deal to each of them
independently. Each criminal is given a promise that if he
parts company with the other and confesses to the robbery
they did together, he will be rewarded. If both of them con-
fess, they will be jailed only for a short period; if one con-
fesses and the other does not, then the first one is released
and rewarded and the other gets a severe punishment; if
neither of them confesses, both are released. Each must
choose without knowing the other’s choice.

The strategy of collaboration (C) dictates not to con-
fess. In fact, it would be most beneficial to both suspects, if
both collaborate. However, individually it is more tempt-
ing to defect (D) and confess to the police, as it prevents
the situation in which the other confesses and the individ-
ual is punished alone. If both prisoners reckon in this way,
the result is that both defect and must suffer some time in
prison. Hence the dilemma.

The payoff matrix of this prisoner’s dilemma game is
characterized by four numbers, the gain if both defect,
ADD D P, or both cooperate, ACC D R, and the gain of
the defector ADC D T and the collaborator ACD D S, if
one of them defects and the other does not. So,

C D

APD D

 
R S
T P

!
C
D
:

(1)

In order for the prisoner’s dilemma to work as de-
scribed above, the values must satisfy the inequalities
T > R > P > S and 2R > S C T . The most studied val-
ues of the parameters are

T D 5 ; R D 3 ; P D 1 ; S D 0 : (2)

It is easy to see that there is a single Nash equilibrium:
the case in which both players defect. We arrived at this
conclusion intuitively, above, and an exact check is even
quicker. If the second player collaborates, the rewards of
the first are R and T if he collaborates or defects, respec-
tively; because T > R, defection is better. Similarly, if the
second player defects, the gains for the first are S and P,
and as P > S, it is again preferable to defect. So, defection
is the optimal strategy.

Evolution of Cooperation

Iterated Prisoner’s Dilemma The prisoner’s dilemma
game is rather trivial: if the players meet only once, defect-
ing is certainly the best strategy. The Nash equilibrium ex-
cludes cooperation a priori, coinciding with the neo-liber-
alist view of society. What, then, is the mechanism behind
the cooperation seen in reality? If there is a way for emer-
gence of cooperation in the prisoner’s dilemma game, per-
haps we can see why reality sometimes follows that path.

Things become much more complex if the players face
each other in an unlimited series of encounters. Robert
Axelrod showed [15,16,17], in a series of computer tour-
naments, that complex strategies, taking into account past
actions of the adversary, perform much better than sim-
ple defection. The generic and repeatedly confirmed out-
come was that the strategy called Tit-For-Tat (TFT) out-
performed all the rest of the strategies tried. It consists in
playing cooperation at first and then repeating the last ac-
tion of the other player.

Even more complicated behavior emerges if there is
some level of noise. The players can make mistakes, or
sometimes play at random, not obeying their usual strate-
gies. New strategies may emerge due to mutations. Also
relevant is the length of the players’ memories, i. e. how
many steps in the past they remember their opponents’ ac-
tions.When all agents are put into a common room, where
all of them they can play with all others, mixtures of strate-
gies emerge [18,19]. The composition of the mixture de-
pends on the length of the memory of the agents; if the
memory length is unlimited, the evolution of the system
proceeds indefinitely, introducing more and more com-
plex strategies all the time.

Spatial Prisoner’s Dilemma The trivial prisoner’s
dilemma game becomes complex when the players play
again and again with the same opponent. But, extending
the model to cover a wider field, how it could be that
among billions of people a player finds the same opponent
he or she has already faced? If the two were molecules in
a well-stirred container, their chance to meet repeatedly
would be virtually nil. Some compartmentalization of the
agents must be imposed, in order to apply the iterative
prisoner’s dilemma to a large number of players. But the
influence of compartmentalization can also be studied
independently, preferably in its extreme version, where
immobile agents are fixed at the vertices of a network,
for example a two-dimensional square lattice: that is the
structure used throughout this subsection.

Agents play the usual prisoner’s dilemma game with
their eight neighbors. The complexity stems from their
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Social Processes, Physical Models of, Figure 1
Spatial prisoner’s dilemma. In the left two panels, the configuration is drawn in times t1, t2, t1 < t2, on the lattice with L D 50. Co-
operating agents are shown in green, the defectors in red. In the right panel, time evolution of the density of cooperators nC (solid
line), density of agents changing their state from one step to the next nch (dashed line), and density of interfaces nCD (dotted line) are
shown. System size is L D 100, data are averaged over 100 realizations. The incentive to defect is, bD 1:05. The initial condition is
random spatial distribution of cooperators with density nC D 0:5. In the inset, the detail for short times is shown

Social Processes, Physical Models of, Figure 2
Same as Fig. 1 with b D 1:5

Social Processes, Physical Models of, Figure 3
Same as Fig. 1 with b D 1:6

ability to change their strategies from one step to the
next [20]. For simplicity, let us consider only the 0-mem-
ory strategies: collaboration and defection. At each round,
the agent adds her gain from the eight plays with her
neighbors, who do the same in their turn. Each agent then
decides upon her strategy for the next step. She looks at

the gains of her neighbors and compares these numbers
with her own. If any of the neighbors earns more than she,
the agent adopts the current strategy of the most success-
ful neighbor for the next step. Otherwise, the agent repeats
her previous strategy. The evolution of the strategies pro-
ceeds by imitation.
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Social Processes, Physical Models of, Figure 4
Spatial prisoner’s dilemma. Various parameters of the stationary state depending on the incentive to defect b. All data are calculated
for a lattice with L D 100; initial configuration is a random spatial distribution of cooperators with density nC D 0:5; data are aver-
aged over 100 realizations. The left panel shows the density of cooperators (solid line), density of sites changing their state from one
step to the next (dashed line), and density of bonds connecting cooperators with defectors (dotted line). The right panel shows the
fraction of realizations reaching static configuration (solid line), and fractions reaching cyclic attractors with period 2 (dashed line),
3 (dot-dashed line), and 4 (dotted line)

The payoff matrix can be simplified so that there is
only one control parameter, the temptation to defect b. It
is assumed that T D b > 1, R D 1, and P D S D 0. The
spatial prisoner’s dilemma game is then simulated, starting
from a random configuration, where every agent chooses
cooperation or defection with equal probability. Further
evolution proceeds by deterministic parallel dynamics, as
described above. In fact, the system is a cellular automa-
ton with specific, relatively complicated, update rules. The
resulting configurations are illustrated in Figs. 1 to 3. The
cooperators survive in significant proportion even if the
temptation for defection b is large. However, their spa-
tial arrangement strongly depends on the value of b. Fig-
ure 1 shows the situation for the value b D 1:05, only
slightly above the lowest limit compatible with prisoner’s
dilemma inequalities. Small groups of defectors survive
within a large sea of cooperators. Most of the defector
groups are stable or change cyclically with a short pe-
riod. When the temptation is increased to b D 1:5, iso-
lated islands of defectors grow into strings joined together
at some places, as seen in Fig. 2. Cooperation still pre-
vails, but only within patches encircled by defectors. The
spatial structure exhibits only small variations in time.
This changes when the temptation grows further. Figure 3,
where b D 1:6, already shows more defectors than collab-
orators and the arrangement changes chaotically.

Systematic study of the dependence on b is summa-
rized in Fig. 4 showing data from simulations, averaged
over many realizations of the initial conditions. First, the
fraction of cooperators, nC, remains quite high, above
80%, up to about b D 1:6, where it drops suddenly to
about 40%; only above b D 1:7 do the cooperators vanish.

Clearly, repeated games induced by fixed spatial arrange-
ment of the players strongly encourages cooperation. Note
that the players do not follow any strategy based on obser-
vation of the past behavior of the agents. The cooperation
emerges spontaneously.

Further inspection of the dependence of nC on b
reveals sudden jumps at specific values of the tempta-
tion parameter. The jumps are even more pronounced in
some other parameters characterizing the stationary state,
namely the concentration nch of sites changing their state
from one step to the next, and the concentration of bonds
(neighbor pairs) connecting a defector and a cooperator,
nCD, which is the measure of the density of interfaces be-
tween cooperating and defecting domains. Furthermore,
some realizations end in static configurations, while other
reach a cyclic attractor with short periods 2, 3, or 4. The
fraction of realizations corresponding to these four types
are denoted c1, c2, c3, and c4, respectively. Of course, some
initial conditions may also lead to longer stationary peri-
ods or to a quasi-chaotic state with a barely identifiable
periodicity. Interestingly, the quantities ci depend on b in
a very irregular fashion. For example, the period-2 states
dominate in an interval from b D 1 to about b D 1:14, but
are rare elsewhere. In contrast, the period-3 states occur
practically only in the interval 5/4 < b < 4/3.

To understand these features it is necessary to analyze
various spatial structures produced in the dynamics [21].
For example, an isolated defector in the sea of cooperators,
as shown in Fig. 5a, has 8 cooperating neighbors, so its gain
is gD D 8p. The neighbors themselves have 7 cooperating
neighbors, resulting in gain gC D 7. This means that for
p < 7/8 the defector becomes cooperator in the next step,
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Social Processes, Physical Models of, Figure 5
Several configurations of the defectors (black) and cooperators
(gray) in the spatial prisoner’s dilemma game on a square lattice.
Their stability is discussed in the text

but for p � 7/8 it survives. Similar analysis shows that an
isolated cooperator surrounded by defectors, Fig. 5b, is
never stable. Indeed, the cooperator gains 0, but each of
the the neighboring defectors gains p.

It is possible to proceed further to more and more
complicated geometries. For example, a 2 � 2 square of co-
operators, Fig. 5c, is muchmore stable than an isolated co-
operator. Each of the four gains gC D 3 from its three co-
operating neighbors. The defecting neighbors are of two
types. At the corners, they have one cooperator to exploit,
so their gain is p. The defectors adjacent to the edges of
the square have two cooperating neighbors, giving higher
gain gC D 2p. Therefore, the square persists for p � 3/2.
But that is not all; the defecting neighbors see that the co-
operators gain more, so they become cooperators them-
selves in the next step. For p < 3/2 the initial 2 � 2 square
grows into a 4 � 4 square of cooperators, Fig. 5d, which
in turn expands into 6 � 6 square, and so on. Cooperation
spreads despite the relatively large value of the temptation
to defect!

Some configurations may exhibit periodic changes.
A multitude of possible generalizations can be found in
the literature, either concerning update rules [22,23,24,25]
or geometry of the links connecting interacting neigh-
bors [26,27,28,29,30]. However, the general features of the
spatial prisoner’s dilemma game remain in force, namely
the fact that repeated plays against the same agents, which
are dictated by the geometry of the social network, leads
naturally to coexistence of large patches of collaborators
alternated with various arrangements of defectors.

To sum up, spontaneous emergence of cooperation
seems to be reproduced in model situations, on condi-
tion that the game is played repeatedly. The overall picture
of cooperation is typically rather complex, precluding any
simplistic ideology-based conclusions.

Opinion Dynamics

Voter Model

People can make up their minds by simply looking around
and picking the opinions of randomly chosen neighbors.

Social Processes, Physical Models of, Figure 6
Illustration of the dynamics of opinions in the voter model. The
scheme shows how pairs of neighboring sites are updated. If the
twosites have identical states, they remainunchanged. If the sin-
gle-site states differ, they can become either both C or both �
with equal probability. Conservation of average magnetization
follows directly

That is the idea behind the stochastic process introduced
in 1970s [31,32] and called the voter model. The voter
model plays a special role among other models of opinion
spreading and consensus formation, because it is exactly
soluble in any spatial dimension, while showing highly
non-trivial dynamics [33,34,35,36,37,38,39,40,41]. Physi-
cists are interested in the voter model, as it can shed light
on spinodal decomposition [35] and chemists use it to
model catalytic reactions [36,37,42].

Definition In fact, there is a whole family of diverse
voter models [43]; the exactly soluble class comprises the
so-called linear voter models.

The most studied geometry is the d-dimensional hy-
percubic lattice � of linear dimension L, with periodic
boundary conditions. The coordinates of the point x 2 �
will be denoted x˛ , ˛ D 1; 2; : : : ; d.

On each lattice site there is an agent whose state can be
either C1 or �1. These two choices can represent a per-
son’s political preferences in a two-party system, hence
the name voter model. The configuration of the entire
system is described by a point in the configuration space
� 2 S D f�1;C1g�. The state of the site x 2 � is de-
noted �(x).

The dynamics of the model are very simple. In each
step, one site x and its neighbor y are chosen randomly.
Then x adopts the state of y, so �(x) is replaced by �(y),
as illustrated in Fig. 6. This scheme also demonstrates one
important property of the voter model. The average opin-
ion, which a physicist would call magnetization, defined as
m D (1/j�j)

P
x2� �(x) is conserved after averaging all

possible realizations of the process, even though in indi-
vidual realizations it may fluctuate. It is also evident that
the uniform states where all sites are eitherC1 or�1 never
change. These two configurations are absorbing states of
the voter model.

In one dimension the dynamics can be easily under-
stood. The configuration is determined by the sequence
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of “domain walls”, separating regions uniformly populated
by C1 or �1. The configuration can change only by flip-
ping the state of the sites beside the domain wall. Either the
agent to the left of the wall adopts the state of the agent on
the right side, or vice versa. In the former case the domain
wall moves one step leftwards, in the latter case it jumps
rightwards. Both possibilities have the same probability, so
the domainwall performs a randomwalk.Moreover, when
two domain walls meet, the region bordered by them dis-
appears and the domain walls themselves annihilate. So,
the one-dimensional voter model is exactly mapped onto
the system of annihilating random walkers. This model is
quite well understood [44]. Unfortunately, in any dimen-
sion larger than one such equivalence is no longer valid.

A slightly more formal description goes as follows:
The voter model is a continuous-time Markov pro-
cess � t which takes values in the configuration space
S D f�1;C1g�. For any � 2 S denote as �x the state
which is obtained from � by flipping the state of site
x 2 �, so � x (y) D (1 � 2ıx y)�(y). It is necessary to know
the set of nearest neighbors of x on the lattice�. In the case
of a d-dimensional hypercubic lattice, there are 2d neigh-
bors obtained by shifting the point x by either C1 or �1
along the d Cartesian axes. Denote �th neighbor of x by
x�. The transition rates describing a single flip are

w(�; � x ) D
1
2

2

41 � �(x)
1
2d

2dX

�D1

�(x�)

3

5 (3)

while all other transition rates are zero

w(�; � 0) D 0 ; if jfx 2 � : �(x) ¤ � 0(x)gj ¤ 1 : (4)

The dynamics proceeds according to the master equation

d
dt

pt(�) D
X

x2�

�
w(� x ; �)pt(� x ) � w(�; � x )pt(�)

�
: (5)

Solution It is possible to directly write the equa-
tion for the average state on a single site S(x; t) �
h�t(x)i D

P

2S pt(�)�(x), starting with the master

equation (5). The result is

d
dt

S(x; t) D �x S(x; t) ; (6)

where the notation �x f (x) D � f (x)C 1
2d
P2d
�D1 f (x

�)
is used for the discrete Laplace operator on the d-dimen-
sional hypercubic lattice. Equation (6) is in fact the discrete
diffusion equation, describing the movement of a random
walker over the lattice.

For two-site correlations R(x � y; t) � h�t(x)�t(y)i,
the equation is

d
dt

R(x; t) D 2�x R(x; t) (7)

for x ¤ 0. If the two points coincide, it holds trivially
R(0; t) D 1 for all times t � 0. Technically, this is the
boundary condition for the solution of the discrete diffu-
sion Eq. (7). In this way it is possible to get closed equa-
tions for correlations of all orders.

Equation (6) can be solved by standard mathematical
techniques, including Fourier and Laplace transforms. The
initial condition is as follows: at the origin the state isC1,
while all other sites are C1 or C1 with equal probability,
so S(x; 0) D ıx0. The solution is

S(x; t) D e�t
dY

˛D1

Ix˛

�
t
d

�
; (8)

where I�(z) is the modified Bessel function [45].
Asymptotic behavior of the Bessel function gives that,

for large times, the average state of any site decays to zero
as S(x; t) � t�1/2, t!1. Recall that the initial condition
was S(x; 0) D ıx0. So, the average state of the site at the
origin decays to zero monotonically, while the other sites,
x ¤ 0, exhibit first an increase in S(x; t) and then decay
at later times. This can be understood as propagation of
a diffusive wave of C1’s from the origin to the rest of the
lattice, eventually vanishing at large times.

More information on the dynamics is contained in
the two-site correlation function R(x; t). Apart from the
factor 2, it obeys the same equation as S(x; t). However,
there is an important difference. Equation (7) holds only
for x ¤ 0 and, besides the initial condition R(x; 0) D ı0x ,
the solution must also satisfy the boundary condition
R(0; t) D 1. Nevertheless, it is possible, again, to proceed
by Fourier- and Laplace-transforming the Eq. (7). The
boundary condition enters through the yet unknown func-
tion

nC�(t) D
1
2

0

@1 �
1
2d

2dX

�D1

R(x � x�; t)

1

A ; (9)

which is simply the concentration of interfaces, i. e., the
fraction of the bonds connecting sites with unequal state,
also called active bonds. This quantity is an importantmea-
sure of the level of activity in the system, as changes of
the configuration can occur only at sites adjacent to active
bonds.

Let us now separately discuss the results in dimensions
d D 1, d D 2, and d � 3. In one dimension, the density of
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interfaces can be expressed in closed form

nC�(t) D
1
2
e�2t[I0(2t)C I1(2t)] : (10)

For large times, the behavior is nC�(t) ' (4� t)�1/2 and
limt!1 R(x; t) D 1. This means that the activity mea-
sured by nC�(t) slowly decays to zero and eventually all
the agents become fully correlated. Both features are sig-
natures of complete ordering, which is the fate of the voter
model in one dimension.

For d D 2 the situation is similar. Again, the density of
interfaces decays to zero and the correlation function ap-
proaches 1 for large times. However, the evolution is much
slower. The solution can be expressed in closed form using
the so-called elliptic integrals, but let us mention here only
the asymptotic behavior

nC�(t) '
�

2
1

ln(16t)
; t !1 : (11)

The behavior changes dramatically for d � 3, because
nC�(t) has a positive limit for t !1. In short, the activ-
ity never ceases and the voter model never reaches a totally
ordered state. Explicit calculations show that the station-
ary density of interfaces becomes

nC�(1) D

0

@2d
1Z

0

�
e�t I0(t)

�d dt

1

A

�1

: (12)

The asymptotic behavior of the Bessel function guarantees
that the integral converges for d > 2 and nC�(1) > 0.
Numerical values for some values of d are listed in Ta-
ble 1 below. One can also find how the density of interfaces
approaches its asymptotic value, nC�(t) � nC�(1) �
t1�(d/2).

All the above results for the voter model tacitly assume
an infinitely large lattice. In practice, e. g., in numerical
simulations, the system always consists of a finite number,
N D Ld , of sites. This implies that eventually the dynam-
ics lead to one of the two absorbing states, even for d � 3,
where the infinite system never orders. The time needed to
reach any of the absorbing states in a particular realization
of the process is called stopping time �st. The typical scale
for the stopping time, called consensus time �(N), diverges
in the thermodynamics limit. It is possible to show rigor-
ously [46] that the consensus time grows like �(N) � N2

in d D 1, � N lnN in d D 2 and � N for d � 3. These
formulae can be understood on an intuitive level, at least
in one dimension, where the dynamics is equivalent to dif-
fusion of domain walls, annihilating upon encounter. The
size of homogeneous areas grows, therefore, as the mean

displacement of a random walk,� t�1/2. The time needed
to cover the whole system of size N is therefore � N2.
A similar consideration is also feasible in higher dimen-
sions [36].

The asymptotics of the voter model on d-dimensional
hypercubic lattice are summarized in Table 1. Where the
behavior is indicated by “�”, the meaning is t !1 or
x !1 or N !1, according to the context.

Local Majority Models

Galam Model In democracy, consensus on an issue is
rarely achieved by simply waiting until one of the options
pervades the whole system through pairwise contact of in-
dividuals. Instead, there are various hierarchical levels of
decision making, each of which comes to a conclusion
based on the principle of majority. This is supposed to
lead to a state in which most people are satisfied, when the
opinion of the majority of those who participate in the de-
cision process is declared a law. If there were only a single
hierarchical level, namely a public referendum (Switzer-
land may serve as a model example), one could be quite
sure that the outcome really represents the majority opin-
ion in the society. However, as soon as there are more lev-
els, and decisions on lower level are passed on to levels
above, there is no obvious guarantee that the opinions are
not distorted or even reversed. Serge Galam devised a sim-
ple model demonstrating that the distortions may not be
an exception, but rather a rule [47,48,49,50,51].

The reason for breaking the society into several hier-
archical levels is that the cost of communication in a too
large collective is prohibitive. It is interesting that this is
also the main technical obstacle hindering the introduc-
tion of secure electronic elections. One can imagine vot-
ing for a presidential candidate from one’s home computer
over the Internet, but to make the protocol reliable enough
to ensure proper secrecy and resistance to any attempt at
fraud on the scale of an entire nation seems to be beyond
currently available technical capabilities [52].

So, the model takes it for granted that the society is
organized hierarchically and, on each level, the decision is
made within a small group, say, of 3 people. Within each
group, majority rule tells what opinion shall be held by the
representative of the group when sent to make decision on
the upper level. Now, suppose there are only two possible
choices, A and B and the fraction of people with opinion A
on the level l is nA(l). On the basic level, nA(0) represents
the concentration of A in the whole population.

Supposing that the people are not correlated in any
way, the concentrations nA(l) provide full information on
the system. Essentially, this is a kind of mean-field approx-
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Social Processes, Physical Models of, Table 1
Table of some properties of the voter model on a hypercubic lattice in d spatial dimensions

d nC�(1) nC�(t)� nC�(1) R(x;1) � (N) d nC�(1)
1 0 � t�1/2 1 � N2 3 0:329731 : : :
2 0 � (ln t)�1 1 � N lnN 4 0:403399 : : :
� 3 > 0 � t1�d/2 � jxj2�d � N 5 0:432410 : : :

1 1/2

imation, neglecting any social structure or network within
one hierarchical level. The model of majority decisions on
a complete graph, also studied in the literature [53,54], is
to large extent equivalent to the Galam model.

The dynamics of themodel consists in determining the
fraction of A at level nC 1 on the basis of the concentra-
tion on level n. For groups of size 3 it leads to the recur-
rence relation

nA(l C 1) D n3A(l)C 3 (1 � nA(l)) n2A(l) : (13)

The evolution according to this rule is depicted in Fig. 7a.
There are three fixed points at values nA fix D 0; 1, and 1/2,
which can be easily checked by insertion in (13). The two
extreme values are stable, while the middle point is an un-
stable fixed point. This reminds us of physical systems with
a phase transition, treated by renormalization group tech-
niques [55]. In that formalism, the unstable fixed point
corresponds to the critical value of a control parameter
and the stable fixed points represent the various possible
phases. Here there are two phases, populated uniformly by
either all A or all B opinions, constituting total consensus
on the issue.

The transition occurs at the symmetric point
nA fix D 1/2, where exactly half of the people have opin-
ion A. In this sense, the decision making is “fair” because

Social Processes, Physical Models of, Figure 7
Galam model. In a, graph of the recurrence relation for groups of size 3. The stairs indicate how the iterations of the relation drive
the system away from the unstable fixed point nA fix D 1/2. In b, an analogous scheme for groups of size 4 with infinitesimal bias in
favor of option B. Note the shift of the unstable fixed point to value nA fix D (1Cp13)/6

it leads to consensus according to the initial majority.
However, a seemingly minor modification makes a big
difference. Imagine that the groups formed at each level
are composed of an even number of persons, e. g., four.
The decision must be taken as to what to do if exactly half
of the group pushes for decision A but the rest for B. No
majority emerges and the tie must be resolved. If there
is an arbitrarily small bias towards one of the choices,
say, B, the recurrence relation for the concentrations of
opinion A is

nA(l C 1) D n4A(l)C 4 (1 � nA(l)) n3A(l) : (14)

Figure 7b shows what happens. The unstable fixed point is
shifted significantly to higher values of nA, namely to

nA fix D
1C
p
13

6
D 0:76759 : : : (15)

which means that opinion Bmaywin even if it was initially
in a minority!

The situation can be evenmore complicated if some of
the people systematically vote against the majority, instead
of following the crowd. Such agents are called contrari-
ans [56,57]. For simplicity, take (again) groups of size 3.
First, the majority option within the group in question is
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found, then each member of the group flips her opinion
with probability pc, which is to be interpreted as the con-
centration of contrarians in the population. The recursion
relation is modified to

nA(l C 1) D (1 � pc)
�
n3A(l)C 3 (1 � nA(l)) n2A(l)

�

C pc
�
(1 � nA(l))3 C 3(1 � nA(l))2nA(l)

�

(16)

and results in a shift of the stable fixed points away from
the endpoints of the interval [0; 1]. This means that total
consensus is never reached; the contrarians always intro-
duce a certain level of dissidence, but generally the final
decision respects the initial majority option in the soci-
ety. For pc < 1/6 this picture remains valid, as there are
three fixed points, with the unstable one keeping its posi-
tion at nA fix D 1/2. However, if the concentration of con-
trarians rises and pc > 1/6, the three fixed points coalesce
to a single stable fixed point at nA fix D 1/2. No consensus
is ever reached and the distribution of opinions tend to
a precisely equilibrated state of equally represented opin-
ions A and B. Several recent cases of popular referenda or
presidential elections ending in extremely narrow victories
come to mind, showing that the presence of contrarians
may have palpable consequences for our lives.

A natural question is, how fast is consensus ap-
proached as one climbs higher and higher up ladder of
hierarchies? It is evident that as we start closer to the un-
stable fixed point, it takes us more time to approach one of
the stable points. To get a quantitative estimate, let us turn
to the simplest case described by Eq. (13) and replace the
discrete level index l by a continuous variable l which can
be interpreted as time elapsed during the formation of the

Social Processes, Physical Models of, Figure 8
Galammodel with continuous levels, for group size 3. The evolution according to Eq. (17) is shown in a, with initial concentration of
opinion A equal n0 D 0:9, 0.7, 0.58, 0.51, 0.49, 0.42, 0.3, and 0.1 (from top to bottom). In b, the time to reach consensus in a society

of N people is shown. In this graph, c(N) D ln (N�2)2
N�1

consensus. Thus, the differential equation

d
dl

nA(l) D �nA(l)(nA(l)� 1)(2nA(l)� 1) (17)

is obtained, which can be solved relatively easily. The so-
lution for several initial conditions is shown in Fig. 8a. Of
course, starting from any point nA(0) inside the interval
(0; 1), the time to reach either of the stable fixed points 0 or
1 is infinite. However, in reality it is not necessary to reach
the fixed point exactly, because the population consists of
a finite number N of people, so full consensus is reached if
the procedure is stopped at a distance 1/N from the fixed
point. The time to achieve that diverges for increasing N
as� lnN , as will be seen from the explicit calculation.

To be more precise, the stopping time tst as a function
of the initial concentration n0 � nA(0) < 1/2 can be de-
fined by the formulae nA(0) D n0 and nA(tst(n0)) D 1/N,
expressing the initial and final conditions, respectively.
The case n0 > 1/2 differs only in the final condition, which
is nA(tst(n0)) D 1 � 1/N. Knowing the general solution of
(17) the formula is

tst(n0) D ln
n0(1 � n0)
(2n0 � 1)2

C ln
(N � 2)2

N � 1
: (18)

Hence the already-mentioned logarithmic divergence of
the stopping time for N !1. The N-independent part
of the stopping time can be seen in Fig. 8b. Note the di-
vergence for n0 ! 1/2, which can be regarded as a sign of
a certain kind of dynamic phase transition.

The Galam model has potential for extensions in
various directions and, indeed, it was further general-
ized [58,59,60,61,62,63,64,65,66,67,68]. For us, the most
physically relevant question is how the dynamics change
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if the people are distributed on a fixed lattice or net-
work [69,70,71]. After all, the Galam model has all the at-
tributes of a mean-field version of somemore complicated
model, even though it may not be obvious which one [72].
The next section will make the point more clear.

Sznajd Model Clearly, a group of people puts stronger
pressure on an individual than each member of the group
taken separately. Nature designed humans so that they fol-
low the crowd. If you see two or more people sharing an
opinion on certain issue, you are tempted to join. This is
the basic idea behind the model invented by Katarzyna Sz-
najd-Weron and Józef Sznajd (the daughter and the fa-
ther) [73]. In its first version, the model was defined on
a one-dimensional lattice of length N. Each site is inhab-
ited by an agent which can be in two states, denoted C1
and�1, as in the voter ormajority-rule models. It may cor-
respond to people choosing between two dominant brands
of a certain product in the market or voting in a two-party
political system. In each step of the dynamics, a pair of
neighbors is chosen randomly. If they are in the same state,
say, C1, then the two sites adjacent to the pair adopt the
same opinion C1, propagating the consensus outwards.
Conversely, if they differ in opinion, they propagate the
dissensus. The rule is shown schematically in Fig. 9.

Formally, suppose the chosen pair is in state (�(x);
�(x C 1)), at time t. If �(x) D �(x C 1), the neighbors
of the pair are updated as �tC1/N (x � 1) D �tC1/N(x C
2) D �(x), while for �(x) ¤ �(x C 1) the update rule is
�tC1/N (x � 1) D �(xC 1), �tC1/N (x C 2) D �(x). Unlike
the voter or majority rule model, there are three absorb-
ing states. Besides the obvious “ferromagnetic” states of all
C1 or all �1, there is the “antiferromagnetic” state where
the sites in states C1 and �1 alternate regularly. Strictly
speaking, there are two such states, one characterized by
C1 at sites with odd coordinates and the other by C1 at
even sites.

Looking at the rules more thoroughly, it is evident
that the linear chain can be divided into two sublattices,
one of them containing all odd coordinates x, the other
all even sites. The state of the agents in one sublattice is
never influenced by the agents in the other one. Moreover,
the dynamics within one sublattice are a trivial modifica-
tion of the voter model. The only difference is that in the
voter model, one site induces change of state of one of its
neighbors, while here the agent induces both of its neigh-
bors adopt its state. Indeed, the update rule can be written
as �tC1/N(x � 1) D �(x C 1), �tC1/N(x C 2) D �(x), ir-
respective of the relation between �(x) and �(x C 1) [74].
This observation simplifies the model to a large extent.
Indeed, it is equivalent to two copies of the voter model

evolving in parallel, where the only coupling between them
comes from the fact that the sites to be updated are neigh-
bors on the original lattice. The two voter models evolve
so that the update occurs at the same place in both copies.
However, the initial state of both sublattices is chosen ran-
domly and independently and many properties, for exam-
ple the concentrations of C1 in either of the sublattices,
remain uncorrelated forever.

Restricting the study to one sublattice only, the solu-
tion follows the same way as was used successfully for the
voter model. The flipping rates are analogous to (3), dif-
fering only in factor 2, originating from the fact that a site
induces a change in state of its two neighbors. This factor
means only a rescaling of time, so it is quite safe to neglect
it. The result for the voter model can be translated directly
to our case.

As a first application, let us look at the asymptotic
states. The probability of reaching the state of all C1 is
simply the concentration of C1 opinions in the initial
state. This holds for both sublattices independently. From
here, it is straightforward to deduce the probabilities PC,
P� and PAF that the system ends in absorbing states with
all C1, all �1, and the antiferromagnetic state, respec-
tively, as a function of the initial concentration ofC1 opin-
ions. Indeed, a state with all C1 means that both sublat-
tices reached the uniform C1 state (and similarly for �1)
while the antiferromagnetic state is obtained if one of the
sublattices ended in aC1 state and the other in a �1 state.
Hence

PC(nC) D n2C
P�(nC) D (1 � nC)2

PAF (nC) D 2(1 � nC)nC :

(19)

The history of a single agent is also interesting. Dur-
ing its evolution, it may change its state several (includ-
ing zero) times. The time elapsed between two subsequent
changes of state is called decision time tdec. It is natural to
ask, what is the probability distribution of decision times
of all agents? The answer relies on mapping the evolution
of the voter model onto diffusive motion of domain walls.
As explained in Sect. “Voter Model”, the domain walls
separating the regions of C1 and �1 opinions, evolve in
time like annihilating random walkers. Selecting an agent
at site x, its state flips if and only if the domain wall crosses
the point x. The decision time is nothing other than the
time between two successive visits of the random walker
to the same position x, or, using language familiar to ex-
perts in random walks, the decision time is the time of first
return of the random walk to the origin. Calculation of
this quantity can be found in probability theory textbooks.
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Model of Ref. [73]

8
ˆ̂<

ˆ̂:

(� C C �) �! (CCCC)
�
Sznajd model(� � � �) �! (�� ��)

(� � C �) �! (�C �C)
(� C � �) �! (�C �C)

Social Processes, Physical Models of, Figure 9
Illustration of the dynamics of opinions in the the model of Sznajd–Weron and Sznajd, as it appears in the first paper [73] and as it
was modified subsequently and named the “Sznajd model”. The dots replace any state of the site

The decision time distribution behaves asymptotically as
a power law

P>dec(t) � Probftdec > tg � t�1/2 ; t !1 (20)

and this is exactly what was found numerically in the
founding work of the Sznajds.

The solution obtained by mapping to the voter model
is only the beginning of the story. Things start to be excit-
ing again as soon as the “simplification” of the dynamic
rules introduced above is made, allowing only neighbor
pairs with equal states to influence their neighborhood. If
the two agents in the pair do not agree in their opinions,
nothing happens. In the scheme shown in Fig. 9 this corre-
sponds to taking only first two rows as allowed updates. It
is this modification that has beenwidely studied, and com-
mon consensus has assigned it the name Sznajd model (al-
though calling it “Sznajds’ ” would perhaps domore justice
to the authors).

As a first step in the analysis of the Sznajd model, it
is important to note that there are again three absorbing
states, all C1, all �1 and the antiferromagnetic one. But
now the antiferromagnetic state is unstable, because ran-
domly flipping a single site results in a nucleus of three
sites in the same state, which irresistibly invades the whole
system. But although unstable, the existence of such an ab-
sorbing state leaves important traces in the dynamics, as
will be more clear later.

The transition rates for the underlyingMarkov process
are

w(�; � x ) D
1
8

h
�(x � 2)�(x � 1)C �(x C 1)�(x C 2)

� �(x)
�
�(x � 2)C �(x � 1)C �(x C 1)

C �(x C 2)

C 2

i
:

(21)

It is instructive to compare this with Eq. (3) describing
voter model dynamics. The Sznajd model is a member of
the family of non-linear voter models. This means that
the transition rates depend non-linearly (quadratically, in
fact) on the states of sites other than x.

There is a rather standard technique of approximate
solution of similar systems, called the Kirkwood approxi-
mation. In our case, its use yields the probability for end-
ing in the allC1 state in the form

PC(nC) D
n2C

(1 � nC)2 C n2C
: (22)

Figure 10 compares this result with numerical simulations,
showing very good agreement.

Two more questions have been asked regarding the
one-dimensional Sznajd model. The first is the decision
time, introduced a short while ago. It was found numer-
ically [74] that it follows the same power law (20) as in
the previous case, where it resulted from underlying linear
voter dynamics. For the Sznajd model, no proof is avail-
able showing that this is the exact result, but it is pos-
sible to understand this result on an intuitive level. Al-
though the transition rates (21) correspond to a non-lin-
ear, rather than linear, voter model, the evolution of do-
main walls, responsible for the behavior of the decision
time, remains very similar. If the domain walls are far from
each other, they again perform a random walk. Non-lin-
earity comes into play only when the domain walls come

Social Processes, Physical Models of, Figure 10
One-dimensional Sznajd model. Probability of reaching the final
configuration of all sites in state C1, depending on the initial
concentration nC of C1 sites. The points are numerical simula-
tion data extracted from [75], the line is the analytical result (22)
obtained using the Kirkwood approximation
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close together, more precisely when they are one lattice
spacing apart. Then, they can no longer move freely, they
can make only one step towards one another, thus anni-
hilating each other. The dynamics is again those of a dif-
fusion-annihilation process, but the domain walls are not
independent; in addition to annihilation they interact at
a short distance.

The interaction is in fact a trace of the unstable anti-
ferromagnetic absorbing state. Two walls at distance one
form a small nucleus of antiferromagnetic state, thus slow-
ing down the dynamic with respect to free annihilating
random walkers. If by chance several domain walls come
so close that the distance between neighboring walls is 1,
they form an antiferromagnetically ordered cluster, where
the walls squeezed between another two walls from both
the left and right sides cannot move at all and the dynam-
ics is hindered even more.

However, for large times, the density of domain walls
is low and the influence of such antiferromagnetic islands
can be neglected. Therefore, it is no big surprise that the
power-law dependence of the decision time remains unaf-
fected, at least for large times.

The second interesting question is how many agents
never changed their opinion up to certain time t, or, what
is the persistence in the dynamics of the Sznajd model?
In the voter model in one dimension, there is an exact
analytical solution [44] showing that the fraction of sites
which retain their initial opinion at least to time t decays as
� t�3/8. It may seem quite surprising that the same behav-
ior was found numerically in the one-dimensional Sznajd
model [76,77]. However, applying the same arguments as
above, showing that the long-time dynamics is essentially
dominated by annihilating random walks of the domain
walls, it follows that it is quite plausible that the long-time
behavior of the persistence is governed by the same expo-
nent 3/8 both in the voter and the Sznajd models in one
dimension.

Agents organized on a line are now understood, and
it is natural to ask what changes if they are arranged
in a two-dimensional mesh, like the people scattered on
the surface of the Earth. For example, on a square lat-
tice, one-dimensional dynamics can be generalized in such
a way that a pair of neighboring agents is chosen, and if
the two have the same state, they make all their 6 near-
est neighbors share their state [78,79]. Slightly more for-
mally, let x be a random coordinate on a square lat-
tice with N D L2 sites and y D x� one of the 4 neigh-
bors of x. If �t(x) D �t(y), then the configuration is up-
dated as �tC1/N(x�) D �tC1/N (y�) D �t(x) for all � 2
f1; 2; 3; 4g. Numerical simulations show an interesting dif-
ference from the one-dimensional case. The probability

PC(nC) has discontinuity at nC D 1/2, indicating a dy-
namical phase transition, while in one dimension the de-
pendence is smooth. More strongly, the data suggest that
PC(nC) D 0 for nC < 1/2 and PC(nC) > 0 in the oppo-
site case nC > 1/2. This result is equally valid in any di-
mension larger than 1. In the limit of infinite dimension,
the behavior should coincide with the mean-field approxi-
mation, which implies putting the Sznajd model on a com-
plete graph [54]. Such a modification is analytically solv-
able, as we now show.

On a complete graph with N vertices, the config-
uration of the system is fully described by the num-
ber NC of agents in state C1 or by the magnetization
m D 2NC/N � 1. The evolution of the latter is governed
by transition rates which in the limit N !1 yield the
Fokker–Planck equation

@

@t
Pm(m; t) D �

@

@m

�
1
2
(1 � m2)mPm (m; t)

�
(23)

for the probability density Pm (m; t) of the magnetization
at time t. Before proceeding further, note that the aver-
age magnetization hmi(t) D

R
mPm (m; t)dm satisfies the

equation

d
dt
hmi(t) D

1
2
�
hmi(t) � hm3i(t)


; (24)

which has a structure similar to Eq. (17) describing the
dynamics of the Galam model. Indeed, equating m D

2nA � 1, identifying the level index with time, l D t, and
making the approximation hm3i D hmi3, thus neglecting
fluctuations, the Eqs. (17) and (24) coincide. So, the Galam
and Sznajd models are solved in one shot.

It can be easily verified that the general solution of
Eq. (23) has the form

Pm(m; t) D
1

(1 � m2)m
f
�
e�t/2

m
p
1 � m2

�
(25)

for arbitrary function f (y). The latter has to be determined
from initial conditions, and assuming that at the beginning
the magnetization was m0 for all realizations of the pro-
cess, it occurs that f (m/

p
1 � m2) D (1�m2)mı(m�m0).

Clearly, in this case the probability density consists of
a single ı-function which moves, as time passes, towards
one of the ends of the allowed interval for the magne-
tization, m 2 [�1; 1]. The dynamics is those of a pure
deterministic drift and no diffusion ever smears out the
evolving probability packet, as can be seen immediately
from the absence of a second-derivative term in Eq. (23).
Clearly, this is due to the limit of infinite system size and
for finite N there is an additional diffusive term in the
Fokker–Planck equation, proportional to N�1.
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The deterministic nature of the evolution of opinions
has profound consequences. First, the initial sharp ı-func-
tion distribution of magnetization remains sharp until the
end, thus justifying the neglect of fluctuations and the re-
placement hm3i D hmi3. The fluctuations are set on only
at times which diverge when N !1 and the equivalence
to the Galam model is exact in the thermodynamic limit.
In a finite system of size N, the typical time tst to reach the
absorbing state, starting frommagnetizationm0, can be es-
timated by requiring that drift brings the magnetization to
the distance of order � 1/N from either of the extremal
points m D ˙1. Expressed in terms of the initial concen-
tration of theC1 opinion, nC D (m0 C 1)/2, it is

tst ' ln
�
(1 � nC)nCN
(2nC � 1)2

�
: (26)

So, having clarified the close relation to the Galam model,
it comes as no surprise that the Eqs. (26) and (18) coincide
for large N .

For any positive initial magnetization the final state
is always the uniform configuration of all agents in state
C1, and vice versa. The probability of ending in the allC1
state is the step function PC D �(nC � 1/2). This is con-
sistent with simulations of the Sznajdmodel in dimensions
larger than 1 and confirms the existence of a dynamical
phase transition at nC D 1/2. It also shows that in a so-
ciety where everybody interacts with everybody, but no
person changes her opinion unless she meets at least two
other people who compel her to do so, the initial majority,
however narrow it is, always takes all. No chance is left to
minorities. Fortunately enough, reality is more complex.
The next section describes model implementations of one
common “complication”, that the number of choices is not
limited to two but can be large, or even very large.

Bounded Confidence

Axelrod Model

Definition One of the features characteristic of the way
culture is shared and propagated around the globe is that
similar cultures are much more prone to mutual conver-
gence, while incompatible lifestyles often coexist side by
side without visibly influencing each other. Robert Axel-
rod introduced a model [80] nicely describing such a situ-
ation.

In the Axelrod model, contrary to the voter or
Sznajd model, the character of each of the agents is given
by more than one feature. One can think of tastes regard-
ing food, sports, music, etc. These categories represent the
features. For each feature the taste can assume various val-
ues, e. g., somebody likes eating raw vegetables, spending

whole days in the fitness center and listening to Mozart in
the evenings, while somebody else feeds on French fries,
watches football on TV and adores the pop-star of the sea-
son. If two neighbors do not agree on any feature, they are
so different that they do not influence each other. Con-
versely, if they find at least one feature where they share
the same preference, one of them may find a second fea-
ture in which they do differ and change the preference on
that second feature so that it agrees with the preference
of the neighboring agent. The fact that the agents do not
always interact, but do so only if they have something in
common, is called bounded confidence.

More precisely, there are N D Ld agents placed
again on the d-dimensional hypercubic lattice � D

f0; 1; : : : ; L � 1gd with periodic boundary conditions and
endowed with F > 1 integers. The numbers represent
the values of its F features, so the state of the agent at
site x 2 � is described by the vector with coordinates
�(x; i) 2 Z, i D 1; 2; : : : ; F . The configuration space of
the model is Z��f1;:::;Fg and the evolution of the config-
uration � t is a Markov process determined by transition
rates

w(�; � x; f ;a) D
1
2d

2dX

�D1

�
�
A(x; x�)



�
�
F � A(x; x�)

��1
ıa;
(x�; f ) ; (27)

where the summation goes over the set of 2d neigh-
bors x� of the site x. We denoted here � x; f ;a

the configuration which differs from � only in fea-
ture f , so � x; f ;a(x; f ) D a and �(x; f ) ¤ a. The function
A(x; y) D

PF
gD1 ı
(x;g);
(y;g) counts the number of fea-

tures on which the agents at positions x and y agree, and
�(x) is the Heaviside function, �(x) D 1 for x > 0 and
zero otherwise. The first factor after the sum in (27) ac-
counts for the condition that the neighbors must agree
in at least one feature and the second factor is here due
to the fact that in each update the agent chooses ran-
domly among F � A (�(x); �(x�)) features in which she
disagrees with her neighbor.

Simulations If the two factors after the sum in (27) were
absent, the transition rates would depend linearly on the
states of the neighbors and a generalization of the linear
voter model would emerge, with all its beautiful solubility.
However, the non-linearity is there and makes the model
non-trivial. Lacking suitable analytical tools, it is necessary
to rely on numerical simulations.

To be precise, the rules of the dynamics of the Axel-
rod model implemented in simulations are as follows: On



8394 S Social Processes, Physical Models of

Social Processes, Physical Models of, Figure 11
Typical evolution of the Axelrod model on a square lattice with
periodic boundary conditions. In each row, snapshots of the
configuration in four times t1 < t2 < t3 < t4, from left to right,
where the last configuration is the absorbing state. The active
bonds are drawn in red, the bondswith full consensus inblue, the
bonds with absolute disagreement are leftwhite. The initial con-
dition is drawn from Zq with uniform probability. The parame-
ters are, from top to bottom, F D 3 and q D 2; F D 3 and q D 14;
F D 2 and qD 2. The frame in light gray around each configura-
tion is there only for visual convenience

a lattice of size N D Ld , time t is discrete and proceeds in
chunks of 1/N , so from time t to t C 1 there are as many
elementary updates as there are sites. One update step con-
sists of:

1. Choose a site x at random; randomly choose one if its
neighbors x�. Count the numberA of features in which
the agent at x agrees with the chosen neighbor.

2. If AD 0, do nothing. If 0 < A < F, randomly choose
a feature f among those in which the agent and the
neighbor differ. Then set the value of the feature f equal,
�tC1/N (x; f ) D �t(x�; f ).

One of the principal quantities of interest will be the den-
sity of active bonds, which is a generalization of the den-
sity of interfaces investigated in the voter model. A bond
connecting agents at sites x and y is called active if the
agents differ in at least one feature and also agree in at
least one feature, i. e., 0 < A(�(x); �(y)) < F . Their frac-
tion relative to the total number of bonds in the lattice will
be denoted nA(t).

When the number of active bonds drops to zero, af-
ter the stopping time �st, evolution freezes and the sys-
tem reaches one if its absorbing states. It means that all
neighbors are either identical or absolutely incompatible.
Clusters of agents which share the same values of all fea-
tures can be identified, while the borders of such clusters
are marked by bonds with no shared value. Even for the

simplest case of two features F D 2 and the set of allowed
values for these features constrained to only two elements,
there are infinitely many possible absorbing states charac-
terized by various cluster configurations. (For a finite lat-
tice this number is of course finite, but grows very fast with
the system size.) This leads to an important note: Speaking
of culture, there might be a good many stable configura-
tions and it is impossible (and improper) to discriminate
as to which is the best one.

A full characterization of the set of absorbing states
would be too difficult. A rough measure is the number
of agents in the largest cluster smax, compared to the total
number of agents N. When this figure is close to the total
system size, it means that the absorbing state is uniform,
or very close to it. If the size of the largest cluster is small,
or even remains finite when N !1, the absorbing state
is “multicultural” or fragmented intomany isolated islands
without mutual interaction, much like the hundreds of vil-
lages in Papua-New Guinea, each of them having its own
particular language.

The evolution and shape of the eventual absorbing
state depends critically on the initial condition. First, note
that if, at the beginning, all the values of the features be-
longed to certain subsetV � Z of integers, all features will
remain within the setV forever. The most important thing
is how large the set V is. But even when V is infinite, the
values can be mostly concentrated on a finite subset of V ,
very rarely going beyond it. A simple but reliable measure
of the effective size of the set V , taking into account how
often each member is actually present, is the inverse par-
ticipation ratio (IPR). Suppose that, in the initial state, the
probability of some feature of a randomly picked agent
having the ith value from the set V is pi. Then, the IPR
is

q�1 D
jV jX

iD1

p2i : (28)

Such a definition is motivated by a simple consideration:
if set V consists of the q lowest non-negative integers,
i. e., V D Zq � f0; 1; : : : ; q � 1g, and all members have
the same probability pi D 1/q, the inverse participation
ratio is exactly q�1. The integer q is simply the number
of elements which are participating, hence the name.

Phase Transition Let us look at how the Axelrod model
behaves on a two-dimensional square lattice. Recall that
the linear size of the lattice is L, so there are N D L2 agents.
The initial condition will consist in choosing the values of
all features for all agents independently from the same uni-
form distribution onZq . The typical evolution is shown in
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Social Processes, Physical Models of, Figure 12
Phase transition inAxelrodmodel on a square lattice of size L� L, for F D 3, when changing the localization parameter q of the initial
state. In a, relative size of the largest cluster, in b, average stopping time relative to the system size are shown. Different symbols
correspond to sizes L D 50 (4), L D 100 (�), and L D 200 (�). In the insets, dependence of the corresponding quantities on the
system size L2 are shown. Symbols correspond to parameters q D 5 (4), 14 (Þ), 15 (O), 16 (�), 20 (�), and 30 (×). The straight line
is the power� L�4/3

Fig. 11. For larger F and q the absorbing state is very frag-
mented, but decreasing q it becomes totally uniform and
a single cluster covers the entire lattice. On the other hand,
for small F the absorbing state contains a few moderately-
sized clusters.

These vague observations are put on a quantitative ba-
sis in Figs. 12 and 13. Let us look first at the behavior of
the average size of the largest cluster, hsmaxi, when the pa-
rameter q is changed. The most important finding is that,
at a certain value q D qc, there is a phase transition sep-
arating the regime q < qc, in which the maximum clus-
ter makes up a finite fraction of the whole lattice, from
the phase with q > qc, where the fraction of sites within
the largest cluster goes to zero for N !1. The quantity
hsmaxi/N can serve as an order parameter.

Another quantity which illustrates phase transition is
the average stopping time, i. e., the time to reach the ab-
sorbing state. Generically, it grows with the system size as
h�sti � N�(q), but below the transition it is proportional
to the system size, so �(q) D 1, while for q > qc it grows
more slowly, with the exponent �(q) ' 1/3. Interestingly,
comparison of the stopping timewith the size of the largest
cluster leads to the conclusion that, for F D 3, the two
quantities are roughly proportional, h�sti / hsmaxi, both of
them exhibiting a jump at the transition, suggesting that
the clusters grow linearly in time until they reach the ab-
sorbing state. On the other hand, for F D 2, such pro-
portionality is not observed. Instead, the average maxi-
mum cluster decreases continuously to zero when qc is ap-
proached from below and at the same time the stopping
time seems to diverge.

With discrete q, it is impossible to determine the po-
sition of the phase transition with high precision, but in

practice it is possible to make some reasonable estimates,
based on the dependence of hsmaxi/N on N, as shown in
the insets. For F D 3 the critical value of the parameter q
lies somewhere close to qc ' 15, while for F D 2 the esti-
mated value is qc ' 5.

A more important difference between cases F D 2 and
F D 3 than the numerical value of the transition point qc
is the very nature of the phase transition. It was already
shown that the stopping time normalized to the system
size blows up at the transition only for F D 2, remain-
ing finite for F D 3. With fair trustworthiness it is pos-
sible to say that for F D 2 the transition is continuous,
i. e., second-order, while for F D 3 the transition is clearly
a first-order one. Although it may be dangerous to rely
only on numerical data for the order parameter, the con-
clusion on the nature of the phase transition was also
supported by results for the distribution of cluster sizes
close to the transition. In Fig. 14a it can be seen that
the probability of finding in the absorbing state a clus-
ter of size larger than or equal to s decays as a power,
i. e., P>clust(s) � s1�˛ , with an obvious cutoff at large s
due to the finiteness of the lattice. The value of the ex-
ponent ˛ plays critical role. For F D 2 the estimate is
˛FD2 ' 1:6 and for F D 3 it is ˛FD3 ' 2:65. It has been
shown that the exponent does not depend on the number
of features as long as F � 3 [81]. How does the distribu-
tion of cluster sizes relate to the type of the phase transi-
tion? Denoting Nclust(N) the total number of clusters and
Pclust(s;N) D P>clust(s) � P>clust(s C 1) the fraction of clus-
ters of size s on the lattice with N sites, the result is

N D Nclust(N)
NX

sD1

sPclust(s;N) : (29)
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Phase transition in the Axelrod model on a square lattice of size L� L, for F D 2, when changing the localization parameter q of the
initial state. In a, relative size of the largest cluster, in b, average stopping time relative to the system size. In both panels, results
for the uniform initial distribution is plotted for sizes L D 50 (4), 100 (�), 200 (�). In the insets, dependence of the corresponding
quantities on the system size, for qD 5 (Þ), 6 (4), 7 (�), and 8 (�). The straight lines are power laws � L�4/3 In a, there are also
data extracted from [81], where the initial condition was assembled from Poisson-distributed integers; sizes were L D 50 (C) and
L D 150 (×)

If Pclust(s;N) � s�˛ and ˛ < 2, the sum on the right hand
side diverges when N !1. But the sum is simply the
average cluster size, the quantity which plays the role of
correlation length. The behavior resembles the percolation
transition and the diverging correlation length is an un-
mistakable characteristic of a second-order phase transi-
tion.

On the other hand, if Pclust(s;N) � s�˛ with ˛ > 2,
the sum converges. To keep the equality in (29) for
N !1, either the number of clusters must be propor-
tional to the system size, or, in addition to the power-law
complement, there must be an additional term in the dis-
tribution of cluster sizes, accounting for the largest cluster
of size smax ' N , i. e.,

Pclust(s;N) ' as�˛ C b ıs;smax : (30)

The former possibility occurs for q > qc and the latter for
q < qc. Indeed, the simulation data in Fig. 14a show the
presence of a ı-function part in (30), with positive weight
b > 0. Below the transition, the largest cluster spans es-
sentially whole system, and at qc its size drops discontinu-
ously to a value negligible with respect to N. This is typical
of first-order transitions.

These considerations are also compatible with the be-
havior of the stopping time as a function of q. For F D 2,
data indicate that h�sti/N diverges as q! qc, while for
F D 3 it remains constant. Interpreting the stopping time
as the correlation time of the dynamics, the model ex-
hibits exactly the same behaviors commonly observed
in the second- and first-order phase transitions, respec-
tively.

To conclude, the phase transition in the Axelrod
model is driven by the parameter q, measuring the local-
ization of values in the initial condition, and belongs to the
class of first-order transitions, if the number of features is
at least 3, while for only 2 features the transition is contin-
uous. Interestingly, the same dependence in terms of num-
ber of components is known in the Potts model. However,
one should bear in mind that the transition in the Axelrod
model has a purely dynamical origin. There is no equi-
librium besides the absorbing states, so the analogy with
phase transitions in equilibrium statistical physics must be
taken cautiously and with certain reserve.

Although the most interesting question touches the
properties of the absorbing states, it is instructive, also, to
see how the system approaches them. In Fig. 14b the evolu-
tion of the average number of active bonds is shown. The
averages are taken only over realizations which have not
yet reached the absorbing state. Around the time t ' 1,
i. e., after as many updates on the computer as there are
lattice sites, the density of interfaces decreases drastically.
When q > qc it brings the system quickly to the absorbing
state, while in the opposite case, q < qc, the activity rises
again and nA increases to a value close to nA ' 0:5. Then,
a very slow evolution follows. Most often, the evolution
ends due to an occasional hit into an absorbing state, but
this is, rather, a finite size effect, as demonstrated in the in-
set in Fig. 14b. When system size increases, slow evolution
is increasingly prolonged. To see the behavior at these very
long times is very difficult on a computer, but it seems that
the density of active bonds decays very slowly to zero, re-
sembling the logarithmic decay of the density of interfaces
in the two-dimensional voter model.
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Social Processes, Physical Models of, Figure 14
Axelrodmodel on a square lattice. In a, distribution of cluster sizes close to the transition q ' qc, averaged over 100 realizations. The
parameters are F D 2, qD 5, L D 200 (�), and F D 3, q D 15, L D 100 (4). The straight lines are power laws� s�0:6 and� s�1:65.
In the data for F D 3, note the the isolated points around s' 104 D L2 indicating that the distribution is composed of a power-law
part plus a ı-function located close to L2. In b, time dependence of the number of active bonds, averaged over realizations of the
process. The lattice size is L D 100, number of features F D 3 and different lines correspond to q D 5, 9, 14, 15, 16, and 18, from top
to bottom. In the inset, the dynamics is shown for F D 3, qD 5, and three lattice sizes, L D 30 (dotted line), 50 (dashed line), and 100
(solid line)

Bounded Confidence with Continuous Opinions

There may be a different view on consensus formation,
assuming that opinions on a certain issue can vary con-
tinuously, but a discussion on that subject and possible
convergence of the opinions cannot take place unless the
actual opinions are close enough. If the people differ too
much, they may even avoid mutual contact completely or
decide to use “different means”, an often-used euphemism
for killing the opponent. If, on the contrary, the differ-
ence in their opinions, measured by a continuous vari-
able, does not exceed a certain threshold, then the dif-
ference may be further diminished by discussions and
peaceful persuasion. This idea is called bounded confidence
and a kind of it is also a key ingredient of the Axelrod
model.

Linear Dynamics Modeling consensus formation using
continuous variables has been around for quite a long
time. Let us denote Fi as the variable describing the opin-
ion of the individual i. The simplest way to implement the
convergence of opinions, introduced by DeGroot [82], is
to assume that in an upcoming period, opinions are linear
combinations of the current opinions of all individuals

Fi(t C 1) D
X

Ai jFj(t) ; (31)

where A is a stochastic matrix, i. e., all its elements are
non-negative, Ai j � 0, and the sum of all its columns
is one,

P
i Ai j D 1. This is called a confidence matrix.

The diagonal elements are assumed to be strictly posi-

tive, Aii > 0, which means that the individuals have at
least some non-vanishing belief in their own opinions.
The new values of Fi are weighted averages of previ-
ous opinions, the weights being stored in the matrix A.
As such, the dynamics is very simple and is equivalent
to those of a Markov chain with transition probabilities
Aij.

In DeGroot’s model, the question of reaching a con-
sensus or not is reduced to the study of connected com-
ponents of the graph of direct interactions. When there
are more of them around, each of them reaches its own
consensus, independent of the others. This is quite simple.
Introducing bounded confidence adds complications.

Hegselmann and Krause The new opinion of individ-
ual i takes into account others’ opinions with weights Aij.
What if these weights are not constant, but depend on the
current opinions themselves? Although some attempts in
this direction have been made earlier [83], the principle
of bounded confidence was first applied in the models de-
veloped by the groups of Deffuant et al. [84] and Krause
and Hegselman [85,86]. Let us discuss the latter model
first.

The Hegselmann–Krause (HK) model [86] considers
opinion formation as a fully deterministic process, as in
DeGroot’s model investigated in the previous section. The
new opinion of an individual is the average of current
opinions of those (including the individual of concern)
whose opinions lie within a fixed confidence bound � > 0
from the individual’s own opinion.
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Evolution of the Hegselmann–Krause model. Each point represents one or more agents with specified value Fi. Total number of
agents is N D 200. In a, the confidence bound is � D 0:3, while in b it is � D 0:1. c shows how the approach to consensus is slowed
down when the confidence bound is close to its critical value. Here � D 0:24

For those pairs which do not differ more than " in their
opinions, the weights Aij are uniform, so

Ai j D

(
0 for jFi � Fjj > �
1

Ni�
for jFi � Fjj � � :

(32)

Obviously, the normalization constant is the number of in-
dividuals within the confidence bound, Ni� D jf j : jFi �
Fjj � �gj. Note that the dependence of the confidence ma-
trix on current opinions is very strongly non-linear. From
the formal point of view, the most important thing is that
the zero-pattern of the confidence matrix can also change
in time. It is possible to interpret it as changing the struc-
ture of the graph of directly communicating individuals.
To see if consensus is going to be reached, it is important
to observe whether the graph remains connected during
evolution. Clearly, once it splits into disconnected parts,
it will never join together again and consensus will not be
achieved.

To get an impression of how the evolution of the
HK model proceeds, look at Fig. 15. For a large enough
confidence bound ", the system approaches full consen-
sus, while lower values of " induce several stable com-

municating subgroups which do not interact with each
other, and the system splits into several clusters with dif-
ferent opinions. The number of such clusters grows as 1/�
when the confidence bound shrinks. Numerical simula-
tions show that the critical value �c, at which the full con-
sensus breaks down, approaches the value about �c ' 0:2
when the number of individuals increases. Interestingly,
when the confidence bound comes close to the critical
value �c, the number of steps needed to reach consensus
increases, suggesting that this is indeed a kind of a dynam-
ical phase transition. This behavior is rather robust, as it
persists in various modifications of the HK model, most
notably if the individuals can communicate only through
a regular lattice or a random network [87,88,89,90].

Deffuant et al. Apart from the initial condition, the
model of Hegselmann and Krause is fully deterministic
and opinions are updated in parallel. A similar model, but
with random sequential update, was introduced by G. Def-
fuant et al. [84].

There are, again, N individuals with opinions Fi. In
each update step, two of them, say, i and j, are chosen
randomly. Then, we check to see whether their opinions
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differ less than (or equally to) the confidence bound ". In
the positive case, their opinions are slightly shifted towards
each other

Fi(t C 1/N)
D (1 � �)Fi (t)C �Fj(t)

Fj(t C 1/N)
D �Fi(t)C (1 � �)Fj(t)

9
>>=

>>;
for jFi(t)�Fj(t)j � �

(33)

where � is a parameter fixing the rate of convergence.
For very large numbers of individuals, N !1, the

dynamics can be expressed in terms of the continuous dis-
tribution of opinions P( f ; t), which can be written for-
mally as

R f
0 P( f 0; t)d f 0 D limN!1

1
N
P

j �( f � Fj(t)).
The following innocent-looking rate equation is ob-
tained [91]

@

@t
P( f ; t) D

Z

j f1� f2j��

P( f1; t)P( f2; t)

�
�
ı((1 � �) f1 C � f2 � f )� ı( f1 � f )

�
d f1d f2 ;

(34)

which exhibits fairly complex behavior. Starting from the
uniform initial condition P( f ; 0) D 1 for f 2 [0; 1], the
configuration evolves into a stationary state composed of
one or several ı-functions, each of them corresponding to
one cluster of individuals sharing the same opinion.

To see this in a simple example, consider the case
� > 1. All individuals interact with each other, so their
opinions converge to a common limit f D 1/2. It is pos-
sible to see this when we use Eq. (34) to investigate the
time evolution of the moments of the distribution. Ob-
viously d

dt h f i D 0, so the average opinion is indepen-
dent of time, h f i D 1/2. The dispersion from the mean
h f 2ic D h f 2i � h f i2 obeys

d
dt
h f 2ic D �2�(1 � �)h f 2ic ; (35)

which means that the dispersion decays exponentially
to zero with rate �(1 � �). This confirms our intuition,
noted earlier, that � determines the speed of the evolution
towards the stationary state.

The behavior in the complementary regime of very
small " can be guessed, assuming that P( f ; t) does not vary
too wildly at scales comparable to " or shorter. This also
means that f is assumed to be farther than " from the ex-
tremal values 0 and 1. In this case, P( f1;2; t) is expanded
in a Taylor series and the integral on the right hand side
of (34) can be performed explicitly. Finally, the following

partial differential equation is obtained

@

@t
P( f ; t) D �

�3

3
�(1 � �)

@2

@x2
P2( f ; t) : (36)

There is a trivial homogeneous solution P( f ; t) D C, in-
dependent of f and t, which is, however, unstable at all
length scales. To see it, it is enough to linearize (36) close
to the uniform solution, P( f ; t) D C C D( f ; t), where
jD( f ; t)j 
 C, and express the result in terms of the
Fourier transform eD(k; t) of the small perturbation. The
result is @

@t
eD(k; t) D 2

3 k
2�3C�(1 � �)eD(k; t), indicating

that perturbations increase as their wavelength decreases.
On the other hand, if a stationary state is reached, the
structures created cannot be closer to each other than ".
This feature is lost in the derivation of Eq. (36), but nev-
ertheless the conclusion is that, for small ", the station-
ary state will be composed of regularly spaced ı-functions
with period proportional to ".

To see explicitly how the stationary state is approached
for general values of the confidence bound ", the solu-
tion of Eq. (34) should be found numerically. Examples
of such evolution are shown in Fig. 16. For large enough ",
all opinions converge to the common value 1/2, as in the
case � > 1. However, low " produces two or more dis-
tinct peaks. Detailed analysis [91,92] reveals that a se-
ries of bifurcations occurs in the system when the confi-
dence bound is decreased. The consensus breaks into sep-
arated groups suddenly at a critical value �c1, which break
themselves into more groups at �c2 < �c1 and so forth.
The numerically found value of the first critical point is
�c1 D 0:269 : : : But how do the peaks emerge from the
originally homogeneous distribution? It can be seen in
Fig. 16 that they are triggered by the original inhomogene-
ity at the edges of the interval [0; 1]. A structure of grad-
ually sharpening peaks propagates towards the middle of
the interval, where non-linear waves from opposite end-
points meet and form the resulting pattern.

This observation can be translated into common lan-
guage by saying that the ultimate fate of the opinions in
the society is largely in hands of the extremists. Indeed,
individuals close to the edges of the scale of possible opin-
ions are, from the very beginning, drawn towards the mid-
dle of the interval [0; 1], i. e., close to the centrist position,
while those who are farther from the edges than " keep
their opinions unchanged for some finite time. The crucial
question is, how far from the extreme will the former ex-
tremists move before they settle? It may happen that they
will drift so close to the midpoint that the centrists will
attract them all; full consensus follows. But the extremists
themselves can attract enough centrists and, instead of cre-
ating one peak at the center, two (or even more) peaks oc-
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Evolution of the Deffuant model with� D 0:5. In a, approach to consensus for confidence bound � D 0:27, slightly larger than the
critical value �c1. In a, two peaks are formed in the distribution of opinions, for � D 0:25

cur. The resulting society lives with polarized (or diversi-
fied) opinions. The parameter which decides the outcome
is the confidence bound ". Higher confidence leads to an
overwhelming consensus among people, while lower con-
fidence causes the society split into several non-communi-
cating communities.

Emergence of Social Classes

People are not equal. Not only do they differ in the color
of their eyes, in their ability to play chess or to run
amarathon race, but even individuals with very similar tal-
ents may find themselves very different in social status. All
attempts to bring more justice into such evident disequi-
librium has ended in desperate or even catastrophic fail-
ure. Perhaps the best one can do is to make the membranes
separating social levels as permeable as possible, so that no
one is a priori disqualified. The ubiquity of social stratifi-
cation in animal as well as human collectives is certainly
a phenomenon which calls for an explanation, and the fact
that rabbits, dogs, apes and Homo sapiens exhibit similar
behavior suggests some common mechanisms which may
not be too complicated after all, although they produce
highly complex outcomes.

Bonabeau Model

A newcomer in an animal group always has to undergo
some fighting before its placement in the social ladder is
commonly accepted. If, on the other hand, an individual
leaves the group for some prolonged period and returns
back, it has to fight again, as the previously established
level has faded away. These two observations motivated
Bonabeau et al. [93] to introduce a model of self-organized
hierarchies [93,94,95,96,97,98].

To be clear, the hierarchies are not understood in the
sense of trees with a king or a marshal on the top and
lesser ranks below. Instead, it means an ordering, each in-
dividual bearing a single number called strength, indicat-
ing its position among others. When two agents meet, the
stronger one has higher probability to be strengthened,
while the weaker is most likely pushed down even more.
The strengths of the agents who do not meet at this time
relax towards zero by a fixed fraction. More formally, the
configuration of the system at time t is described by the
collection of strengths Fi(t) of the agents i D 1; 2; : : : ;N.
In each step, a pair of agents is chosen to fight, i and j, say,
resulting in a change of the strengths by˙1 for the winner
and loser, respectively. Moreover, all strengths relax to the
reference (zero) level deterministically. Thus

Fi
�
t C

1
N

�
D


1 �

�

N

�
Fi(t)C�i j

Fj

�
t C

1
N

�
D


1 �

�

N

�
Fj(t) ��i j

Fk
�
t C

1
N

�
D


1 �

�

N

�
Fk(t) ; k ¤ i ; k ¤ j ;

(37)

with

Prob
˚
�i j D ˙1

�
D

1
1C e��(Fi (t)�F j(t))

: (38)

The parameter � tunes the level of randomness in the
dynamics, where �!1 corresponds to purely deter-
ministic outcomes, the stronger agent always beating the
weaker, while � D 0means that the strengths are increased
and decreased by mere chance.

So far, the question of which pairs of agents inter-
act and when, has not been dealt with. The most natural
choice is to place the individuals on a network, or simply
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on a square lattice, leaving some sites empty, and to al-
low the agents to diffuse along the edges of the network.
When two agents happen to meet at one site, they fight.
More than two agents on a site is not allowed; they behave
like hard hemispheres, each site being able to accommo-
date one full sphere. Numerical simulations of such sys-
tems [93,94,95,96,97] show that the change in the den-
sity of agents, or, equivalently, the relaxation rate �, in-
duces a phase transition from a uniform state with all
agents’ strength close to 0 to a hierarchical state where the
strengths are highly non-homogeneous. The order param-
eter is the dispersion of the number of fights won by the
agents, i. e.,

� D

vu
ut 1

N

NX

iD1

�
wi �

1
2

�2
;

wherewi D nCi /(n
C
i C n�i ) and n

C
i , n
�
i are the number of

encounters won and lost by the agent i, respectively. In the
homogeneous phase � D 0 while in the hierarchical phase
it has a finite value.

Mean-Field Solution

Analytical study is possible in the mean-field approxima-
tion. Indeed, if diffusion is fast enough to ensure many en-
counters with various agents during the typical time given
by the speed of relaxation of the strengths towards zero,
the spatial structure of the lattice on which the diffusion
takes place becomes irrelevant. In other words, at each
time step, two agents are chosen at random and allowed
to fight. In this case the dynamics is much simpler, and for
a large system the following deterministic evolution equa-
tions for the strengths is obtained:

dFi
dt
D ��Fi C

1
N

NX

jD1

sinh �(Fi � Fj)
1C cosh �(Fi � Fj)

: (39)

The stochastic term decreases as 1/N for large N, so it is
neglected here.

It can be easily seen that the average strength F D
1
N
P

i Fi relaxes exponentially to 0 according to dF
dt D

��F . So, it is sufficient to consider only stationary states
with zero mean, F D 0. The simplest of them, satisfy-
ing (39), is the trivial uniform state Fi D 0. This may be
unstable, though, and its linear stability must be investi-
gated.

Using the notation dFi
dt D Ri (F1; : : : ; FN ) for the ex-

pression occurring in (39), the eigenvalues of the matrix
Hi j D

@
@F j

Ri (0; : : : ; 0) should be inspected. Thus

Hi j D


��C

�

2

�
ıi j �

�

2N
: (40)

One of the eigenvectors is uniform, xi D 1, corresponding
to eigenvalue ��, which is always negative. The remain-
ing N � 1 eigenvectors have the form xi D 1 � Nıi k for
some k and they all belong to the same eigenvalue �2 � �.
If the latter is positive, the uniform solution of the Eq. (39)
is unstable. This happens for

� � �c �
�

2
(41)

and the question naturally occurs, what are the stationary
configurations beyond the critical value �c? Not very far
beyond the critical point, linear stability analysis can offer
a useful hint, but it needs to be complemented by the influ-
ence of the lowest non-linear terms. Therefore, expanding
the right-hand side of (39) up to the third order in the dif-
ferences Fi � Fj , one gets for the stationary state

(2� � �)Fi D
�3

12N

X

j

(Fi � Fj)3 : (42)

The solution is assumed in the form

Fi D aıi k � b (43)

suggested by the eigenvectors of Hij corresponding to un-
stable modes. Inserting the trial solution (43) into (42)
leads to a set of equations for the parameters a and bwhich
can be solved easily

a D

8
<

:

0 for � > �
2

˙
q

12N(��2�)
(N�2)�3 for � <

�
2

(44)

(2� � �)b D �
1

12N
�3a3 : (45)

Hence, the order parameter � is deduced. Note that in
the stationary state, the fraction wi of fights won by the
agent i should be balanced by a relaxation of the strength.
Indeed, 2wi � 1 is the average increase of the strength of
agent i in one step, which should be equal to �Fi . So,

� D �
qP

i F
2
i /N/2 and inserting the result (45) yields

� D

8
ˆ̂̂
<

ˆ̂̂
:

0 for � > �
2

�
�

r
3
N



1 � 2�

�

�
for � <

�
2 ;

�!
�
2 and N 	 1 :

(46)

How can this solution be interpreted? One may compare
it to a situation in a society with one master and many ser-
vants, a single emperor while all the rest are servants, equal
to each other in their subordination. This looks nice, but it
follows from the formulae (45) that this “realistic” solution
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always comes together with a mirror image of itself, a soci-
ety of a single servant subject to many equal masters. This
is an absurd situation, revealing something artificial in the
Bonabeau model itself. Indeed, the dynamics is invariant
with respect to inversion of all strengths, Fi ! �Fi , be-
cause no a priori advantage of being stronger was explic-
itly introduced. The only thing which was assumed was
that the strong grow stronger and the weak grow weaker.

Now let us turn back to mathematical aspects of the
model. It can be shown that a solution of type (43) ex-
ists for any value of � and �, with only the complication
that the equations for a and b become transcendental, thus
analytically insoluble. This would be too simple, though.
In fact, it is easy to find a stable solution in the limit
�!1, with � kept finite, and see that it differs com-
pletely from (43). The expression within the sum in (39)
becomes the sign function of the difference Fi � Fj and
the set of equations for the stationary state becomes

�Fi D
1
N

sign(Fi � Fj) (47)

and reordering the agents so that their strengths make an
increasing sequence F1 < F2 < : : : < FN one gets

Fi D
1
�N

(2i � N � 1) ; (48)

a society organized as a regular ladder of ranks. The order
parameter corresponding to such a state,

� D
1
3

�
1 �

1
N2

�
(49)

approaches a non-zero limit for N !1, contrary to the
configuration of (43) which is appropriate only in close
proximity to the critical point, and whose order parame-
ter decreases as N�1/2, as can be seen from (44).

Despite the obvious criticism that the essential mirror
symmetry Fi ! �Fi is unrealistic and leads to unaccept-
able solutions, the Bonabeau model manifests quite well
the basic idea of how the various social classes emerge.
Within this framework, hierarchies are due to dynamical
instabilities of the uniform state. The same general mech-
anism is also (at least partially) responsible for the stratifi-
cation of human society. Any departure from the mean, be
it positive or negative, is amplified. Any accidental misfor-
tune sends one almost invariably even deeper. That is the
whole mystery.

Future Directions

The prospects of physical modeling of social behavior are
larger than what is presented here. The study of the emer-
gence of cooperation within the framework of spatial and

repeated prisoner’s dilemma game is one of the classics. It
may be, and has been, generalized in various ways. For ex-
ample, one may wonder what happens if the agents could
move through the lattice, or along the edges of the gen-
eral graph representing the structure of the society. In-
deed, people do not sit on the same lattice point forever.
It turns out that, depending on the average velocity of the
agents’ movement, there is a phase transition. Less mobile
agents form a phase with a macroscopic fraction of collab-
orators, while beyond a certain level of mobility the collab-
orators vanish.

Bounded confidence models pose some subtle and still
unsolved problems. One of them concerns how the final
state depends on the number of agents, or, stated differ-
ently, on the granularity of the distribution of opinions on
the opinion axis. If the number of agents were arbitrarily
large, the density could be arbitrarily small and it could
happen that between any two agents there might be other
agents which maymediate ultimate consensus. If that were
true, the splitting of society into disparate groups would
be the effect of limited size. The conclusion sounds some-
what paradoxical: small societies are more likely to be di-
vided into non-communicating sub-cultures, while large
societies turn to be more homogeneous. Another question
naturally follows: how small must a social group be to al-
low disparate opinions to coexist? Implications for multi-
cultural studies are evident.

The dynamics of social strata are relatively less ex-
plored and the state of the problem presented heremust be
considered as preliminary. The societies sketched in these
models do not possess any internal structure, which would
either stabilize or slow-down the emergence of stratifica-
tion. Surely there is much space for future work here.

Some important areas were not covered at all, for ex-
ample the whole family of physically based models of the
birth and competition of languages [41,99]. Some social
phenomena also closely touch economics, but these are
covered by other articles in this Encyclopedia.
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Glossary

Social process A social process in the current context can
be defined as any series of events occurring where sev-
eral human beings enter into interaction. The defini-
tion may be extended to processes in which social ani-
mals are involved.

Model A model in the current context is defined as the
representation of some part of the real world, which
is called a target system, where this representation is
done in terms of some language, be it natural lan-
guage or some formal graphic and/or computer-exe-
cutable language. It represents real-world entities with
nouns in natural language or objects in typical pro-
gramming languages, properties of these entities with
adjectives in natural language or instance variables in
typical programming language, actions of these enti-
ties with verbs in natural language or methods and
procedures in programming languages, and relations
between such entities with relations between nouns or
objects in the respective languages.

Simulation Simulation is the execution of a formal model
of some process described in a programming language
on a computer.

Agent An agent in the current context is usually defined
as a piece of software that has some autonomy, i. e. op-
erates without other parts of a larger computer pro-
gram having direct control of its internal state and ac-
tions, that can communicate with other agents in some
kind of language, i. e. without direct access to other
agents’ inner state, that can perceive its environment
and can react on it, and that can also take the initia-
tive, i. e. can act without a stimulus from outside and
display goal-directed behavior.

System A system in the current context is a mathematical
structure consisting of a set of components (composi-
tion) belonging to the system, another set of things of
the same kind not belonging to the system (forming
the environment of the system) and a set of relations
defined on the set of things forming both composition
and environment and containing at least one relation
that changes the history of the involved things [6]. In
other contexts, “system” may have other connotations.

Definition of the Subject

The simulation of social processes has been a topic of both
the social sciences and computer science for more than five
decades and goes back to the first applications of comput-
ers. This is, among others, due to the fact that the first de-
velopers of computers were not only mathematicians and
people from electric engineering, but also economists and
even political scientists. As one can read in biographies
of Herbert A. Simon, a political scientist, [61] and John
von Neumann, a mathematician and game theorist, [49]
persons like these were fascinated by the idea that be-
yond mathematical analysis computer applications could
be made fruitful for the understanding of social processes.

Whereas cross-sectional analysis in the social sciences
had been supported by statistical methods even earlier, any
longitudinal analysis of societies needed more advanced
methods of analysis than statistics can provide.

Simulation of social processes comes in different
forms, as this entry will deal with in much more detail.
One usually distinguishes between pure macro-level sim-
ulations where one is only interested in what happens on
one level, usually a nation, a society, or an organization
and where only one entity – the whole system – is rep-
resented, from different kinds of multi-level simulations
where at least a system and its components or elements are
represented together with the interactions between levels
and interactions among the components.
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Simulation of social processes has several distinct aims.
On one hand, and this is usually the primary, but most
primitive aim, one is interested in the prediction of pro-
cesses (this is often done before the process is properly
understood and often leads to predictions that can only
be invalidated by empirical research performed after the
prediction). On the other hand, one is first interested to
understand what is going on in a social process (i. e. to
communicate to oneself what one believes are the ingre-
dients of a social process), to make this communicable to
others in order to be able to discuss one’s understanding
with colleagues, and to experimentwith themodel in order
to find out whether the executable simulation model be-
haves like the target system it represents. Simulation thus
plays a similar role as earlier kinds of models, e. g. a math-
ematical model in physics, which were qualified by Max
Planck [48] as “a system of terms and sentences, the so-
called physicist’s world view, which he endows to the best
of his knowledge in order that it – put in place of the real
world – should send him – if ever possible – the samemes-
sage as the real world would send”. And a computer pro-
gram written for simulation is just “a system of terms and
sentences” that – even literally – is able to send messages
to its user.

Introduction

This entry is organized as follows. The next section tries to
give an overview of social processes that have so far been
modelled for the purpose of simulation. As one will see,
there is a very wide range of social processes that have been
simulated with quite different simulation tools and ap-
proaches. And this section will, of course, give a more de-
tailed definition what a social process is, and it will shortly
deal with some system theories (unfortunately there are
very different ones under the same name) and analyze how
their adherents have used simulation to analyze what they
described as systems.

Section “Microanalytical Simulation” and Sect. “Multi-
level Simulation” will deal with two classical approaches to
social simulation. The two classical approaches are those
of system dynamics and of microanalytical simulation.
Both of them have a history of more than 50 years (their
learned societies celebrated their 50th anniversaries in Au-
gust 2007) and have found a wide audience, with system
dynamics still being an approach used from ecology to
management sciences, modelling ecosystems as well as the
planet as a whole, but also firms and markets, and with
microanalytical simulation still being an approach used to
predict consequences of tax and transfer reforms and the
age structure of future generations. While system dynam-

ics is a purely one-level, one-of-a-kind approach as it al-
ways represents exactly one undivided real-world system
in terms of its properties, thus hiding its components, mi-
croanalytical simulation represents a large number of non-
interacting men and women and/or households that react
on the stimuli given by the experimenter who is only in-
terested in the aggregate statistics which in turn never re-
spond to the behavior of the micro-entities. Thus, in both
of these classical approaches an important feature of social
processes is in a way missing, as both of them do not ac-
tually represent interactions between human beings and,
moreover, do not represent interactions between individ-
ual and group or individual and society.

Section “Multi-Agent Simulation” will deal with sev-
eral contemporary approaches that have not yet made
their way into the ministries or the boards of enter-
prises (with a few important exceptions that will be dis-
cussed). Common to all of these disparate approaches is
the attempt at representing processes in which interac-
tions among individuals and between levels play a major
role. Interactions can occur in topological neighborhoods
(as for instance in cellular automata) or in networks (as
in many agent-based or multi-agent simulations), some-
times neither neighborhood nor network topology is rep-
resented, and models restrict themselves to the micro-
macro interaction. Approaches of this type most often try
to represent cognitive processes beside social processes, as
at least in social systems of human beings much of the in-
teraction is controlled by cognitive processes in the minds
of participants. And it is still an open question whether
a valid representation of human social system can do with-
out taking account of cognitive processes, as it is an open
question whether taking only cognitive processes into ac-
count leads to an explanation of social processes (“mind is
not enough” [8], but “society is not enough” seems also to
be true).

Social Processes and Social Systems

Talking about social processes makes it necessary first to
define what a process is. Following Bunge [5] a process is
a sequence of states a thing had or has or will have over
time. It can be written as a time series whose elements de-
note the state of a thing at a certain point of time, the se-
quence of states being ordered with respect to time. Thus
a process can be represented with a sequence of vectors,
each vector representing the state of the thing at a certain
time, and each element of each vector representing one
of the properties of the thing that describe its state at this
time.
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When talking about social processes, what was called
“thing” in the preceding paragraph (and thus following
Bunge [5]) will always be a system composed of human be-
ings (and perhaps containing several levels of subsystems)
where the state of the system can and should be described
both on the system level and on the component level (and
perhaps on the levels defined by different subsystems). Al-
though system dynamics describes the state of the system
only on this upper level and neglects any subsystems and
components, and although microanalytic simulation de-
scribes the state of the system only on the level of either
households or individual (but usually not on both) and not
on the aggregate level (this is done only for calculating re-
sults), both of these approaches describe social processes
but in an incomplete manner.

But it will not be sufficient just to describe a social pro-
cess (as if videotaping it and looking at the video frame
after frame), instead it is necessary for understanding and
explaining why the process developed the way it developed
to construct a model as a means that can create the next
frame from the former frames, thus (re-) constructing the
laws the process obeys. For simple things such as those el-
ementary physics deals with this law was often represented
with a differential equation, one of the classical means of
modelling processes. For social systems, this representa-
tion is only rarely if ever appropriate, as the calculus does
not easily lend itself to describe a population and its mem-
bers at the same time. This is why system dynamics sets the
members of a population (members of an organization,
citizens of a country) aside and concentrates on the rela-
tively few properties of the system as a whole, which is also
done in some of the classic system theories – for Rapoport
(pp. 8–9 in [52]), for instance, “the simplest mathematical
description of a system – a model of a spring balance” is
the “equation L D L0 C kW where L is the length of the
stretched spring,W the suspended weight, L0 the ‘natural’
length of the spring (when W D 0), and k a constant that
represents the ‘stretchability’ of the spring.” This is exactly
the same view on a system as the one taken by system dy-
namics, where only the variable and constants attributes of
the system seem to be interesting, but not the interactions
between the parts of a system.

At least from the time of Coleman, but certainly even
earlier, e. g. in Durckheim [14], social processes have
been superficially representedwith the so-called “Coleman
boat” or “Coleman bath-tub”, a figure [9] that mirrors the
notion that processes on the level of, say, society, can be
observed on this level, but it is clear that it is not society
that “acts”, but whatever happens on the level of society
is performed by the actions of individual human beings
that are in a way under the control of the society and at the

same timemaking up society. In Coleman’s example, there
is an observable process in which protestant religious doc-
trine seems to have led to capitalism. This “single propo-
sition breaks into three: one with an independent variable
characterizing the society and a dependent variable char-
acterizing the individual; a second with both independent
and dependent variable characterizing the individual; and
a third with the independent variable characterizing the
individual and the dependent variable characterizing the
society. Thus the proposition begins and ends in themacro
level, but in between it dips to the level of the individ-
ual” [8]. The original macro proposition is usually repre-
sented with the deck of a boat, while the first of the three
new proposition forms its stern, the second is the keel
and the third is the bow of the boat. Thus, protestant re-
ligious doctrine introduced in a population (wherever this
doctrine might originate) influences the value system of
individuals, and the changed value system modifies their
economic behavior; finally this economic behavior of the
individuals modifies the characteristics of the population
as a whole (and this latter process is often called “emer-
gence”).

The first of these inter-level processes is mean-
while known as “immergence”, a term coined by Castel-
franchi [7] for the process by which – in Colemans’s ex-
ample – an individual becomes aware of a doctrine (“cog-
nitive emergence”) and decides to act according to this
doctrine; this process was already described by Durck-
heim [14] when he talks about “sociological phenomena
[that] penetrate into us by force or at the very least by bear-
ing down more or less heavily upon us”. The other pro-
cess, by which individuals change the state of the system
(population, organization, . . . ) qualitatively is often called
“emergence”.

System Dynamics

As superficially mentioned in earlier sections, system dy-
namics is a tool for modelling processes in social sys-
tems on a macro level. The approach originated in the
1950s, when Jay W. Forrester made his first steps in rep-
resenting social processes in terms of differential equa-
tions (as others had done before him, e. g. Herbert A. Si-
mon [59,60]) and found it necessary to include non-differ-
entiable functions into his models. This was how the pro-
gramming language DYNAMO was first invented, mean-
while superseded by more modern attempts at design-
ing modelling languages with graphical user interfaces,
a functional, i. e. declarative programming language, in
which the programmer does not (have to) describe how
the computer should perform its calculations, but only
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Social Processes, Simulation Models of, Figure 1
Graphical representation of Forrester’s sales growth model, using the STELLA simulation tool

which invariants should hold over time. An invariant in
this sense is an equation that holds true even when the
states of a thing or system change (for instance, even if the
size of population is changing over time, its growth rate
could be constant for a long period, such that for all times
the equation size(t C 1) D size(t)C growthrate  size(t)
holds). System dynamics is of course much more sophisti-
cated, but the equation in the preceding sentence is a typ-
ical representative of equations in system dynamics mod-
els. The first step in modelling is usually a graphical model
showing the dependencies and feedbacks between the at-
tributes of the modelled macro system. These attributes
come in several different kinds, the twomain kinds of vari-
ables being levels and rates. Levels are state variables, usu-
ally describing something like material stocks (inventory
of a warehouse, size of a population etc.), whereas rates
are state change variables, usually describing the material
flow into a stock and from a stock per time unit. Beside
these, auxiliary variables serve as abbreviations, and con-
stants can be defined.

Among the target systems modelled with the help
of system dynamics and the respective tools, there are
agglomerations [18], industrial enterprises [16], ecosys-
tems [2] as well as the world as a whole [19,42,43].

A relatively simple example of system dynamics mod-
elling can be found in [17] where a firm with its “sales
growth and saturation” is modelled and simulated. The

only properties of this firm considered are the current
salesperson staff, the backlog of unprocessed orders and
the delivery delay recognized. These “level variables” are
connected to each other via several “rate variables” – sales-
persons hired, change in delivery delay recognized, or-
ders entered and orders completed – and several “auxiliary
variables” – sales effectiveness, orders booked, budget, in-
dicated salespersons, delivery rate, delivery delay impend-
ing – and a few constants – salespersons adjustment time,
revenue to sales and time for delivery delay recognition.
A STELLA representation of the model makes the idea be-
hind the model sufficiently clear (see Fig. 1).

The simulation of this model shows the time series in
several variables of this fictitious firm: The model starts
with 10 salespersons and a high budget (stemming from
a large number of orders), thus more salespersons are
hired who bring more and more orders, more than can
be processed such that the backlog quickly increases and
the sales effectiveness decreases after some time. This is
the signal for hiring less new salespersons, but the deliv-
ery delay cannot be decreased in the long run, as a still
rising number of salespersons continue to bring more or-
ders.

The graph in Fig. 2 shows some of the drawbacks of
the approach: at any time (except at the start) the number
of salespersons is a non-integer number, and at any time
the number of newly hired persons is also a non-integer
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Social Processes, Simulation Models of, Figure 2
Graphical output of the sales growth STELLAmodel

number ranging from 0.13 to 1.85 whereas, of course, in
a real firm, persons would be hired on a full-time or half-
time base, but numbers such as 0.13 or 1.85 would be quite
unlikely.

At the other end of the range of applications, the world
models of the early 1970 can be placed, which became very
famous as the Club of Rome funded and published them.
Their objective was to predict the consequences of the
world population growth for the use of resources and the
pollution. Forrester’s version [19] is replicated in a Net-
Logo 4.0 reimplementation shown in Fig. 3. This model
has only five level variables – population, resources, pol-
lution, capital investment (in industry) and capital invest-
ment in agriculture – which are linked together by nine
rate variables and a large number of auxiliary variables
and constants. The growth of the world population, for
instance, is determined by two rate variables that contain
the numbers of births and deaths, respectively, per time
unit, and these in turn are determined by natural birth
and death rates (biological constants, as it were) and sev-
eral multipliers, auxiliary variables that transport the in-
fluences of causes such as pollution, food availability etc.;
resources is another level variable, and this one is only de-
termined by one rate variable, namely the decrease in re-
sources per time unit, as Forrester (and also his successors
in Meadows’s research group) did not foresee that new re-
sources might be discovered that were not known at the

beginning of the simulation run (1900) or at the time when
the simulation model was designed (1970).

The output of the model (see Fig. 4) shows what was
predicted in the 1970s: a continued increase in the world
population up to 8.6 billion in 2040, a decrease in available
resources from 900 billion units (whatever these mean)
in 1900 to 445 billion in 2040, and an increase in pollu-
tion from 200 million to 20 billion units (of another kind)
in about 2050 – a result that was discussed worldwide in
the 1970 (and perhaps this discussion was the reason why
the predictions did not come out true 40 years later – al-
though Meadows in [43] seems to have believed that his
predictions were validated by the two decades after [42]
appeared.

It is one of the big advantages of system dynamics
models that they are easy to understand, easy to develop
and to maintain and that they deliver plausible predic-
tions that can easily be validated (or invalidated) against
empirical data, though only after several decades. One of
their important drawbacks is that the estimation of their
input parameters is difficult if not impossible. Take as an
example the estimation of a function between the pollu-
tion ratio and the pollution dependent death-rate multi-
plier (the pollution ratio is the actual pollution divided by
the “pollution standard”, which is defined as 3.6 billion
pollution units – approximately the pollution in 1975). In
Forrester’s world model this function is programmed as
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Social Processes, Simulation Models of, Figure 3
Forrester’s WORLD2model in a NetLogo 4.0 implementation

a table function (see Fig. 5), but in many cases it is quite
questionable how the form of such a function was esti-
mated.

In [42], the estimation of parameters for many func-
tions between auxiliary variables is explained. The strategy
of estimating the parameters of these functions is in most
cases the same: it is usually the result of a nonlinear re-
gression between – to take the preceding example – the
pollution rate and the death rate pollution multiplier esti-
mated from as many countries of the world as data could
be found from, thus believing that synchronously found
data from various places in the world were representative
of data for the world as a whole collected at different points
of time.

Microanalytical Simulation

Microanalytical simulation [22,47] has its origin in the ne-
cessity of predicting tax income and tax loads as well as
the cost of social transfer. Every modern state needs in-
formation on how much taxes must be levied on its citi-
zens in order to perform all the tasks of the state and how

much social security contributions must be levied in or-
der to pay retirement income, and it needs to know how
many children will enter and leave the school system, how
many students will enter and leave universities, how many
people will enter the labor force at what time of their life
and leave it at the time of their retirement, and, lastly, how
many people will have near relatives who might be ready
and willing to nurse them when they are in need. Whereas
the age structure can be estimated even with difference
equations, thus with system dynamics techniques, at least
the last of the mentioned questions (which takes kinship
networks into account) can only be answered on the mi-
cro level.

Microanalytical simulation always starts with a large
representative sample of the target population. The sam-
pling units are usually households (of which all members
are interviewed), and the attributes sampled are at least
age, gender, marital, educational and socio-economic sta-
tus as well as the links to other members of the same
household. This sample is then updated for every time
step (usually one year) to answer the questions mentioned
above for some time in the future.
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Social Processes, Simulation Models of, Figure 4
Some time series of Forrester’sWORLD2model, from a NetLogo 4.0 implementation

Microanalytical simulation has two easily distinguish-
able variants. They are usually labelled “static microsim-
ulation” and “dynamic microsimulation”. The former is
static in so far as the attributes of the sample individuals
are not changed over time, only the weights of the indi-
vidual are updated in order to be representative for some
macro variables where the information about the compo-
sition are taken from other (demographic or econometric)
models. This static simulation is used only for short-time
predictions, for instance for estimating tax loads due to
revised tax regulation. Dynamic microsimulation changes
all individual attributes according to known or estimated
probabilities of state changes (for instance age-dependent
birth, death, marriage and divorce rates or frequencies of
transitions within the educational system and from the ed-
ucational system into the labor force). For every time step,
every micro entity has to be updated, and its link to other
micro entities has to be revised, too. As compared to static
microsimulation, this variant has the advantage that all
state changes are endogenous and, more important, that
state transition probabilities can be disaggregated to small
sectors of the target and sample population (for instance,
assuming different probabilities of giving birth to a first,

second, third etc. child for women of different age groups,
of different educational and socio-economic state), given
that sufficient evidence for estimating such probabilities is
available.

Early microanalytic simulation models were always
programmed in general purpose programming languages
from scratch, without using any particular tools. Their re-
sults were only partially published as research was mostly
done for state agencies who were not always interested in
having all the details of models published. Only recently,
toolboxes such as UMDBS [56] and CoMicS [31] became
available which lend themselves to be used in academic re-
search and teaching, the more so as inmany countries data
sets of large representative samples and even panels have
become available to the academic public for more than
a decade now.

Multilevel Simulation

Multilevel and multi-agent simulations, different as they
may be, always had their focus on interactions either
among agents of the same kind or between agents of dif-
ferent levels or both. With levels, these approaches under-
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How system dynamics defines functions between its variables: the dependence of the death ratemultiplier on the pollution ratio

stand different kinds of systems, where the elements of the
systems of one kind are systems of the other kind [6]. To
give an example: From the biologist’s point of view, hu-
man beings are systems of one kind (composed of dif-
ferent kinds of tissues, or of cells, etc.), and on the other
hand they can be seen as elements of systems called hu-
man groups, or populations, or societies etc. And what
multilevel simulations are interested in is the interaction
between, for instance, the group and an individual, be-
tween the macro and the micro level, thus focusing on
the stern and bow of the “Coleman boat” [9]. Multi-agent
simulation models are usually less focused on the inter-
level interaction and more on the inter-agent interaction,
but they, too, are usually interested in detecting properties
emerging on the macro level.

More often than not, the label “multi1-agent simula-
tion” is used for models in which the micro entities display
only very simple behavior, have only very few states and do
not communicate with other micro entities (in any reason-
able sense of the word “communicate”), have no memory
and make no decision. To distinguish these from multi-
agent models proper (see the next section), they will here
be labelled as “multilevel” models.

A first, quite well-known example may illustrate this.
Thomas Schelling [57,58] designed a model in which

(rather primitive) agents have to decide whether they
move from one neighborhood into another, in which they
can expect to be happier. Their happiness depends on the
composition of their neighborhood, given that agents dif-
fer only with respect to one dichotomous property (say,
their native language) – they are the happier, the more
people in their neighborhood speak the same language,
and there is a threshold where happiness turns into unhap-
piness. The world in Schelling’s model is represented with
a cellular automaton (see the chapter on cellular automata
in this Encyclopaedia), and the neighborhood consists of
the eight cells around an agent, which may be empty or
inhabited by another agent. The central agent is happy if
the language distribution in its neighborhood is such that
a certain percentage of its neighbors speak the same lan-
guage. In each time step, every agent scans its neighbor-
hood and decides whether to move or stay, if it decides
to move it tries to find another cell where the neighbor-
hood is more attractive than in its original cell. One re-
alization [67] of this model is shown in the two parts of
Fig. 6.

It shows that the random distribution of red and green
agents soon changes into a distribution with clearly distin-
guishable red and green clusters, part of which are even
separated by uninhabited zones. The threshold between
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Schelling’s segregation model (left: initialization, right: state of the macro level when all individuals are happy with their neighbor-
hoods)

happiness and unhappiness in this example is 30 per cent,
i. e. an agent moves only if more than 70 per cent in
its neighborhood are different from itself. Although these
agents are quite tolerant with respect to strangers, clusters
occur; and these clusters are larger and better separated
when the tolerance threshold is higher. One should note
here that the Schelling model takes only local interactions
between agents into account; there is no interaction be-
tween levels if only in so far as the structure of the macro
level changes due to the individual interactions, but it does
not feedback into the micro level as the agents are not ca-
pable of recognizing what happens on the macro level.

Another early approach to multilevel modelling of so-
cial processes is mainly interested in the interactions be-
tween the levels. It was originally developed by Hermann
Haken [21], a German physicist who tried to apply the
methods with which he had done research in laser physics
to other disciplines, including sociology, and extended by
his colleagues Wolfgang Weidlich and Günter Haag [66].
This approach, called synergetics by Haken, is currently
better known as sociophysics or econophysics. Although
the micro level entities are often also called agents by sev-
eral authors, they are only particles as they only react on
something like social forces or fields that are modelled in
a manner very similar to the description of gravitational,
electrostatic and electromagnetic forces and fields.

The original work by Weidlich and Haag [66] de-
scribes populations consisting of a large number of indi-
viduals where the individuals usually have only one dis-
crete state variable which is either binary or can take only
very few values, and the state change of the individu-
als depends on the macro state which is in turn deter-

mined by the individual state changes. The simplest ex-
ample may make this clear: Imagine a population whose
members have to decide between two options (yes and no)
and whose decision depends on the perceived current ma-
jority in such a way that the probability of switching from
no to yes is the higher, the larger the current yes majority
is and the other way round. Then under certain assump-
tions of modelling the exact function between the current
yesmajority and the individual transition probabilities, the
population as a whole shows some interesting behavior.
In the example the two individual transition probabilities
have the following form:

�yes no D � exp(� C �x)

�no yes D � exp[�(� C �x)] ;

where � is a flexibility parameter, � is a preference param-
eter, and � is a coupling parameter, whereas x describes the
current state of the population (x D �1 means “all no”,
x D C1 means “all yes”). The flexibility parameter only
determines how likely any change between options is; the
preference parameter determines whether changes from
yes to no are generally more likely than those from no to
yes (if it is negative) or the other way round (if it is posi-
tive); and the coupling parameter determines the strength
of the influence the population exerts on the individual.
It goes without saying that any individual change changes
the state of the population. Figure 7 shows a typical out-
come of a simulation of this very abstract social process.
Each of the curves represents the history of the state of
one out of twenty populations (all of them with a vanish-
ing preference parameter and a coupling parameter of 1.4);
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History of 20 populations whose members change their state with a probability that depends on the state of the population

some of the curves show that their populations soon de-
velop into populations with a very high yes majority while
others become populations with a high no probability, but
none of them is ever entirely homogeneous. A more con-
crete social process that is likely to behave similarly is the
distribution of two alternative goods that are not easily
compatible, e. g. computer operating systems or videotape
machines; here one could expect a high coupling as be-
ing with the majority makes the exchange of programs or
videos easier. A low coupling constant results in an out-
come where all populations are more or less evenly split in
yes and no members – which in reality could be the case
when the two alternative goods are easily compatible or
substitutable, e. g. cigarette brands.

Extensions of this model were proposed by Lumsden
and Wilson [41] who replaced the exponential function
in the formula for the individual transition probabilities
with other types of functions, to explain the co-evolution
between “genes, mind, and culture”. Other extensions, al-
ready given in [66], deal with several populations interact-
ing with each other, the individual transition probabilities
not only depending on the state of the members’ own pop-
ulation, but also on the state of other populations, for in-
stance modelling migration behavior of two populations
between two regions.

Helbing [26] extended the models of his teachers,
Wolfgang Weidlich and Günter Haag, in a way that he
described as “quantitative sociodynamics”. Much like his

teachers he used closed solutions wherever possible to an-
alyze the abstract social processes that he formalized, at
the same time extending the focus not only to interac-
tions between levels but also to interactions between in-
dividuals [24,25] which he also used to model the behav-
ior of traffic participants, mainly pedestrians [24,27]. Here
again, individual human beings are modelled as particles
in a field and not endowed with the familiar human capa-
bilities of decision making. In Helbing’s pedestrian mod-
els (e. g. [27]) the pedestrians are just particles moving in
a “social field”, a term originally coined by Lewin [38], ac-
cording to whose theory “behavioral changes are guided
by so-called social fields or social forces, which has later
on been put into mathematical terms” (p. 625 in [27]).
These particle-pedestrians are accelerated at any time by
a force which is determined by their desired directions
and speeds and a repulsive force which keeps them apart
from each other and from obstacles. Although the com-
parison between simulation results and video recordings
of real pedestrian behavior shows nearly no qualitative dif-
ference, the particle-pedestrian are far from the definition
of agents that is used by other authors who describe their
simulations as multi-agent models.

Another kind of “social field” models was used to ana-
lyze attitude formation processes in an artificial society
where the attitudes were not binary or categorical, but
continuous. Models like these were inspired by Anthony
Downs’s early theory on party affiliation [13]. Downs as-
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sumed that voters moved in a continuous attitude space
(one-dimensional, from left to right) and were attracted or
repelled by parties, and he believed that under certain cir-
cumstances a polarization of the electorate would emerge
with high frequencies on the left and right wings and low
frequencies in the middle, but he never formalized this
theory. Several different formalizations were published in
the sequel which tried to explain polarization without the
interference of parties. One of these formalizations was in-
spired by empirical data which – for some German elec-
tions in the past – showed such a polarization in terms of
a bi- or multimodal frequency distribution of voters over
their attitude space which emerged during election cam-
paigns and vanished shortly after the election [63]. The
simulation runs started with a sample of a large numbers
of model entities which obeyed an approximate bivariate
normal distribution at the beginning (samples are never
perfectly normal) entities then tried to move according
to a function which was composed of the gradient of the
frequency density distribution and some random effect.
Thesemovements changed the frequency density distribu-
tion, which in turn changed the gradient. In most simula-
tion runs the frequency density functions became bimodal
or multimodal after some time. Another representative of
models inspired by Downs was presented by Guillaume
Deffuant and is colleagues [12]. Here the simulated en-
tities have a one-dimensional continuous attitude (much
like in [63]), but additionally something like persuasive
power, and as in [63], typically multimodal distributions
emerge with modes both in the center but also at the ends
of the attitude range, representing extremists in real elec-
torates.

The approach in [12] is in some way similar to so-
cial impact theory developed by Bibb Latané [34] who also
combined attitude and persuasive power, but let simulated
entities interact on a grid, thus introducing topography
and restricting interaction to near-neighbor interaction.
The simulation models following his theory [35,36] show,
similarly to the synergetic models, a survival of minori-
ties, but also the clusters observed in Schelling’s migration
models (although the simulated entities in the social im-
pact theory do not move in topological space).

Multi-Agent Simulation

An example that can easily be compared to the pedestrian
models is the riot behavior model of Wander Jager and
colleagues [29]. Here, agents belong to two different sub-
populations (party 1, party 2) which can be imagined as the
fans of two competing football clubs. Besides moving in
a two-dimensional space, they can decide to fight or with-

draw. In a version with police as a third subpopulation,
the agents of this kind have additional behavioral options.
Which action an agent takes does not depend on anything
like a social field (at least not in the sense of Helbing, but
perhaps in the sense of Lewin), but on their perceptions of
the behavior of other agents in their neighborhood. These
agents follow more or less the definition of agents that was
given by Wooldridge and Jenkins [69] and which is cur-
rently the most often cited definition of agents:

An agent is a piece of software that

� has some autonomy, i. e. operates without other parts
of a larger computer program having direct control of
its internal state and actions,

� can communicate with other agents in some kind of
language, i. e. without direct access to other agents’ in-
ner state,

� can perceive its environment and can react on it, and
� can also take the initiative, i. e. can act without a stimu-

lus from outside and display goal-directed behavior.

This results in several requirements: In order to be able
to take the initiative (to be pro-active), agents must have
goals (descriptions of desired and possible states of their
neighborhood or surroundings, including themselves) and
must be able to compare their perceived state of their envi-
ronment to their goals. According to the outcome of such
a comparison, they must decide between several possible
actions which they have to evaluate, and moreover they
must be able to design a plan (i. e. a course of possible ac-
tions) if there is no action that leads them directly to their
goal. Another requirement can be that agents communi-
cate with other agents, for instance asking them for their
help when only co-operation enables them to achieve their
goals.

Among the early forerunners of multi-agent systems
in the social sciences at least two can be named where pro-
cesses of voter attitude changes are modelled and simu-
lated. Although the poor computer languages of the late
1950s and early 1960s did not allow for agents in the sense
of our days, any re-implementation would nowadays be
a multi-agent system with several classes of agents (rep-
resenting voters, candidates, media channels, as in [1] or
in the Simulmatics project supporting John F. Kennedy’s
election campaign [11]) as they dealt with the communi-
cations among citizens, between citizens and candidates as
well as between citizens and media channels and modelled
their behavior and actions in a rule-based manner.

A classical example that fulfills most of the require-
ments raised in [69] is Epstein’s and Axtell’s attempt at
building “Social Science from the Bottom Up” [15], an ar-
tificial world in which agents make their living on two dif-
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ferent crops which they harvest, store, consume and barter
according to their needs and the available resources. An
extension of this artificial world can be found in [32]. In
addition to all the features of the artificial society in [15],
these agents can subordinate to others if the latter of-
fer themselves as co-ordinators and promise their subor-
dinates to inform them about the state of a wider envi-
ronment than they can perceive individually, while the
subordinates in turn provide their chieftains with their
local information and pay a certain tribute from what
they harvest. To be able to do all this, all agents have
a long-term memory in which they store information
about their world and which can guide them to places
in their world that promise a rich harvest of the kind
of crop they actually need. This extended model shows
that a world with co-ordinators and subordinates is more
sustainable than a world in which all agents try to har-
vest on their own; it also shows that lonely agents are
best off when times are getting better, whereas subordi-
nating pays best when times are getting worse and be-
ing a co-ordinator pays best when times are worst. Fig-
ure 8 is a part of two plots written by the simulation

Social Processes, Simulation Models of, Figure 8
Development of an artificial society whose members can declare themselves co-ordinators and subordinates, respectively (graphs
produced by the simulation model described in [32])

program: the green curve in the upper graph shows the
development of food available over time, the blue one
shows the number of surviving agents over time, while
the three curves in the lower graph show the average “in-
come” of the three types of agents (blue. the lonely agents,
magenta: the chieftains, yellow: the subordinates) – “bad
times” is when the overall available food is at its mini-
mum, “good times” is when it is at a maximum. Among
others, Fig. 8 shows that the macro behavior of the pro-
cess is the same as the behavior of the well-known Lotka–
Volterra model [39,65], but the classical coupled differen-
tial equations of this model or the stochastic process de-
scribed in [66] would not have been able to display the ad-
ditional information about the fate of the three kinds of
agents.

Validating a model [64] such as the one described
above is nearly impossible, as the model describes an ab-
stract social process which is very unlikely to have ever
occurred in reality. Nevertheless, this model makes a pre-
diction that is quite similar to the prediction of another
agent-based simulation [52,54]: “In a society of herdsmen
and farmers in Western Africa, decisions which rest on
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friendship networks (‘friend-priority’ decisions) proved to
be much more effective then decisions which were made
on pure cost deliberations (‘cost priority’ decisions).” See
p. 189 in [52]. The papers quoted here are at the same time
representatives of a style of modelling and simulating so-
cial processes which is known as “participative simulation”
and usually used to discuss models with stakeholders who
work with the simulationmodels and give hints at improv-
ing and amending models to adapt them better to their
personal experience. This style of modelling and simula-
tion is being used more and more often in consultancy to
give stakeholders an opportunity to work with models on
their own, instead having to believe what the consultant
presents in the end.

Tools

Computer simulation always needs some tools to be run.
In the early times of computer simulation, simulation pro-
grams were written in general purpose programming lan-
guages (like FORTRAN), but over the decades special sim-
ulation toolboxes were designed and implemented, first
by researchers in fields such as organization science, pro-
duction management (particularly for discrete event and
queuing systems) or physics and engineering (particularly
for numerical solutions of differential equations). Both of
these kinds of tools were also used by social scientists,
though only rarely. DYNAMO was the first simulation
tool designed for and used by economists and social scien-
tists [50], but only for system dynamicsmodels. It was later
on superseded by STELLA [53] with the same purpose, but
a graphical user interface (see Figs. 1 and 2). There are sev-
eral simulation tools for cellular automata (see the entry on
cellular automata for more details). Multi-level simulation
models are often written in general purpose programming
languages (but see [44] describing a language –MIMOSE –
explicitly designed for this kind of models). Multi-agent
simulation proper has been developed with the help of
toolboxes such as SWARM [30], RePAST [45,46], MA-
SON [40], CORMAS [37] and NetLogo [68] (the latter
was also used to produce the majority of graphics in this
entry). All of these are freeware and capable of support-
ing most social simulation techniques (with the exception
of microanalytic simulation, as this always needs a large
database connected to the simulation tool). With the ex-
ception of NetLogo, which has a simulation language of
its own, the actual description of agent behavior has to be
done in object-oriented languages such as Smalltalk, Ob-
jective C or Java (for more detailed reviews of these tool-
boxes see [51,62]).

Future Directions

In a way, “agents cover all the world” [4] in that multi-
agent systems can be used for all simulation purposes,
as agents can always be programmed in a way that they
behave as continuous or discrete models, can be acti-
vated according to event scheduling or synchronously or
in a round-robin manner, can use rule bases as well as
stochastic state transitions, and all these kinds of agents
can even be nested into each other, thus supporting
a wider range of applications than any of the classical sim-
ulation approaches. This leads to a third aspect of com-
plexity (after the complexity of domains and the com-
plexity of time): agent-based models can encompass sev-
eral different approaches, both from a technical and im-
plementation point of view, but also from the disciplines
making use of simulation (for instance, disciplines such
as neurophysiology, cognitive psychology, social psychol-
ogy and sociology can combine their contributions into
a deeply structured simulation model).

It goes too far to say that all this would not be possi-
ble in a non-agents world (as everything is programmable
in Assembler), but the examples above will have made
clear that models combining aspects from even neighbor-
ing disciplines as the ones enumerated in this entry are
only understandable and communicable when they come
in a modular form that is typical for agent-based mod-
els – and the same applies to ecological models where dis-
ciplines from physics and biochemistry to population bi-
ology and economics would play their co-operative roles.

Although agent communication languages (see the
special issue of Autonomous Agents andMulti-Agent Sys-
tems, vol. 14 no. 2) such as KQML [33] have been de-
veloped for a long time (back to 1993), it is still an open
question how agents in a simulation model could develop
a communication means on their own and/or extend their
communication tool to be able to refer to a changing en-
vironment (see the special issue of Autonomous Agents
andMulti-Agent Systems, vol. 14 no. 1). Hutchins andHa-
zlehurst [28] made a first step into the field of the emer-
gence of a lexicon, but their agents were only able to agree
on names of things (patterns) they saw. The NEWTIES
project [20], ambitious as it is, aims at creating an arti-
ficial society that develops its own culture and will also
need to define agent capabilities that allow them to de-
velop something like a language although it is still ques-
tionable whether the experimenters will be able to under-
stand what their artificial agents talk about. The same ob-
jective is aimed at in the current EMIL project (Emergence
in the Loop [3,10]) which attempts at creating an agent
society in which norms emerge as agents observe each
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other and draw conclusions about which behavioral fea-
ture is desirable and which is misdemeanor in the eyes of
other agents – which, as in the case of language emergence,
makes it necessary that agents can make abstractions and
generalizations from what they observe in order that am-
biguities are resolved.

This means that multi-agent models in the proper
sense – where software agents model cognitive capacities
of human beings – will be the aim of any future develop-
ment in the simulation of social processes, although even
these models will still contain features of the classical ap-
proaches, as even human beings display behavior that can
be categorized as reflex acts and instinctive and which can
bemodelledwithmodels borrowed from particle kinemat-
ics in which human beings are represented by stochastic
automata. On the other hand it should be clear that only
part of human behavior in very large groups can be ex-
plained this way, as an important part of this behavior
consists in deliberate and conscious actions that are de-
termined by cognition.
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Glossary

Dynamical system A dynamical system is a set of inter-
connected elements that change due to their mutual

influences. A change in each element depends on the
nature of the influences from other elements. Due to
these mutual influences, the system as a whole evolves
in time. Because the state of every element is the effect
of the states of all the relevant elements in the previ-
ous moment, and because the state of every element
is one of the causes determining the state of the other
elements in the next moment, a dynamical system is
characterized by bi-directional causality.

Intrinsic dynamics In a dynamical system, the current
state of the system is directly caused by the preceding
state of the system. More precisely, the state of each
element at a given moment is caused by the states of
other elements in the previous moment and by its own
previous state. This chain of cause and effect iterated
over time gives rise to internally-generated or “intrin-
sic” dynamics.

Self-organization In a dynamical system consisting of in-
ter-connected elements, the state of each element ad-
justs to the current state of other elements to which it
is connected. Because of this mutual influence, higher
order units develop that represent the organization of
the basic elements. No higher-order agent is required
for such order to emerge.Hence, the process is referred
to as self-organization.

Emergence Emergence occurs when the individual ele-
ments of a dynamical system achieve organization by
means of their mutual influence. The development of
the higher level state is said to be emergent because this
state was not inherent in the properties of the lower-
level elements and because the higher-level state was
not imposed on the system from forces outside the sys-
tem. The higher-order properties that result from the
mutual adjustment among lower-level elements pro-
vide coordination for the lower-level elements. Emer-
gence thus provides for substantial growth in the com-
plexity of a system’s processes and properties. Because
of emergence, very complex systems can often be de-
scribed by very simple models.

Attractor An attractor represents a subset of a system’s
phase space to which the system evolves over time and
which resists forces that would perturb this temporal
trajectory. This subset can consist of a region of nearby
states or it can represent two (or more) regions among
which the system oscillates over time in a periodic,
quasi-periodic, or chaotic manner. In a system gov-
erned by attractor dynamics, a relatively wide range
of starting points (initial states) will eventually con-
verge on a much smaller set of states or on a pattern
of change between states defining the attractor. Exter-
nal influences may push the system out of the attrac-
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tor, but over time the system will return to this equi-
librium.

Cellular automata Cellular automata are programmable
dynamical systems. In this approach, a finite set of el-
ements is specified, each of which can adopt a finite
number of discrete states. The elements are arranged
in a specific spatial configuration that usually takes the
form of a two-dimensional lattice or grid. The loca-
tion of each element on this grid specifies the element’s
neighborhood. The elements evolve in discrete units of
time, such that the state of an element at t C 1 depends
on the states of the neighboring elements at time t. The
dynamics of cellular automata depend on the nature of
the updating rule and on the format of the grid dictat-
ing the neighborhood structure.

Definition of the Subject

The seminal insights that launched the field of social psy-
chology over a century ago have stood the test of time.
Such early scholars as James [41], Cooley [21], Mead [65],
Lewin [59], and Asch [4] emphasized the multiplicity
of interacting forces operating in individual minds and
in social groups and the potential for sustained patterns
of change resulting from such complexity. The inherent
complexity and dynamism of human experience, how-
ever, proved problematic for mainstream social psychol-
ogy during much of the 20th century. The canonical
paradigm in this period reduced dynamics to a one-step
process involving a purported cause, operationalized as an
independent variable at an arbitrary time 1, and its ef-
fect, operationalized as a dependent variable that was as-
sessed at an arbitrary time 2. The complexity of experience,
with multiple variables interacting over time to generate
a stream of thought or action, was difficult to investigate
with available statistical techniques (e. g., correlation, re-
gression, analysis of variance). Social psychology thus fos-
tered an image of human experience that emphasized sim-
plicity and stability at the expense of complexity and dy-
namism.

Contemporary social psychology shows signs of re-
turning to the deep intuitions concerning human expe-
rience articulated by the field’s founding fathers. The re-
newed appreciation for complexity and dynamism was
made possible by developments in the understanding of
nonlinear dynamical systems in the 1970s and 1980s, and
the application of these developments to social processes
within the last two decades. Computer simulations cap-
ture the complexity of social processes and document the
emergence of higher-order properties from the interaction
of basic elements in a mental or social system. Innovative

means of collecting and analyzing time-series data provide
rigorous insight into the intrinsic dynamics of mental, af-
fective, behavioral, and interpersonal processes. And for-
mal models enable researchers to identify the parameters
that are critical for understanding the dynamism and com-
plexity of social psychological phenomena. In short, the
contemporary emphasis on complexity and dynamics pro-
vides a new paradigm for the field, one that holds promise
for advancing the social psychology as a precise science
while preserving the basic insights that launched the field
over a century ago.

Introduction

Despite its ubiquity, dynamism is a poor candidate for
theory construction. Theories are expressed in terms of
invariant properties representing stable “signals” that are
obscured by the “noise” associated with personal, inter-
personal, and societal processes. The stream of conscious-
ness may be an accurate depiction of subjective experi-
ence, for example, but its turbulent nature seems incon-
sistent with fundamental properties that transcend par-
ticular individuals and their moment-to-moment mental
states. To identify regularities and invariant properties, so-
cial psychologists commonly ignore the ever-changing un-
dercurrent of mind and action, focusing instead on those
elements of thought and behavior that admit to stabil-
ity and structure. Accordingly, they typically emphasize
higher order units of mental and behavioral phenomena
(e. g., traits, schemata, global evaluations, norms) that pre-
sumably lend stability and coherence to subjective experi-
ence. The turbulent flow of lower level elements (thoughts,
feelings, movements) is effectively rendered irrelevant to
“true” understanding and meaningful prediction.

The gulf between the reality of experiential turbulence
and the focus on stability in theory construction is unnec-
essary. Dynamism and structure represent complemen-
tary aspects of experience that together provide the basis
for cognitive, emotional, and behavioral accommodation.
The basic notion is that the flow of lower-level elements
gives rise to higher order structures, which in turn con-
strain the dynamics of lower-level elements. This recip-
rocal causal relationship between lower-level and higher-
level units of experience is central to dynamical social psy-
chology [74,106] a recently developed paradigm that rep-
resents an adaptation of the concepts, principles, and tools
developed within dynamical systems and complexity sci-
ence.

It is not feasible to describe every version of the dy-
namical perspective, nor every application of this gen-
eral approach. This may have been possible in the
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1990s [26,31,35,45,102] when the dynamical perspec-
tive was a promissory note rather than an established
paradigm. Since that time, there has been a proliferation of
many innovative research strategies—some providing for-
mal models implemented in computer simulations, others
offering empirical means for investigating the dynamics of
personal, interpersonal, and societal processes—that have
been used to investigate a wide variety of phenomena. The
aim herein is to highlight the crucial elements of the dy-
namical perspective that find expression in otherwise dis-
tinct theories, research strategies, and topical agendas.

The first two sections (Sects. “Intrinsic Dynamics”
and “Attractors in Psychological Systems”) describe ba-
sic concepts from the study of nonlinear dynamical sys-
tems that are directly relevant to social psychology. Sec-
tion “Dynamical Minimalism” describes dynamical min-
imalism [72], an approach that provides a workable en-
trée into the nature and expression of dynamic processes
at different levels of social reality. This approach is illus-
trated in the next two sections with respect to two research
agendas—one emphasizing the emergence of group-level
properties from the self-organization of individual agents
(Sect. “The Dynamics of Social Influence”) the other ex-
ploring the tendency of individuals to coordinate their be-
havioral and mental dynamics in service of forming dyads
and social groups (Sect. “Dynamics of Interpersonal Co-
ordination”). The final section (“Future Directions”) re-
flects on the trajectory of dynamical social psychology thus
far and offers caveats concerning the relevance of this ap-
proach to the unique features of human experience.

Intrinsic Dynamics

People’s mental and emotional states, overt behavior, and
social relations evolve and change in the absence of ex-
ternal influence. The ubiquity of intrinsic dynamics is ap-
parent at different levels of social reality, from basic in-
trapersonal processes to macro-level societal phenomena.
At the level of the mind, the temporal pattern of cogni-
tive and affective elements in the stream of thought [41]
often provides a more accurate depiction of a person’s
mental make-up than do the summary aspects of the per-
son’s mental process (e. g., overall attitude, final decision)
that are more often the focus of investigation [103]. For
example, research has shown that simply thinking about
an attitude object (e. g., another person) in the absence of
external influence or new information tends to promote
more extreme (polarized) evaluations of the object over
time [97].

Research on social judgment has shown that internally
generated thoughts and feelings about a target person of-

ten reflect elaborate but identifiable patterns of change that
convey important information. A judgment that is neutral
when average over time, for instance, can have very differ-
ent meanings and implications, depending on the intrinsic
dynamics of the judgment process [109]. When neutrality
represents little variation in evaluation occurring on a rel-
atively slow time-scale, the summary judgment might well
reflect a truly neutral sentiment. If neutrality reflects os-
cillation between highly positive and highly negative judg-
ments on a rapid timescale, however, the summary judg-
ment signifies heightened involvement and ambivalence
rather than neutrality per se.

Intrinsic dynamics also characterize personal action.
Actions have a hierarchical structure, in that the perfor-
mance of an action entails the coordinated interplay of
more basic actions or sub-acts. “Going to work,” for exam-
ple, may involve getting dressed, leaving the house, driving
a car, parking the car, and entering a building. Each of the
lower-level acts, in turn, can be decomposed into yet more
basic lower-level elements. “Driving,” for instance, con-
sists of starting the car, turning the steering wheel, mak-
ing turns, and braking. Each level in an action hierarchy
is associated with a different time scale, with increasingly
lower-level acts taking place in correspondingly shorter in-
tervals of time [69]. “Going to work” unfolds on a longer
time scale than does “driving,” for example, and the time
scale for “driving” is longer than that for each instance of
“turning the steering wheel.” There is evidence that the
embedded time scales in an action hierarchy often have
a fractal structure [69].

The intrinsic dynamics of action, in turn, span the lev-
els of action in an overall action hierarchy. What may ap-
pear to be a continual succession of momentary move-
ments when defined in low-level, mechanistic terms can
take on the appearance of switching between qualitatively
different actions, each occurring on a longer time scale,
when defined in higher-level terms. Research on action
identification [107] has identified several factors that de-
termine the level at which an action is regulated. This line
of work has also demonstrated that people reliably differ in
their default level of action identification across many ac-
tion domains [108]. Individuals who tend to think about
their actions in lower-level terms are predisposed to the
emergence of higher-level action understanding. Emer-
gence occurs when such individuals are exposed to cues
(e. g., feedback from other people) that suggest higher-
level meaning for the actions [114] or when they pri-
vately reflect on their actions, allowing the lower-level
action elements to self-organize into a higher-level act
identity that provides subjective integration for these el-
ements [104].
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Social interaction has also been investigated with re-
spect to intrinsic dynamics. For example, research has fo-
cused on the interpersonal coordination of relatively low-
level actions, such as speaking (e. g. [20,23]) and limb
movement (e. g. [6,48,69,101]). In one approach, two in-
dividuals are asked to swing their legs while sitting down
across from one another [6]. One person swings his or her
legs in time to a metronome and the other person tries
to match those movements. This research has revealed
two forms of coordination: in-phase, with the individu-
als swinging their legs in unison, and anti-phase, with the
individuals swinging their legs with the same frequency
but in the opposite direction. Individuals can maintain
anti-phase coordination only up to a certain frequency of
movement, at which point they switch to in-phase coordi-
nation. When the frequency is subsequently decreased, at
some value they are able to coordinate anti-phase again,
but this tempo is significantly lower than the point at
which they originally started to coordinate in-phase. Such
hysteresis indicates that movement coordination can be
analyzed as a nonlinear dynamical system [38,48]. This
line of research has identified modes of coordination more
complex than in-phase and anti-phase [5,87,101].

Interpersonal dynamics are not confined to the coordi-
nation of speech and motor movements, but also include
the temporal coordination of higher-level actions (e. g.,
plans, goals) and internal states (e. g., moods, judgments).
Although this topic has not been heavily researched, there
is evidence that the quality of a social relationship is re-
flected in partners’ ability to coordinate in-phase with re-
spect to their respective higher-level actions, opinions, and
feelings (e. g. [5,36,64,82,83,100]). The ebb and flow of
feelings, information exchange, and action conveys deeper
insight into the nature of a relationship than do global
indices such as the average sentiment, the amount of in-
formation exchanged, or the summary action tendencies.
Colloquially, people who feel positively about one another
are said to “be in synch” or “on the same wavelength” with
respect to their internal states.

At the societal level, tracking the temporal trajectory
associated with the emergence of norms and public opin-
ion provides greater insight into the society’s future make-
up and likely response to external threat than simply
knowing what the societal norms and opinions are at a sin-
gle point in time [76]. When norms and opinions develop
gradually over a long period of time, for example, the so-
ciety displays resistance to external threats or even to new
information that might promote better economic condi-
tions. But societal change in political and economic ideol-
ogy can occur in a rapid, nonlinear manner (e. g. [75,84]),
with a temporal trajectory that resembles phase transitions

in physical systems [58]. Societies that undergo such non-
linear transitions are vulnerable to later rebounds of the
earlier ideologies and are highly responsive to threats and
new information, and they can experience a period of sus-
tained oscillation between conflicting worldviews [75].

Attractors in Psychological Systems

Psychological systems are characterized by intrinsic dy-
namics, but they also demonstrate stability and resistance
to change. Each day, people encounter vast amounts of in-
formation relevant to social judgment and interpersonal
relations, much of which is mutually contradictory. Peo-
ple nonetheless manage to form and maintain coherent
patterns of thought and behavior in their social lives. The
partners to a romantic relationship, for example, experi-
ence a wide variety of thoughts and feelings about one an-
other, but over time each partner’s mental state tends to
converge on positive sentiment toward the other. Thus,
despite the ever-changing nature of intrapersonal and in-
terpersonal experience, people’s mental, emotional, and
behavioral states tend to converge on relatively narrow sets
of specific states or on patterns of change between specific
states. These states or patterns of change are referred to as
attractors.

When a system is at its attractor, it tends to maintain
that state despite potentially destabilizing forces and in-
fluences. An external influence may move the system to
another state, but the system will return fairly quickly to
one of its attractors. Several social psychological phenom-
ena imply the existence of an attractor. For example, self-
regulation is defined in terms of resistance to temptations
and distractions, impulse control, and the maintenance
of states representing salient personal standards and val-
ues [14,15,105]. In the same fashion, self-esteem mainte-
nance [98], self-verification [95], and psychological reac-
tance [8] all reflect the tendency of mental systems to con-
verge on a particular state (e. g., a level of self-esteem) and
to resist influences that threaten to dislodge the person’s
judgments and beliefs from that state.

Three basic types of attractors are commonly dis-
tinguished: fixed-point attractors, periodic (includ-
ing multiperiodic) attractors, and deterministic chaos
(cf. [25,73,89]). Each type is likely to have relevance for
understanding different intrapersonal and interpersonal
processes, although work designed to establish such rele-
vance is in its nascent stage. A system can be characterized
by another set of points that have the opposite effect of
attractors. Termed repellors, they represent unstable equi-
libria of the system, so that the smallest departure from
their exact values will result in the system rapidly escaping
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from the region surrounding that value. Whereas attrac-
tors may be described as states that the system “seeks”
over long periods of time, repellors reflect states that the
system selectively “avoids.” The repellor concept has been
used to describe how neural networks avoid particular
memories [105].

Fixed-Point Attractors

A fixed-point attractor is similar to the notion of equi-
librium or homeostasis [12,66]. It represents the case in
which the state of the system converges to a stable value.
A desired end-state or goal [14,15,104,106] for example,
can be described as a fixed-point attractor. This is apparent
when a person maintains a belief, an interpersonal eval-
uation, or an action tendency despite forces or sources
of information that challenge these tendencies. Attractors,
however, are not limited to goals, intentions, or other de-
sired states. Thus, a person might display a pattern of
antagonistic behavior in his or her social relations, de-
spite efforts to avoid behaving in this manner. Similarly,
a person with low self-esteem may initially embrace flat-
tering feedback from someone, but over time the person
may discount or reinterpret this feedback, displaying in-
stead a pattern of self-evaluative thought that converges
on a negative state [96]. In an inter-group context, mean-
while, warring factions may display conciliatory gestures
when prompted to do so, but revert to a pattern of antag-
onistic thought and behavior when the outside interven-
tions are relaxed [19]. In short, when a system’s dynam-
ics are governed by a fixed-point attractor, the system will
consistently evolve to a particular state, even if this state
is not hedonically pleasant, and will return to this state de-
spite being perturbed by forces that might promote a more
pleasant state.

A psychological system may have more than one at-
tractor, with each corresponding to a distinct equilibrium.
Which attractor governs a system’s dynamics in a particu-
lar instance depends on the starting values of the system’s
evolution. The set of initial states that converge on each at-
tractor represents the basin of attraction for that attractor.
For a person or a group characterized by multiple fixed-
point attractors, then, the process in question can dis-
play different equilibrium tendencies, each associated with
a distinct basin of attraction. Within each basin, different
initial states will eventually converge on the same stable
value. However, even a slight change in the system’s initial
state will promote a large change in the system’s trajectory
if this change represents a state that falls just outside the
original basin of attraction and within a basin for a differ-
ent attractor. For example, in conflict situations there are
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A dynamical systemwith two fixed-point attractors [106]

typically two dominant responses, one corresponding to
aggression and one corresponding to conciliation. Slight
differences in the circumstances surrounding the conflict
can thus promote dramatically different behaviors, with
no option for a response that integrates the two tenden-
cies (e. g. [19]).

The attractor concept can be captured in a simple
metaphor. Figure 1 shows a ball on a hilly landscape. The
ball represents the current state of the system and the val-
leys (A and B) represent different fixed-point attractors.
The evolution of the system toward an attractor is charac-
terized by the ball rolling down a hill and coming to rest in
the bottom of a valley. Each attractor in Fig. 1 has a basin
of attraction, represented by the width of the valley. The
basin of attraction for Attractor A in Fig. 1 is wider than
the basin for Attractor B, which means that a wider range
of states will evolve toward Attractor A. Attractors can also
vary in their respective strength, which is represented by
the corresponding depth of the two valleys. Attractor B,
then, is stronger than Attractor A. Hence, it is more dif-
ficult for external influence to change the current state of
the system when the system is within the basin of attrac-
tion for Attractor B as opposed to Attractor A.

The existence of multiple fixed-point attractors in
a system captures the intuition that people may have dif-
ferent (even mutually contradictory) goals, self-concepts,
recurring emotional states, and patterns of social behavior.
Someone may have two or more standards for self-regula-
tion, for example, with each providing for action guidance
under different sets of conditions. The person’s behavior
may reflect an affiliation standard under one set of con-
ditions, but reflect an achievement standard under a dif-
ferent set of conditions. In similar fashion, a person may
have multiple self-views (e. g. [37,60,61,93]), each repre-
senting an integrated and stable way of thinking about him
or herself. One self-view is likely to become salient when
a specific set of self-relevant information is made salient by
virtue of context or role expectations. Characteristic pat-
terns of emotional response, meanwhile, can be viewed as
distinct attractors, with each attractor reflecting an “emo-
tional Gestalt” that provides coherence for a person’s cog-
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nitive-affective dynamics under a unique set of conditions
and constraints [57,99]. More generally, apparent incon-
sistency in personality can be viewed as the existence of
multiple attractors, each associated with a different basin
of attraction for thought, feeling, and action [82,86,92].
One set of conditions might promote a trajectory that
evolves toward dominance and competition, for instance,
whereas another might promote empathy and coopera-
tion.

The strength of an attractor and the size of its basin of
attraction are potentially independent, and different com-
binations of these basic properties may have unique im-
plications for psychological processes [82,83]. Note again
the two attractors in Fig. 1. Attractor A is relatively weak
but has a wide basin of attraction. Thus, a relatively small
force may change the state of the system (i. e., move the
ball up the gradual slope), but the system is likely to re-
turn to the attractor (i. e., it will roll back into the valley)
even if these changes are relatively large. In contrast, At-
tractor B has a narrower basin of attraction but is relatively
strong. A great deal of force is required to promote even
a slight impact on the system (i. e., move the ball up the
steep slope), but if this effect is achieved, the system will
not return to the attractor (i. e., it will escape the valley).

As an example, consider a romantic couple that has
two attractors: a strong attractor associated with positive
feelings and a weak attractor associated with negative feel-
ings. Assume the couple has a wider range of attraction for
positive feelings than for negative feelings. The partners
are likely to evolve toward positive feelings about one an-
other if they begin an interaction within a broad range of
affective states (e. g., neutral to very positive), but theymay
end up feeling negative if they begin an interaction within
a different (more restricted) range of affective states (e. g.,
mildly to highly negative). A broader range of initial states
are likely to promote a communication trajectory that re-
sults in an exchange of warm sentiments as opposed to
critical comments. If, however, the couple typically starts
out with negative feelings, the negative attractor, despite
having a narrow basin, may dictate the trajectory for feel-
ings expressed in the couple’s interactions. It is conceiv-
able, of course, that the couple has a wider basin of attrac-
tion for negative feelings, so that anything short of a highly
positive initial state will dissolve into a negatively toned
exchange (see [33,34]).

Latent Attractors

A system may have multiple attractors, but when the sys-
tem is at one of them, the others may not be visible to ob-
servers, or perhaps not even to the actors themselves. The

existence of these potential states might not even be sus-
pected. Such latent attractors may be highly important in
the long run, though, because they define which states are
possible for the system when conditions change. By iden-
tifying possibilities for a system that have yet to be experi-
enced, the concept of latent attractor goes beyond the tra-
ditional notion of equilibrium (e. g. [2]). Critical changes
in a system might not be reflected in the manifest state
of the system, but rather in the creation or destruction of
a latent attractor representing a potential state that is cur-
rently invisible.

The implications of latent attractors have been ex-
plored in the context of inter-group characterized by
seemingly intractable conflict [18,19,85]. Factors such as
objectification, dehumanization, and stereotyping of out-
group members are preconditions for the development
of intractable conflict [17,22] but their immediate impact
may not be apparent. Rather, these factors may create a la-
tent attractor to which the system can abruptly switch in
response to a provocation that is relatively minor, even
trivial. By the same token, efforts at conflict resolution that
seem fruitless in the short run may have the effect of cre-
ating a latent positive attractor for inter-group relations,
thus establishing a potential relationship to which the
groups can switch if other conditions permit. In this case,
the existence of a latent positive attractor might promote
a rapid de-escalation of conflict, even between groups with
a long history of and seemingly intractable conflict.

Periodic Attractors

Rather than converging on a stable value, systems can
display sustained rhythmic or oscillatory behavior. Such
a temporal pattern is referred to as a periodic or limit-cycle
attractor. Periodicity is obviously associated with many bi-
ological phenomena, such as circadian rhythms and men-
strual cycles [30], but this dynamic tendency may also
underlie certain psychological phenomena [32]. Moods
have been shown to have a periodic structure, for exam-
ple, often corresponding to a weekly cycle (e. g. [9,50,51]).
Research on the intrinsic dynamics of both social judg-
ment [109] and self-evaluation [110], meanwhile, has
demonstrated that the stream of thought often oscillates
between positive and negative assessments, sometimes
in accordance with remarkably fast time scales. Periodic
structure also characterizes human action [69] and is a fea-
ture of social interaction as well (e. g. [6,32,70]).

Distinguishing a periodic attractor from the existence
of multiple fixed-point attractors can prove difficult, since
the system in both cases displays movement between dif-
ferent states over time. The difference centers on the reg-
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ularity of the movement between states and the role of
external factors in producing such movement. A periodic
attractor reflects a repetitive temporal pattern, such that
the values of the dynamical variable repeat after a time
T; xi (t) D (t C T), where T is the period of motion. The
state of the system undergoes constant change even in the
absence of noise or external influence. To qualify as a pe-
riodic attractor, then, a pattern of change must represent
a pattern on which the system converges, and to which
it returns after small perturbations. In a daily activity cy-
cle, for example, a sleepless night might temporarily dis-
rupt the pattern (e. g., oversleeping the next few days), but
eventually the pattern will be restored.

A system with fixed-point attractors, in contrast, tends
to stabilize on a particular state or set of states. Such attrac-
tors capture all trajectories within their respective basins,
so a disturbance, noise, or an external influence is neces-
sary to move the system from one stable state to another.
A person with self-regulatory standards for both compro-
mise and confrontation, for example, will display one of
these tendencies as long as the action context is within the
basin of attraction for that tendency. If the attractors dif-
fer in the size of their respective basins, and if contexts are
avoided that attract the person’s mental, emotional, or be-
havioral state toward the smaller basin, the person may
behave for long periods of time in line with the stronger
attractor. In similar fashion, a romantic couple may have
fixed-point attractors for both positive and negative affec-
tive states, but whether they display periodic movement
between themwill depend on the starting conditions asso-
ciated with their interactions. Even if the couple oscillates
between positive and negative states, each state provides
at least temporary stability. In periodic evolution, stability
is not provided by any particular state, but rather by the
pattern of changes between states.

The distinction between fixed-point and periodic at-
tractors was observed in a study investigating the tem-
poral trajectories of affective states on the part of bipolar
depressive individuals [42]. Time-series analysis of mood
and other symptoms revealed that many of these patients
oscillated between a normal and a depressed state. How-
ever, patients whose temporal dynamics did not reflect
fixed-point attractor tendencies were at highest risk for
suicide and were hospitalized more often for their depres-
sion. These risks were low for individuals whosemoods os-
cillated around a single attractor, even one corresponding
to a depressed state, and for those whose moods switched
between two distinct attractors reflecting a normal state
and a depressed state. These results imply an interesting
connection between attractor dynamics and self-regula-
tory tendencies. Self-regulation implies stabilization with

respect to some states and de-stabilization of other states.
The stable states reflect fixed-point attractors for a person’s
mental and emotional dynamics. The lack of fixed-point
attractors for one’s internal state signals a breakdown in
the capacity for self-regulation.

Deterministic Chaos

The best known phenomena concerning nonlinear dy-
namical systems centers on deterministic chaos (cf. [89]).
Many researchers and scholars, especially those from fields
other than mathematics and physics, commonly discuss
the primary insights from the work on nonlinear dynam-
ics as chaos theory. When investigating a chaotic system,
anything less than infinite precision in the knowledge of
a system at one point in time can undermine prediction
of the system’s future states. This decoupling between de-
terminism and practical predictability happens because all
initial inaccuracies are amplified by the system’s intrinsic
dynamics, so that the inaccuracies grow exponentially over
time. After some time, exponential growth assures that the
size of the error will exceed the possible range of states of
the system’s behavior.

Chaos clearly represents a possibility in nonlinear dy-
namical systems [31,73], and has been demonstrated in
many biological and physical phenomena. In principle,
then, human thought and behavior may sometimes fol-
low a chaotic trajectory. Despite this potential, though,
unequivocal evidence for deterministic chaos in human
thought and behavior remains to be documented. Human
dynamics always contain some degree of randomness and
human behavior is often unpredictable. It can be quite dif-
ficult, however, to determine the degree to which such un-
predictability reflects deterministic chaos, the stochastic
nature of the laws governing human nature, or the mul-
titude of influences unaccounted for by measurement that
can be treated as noise.

Dynamical Minimalism

In canonical social psychology, the complexity of human
thought and behavior is typically assumed to reflect com-
plex interactions among a large number of variables in the
traditional approach to theory construction. The approach
of dynamical minimalism [72], in contrast, assumes that
complex properties can result from simple rules specifying
the interactions among very simple elements. The emer-
gence of complexity occurs when the elements are non-
linear and interact over time [39]. For example, complex
cognitive phenomena (e. g., pattern recognition, error cor-
rection), have been observed in a simple network of bi-
nary elements, where each element reacts to the input it
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receives from other elements [40]. In this spirit, dynam-
ical minimalism attempts to identify the simplest set of
assumptions capable of producing a phenomenon of in-
terest. In formal models, this is equivalent to identifying
the simplest mathematical rules to express what is known
about a phenomenon. The goal of dynamical minimalism,
then, is to achieve parsimony in theory construction with-
out stripping the phenomenon of its subtlety and nuance.

This approach provides a new perspective on the re-
lation between micro and macro levels of description. Re-
ductionism is commonly assumed in mainstream models,
such that the rules observed at one level of description
correspond to the rules operating at another level. In ef-
fect, the properties at a macro level of description are re-
duced to the properties of elements at a micro level. One
might, for example, explain the relation between poverty
and crime in a social system by reducing this relation to the
relation between frustration and crime at the level of indi-
viduals in the society. Dynamical models, however, do not
assume isomorphism among levels of description. To the
contrary, the rules specifying the interaction among a sys-
tem’s elements are likely to generate very different rules at
higher levels of system behavior (see [24] for an early ap-
preciation of this idea).

The emergence of new properties at a macro level is il-
lustrated in the society of self model of self-structure [81].
This model assumes very simple rules by which self-rele-
vant information is integrated in forming a self-concept.
Each element of information (e. g., an episodic memory,
a physical feature, a self-perceived trait) adopts the pre-
vailing valence (positive vs. negative) of related elements.
This simple rule, when iterated over time, generated inter-
esting but largely unexpected consequences at the global
level of self-understanding. The self-structure became dif-
ferentiated into locally coherent regions (e. g., social roles,
areas of competence), each of which displayed resistance
to discrepant information (e. g., negative social feedback).
Global self-esteem and high self-concept certainty also
emerged at the macro level from the simple rule of influ-
ence among elements at the micro level.

Emergence seems to represent a paradox for theory
construction. How can knowledge of the lower-level ele-
ments provide an explanation of the higher-level proper-
ties if properties at a macro level cannot be derived from
properties of the system’s lower level elements? The role
of computer simulations in dynamical minimalism helps
to resolve this paradox. With computer models, one can
specify the properties of system elements and the rules
of interaction among these elements. As the elements in-
teract in accordance with these rules over time, dynam-
ics appear at the system level that were not assumed or

programmed for the elements themselves.With computer
simulation, then, a theory constructed at a basic level of
psychological reality (e. g., moment-to-moment thought
process, dyadic social interaction) can be tested at a higher
level of psychological reality (e. g., social judgment, group
norms).

Computer simulations play another important role in
dynamical minimalism. The basic elements comprising
a system are often uninteresting and trivial, and the in-
teractions among them may have only minor impact on
the systems’ global properties. But some properties of sys-
tem elements may have an important impact on the sys-
tem’s higher-order properties as the elements interact over
time. It may not be obvious which properties are trivial
and which are essential for the emergence process. Dy-
namical minimalism makes this distinction and thus con-
structs a model that incorporates only the properties that
are critical for the emergence of macro level phenomena.
Computer simulations enable one to systematically vary
the assumptions regarding the properties of elements and
their interactions, and then observe which assumptions
promote meaningful changes at the macro level. Those
properties that have trivial consequences at themacro level
are eliminated from the model. In short, computer simu-
lations enable one to distill the minimal set of components
necessary to capture the essence of a phenomenon.

Computer simulations cannot substitute for empiri-
cal verification of a theoretical model. They are critical
in identifying the properties that are central to the model
and investigating the consequences of these properties for
the functioning of the system in question. Knowledge of
these consequences then provides the basis for framing hy-
potheses to be investigated in empirical research. The rela-
tionship between computer simulations and empirical re-
search work in the other direction as well. Empirical stud-
ies can refine a model, which is then implemented in com-
puter simulations. The results of the simulations, in turn,
may generate new hypotheses to be tested in subsequent
empirical research. The reciprocal feedback loops among
theory, computer simulation, and empirical research is
central to the approach of dynamical minimalism.

The Dynamics of Social Influence

Social influence refers to any change in an individual’s
thoughts, feelings, or behavior that occurs as the result of
the real or imagined presence of others [3]. It is widely
considered to be the core process of social experience [111]
and is manifest in a wide array of phenomena, including
obedience to authority, conformity, imitation and mod-
eling, bystander intervention in emergencies, social loaf-
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ing, stage fright, persuasion, and groupthink. There is evi-
dence, however, that the essence of social influence reflects
the interplay of three basic factors: the number, strength,
and immediacy of the sources of influence [52]. Empirical
research has shown that the magnitude and nature of so-
cial influence represents a multiplicative function of these
sources.

Nowak et al. [76] modeled the dynamics of social influ-
ence using cellular automata. In this approach, each indi-
vidual is represented with three properties: an opinion on
a topic, a degree of persuasive strength, and a position in
a social space. Individuals are commonly assumed to have
one of two opinions on an issue (e. g., pro vs. con). The
group consists of n individuals located on a two-dimen-
sional grid, with each cell corresponding to an individual
(see Fig. 2). The color of each cell specifies that individ-
ual’s current opinion (light gray denotes pro, dark gray de-
notes con), whereas the height of the cell represents the in-
dividual’s strength (e. g., expertise, confidence, charisma).
Each individual discusses the issue with other groupmem-
bers ascertains the degree of support for each position. As
a result of these assessments, each individual adopts the
opinion that is most prevalent. The following formula ex-
presses the strength of influence of each opinion:
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where Ii denotes total influence, sj represents the strength
of each individual, and dij represents the distance between
individuals i and j. The opinions of those who are closest to
the individual and have the greatest strength are weighted
most heavily by the individual. An individual’s own posi-
tion is also considered and is weighted most heavily be-
cause of its immediacy (0 distance). Influence grows with
the square root of the number of people exerting influence.

In each round of the simulations, one individual is
chosen at random and influence is computed for each
opinion in the group. A simple updating rule is employed:
the individual changes his or her opinion to match the
prevailing opinion if the resultant strength of this opin-
ion position is greater than the strength of the individual’s
current position. This basic process is performed for each
individual in the group. This procedure is repeated until
there are no further changes in opinion. This typically in-
volves several rounds of simulation, because an individual
who had previously changed his or her position to match
that of his or her neighbors may revert to the original po-
sition if the neighbors change their opinions.

Figure 2 depicts representative results of the computer
simulations. In the initial configuration (Fig. 2a), there

is a majority of 60% (light gray) and a minority of 40%
(dark gray), with the majority and minority opinions ran-
domly distributed in social space. The majority and mi-
nority groups have the same relative proportions of strong
and weak members (tall vs. short cells). Figure 2b shows
that an equilibrium is reached after six rounds of simulated
discussion. Although the majority has grown (to 90%) at
the expense of the minority (now 10%), the minority opin-
ion has survived by forming clusters of like-minded peo-
ple. Note that these clusters are primarily formed around
strong individuals.

These two group-level outcomes—polarization and
clustering—are routinely observed in computer simula-
tions of this process [55]. Each is reminiscent of well-doc-
umented social processes. Research on group dynamics
(e. g. [68]), for example, has shown that the average at-
titude in a group becomes polarized in the direction of
the prevailing attitude as a result of group discussion. In
the model, polarization reflects the greater influence of
the majority opinion. In the initial (random) configura-
tion (Fig. 2a) the average proportion of neighbors holding
a particular opinion (pro or con) reflects the proportion of
this opinion in the total group. The average group mem-
ber, in other words, is surrounded by more majority than
minority members, so more minority members are con-
verted to the majority position than vice versa. However,
some majority members are converted to the minority po-
sition because they happen to be located close to an espe-
cially strong minority member or because more minority
members happen to be at this location.

Clustering is also a pervasive feature of social life, hav-
ing been documented for such diverse facets of social life as
attitudes, political beliefs, religions, clothing fashions, and
farming techniques. It has been show, for example, that at-
titudes tend to cluster in residential neighborhoods [28].
When opinions are distributed randomly, the sampling
of opinions through social interaction provides a realis-
tic portrayal of the distribution of opinions in the larger
society. However, when opinions are clustered, the same
sampling process produces a very biased result because the
opinions of one’s nearby neighbors are weighted the most
heavily. The prevalence of one’s own opinion is therefore
likely to be over-estimated. Opinions that are in the mi-
nority in global terms, then, can form a local majority.
This process enables individuals with a minority opinion
to maintain this opinion in the belief that it actually repre-
sents a majority position.

In the spirit of dynamical minimalism, this model
focuses on the minimal set of processes responsible for
the emergence of group-level properties that are invariant
across diverse areas of topical interest. In so doing, it pro-



Social Psychology, Applications of Complexity to S 8429

Social Psychology, Applications of Complexity to, Figure 2
a Initial distribution of opinions in the simulated group. b Final equilibrium of opinions in the simulated group [106]

vides a platform for investigating how group-level prop-
erties emerge for different domains of social functioning.
This potential has been developed in recent years. Kenrick
and his colleagues, for example, have simulated the emer-
gence of cultural norms from the mutual influence among
individuals with conflicting strategies (decision-rules) per-
taining to fundamental human goals (e. g. [49]). These
goals, reflecting domains of adaptive functioning con-
fronted by human groups throughout history [10,11,29],
include self-protection, coalition formation, status-seek-
ing, mate choice, relationship maintenance, and offspring
care.

In their computer simulations, individuals with dif-
ferent decision-rules regarding a particular domain inter-
acted with one another over time, and the group-level con-
sequences of these interactions were observed. One series
of simulations investigated how individual differences in
decision-rules for cooperation versus competition affected
community level propensities for such behavior. Another
series explored the mutual impact of male and femalemat-
ing strategies on the emergence of societal-level norms re-
garding mating. Clustering was observed in both cases,
with an initial random configuration of decision rules
giving way over time to local communities characterized
by coherent norms regarding the behavior in question.
In the mating simulations, for example, some communi-
ties were characterized by relatively unrestricted mating
strategies (reflecting the decision-rule preferred by males),
whereas other communities developed norms sanctioning
restricted mating strategies (reflecting the decision-rule
preferred by females).

Dynamics of Interpersonal Coordination

The dynamical account of social influence provides a con-
cise description of how the state (e. g., attitude) of a sin-
gle individual depends on the state of other individuals.
Because many psychological processes reflect intrinsic dy-
namics, however, individuals can be conceptualized as dis-

playing patterns of change rather than as a set of states.
In this view, social influence (and social interaction gener-
ally) can be investigated as the coordination over time of
individual dynamics.

The most basic form of coordination is positive corre-
lation or in-phase relation. In social interaction, this oc-
curs when the overt behaviors, attitudes, or emotions of
one person induce similar behaviors or states in the other
person at the same time (e. g. [16]). This basic form of co-
ordination is reflected in such familiar phenomena as im-
itation, mimicry, and empathy [62]. Other forms of co-
ordination can be identified, however, with counterparts
in different contexts for social interaction [62,69]. Turn
taking in conversation represents negative correlation or
anti-phase relation between individuals in their respective
talking and listening (when one person speaks, the other
is silent). Negative correlation also characterizes antago-
nistic relationships, in that the sadness or despair of one
person induces satisfaction or happiness in the other per-
son and vice versa. More complex forms of synchroniza-
tion can also be identified that reflect nonlinear relation-
ships and higher-order interactions between the partners’
respective behaviors and internal states (cf. [74,82]).

AModel of Synchronization Dynamics

This perspective provides the foundation for a recently de-
veloped model of synchronization [82,83], a phenomenon
that characterizes coupled dynamical systems [44,91]. Be-
cause positive correlation represents the most fundamen-
tal and common form of coordination, it has provided the
primary focus to date in this class of models. The Nowak
et al. [82,83] model assumes that each individual attempts
to achieve synchronization by adjusting his or her inter-
nal state or overt behavior in response to the state or be-
havior of the individual with whom he or she is interact-
ing. Individuals in social interaction, in other words, mod-
ify their respective thoughts, feelings, or action tendencies
to promote positive correlation over time in these features
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of experience. The synchronization of individuals’ dynam-
ics results in a higher order system with its own dynamic
properties.

Coupled logistic are used to model interpersonal syn-
chronization [74,81,82,83]. The dynamics of each individ-
ual are represented with a logistic equation, which is the
simplest dynamical system capable of displaying complex
(e. g., chaotic) behavior [27,89]. However, the behavior of
each person not only depends on his or her preceding
state but also to a certain extent on the preceding state of
the other person. The coupling of individuals’ dynamics is
specified in the following equation:

x1(t C 1) D
r1x1(t)(1 � x1(t))C ˛r2x2(t)(1 � x2(t))

1C ˛

x2(t C 1) D
r2x2(t)(1 � x2(t))C ˛r1x1(t)(1 � x1(t))

1C ˛
:

The dynamical variable (x) represents the intensity of be-
havior, and the control parameter, r, corresponds to in-
ternal states (e. g., personality traits, moods, values) that
shape the person’s pattern of behavior (i. e., changes in x
over time). To the value of the dynamical variable repre-
senting one individual’s behavior x1, one adds a fraction
˛ of the value of the dynamical variable representing the
other individual’s behavior x2. The magnitude of ˛ rep-
resents the strength of coupling and can be viewed as the
degree of mutual influence characterizing the interaction.
Depending on the social context, it might reflect the inten-
sity of communication or the degree of mutual imitation.
When ˛ is 0, there is no coupling (e. g., no influence or
communication) on the behavior level, whereas when ˛ is
1, each individual’s behavior is determined equally by his
or her preceding behavior and the influence of the other
individual. Intermediate values of ˛ represent moderate
values of coupling in the relationship.

Modeling Behavioral Synchronization

The respective control parameters of two individuals are
unlikely to be identical when they first interact with one
another. And the degree of influence between individu-
als differs across interactions and relationships. To repre-
sent this variability in social reality, Nowak, Vallacher [74]
systematically varied the similarity of partners’ control pa-
rameters (r), representing their internal states, and their
degree of coupling (˛), representing their mutual influ-
ence (e. g., communication, imitation). Each simulation
began with a random value of x for each individual, drawn
from a uniform distribution that varied from 0 to 1. They
let the simulations run for 300 steps, allowing each system
to converge on its pattern of intrinsic dynamics and both

systems to synchronize. For the next 500 simulation steps,
they recorded the values of x for each system and the de-
gree of synchronization of the two systems.

The results demonstrated that behavioral synchroniza-
tion increased both with increases in ˛ and in the sim-
ilarity in r. At each degree of coupling, synchroniza-
tion increased with greater similarity in partner’s inter-
nal states. Likewise, at each level of similarity in internal
states, synchronization increased with increased strength
of coupling. These results have straightforward implica-
tions. If two people have similar control parameters (inter-
nal states), relatively little coupling (e. g., influence, com-
munication, mutual reinforcement, monitoring) is neces-
sary for them to achieve a high degree of synchronization
in their behavior. If the partners have different internal
states, on the other hand, highmutual influence is required
to maintain the same level of synchronization. In a close
relationship, this suggests that constant and intense com-
munication may be a sign that the partners are not well
coordinated with respect to relevant internal states (e. g.,
temperament, desires values). But when the partners are
similar with respect to such internal states, they can devote
their energy to common pursuits rather than to constant
clarification, monitoring, and other forms of influence.

Modeling Internal Synchronization

Some internal parameters, such as moods and emotional
states, vary considerably across time and settings. If a par-
ticular context induces a common mood or emotion (e. g.,
joy or sadness) in a dyad or group, interpersonal syn-
chronization is easy to achieve. Other internal states, how-
ever, demonstrate greater stability and less likely to vary
across different contexts. Attitudes, values, and personal-
ity traits, in particular, are commonly considered to be en-
during (cross-situational) features of a person’s psycho-
logical make-up. Yet, even these internal parameters ad-
mit to variability and even modification. The Nowak et
al. [82,83] model has been used to understand and inves-
tigate the nature of such change. The core assumption is
that individuals are motivated to achieve coordination in
their internal parameters [13,62]. To satisfy this motive,
individuals vary their internal parameters in a direction
that leads to increasing synchronization. When synchro-
nization is achieved, the value of the resultant control pa-
rameter is engraved as an attractor for that internal state.
In essence, people are assumed to develop stable internal
states through social synchronization (e. g. [112]).

To model this process, Nowak et al. simply assumed
that the value of each individual’s control parameter drifts
somewhat in the direction of the value of the other indi-
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vidual’s control parameter on each simulation step. How
quickly the respective control parameters begin to match
depends on the size of the initial discrepancy between
them and on the rate at which they drift. This process oc-
curs with each individual knowing the exact value of the
other individual’s control parameter. This is an impor-
tant feature of the model, since experimental research has
shown that people’s internal states are often difficult to in-
fer [43,47,71,113]. The model assumes only that each in-
dividual remembers the other individual’s most recent be-
haviors (i. e., the most recent values of x) as well as his or
her own most recent behaviors. Each individual compares
his or her own behavior with that of the other individual,
and then adjusts his or her internal parameter in order to
promote increased similarity with the other person’s be-

Social Psychology, Applications of Complexity to, Figure 3
a Convergence of behavior and internal states under weak coupling b Convergence of behavior and internal states under strong
coupling [82]

havior pattern, until a match is achieved [115]. Thus, if the
other individual’s behavior is more complex than the in-
dividual’s own pattern of behavior, the individual slightly
increases the value of his or her own control parameter.
Conversely, the individual slightly decreases the value of
his or her own control parameter if the other individual’s
behavior is less complex than his or her own. In short, in-
teracting individuals estimate one another’s internal state
by monitoring the evolution of one another’s behavior.

Nowak et al. [82,83] ran simulations to investigate the
convergence of behavior and internal states under both
relatively weak and relatively strong coupling (˛ D :25
and .7, respectively). The y-axis in Fig. 3 corresponds to
the magnitude of difference between the two systems in
their behavior or internal states, and the x-axis corre-
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sponds to time, as reflected in the number of iterations.
Consider first the results observed when the coupling was
weak (Fig. 3a). The behavior of the two systems converged
in a relatively slow and non-linear manner. The control
parameters also showed a clear tendency towards con-
vergence. When a match in internal states was achieved,
moreover, full synchronization of behavior was also ob-
tained. Compare these results with those observed under
strong coupling (Fig. 3b). Note that although there was im-
mediate synchronization of behavior, the control parame-
ters failed to synchronize, even after 1000 iterations.

The differential results obtained for weak and strong
coupling may have noteworthy implications for interper-
sonal relations. First, even for people with very differ-
ent internal parameters, strong coupling tends to promote
full synchronization of behavior. Once synchronization is
achieved, the two people may be totally unaware that their
internal states are different. This suggests that if the cou-
pling were to be reduced in magnitude (or removed alto-
gether), the dynamics of the two individuals would imme-
diately diverge. Hence, people who employ very strong in-
fluence (e. g., reinforcement, monitoring) to obtain coor-
dination of behavior may effectively hinder synchroniza-
tion of their respective internal parameters. In more gen-
eral terms, there may be an optimal level of influence and
control over one another’s behavior in interpersonal re-
lations [111]. When influence is too weak, synchroniza-
tion between individuals may fail to develop. But when in-
fluence is very strong, it can prevent the development of
a relationship based on mutual understanding and empa-
thy. Intermediate levels of mutual influence, then, may be
most effective for the development of synchronization on
a deep level. Stated differently, the most advantageous de-
gree of coupling (e. g., influence) is the minimal amount
necessary to achieve synchronization.

These implications are consistent with extensive re-
search in social psychology suggesting that behavior at-
tributed to external causes is less likely to promote psy-
chological change than is behavior attributed to internal
causes. For example, people are resistant to changing their
preferences and attitudes if they believe that their behavior
is in response to direct orders, rewards, threats, and other
external influences [7,56]. Salient external influences, in
fact, may activate mechanisms to counter the influences,
creating an internal state that is opposite of the intended
effect of the influence [8,111].

Future Directions

The application of complexity science to social psychol-
ogy makes for an ironic discipline. The tools of complex-

ity and dynamical systems are ideally suited to capture the
subtlety and uniqueness of human experience, yet they are
grounded in concepts andmethods that provide meaning-
ful integration with the natural sciences. Disciplines such
as mathematics, physics, and chemistry have affirmed the
significance of intrinsic dynamics, nonlinear phenomena,
self-organization, and complexity. In recent years, psy-
chologists have become increasingly cognizant that these
features of systems in nature have counterparts in mental,
interpersonal, and collective experience. It would be odd
for a contemporary social psychologist to discount the po-
tential for emergence or to ignore the role of computer
simulations and time series in illuminating how minds,
groups, and societies work.

A word of caution is in order, however. Social reality is
not the same as physical reality. Unlike atoms, individuals
are not interchangeable, and groups are more than self-or-
ganized ensembles of simple particles. People have values
and beliefs, universal concerns and idiosyncratic tenden-
cies, and moments of self-reflection and sudden impulse.
One of the basic rules of human psychology, moreover,
is the capacity for reflecting on one’s operating rules and
attempting to override them. People exist in a symboli-
cally constructed world and do not respond in a reflex-
ive way to objective reality. These unique features of hu-
man experience cannot be chalked up to the recognition
that people are dynamic and complex. The task of dynam-
ical social psychology is thus more daunting than discov-
ering the differential equations that govern interpersonal
and collective dynamics. Models derived from complexity
and dynamical systems provide a foundational science for
the discipline and much remains to be discovered within
this new paradigm. Ultimately, though, the properties that
separate us from other systems in nature must be incor-
porated into theoretical models. It is an ironic testament
to the complexity perspective that a coherent theory of so-
cial psychology should be assembled from elements that
are both universal within nature and unique to human ex-
perience.
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Warsaw, Poland

As science progresses, scholars and researchers continue
to develop models of various phenomena and problems.
These models have become more and more formal, no-
tably mathematical, and hence have relied more and more
on computing.

The initial period has been characterized by comput-
ing meant as well-defined algorithmic procedures imple-
mented by using computing architectures, tools and tech-
niques based on traditional binary (yes – no or 0 – 1)
logic. This logic has also been a basis for all kinds of ap-
proaches within the field of artificial intelligence, a field
of science and technology that has been vividly devel-
oped since the mid-1900s and aimed at devising machines
capable of performing human-specific tasks that require
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intelligence. Symbolic computation has become a main
paradigm within artificial intelligence, and the role of
numerical computing has been neglected to a large ex-
tent.

As promises of artificial research gurus that machines
will be able to perform virtually all sophisticated human-
specific tasks and practically replace humans in a short
time have failed, it has become more and more evident
that sticking to symbolic computations only is a mistake.
Clearly, there may be tasks for which symbolic compu-
tations are adequate, but there may be tasks, presumably
even more, when numerical computations are indispens-
able.

Even if this necessity of a synergistic use of symbolic
and numerical computations in the construction of intel-
ligent systems has become obvious, people have been, for
a long time, not fully convinced that, since the human be-
ing is a crucial element in all kinds of research, analysis
and construction of broadly perceived intelligent systems,
computational techniques and processes involved therein
should reflect human-specific features.

In our context, the main feature of the human element
in computation is that natural language is the only fully
natural means of articulation and communication of a hu-
man being, and natural language is plagued by inherent
vagueness, ambiguity, imprecision, etc. These kinds of in-
formation imperfections are out of scope of conventional
mathematical tools based on – for instance – probabilistic
or statistical tools.

The necessity of developing a new framework which
would differ from the traditional “hard” computing based
on traditional mathematics, i. e., basically on binary logic,
and the dichotomy of true and false, has been recognized
quite early. However, it was Lotfi A. Zadeh from the Uni-
versity of California at Berkeley who first pronounced that
necessity – in the context of the analysis of complex ani-
mate systems, notably human-centered – in a more com-
prehensive way in the early 1960s. In 1965 he introduced
fuzzy sets theory, presumably the first comprehensible, yet
simple and efficient calculus of imprecision. A fuzzy set
is a class to which elements can belong to a degree, from
full membership, through all intermediate values, to full
non-membership. Clearly, this has provided a constructive
means for the representation of imprecisely specified con-
cepts, relations, reasoning schemes, etc. Zadeh then pro-
ceeded to the formulation of possibility theory, and finally
based his ideas on a more direct link to natural language
which has culminated in his computing with words and
perceptions.

The introduction of a fuzzy set, followed by numerous
applications of fuzzy logic-based tools and techniques, no-

tably for control, ranging from the control of domestic ap-
pliances, automatic transmissions in cars, to the control of
industrial installations, has certainly been very important
for the proliferation of fuzzy logic, maybe even more gen-
erally for non-conventional computational tools and tech-
niques.

As a next step, Zadeh has advocated a wider view of
those new computational tools and techniques and coined
the term of soft computing. Basically, soft computing may
be viewed as a departure from conventional (hard and
“precise”) computing in that it is tolerant of imprecision,
uncertainty, partial truth, and approximate relationships,
approximately satisfied properties, etc.

The main principle underlying soft computing is to be
able to exploit a tolerance for imprecision, uncertainty,
partial truth, and approximation to attain tractable, ro-
bust and computationally inexpensive modeling and solu-
tion tools and techniques. A natural connection to neural
computing and evolutionary computing has more recently
been recognized.

It is usually assumed that the principal components of
soft computing are fuzzy logic (complemented with rough
sets theory which may be viewed to address related prob-
lems of imprecise information but understood and dealt
with in a different way), neural computation, and evolu-
tionary computation. These areas are sometimes comple-
mented with machine learning and probabilistic reason-
ing, with the latter subsuming belief networks, chaos the-
ory and parts of learning theory. Moreover, for a long time,
rough sets have been considered to be a relevant part of
soft computing.

However, it should be noticed that soft computing is
not a confluence of more or less independent fields, but is
meant as a synergistic combination of various methodolo-
gies andmethods in which each one contributes in a syner-
gistic and complementary way to the analysis and solution
of a problem.

In this section we will present the main components of
soft computing. The concepts of synergy and complemen-
tarity mentioned above will provide a pivotal perspective.

We start with a brief introduction to fuzzy sets and sys-
tems (see J. Kacprzyk, � Fuzzy Sets Theory, Foundations
of). First, we define the concept of a fuzzy set followed by
the definitions of its main properties. The idea of a fuzzy
relation is then introduced, and shown to be a convenient
apparatus for devising approximate reasoning schemes.
The concept of a linguistic variable is shown to be a ba-
sis for a natural-language-based approach tomodeling and
reasoning. Fuzzy arithmetic is presented making it possi-
ble to use imprecisely specified (fuzzy) numbers in models
and algorithms. A universal problem of decision making
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is dealt with under fuzzy goals, constraints, etc., in a static
and dynamic context.

Though fuzzy sets in the traditional Zadeh sense do
provide a simple yet efficient means for the representa-
tion and handling of imprecision, some natural extensions
of the basic concept of a fuzzy set have appeared. One of
the most relevant and popular is the concept of a type 2
fuzzy set in which the degree of membership itself, which
is a real number from the unit interval in the traditional
fuzzy set, is now a fuzzy set defined in the unit interval.
This natural extension has implied relevant extensions of
fuzzy modeling and reasoning tools and techniques which
are presented in detail, and potentials for applications are
underlined (see R.I. John and J.M. Mendel,� Fuzzy Logic,
Type-2 and Uncertainty).

As in any formal model in which, as is true in vir-
tually all cases in reality, multiple aspects, points of view
and entities have to be accounted for, a proper aggregation
is of a paramount importance. A comprehensive account
of various aggregation operators is provided, both from
a strictly mathematical point of view and from amore con-
structive, application oriented one (see V. Torra,�Aggre-
gation Operators and Soft Computing).

The discussion of the foundations of fuzzy logic is
completed with a brief account of possibility theory ini-
tiated by Zadeh in the late 1970s as an extension of fuzzy
sets theory and fuzzy logic, a mathematical theory for deal-
ing with certain types of imperfect (uncertain) informa-
tion in a way that is an alternative to probability theory.
Main concepts related to possibility theory are presented,
and a historical perspective is provided (see D. Dubois and
H. Prade,� Possibility Theory).

The comprehensive presentation of foundational con-
cepts and properties related to fuzzy logic is then followed
by sections presenting somemore relevant areas which can
be of use in the analysis of many systems and in the so-
lution of many problems in diverse areas of science and
technology.

First, fuzzy optimization and fuzzy mathematical pro-
gramming are outlined starting with basic concepts of op-
timality, feasibility, etc., under fuzzy information. Then,
various classes of fuzzy optimization and fuzzy mathe-
matical programming problem classes are briefly outlined
and basic solution concepts and algorithms are presented.
Some examples of applications are mentioned (see W.
Lodwick and E. Untiedt,� Fuzzy Optimization).

The topic of statistics with imprecise data is consid-
ered next, a very interesting topic from a conceptual point
of view, and practically relevant. First, a sound motivation
is presented by pointing out that, in reality, much available
data is imprecise, and so they cannot be used by powerful

andwell founded, yet too “hard” traditional statistical tools
and techniques. New concepts are formulated and exten-
sions of well known statistical means under an imprecise
information are presented. Some applications are outlined
(see M.A. Gil and O. Hryniewicz, � Statistics with Impre-
cise Data).

The next papers are concerned with the two other key
elements of soft computing: neural computation and evo-
lutionary computation. To emphasize their synergy and
complementarity, these tools have been presented in a hy-
brid context, that is as a presentation of new fields in
which the confluence of fuzzy, neural and evolutionary
tools yields a new quality, and results in the emergence
of a new class of tools and techniques which have already
changed the landscape of soft computing.

We start with the neuro-fuzzy systems, which refer to
a combination of (artificial) neural networks and fuzzy
logic, and may be viewed as a main, fundamental step
into the development of hybrid intelligent systems (see
L. Rutkowski, K. Cpałka, R. Nowicki, A. Pokropiñska, R.
Scherer, � Neuro-fuzzy Systems). Basically, neuro-fuzzy
systems try to combine transparent, human-like reasoning
types of fuzzy rule-based systems with a parallel, connec-
tionist type of neural networks. Therefore, they are uni-
versal approximators with an ability to yield interpretable
IF-THEN rules, bridging the gap between accuracy and in-
terpretability. A broad coverage of main architectures and
implementations is presented.

Though neuro-fuzzy systems have been a consider-
able step forward towards in developing modeling tools
of a better expressive power, effectiveness and efficiency,
some natural extensions have been proposed that take ad-
vantage of the increasing popularity of evolutionary com-
putation. It has been shown theoretically and experimen-
tally that the incorporation in broadly perceived fuzzy
systems, including neuron-fuzzy systems, of a learning
mechanism which can make it possible to adjust the sys-
tems’ structure and parameters may greatly enhance per-
formance. The use of evolutionary computation has led in
this context to the concept of an evolving fuzzy system that
has been considered a promising alternative for some time
(see P. Angelov,� Evolving Fuzzy Systems).

The above mentioned hybridization techniques, which
basically boil down to architectures and algorithms be-
ing a synergistic combination of fuzzy systems, notably
fuzzy rule based systems, neural networks and evolution-
ary computation, in particular evolutionary learning, can
be further extended when applied to real world problems
which always provide much inspiration. Applications for
systems modeling and control are of a universal impor-
tance for many fields of science and technology and hence
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are dealt with in detail (see O. Castillo and P. Melin,�Hy-
brid Soft Computing Models for Systems Modeling and
Control).

The chapters briefly described above have been related
to fuzzy sets and some of their hybridizations by including
elements of neural networks and evolutionary computa-
tion to attain some “superadditivity” of the strengths and
power of the particular single tools and techniques.

Rough sets theory, introduced by the late Zdzislaw
Pawlak in the early 1980s, has been for some time con-
sidered a very promising tool for dealing with imperfect
information, notably in data analysis and decisionmaking.

Basically, a rough set is a formal approximation of
a conventional crisp set in that it is represented as a pair
of two traditional crisp sets which constitute the lower
and the upper approximation of the original. These can be
viewed as sets of elements that possibly and surely belong
to the original set. Rough sets theory is presented in much
detail, first in a more traditional, pure setting in Pawlak’s
spirit. Various concepts are presented, relations between
them are formulated and proved, and their possible appli-
cations are outlined, notably in the relevant areas of data
mining and knowledge discovery. Some extensions of the
basic concept of a rough set are also presented (see J. Pe-
ters, A. Skowron and J. Stepaniuk,� Rough Sets: Founda-
tions and Perspectives).

Next, a “meta-problem” in science, that is decision
making, is dealt with in the context of rough sets. In addi-
tion to the basic definition of a rough set, which provides
much insight into the formalization and solution of var-
ious classes of decision making problems, a novel idea of
a dominance-based rough set is presented. Its use to derive
new, more human consistent solution concepts in decision
making and data analysis is proposed (see R. Słowiński, S.
Greco and B. Matarazzo, � Rough Sets in Decision Mak-
ing).

To summarize, we have tried to present the vast and
diversified area of soft computing in a comprehensive, il-
lustrative and constructive way. The basic perspective as-
sumed may be viewed as presenting soft computing as
a significant paradigm shift in computing in that it tries to
exploit the fact that the humanmind, unlike the computer
we have now, has a remarkable ability to store and process
information which is predominantly imprecise, uncertain
and granular.

We have started with some basic fundamental con-
cepts and properties, and then have devoted much space
to the presentation of what is characteristic for soft com-
puting: a synergistic, complementary use of various tools
and techniques to solve problems in an effective and effi-
cient way. This has led to various types of hybridization

in which tools from fuzzy systems, rough sets, neural net-
works and evolutionary computation have been employed.
It seems that soft computing should play a more and more
important role in the years to come, in which more and
more emphasis should be put on human-consistent and
human-centric tools and techniques, and on hybrid sys-
tems.

Software Architectures for Autonomy
ROBERT A. TOUCHTON1, CARL D. CRANE III2
1 Honeywell International, Phoenix, USA
2 University of Florida, Gainesville, USA

Article Outline

Glossary
Definition of the Subject
Introduction
Joint Architecture for Unmanned Systems (JAUS)
NIST 4D/RCS
Service Oriented Architecture/Component Oriented

Architecture
Distributed Architecture for Mobile Navigation
Situation Assessment
Planning and Decision Making
Knowledge Representation
Adaptive Planning Framework
Future Directions
Bibliography

Glossary

Reference architecture (RA) A reference architecture is
a framework containing valuable implementation
guidance for meeting the requirements of an enter-
prise.

Automated guided vehicle (AGV) A vehicle that can be
programmed to automatically drive to designated
points and perform preprogrammed functions.

JAUS The Joint Architecture for Unmanned Systems
(JAUS) Reference Architecture defines a set of reusable
components and their interfaces. The architecture em-
phasizes vehicle platform independence,mission isola-
tion, computer hardware independence, and technol-
ogy independence.

NIST 4D/RCS The acronym NIST 4D/RCS refers to the
National Institute of Standards and Technology Real-
time Control System. 4D/RCS describes in detail the
functions and associated interfaces necessary to pro-
vide sensory processing, world modeling, knowledge
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management, cost/benefit analysis, and behavior gen-
eration.

Adaptive planning framework The Adaptive Planning
Framework addresses dynamic situation assessment,
behavior management, and decision-making. It incor-
porates a three-stage process of 1) understanding the
current situation, 2) understanding the suitability and
viability of the available behaviors in light of that situ-
ation, and 3) providing the capability to autonomously
make and execute behavior-related decisions, all in
real-time.

Service oriented architecture (SOA) A Service Oriented
Architecture maintains a strictly enforced standard-
ized interface among entities. A standardized messag-
ing construct enables one entity to request a service
from another entity and for that service provider to
send its response.

Definition of the Subject

Developing an autonomous system, such as an autono-
mous ground vehicle, that can operate and maneuver in
an unstructured environment is a complicated task. One
of the most daunting issues facing autonomous vehicle re-
searchers is how to best exploit sensor and other informa-
tion discovered during the execution of a plan. If the sys-
tem takes too long to deliberate on the possible meanings
and implications of this newfound data and knowledge,
the vehicle may well have progressed beyond the point
where it can benefit from it. Indeed, it may now be sit-
ting atop the unforeseen obstacle that spawned the influx
of new information that was being processed.

The execution of specific autonomous behaviors is be-
coming reasonably well understood, such as “waypoint-
following with obstacle detection”, though improvements
and breakthroughs in these areas continue. However, the
autonomous selection of which behavior(s) should be in-
voked, and in what sequence and by what method, is in
need of movement in the state of the practice. Advanced
ways of thinking about, organizing, and applying situa-
tional knowledge to macro-level planning and decision-
making are needed by the autonomous robotics commu-
nity in order to achieve the full potential of the field. This
article discusses various approaches and various reference
architectures that have been developed to address these
problems.

Introduction

Three predominant standards are discussed in the follow-
ing sections, i. e. the Joint Architecture for Unmanned
Systems (JAUS) Reference Architecture, the National In-

stitute of Standards and Technology (NIST) 4D/RCS
(Real-time Control System), and the Service Oriented Ar-
chitecture. A fourth architecture referred to as the Dis-
tributed Architecture for Mobile Navigation (DAMN) is
also discussed although this architecture is not widely
adopted. Lastly, the Adaptive Planning Framework ap-
proach that was developed at the University of Florida to
address the problem of decision making is introduced.

Joint Architecture for Unmanned Systems (JAUS)

The Joint Architecture for Unmanned Systems (JAUS)
Reference Architecture, Version 3.2 [18] defines a set of
reusable components and their interfaces. In order to en-
sure that the architecture will be applicable to the entire
domain of unmanned mobile systems, the following four
characteristics have been considered by the JAUS Work-
ing Group in the creation of the Reference Architecture:

1. Vehicle platform independence. In order for JAUS
components to be interoperable, no assumptions about
the underlying vehicle or its means of propulsion are
made.

2. Mission isolation. The JAUS components can typically
be assembled such that a variety of missions can be sup-
ported.

3. Computer hardware independence. No assumption of
or requirement of particular computer hardware is
made. This allows for future adaptability and enhance-
ment as new computer hardware becomes available.

4. Technology independence. This is similar to the com-
puter hardware independence, but focuses more on the
technical approach rather than the computer hardware.
For example, many approaches could be used to de-
termine vehicle position and orientation. No one ap-
proach, such as GPS, inertial dead reckoning, or land-
mark-based navigation for example, is specified.

As currently defined, JAUS Reference Architekture
(RA) establishes a pre-defined set of standard, yet flexible,
components that provide amenu of capabilities that can be
drawn from to design an unmanned system. Components
are divided into five categories:

� Command and control components
� Communications components
� Platform components
� Manipulator components
� Environmental sensor components

The RA also defines a standardized messaging con-
struct (header and content) that enables JAUS compo-
nents to exchange information in an efficient and robust
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fashion. The messaging approach first defines the content
and usage of a standardized JAUS Header. It then pre-
scribes the legal JAUS data types that can be incorporated
into a message. Then it defines each JAUS message.

The Adaptive Planning Framework Reference Imple-
mentation was developed within such components and
using such messages as defined by JAUS. Specifically,
the Reference Implementation for the Adaptive Planning
Frameworkwas cast in an operational JAUS-compliant ve-
hicle. However, the concepts and ideas that make up the
Adaptive Planning Framework are not tied to nor specif-
ically depend on JAUS. This enables other organizations
to implement the framework in an alternative architecture
or in future evolutions of the JAUS Reference Architecture
itself.

NIST 4D/RCS

The National Institute of Standards and Technology
(NIST) has been working for over two decades on es-
tablishing a standardized approach to the intelligent con-
trol of unmanned vehicle systems. The most compre-
hensive summary of their approach is given in NISTIR
6910, 4D/RCS: A Reference Model Architecture [27]. The
4D/RCS architecture is itself derived from NIST RCS,
a domain-independent architecture developed by NIST
a decade plus earlier (see [26] for a good overview of the
generic RCS methodology). 4D/RCS goes on to specialize
RCS to the domain of intelligent vehicle systems for mili-
tary use.

4D/RCS focuses on ways to ensure that military mis-
sions involving unmanned vehicles can be analyzed, de-
composed, distributed, planned, and executed in an intelli-
gent, effective, efficient, and coordinated fashion. 4D/RCS
describes in detail the functions and associated interfaces
necessary to provide sensory processing, world model-
ing, knowledgemanagement, cost/benefit analysis, and be-
havior generation. Of particular interest is its hierarchical
treatment of time, providing a temporally layered set of
eight planning/execution regimes (see Fig. 1). For exam-
ple, it suggests that a vehicle Subsystem Planner (Level 3)
ought to execute at �1–5Hz with a 5 second, 50meter
planning horizon at a 40 cm grid map resolution, while
a Section Planner (Level 5) might need to re-plan every
50 seconds, with a 10minute, 5 km planning horizon at
a 40m grid map resolution.

A challenge posed by 4D/RCS is that their hierarchy of
nodes calls for each node to possess a complete set of func-
tional capabilities (i. e., World Model, Value Judgment,
Behavior Generation, etc.), scaled and scoped to its level
of operation in the hierarchy. The partitioning, decompo-

sition, and distribution of the Adaptive Planning Frame-
work Specialists andDecision Brokers across a 4D/RCS hi-
erarchy will be a completely new research area. Of greater
concern is that 4D/RCS puts a great deal of power and
functionality into theirWorldModel, including prediction
and simulation.

Service Oriented Architecture/
Component Oriented Architecture

Several facets of the Information Technology (IT) sec-
tor have been working to establish standards that sup-
port software interoperability across diverse organizations
under the moniker of Service Oriented Architecture or
SOA. SOA enables loose coupling among diverse software
entities across a common network. This is accomplished
by maintaining a strictly enforced standardized interface
among the entities and a standardized messaging con-
struct that enables one entity to request a service from an-
other entity and for that service provider to send its re-
sponse. This rapidly emerging standard is of interest here
because the JAUS Working Group has begun a transition
to a SOA-style architecture.

The most mature of these efforts is sponsored by the
World Wide Web Consortium (W3C), which relies heav-
ily upon SOA as the foundation of its Web Services initia-
tive and, therefore, is leading the way in its maturation and
adoption as a standard.Web Services extend the SOA con-
cept to address anonymous entities that can discover one
another and engage one another’s services autonomously
over the World Wide Web. They have published a treatise
on the Web Services Architecture that includes an excel-
lent overview of SOA in Sect. 3.1 of [45]. They go on in
that section to outline some of the pitfalls of a SOA, such
as network reliability and latency, lack of shared memory
between service provider and consumer (i. e., everything
that must be conveyed from one entity to another must
be done explicitly via message content, and side effects of
receipt of a message must be well understood and agreed
upon), concurrency mismatches, and so on.

Industry has also taken a strong role in promot-
ing SOA as a de facto standard. IBM (http://www-128.
ibm.com/developerworks/webservices/standards/), Sun
Microsystems (http://java.sun.com/developer/technical
Articles/WebServices/soa2/SOATerms.html#soaterms),
and Microsoft (http://msdn.microsoft.com/architecture/
soa/default.aspx?pull=/library/en-us/dnmaj/html/aj1soa.
asp), to name three, have all embraced the notion.

Academia has also been active in this arena. IEEE
Computer Society has formed a Technical Commit-
tee on Services Computing (http://tab.computer.org/tcsc/

http://www-128.ibm.com/developerworks/webservices/standards/
http://www-128.ibm.com/developerworks/webservices/standards/
http://java.sun.com/developer/technicalArticles/WebServices/soa2/SOATerms.html#soaterms
http://java.sun.com/developer/technicalArticles/WebServices/soa2/SOATerms.html#soaterms
http://msdn.microsoft.com/architecture/soa/default.aspx?pull=/library/en-us/dnmaj/html/aj1soa.asp
http://msdn.microsoft.com/architecture/soa/default.aspx?pull=/library/en-us/dnmaj/html/aj1soa.asp
http://msdn.microsoft.com/architecture/soa/default.aspx?pull=/library/en-us/dnmaj/html/aj1soa.asp
http://tab.computer.org/tcsc/link.htm
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Software Architectures for Autonomy, Figure 1
Excerpt from NIST PowerPoint Presentation (Source: http://www.isd.mel.nist.gov/projects/rcs/presentationhui/sld019.htm)

http://www.isd.mel.nist.gov/projects/rcs/presentationhui/sld019.htm
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link.htm), and ACM has been actively including SOA top-
ics in many of their conferences and symposiums.

A closely related predecessor to SOA is component-
based architecture (COA), which differs primarily in its
stronger predisposition of what services a software entity
(“component”) will provide and less standardization of
how components communicate with each other. In other
words, COA does not worry so much about a component
performing a single task (as in SOA) as long as the mul-
tiple services provided by a given component, and the in-
terface for executing those services, are well documented.
The emphasis is on providing a good platform for prob-
lem decomposition and loose coupling among compo-
nents, with less emphasis on component interoperability.
Aksit [1] provides an excellent compilation of articles on
the topic of COA, especially Chap. 3, “Component–Based
Architecting for Distributed Real-Time Systems”, which,
in turn, includes a detailed example of using a COA to de-
vise a Car Navigation System (page 85). All in all, SOA can
be considered a maturation, and perhaps specialization, of
COA.

Distributed Architecture forMobile Navigation

The Distributed Architecture for Mobile Navigation
(DAMN) was originally published as a Ph.D. Disserta-
tion [35] and, while not as widely adopted as the archi-
tectures discussed above, it has provided many useful in-
sights. Even though the scope of DAMN is limited to nav-
igation and obstacle avoidance, its distributed approach,
its support of hybrid planning and implementation styles,
its blend of centralized and decentralized processing, and
its thoughtful treatment of salient challenges to real-time
decision-making all make it worthy of elaboration here.

The basic premise behind DAMN is that centralized
arbitration of distributed decision-making processes pro-
vides a reasonable and useful balance between the de-
mands for real-time responsiveness and the challenges
brought about by the asynchronous, latency-filled, hetero-
geneous, uncertain environment encountered by an au-
tonomous ground vehicle. As in the other architectures
discussed, DAMN provides a modular, extensible, and in-
teroperable framework for supporting the generation and
arbitration of sensor data, behaviors, and commands to the
mobility platform, controllers, and actuators. This notion
is shown schematically in Fig. 2, where sensor data and
high-level commands have been bundled with the assort-
ment of behaviors depicted.

The treatise goes on to present and analyze alternative
structuring of the placement of arbitration (e. g., sensor vs.
command vs. effect) and to explore various action selec-

Software Architectures for Autonomy, Figure 2
DAMN Arbiter and Behaviors (Source: [35], page 9, Figure 1–2)

tion schemes. A detailed presentation of the DAMN im-
plementation on a CMUNavlab AGV and the experimen-
tal results achieved provides further insights into the mer-
its and shortcomings of the architecture. Another major
contribution of that research was the application of utility
theory to the behavior arbitration process, as further dis-
cussed later in this article.

SituationAssessment

The situation assessment domain of interest to the topic
of software architectures for autonomy is that of an un-
manned system understanding its surroundings and status
at a higher, more abstract level than that provided directly
by its perception systems. In reviewing the literature, one
must filter the use of the term when used in the context
of the design of manned combat systems; such references
often address such topics as own and enemy radars, mis-
sile tracking, and weapon lethality. Most such references
are in the context of providing situational assessment for
a human [16,48], such as pilot support on board a com-
bat aircraft. Of interest here, however, is the applicabil-
ity to unmanned systems, wherein the raw sensor and sig-
nal data is processed into more general situational conclu-
sions, usually as a result of some form of inference or de-
duction. For clarity, the term “situation assessment” when
used in this document will refer to this latter connotation.
This domain is sometimes mentioned in the literature as
“situational awareness” and could be referring to either of
the connotations discussed above.

Work at USC [49] described the use of templates and
patterns to provide situation assessment in virtual hu-
mans. They demonstrate a way to use situation assess-
ment to improve decision-making by allowing the soft-
ware system to better focus its attention (i. e., computing
resources) with the goal of improved utilization of on-
board resources.

Of particular interest is the work underway at NIST.
They are working in several areas that address situation
assessment. One has to do with incorporating situation
assessment feedback to human operators of robotic de-
vices [40]. While their emphasis is on the human-machine

http://tab.computer.org/tcsc/link.htm
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interface, there are insights to be gained from the situation
identification and classification schemes that they devel-
oped. An even more relevant front is their work on us-
ing 4D/RCS to control on-road robotic vehicles. There are
both formal papers [38] and materials and presentations
available on theNISTweb site (see Fig. 3) that demonstrate
ways to incorporate situation assessment notions into the
4D/RCS architecture.

Weiss, Philipps and To et al. [46] present a capability
that could be adapted into a Traffic Specialist. It provides
situation classification and prediction for an assortment
of expressway-related conditions (such as same/different
lane assignment for other vehicles that are detected), and
states (Such as approach rate {approach j approach with
distance warning j approach with collision warning}).
Similarly, [13] introduce material that could form a Col-
lision Avoidance Specialist that could manage interactions
with moving obstacles using such notions as “time to col-
lision”, “time to brake”, and “time to disappear”. Another
area of interest is vehicle self-awareness and work such
as [33] sheds light on how a Vehicle Health Specialist
might be devised.

Finally, it should be noted that much of the discussion
of situation assessment in the literature was secondary to
a broader discussion and is, thus, of most use in provid-
ing insights into possible nomenclature and classification.
References such as these are discussed in the Knowledge
Representation section rather than here.

Planning and DecisionMaking

Since the scope of this topic is so broad, its treatment here
will be, first of all, limited to the domain of real-time plan-
ning and decision-making on an AGV and then further
organized as an assortment of “views”. The notion of plan-
ning refers to the orchestration of executable behaviors to
achieve a goal (e. g., find a series of waypoints that will
take the vehicle to a desired goal, then drive the vehicle
to those waypoints while avoiding obstacles, obeying driv-
ing rules andmaintaining stability), as well as the low-level
planning conducted by a given behavior (e. g., finding an
obstacle-free path towards the next waypoint within the
perception horizon of the vehicle). The following list of be-
havior primitives are but a sampling of those gleaned from
the literature:

� Seek Goal
� Avoid Obstacles
� Follow Road
� Respond to Blocked Path
� Explore
� Wander

� Maintain Stability
� Seek Target/Intruder
� Intercept Target
� Mark Location

Viewed as a Sense-Plan-Act Problem
This is perhaps the most fundamental view of autonomous
control of a mobile robot and one into which many au-
tonomous robotic implementations can be cast. The no-
tion is to neutralize uncertainties in the robot’s perception
of its world, its understanding of its own state, and the
effects of its own actions by indirectly “closing the loop”
through the continuous gathering of feedback from its en-
vironment while executing its plan [25]. Since it is antic-
ipated that the plan itself will be divided into a sequence
of steps, the idea is that the results of executing the initial
steps can be observed and compared with expected results.
If expectations are not being adequately met (in essence,
forming an “error” signal), then the subsequent steps can
be adjusted accordingly, or an entirely new plan can be
published. It is presumed that the robot will have an ability
to store its perception and state knowledge in some form
of a world model, which can, in turn, be used by the plan-
ner.

This design style best describes the autonomous con-
trol used on the NAVIGATOR [8]. The four environ-
mental sensors publish their findings, in the form of
a traversability grid, to a sensor arbiter. Two additional
pseudo-sensors each publish a traversability grid to the
sensor arbiter denoting the a priori route boundary and
a priori path plan. The sensor arbiter then fuses these in-
puts and publishes to the receding horizon planner a com-
prehensive traversability grid, which represents a localized
view of a world model. The receding horizon planner uses
an A* search algorithm and a simple vehicle model to it-
eratively produce viable plans that achieve a desired goal
state and to choose the one that minimizes traversabil-
ity cost. The goal itself is based on the a priori path plan
and is replaced with a new goal once the vehicle nears
it. The planning search that occurs has as its only objec-
tive the publishing of an instantaneous wrench command
(steering, throttle, brake) to the vehicle’s primitive driver,
whose job is to execute that wrench as actuator positions.
Thus, every cycle of the planner produces a new wrench
command. Since every component in the chain executes at
a nominal rate of 20Hz, a new “plan” (as manifested in the
instantaneous wrench command) is always being issued,
thus providing a responsive behavior, with some deliber-
ation on how that behavior is generated. Figure 4 shows
a snapshot of an arbitrated traversability grid and the in-
stantaneous plan. Red, orange, and yellow indicate lessen-
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Software Architectures for Autonomy, Figure 3
Excerpt from NIST PowerPoint Presentation (Source: http://www.isd.mel.nist.gov/projects/rcs/presentationhui/sld061.htm)

Software Architectures for Autonomy, Figure 4
Example Traversability Grid taken from the NAVIGATORwhile in
a Cluttered Roadway

ing severity of obstacles, gray and blue indicate improving
degrees of smoothness of terrain. The instantaneous plan
is indicated in black.

One difference in the NAVIGATOR’s implementation
of the Sense-Plan-Act paradigm is that, by encapsulat-
ing the a priori plan into a pseudo-sensor whose find-
ings compete with those of the other sensors, the con-
ventional aspects of planning provide only “suggestions”
for a preferred action, rather than forcing the vehicle
onto a defined course. Although implemented quite dif-
ferently, this notion is in concert with the findings of Pay-
ton, Rosenblatt and Keirsey [29], who go on to note that
“In general, internalized plans should be conceived as rep-
resentations that allow the raw results of search in an ab-
stract state space to be made available as advice to contin-
uous real-time decision-making processes”.

There are many good examples of robotic systems that
have implemented some fashion of the Sense-Plan-Act
paradigm. Most have to do with navigation and obstacle
avoidance, such as Batavia and Nourbakhsh [6]. Examples
of this paradigm applied to other aspects of robotic plan-
ning and decision-making are much harder to find.

Viewed as a Subsumption Problem

The notion of empowering a mobile robot to operate with-
out any centralized control was first introduced by Rod-

http://www.isd.mel.nist.gov/projects/rcs/presentationhui/sld061.htm
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ney Brooks as he devised a self-managing, layered con-
trol scheme dubbed the “subsumption architecture” [7].
By decomposing a robot’s control system into layers of
task-achieving behaviors, control is governed by the dom-
inant layer in play at an instance in time, which, in turn,
“subsumes” the behaviors of the lower level layers. For ex-
ample, let “Wander” be considered a level 1 behavior and
“Explore” a level 2 behavior. Since Explore is the higher
level, it will self-determine whether exploring is an appro-
priate behavior under current circumstances. If so, then
it will alter the Wander behavior to be not random, but
to fulfill its wishes to visit new areas. If not, then it will
allow the Wander behavior to proceed without any alter-
ation. This notion is extrapolated across all possible be-
haviors. This style of planning and decision-making is of-
ten referred to as “reactive”. The resultant behavior of the
robot is referred to as “emergent” since it is likely that the
observed behavior is some extemporaneous blend of the
possible behaviors that the robot could execute.

This approach to planning and decision-making has
a dedicated following and is especially appealing for multi-
agent and swarm applications. For example, the sub-
sumption architecture and reactive behavior play a major
(though not exclusive) role in the design of robots at the
Idaho National Lab (see www.inl.gov/adaptiverobotics).

The differences between these first two views can be
captured by the relative importance placed on each of the
three components of the Sense-Plan-Act view. For exam-
ple, a purely reactive system does almost no local plan-
ning since every stimulus anticipated during the sens-
ing stage has a prescribed behavioral action, thus relegat-
ing the planning stage to simply resolving action conflicts
when more than one stimulus is perceived or queuing and
dispensing actions when one stimulus invokes multiple
actions (i. e., managing the subsumption process). Con-
versely, a deliberative system will have a large emphasis
on the planning stage, attempting to formulate a new plan
that incorporates newly sensed information along with
any changes in state of the vehicle or its mission while
simulating the effect of alternative actions on the quality
and viability of the plan. The juxtaposition of the Sense-
Plan-Act view’s emphasis on deep planning through pos-
sibly time-consuming deliberation and the Subsumption
view’s potentially unpredictable, but fast, reaction to stim-
uli, explains why researchers are still seeking other, hybrid
or blended, planning and decision-making styles.

Viewed as a Decision Theory Problem

Another rich area of exploration is how classical decision
theory might be applied to the AGV domain. For example,

Karacapilidis and Papadias [20] describe how argumenta-
tion can be automated and used to support collaborative
decision-making. Their ideas for automating argumenta-
tion constructs include evaluations such as “Scintilla of
Evidence”, “Beyond Reasonable Doubt”, and “Preponder-
ance of Evidence”.

Rauenbusch and Grosz [32] and others speak of devis-
ing explicit “Plan Trees” whose nodes encapsulate the de-
sired action/behavior, associated constraints, and contex-
tual applicability and whose structure models the desired
decision-making outcomes. The search through the tree is
conducted using some measure of cost or value such that
the correct path through the tree delivers the correct series
of actions/behaviors.

Hoffman and Yates [15] present a synopsis of what has
become known as the “three-step decision-making pro-
cess”. In this paper, they report that most, if not all de-
cisions can be modeled as a cascading set of three-step ac-
tivities. One of the models specifically referenced for use
in process control is 1) Situation Assessment, 2) Planning,
and 3) Commitment to a course of action. Each of these
steps may be expanded into another three-step decision-
making process, such as deciding which situational condi-
tions are present or relevant, or whether to keep or aban-
don a committed action.

A final realm under decision theory is known as Hi-
erarchical Task Network (HTN) planning [9] provide an
overview of this concept and cite the seminal works that
have contributed to it on the way to introducing a for-
malism of HTN planning semantics. The basic premise
of HTN planning is to iteratively decompose tasks until
primitive tasks are reached (defined as tasks that cannot be
further decomposed and that are actionable). These prim-
itive tasks are assembled into a network of increasingly ab-
stract tasks allowing a planning algorithm to select a high-
level task, recursively expand its children until its primitive
tasks are reached. Some expansions may be constrained
based on the current situation, thus pruning the search
when compared with an unconstrained expansion of the
network. Each reachable path from the high-level tasks to
the primitive tasks becomes a candidate plan. While this
exploration of the HTN is taking place, the candidates are
being evaluated by so-called “critics” so that any arising
conflicts can be identified and the winning candidate de-
clared. Because of its deep reasoning, HTN-based plan-
ning is not typically used for real-time applications.

Viewed as a Behavior Arbitration Problem

The concept of Behavior Arbitration was introduced as
part of the Distributed Architecture for Mobile Navigation

http://www.inl.gov/adaptiverobotics


8446 S Software Architectures for Autonomy

(DAMN) [35] as a key ingredient for achieving its goal
of balancing centralized and decentralized design styles.
All (decentralized) behavior generators submit their con-
trol output (referred to as a “vote”) and the (centralized)
DAMN Arbiter fuses their votes into a single command
set to the vehicle.

“Utility fusion”, which uses traditional utility theory to
provide an alternative to command fusion, is another con-
cept that evolved from DAMN [36]. This notion requires
each behavior generator to submit a probabilistic utility es-
timate along with its vote, thus enabling a “utility arbiter”
to compute the Maximum Expected Utility and use it to
select the optimal behavior.

Viewed as an Action Selection Problem

Action Selection is another way to view planning and de-
cision-making on an AGV. In this view, the mobile robot
is tasked with selecting the most appropriate action based
on the current situation, in spite of inaccurate, incomplete,
and possibly unforeseen information. For this to happen,
there must exist some catalog or repository of possible ac-
tions from which to select and the criteria upon which to
base a selection decision. Pirjanian [30] provides an excel-
lent overview of ten varying approaches to the action se-
lection problem. In this treatise, he summarizes each (in-
cluding DAMN), then compares and contrasts them in
terms of eight criteria, including planning vs. reactivity,
synchronous vs. asynchronous, hierarchy vs. no hierarchy,
and knowledge representation which all have a direct bear-
ing on the current research.

NIST has also developed an approach to action selec-
tion via its hierarchical planning and control scheme [21,
22]. The scheme enables the system to plan at different
rates at each level, with the scope of planning fixed for
each level. For example, high-level goal planning might
take place at a lower resolution and update rate, but would
cover a larger expanse than say planning for obstacle
avoidance. The plans themselves are broken into a tree
or graph of subgoals and subtasks (task decomposition
itself is discussed under Knowledge Representation) and
the actions are selected, executed, and monitored in ac-
cordance with the defined planning levels. The planning
levels are chosen to be consistent with the time, duty cycle,
and range horizon parameters established in the 4D/RCS
architecture. For example, AGV mobility planning is bro-
ken into four levels: Servo, Prim(itive), Autonomous Mo-
bility, and Vehicle System. Balakirsky and Lacaze [2] elab-
orate how planning, in the form of Value Judgment and
Behavior Generation, takes place for the Vehicle System
planning level.

Viewed as an Adaptive Planning Problem

Note that in some literature, “adaptive” is used to mean
that the system “learns” from its experience, thus im-
proving its performance over time, whereas the conno-
tation used here is that the system alters its plan based
on new, situational information that has been provided
by upstream knowledge and data processing. Thus, while
the possibility of actually changing the a priori behav-
iors from which to choose through learning should not
be ruled out for future generations of the Adaptive Plan-
ning Framework, it is certainly not the emphasis or the
motivation for using the term “adaptive” in its moniker.
The genesis of adaptive planning as used here was a search
to improve the performance of (manual) military mis-
sion planning through the use of expert systems, such as
the Adaptive Mission Planning System in [41]. The quest
continues as military planners seek to reduce 24-month
planning cycles down to a year or less for complex de-
ployments and even less for Crisis Action Planning [14].
In fact, their definition, “Adaptive Planning is the sys-
tematic, on-demand creation and revision of executable
plans, with up-to-date options, as circumstances require”,
could suffice for the work conducted here as long as its
transition to an autonomous, real-time setting is under-
stood.

The need to alter a plan already in progress can have
a number of causes, including insufficient time for com-
pletion, ineffective results, changes in the situation, and
receipt of a new objective to name a few. The Artificial In-
telligence community has driven related work in this area,
but application to mobile autonomous robotics has not
been at the forefront. For example, [12] presents an excel-
lent treatise of an adaptive planning architecture based on
the premise that an “agent dynamically constructs explicit
control plans to guide its choices among situation-trig-
gered behaviors”. To accomplish this, she identified and
explored five areas where an intelligent system might re-
quire adaptive behavior, depending on the situation en-
countered:

1. Perception Strategy – Adapt to information require-
ments and resource limitations

2. Control Mode – Adapt to goal-based constraints and
environmental uncertainty

3. Reasoning Tasks – Adapt to perceived and inferred
conditions

4. Reasoning Methods – Adapt to available information
and current performance criteria

5. Meta-Control Strategy – Adapt to dynamic configura-
tions of demands and opportunities
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As an example of more recent work that does focus on
mobile robotics in a real-time setting, Hassan, Simo and
Crespo [11] offer a behavior-based architecture that will
adapt to temporal constraints by allowing itself to utilize
more deliberative techniques when time is available, but
moving towards more reactive behaviors when time is at
a premium. They also introduce the notion of adjusting
the quality of service that a given element might deliver
based on the situation encountered. For example, this ap-
proach might allow the system to attempt to achieve its
goal with a “rough” plan if a “complete” plan could not be
delivered in a timely enough manner. Musliner [23] and
his Adaptive Mission Planner, provides another view on
how to empower an autonomous system to alter its plans
based on temporal constraints and in light of changing en-
vironments, objectives, and system capabilities. That work
built upon his earlier efforts to devise the Cooperative
Intelligent Real-time Control Architecture (CIRCA) [24],
which provides formalisms on how to represent tasks and
decisions in a LISP setting. While CIRCA has not been ap-
plied in the mobile robotic domain (making its suitabil-
ity to support an AGV unknown), there are insights to
be gained from this work. Finally, NIST has incorporated
an element of adaptive planning in their recent work on
autonomous on-road driving as part of 4D/RCS. For ex-
ample, Balakirsky and Scrapper [3] discuss an expert sys-
tem and knowledge representation scheme that support
adaptive planning for autonomous lane and speed man-
agement.

Knowledge Representation

In this section, related work on Knowledge Representation
relevant to the domain of AGVs is explored. Knowledge
Representation refers to the schemas and constructs used
to document, standardize, normalize, and utilize the enti-
ties within the domain of interest. It must capture the se-
mantics and meanings of the relationships among the en-
tities, as well as their names, descriptions, attributes, and
themethod or reasoningmechanism for determining their
current state or value.

Sources of such domain knowledge include technical
documents, specifications, training manuals, etc. (many
of which can be accessed via the web). Example knowl-
edge sources include a table of Autonomous Mobility Sit-
uation Coverage Requirements from Demo III require-
ments analysis [34], a Functional Taxonomy chart for an
AGV from a TACOM (the U. S. Army’s Tank-Automotive
COMmand) PowerPoint presentation [31], and by draw-
ing analogies from human military operations as found in
the Army Universal Task List [44]. Remaining knowledge

gaps must be filled in by interviews of subject matter ex-
perts or perhaps empirically through experimentation.

By far, the most work in knowledge representation
for intelligent vehicles has been done by NIST. Thus, this
section will conclude with an extended example, demon-
strating their approach to representing knowledge about
situational conditions, states and events, planning, and be-
haviors within the 4D/RCS context.

Lexicons, Taxonomies, and Ontologies

One technique for knowledge representation is to progress
from a lexicon (a domain-specific dictionary of terms), to
a taxonomy (a logical ordering and categorization of those
terms), to an ontology (an explicit specification of those
terms along with the semantics and relationships among
them). One on-line dictionary defines ontology as follows:

An explicit formal specification of how to represent
the objects, concepts and other entities that are as-
sumed to exist in some area of interest and the rela-
tionships that hold among them . . . Definitions as-
sociate the names of entities in the universe of dis-
course (e. g. classes, relations, functions or other ob-
jects) with human-readable text describing what the
names mean and formal axioms that constrain the
interpretation andwell-formed use of these terms . . .
The hierarchical structuring of knowledge about
things by subcategorizing them according to their
essential (or at least relevant and/or cognitive) qual-
ities [17].

Much work is in progress attempting to build general
purpose, or even “common sense” ontologies that would
be useful to all domains. The most famous of these is
the OpenCyc project (http://www.opencyc.org/), which,
with 47,000 concepts and 306,000 assertions about them
to date, is well on its way to achieving its vision to become
“the world’s largest and most complete general knowledge
base and commonsense reasoning engine”. Another ini-
tiative of interest is the DARPA Agent Markup Language
(DAML) project (http://www.daml.org/), which was spon-
sored by DARPA to create an xml extension that provides
(among other things) a rich and suitable language for the
creation of general-purpose ontologies (282 distinct on-
tologies had been created using DAML by the time the
program funding was terminated in 2006 and the work ab-
sorbed by W3C).

For the AGV domain, the scope of the knowledge
that must be represented via the techniques discussed in
this subsection is still quite broad. Situational knowledge
spans from urban to highway to off-road environments,

http://www.opencyc.org/
http://www.daml.org/
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Software Architectures for Autonomy, Figure 5
NIST Knowledge representation schemes for on-road driving. (Source: [4,5], Figures 3 and 4)

potential obstacles and hazards that might be present, traf-
fic rules and driving best practices, and so on. Planning
and behavior knowledge encompasses a wide variety of
missions and tasks, whether they are high-level (conduct
search and rescue operation), tactical (pass the vehicle), el-
ementary (change lane), behaviors (avoid obstacles, main-
tain stability), planning rules and processes, and so on.
Even knowledge about “self” or “ego”must be represented,
such as capabilities, limitations and constraints, or current
status. There is amajor initiative under way at NIST, spon-
sored by TACOM, to develop an Intelligent Systems On-
tology. Although still a work in progress, this intelligent-
vehicle-specific ontology is expected to provide a standard
set of domain concepts, their attributes and their interrela-
tionships, delivered in a fashion that facilitates knowledge
capture and reuse [39]. This ontology is beginning to gain
traction as it makes its way into the AGV navigation plan-
ning community outside of NIST [37].

World Model Knowledge Store (WMKS)

Another dimension of knowledge representation is how
data, information, and knowledge are stored. Whether it
is provided a priori, or it is perceived, inferred, or received
by the AGV, theremust be a place and a format for storing,
accessing, and analyzing it. Such data, information, and

knowledge are often referred to as the “world model” and
the place where they are stored as the “knowledge store”.
The breadth and sophistication of the world model knowl-
edge store for a given AGV design will vary widely, de-
pending on its degree of autonomy, the scope of its behav-
ior, the complexity of its design, etc.

Situation Assessment findings, which must also be
managed, fit into what some communities refer to as
“meta-knowledge”, i. e., knowledge about the knowledge.
For example, while pumping out its perception data, a sen-
sor could independently assess and report on its own con-
fidence in its findings and its own health, and perhaps even
declare that its own results should not be used right now
(say, due to a camera white-out).

Although not always so, the knowledge store is usu-
ally persistent, using either a relational database or an ob-
ject-oriented knowledge based system. Since much of the
information stored is of a geo-spatial nature, the knowl-
edge store often includes geo-spatial extensions for explic-
itly representing GIS and topographical data, polygonal
objects, etc. Another consideration is whether the WMKS
contents are stored in a central location, accessible by all
AGV modules (sometimes referred to as a “blackboard
architecture”) or each module maintains a subset of the
WMKS containing just the content it needs, with data,
information, and knowledge marshaled among the AGV
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modules on an as-needed/as-requested basis (sometimes
referred to as a “publish/subscribe architecture”).

Knowledge Representation at NIST

NIST advocates task decomposition as a key knowledge
representation technique to support the hierarchical con-
trol strategy emphasized in its 4D/RCS architecture and
has published widely on various ways to accomplish
it [4,5]. This technique for representing the actionable el-
ements that could be assembled to create a plan strives
to break high-level tasks (e. g., a mission objective) into
distinct hierarchical levels and also to identify multiple
subtasks at a given level. Figure 5a–5b shows an exam-
ple of how the “GoToDestination” task is decomposed
into a “planning graph” that ultimately leads to a specific
wrench command to the vehicle. The system must know
(or be able to infer) the state of each node in the tree along
with the cost of each arc in order for the associated con-
trol module to formulate the appropriate plan. Extend-
ing the example in Fig. 2–5b, a Destination Manager has
determined that staying on the current road is appropri-
ate and a Route Segment Manager has decided that pass-
ing the vehicle in front of it is the most desirable way to
reach the destination. A Driving Behaviors module knows
that its own vehicle has already changed into the passing
lane and has further determined that the best thing to do
right now is to stay in that lane, while a low-level Elemen-
tal Maneuvers module has found a wrench that ought to
produce the requested outcome. Each Manager or mod-
ule manages its own situational understanding either from
direct sensory input or from its own local subset of the
World Model Knowledge Store. Naturally, there are other
tree elements and control modules that address following
distance, speed, and so on, in addition to non-mobility-
related tasks, such as payload management, communica-
tions, etc.

Once a plan is devised and approved, its elementsmust
be executed by invoking one or more actions or behav-
iors, or perhaps by unleashing an entire subsystem to take
over low-level control of the vehicle. NIST advocates the
use of State Tables to represent the action decision-mak-
ing knowledge [4]. A State Table is crafted for each node in
the Task Decomposition Tree containing the rules that the
control module is to use for mapping node inputs (states
or situations) to allowable output actions.

To trigger the appropriate and desired state response,
the matching situation must be known. The NIST ap-
proach to this is to determine and store the cascading
precursor situational knowledge as a collection of “world
states”, but, in conformance to the 4D/RCS architecture,

only that subset relevant to a given module. The lane-
changing example concludes with a glimpse of the dozens
of situational findings that lead up to the finding of interest
(“ConditionsGoodToPass”).

Adaptive Planning Framework

The Adaptive Planning Framework was developed by the
authors at the University of Florida in order to address
the requirements of the DARPA Urban Challenge that was
held in November 2007. Figure 6 shows the University
of Florida Navigator vehicle on which the Adaptive Plan-
ning Framework was implemented for the DARPA Ur-
ban Challenge. In the Adaptive Planning Framework, the
system is assumed to be able to operate in a finite num-
ber of behavior modes. These behavior modes govern how
the vehicle operates under various driving conditions. The
framework is predominantly used tomake intelligent deci-
sions pertaining to these behaviors. The framework is scal-
able to systems of varying complexity and size and is com-
patible with existing architectures such as JAUS RA-3.2,
NIST 4D/RCS, and others. The Adaptive Planning Frame-
work is composed of three principle elements tasked with
assessing the situation, determining the suitability and via-
bility of all possible solutions, and executing the most suit-
able of all recommended solutions.

Situation Assessment Specialist

Dynamic environment information, originating from any
array of sensors is monitored and managed by the Situa-
tion Assessment Specialists. Each specialist design is tai-
lored to the sensor or collection of sensors whose data it
analyzes. These specialists can, but are not required to,
“live” on the same computing node that directly receives
the sensor input. While the inputs to the specialist can
come from any data source, the output or “finding” must
adhere to specific guidelines outlined by the framework.
Findings can be in the form of conditions, state, or events.
A condition may have a value of present or absent only.
All conditions are by default absent and must be proven
present at each iteration. A finding classified as a state can
only exhibit one of many a priori states. The event category
is reserved for findings whose occurrence at some point
in time is of significance even after the initial finding has
passed. Once the findings have been generated the infor-
mation is disseminated to all other components that might
need it.

An example of a situation assessment specialist would
be a software component whose sole function was to de-
termine if it is safe to move to the adjacent lane. This com-
ponent would monitor sensor data and reach a Boolean
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Team Gator Nation NaviGATOR

conclusion that would be stored as metadata for use by
other processes. A second example would be a software
component whose sole function was to determine if it is
‘legal’ to move to an adjacent lane. Here ‘legal’ is defined
as not crossing a yellow line or not changing lanes when
approaching an intersection.

Behavior Specialist

The findings rendered by the Situation Assessment Spe-
cialists are consumed by the behavior specialists. There is
a one-to-one mapping of each behavior with a behavior
specialist. The role of the specialist is to monitor the find-
ings and evaluate the suitability of its behavior under the
current perceived operating conditions. As with the spe-
cialist findings, the default recommendation is unsuitable
and must be proven appropriate at every iteration of the
program to ensure truth of the results and operating safety.
A specialist does not possess the ability to activate or deac-
tivate its associated behavior; such authority is only given
to the Decision Broker.

For the DARPA Urban Challenge problem, the vehi-
cle was programmed with six behavior modes. The cor-
responding behavior specialist constantly evaluates the
appropriateness of its behavior. The six behavior modes
were:

1. Roadway Navigation. The Roadway Navigation behav-
ior is the primary driving behavior deriving commands
to be sent to the vehicle actuators while the objective is

lane following. This behavior allows the vehicle to navi-
gate the roadway within the lines of its desired lane and
maintain a safe following distance behind any vehicles
ahead.

2. Change Lane Maneuver. The change lane maneuver is
used in passing situations or in cases where the vehicle
must change lanes in a multi-lane road in order to pass
through a mission goal point. The behavior constrains
the vehicle to remain within the lane boundaries of the
new lane.

3. Reverse Direction. This behavior is called whenever it
is determined that the current lane is blocked and there
is no alternate clear lane available for passing. It is also
applicable in cases where the vehicle has entered a ‘dead
end’ road that it must “escape” to reach a mission goal
point.

4. Intersection Traversal. The intersection traversal be-
havior is applicable when the vehicle enters the vicin-
ity of an intersection. This is one of the most compli-
cated behavior modes in that the system must rely on
a series of situation assessment specialists to safely nav-
igate the intersection. This behavior mode must handle
queuing, stopping at the stop line, determining right of
way, and ultimately traveling through the intersection
while avoiding other vehicles.

5. Open Area Navigation. Open area navigation is a be-
havior that is only needed in special circumstances.
This behavior allows the vehicle to move towards a goal
location without striking any object, while avoiding any



Software Architectures for Autonomy S 8451

rough terrain. This is in effect the only behavior mode
that was required in the 2005 DARPA Urban Chal-
lenge. It is useful in the Urban Challenge when the ve-
hicle is in an open area such as a parking lot prior to
performing an actual parking maneuver.

6. Parking Lot. This behavior must deal with the prob-
lems that arise in the parking lot scenario where precise
motion is necessary. When the vehicle approaches the
vicinity of an assigned parking space, precise path plan-
ning will be initiated to align the vehicle as required.
Situation assessment specialists will be monitoring the
near surroundings of the vehicle to center the vehicle in
its parking space while avoiding any static or dynamic
objects.

Decision Broker

At the highest level of the framework lies the Decision
Broker. Its role is to monitor all Behavior Specialist rec-
ommendations. It assumes ultimate authority over how
the vehicle will operate while in autonomous mode. Like
the other entities within the framework, the Decision Bro-
ker can base its conclusions on not only the recommen-
dations and findings of other specialists, but it may also
look at data from any other pertinent source. The au-
thor’s implementation of the Adaptive Planning Frame-
work centralized all the Decision Broker functionality
within the JAUS Subsystem Commander component. The
framework architecture employs an asynchronous, iter-
ative, forward chaining reasoning approach to decision
making.

Future Directions

JAUS is migrating to the Society of Automotive Engineer-
ing (SAE) Standard AS-4, Unmanned Systems. The tran-
sition to the SAE offered opportunity to further advance
the standard through the introduction of more formalized
specifications and methodologies.

The AS-4A Architecture Framework subcommittee
has prepared document AIR 5665, Architecture Frame-
work for Unmanned Systems. This document describes
the concepts, capabilities and interoperability concerns of
unmanned systems, and lays the foundation for all subse-
quent Aerospace Standards to be released by AS-4.

The AS-4B Network Environment subcommittee is
preparing the document AIR5645, “JAUS Transport Con-
siderations”. This document examines aspects of JAUS, as-
pects of communications media, and aspects of the do-
main of unmanned systems, explaining how these affect
the design of transport mechanisms for JAUS messaging.

The committee has also prepared an initial draft version of
AS5669, “JAUS Transport Specification”.

The AS-4C InformationModeling and Definition sub-
committee has prepared a working draft of the document
AS5684, JAUS Service Interface Definition Language. This
specification allows for the unambiguous definition of
JAUS services. AS5684 is specified using Relax NG Com-
pact notation, a machine-readable language, allowing for
the creation of various tools to aid in the unmanned sys-
tem design process. The AS-4C Subcommittee has also be-
gun work on AS5710, JAUS Service Set. AS5710 is a collec-
tion of standard unmanned system services. Each service is
defined using the JAUS Service Interface Definition Lan-
guage. Current work on this document includes defining
a discovery service and transport service, and transition-
ing the JAUS Reference Architecture 3.2 components to
services.
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Glossary

Soliton A soliton is a nonlinear pulse-like wave that
can exist in some nonlinear systems. The isolated
wave can propagate without dispersing its energy over
a large region of space; collision of two solitons leads
to unchanged forms, solitons also exhibit particlelike
properties.

Soliton perturbation theory The soliton perturbation
theory is used to study the solitons that are governed
by the various nonlinear equations in presence of the
perturbation terms.

Homotopy perturbation method The homotopy pertur-
bation method is a useful tool to the search for solitons
without the requirement of presence of small perturba-
tions. In this method, a homotopy is constructed with
a homotopy parameter, p. When p D 0, it becomes
a nonlinear wave equation such as a KdV equation
with a known soliton solution; when p D 1, it turns
out to be the original nonlinear equation. To change p
from zero to unity, one must only change from a trial
soliton to the solved soliton.

Variational iteration method The variational iteration
method is a new method for obtaining soliton-type
solutions of various nonlinear wave equations. The
method begins with a soliton-type solution with some
unknown parameters which can be determined after
few iterations. The iteration formulation is constructed
by a general Lagrange multiplier which can be identi-
fied optimally via variational theory.

Exp-function method The exp-function method is a new
method for searching for both soliton-type solutions
and periodic solutions of nonlinear systems. The
method assumes that the solutions can be expressed in
arbitrary forms of the exp-function.

Definition of the Subject

The soliton is a kind of nonlinear wave. There are many
equations of mathematical physics which have solutions of
the soliton type. The first observation of this kind of wave
was made in 1834 by John Scott Russell [1]. In 1895, the
famous KdV equation, which possesses soliton solutions,
was obtained by D. J. Korteweg and H. de Vries [2], who
established a mathematical basis for the study of various
solitary phenomena.

From a modern perspective, the soliton is used as
a constructive element to formulate the complex dynami-
cal behavior of wave systems throughout science: from hy-
drodynamics to nonlinear optics, from plasmas to shock
waves, from tornados to the Great Red Spot of Jupiter,
from traffic flow to the Internet, from Tsunamis to tur-
bulence [3]. More recently, solitary waves are of key im-
portance in the quantum fields: on extremely small scales
and at very high observational resolution equivalent to
a very high energy, space–time resembles a stormy ocean
and particles and their interactions have soliton-type solu-
tions [4].

Introduction

The soliton was first discovered in 1834 by John Scott Rus-
sell, who observed that a canal boat stopping suddenly
gave rise to a solitary wave which traveled down the canal
for several miles, without breaking up or losing strength.
Russell named this phenomenon the ‘soliton’.

In a highly informative as well as entertaining arti-
cle [1] J.S. Russell gave an engaging historical account of
the important scientific observation:

I was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of
horses, when the boat suddenly stopped – not so the
mass of water in the channel which it had put in
motion; it accumulated round the prow of the vessel
in a state of violent agitation, then suddenly leaving
it behind, rolled forward with great velocity, assum-
ing the form of a large solitary elevation, a rounded,
smooth and well-defined heap of water, which con-
tinued its course along the channel apparently with-
out change of form or diminution of speed. I followed
it on horseback, and overtook it still rolling on at
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a rate of some eight or nine miles an hour, preserv-
ing its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually
diminished, and after a chase of one or two miles I
lost it in the windings of the channel. Such, in the
month of August 1834, was my first chance interview
with that singular and beautiful phenomenon which
I have called the Wave of Translation.

His ideas did not earn attention until 1965 when
N.J. Zabusky andM.D. Kruskal began to use a finite differ-
ence approach to the study of KdV equation [5], and vari-
ous analytical methods also led to a complete understand-
ing of Solitons, especially the inverse scattering transform
proposed by Gardner, Greene, Kruskal, and Miura [6] in
1967. The significance of Russell’s discovery was then fully
appreciated. It was discovered that many phenomena in
physics, electronics and biology can be described by the
mathematical and physical theory of the ‘Soliton’.

The particle-like properties of solitons [7] also caught
much attention, and were proposed as models for elemen-
tary particles [8]. More recently it has been realized that
some of the quantum fields which are used to describe par-
ticles and their interactions also have solutions of the soli-
ton type [9].

Methods for Soliton Solutions

The investigation of soliton solutions of nonlinear evolu-
tion equations plays an important role in the study of non-
linear physical phenomena. There are many analytical ap-
proaches to the search for soliton solutions, such as soliton
perturbation, tanh-function method, projective approach,
F-expansion method, and others [10,11,12,13,14].

Soliton Perturbation

We consider the following perturbed nonlinear evolution
equation [15,16]

uT C N(u) D "R(u); 0 < "
 1 : (1)

When " D 0, we have the un-perturbed equation

uT C N(u) D 0 ; (2)

which is assumed to have a soliton solution.
When " ¤ 0, but 0 < "
 1, we can use perturba-

tion theory [15,16], and look for approximate solutions of
Eq. (1), which are close to the soliton solutions of Eq. (2).
Using multiple time scales (a slow time � and a fast time t,
such that @T D @t C "@� ), we assume that the soliton so-
lution can be expressed in the form

u(x; T) D u0(�; �)C"u1(�; �; t)C"2u2(�; �; t)C� � � (3)

where � D x � ct, and � is a slow time and t is a fast time.
Substituting Eq. (3) into Eq. (1) and then equating like-

powers of ", we can obtain a series of linear equations for
ui (i D 0; 1; 2; 3; : : :).

In most cases the nonlinear term R(u) in Eq. (1) plays
an import role in understanding various solitary phe-
nomena, and the coefficient " is not limited to a “small
parameter”.

Variational Approach

Recently, variational theory and homotopy technology
have been successfully applied to the search for soliton
solutions [17,18] without requiring the small parameter
assumption. Both variational and homotopy technologies
can lead to an extremely simple and elementary, but rigor-
ous, derivation of soliton solutions.

Considering the KdV equation

@u
@t
� 6u

@u
@x
C
@3u
@x3
D 0 ; (4)

we seek its traveling wave solutions in the following frame

u(x; t) D U(�) v(x; t) D V (�); � D x � ct ; (5)

where c is angular frequency. Substituting Eq. (5) into
Eq. (4) yields

� cu0 � 6uu0 C u000 D 0 ; (6)

where a prime denotes the differential with respect to � .
Integrating Eq. (6) yields the result

� cu � 3u2 C u00 D 0 : (7)

By the semi-inverse method [19], the following variational
formulation is established

J D
Z 1

0

 
1
2
cu2 C u3 C

1
2

�
du
d�

�2
!

d� : (8)

The semi-inverse method is a powerful mathematical tool
to the search for variational formulae for real-life physical
problems.

By the Ritz method, we search for a solitary wave solu-
tion in the form

u D p sech2(q�) ; (9)

where p and q are constants to be further determined.
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Substituting Eq. (9) into Eq. (8) results in

J D
Z 1

0

�
1
2
cp2 sech4(q�)C p3 sech6(q�)

C
1
2
(4p2q2 sech4(q�) tanh2(q�)

�
d�

D
cp2

2q

Z 1

0
sech4(z)dz C

p3

q

Z 1

0
sech6(z)dz

C 2p2q
Z 1

0

˚
sech4(z) tanh4(z)

�
dz

D
cp2

3q
C

8p3

15q
C

4p2q
15

: (10)

Making J stationary with respect to p and q results in

@J
@p
D

2cp
3q
C

24p2

15q
C

8pq
15
D 0 ; (11)

@J
@q
D �

cp2

3q2
�

8p3

15q2
C

4p2

15
D 0 ; (12)

or simplifying

5c C 12pC 4q2 D 0 ; (13)

� 5c � 8pC 4q2 D 0 : (14)

From Eqs. (13) and (14), we can easily obtain the following
relations:

p D �
1
2
c; q D

r
c
4
: (15)

So the solitary wave solution can be approximated as

u D �
c
2
sech2

r
c
4
(x � ct � �0) ; (16)

which is the exact solitary wave solution of KdV equa-
tion (4).

The preceding analysis has the virtue of utter simplic-
ity. The suggested variational approach can be readily ap-
plied to the search for solitary wave solutions of other non-
linear problems, and the present example can be used as
paradigms for many other applications in searching for
solitary wave solutions of real-life physics problems.

Variational IterationMethod

The variational iteration method [20] is an alternative ap-
proach to soliton solutions without the requirement of
establishing a variational formulation for the discussed
problems [17,21,22,23,24]. As an illustrating example, we
consider the K(3,1) equation in the form [17]:

ut C u2ux C uxxx D 0 : (17)

According to the variational iteration method, its iteration
formulation can be constructed as follows

unC1(x; t)

D un(x; t)�
Z t

0

˚
(un)t C u2n(un)x C (un)xxx

�
dt :

(18)

To search for its compacton-like solution, we assume the
solution has the form

u0(x; t) D
a sin2(kx C wt)

bC c sin2(kx C wt)
; (19)

where a, b, k, and w are unknown constants further to be
determined after few iterations [17].

Homotopy Perturbation Method

The homotopy perturbation method [25] provides a sim-
ple mathematical tool for searching for soliton solutions
without any small perturbation [18,26]. Considering the
following nonlinear equation

@u
@t
C au

@u
@x
Cb

@3u
@x3
CN(u) D 0; a > 0; b > 0 ; (20)

we can construct a homotopy in the form

(1 � p)
�
@u
@t
C 6u

@u
@x
C
@3u
@x3

�

C p
�
@u
@t
C au

@u
@x
C b

@3u
@x3
C N(u)

�
D 0 : (21)

When p D 0, we have

@u
@t
C 6u

@u
@x
C
@3u
@x3
D 0 ; (22)

a well-known KdV equation whose soliton solution is
known. When p D 1, Eq. (21) turns out to be the orig-
inal equation. According to the homotopy perturbation
method, we assume

u D u0 C pu1 C p2u2 C � � � (23)

Substituting Eq. (23) into Eq. (21), and proceeding with
the same process as the traditional perturbation method
does, we can easily solve u0; u1 and other components.
The solution can be expressed finally in the form

u D u0 C u1 C u2 C � � � (24)

The homotopy perturbation method always stops before
the second iteration, so the solution can be expressed as

u D u0 C u1 (25)

for most cases.
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Parameter-Expansion Method

The parameter-expansion method [27,28,29,30] does not
require one to construct a homotopy. To illustrate its so-
lution procedure, we re-write Eq. (20) in the form

@u
@t
C au

@u
@x
C b

@3u
@x3
C 1 � N(u) D 0 : (26)

Supposing that the parameters a, b, and 1 can be expressed
in the forms

a D a0 C pa1 C p2a2 C � � � (27)

b D b0 C pb1 C p2b2 C � � � (28)

1 D pc1 C p2c2 C � � � (29)

where p is a bookkeeping parameter, p D 1. Substituting
Eqs. (23), (27), (28) and (29) into Eq. (26) and proceeding
the same way as the perturbation method, we can easily
obtain the needed solution.

Exp-function Method

The exp-function method [31,32,33] provides us with
a straightforward and concise approach to obtaining gen-
eralized solitonary solutions and periodic solutions and
the solution procedure, with the help of Matlab or Mathe-
matica, is utterly simple. Consider a general nonlinear par-
tial differential equation of the form

F(u; ux ; uy ; uz ; ut ; uxx ; uyy ; uzz ; utt ; ux y ; uxt ; uyt ; : : :)
D 0 : (30)

Using a transformation

� D ax C by C cz C dt ; (31)

we can re-write Eq. (30) in the form of the following non-
linear ordinary differential equation:

G(u; u0; u00; u000; : : :) D 0 ; (32)

where a prime denotes a derivation with respect to �.
According to the exp-function method, the traveling

wave solutions can be expressed in the form

u(�) D
Pl

nD�k an exp(n�)
P j

mD�i bm exp(m�)
; (33)

where i, j, k, and l are positive integer which could be freely
chosen, an and bm are unknown constants to be deter-
mined. The solution procedure is illustrated in [32].

Future Directions

It is interesting to point out the connection of catastrophe
theory to loop soliton chaos, and finally to chaotic Canto-
rian spacetime [34,35].

El Naschie [34,35] studied the Eguchi–Hanson gravita-
tional instanton solution and its interpretation by ‘t Hooft
in the context of a quantum gravitational Hilbert space,
as an event and a possible solitonic “extended” particle.
Transferring a certain solitonic solution of Einstein’s field
equations in Euclidean “real” space–time to the mathe-
matical infinitely-dimensional Hilbert space, it is possible
to observe a new non-standard process by which a definite
mass can be assigned to massless particles. Thus by invok-
ing Einstein’s gravity in “solitonic” gauge theory and vice
versa, an alternative explanation for how massless parti-
cles acquire mass is found, which is also in harmony with
the basic structure of our standard model as it stands at
present [34,35].
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Glossary

Soliton A soliton is a stable pulse-like wave that can ex-
ist in some nonlinear systems. The soliton, after a col-
lision with another soliton, eventually emerges un-
scathed.

Compacton A compacton is a special solitary traveling
wave that, unlike a soliton, does not have exponential
tails.

Generalized soliton A generalized soliton is a soliton
with some free parameters. Generally a generalized
soliton can be expressed by exponential functions.



8458 S Solitons and Compactons

Compacton-like solution A compcton-like solution is
a special wave solution which can be expressed by the
squares of sinusoidal or cosinoidal functions.

Definition of the Subject

Soliton and compacton are two kinds of nonlinear waves.
They play an indispensable and vital role in all ramifica-
tions of science and technology, and are used as construc-
tive elements to formulate the complex dynamical behav-
ior of wave systems throughout science: from hydrody-
namics to nonlinear optics, from plasmas to shock waves,
from tornados to theGreat Red Spot of Jupiter, from traffic
flow to Internet, from Tsunamis to turbulence. More re-
cently, soliton and compacton are of key importance in the
quantum fields and nanotechnology especially in nanohy-
drodynamics.

Introduction

Solitary waves were first observed by John Scott Russell in
1895, and were studied by D. J. Korteweg and H. de Vries
in 1895 . Compactons are special solitons with finite wave-
length. It was Philip Rosenau and his colleagues who first
found compactons in 1993. Please refer to “� Soliton Per-
turbation” for detailed information.

Solitons

A soliton is a special solitary traveling wave that after
a collision with another soliton eventually emerges un-
scathed. Solitons are solutions of partial differential equa-
tions that model phenomena like water waves or waves
along a weakly anharmonic mass-spring chain.

The Korteweg–de Vries (KdV) equation is the generic
model for the study of nonlinear waves in fluid dynamics,
plasma and elastic media. KdV equation is one of the most
fundamental equations in nature and plays a pivotal role
in nonlinear phenomena. We consider the KdV equation
in the form

@u
@t
C 6u

@u
@x
C
@3u
@x3
D 0 : (1)

Its solitary traveling wave solution can be solved as

u(x; t) D 1
2 c sech

2 ˚ 1
2 c

1/2(x � ct)
�
: (2)

The bell-like solution as illustrated in Fig. 1 is called a soli-
ton.

We re-write Eq. (2) in an equivalently form:

u(�) D p sec h2(q�) D
4p

e2q� C e�2q� C 2
: (3)

Solitons and Compactons, Figure 1
Bell-like solitary wave

where u(x; t) D u(�); � D x � ct, c is the wave velocity.
It is obvious that

lim
�!1

u(�) D 0 and lim
�!�1

u(�) D 0 : (4)

The soliton has exponential tails, which are the basic char-
acter of solitary waves. The soliton obeys a superposi-
tion-like principle: solitons passing through one another
emerge unmodified, see Fig. 2.

Compactons

Now consider a modified version of KdV equation in the
form

ut C (u2)x C (u2)xxx D 0 : (5)

Introducing a complex variable � defined as � D x � ct,
where c is the velocity of traveling wave, integrating once,
we have

� cu C u2 C (u2)�� D D ; (6)

where D is an integral constant.
To avoid singular solutions, we set D D 0. We re-write

Eq. (6) in the form

v�� C v � cv1/2 D 0 ; (7)

where u2 D v.
In case c D 0, we have periodic solution: v(�) D

A cos �CB sin � . Periodic solution of nonlinear oscillators
can be approximated by sinusoidal function. It helps un-
derstanding if an equation can be classified as oscillatory
by direct inspection of its terms.
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Solitons and Compactons, Figure 2
Collision of two solitary waves
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We consider two common order differential equations
whose exact solutions are important for physical under-
standing:

u00 � k2u D 0 ; (8)

and

u00 C !2u D 0 : (9)

Both equations have linear terms with constant coeffi-
cients.

The crucial difference between these two very simple
equations is the sign of the coefficient of u in the second
term. This determines whether the solutions are exponen-
tial or oscillatory. The general solution of Eq. (8) is

u D Aekt C Be�kt : (10)

The second Eq. (9) has a positive coefficient of u, and in
this case the general solution reads

u D A cos! t C B sin! t : (11)

This solution describes an oscillation at the angular veloc-
ity !.

Equation (7) behaves sometimes like an oscillator
when 1 � cv�1/2 > 0, i. e., u D v1/2 has a periodic solu-
tion, we assume v can be expressed in the form

v D u2 D A2 cos4 !� : (12)

Substituting Eq. (12) into Eq. (7) results in

12A2!2 cos2 !� � 16A2!2 cos4 !�

C A2 cos4 !� � cA cos2 !� D 0 : (13)

We, therefore, have

12A2!2 � cAD 0

�16A2!2 C A2 D 0 :
(14)

Solving the above system, Eq. (14), yields

! D
1
4
; AD

4
3
c : (15)

We obtain the solution in the form

u D v1/2 D
4c
3
cos2

�
1
4
(x � ct)

�
: (16)

By a careful inspection, v can tend to a very small value or
even zero, as a result, 1 � cv�1/2 tends to negative infinite,

Solitons and Compactons, Figure 3
Compaton wave without tails

Solitons and Compactons, Figure 4
Solitary wave with two tails

and Eq. (7) behaves like Eq. (8) with k !1, the expo-
nential tails vanish completely at the edge of the bell-shape
(see Fig. 3):

u D

(
4c
3 cos2

� 1
4 (x � ct)

�
; jx � ctj � 2�

0 ; otherwise.
(17)

This is a compact wave. Unlike solitons (Fig. 4), com-
pacton does not have exponential tails (Fig. 3).

Generalized Solitons and Compacton-like Solutions

Solitary solutions have tails, which can be best expressed
by exponential functions. We can assume that a solitary
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solution can be expressed in the following general form

u(�) D

dP

nD�c
an exp(n�)

qP

mD�p
bm exp(m�)

; (18)

where c; d; p; and q are positive integers which are un-
known to be further determined, an and bm are unknown
constants. The unknown constants can be easily deter-
mined usingMatlab, themethod is called the Exp-function
method.

We consider the modified KdV equation in the form:

ut C u2ux C uxxx D 0 : (19)

Using a transformation: u(x; t) D u(�); � D kx C ! t, we
have

!u0 C ku2u0 C k3u000 D 0 ; (20)

where prime denotes the differential with respect to � .
We suppose that the solution of Eq. (20) can be ex-

pressed as

u(�) D
ac exp(c�)C � � � C a�d exp(�d�)
bp exp(p�)C � � � C b�q exp(�q�)

: (21)

To determine values of c; d; p and q, we balance the lin-
ear term of highest order in Eq. (20) with the highest or-
der nonlinear term. According to the homogeneous bal-
ance principle, we obtain the result c D p and d D q. For
simplicity, we set c D p D 1 and d D q D 1, so Eq. (21)
reduces to

u(�) D
a1 exp(�)C a0 C a�1 exp(��)
exp(p�)C b0 C b�1 exp(��)

: (22)

Substituting Eq. (22) into Eq. (20), and by the help of Mat-
lab, clearing the denominator and setting the coefficients
of power terms like exp( j�); j D 1; 2; � � � to zero yield a sys-
tem of algebraic equations, solving the obtained system,
we obtain the following exact solutions:

8
ˆ̂̂
<

ˆ̂̂
:

a0 D a1b0 C
3k2b0
a1

; a�1 D
b20
�
3k2 C 2a21



8a1
;

b�1 D
b20
�
3k2 C 2a21



8a21
; ! D �ka21 � k3 ;

(23)

where a1 and b0 are free parameters, which depends upon
the initial conditions and/or boundary conditions. The

property that stability may depend on initial/boundary
conditions is characteristic only for nonlinear systems.

The relationship between wave speed and frequency is

! D �ka21 � k3 : (24)

Note that the value of a1 is determined from the ini-
tial/boundary conditions, so frequency or wave speedmay
not independent of initial/boundary conditions.

Then, the closed form solution of Eq. (19) reads

u(x; t)

D



a1 exp[kx � (ka21 C k3)t]C a1b0

C 3k2b0
a1 C

b20(3k
2C2a21)
8a1 exp[�kx C (ka21 C k3)t]

�



exp[kx � (ka21 C k3)t]C b0

C
b20(3k

2C2a21)
8a21

exp[�kx C (ka21 C k3)t]
�

Da1 C
3k2b0

8

exp[kx � (ka21 C k3)t]C b0

C
b20(3k

2C2a21)
8a21

exp[�kx C (ka21 C k3)t]
�

:

(25)

Generally a1, b0 and k are real numbers, and the obtained
solution, Eq. (25), is a generalized soliton solution.

If we choose k D 1; a1 D 1; b0 D
p
8/5, Eq. (25) be-

comes

u(x; t) D 1C
3
p
1/40

exp[x � 2t]C
p
8/5C exp[�x C 2t]

: (26)

The bell-like solution is illustrated in Fig. 5.
In case k is an imaginary number, the obtained solitary

solution can be converted into periodic solution or com-
pact-like solution. We write k D iK, Eq. (25) becomes

u(x; t) D a1

C
� 3K2b0

8

(1C p) exp[Kx � (Ka21 � K3)t]C b0

Ci(1 � p) b
2
0(3k

2C2a21)
8a21

exp[�Kx C (Ka21 � K3)t]
�

;

(27)

where p D b20(�3K
2C2a21)

8a21
.

If we search for a periodic solution or compact-like so-
lution, the imaginary part in the denominator of Eq. (27)
must be zero, that requires that

1 � p D 1 �
b20(�3K

2 C 2a21)
8a21

D 0 : (28)
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Solitons and Compactons, Figure 5
Propagation of a solution with respect to time

Solving b0 from Eq. (28), we obtain

b0 D ˙

s
8

�3K2 C 2a21
: (29)

Substituting Eq. (29) into Eq. (27) results in a periodic so-
lution, which reads

u(x; t) D a1 C
˙3K2

q
2

�3K2C2a21

cos[Kx � (Ka21 � K3)t]˙
q

2
�3K2C2a21

(30)

or a generalized compact-like solution:

u(x; t) D

8
ˆ̂
<̂

ˆ̂
:̂

a1 C
˙3K2

r
2

�3K2C2a21 

cos[Kx�(Ka21�K3)t]˙
r

2
�3K2C2a21

! ;

a1 C 3K2 ; otherwise
ˇ̌
Kx �

�
Ka21 � K3 t

ˇ̌
�
�

2
(31)

where a1 and K are free parameters, and it requires
that 2a21 > 3K2. If we choose k D 1; a1 D 1; b0 D

p
8/5,

Eq. (30) becomes

u(x; t) D 1C
3
p
2

cos[x � 3t]C
p
2
: (32)

The periodic solution is illustrated in Fig. 6.

Solitons and Compactons, Figure 6
Periodic solution

Nowwe give an heuristical explanation of why Eq. (19)
behaves sometimes periodically and sometimes compa-
ton-like.

We re-written Eq. (20) in form

u00 C
!

k3
u C

1
3k2

u3 D 0: (33)

It is a well-known Duffing equation with a periodic solu-
tion for all ! > 0 and k > 0.

Actually in our study ! can be negative, we re-write
Eq. (33) in the form

u00 �
!

k3
u C

1
3k2

u3 D 0 ; ! > 0 : (34)

This equation, however, has not always a periodic solu-
tion. We use the parameter-expansion method to find its
period and the condition to be an oscillator. In order to
carry out a straightforward expansion like that in the clas-
sical perturbation method, we need to introduce a param-
eter, , because none appear explicitly in this equation. To
this end, we seek an expansion in the form

u D u0 C u1 C 2u2 C 3u3 C � � � : (35)

The parameter  is used as a bookkeeping device and is set
equal to unity.

The coefficients of the linear term and nonlinear term
can be, respectively, expanded in a similar way:

�
!

k3
D ˝2 C m1C m2

2 C : : : (36)

1
3k2
D n1C n22 C : : : ; (37)
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where mi and ni are unknown constants to be further de-
termined.

Interpretation of why such expansions work well is
given by [1].

Substituting Eqs.(35)–(37) to (34), we have

�
u0 C u1 C 2u2 C : : :

00

C
�
˝2 C m1C m2

2 C : : :
 �
u0 C u1 C 2u2 C : : :



C
�
n1C n22 C : : :


�
�
u0 C u1 C 2u2 C : : :

3
D 0
(38)

and equating coefficients of like powers of , we obtain
Coefficient of 0

u000 C˝
2u0 D 0 : (39)

Coefficient of 1

u001 C˝
2u1 C m1u0 C n0u30 D 0 : (40)

The solution of Eq. (39) is

u0 D A cos˝ t : (41)

Substituting u0 into (40) gives

u001 C˝
2u1 C A(m1 C

3
4n0A

2) cos˝ t

C 1
4n0A

3 cos 3˝ t D 0 : (42)

No secular term in u1 requires that

m1 C
3
4
n0A2 D 0 or AD 0 : (43)

If the first-order approximate solution is searched for, then
we have

�
!

k3
D ˝2 C m1 (44)

1
3k2
D n1 : (45)

We finally obtain the following relationship

˝2 D �
!

k3
C

1
4k2

A2 : (46)

To behave like an oscillator requires that

�
!

k3
C

1
4k2

A2 > 0 (47)

or

!

k
<

1
4
A2 : (48)

The amplitude A may strongly depend upon ini-
tial/boundary conditions which may determine the wave
type of a nonlinear equation.

Now we approximate Eq. (34) in the form

u00 C
1
k2

�
�
!

k
C

A2 cos2˝ t
3

�
u D 0 : (49)

In case j˝ tj ! �/2, the above equation behaves exponen-
tially, resulting in a compact-like wave as discussed above.

Future Directions

It is interesting to identify the conditions for a nonlinear
equation to have solitary, or periodic, or compacton-like
solutions. In most open literature, many papers on soliton
and compacton are focused themselves on a special solu-
tion with either a soliton or a compacton without consid-
ering the initial/boundary conditions, whichmight be vital
important for its actual wave type.

Solitons and compactons for difference-differential
equations (e. g. Lotka–Volterra-like problems) have been
caught much attention due to the fact that discrete space-
timemay be the most radical and logical viewpoint of real-
ity (refer to E-infinity theory detailed concept). For small
scales, e. g., nano scales, the continuum assumption be-
comes invalid, and difference equations have to be used
for space variables.

Fractional differential model is another compromise
between the discrete and the continuum, and can best de-
scribe solitons and compactons.

Many interesting phenomena arise in nanohydrody-
namics recently, such as remarkably excellent thermal
and electric conductivity, and extremely extraordinary fast
flow in nanotubes. Consider a single compacton wave
along a nanotube, and its wavelength is as same as the
diameter of the nanotubes, under such a case, almost no
energy is lost during the transportation, resulting in ex-
tremely extraordinary fast flow in the nanotubes.

The physical understanding of the transformation
k D iK is also worth further studying.
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Glossary

Breaking waves As waves increase in height through the
shoaling process, the crest of the wave tends to speed
up relative to the rest of the wave. Waves break when
the speed of the crest exceeds the speed of the advance
of the wave as a whole.

Crystal lattice A geometric arrangement of the points in
space at which the atoms,molecules, or ions of a crystal
occur.

Deep water Water sufficiently deep that surface waves
are little affected by the ocean bottom. Water deeper
than one-half the surface wave length is considered
deepwater.

Fluxon Quantum of magnetic flux.
Freak waves Single waves which result from a local focus-

ing of wave energy. They are of considerable danger to
mariners because of their unexpected nature.

Geostrophic adjustment The process by which an unbal-
anced atmospheric flow field is modified to geostroph-
ic equilibrium, generally by amutual adjustment of the
atmospheric wind and pressure fields depending on
the initial horizontal scale of the disturbance.

Geostrophic equilibrium A state of motion of an invis-
cid fluid in which the horizontal Coriolis force exactly
balances the horizontal pressure force at all points of
the field.

Hydraulic jump A sudden turbulent rise in water level,
such as often occurs at the foot of a spillway when
the velocity of rapidly flowing water is instantaneously
slowed.

Katabatic wind Most widely used in mountain meteorol-
ogy to denote a downslope flow driven by cooling at
the slope surface during periods of light larger-scale
winds.

Lightning Lightning is a transient, high-current electric
discharge.

Plasma Hot, ionized gas.
Shallow water Water depths less than or equal to one half

of the wavelength of a wave.
Solitary wave Localized wave that propagates along one

space direction only, with undeformed shape.
Soliton Large-amplitude pulse of permanent form whose

shape and speed are not altered by collision with
other solitary waves, the exact solution of a nonlinear
equation.

Spillway A feature in a dam allowing excess water to pass
without overtopping the dam.

Thermocline A layer in which the temperature decreases
significantly (relative to the layers above and below)
with depth.

Synoptic scale Used with respect to weather systems
ranging in size from several hundred kilometers to sev-
eral thousand kilometers.

Thunder The sound emitted by rapidly expanding gases
along the channel of a lightning discharge.

Thunderstorm In general, a local storm, invariably pro-
duced by a cumulonimbus cloud and always accom-
panied by lightning and thunder, usually with strong
gusts of wind, heavy rain, and sometimes with hail.

Tidal bore Tidal wave that propagates up a relatively
shallow and sloping estuary or river, in a solitary wave
form. The leading edge presents an abrupt rise in level,
sometimes with continuous breaking and often imme-
diately followed by several large undulations. The tidal
bore is usually associated with high tidal range and
a sharp narrowing and shoaling at the entrance. Also
called pororoca (Brazilian) and mascaret (French).

Troposphere The portion of the atmosphere from the
earth’s surface to the tropopause, that is the lowest 10–
20 km of the atmosphere.

Tsunami Long period ocean wave generated by an earth-
quake or a volcanic explosion.

Definition of the Subject

The interest in nonlinear physics has grown significantly
over the last fifty years. Although numerous nonlinear
processes had been previously identified the mathematic
tools of nonlinear physics had not yet been developed. The
available tools were linear, and nonlinearities were avoided
or treated as perturbations of linear theories. The solitary
water wave, experimentally discovered in 1834 by John
Scott Russell, led to numerous discussions. This hump-
shape localized wave that propagates along one space-di-
rection with undeformed shape has spectacular stability
properties. John Scott Russell carried out many experi-
ments to obtain the properties of this wave. The theories
which were based on linear approaches concluded that
this kind of wave could not exist. The controversy was re-
solved by J. Boussinesq [5] and by Lord Rayleigh [64] who
showed that if dissipation is neglected, the increase in lo-
cal wave velocity associated with finite amplitude is bal-
anced by the decrease associated with dispersion, leading
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to a wave of permanent form. A model equation describ-
ing the unidirectional propagation of long waves in water
of relatively shallow depth with a localized solution rep-
resenting a single hump as discovered by Russell was ob-
tained by Korteweg and de Vries [42]. This equation has
become very famous and is now known as the Korteweg–
de Vries equation or KdV equation. These results were
not considered very important when they were obtained.
A remarkable numerical discovery was made by E. Fermi,
J. Pasta and S. Ulam [18] as they studied the flow of inco-
herent energy in a solid modeled by a one-dimensional lat-
tice of equal masses connected by nonlinear springs. The
initial injected energy was not shared among all the de-
grees of freedom of the lattice, but returned almost entirely
to the original excited mode. The explanation was given
only ten years later by Zabusky and Kruskal [82] from nu-
merical solutions of the KdV equation used tomodel in the
continuum approximation a nonlinear atomic lattice with
periodic boundary conditions. This led to the concept of
solitons and ultimately to the development of integrable
systems. The term soliton was chosen as it is a localized
wave which propagates preserving its shape and velocity as
a particle would propagate. A soliton is then a large-ampli-
tude pulse of permanent form whose shape and speed are
not altered by collision with other solitary waves, and it is
the exact solution of a nonlinear equation. The mathemat-
ical features of solitons are often well developed in soli-
ton literature since they are at the origin of very nice theo-
retical developments such as the powerful inverse scatter-
ing transform which solves a complex nonlinear equation
through a series of linear steps. Nevertheless, the physics of
solitons is very rich and it is a very actual research topic in
numerous fields, for example in hydrodynamics, in optics,
in electricity, in solid physics, in chemistry and in biology.
Nonlinearity and dispersion are very common in macro-
scopic physics as well as in microscopic physics. Nonlin-
earity tends to localize the signals while dispersion spreads
them. These two opposite effects sometimes compensate
and the regime of solitons takes place. Real physical sys-
tems are only approximately described by the equations of
the theory of solitons, but a remarkable feature of solitons
is their very high stability relative to perturbations. The
soliton concept is now firmly established. They are widely
accepted as a structural basis for viewing and understand-
ing the dynamic behavior of complex nonlinear systems.

Introduction

The first experimental observation of a solitary wave was
made in August 1834 by a Scottish engineer named John
Scott Russell (1808–1882). He was mounted on a horse

along the Union Canal linking Edinburgh with Glasgow
when he saw a rounded smooth well-defined heap detach
itself from the prow of a boat brought to rest and continue
its course without change of shape or diminution of speed.
Scott–Russell reported his observation in the British Asso-
ciation Report [71] as follows:

“I was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of horses,
when the boat suddenly stopped—not so the mass of wa-
ter in the channel which it had put in motion; it accumu-
lated round the prow of the vessel in a state of violent agita-
tion, then suddenly leaving it behind, rolled forward with
great velocity, assuming the form of a large solitary eleva-
tion, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently
without change of form or diminution of speed. I followed
it on horseback, and overtook it still rolling on at a rate
of some eight or nine miles an hour, preserving its orig-
inal figure some thirty feet long and a foot to a foot and
a half in height. Its height gradually diminished, and af-
ter a chase of one or two miles I lost it in the windings of
the channel. Such, in the month of August 1834, was my
first chance interviewwith that singular and beautiful phe-
nomenon which I have called the Wave of Translation”.

Russell wrote that this August day in 1834 was the hap-
piest in his life. In July 1995, an international gathering of
scientists witnessed a re-creation of the solitary wave ob-
served by Russell on an aqueduct of the Union Canal. This
aqueduct was named after this occasion Scott Russell aque-
duct; the scientists were attending a conference on nonlin-
ear waves in physics and biology at Heriot-Watt Univer-
sity (Edinburgh), near the canal.

Throughout his life Russell remained convinced that
“his” wave that he initially called the “Wave of Transla-
tion” and later the “Great Solitary Wave” was of funda-
mental importance. He therefore carried out extensive ex-
periments in wave-tanks and established the velocity for-
mula for solitary waves:

VS D
p
g(d C AS) (1)

where g is the acceleration due to gravity, d the undis-
turbed water depth and AS the amplitude of the soli-
tary wave. The “quasi-cycloidal” form of the wave was
found to be independent of the way it was generated. Rus-
sell [69] described the induced movement of fluid parti-
cles: “By the transit of the wave the particles of the fluid
are raised from their places, transferred forwards in the
direction of the motion of the wave, and permanently de-
posited at rest in a new place at a considerable distance
from their original position”. He also deduced from his
numerous experiments that two solitary waves can cross
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Solitons: Historical and Physical Introduction, Figure 1
Schematic view of Scott Russell’s experiments

each other “without change of any kind”. Figure 1 shows
a schematic view of his experiments in tanks, adapted from
Remoissenet [65]. An initial elevation of water may induce
one or two solitary waves depending on the relation be-
tween its height and length (Fig. 1a); the case where an
initial depression does not evolve into solitary waves but
leads to an oscillatory wave train of gradually increasing
length and decreasing amplitude is shown in Fig. 1b.

In Sect. “Historical Discovery of Solitons”, the histori-
cal discovery of solitons is presented. The physical concept
of solitons and the associated applications are described in
Sect. “Physical Properties of Solitons and Associated Ap-
plications”. In Sect. “Mathematical Methods Suitable for
the Study of Solitons”, the mathematical methods suitable
for the study of solitons are considered. Finally, Sect. “Fu-
ture Directions” is devoted to future directions.

Historical Discovery of Solitons

After Russell had carried out his observation of the solitary
wave in August 1834, he was put in charge by the Union
Canal Company of determining the efficiency of canals for
the transport of steam-driven barges. He worked on the re-
sistance of boats towed through water of finite depth. A re-
sistance proportional to the square of the velocity Vb of the
boat was predicted by the theory at that time. Convinced of
the imperfection of this theory, Russell performed numer-
ous experiments in the summers of 1834 and 1835 [12].
Several boats were towed in canals of various depths at
velocities ranging from 3 to 15 miles per hour. The resis-
tance was measured by a dynamometer. Resistance curves
such as the one depicted in Fig. 2 were obtained, with a re-
sistance local maximum Rm for a boat velocity Vcr and
a growing deviation from the theoretical curve for increas-
ing values of boat velocity. The critical velocity Vcr was
found to depend on the water depth. Russell noticed that
this critical velocity was the same as the velocity of the soli-
tary wave for the given water depth d, and gave a qualita-
tive explanation for the diminution of flow resistance for
increasing values of the boat velocity just above the critical
velocity Vcr. For this description, he considered the varia-
tion of the shape of the water surface around the moving
boat with the velocity. For velocities smaller than the crit-
ical value, the water level is raised around the prow where
a wave of displacement is generated, leading to an inclina-
tion of the boat. The resulting effect is an augmentation of
the section of immersion and of the corresponding flow re-
sistance. When the velocity of the boat reaches the critical
value, the wave of displacement has the velocity of a soli-
tary wave and the vessel travels on this solitary wave. For
velocities greater than the critical value, the boat stays on
the wave summit leading to a smaller flow resistance. Rus-
sell [70] tried a quantitative explanation of this process,
but this paper contained several errors. However, Russell
was a very fine observer; he was far ahead of his time in
considering the fundamental importance of solitary waves.
He mentioned [70] that “a large or high wave had a greater
velocity than a small one. When a small wave preceded
a large one, the latter invariably overtook the other, and
when the large wave was before the less, their mutual
distance invariably became greater”. He showed that the
shape of solitary waves depends on their height, the width
of the wave decreasing for increasing values of height. It
is also fascinating that Russell had observed the collision
properties of solitary waves [8]. Nevertheless, the obser-
vations of Russell induced numerous critical comments.
Airy [2] wrote in his treatise “Tides and Waves”: “We are
not disposed to recognize this wave (discovered by Scott
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Russell) as deserving the epithets “great” or “primary”, and
we conceive that ever since it was known that the theory of
shallow waves of great length was contained in the equa-
tion @2X/@t2 D gd@2X/@x2 the theory of the solitary wave
has been perfectly well known”. In the equation quoted by
Airy, t is the time and x is the horizontal coordinate of
a fluid particle. The wave velocity in shallow water at the
first order of approximation, when the ratio H/d between
the wave height H and the water depth may be neglected
is V0 D

p
gd, as found by Lagrange in 1786; this veloc-

ity differs from the formulation proposed by Russell for
solitary waves (Eq. (1)). Airy mentioned further: “Some
experiments were made by Mr. Russell on what he calls
a negative wave. But (we know not why) he appears not to
have been satisfied with these experiments and had omit-
ted them in his abstract. All of the theorems of our IVth
section, without exception, apply to these as well as to pos-
itive waves, the sign of the coefficient only being changed”.
Also, according to Airy [2] and Lamb [46], long waves
could not propagate in a canal of rectangular section with-
out changing their shape. The controversy arose because
the dispersion is neglected by the nonlinear shallow wa-
ter theory. Stokes [73] considered Russell results and tried
to obtain them analytically; however, his linear or weakly
nonlinear approach did not permit him to retrieve the re-
sults of Russell, which made him doubtful about them. In
order to distinguish his “great wave” from other waves,
Russell [71] introduced four orders of waves:

1. Waves of translation. These waves involve mass trans-
fer. The solitary waves observed by Russell are included
in this order.

2. Oscillatory waves. These are the waves which can be the
most often observed; they do not involve mass transfer.

3. Capillary waves. The surface tension effects are impor-
tant for those waves.

4. Corpuscular waves. Those waves are rapid successions
of solitary waves.

Russell was most concerned with the first order, but he
also carried out experiments with waves of the second and
third order. The fourth order (corpuscular waves) sug-
gested by Russell had been seriously criticized, and the
manuscripts he submitted on this order were never pub-
lished due to ignorance of mechanics principles.

The great difficulties encountered by Russell to prove
the importance of his findings strongly disappointed him.
Tired of discussions, he stopped his work on solitary waves
and started to build large steam ships with great success.
A detailed biography of Russell may be found in [16].

A French mathematician, Joseph Boussinesq, knew of
the existence of Russell’s observations, and also of detailed

Solitons: Historical and Physical Introduction, Figure 2
Resistance as a function of towing velocity according to Russell

experiments performed by Bazin [3] in the long branch
of the canal de Bourgogne close to Dijon (France), which
confirmed Russell’s observations. Boussinesq tried to ob-
tain a solution of Euler’s equations compatible with Rus-
sell’s and Bazin’s results. He developed the horizontal and
vertical velocity components of fluid velocity in a rectan-
gular channel in power of the distance from the bed. In-
cluding nonlinear terms which had been neglected by La-
grange, Boussinesq [5] obtained a solution with the prop-
erties of the solitary wave observed by Russell. In particu-
lar, the shape of the wave was found to be given by:

� D AS sech2
"r

3AS

4d3
(x � VS t)

#

(2)

where � is the free surface displacement and sech x D
1/ cosh x; the velocity of the wave VS is given by Eq. (1).
The article of Boussinesq [5] had been almost ignored
in England, and five years after its publication Lord
Rayleigh [64] independently obtained the solitary wave
profile. Following Rayleigh’s work and including the ef-
fects of surface tension, the Amsterdamprofessor of math-
ematics Diederik Johannes Korteweg and his doctoral stu-
dent Gustav de Vries derived a model equation [42] which
describes the unidirectional propagation of long waves in
water of relatively shallow depth. This famous equation is
now known as the Korteweg–de Vries equation or KdV
equation, and it has the following form:
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Korteweg and de Vries showed that this nonlinear wave
equation has a localized solution which represents a single
hump of positive elevation corresponding to the solitary
wave observed by Scott Russell. The KdV equation had
been in fact formulated in 1877 by Boussinesq in an im-
pressive paper [6], but this author did not use directly this
formulation. Russell’s experiments had found their theory
and one could think that many scientists would rapidly ex-
tend the results of this theory. However, the KdV equation
had a quiet life for many decades.

In the early 1950s, the physicists Enrico Fermi, John
Pasta and Stan Ulam could use one of the first comput-
ers, the “Maniac” to work on systems without closed ana-
lytic solutions. In particular, they studied the way a crystal
evolves towards the thermal equilibrium through the nu-
merical simulation of the dynamics of a one-dimensional
lattice consisting of N equal masses (atoms) connected by
nonlinear springs. The problem is described by the Hamil-
tonian

H D
N�1X

iD0

1
2
p2i C

N�1X

iD0

1
2
K(xiC1 � xi)2

C
K˛
3

N�1X

iD0

(xiC1 � xi)3 (4)

where xi is the atom i displacement, pi the correspond-
ing momentum, K the constant of the quadratic poten-
tial, and ˛(
 1) a coefficient of nonlinear interaction. The
boundary condition x0 D xN D 0 is assumed. Consider-
ing a normal mode decomposition

Ak D
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N
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iD0

xi sin(ik�/N) ; (5)

the Hamiltonian (Eq. (4)) may be written in the following
way
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where the pulsations !k are given by !2
k D 4K sin2(k�/

2N), and ck lm are constants. When the masses have very
small displacements from the equilibrium positions, the
dynamics of the lattice may be described by a superposi-
tion of normal modes. It was supposed that if only one
mode (the fundamental mode k D 1 in the circumstances)
is excited in a crystal lattice, nonlinear interactions would
lead to energy equipartition or thermal equilibrium. This
was suggested by the results at the beginning of the cal-
culations since the modes 2; 3; : : : were successively ex-
cited. However, after 157 fundamental periods, almost all

the energy returned to the fundamental mode. Further-
more, the energy returned almost periodically to the orig-
inal excited mode leading to a near recurrence process,
now known as the FPU paradox. Fermi et al. [18] did not
get the expected result and the modeled crystal lattice did
not approach energy equipartition. This remarkable dis-
covery is at the origin of the comprehension of the con-
cept of the soliton and of the developments of “numeri-
cal experiments”. Fermi died just after this work; this had
a rather inhibitory effect on the significance of this result
and no paper was published after the preprint “Studies of
nonlinear problems” [18]. The results were communicated
to the scientific community by Ulam through several con-
ferences. Complementary studies [20,39] confirmed that
the introduction of nonlinearity in a system does not guar-
antee the equipartition of energy. In 1960, the KdV equa-
tion was rederived by Gardner andMorikawa who worked
on collisionless hydromagnetic waves. These authors at-
tracted the attention of Zabrusky and Kruskal on the KdV
equation, and the FPU paradoxwas solved a few years later
in terms of solitons [82]. Zabrusky and Kruskal consid-
ered the following motion equations corresponding to the
Hamiltonian (Eq. (4))

ẍi D K(xiC1 C xi�1 � 2xi)

C K˛
�
(xiC1 � xi)2 � (xi � xi�1)2

�
: (7)

Taking into account that the recurrence occurs before the
excitation of high-order modes, these authors carried out
an asymptotic analysis in the continuum approximation
and obtained an equation including dispersive and non-
linear terms which correspond to the KdV equation. This
equation, obtained in a totally different physical context as
the one to explain the observations of Scott Russell, is at
the origin of the explanation of the FPU paradox. As de-
picted in Fig. 3, the numerical experiments of Zabrusky
and Kruskal showed that the initial sinusoidal condition
evolves into steep fronts and then into a finite number
of short pulses which are solitons. These solitons travel
around the lattice with velocities depending on their am-
plitude; they collide preserving their individual shapes and
velocities with only a small change in their phases. As time
increases, there is an instant at which the solitons collide
at the same point, and the initial state comes close to re-
currence. The recurrence period calculated by Zabrusky
and Kruskal closely approximates the actual FPU recur-
rence period, showing that the KdV equation is a suitable
approximation of the FPU system. The system had to be
considered as totally nonlinear to be solved, and the lin-
ear normal modes of the system could not be considered.
The pulse-like waves were called solitons by Zabrusky and
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Solitons: Historical and Physical Introduction, Figure 3
Evolution of an initially periodic profile from Zabusky and
Kruskal numerical analysis of the KdV equation. The breaking
time for the wave profile is tb

Kruskal to indicate the remarkable quasi-particle prop-
erties of these very stable solitary waves. They were at
first called solitrons to introduce them into the family
of particle names such as electron and neutron, but the
name solitron was a trade mark, and was therefore not
suitable. The concept of solitons has spread over numer-
ous branches of physics, such as optical physics, biolog-
ical physics, astronomy, particle physics, condensed mat-
ter, fluid dynamics, ferromagnetism. The numerical exper-
iments of Zabrusky and Kruskal led to the development
of integrable systems. Taniuti and Wei [76] and Su and
Gardner [74] have shown that a large class of nonlinear
evolution equations may be reduced to consideration of
the KdV equation which may be regarded as a very impor-
tant canonical form. A famous method, the so-called In-
verse Scattering Transform (IST) was proposed by Gard-
ner et al. [24] to integrate the KdV equation. This proce-
dure may be considered as the nonlinear analogue of the
Fourier transformmethod suitable to linear dispersive sys-
tems.

Physical Properties of Solitons
and AssociatedApplications

Properties of Solitons

Let us consider the KdV equation (Eq. (3)). Introducing
the variable X D x � V0 t, this equation may be written in
the following way
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@3�

@X3 D 0 : (8)

Solitons: Historical and Physical Introduction, Figure 4
Comparisonbetween two solutions of theKdV equationwith dif-
ferent amplitude A

Using the dimensionless variables� D �/d, � D X/X0 and
� D t/t0 where X0 and t0 are respectively a typical length
and time, the KdV equation may be formulated in its stan-
dard form:
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This equation has many solutions, as all nonlinear equa-
tions. Among these solutions, there are the spatially local-
ized solutions:

� D A sech2
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#

; (10)

where A is a positive constant. These solutions quantita-
tively correspond to the observations of Scott Russell. In
particular, the width of the soliton decreases for increas-
ing values of its amplitude, as depicted in Fig. 4. In dimen-
sional variables and in a fixed referential, the correspond-
ing solution is given by Eq. (2).

The KdV equation appears widely in physics, each
time that waves propagate in a weakly nonlinear and
weakly dispersive medium. The nonlinear term �(@�/@�)
in this equation causes the steepness of the wave form. In
a dispersive medium, the Fourier components of a pulse
propagate at different velocities, inducing a spreading of
the pulse. The dispersive term @3�/@�3in the KdV equa-
tion makes the wave form spread. The soliton solution of
the KdV equation results from the balance of nonlinear-
ity and dispersion. This balance is generally very stable,
which explains the numerous applications of the theory of
solitons, even if the real physical situations (where friction
and defects take place) are only approximately described
by the soliton equations, and in particular by the KdV
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equation. It would be strictly speaking more appropriate
to use the terminology quasi-soliton in physics; however,
bearing inmind that the word soliton has a quite ideal con-
notation in the context of systems with exact solutions, we
will use the word soliton. The conservation of the shape
and of the velocity of the soliton after a collision is a man-
ifestation of stability. The high stability of solitons rela-
tive to perturbations, combined with the fact that they can
spontaneously emerge in a physical system in which en-
ergy is supplied, lead to numerous applications of soli-
tons in macroscopic and microscopic physics. Neverthe-
less, a soliton may sometimes vanish. For example, this is
the case when such a wave propagates in amediawhere the
water depth decreases during the wave propagation. The
dispersive effect progressively decreases when the nonlin-
ear effect increases, leading to the wave breaking as waves
on a beach. The vanishing of a soliton may also result from
energy dissipation. Marin et al. [52] have shown that sand
ripples may form when solitons propagate in shallow wa-
ter over a sandy bed, and that a strong interaction between
the free surface and the bed occurs. This interaction leads
to a decrease of the soliton amplitude, which may result
under certain circumstances in the disappearance of the
soliton. Let us now consider some of the most typical soli-
ton applications.

Solitons in FluidMechanics

In the hydrodynamic field, a very nice case where solitons
take place is the tidal bore, also called hydraulic jump in
translation, and known as the mascaret in France. A tidal
bore is a positive wave of translation which can occur in
a river with a gently slopping bottom and a broad funnel-
shaped estuary, where a difference of more than six me-
ters between high and low water takes place [50]. The tidal
bore appears as a single wave or a series of waves which
propagate upstream. At a given instant, it is localized at
the upstream extremity of the flood tide propagation in
the inter-tidal zone. The flow direction is towards the sea
before the tidal bore arrival, and may be in the opposite
direction after its occurrence. Such bores are distributed
widely throughout the world. The most powerful can be
seen in the Amazon river in South America, where it is
called pororoca, which means gigantic noise. An approxi-
mately 5m-high wave propagates with a velocity of about
30m/s, and surfers take advantage of this exceptional wave
to organize competitions. In England, bores may be con-
templated on several rivers, the most famous occurring in
the Severn river, near Bristol. In France, bores take place
mainly in theMont Saint-Michel bay, in the Gironde, Dor-
dogne and Garonne rivers. The mascaret of the Seine river

Solitons: Historical and Physical Introduction, Figure 5
Sketch of the propagation of a positive wave of translation

almost disappeared between 1960 and 1970 because of the
construction of dikes and the dredging works which had
been carried out in order for large boats to reach the city
of Rouen. Increasing the water depth induces a decrease
of the nonlinear effects which become insufficient to bal-
ance the dispersion. In Canada, several bores are observed
in Fundy bay. In Asia, an important bore occurs in the
Qiantang river, while the one in the river Pungue in Africa
can propagate upstream over more than 80 km. Two types
of bores may be observed: the breaking bore and the un-
dulated bore, depending on the value of the Froude num-
ber Fr defined by Fr D (U1 C U)/

p
gd1, where U1 is the

flow velocity at the depth d1 before the passage of the bore
and U the bore velocity (Fig. 5). In Fig. 5, d2 depicts the
water depth after the passage of the bore and U2 the flow
velocity at the depth d2. For a value of Fr lower than about
1.5, the bore is undulated, and for a value of Fr greater
than 1.5, the breaking bore occurs. Most of the bores are
undulated bores. The tidal bore is a very important turbu-
lent phenomenon for the inter-tidal zone of a river, induc-
ing a significant mixing of waters and complex motions
of sediment on the river bed [14]. River bores have been
known for many centuries but only qualitative observa-
tions were carried out. Quantitative measurements came
much later, mainly because solitons are inherently nonlin-
ear when only linear processes were considered.

Long waves such as tsunamis often behave like soli-
tary waves [48]. In particular, the run-up and shoreward
inundation are often simulated using solitary waves [49].
The tsunamis may be described by the KdV equation.
The theory of very long shallow water waves is valid
since the tsunamis have a wavelength which is generally
greater than 100 km and they propagate in oceans whose
mean depth is about 4000m. Their propagation velocity is
greater thanV0 D

p
gd, that is greater than approximately

700 km/h. When they approach a coast, their velocity de-
creases and their height increases to satisfy the equation of
energy conservation, and they finally break inducing often
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very significant damages on the shore. Most tsunamis have
a seismic origin, such as the dramatic one which occurred
in the Indian Ocean on 26 December 2004 and which led
to the death of more than 220 000 people. These solitons
may also result from a quick arrival in the sea of volcanic
products, through a similar process to that in Scott Rus-
sell’s experiments depicted in Fig. 1. This was the case for
the tsunami generated in 1883 by the eruption of Krakatau
in Indonesia, when approximately 36 000 people died. The
inundation phase for a tsunami highly depends on the
bottom bathymetry. The breaking can be progressive and
structural damages are mainly caused by inundation [13].
The breaking can also be explosive and induce the for-
mation of a plunging jet. When the breaking takes place
in very shallow water, the tsunami amplitude becomes so
high that an undulation appears on the long wave, which
develops into a progressive bore [10]. This turbulent front
is of the same type as the wave which occurs when a dam
breaks, and the water can rise very rapidly, typically from
0 to 3 meters in 1.5 minutes. The event of December 2004
has shown that the available models are not able to pre-
dict accurately the wave run-up heights under severe con-
ditions.

Helal and El-Eissa [37] presented the connection be-
tween shallow water waves and the KdV equation. More
recently, Mei and Li [55] considered the propagation of
long waves over a randomly rough seabed. These authors
have shown analytically and numerically that, assuming
a randomness height to mean depth ratio comparable to
the one of mean depth to the characteristic wavelength,
disorder causes diffusion, leading to spatial attenuation of
the wave amplitude. Mei and Li [55] proposed a modified
KdV equation which includes terms representing the ef-
fects of disorder on amplitude attenuation. After a propa-
gation over a region of finite length, the transmitted wave
is a pulse which disintegrates into several small solitons of
vanishing energy.

Hydrodynamic solitons may also be observed in deep
water. Stokes showed in 1847 through the use of a small
amplitude expansion of a sinusoidal wave, that periodic
waves of finite amplitude are possible in deep water. The
Stokes waves are unstable to infinitesimal modulation per-
turbations [4]. Zakharov and Shabat [83] were the first to
show that an initial wave packet may evolve into a num-
ber of envelope solitons and a dispersive tail, the envelope
solitons consisting of a carrier wave modulated by an en-
velope signal. This was experimentally verified by Yuen
and Lake [81], by carrying out detailed experiments in
deep water in a wave tank. The stability properties of en-
velope solitons were also considered. The freak waves, also
called rogue waves, extreme or giant waves, may also have

soliton-like shape. These waves appear surprisingly in the
sea (“wave from nowhere”) in deep or shallow water, and
can cause severe damages to ships and fixed ocean struc-
tures. They are characterized by their brief occurrence in
space and time, resulting from a local focusing of wave
energy [19]. The main features of their physical processes
may be obtained performing numerical simulations in the
framework of classical nonlinear evolution equations, such
as the KdV equation [41].

Oceanographers have also observed internal solitary
waves in many regions around the world’s oceans [61].
Most of the observed solitons propagate at the interface
between the thermocline and the deep sea [56]. They are
mainly excited by tidal flows over bottom topography [25],
and they contribute to significant vertical mixing. Brandt
et al. [7] developed a rotationless Boussinesq-like model
for the generation and propagation of internal waves; the
results of the simulations are in good agreement with
large solitary waves recorded with airborne Radar images.
Michallet and Barthélemy [56] carried out experiments in
a 3-m-long flume to study interfacial long-waves in a two-
immiscible-fluid system involving water and petrol. The
comparison between the experiments and nonlinear the-
ories shows that the KdV solitary waves match the exper-
iments for small amplitude waves for all layer thickness
ratios. When the crest is close to the critical level, that is
approximately located at mid-depth, the large amplitude
waves are well predicted by a modified KdV equation in-
cluding both quadratic and cubic nonlinear terms (KdV-
mKdV equation). However, only very few laboratory or
field measurements of internal solitary waves are available,
due to the prohibitive cost of obtaining precise measure-
ments in the field and to the difficulty of generating and
measuring these waves in the laboratory.

Blood pressure pulses may be considered as soli-
tons [63]. There is a balance between the nonlinearity due
to the blood flow and the dispersion connected to the
elasticity of the artery. Previous studies [32,33,80] have
shown that the dynamics of weakly nonlinear pressure
waves in a thin nonlinear elastic tube filled with an in-
compressible fluid may be governed by the KdV equation.
A Boussinesq-like equation was obtained by Paquerot and
Remoissenet [62] to describe the blood pressure propaga-
tion in large arteries, in the limit of an ideal fluid and for
slowly varying arterial parameters.

Severalmethods have been tested to generate hydrody-
namic solitons in a flume; themethod used by Scott Russell
has been described in Sect. “Introduction” (Fig. 1). Ham-
mack and Segur [29] showed experimentally and theoreti-
cally that from any net positive volume of water above the
still water level, at least one solitary wave will emerge fol-
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lowed by a train of dispersive waves. Maxworthy [54] and
Weidman and Maxworthy [79] pushed the liquid in the
horizontal direction by a single displacement of a piston.
The generation of solitary waves using a piston-type wave
maker has been studied in detail by Goring [26]. Guizien
and Barthélemy [28] have proposed an experimental pro-
cedure to generate solitary waves in a flume using a piston
type wave maker from Rayleigh’s (1876) solitary wave so-
lution. The advantage of this method is that solitary waves
are rapidly established with very little loss of amplitude in
the initial stage of the propagation of the solitary waves.
The generation of solitons using a wave flume in resonant
mode, without an absorbing beach, has been considered
by Marin et al. [52]. Surface waves are produced in shal-
low water by an oscillating paddle at one end of the flume;
a near-perfect reflection takes place at the other end. The
frequency of the oscillating paddle was chosen close to the
resonant frequency of the mode whose wavelength is equal
to the flume length. For small values of the amplitude of
displacement of the oscillating paddle, only standing har-
monic waves are generated in the flume. For values of this
amplitude greater than a critical value, pulses propagating
from one end of the channel to the other end are excited
on the background of the standing harmonic wave. From
one to four pulses propagating in each direction of the
flume could be generated over the time period of the flow,
depending on the frequency and the amplitude of hori-
zontal displacement of the oscillating paddle. These pulses
were identified as solitons (one pulse) and bound states of
solitons (several pulses). The generation of solitons in the
flume results from the excitation of high harmonics. The
spatiotemporal properties of solitons generated in this way
were studied in detail by Ezersky et al. [17]. Space-time di-
agrams have been constructed to highlight the spatiotem-
poral dynamics of nonlinear fields for two solitons collid-
ing in the resonator. Period doublings and the multistabil-
ity of the nonlinear waves, i. e. the occurrence of different
regimes for the same values of the control parameters but
under different initial conditions, have been shown. It is
important to keep in mind that the solitary waves corre-
spond to the limit of cnoidal waves of period tending to
infinity. The velocity of cnoidal waves Vcn is known to de-
pend on the so-called elliptic parameter m and is given by
the formula [11]
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where K(m) and E(m) are complete elliptic functions of
the first and second kind. The parameter m, which de-
pends on the wave amplitude to width ratio, is responsible
for the shape of the wave withm D 0 corresponding to the

harmonic wave, and m D 1 to the soliton. Strictly speak-
ing, the waves generated in a flume used in resonant mode
are not exactly solitons, but cnoidal waves with an elliptic
parameter very close to 1; the value of this parameter was
found to be 0.9996 for the tests carried out by Ezersky et
al. [17]. The shapes of pulses are almost indistinguishable
for m D 1 and m D 0:9996, but the pulse repetition rates
differ appreciably, the period tending to infinity asm! 1.

Atmospheric solitons also exist, such as the Morning
Glory Cloud of the Gulf of Carpentaria in northern Aus-
tralia, which can be seen as a spectacular propagating roll
cloud. Atmospheric solitons are horizontally propagating
nonlinear internal gravity waves that can travel over large
distances with minimal change in form [68]. The solitary
waves that have been observed in the atmosphere can be
divided into two classes: those that propagate in a fairly
shallow stratified layer near the ground and those that oc-
cupy the entire troposphere. The generation mechanisms
appear to be quite different for these two classes of waves.
The waves that occupy the lower part of the troposphere
mainly involve a gravity current such as a thunderstorm
outflow, a katabatic wind, a sea breeze front, or a downs-
lope windstorm, interacting with a low-level stable layer.
The motion of the gravity current produces perturbations
that are trapped in the low-level stable layer and eventually
evolve over time into a series of solitary waves. For the tro-
pospheric scale waves, they are very probably generated by
synoptic scale features such as large-scale convective sys-
tems and geostrophic adjustments. For the two types of
atmospheric solitons, there must exist some feature in the
atmosphere that serves to prevent the wave energy from
propagating away in the vertical direction. These trapping
mechanisms are either deep layers of the atmosphere with
very low values of the buoyancy frequency, or critical lay-
ers. The KdV equation, eventually enhanced with higher-
order nonlinearity, gives a reasonable agreement with the
observations [68].

Solitons in Nonlinear Transmission Lines

In another area of physics, transmission lines with non-
linear elements are found to propagate in a soliton mode.
Nonlinear electrical transmission lines are simple experi-
mental devices to observe and consider quantitatively the
propagation and properties of solitons. The propagation
of these waves is used for picosecond impulse genera-
tion and broadband millimeter-wave frequency multipli-
cation [66]. Let us consider the elementary LC network
depicted in Fig. 6, with linear inductors L and nonlinear
capacitors C. The differential capacitance C(Vn) is sup-
posed to depend nonlinearly on the voltage across the nth
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Solitons: Historical and Physical Introduction, Figure 6
Elementary circuit of an electrical network with linear induc-
tance’s L and nonlinear capacitance’s C

capacitor Vn:

C(Vn ) D
dQn(Vn)
dVn

(12)

where Qn(Vn) is the charge stored in the nth capacitor.
Following Kirchhoff’s law, we have:

Vn�1 � Vn D
d�n
dt

; In � InC1 D
dQn

dt
(13)

where the magnetic flux �n is related to the current In by
the relation: �n D LIn . Using Eqs. (12) and (13), it is easy
to obtain:

d2Qn

dt2
D

1
L
(VnC1CVn�1 � 2Vn) ; n D 1; 2; : : : (14)

Assuming the following capacitance-voltage relation,

C(Vn ) D C0(1 � 2aVn) (15)

where a is a small nonlinear coefficient, we find:

LC0
d2Vn

dt2
� LC0a

d2V2
n

dt2

D (VnC1 C Vn�1 � 2Vn) ; n D 1; 2; : : : (16)

The system (Eq. 16) of nonlinear equations cannot be
solved analytically. The continuum limit is used to get ap-
proximate solutions; setting the position x D nı where ı
is a hypothetical cellule length, we get

@2V
@t2
�

ı2

LC0

@2V
@x2
D

ı4

12LC0

@V
@x4
C a

@2V2

@t2
: (17)

This weakly dispersive and nonlinear wave equation de-
scribes waves that can travel both to the left and to the

right; the dispersive nature is due to the discreteness of
the electrical network. A localized wave solution of the
Eq. (17) that does not change its shape as it propagates
with constant velocity vmay be found [65]:

V D
3(v2 � v20)

2av2
sech2

0

B
@

q
3(v2 � v20)

v0



n �

v
ı
t
�
1

C
A (18)

where v0 D ı/
p
LC. This solitary wave solution represents

a pulse with amplitude

Vm D
3
2a

v2 � v20
v2

(19)

which depends on the velocity v. The width Lw at half
height of this pulse is given by

Lw D 1:76
v0q

3(v2 � v20)
: (20)

The waveforms of this solitary wave and of the KdV soli-
ton are similar, and the width Lw depends on the ampli-
tude Vm:

VmL2w D Ct (21)

where Ct is a constant.

Solitons in Plasmas

Solitons may propagate in plasmas; this has receivedmuch
attention because of a possible relevance to final state con-
figurations in fusion devices. The combination of disper-
sion and nonlinearity in plasmas may be described by the
KdV equation. A direct analogy between the equations for
shallow water and those for plasmas has been mentioned
by Gardner and Morikawa [23]. However, the KdV equa-
tion is not always adapted to the excitations which can be
generated in plasmas by electromagnetic waves, since wave
packets are often produced instead of pulses characterizing
the solutions of the KdV equation. Another type of soliton
equation is then more suitable, the nonlinear Schrödinger
equation (NLS); this second class of soliton equation will
be considered in Subsect. “Solitons in Optical Fibers”.

Solitons in a Chain of Pendulums

Hydrodynamic solitons, solitons in nonlinear transmis-
sion lines are nontopological solitons, because the sys-
tem returns to its initial state after the passage of the
wave. There is also another type of soliton, the kink soli-
tons which are topological solitons, since the structure of
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the system is sometimes modified after the passage of the
wave. A mechanical system consisting of a chain of pen-
dulums, each pendulum being elastically connected to its
neighbors by springs, is a typical example for which topo-
logical solitons can merge. It is easy to show that this me-
chanical system may be described by the following equa-
tion:

@2�

@t2
� c20

@2�

@x2
C !2

0 sin � D 0 (22)

where � is the angle of rotation of the pendulums, x is
the axis along which the pendulums are distributed,
c20 D l21ˇ/Ii ; l1 being the distance between two pendu-
lums, ˇ the torque constant of a section of spring between
two pendulums, Ii the moment of inertia of a single pen-
dulum of mass m and length l2, and !2

0 D mgl2/Ii . The
first term in Eq. (22) represents the inertial effects of the
pendulums, the second term corresponds to the restoring
torque due to the coupling between pendulums, and the
third term represents the gravitational torque. The Eq. (22)
is called the Sine–Gordon (SG) equation [47]; it can be to-
tally integrated and admits exact solitons solutions. It has
become a very famous equation containing dispersion and
nonlinearity which is used tomodel various phenomena in
physics. It constitutes the third class of nonlinear equation
leading to solitons.

Fluxons in a Josephson Tunnel Junction

Solitons arise also in a Josephson tunnel junction, which
is a junction between two superconductors. These junc-
tions are very attractive for information processing and
storage [78]. The physical quantity of interest in the long
Josephson junction is a quantum of magnetic flux, or
a fluxon, which has a soliton behavior. The relevant non-
linear equation which describes the physical processes is
the Sine–Gordon equation. This equation is particularly
suitable in solid physics.

Solitons in Optical Fibers

One of the fundamental applications of solitons concerns
optical fibers. In optical fiber communication using linear
pulses, dispersion and losses in the fiber limit the informa-
tion capacity which can be transported and the distance of
transmission. Hasegawa and Tappert [31] first proposed to
balance the dispersive effect by nonlinearity using soliton-
based communications. The Kerr effect, in other words the
nonlinear change of the refractive index of the fiber mate-
rial, is used and an initial optical pulse may form a nonlin-
ear stable pulse, an optical soliton, which is in fact an en-
velope soliton. Hasegawa and Tappert proposed the previ-

ously mentioned nonlinear Schrödinger equation for the
description of solitons propagating in optical fibers. The
first observations of these solitons were made in 1980 by
Mollenauer, Stolen, and Gordon [58]. In real media, the
light intensity of the soliton decreases due to losses in the
fiber, and suitable reshaping of the pulse is required. Nu-
merous theoretical and experimental studies on nonlinear
guided waves have been carried out, because of their wide
range of applications [30,43]. Inserting an optical fiber in
a laser cavity, a “soliton laser” may be obtained, a fem-
tosecond laser which is now in use. A real revolution in
international communications is taking place at present,
based on optical soliton technology. It is anecdotal that
a fiber-optic cable linking Edinburgh and Glasgow now
runs beneath the path from which John Scott Russell made
his initial observations, and along the aqueduct which now
bears his name.

The NLS equation may be obtained from the Sine–
Gordon equation. Previously considered systems as wa-
ter waves on the free surface or chains of pendulums have
also weak amplitude solutions, plane waves which have the
form:

� D  ei(qx�! t) C c:c: (23)

where  is the wave amplitude, q is the wave number,
! is the pulsation and c.c. denotes the complex conjugate
of a complex number. When the wave amplitude is suffi-
ciently increased for the nonlinearity to take place, modu-
lation can spontaneously arise because harmonics are gen-
erated by the nonlinearity. The initial wave may split in
waves packets whose properties correspond to the ones of
solitons. These solitons consisting of a carrier wave which
is modulated by an envelope signal are called envelope
solitons. It can be shown [63] that the evolution of the en-
velope  is described by the NLS equation:

i
@ 

@t
C P

@2 

@x2
C Q j j2  D 0 (24)

where P and Q are coefficients which depend on the phys-
ical problem, as the significance of the variables t and x.
The NLS equation is formally similar to the Schrödinger
equation of quantum mechanics:

i„
@ 

@t
C
„2

2m
@2 

@x2
� U D 0 : (25)

The potential U in Eq. (25) is proportional to the absolute
square of the wave envelope ,m is the mass of the quasi-
particle and „ D h/2� where h is the Planck constant. The
potential represents the self-trapping of the wave energy.
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Solitons in Solid Physics

Solitons are involved in the atomic structure of matter.
At the beginning of the twentieth century, a central ques-
tion in solid state physics was how a plastic deformation
of a metal takes place in the corresponding crystal lat-
tice. This problem induced numerous discussions, and it
was suggested that if one atom in the lattice is pulled
away, a neighbor atom follows the one which had been
moved, jumping into the new hole, that is the new free
lattice space. Then, a dislocation runs through the crys-
tal. This proposition was improved in 1939 by Frenkel
and Kontorova [22] who developed a model where not
only each atom moves alone over one lattice distance, but
also many atoms form a dislocation line generating a wave
of translation. The process of traveling of the dislocation
line through the crystal was assumed to occur without
losses of energy. This is equivalent to Russell’s solitary
wave of translation which travels over long distance with-
out change of form and velocity. This led Frenkel andKon-
torova to make an analogy between the dislocation line
and the soliton, and they obtained the one-soliton solution
of the Sine–Gordon equation.

The solitons permit us to interpret properties of dielec-
tric materials. In other respects, magnetic materials are in-
teresting examples to experimentally verify in a very ac-
curate way the theory of solitons at the atomic scale [57].
The concept of soliton in polymer physics constitutes
a very nice case of an interdisciplinary approach. Their
occurrence was suggested in 1988 by theoretician physi-
cists [34]. Many studies have since then been carried out,
in chemistry and experimental physics. Alan J. Heeger,
Alan G. MacDiarmid and Hideki Shirakawa received the
Nobel prize in chemistry in October 2000 for their works
on the electric conduction of conductive plastics which is
performed by solitons.

Solitons in Biology

Interest in the physical modeling of biological processes
has grown significantly since the beginning of the 1990s.
Nonlinear localization phenomena have been recently
shown in systems very close to biological systems [15].
The notion of the soliton is now used to explain the dy-
namics of biological macromolecules such as proteins and
the molecule ADN; an approach to the dynamics of the
molecule ADN can be obtained using the envelope soli-
tons solution of the NLS equation [63]. Intense researches
are presently being carried out on this subject. The great
size of biological molecules allows collective behaviors of
atom groups, which are with nonlinearity important com-
ponents for the existence of solitons.

MathematicalMethods Suitable
for the Study of Solitons

Solitons may appear in many fields, such as fluid mechan-
ics, solid state physics, plasma physics, optical fibers and
biology, as shown in Sect. “Physical Properties of Solitons
and Associated Applications”. The description of these
physical systems often leads to dispersive and nonlinear
equations which are not presently solvable. It is then im-
portant to refer to the great classes of soliton equations,
which are idealized models for numerous systems. These
great classes of soliton equations correspond to the Ko-
rteweg–de Vries equation, known as the KdV equation
(Eq. (9)), the Sine–Gordon equation (SG; Eq. (22)), and
the nonlinear Schrödinger equation (NLS, Eq. (24)). These
three famous equations can be totally integrated. They are
not completely dissociated. For instance, it is possible to
obtain the NLS equation from the SG equation and from
the KdV equation. The soliton solutions represent only
a first approximation of the physical properties of real sys-
tems. Dissipation or a weak spatial or temporal variation
of the physical parameters in real physical systems are ex-
amples of phenomena which are very common and which
are not taken into account in the soliton equations. The
modeling has to be adapted to the physical system and to
the excitation conditions of this system. In the case of plas-
mas, the KdV equation is more suitable for a description
of the system when intense pulses excite it, and the NLS
equation is more adapted for sinusoidal perturbations.

There are two broad theoretical approaches available
to obtain the solutions of the great classes of soliton equa-
tions, the analytic and the algebraic methods. Analytic ap-
proaches include the powerful inverse scattering trans-
form (IST) [24] and the remarkable Hirota method [38].
One-soliton solutions or multi-soliton solutions can be
obtained. Moreover, the IST method can predict the num-
ber of solitons that can emerge from an initial disturbance
applied to a physical system [59]. This method shows how
the solitons have a role in nonlinear normal modes as the
Fouriermodes for a linear equation [44]. There are also the
Bäcklund transformation method [67], the direct lineariz-
ing transform method [1], the Painlevé analysis [45], and
the method of position-like solutions [40]. The algebraic
methods involve the Lie group theoretic method [60], the
direct algebraic method [53], and the tangent hyperbolic
method [51].

The theoretical methods cannot always be used since
they need some conditions to make them applicable.
Numerical methods can be applied [36]. Zabusky and
Kruskal [82] were the pioneers in studying in 1965 the
KdV equation numerically, by using the leapfrog method
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as an explicit finite difference scheme.Manymethods have
since then been used: a split-step Fourier method [77], the
hopscotch method [27], a pseudo-spectral method [21],
spectral methods (the Galerkin and Chebyshev meth-
ods) [35,72], the finite element method [75], and Fourier
collocation calculations [9].

Future Directions

Solitons may occur in the macroscopic and microscopic
scales of physics. This results from their very general ex-
istence conditions, the coexistence of dispersion and non-
linearity. The concept of solitons is not restricted to a spe-
cific field of physics, and the investigation of solitons re-
mains a very active research area. We have previously
mentioned (Sect. “Physical Properties of Solitons and As-
sociated Applications”) that one important application of
solitons concerns optic fibers. The propagation of opti-
cal solitons through nonlinear fibers has been extensively
studied; however, in realmedia, the dynamics of these soli-
tons and the conditions for their generation are signifi-
cantly affected by various inhomogeneities in the media.
The problem of nonlinear wave propagation in the form
of solitons in inhomogeneous optical fiber media is actu-
ally not well understood, despite the wide range of appli-
cations [30]. The investigation of nonlinear processes in
coupled optical waveguides is another research direction
for the future design of optical computers and sensor el-
ements. Recent advances have shown that solitons have
a great potential for the improvement of optical systems
which demand fast and reliable data transfer. In the hy-
drodynamic field, the tsunamis often behave like solitary
waves. The dramatic tsunami which occurred in the In-
dian Ocean on 26 December 2004 has clearly shown that
the actual numerical models do not accurately predict the
water propagation on the coastal plains. An important di-
rection for future research is the (3D) three-dimensional
simulation of tsunami breaking along a coast. The 3D sim-
ulation of the interaction of a tsunami with different beach
profiles, with and without obstacles has also to be consid-
ered. This will permit the design of protecting devices and
the setting up of security zones. In biology, nonlinear lo-
calization phenomena have been proved in model systems
close to biological systems, but the challenge is open for bi-
ological molecules. Other important application fields for
solitons concern magneto-electronics and secure commu-
nications. The formation of spatio-temporal patterns on
perturbations of soliton systems are important problems
to be studied in the years to come. The existence of insta-
bilities in the solitary wave solutions of the great classes
of soliton equations have to be tackled. Nonlinear excita-

tions in systems whose spatial dimension is greater than
one raise many questions. Among these questions, there
are the problems of the possible stable structures, their col-
lision properties and the effect of external forces. New ap-
plications will certainly emerge from these studies.
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Glossary

Solitary wave A localized structure which travels with
constant speed and shape in otherwise homogeneous
medium.

Soliton In the classical nomenclature, a soliton is a non-
linear spatially or temporally localized entity (solitary
wave, impulse, wave packet, kink, etc.) of permanent
form that retains its identity and shape in interactions
with other similar entities. Also frequently used term
for solutions of the relevant nonlinear partial differen-
tial equations approximately describing such physical
entities.

Soliton (colloquially as well as in certain domains)
Used for denoting any long-lived localized structures
(e. g. solitary waves, self-trapped optical beams, local-
ized vortices) which exhibit low energy radiation and
approximately keep their shape.

Soliton solution A solution, usually in closed form, of
the nonlinear partial differential equations that exhibit
properties of a single soliton. A multi-soliton solution
exhibits properties and collective behavior of groups of
solitons.
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Elastic interaction A generalization of the concept of
elastic collisions of ideal mechanical bodies: interac-
tion of localized entities in which the dynamically sig-
nificant properties of the counterparts such as the to-
tal energy, linear and angular momentum, and topo-
logical charge or spin are conserved. For low-dimen-
sional and scalar solitons denotes the case in which all
the properties of interacting solitons are completely re-
stored after interaction.

Inelastic interaction Interaction of soliton-like struc-
tures that modifies one or more dynamically signifi-
cant properties of the counterparts.

Phase shift A change of the position of a soliton owing to
interactions with other solitons compared to the loca-
tion in which it would be in the absence of other soli-
tons.

Resonant interaction A specific form of soliton interac-
tions leading to the fusion of two or more solitons
into a new soliton. Generally associated with an infi-
nite phase shift of the counterparts.

Definition of the Subject

The concept of solitons reflects one of the most important
developments in science of the 20th century: the nonlinear
description of the world. It is customary to start an intro-
duction to solitons by recalling that it is not easy to give
a comprehensive and precise definition of a soliton. Fre-
quently, a soliton is explained as a spatially localized (soli-
tary) wave with spectacular stability properties. Although
the combination of simultaneously being a localized struc-
ture propagating while mostly keeping its shape as waves
do, and surviving for a long time in realistic (that is, non-
linear) conditions, already is a fascinating property in it-
self, yet another key quality defines whether a particular
entity is a soliton. The distinction is made based on the
way in which two or more of these objects interact with
each other.

The classical nomenclature associates the term soli-
ton with (i) nonlinear and (ii) localized entities, which
(iii) have a permanent form and (iv) retain their iden-
tity in interactions with other entities from the same class
(e. g. Drazin and Johnson [37]; also the entry � Solitons
and Compactons). The fundamental property of a soli-
ton is thus to retain its identity in nonlinear interactions.
In low-dimensional systems (understood here as environ-
ments admitting solitons in one spatial dimension and line
solitons in two dimensions), a soliton’s amplitude, shape,
and velocity are restored after each interaction, whereas
in more complex systems this request embraces all dy-
namically significant qualities. In other words, a structure

is a soliton if and only if its interactions are fully elastic.
Thus, the interaction of solitons is always an intrinsic topic
whenever solitons are considered.

In the nonlinear world, linear superposition does not
hold and nonlinear interaction takes place. Mathemati-
cally, classes of entities are called linear, whenever any
linear combination of entities belongs to the same class.
Among structures corresponding to the solutions of cer-
tain equations, exclusively those that satisfy linear equa-
tions are denoted as linear ones. Any linear combination of
solutions of a linear equation also solves this equation. The
principle of linear superposition is that the resultant struc-
ture is simply the sum of the parties and it implies that the
individual linear wave shapes are perfectly restored after
meeting with each other.

The property of elasticity of soliton interactions has
a fundamentally different nature, because, as a rule, a lin-
ear superposition of soliton solutions is not a solution of
the governing nonlinear equation. This property distin-
guishes nonlinear solitary traveling waves (that is, spa-
tially or temporally localized pulses, whereas the relevant
single-wave solution of the underlying equation may be
completely stable) from solitons, which may be observed
and analyzed as separate entities but which always express
property (iv) should similar entities appear in the system.

The propagation and interaction of both solitons and
solitary waves in realistic conditions (that is, in the pres-
ence of dissipation, external fields, and inhomogeneities
of the medium) frequently results in a certain loss of en-
ergy (usually in the form of radiation of relatively short
waves); in certain cases collapse or fission of the structure,
or a net exchange of energy between the waves occurs.
Even if a solitary wave travels without radiation losses in
an ideal environment, it may only be called a soliton if nei-
ther radiation loss nor net energy exchange occurs when
it meets a similar structure; otherwise a perfect re-emerg-
ing of each soliton after the interaction would be impossi-
ble. More generally, no net changes of any dynamically or
topologically significant quantities are permitted in elastic
collisions. Only changes of certain dynamically less signif-
icant properties such as the exact location (phase) of the
solitons are common in elastic interactions. Solitary waves
or structures possessing a selection of properties of soli-
tons are sometimes called quasi-solitons.

Although the first evidence of solitons was extracted
from observations in nature, the theory of solitons and
their interactions has been developed very much in terms
of the mathematical theory of the relevant nonlinear par-
tial differential equations (PDEs) of the motion. The def-
initions of solitons and their interactions are commonly
formulated in terms of solutions to such equations. It is
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even customary to speak of solitary waves and solitons,
and of their interactions, having inmind the relevant exact
solutions to these equations. Therefore, in mathematical
terms, a soliton – either a solitary wave or a more complex
entity – is a solution of a nonlinear PDE that elastically in-
teracts with other similar solutions. In the contemporary
nomenclature it is also customary to associate solitons and
their interactions with numerical (multi-soliton) solutions
to these equations.

Interactions between solitons are the most fascinating
features of soliton phenomena. The most instructive qual-
ity of soliton interactions is the universality of many of
their features that exists in spite of the extremely diverse
physical origins of the counterparts. The presentation of
the basic conceptual ideas involving soliton interactions,
a discussion of several particular cases of such interac-
tions and an overview of observations of the relevant phe-
nomena in natural conditions are mostly limited to effects
occurring in the elastic interactions of one-dimensional
and line solitons, in which the solitons behave very much
like ideal mechanical bodies and which serve as the kernel
of the classical concept of solitons and their interactions.
Some spectacular features of nearly elastic interactions in
higher dimensions are interpreted in terms of generaliza-
tions of the classical elastic interactions. Finally, a selec-
tion of practical applications of specific features of soliton
interactions is again discussed from the viewpoint of line
solitons.

Introduction: Key Equations, Milestones,
andMethods

Integrable Equations

The quality of some nonlinear PDEs to admit soliton so-
lutions is associated with the property of integrability. In-
tegrable equations usually admit an infinite number of in-
tegrals (constants) of motion. Many nonintegrable equa-
tions possess localized shape-preserving traveling wave so-
lutions that resemble solitons. However, only integrable
equations have the universal property of possessing exact
multi-soliton solutions that reflect perfectly elastic inter-
actions between individual solitons. Thus, the integrabil-
ity of the underlying equation is a primary constituent of
the classical soliton interactions. Arnold [10] defines, for
example, a soliton as a solitary wave (solution) of an inte-
grable PDE having additional stability and robustness fea-
tures which are inherited directly from the integrability of
this PDE. Nonlinear interactions even between the greatly
different (but physically relevant) solutions of integrable
equations are also elastic.

Among the variety of integrable PDEs that admit
multi-soliton solutions, examples related to the Korte-
weg–de Vries (KdV) equation, the (focusing) nonlinear
Schrödinger (NLS) equation, the integrable Boussinesq
equation, the sine-Gordon (SG), and the Kadomtsev–
Petviashvili (KP) equation will be used below. Below we
shall refer to the listed equations as the classical soliton
equations. Since the KdV and the KP equations represent
a large number of different physical systems and their so-
lutions can be easily visualized in terms of the easily ac-
cessible environment of shallow-water waves, solutions to
and results from studies of these equations will be largely
used for illustrations of the explanations below.

The rapid development of the theory of solitons has
led to the discovery of many integrable equations which
show multi-soliton solutions and describe soliton interac-
tions (see, e. g. Arnold [10] and the entry� Partial Differ-
ential Equations that Lead to Solitons). A number of ana-
lytical methods have been developed to obtain the (multi-)
soliton solutions of integrable equations, starting from the
late 1960s. A major tool is the Inverse Scattering Trans-
form (IST), first developed by Gardner, Green, Kruskal
andMiura [47,50] for the KdV equation. The method con-
sists of associating to the evolution equation a Sturm–
Liouville problem. In the case of the KdV equation the
Sturm–Liouville equation is just the time independent
Schrödinger equation of quantum mechanics, where the
potential is the wave function of the KdV equation. The
single- and multi-soliton solutions are associated with the
discrete spectrum of eigenvalues. A generalization of the
Inverse Scattering Transform, known as theAKNSmethod
(named after Ablowitz, Kaup, Newell and Segur [2] who
developed the method), applies to a large class of inte-
gral equations. See the entry � Inverse Scattering Trans-
form and the Theory of Solitons for detailed informa-
tion.

At the same time, Hirota [62] found that soliton so-
lutions can be obtained by reducing, through a suitable
transformation, the evolution equation to a bilinear form.
Using some properties of the bilinear operator, it is possi-
ble to find the multi-soliton solution of an integrable equa-
tion. The proof of integrability of a particular PDE is usu-
ally nontrivial. The experience with the Hirota method,
applied to a variety of nonlinear wave equations, is that ex-
act multi-soliton solutions are found in many cases when
it is not known if the equation is integrable. It is natural
to expect that the existence of such solutions reflects the
integrability in some sense; however, no proof of this con-
jecture is known at this time.

Mathematically speaking, it is always possible to build
an integrable equation representing certain features of an



8482 S Solitons Interactions

observed phenomenon. Nevertheless, only a few of these
equations can be properly derived, normally using asymp-
totic expansions, from the corresponding primitive equa-
tions describing physical phenomena. Even the classical
soliton equations only approximately describe the natu-
ral phenomena. A more exact description of the natural
processes requires the introduction of additional contri-
butions to these equations. Such contributions usually de-
stroy the property of integrability and lead to nonelasticity
of interactions of soliton-like entities. Consequently, most
of the times solitons are just a good approximation of soli-
tary waves in nature. This limitation is to some extent bal-
anced by the fact that in many cases integrable soliton-ad-
mitting equations adequately represent the basic features
of physical phenomena even far beyond their formal scope
of validity. In spite of such intrinsic limitations, the tools
developed in soliton theory have allowed researchers to
reach a very deep understanding of some physical phe-
nomena which would have hardly been explained by other
means.

Milestones

Several milestones of the solitons’ history (� Solitons: His-
torical and Physical Introduction) are particularly signifi-
cant to soliton interactions. Already the famous first ob-
servations in 1834 of shallow-water solitons [132] implic-
itly involved certain effects created through soliton in-
teractions. The observed wave ahead of a ship probably
had a straight crest, as the one reproduced in 1995 in the
Union Canal near Edinburgh (see, e. g. p. 11 in [34]). It is
a remarkable feature of ship-induced solitons in relatively
narrow and shallow channels that a straight-crested up-
stream soliton exists ahead of a two-dimensional (2D) dis-
turbance, whereas the solitons generated ahead of a ship
sailing in wider shallow water areas have curved crests.
The straight crest of the Russell’s soliton and of her sister
structures are thus not intrinsically one-dimensional (1D)
structured solitons. They are formed owing to a specific
mechanism of soliton interactions as described below. The
KP equation, allowing a simple but adequate description
of the crest-straightening phenomenon, was derived even
later than the word soliton was coined.

A substantial step towards the concept of solitons was
made in themid-1950s by Fermi, Pasta andUlam [40] who
numerically analyzed the evolution of phonons in an an-
harmonic lattice. From themathematical point of view this
problem can be described by a discretization of the KdV
equation. Surprisingly at the time, the process did not lead
to an energy equipartition among the modes, although
nonlinearity generally tends to create such an equiparti-

tion. Instead, a sort of recurrence, an early evidence of the
elastic soliton interactions, was observed.

The basic features of soliton interactions were first
demonstrated for media described by the KdV equa-
tion [64,174]. The evolution of a sinusoidal initial wave
with periodic boundary conditions gives rise to an ensem-
ble of solitary waves that move with different speeds and
gradually overtake each other. Originally eight of them
were mentioned; later revisitations increased the count to
nine [106]. The difference in the number of solitons is not
principal since small-amplitude solitons only become ev-
ident through additional phase shifts in extremely long-
term simulatons [39,133]. One surprise of the system was
that after a very long time the whole profile reappears. The
other, conceptuallymuchmore striking effect, was the per-
sistence of the waves: after a certain phase of interaction
with each other, they continued thereafter as if there had
been no interaction at all. This persistence, which reflects
the essence of the soliton interactions, led Zabusky and
Kruskal to invent the name “soliton”.

Solitons and new features of their interactions were
later discovered in a large number of different physical
systems. The universal principle generalizing the physical
forces affecting the birth of all solitons is that the prop-
agating disturbance (a pulse in a fiber, a wave-packet on
a water surface, a self-focusing optical beam, a localized
vortex, or a vortex dipole, etc.) is captured in a potential
well jointly induced by its motion and by virtue of the non-
linearity of the underlying system. The solitons can thus
be interpreted as the bound states of the relevant potential
wells, and soliton interactions – as interactions between
the bound states of a jointly induced potential well, or be-
tween bound states of different wells located at close prox-
imity. This concept of potential well becomes vividly evi-
dent in the inverse scattering theory due to the conserva-
tion of the eigenvalues of the underlying spectral problem.
This universality explains why, in spite of the immense di-
versity of the solitons and the underlying physical systems,
the interactions (collisions) between solitons in all of these
systems follow the same principles.

Classical Soliton-Admitting Equations
and Appearance of Solitons

The particular appearance of soliton interactions may vary
a lot, depending on the physical system and the nature of
the solitons. The Russell soliton is an example of nontopo-
logical solitons that often become evident in the form of
traveling waves and that cannot exist in rest. On the con-
trary, single topological solitons (that interpolate between
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two different states of the system which have the same en-
ergy) may exist in rest.

A localized entity consists of an infinite number
of Fourier harmonics and generally experiences (linear)
spreading or wave radiation. A localized entity of perma-
nent form therefore may only appear if the spreading ef-
fects are balanced by a certain restoring force that evi-
dently can only be of a nonlinear nature. In other words, all
solitons correspond to a certain balance between spread-
ing and nonlinear effects, the latter becoming evident, for
example, as nonlinear steepening of the wave shape in the
KdV system, or focusing of diffractive structure in nonlin-
ear optics.

The physical meaning of spreading depends on the
particular system. Dispersion is responsible for the spread-
ing of pulses in all media in which the group veloc-
ity depends on the wave properties. The classical exam-
ples of dispersive solitons are surface [132], internal [33]
and Rossby solitons [128] in geophysical systems. Similar
structures occur in a large variety of environments such as
drift solitons or ion-acoustic solitons in plasma [169], or
solitons in optical fibers [60].

Many examples of dispersive solitons and their inter-
actions occur in the framework of the KdV equation and
its generalizations. It is a characteristic equation governing
weakly nonlinear, spatially one-dimensional (1D) waves
whose phase speed attains a simplemaximum for infinitely
long waves

�̃t C
3c0
2h
�̃�̃x C

c0h2

6
�̃xxx D 0 ;

in nondimensional variables �tC6��xC�xxx D 0;
(1)

where � is the relative water surface elevation in the shal-
low water environment (Fig. 1), h is the still water depth,
and c0 is the maximum phase speed (celerity) of linear
waves at this depth. Its generalization to the case of soli-
tons propagating in slightly different directions

(�t C 6��x C �xxx )x C 3�y y D 0 ; (2)

was derived by Kadomtsev and Petviashvili [66]. Named
the KP equation after them, it describes features of a so-
called weakly 2D environment (also called 1.5-dimen-
sional systems). The nondimensional (x, y, t, �) and phys-
ical variables (x̃, ỹ, t̃, �̃) in Eq. (2) are related as fol-
lows: x D

p
"(x̃ � t̃

p
gh)

ı
h, y D " ỹ
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Since the KdV equation only admits nontopological
elevation solitons, the KdV/KP framework misses several
basic features of soliton interactions, such as collisions of

solitons with different topological charge and interactions
of solitons of different type. These classes of dispersive
solitons are represented by the sine-Gordon (SG) equation

�t t � c20�xx C !
2
0 sin � D 0 ; (3)

where � in many applications has the meaning of a cer-
tain 2�-periodic angle and !0 is the minimum angular
frequency of linear waves. This equation, with its name
stemming from a play of words regarding its form which
is similar to the Klein–Gordon equation, arose already in
the 19th century in studies of certain surfaces. It grew
greatly in importance when it was realized that it led to
kink and antikink solutions with the collisional proper-
ties of solitons [116]. Its major field of application is solid
state physics, yet it also appears in a number of other
physical environments such as the propagation of flux-
ons in Josephson junctions (a junction between two su-
perconductors), the motion of rigid pendulums attached
to a stretched wire, and dislocations in crystals. Its kink
solutions (Fig. 1)
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where x0 is the initial position of the single soliton at
the x-axis and v < c0 is the speed of translation of the
soliton, represent so-called topological solitons that inter-
polate between two different states of the system, which
have the same energy and may exist in rest (e. g. a frozen
(anti)kink, v D 0). The SG equation is a simple model ad-
mitting breather solitons and soliton pairs with different
topological charges. The bulk topological charge is an in-
variant of the system. In amore complexmanner the topo-
logical charge becomes evident in the theory of optical spa-
tial solitons, where it can be interpreted in terms of spin of
elementary particles. The kink and antikink solutions also
represent the possibility of the existence of solitons and
antisolitons. Both attractive and repulsive interactions can
be vividly demonstrated in this framework and, after all,
interactions of physically meaningful solitons of different
types are possible.

Another key equation for dispersive waves is the non-
linear Schrödinger (NLS) equation that has a nondimen-
sional form

i t C p xx C q j j 2 D 0 (5)

and only has soliton solutions in the focusing case pq > 0.
This is a universal equation describing the evolution of
complex wave envelopes  in a dispersive weakly non-
linear medium. It applies, among other phenomena, to
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Solitons Interactions, Figure 1
A selection of solitons. From left to right: top – KdV travelingwave soliton, KP plane (line) soliton, SG breather;middle – kink, antikink,
and a kink-antikink pair; bottom – bright and gray envelope soliton, and a top view photograph of a 10-µm-wide optical spatial
soliton propagating in a strontium bariumniobate photorefractive crystal and the same beam diffracting naturally. The bottom right
image is from [152]. Optical spatial solitons and their interactions: Universality and diversity. Reprinted with permission from AAAS

deep water waves. The studies of its soliton solutions and
their interactions also date back to the 1960s [175,176]. Its
major application in the context of soliton interactions is
nonlinear optics, where its different versions describe the
propagation and interactions of both dispersive solitons
(e. g. envelope solitons in optical fibers) and diffractive op-
tical spatial solitons.

The basic reason for the existence of optical solitons is
that the optical properties (refractive index or absorption)
of some materials are modified by the presence of light.
This feature introduces nonlinearity into the system and
alters the propagation of optical pulses either in space or in
time. A dispersive optical soliton is formed when the lin-
ear dispersion effects are balanced by a sort of lensing (of
short light pulses of permanent form that are called tem-
poral solitons in the optical nomenclature) in an appropri-
ate material (for example, an optical fiber). They were pre-
dicted by Hasegawa and Tappert [60] and first observed by
Mollenauer et al. [97]. The basic properties of their inter-
actions [59] are analogous to those occurring for KdV or
SG solitons. There is continuous interest for their studies
because of their applications, e. g. in long-distance optical
communication systems.

The generic example of diffractive solitons, evolution
and interactions of a part of which are described by the
NLS equation in two space dimensions, are optical spa-
tial solitons. The natural tendency to broaden in space ow-
ing to the diffraction of optical beams (Fig. 1) can be bal-
anced, for example, due to the optical Kerr effect that con-
sists of a local refractive index change induced by light.
As a first approximation, this change is assumed to take
place instantaneously and to be proportional to the local
intensity of light. In the focusing case (when an increase
of the intensity of light causes an increase in the refrac-
tive index), the light-induced lensing can make an opti-
cal beam stable with respect to perturbations in both its
width and intensity. The resulting beam in a 2D or 3D
medium is an example of a diffractive soliton. Interaction
of such beams occurs owing to overlapping of the mod-
ified regions of the medium. Usually such an interaction
is local and has a long range only under specific condi-
tions [129].

The first studies suggesting the existence of such soli-
tons in nonlinear optical Kerr media date back to the
1960s [11,27]. In some cases (such as the 1D Kerr soli-
tons in a planar medium) they are classical solitons and
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described by a fully integrable equation (the NLS equation
in two space dimensions [176]). Self-trapped light beams
and more complex structures in a 2D and 3D medium
attracted the attention of researchers starting from the
1980s, when the appropriate materials were found [13].

In multi-dimensional media, both diffraction and dis-
persion affect the propagation of solitary waves. A classical
example of a diffractive-dispersive system is the motion of
short-crested waves on the water surface. Most of the anal-
ysis of soliton interactions in this system has been made
for effectively 1D solitons with infinitely long crests (so-
called plane or line solitons); the effects of diffraction be-
ing implicitly neglected in their propagation and interac-
tions. A practically realized example of diffractive-disper-
sive solitons are short pulses of incoherent (or white) light
that is self-trapped both in the direction of its propaga-
tion and in the transversal direction(s), and that propagate
changing neither their shape nor their length [94].

ExtendedDefinitions

The classical nomenclature of low-dimensional solitons
and their interactions was formulated several decades ago,
and it is not surprising that many later discoveries have led
to attempts to extend its content. A part of the extensions
add several consistent features (such as the conservation of
linear and angular momentum, and topological charge or
spin during the soliton interactions); however, in several
schools substantial generalizations of the term soliton and
of the interpretation of the soliton interactions have been
introduced. The only component of the classical nomen-
clature kept in all the interpretations is the essential role
of nonlinearity. Since it is virtually impossible to reflect all
the extensions, mostly the material and results following
the classical definition are presented below.

The solitons are commonly interpreted as a subset of
traveling solitary waves. The classical nomenclature favors
structures that are stationary in a proper coordinate sys-
tem; yet it does not exclude the resting topological solitons
(e. g. single-kink solutions to the sine-Gordon equation).

A principal extension of the classical definition of
solitons that caused quite a serious discussion in the
1970s [101] consists of accounting for the resonant inter-
actions. They may result in the fusion of several solitons
into a new soliton or, equivalently, in the decay of solitons
into counterparts [177]. Although the number of solitons
is not conserved, all the parties of the resonant system are
solitons at the limit of exact resonance and no energy radi-
ation occurs. It is commonly accepted now as a variation
(or a limiting case) of elastic interactions.

The classical soliton interactions preserve the shape
of the solitons. The shape is understood in a wide sense;
e. g. the shape of the envelope of the NLS solitons is pre-
served as well as the time-dependent shape of breathers
that have an internal oscillation. This quality, which is uni-
versal for all scalar solitons, has a more general interpre-
tation in the case of vector (composite) solitons. For ex-
ample, the otherwise elastic interactions of Manakov vec-
tor solitons exhibit a shape-changing nature [125] in an
integrable system consisting of two coupled NLS equa-
tions [82]. This property has a paramount practical impor-
tance and bright perspectives e. g. in optical soliton-based
computations ([155], see also entry � Optical Comput-
ing), being one of the key options of practical applications
of specific features of soliton interactions.

An obvious reason for a wider view on soliton inter-
actions is that the relatively simple integrable equations
admitting soliton solutions stem from certain asymptotic
expansions and only approximately describe the processes
in nature. Amore exact representation of the physical pro-
cesses through inclusion of higher order terms of those ex-
pansions generally destroys the integrability of these equa-
tions. In many cases, though, the perturbing terms are
small. The influence of a small dissipative perturbation
is usually obvious: it brakes the moving solitons and/or
damps the oscillating solitons. Such structures are some-
times called dissipative solitons although such a name
is somewhat self-contradicting. Effects due to conserva-
tive (Hamiltonian) perturbations are much richer in con-
tent. Usually they do not destroy or brake solitons, but
theymay, e. g., render otherwise elastic soliton interactions
to inelastic ones owing to extra wave radiation. A well-
known example of the effect of perturbations is dissipa-
tion-induced annihilation of a kink-antikink pair in a per-
turbed sine-Gordon equation that otherwise would lead
to a breather [114]. A monumental survey of the relevant
problems is presented in [77]; see also entry� Soliton Per-
turbation.

Since none of the physical and numerical environ-
ments perfectly matches the governing equations, solitary
waves both in realistic conditions and in numerical simu-
lations always are approximations to solitons. In numer-
ical experiments practically ideal solitons can be repre-
sented and errors basically occur due to purely computa-
tional inaccuracies. Laboratory experiments with solitons
encounter problems with perfect excitation of even single
solitons and moreover with controlling their interaction
properties; however the relevant results are of fundamen-
tal importance in establishing the adequacy, the limits and
the practical applicability of the properties of solitons and
their interactions.
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In the theory of elementary particles frequently a soli-
ton is defined merely as a localized solution (resp. entity)
of permanent form and the constraint of its survival in
collisions is released (e. g. Rebbi [127]). A popular and
deep example is the quantum field theory, where e. g. the
Yang–Mills field equations admit solutions localized in
space (which represent very heavy elementary particles),
and also solutions, localized in time as well as in space (in-
stantons). This position has certain support by the con-
jecture that the classical soliton equations can be inter-
preted as reductions of self-dual Yang–Mills equations and
thus the classical solitons form a subset of the above solu-
tions.

A similar position is also widely adopted in stud-
ies of optical beams and vortices. A large part of such
beams are described by nonintegrable equations [135]
and thus lie beyond the classical soliton nomenclature.
Many features of their behavior and interactions, how-
ever, demonstrate a striking similarity with that of classical
solitons, and exhibit universal properties [152], resem-
bling the similar universality of the classical solitons in-
teractions. Soliton-like beams organized by different non-
linear effects were mostly called solitary waves until the
mid-1990s. The modern nonlinear optics nomenclature
treats all self-trapped optical beams as solitons [136] al-
though their interactions are not always elastic. A selection
of results of studies of their interactions that give a flavor of
the richness of soliton interaction phenomena in 3D me-
dia is presented below.

The constraint of energy conservation both in the mo-
tion and the interactions of the solitons is frequently dis-
regarded in studies of long-lived structures which exhibit
reasonable radiation [42] but that still survive in certain
collisions. On the other hand, other highly interesting soli-
tary structures such as (Rossby) dipole modons [83,84] do
not radiate energy but only survive under certain condi-
tions. A certain amount of results and concepts in this
domain is presented to highlight the overlapping of the
properties of soliton interactions and interactions of other
long-living structures.

Elastic Interactions of One-Dimensional
and Line Solitons

The term soliton was originally introduced for nonlinear
disturbances, the interaction of which resembles the col-
lision of particles and is fully elastic (Table 1), so that
the number of solitons is always conserved and their am-
plitudes are fully restored afterwards. In low-dimensional
cases such as those described by the KdV equation, the am-
plitudes, directions and propagation velocities of each soli-

ton always recover their initial values (Fig. 2). The shape
of each soliton is prescribed by the structure of (single-)
soliton solutions to this equation and, as the simplest evi-
dence of the recurrence of the system, it is not surprising
that the shape is perfectly restored as well.

Three phases of the interactions of solitons can be dis-
tinguished either in time or in space (Fig. 2). First, well-
defined, clearly separated solitons approach each other. In
the second (interaction) phase, they usually lose their iden-
tity and merge into a composite structure. After a while,
the solitons emerge again. The appearance of the compos-
ite structure depends on the particular physical system;
as a rule it is neither a linear superposition of (properly
shifted) counterparts nor a new soliton. Therefore soli-
tons survive the collision event, even though they com-
pletely merge for a while. The variety of the composites
range from the complete vanishing of the counterparts
(e. g. kink-antikink collision in the SG equation) over cer-
tain interactions of KdV solitons, in which the individual
identities are almost conserved and two humps are always
visible, to a fourfold elevation of the water surface in a res-
onant interaction of the KP solitons.

In some environments, one cannot say whether the
solitons propagate through each other as waves do or
collide as particles do. Both interpretations have a solid
ground. The interaction of unidirectional KdV solitons re-
sembles the collision of two particles whereas, e. g. in head-
on interactions of Rossby dipole solitons[84] the identity
of both counterparts can be continuously tracked and the
interaction process resembles a sort of complex overtak-
ing.

Attraction and Repulsion

Another feature of soliton interactions resembling colli-
sions of real massive and/or electrically charged particles
that exert certain forces on each other is that soliton in-
teractions may show an attractive or repulsive nature. This
feature can be demonstrated in the framework of the kink-
antikink solution of the sine-Gordon equation

�SA D 4 arctan
c0 sinh vt�
v cosh x�

; where � D
!0

c0
1

q
1 � v2/c20

(6)

and that only exists if v > 0. The motion of the coun-
terparts speeds up when they move towards each other,
and slows down when they move apart after passing each
other. If one examines the positions of the centers of the
counterparts of this solution, the sequences of their posi-
tions in the vicinity of their meeting point are not the same
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Solitons Interactions, Table 1
Properties of solitons in elastic interactions of 1D and line solitons. Analogous rules hold for angular momentum and spin in elastic
collisions in higher dimensions

Property 1D interactions and nonresonant interactions of line solitons Exceptions in resonant interactions
Number of solitons Conserved except in a short phase of interaction Changed
Energy Restored after interactions for each soliton Merging possible; total energy

conserved.
Amplitude Shape
(steepness)

Substantial local changes may occur in the interaction region; restored
after interactions

Durable changes may occur

Phase or location Finite phase shifts commonly occur; yet no phase shifts in certain envi-
ronments. The total phase shift is exactly equal to the sum of partial
shifts that would result from separate collisions with each of the solitons

Infinite phase shifts

Geometry Substantial changes in the interaction region, restored after interaction Durable changes may occur
Propagation direction,
linear momentum

Conserved for each soliton Conservation of bulk linear
momentum

Topological charge Conserved for each soliton

Solitons Interactions, Figure 2
Temporal evolution of KdV solitons described by the two-soliton solution u(x; t) D 12 � (3 C 4 cosh(2x � 8t) C cosh(4x � 64t))/
([3 cosh(x � 28t) C cosh(3x � 36t)]2) [37]. The amplitudes of the counterparts are u1max D 8 and u2max D 2. Notice the gradual
decrease of the taller soliton when it catches the shorter, and its gradual increase when it moves further ahead of the shorter one,
and the relatively small amplitude ũD 6 of the composite structure
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as they would be if they had been alone in the system, or
far from the other counterpart.

If the solitons were massive or charged particles, one
would say that an attractive force exists between them
which decreases as their separation increases. On the con-
trary, the speed of two kinks as well as two antikinks ap-
proaching each other slows down as their separation de-
creases, which is characteristic for repulsive interaction.
Another classical reflection of “forces” between solitons is
the effect of attraction or repulsion of (envelope) solitons
in optical fibers [53].

In two dimensions, the attractive interactions of two
obliquely interacting line solitons become evident as an
attraction of the relevant wave crests. In the case of op-
tical spatial solitons the attraction affects their centroids.
For repulsive interactions the opposite holds. The relevant
effects are vividly demonstrated in the framework of the
KP equation for the description of drift vortex solitons
in environment, otherwise described by the Hasegawa–
Mima equation [158]. This environment is equivalent to
the one described by the Charney–Obukhov equation for
large-scale motions in geophysical hydrodynamics admit-
ting Rossby waves and solitons.

Transient Amplitude Changes, Durable Phase Shifts
and Recurrence Patterns

Already the first study of solitons [174] revealed some
other universal aspects of soliton interactions. First, cer-
tain durable phase shifts may occur, the magnitude of
which depends on the interaction details. For example,
during the collision presented in Fig. 2, the taller soliton
is shifted forward by an amount 
x1 D 1

2 log 3 and the
shorter one backwards by 
x2 D log 3 compared to the
case when the solitons are alone in the system. The above-
discussed “forces”, if present in the system, may be inter-
preted as the cause of the phase shifts.

The total phase shift of a soliton induced by elastic col-
lisions with any number of solitons is exactly equal to the
sum of (partial) shifts that would result from separate col-
lisions with each of the solitons involved. This property is
commonly referred to as the absence of many-particle ef-
fects.

In the case of line solitons the phase shifts become evi-
dent in the form of durable shifts of the counterparts dur-
ing the interaction (Fig. 3). In the negative phase shift case
the solitons are delayed compared to their position in the
absence of interactions, whereas in the positive phase shift
case they seem to be accelerated.

Second, the amplitudes of the interacting solitons may
gradually change as they approach to each other (Fig. 2).

Solitons Interactions, Figure 3
Idealized patterns of crests of interacting KP solitons (bold lines),
their position in the absence of interaction (dashed lines) and the
crest of the residue s12 (bold dashed line, see Eq. (7)) correspond-
ing to the negative phase shift case (adapted from [120])

Solitons Interactions, Figure 4
Time-slice plot over two 2� periods of the evolution of the en-
semble of the KdV solitons generated from a sinusoidal initial
condition in space for 0 � t � 97 at log d D �2:3. Reprinted
from [134]

The amplitude of the composite structure is generally not
equal to the sum of amplitudes of the interacting solitons.
In interactions of a small number of KdV solitons running
along an infinite medium, the behavior of each counter-
part and its influence on the partners can always be iden-
tified from the shape of the elevation since after some time
the solitons become separated enough to detect all of them
and their perfectly restored properties in the limit of infi-
nite separation.

More insight into the properties of the soliton interac-
tion is provided by long-term simulations of ensembles of
solitons excited from a periodical signal (Fig. 4). The to-
tal number of interacting parties is infinite then, the soli-
tons are tightly packed and such a separation not neces-
sarily occurs. In some cases the presence of several shorter
solitons can only be identified through their contributions
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Solitons Interactions, Figure 5
Patterns of locations of crests of the KdV solitons generated from sinusoidal initial conditions at log dD �2:3209. Reused with
permission from [39]

to the phase shifts of the partners since they are seldom
visually identifiable; such solitons are called hidden soli-
tons [39].

The trajectories of the (crests of the) counterparts may
show quite a complex pattern andmay exhibit both simple
recurrence (at which the initial system is approximately re-
stored) as well as super-recurrence (understood as a nearly
perfect restoration of the initial system over longer times).

Practically periodical in time rhombus-like patterns
(suggesting that interactions of quite a small number of
solitons govern the properties of the system) optionally oc-
cur in cases when a super-recurrence is possible (Fig. 5),
whereas in other cases these patterns show gradual vari-
ation also over extremely long times. There seems to ex-
ist a critical value d� in the range �1:8 < log d� < �1:9
of the dispersion parameter d in the KdV equation (pre-
sented in the form �t C ��x C d�xxx D 0), which distin-
guishes if a super-recurrence exist. If d < d�, no super-re-
currence can be detected even within extremely long cal-
culation times [39,134].

Durable Local Amplitude Changes in Oblique
Interactions of Line Solitons

The interaction of unidirectional KdV solitons does not
create any large changes in the wave amplitudes ([37], see

also � Korteweg–de Vries Equation (KdV), History, Ex-
act N-Soliton Solutions and Further Properties of the).
However, amplitude amplification may occur under cer-
tain conditions when line solitons propagating in slightly
different directions meet each other. Extensive evidence
comes from coastal engineering, where it was known al-
ready a long time ago that oceanwaves approaching break-
waters and seawalls under a certain angle caused unexpect-
edly large overtopping. This phenomenon was systemat-
ically studied already in the 1950s [117], well before the
word soliton was coined.

When a shallow-water wave is obliquely launched
along an ideally reflecting wall, the reflection does not nec-
essarily follow the rules of geometrical optics. For a cer-
tain range of incidence angles, the crests of the approach-
ing and the reflected wave fuse together near the wall and
the process resembles the Mach reflection. The common
crest, an analogue of theMach stem, is generally unsteady
and gradually lengthens for sine waves [15] and Stokes
waves [173]. This type of reflection also occurs during per-
fect reflection of random [89] and solitary waves of differ-
ent nature [45,92,93,115,159].

For a certain set of parameters of the approaching KdV
soliton, the resulting structure is equivalent to half of the
pattern created by two interacting KP solitons of equal am-
plitude (Fig. 3). The prominent feature of both the (Mach)
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reflection and oblique interactions of shallow-water soli-
tons is that the height of the common crest may consid-
erably exceed the sum of the heights of the interacting
solitons. For interacting waves with equal amplitudes the
hump can be up to four times as high as the incoming
waves. Originally established in the context of the reflec-
tion of Boussinesq solitons ([92,93]; named Mach reflec-
tion by Melville 1980 [91]), the amplitude amplification in
a certain region occurs in all oblique attractive interactions
of line KP solitons (that is, in interactions with a negative
phase shift). Since the interaction pattern is stationary in
an appropriately moving coordinate system for a range of
the parameters of the interacting solitons, it may lead to
durable local changes of the amplitude of the resulting pat-
tern of elevation.

Resonance

While the theory of integrable systems requires that the 1D
solitons retain their identity in interactions, collisions of
solitons in multiple dimensions may lead to the formation
of new solitons. The phenomenon called resonant interac-
tion leads to the emergence of new structures that combine
the energy of the counterparts and to modifications of the
number of solitons and of some of their geometrical fea-
tures.

This possibility was first recognized by Newell and Re-
dekopp [101] in the context of the KP and NLS equations.
Miles [93] gives an early answer to their question about the
practical consequences of this phenomenon in terms of an
essential increase of the wave amplitude occurring during
the resonant Mach reflection. Originally named “break-
down of the Zakharov–Shabat theory of integrable systems
with more than one spatial dimension”, it highlights the
more complex nature of soliton interactions in more than
one dimension, where large phase shifts are possible.

Remarkably, the resonance conditions �1 D �1C�2,
!1 D !1 C !2, where �i D (ki ; li), i D 1; 2;1 are the
wave vectors and !i are the frequencies of the solutions
of the corresponding linearized KP equation, are precisely
the same as those for the resonant interaction of three
weakly nonlinear waves. Conceptually, however, such in-
teractions more resemble so-called double resonance, in
which not only the above resonance conditions aremet but
also the group velocities of two or more counterparts are
equal and otherwise sporadic energy exchange within the
resonant triplets is replaced by much more intense inter-
actions (e. g. [145]).

The patterns of line soliton crests (Fig. 3) suggest that
only attractive interactions may result in resonance. The
resonant interactions between line solitons correspond to

Solitons Interactions, Figure 6
Negative and positive phase shift areas for the two-soliton
solution of the KP equation for fixed l1;2. The phase shift
�12 D � lnA12 has a discontinuity along the line k1C k2 D � at
which jA12j D 1 and the resonant interactions occur. No two-
soliton solution exists in the areawhere A12 < 0. An analogue of
linear superposition occurs when A12 D 0. Adapted from [120]

infinitely large phase shifts and infinitely strong attraction,
and lead to durable changes of the geometry of the system.
In the situation depicted in Fig. 3, the resonance would
lead to an infinitely long common crest and thus render
the “four-arm” pattern to a “three-arm” one.

In the KP framework, the resonance phenomenon is
connected with the fact that its multi-soliton solutions rep-
resenting the interaction of line solutions only exist for
a subset of the space of parameters of the interacting soli-
tons (Fig. 6). Resonance occurs when the parameters of the
interacting solitons lie at a certain part of the border of this
subset.

A new soliton born at the exact resonance may reso-
nantly interact with yet another soliton. This mechanism
has been employed in [17] to construct a family of ex-
act solutions to the KP equation corresponding to reso-
nance of several solitons. Such solutions consist of un-
equal numbers of incoming and outgoing line solitons,
the parameters of which can be obtained from asymptotic
analysis [16]. This class contains a variety of multisoliton
solutions, many of which exhibit nontrivial spatial interac-
tion patterns that are generally characteristic to multisoli-
ton solutions to the KP equation [118].
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Geometry of Oblique Interactions
of KP Line Solitons

Patterns

A relatively simple but instructive, easily visualizable and
rich-in-content model demonstrating the discussed fea-
tures of interactions of line solitons is the KP equation.
It admits simple explicit formulae for multi-soliton solu-
tions and extensive analytical treatment of their geomet-
rical properties. The two-soliton solution to the KP equa-
tion can be written as a sum � D s1 C s2 C s12 of terms,
reflecting to some extent the two interacting solitons s1, s2
and residue s12

s1;2 D
p
A12k21;2	

�2 cosh


'2;1x C ln

p
A12

�
;

s12 D 2	�2
�
(k1 � k2)2 C A12 (k1 C k2)2

�
;

	 D cosh
'1 � '2

2
C cosh

'1 C '2 C lnA12

2
:

(7)

Here 'i D ki x C li y C !i t, ai D 1
2 k

2
i , i D 1; 2, are

the phases and amplitudes of the interacting solitons, the
‘frequencies’ !i satisfy the dispersion relation ki!i C

k4i C 3l2i D 0 of the linearized KP equation, A12 D

[2 � (k1 � k2)2]
ı
[2 � (k1 C k2)2] is the phase shift pa-

rameter and  D l1k�11 � l2k�12 .
The two-soliton solution only exists in a part of the pa-

rameter space R(4)(k1; k2; l1; l2). An interaction may re-
sult in either the positive or the negative phase shifts
ı1;2 D � ln A12

ı
j�1;2j of the counterparts (Fig. 6). The

negative phase shift (cf. Fig. 3) can be attributed to an at-
tractive interaction and the positive phase shift to a repul-
sive interaction.

The residue s12 (with an amplitude a12) is at times con-
sidered as a virtual 2D “interaction soliton” [118], which
grows into the resonant soliton at the limit of exact res-
onance A12 !1 (cf. Fig. 7). This virtual structure can
be heuristically interpreted as supported by both disper-
sive and diffractive effects, the latter being balanced by the
oblique motion of the interacting solitons.

The patterns of both idealized (Fig. 3) and factual
(Fig. 7) wave crests are symmetric with respect to a par-
ticular point called interaction center, and are stationary
in a properly moving coordinate frame. If the amplitudes
of the solitons are equal, the pattern is equivalent to the
reflection of the incoming soliton from the wall following
the motion of the interaction center. For unequal ampli-
tude solitons the equivalence is not complete becausemass
and energy flux occur through such a wall.

Solitons Interactions, Figure 7
Patterns of idealized (solid/dashed straight lines) and factual
(dashed curves) crests of the incoming solitons s1, s2, the crest
of the residue s12 (green line), the visible wave crests and
troughs (bold and bold dashed curves, respectively), and iso-
lines of the two-soliton solution in the case l D l1 D �l2 D 0:3,
k1 D 0:6507, k2 D 0:4599 in normalized coordinates (x; y). The
interaction center is the crossing point of all factual crests. Con-
tour interval is 1

4 max(a1; a2) D 0:0689. Circles show the com-
mon points of the troughs and crests of the two-soliton solution.
Reprinted from [146]

Amplitudes

The phase shifts ı1;2 of the counterparts only depend on
the amplitudes of the incoming solitons and the angle
˛12 D 2 arctan( 12) between their crests. For the negative
phase shift case A12 > 1 (that is typical in interactions
of solitons with comparable amplitudes, Fig. 5), an inter-
action pattern emerges, the height of which exceeds the
sum of the heights of two incoming solitons. The max-
imum surface elevation for equal amplitude solitons is
amax D 4a1;2

ı
(1C A�1/212 ); thus, the nonlinear superposi-

tion of solitons may lead to a fourfold amplification of the
surface elevation. In a highly idealized case of interactions
of five solitons themaximum surface elevationmay exceed
the amplitude of the incoming solitons by more than an
order. The largest elevation occurs if the interacting soli-
tons are in exact resonance A12 D 1, when solitons inter-
sect under a physical angle ˜̨12 D 2 arctan

p
3�̃/h. For un-

equal amplitude solitons the maximum elevation amax for
finite A12 and the amplitude of the resonant soliton a1 at
A12 D 1 are [46,146]

amax D a12C2A1/2
12

a1 C a2
�
A1/2
12 C 1

2 ; a1 D
(k1 C k2)2

2
: (8)

The near-resonant high hump is particularly narrow
and its front is very steep. The maximum slope of the front
of the two-soliton solution may be eight times as large as
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Solitons Interactions, Figure 8
Surface elevation in the vicinity of the interaction area, corre-
sponding to the incoming solitons with equal amplitudes inter-
secting under different angles [120]

the slope of the incoming solitons [150]. For unequal am-
plitude solitons, the amplification of slope of the front of
the interaction pattern is roughly proportional to the am-
plitude amplification. The extraordinary steepness of the
front of the near-resonant hump, although intriguing, is
not unexpected, because the resonant soliton is higher and
therefore narrower than the incoming solitons.

The length L12 of the idealized common crest (Fig. 3) is
L12 � lnA12 and therefore is modest unless the interacting
solitons are near-resonant. The length of the area, where
the total elevation exceeds the sum of the amplitudes of
the counterparts, may be considerably longer; however it
is also roughly proportional to ln A12 [150]. For largely
different amplitudes of the interacting solitons, the ampli-
tude amplification remains modest but the spatial extent
of substantial influence of nonlinear interaction is roughly
as large as if the amplitudes were equal [151]. Their near-
resonant interaction becomes evident as a wave with its
crest oriented and propagating differently compared with
the counterparts. The described features are universal for
that part of the wave vector space, in which the two-soli-
ton solution with a negative phase shift exists. In the case
of a positive phase shift (that is typical for interactions of
solitons with largely different amplitudes) the highest ele-
vation does not exceed the amplitude of the larger soliton.

Numerical simulations of the process of formation of
the composite structure show that a high wave hump is
formed quite fast in the interaction region and its height
soon considerably exceeds the sum of the heights of the
counterparts [58,124]. A high and gradually lengthening
wave hump is also formed in cases when no exact two-

soliton solution of the KP equations exists. The interac-
tion in such cases is inelastic: neither the orientation of the
crests nor the height of the solitons before and after in-
teraction match each other, and a certain amount of wave
radiation takes place. The described features become evi-
dent in a number of simulations of soliton interactions in
different environments [105,168].

Soliton Interactions in Laboratory and Nature

Ion-Acoustic Solitons

The most productive studies of soliton interactions in the
1970s and the 1980s were performed in the framework of
ion-acoustic waves. Their behavior is approximately de-
scribed by the KP equation. An analytical solution describ-
ing interactions and resonance of two plane ion-acoustic
solitons of small amplitude in the 3D collisionless plasma
was given in [171]. This solution is wider than the two-
soliton solution of the KP equation in the sense that the
nearly unidirectional approximation is not used.

The first successful experiment proving that the 2D in-
teraction of solitons has a wider spectrum of features com-
pared with the 1D collisions is reported in [178]. A colli-
sion of two equal amplitude spherical solitons led to sig-
nificant changes and to the emergence of a new 2D object.
This interaction was not perfectly elastic: the solitons were
not only shifted in phase but also reduced in amplitude.
Soon afterwards, a near-resonant interaction of two KP
solitons, with a large-amplitude wave hump of the coun-
terparts oriented across the principal propagation direc-
tion, was observed near the interaction center, whereas the
counterparts experienced clear phase shifts [43]. The am-
plitude amplification was found to be close to twofold the
sum of the amplitudes of the incoming solitons [103].

The first adequate evidence of the nonlinear increase
in amplitude during collisions of unequal amplitude KP
solitons was also obtained in this framework [46]. For
largely different amplitudes the measured maximum am-
plitudes were less than the predicted ones. A probable rea-
son for the discrepancy is that the near-resonant wave
hump occurs and covers a substantial area (equivalently,
can be reliably estimated with the use of relatively large
probes) only if the incoming solitons are very close to res-
onance. The common part of the crests of interacting soli-
tons in the reported experiments was pretty short suggest-
ing that the solitons were not exactly in resonance. More-
over, the complete identification of all the crests in the
interactions of solitons with considerably different ampli-
tudes is not possible because the crests are partially invis-
ible (Fig. 7, [146]). The generic reason for experimental
difficulties in this and similar experiments is the above-
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discussed feature that large-amplitude structures tend to
mask the presence of shorter ones.

Shallow-Water and Internal Solitons

Phase shifts, formation of a common crest of the inter-
acting soliton-like waves, and accompanying amplitude
and orientation changes are commonly observable in very
shallow areas (Fig. 9). A famous photo by Terry Toedte-
meier (1978), in which two solitonic shallow-water waves
have significant phase shifts and quite a long common
crest on a beach in the US state of Oregon, has been re-
produced in a number of sources (e. g. p. 24 in [34]).

Although [93] predicted up to fourfold amplification
of the surface elevation, much weaker amplitude amplifi-
cation was found in early experiments [91]. An amplifi-
cation close to the theoretical one was detected as a by-
product of studies of shallow-water channel superconduc-
tivity [25].

Russell’s “great wave of translation” [132] probably
had a practically straight crest, reflecting a well-known fea-
ture of the generation of solitons in relatively narrow chan-
nels: a nearly perfectly 1D upstream soliton is created also
by a 2D disturbance. The KdV model, which is frequently
used to describe this phenomenon, is intrinsically 1D and
certainly results in straight wave crests. An analysis of the
simplified problem of ship motion in the KP equation and
the Boussinesq equation shows, in accordance with com-
mon experience, that the wave crests are curved [71]. In
fact, the essentially 2D waves with paraboloidal crests gen-
erally emerge in front of the disturbance. Their curvature
monotonously decreases as the waves propagate [85,87].

Although the sidewall of the channel is not essential for
the radiation of the upstream solitons, still it plays a cru-
cial role in the transformation of already radiated waves.
The straight-crested solitons are formed in the process of
the (Mach) reflection of solitons with curved crests from
the sidewalls [113]. This feature can be distinguished in
many numerical studies, where an initially curved soliton
starts to straighten when it comes in touch with the side-
wall [149]. Since the reflection of solitons, which in this
case is equivalent to soliton interactions, plays the key im-
portant role in creating straight-crested waves in channels,
with a certain exaggeration it can be said that Russell’s soli-
ton exists due to soliton interactions.

Probably the most common solitonic phenomenon in
nature next to the shallow water waves is represented by
internal solitary waves in the oceans and in the atmosphere
([56,107,111,130], see also the entry � Non-linear Inter-
nal Waves). In many cases, the KdV equation is an appro-
priate model for internal waves and the effects occurring

Solitons Interactions, Figure 9
Interaction patterns of solitonic surface waves in very shallow
water near Kauksi resort on Lake Peipsi, Estonia. Photo and copy-
right by Lauri Ilison, July 2003. First published in [151]

during their interactions are equivalent to those described
above.

Large-scale internal solitary waves and their groups
exhibit many features unique to soliton interactions and
are often called simply internal solitons. Intersecting soli-
tary wave packets on Synthetic Aperture Radar (SAR) im-
ages frequently exhibit phase shifts while crossing each
other [51], similarly to phase shifts occurring in the KP
model, where the agreement between theory and experi-
ments is quite good. Apel et al. [9] summarize advances in
the descriptions and observations of internal solitons and
their interactions.

The other environment for internal solitons, which
provides some instructive aspects and is eligible, e. g., for
the description of small-scale internal solitons in a two-
layer medium, is the Benjamin–Ono (BO) equation [1]
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(9)

First, the BO solitons do not acquire a phase shift after
a collision. Second, this environment demonstrates that
generalization of integrable 1D soliton-admitting equa-
tions to even a weakly 2D case may lead to the loss of
integrability, thus the preservation of this feature in the
KP equation is not universal. The weakly 2D analogues of
the BO equation [1] apparently are not integrable [9] and
do not admit simple analytic multi-soliton solutions. Nu-
merically simulated oblique interactions of weakly 2D BO
solitons show that a phenomenon resembling the resonant
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interaction of the KP solitons and an accompanied ampli-
tude amplification do occur but the newly generated wave
in the zone of nonlinear interaction is far from the BO soli-
ton [105,167].

Solitons at Planetary Scale

Large-scale internal waves and solitons in nature are af-
fected by the joint influence of the Earth’s rotation and
sphericity, and perfect internal line solitons generally can-
not exist in the ocean. The physical reason of this “antisoli-
ton theorem” is that due to rotational dispersion, there is
always a phase synchronism between a source moving at
an arbitrary speed and linear perturbations in such envi-
ronments. This leads to unavoidable wave radiation from
a large-scale solitary internal wave [49]; however this effect
is negligible for relatively small-scale solitons, the typical
time scales of which in the oceans are a few tens of min-
utes.

The existence of nonstationary solitary waves is still
possible [52]. They exhibit a phenomenon similar to the
recurrence of solitons – the repeating decay and reemer-
gence process, and formation of a nearly localized wave
packet consisting of a long-wave envelope and shorter,
faster solitary-like waves that propagate through the en-
velope [61]. The robust, long-lived structure may contain
as much as 50% of the energy in the initial solitary wave.
Interacting packets may either pass through one another,
or merge to form a longer packet. Their further studies
may reveal interesting features concerning the function-
ing of oceans and other large stratified water bodies. Yet in
the majority of practically interesting cases such long-term
behavior is masked by topographic effects that modify the
internal waves much more dramatically.

Another medium of particular practical importance
as well as an instructive one from the viewpoint of soli-
ton interactions is the large-scale geophysical flow in the
oceans and the atmosphere. It is frequently treated as
anisotropic quasi-2D turbulence, which has the property
of energy concentration in large-scale structures. Eddies
in such flows are stabilized by the background rotation
and also affected by the joint effect of the Earth’s rota-
tion and sphericity. The latter becomes evident through
the North-South variation of the Coriolis force, the so-
called (planetary) beta-effect. In this environment, large-
scale vortices often maintain their coherence for surpris-
ingly long times and show an amazing variety of inter-
actions; perhaps the most well-known example being the
Jovian Great Red Spot.

Form-preserving, uniformly translating, horizontally
localized solutions (of the equations of planetary dy-

namics) are called modons. In nondissipative quasi-
geostrophic dynamics they exhibit a variety of proper-
ties of solitons. They carry a certain amount of fluid with
them, which distinguishes them from (solitary) waves that
cause, if at all, a finite displacement of the medium. The
word modon was coined a decade after soliton was first
used [157].

The standard quasi-geostrophic models predict that
the accompanying Rossby-wave radiation should cause
a decay of isolated eddies. Several models explain the per-
sistence of monopolar vortices using external features of
the flow, or interactions with a background shear that sup-
presses the Rossby-wave radiation [19,126,144]. A num-
ber of generalizations of the quasi-geostrophic model pre-
dict that, within a certain range of parameters, a nonlinear
anticyclonic vortex of a special form can exist for a long
time [121,153,170] due to the mutual compensation of
weak (scalar) nonlinearity and weak dispersion. Some au-
thors call such structures (Petviashvili-type) Rossby soli-
tons, although their collisions are not elastic.

Long-living coherent vortices and their interactions
have been studied in many experiments with rapidly ro-
tating parabolic vessels [102]. The increase of the effec-
tive gravity due to the centrifugal acceleration towards
the side walls modifies the governing equations, so that
the (Petviashvili-type) Rossby soliton does not exist in
the paraboloidal geometry [104]; yet anticyclonic vortices
have a very long lifetime [154]. Another option to study
the evolution of such vortices is a tank with a sloping
bottom to imitate the planetary beta-effect (e. g. [41,90],
among others; for an overview of earlier studies see [63]).

Themajority of interactions of solitary vortices in such
an environment are inelastic. The 2D localized vortices of
comparable size and intensity, and like sign attract each
other and generally coalesce soon. Only practically equiva-
lent vortices may form a quasi-stable pair rotating around
each other. The vortices of different signs either repulse
from each other or form a relatively stable dipole [54,55].
The simultaneous evolution of a large number of soliton-
like vortices has mostly been studied theoretically or nu-
merically (e. g. in terms of a cluster of point vortices or
hetons, [57]).

The simplest stable barotropic modon in flat-bottom
beta-plane dynamics is the Larichev–Reznik dipole [83].
It is a traveling dipolar vortex with a characteristic north/
south antisymmetry. It propagates eastward at any speed,
or westward at speeds greater than the longest-wave speed.
The speed of translation is therefore out of the range of the
phase speed of Rossby waves, which is the reason why this
modon does not radiate waves (unlike large-scale internal
solitons). The significance of such structures in everyday
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Solitons Interactions, Figure 10
Head-on collision of Larichev–Reznik dipoles [67]

life and climate dynamics (where they may be responsi-
ble, e. g., for certain unusual weather events since the vor-
tex pair may behave completely differently compared with
a single cyclone or anticyclone) is far from being well un-
derstood.

A part of the numerically simulated direct head-on and
overtaking collisions of Larichev–Reznik modons are elas-
tic [84]. An instructive feature of the head-on collisions
is that the identity of all four vortices can be sometimes
tracked during all the interaction phase (Fig. 10). The pro-
cess resembles a collision of soft particle pairs connected
by an elastic chain. Their oblique collisions generally are
not elastic and may lead to the formation of new dipoles,
tripoles, or to the destruction of the structures.

Effects in Higher Dimensions

Optical Spatial Solitons

Starting from the mid-1980s, various optical solitary enti-
ties have become a key arena for studies of the properties
and interactions of solitary structures in multiple dimen-
sions. The interest in these studies is continuously sup-
ported by a variety of existing and emerging applications
of such solitons and their interactions in communication
and computation technology (see also the entry � Opti-
cal Computing). Another reason for the rapid progress in
these studies is the relative ease of their generation in suit-
able materials, combined with the precision of contem-
porary optical experiments and the possibilities of precise



8496 S Solitons Interactions

control over almost every parameter [136,152]. They of-
fered a lot of the further conceptual progress of soliton
interactions through making possible 3D propagation of
solitary entities in laboratory conditions, albeit in many
cases these entities did not match the classical nomencla-
ture of solitons. They were called solitary waves in the field
for several decades, because the governing equations are
not necessarily integrable and the interactions not neces-
sarily elastic. Still their interaction at times shows amaz-
ingly elastic nature and they are commonly called opti-
cal spatial solitons (OSS) in the modern nonlinear optics
nomenclature [136].

A large number of various kinds of OSSs have been
identified [76,135]. Observations of spatial Kerr solitons
became possible from the mid-1980s, when so-called slab
waveguides were built [3,13]. Their behavior substantially
depends on the dimensions of the soliton and the waveg-
uide. For example, the bright Kerr solitons are stable only
in planar systems whereas the 2D solitons were found to
collapse. Quasi-stable 2D solitons in Kerr media described
by the cubic NLS in two spatial dimensions exist in the
form of so-called necklace-ring beams [143].

Optical spatial solitons occurring due to the satura-
tion of the nonlinear change in the refractive index were
first demonstrated in the 1970s [18] and realized in a solid
medium in the 1990s [74]. The net effect of the multi-
ple physical effects involved in photorefractive materials is
that the underlying nonlinearities are also saturable. Such
solitons were also discovered in the early 1990s [137] and
were found to be stable in both slab waveguides [75] and
in bulk media [38].

So-called quadratic solitons (that consist of multifre-
quency waves coupled bymeans of a second-order nonlin-
earity) were predicted in the mid-1970s [70] and realized
experimentally in the 1990s [164]. They can be thought of
as vector solitons because they involve mutual self-trap-
ping of two or more components [152]. Their interactions
are similar to those occurring in other saturable nonlinear
media.

Coherent and Incoherent Collisions

Coherent interactions of OSSs occur when the nonlinear
medium responds quickly to the (interference) effects in
the overlapping area of the beams. The increase of the
intensity of light in the overlapping region of two paral-
lel launched equivalent in-phase solitons in the focusing
medium leads to an increase in the refractive index in that
region. This in turn forces the centroid of each soliton to-
ward it. Hence the solitons attract each other. The spatial
distribution of the intensity of light resembles the tem-

poral distribution of the amplitude of attracting interact-
ing line solitons. In the case of antiphase beams, an oppo-
site process occurs and such solitons exert repulsion. Co-
herent collisions of Kerr solitons have been demonstrated
and the attraction for in-phase and the repulsion for an-
tiphase solitons were clearly observed at the beginning of
the 1990s [4,5,139]. The collision of nonequivalent coher-
ent OSSs results in an energy exchange between the beams
and in a repulsive force that makes the beams diverge.

Some reactions (e. g. photorefractive and thermal) of
the optical medium are relatively slow. Solitons within
which the phase varies randomly across the beam were
first demonstrated in [95] and later extended to the beams
of incoherent white light [94]. So-called incoherent soliton
interactions occur when the response of the medium only
follows the average intensity of light. Interactions of inco-
herent bright solitons are always attractive (Andersen and
Lisak 1995).

The long-distance behavior of the counterparts in at-
tractive interactions depends on the properties of the
medium and the orientation of the beams. Pure Kerr soli-
tons launched along nearly parallel directions result in pe-
riodic paths of the solitons’ centroids. As in the case of the
recurrence of the KdV solitons, Kerr solitons exactly re-
turn to their initial conditions after each cycle. Solitons
launched under large enough converging angles exhibit
a slight lateral deflection (which is equivalent to the phase
shift of the KdV solitons). The solitons launched under
large enough diverging angles never collide.

If the energy transfer were neglected, the force be-
tween the equivalent 1D Kerr solitons would vary from the
maximum attractive between in-phase solitons to themax-
imum repulsive for antiphase solitons. This process leads
to the (generally nonperiodic) energy transfer, where one
soliton may gather net energy from the other. The details
of the trajectories and other properties of the interacting
solitons can be quite complex [152].

Interactions of 2D OSSs (e. g. in media with saturat-
ing nonlinearities) have a much larger variety of scenar-
ios [152]; for example, interactions of incoherent pho-
torefractive solitons may be both attractive and repul-
sive [156]. A number of resonance-like inelastic phenom-
ena have been observed in which the number of solitons
is not conserved. The fusion of two or more solitons into
one structure resembles the resonance phenomenon. Here
it happens owing to the gradual change of the orientation
of the waveguides of attracting solitons launched under
small relative angles into a new waveguide [48]. Differ-
ently from the resonance of line solitons, this happens for
a certain range of initial parameters. The threshold is the
maximum total internal reflection angle in the induced
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Solitons Interactions, Figure 11
a The experimentally observed soliton spiraling process. The arrows indicate the initial trajectories. b, e, and g show different input
conditions and c, f, and h are the outputs after 6.3mm and d and i after 13mm. The triangles indicate the centers of the correspond-
ing diffracting beams. From [152]

waveguide [140,142]. For larger collision angles, the soli-
tons interact as described above. The solitons can fuse to-
gether already on the first merging or after a certain num-
ber of oscillations of their trajectories with decreasing am-
plitudes and periods [12,78,160,161]. A sort of inverse of
this process is the breakup (fission, [142]) of optical soli-
tons into new solitons upon their interaction [163]. An-
nihilation of solitons upon collision also may occur, when
three solitons collided and only two emerged from the col-
lision process [79].

Three-Dimensional Effects

In 3D space the trajectories of interacting beam solitons
do not necessarily lie on a single plane and the system pos-
sesses nonzero initial angular momentum. The trajecto-
ries of solitons that are launched along skew lines pass-
ing close to each other may bend in three dimensions. The
solitons spiraling around each other form a double helix
orbit [123], much like two celestial objects or two mov-
ing charged particles moving along nearly parallel trajec-
tories do. The interaction generally leads to spiraling-fu-
sion or spiraling-repulsion of the trajectories [14,160,161].
Since the mutual rotation encounters a centrifugal force
(which is always repulsive), a perfect double-helix DNA-
like system, an interesting class of elastic interactions, re-
quires soliton attraction. It may be formed from identi-
cal in-phase coherent solitons; yet such a double helix is

unstable with respect to perturbations of both the rela-
tive phase and amplitude of one of the solitons. This ef-
fect resembles processes occurring during the interactions
of vortices of different and like sign in quasi-2D rotating
fluids.

Attractive interactions of incoherent solitons have
made possible the observation of spiraling solitons in sat-
urable media [141]. The two solitons of equal power or-
bit periodically about each other. Such a pair conserves
angular momentum and is more or less stable for a cer-
tain range of the initial orientation and distance between
the beams. Although the underlying saturable nonlineari-
ties are described by nonintegrable equations, the spiraling
process does not lead to measurable energy radiation [20].
When the initial distance between the solitons is increased,
they do not form a long-living interacting system. The
double spiral for beams located initially very close to each
other converges fast and the counterparts eventually fuse.
The pair apparently has a limited lifetime. A likely reason
for its fusion or off-spiraling is the potential coherence of
the light in the beams.

Interactions of Vector Solitons

Vector (composite) solitons consist of two or more com-
ponents (also called modes) that mutually self-trap in
a nonlinear medium. The simplest vector solitons, first
suggested by Manakov [88], consist of two orthogonally
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polarized components in a nonlinear Kerr medium in
which self-phase modulation is identical to cross-phase
modulation. They are described by an integrable system
and interact elastically. An appropriate nonlinear material
and experimental conditions for their demonstration were
developed a long time after their discovery [68]. Similar
solitons may exist if each field component is at a different
frequency, and the frequency difference between compo-
nents is much larger than the inverse of the nonlinearity
relaxation time [138,166], or if the field components are
incoherent with one another [22,30]. The energy exchange
between the components of the interacting vector solitons
takes place without radiative losses [7].

Vector solitons can also consist of different modes
of their jointly induced waveguide [29,165]. These mul-
timode solitons may possess multiple humps, may con-
tain both bright and dark components [28,166], may have
a certain internal dynamics, and were found to be stable
(or weakly unstable) in large regions of their parameter
space [96,109,110]. Interactions between vector solitons
have, additionally to the above-discussed generic proper-
ties of solitons interactions (e. g. [86]), also some unique
features. The shape transformations of colliding multi-
mode solitons can lead to two differentmultimode solitons
emerging from the collision process [6,69,80]. This “po-
larization switching” was predicted initially for Manakov
solitons [125].

Composite multimode multihump solitons may carry
topological charge in one of the vector components [21,
98]. This charge carried by a soliton of finite energy can
be interpreted as spin of real particles. Elastic collisions
of such 3D solitons should, ideally, conserve not only en-
ergy, and linear and angular momentum [122], but also
the equivalent of spin. Two colliding composite solitons
carrying opposite spins may form a metastable state that
later decays into two or three new solitons. If the solitons
interact under a certain critical angle, angular momentum
is transferred from spin to orbital angular momentum. Fi-
nally, the shape transformation of the vortex component
occurs at large collision angles, for which scalar solitons of
all types simply go through one another unaffected or only
have phase shifts [99,100]. The recent progress in optical
vortices, vortex solitons, and their interactions is reviewed
in [35].

Applications of Line Soliton Interactions

A generic use of soliton interactions in every case where
solitary waves or topological solitons may exist, follows
from the definition of a soliton. It consists of establishing

if the structure is a solitonic one or not from the properties
of their interactions.

The practical use of specific features of soliton inter-
actions was started largely in parallel with the first tech-
nologies based on the use of solitons (e. g. optical soliton-
based communications) more than a decade ago. Themost
promising is the technology of � Optical Computing (see
the relevant entry), which may be partially based on the
interactions of vector solitons [155] and which may open
completely new horizons in the architecture of computers.

Soliton Interactions on aWater Surface

Several applications based on properties of elastic soliton
interactions (or changes of certain fields during such in-
teractions) have been proposed in the framework of water
waves. From the purely geometrical properties of oblique
interactions of plane solitons onemay extract, e. g., the wa-
ter wave height. The relations for the phase shifts and for
the intersection angle can be reduced to the following tran-
scendental equation:

ı1

q
2a1

�
1C 2/4


D ˙ ln

ı22
2 � 2 (ı2 � ı1)2 a21

ı22
2 � 2 (ı2 C ı1)2 a21

: (10)

If the intersection angle ˛12, the phase shifts ı1;2
and their signs (or the wave propagation directions) are
known, equation (10) uniquely defines the heights of the
interacting solitons [118,119].

The phenomenon of drastic increase of surface ele-
vation and slope of wave fronts described in Sect. “Ge-
ometry of Oblique Interactions of KP Line Solitons” can
be attributed to formation of “freak” or “giant” waves in
the ocean, the height and steepness of which are consid-
erably larger than expected based on the classical wave
statistics [73]. Their sudden appearance is a feature of
paramount importance to and a generic source of danger
for navigation and in coastal and offshore engineering. In-
teractions of envelope (Schrödinger) solitons and breather
solutions of the NLS [108] in deep water are their poten-
tial source, although the model based on envelope soliton
interactions underestimates the probability of large wave
formation compared with the fully nonlinear model [31].
Interacting solitary wave groups that emerge from a long
wave packet can produce freak wave events and may lead
to a threefold increase of the wave slope [32].

The problem of extremely large-amplitude internal
waves is by no means less important, as they can pose
acute (currently neither well understood nor accounted
for) danger for submarines, oil and gas platforms, oil ris-
ers and pipelines, and to other engineering constructions
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in relatively deep water. The problem of “freak” inter-
nal waves and their generation due to internal soliton in-
teractions has only recently attracted the attention of re-
searchers [81].

There is a clear potential in the use of the advances
concerning the geometry of the line soliton interactions in
studies of both internal and shallow water solitons. While
phase shifts usually have no dynamical significance, un-
expectedly large elevations, extreme slopes, or changes in
orientation of wave crests owing to the (Mach) reflection
or oblique interactions of solitonic waves frequently cause
an acute danger. The particularly high (stem) waves may
lead to hits by high waves arriving from an unexpected
direction. They may break during propagation into shal-
low water and attack armor blocks from an unprotected
side [89] or overtop the breakwaters in unexpected loca-
tions [172]. These effects may be particularly pronounced
in the case of ship wakes that often approach seawalls
or breakwaters from other directions than wind waves
do [148]. The possibility of drastic steepening of the front
of the near-resonant structure is immaterial in many phys-
ical systems but is a crucial component of danger from
freak waves [73], since specifically steep and high waves
present an acute danger (e. g. [162]). Even if the steepness
of the wave front is not large in absolute terms, relatively
steep and long, tsunami-like waves tend to become asym-
metric and exhibit unexpectedly large runup heights [36].

The amplitude amplification, however, evidently be-
comes effective relatively seldom, because two ormore sys-
tems of long-crested solitonic waves must approach a cer-
tain area from different directions, and extreme elevations
and slopes only occur if the amplitudes of the interacting
solitons, the angle between their crests and the water depth
are specifically balanced. The long life-time of the resulting
wave hump in favorable conditions [73] may drastically
increase the probability of the occurrence of abnormally
high waves.

Ship-Induced Solitons andWave Resistance

An increasing source of solitonic waves is the fast ship traf-
fic in relatively shallow areas. The generation of shallow-
water solitons is most effective for large ships sailing at
speeds roughly equal to themaximumphase speed

p
gh of

surface gravity waves [87]. The low decay rates and excep-
tional compactness of the solitonic ship wakes has led to
a significant impact on the safety of people, property and
craft, unusually high hydrodynamic loads in a part of the
nearshore, and to a considerable remote impact of the ship
traffic in shallow areas [112,147]. Such a wake has proba-
bly caused a fatal accident as far as about 10 km from the

sailing line already in 1912 [149]. The interactions of ship-
induced solitons may lead to dangerouswaves in the vicin-
ity of coastal fairways and harbor entrances in otherwise
sheltered areas [120].

A intriguing use of soliton interactions, combining ef-
fects occurring during an elastic oblique interaction of
shallow-water solitons, followed by an annihilation of soli-
tons and forced antisolitons, has been made for reducing
the wave resistance in channels [25] and for catamaran de-
sign [26]. In a channel, the bow wave reflected from a side
wall is used to cancel the stern wave, whereas the bow
wave of one hull of the catamaran is used to cancel the
stern wave of the other hull. Its practical use is possible for
ships sailing at near-critical speeds, the wake of which may
consist of a single soliton. The adequate calculation of the
phase shift occurring during its Mach reflection (equiva-
lently, during the interaction of two bow solitons) is a key
component in achieving a perfect annihilation of properly
timed bow solitons and the sterns’ waves of depression.

The use of this effect by adjusting the channel width,
the water depth and the ship’s speed probably is the first
intentional use of the features occurring during soliton in-
teractions in the design of a certain technology [23,24]. At
the exact design conditions the reflected bow wave com-
pletely cancels the stern wave and leads to a sort of chan-
nel superconductivity [25]. The same effect may occur be-
tween two ships moving in parallel [65].

Finally, it is interesting to note that already J.S. Russell
may have been aware of this possibility. He describes ef-
forts of a spirited horse which, pulling a boat in a canal,
had drawn the boat up into its own wave leading to a sig-
nificant reduction in resistance. The boat owner had noted
this, and the event led to ‘high-speed’ service on some
canals in the 1820s and 1830s [131]. We shall probably
never know if the decrease of wave resistance occurred
due to simple crossing of the critical speed or owing to
the channel superconductivity; however, even the remote
possibility that the practical use of soliton interactionsmay
have been reported even before the first report about soli-
tons, is remarkable.

Future Directions

Although the theory of soliton interactions has been ex-
tensively developed during four decades and its basic fea-
tures for low-dimensional environments have been well
understood, it is still in the stage of rapid development.
Its first practical applications appeared only a decade ago
and there is evidently room for relevant developments in
(geo)physical applications. Analysis of long-term evolu-
tion of ensembles of solitons is still a challenge and reveals



8500 S Solitons Interactions

ever new interesting features even in the simplest soliton-
admitting systems such as the KdV equation. Although
several formal procedures of building explicit multi-soli-
ton solutions to many equations have been known since
the 1970s, studies of properties of (optionally resonant) in-
teractions of several line solitons only started at the turn
of the millennium. Many fascinating features of elastic in-
teractions of solitons of different kinds in more complex
systems will obviously become evident in the nearest fu-
ture. The results in this direction may largely widen un-
derstanding of the integrability of the underlying equa-
tions.

Extremely rapid progress may be expected in studies
into properties of long-lived soliton-like structures, in par-
ticular, of optical spatial solitons. The classification of their
nomenclature and interactions is far from being com-
pleted. This environment is the key framework for iden-
tifying the new features of soliton interactions in higher
dimensions, even though interactions of such structures
are not necessarily elastic.
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Solitons, Introduction to
MOHAMED A. HELAL
Department of Mathematics, Faculty of Science,
Cairo University, Giza, Egypt

The concept of solitons reflects one of the most important
developments in science at the second half of the 20th cen-
tury: the nonlinear description of the world. It is not easy
to give a comprehensive and precise definition of a soliton.
Frequently, a soliton is explained as a spatially localized
wave in a medium that can interact strongly with other
solitons but will afterwards regain its original form.

It is a nonlinear pulse-like wave that can exist in some
nonlinear systems. The soliton wave can propagate with-
out dispersing its energy over a large region of space; col-
lision of two solitons leads to unchanged forms, solitons
also exhibit particle-like properties.

The most remarkable property of solitons is that they
do not disperse and thus conserve their form during prop-
agation and collision. � Solitons Interactions.

The nonlinear science has been growing for approx-
imately fifty years. However, numerous nonlinear pro-
cesses had been previously identified, but the nonlinear
mathematical tools were not developed.The available tools
were linear, and nonlinearities were avoided or treated as
perturbations of linear theories.

The first experimental observation of a solitary wave
was made in August 1834 by a Scottish engineer named
John Scott Russell (1808–1882). Scott Russell reported his
observation; to the Fourteenth Meeting of the British As-
sociation for Advancement of Science, held in 1844; in
a long report entitled: “Report on waves” as follows:

“I was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of
horses, when the boat suddenly stopped – not so the
mass of water in the channel which it had put in
motion; it accumulated round the prow of the vessel
in a state of violent agitation, then suddenly leaving
it behind, rolled forward with great velocity, assum-
ing the form of a large solitary elevation, a rounded,
smooth and well-defined heap of water, which con-
tinued its course along the channel apparently with-
out change of form or diminution of speed. I followed
it on horseback, and overtook it still rolling on at
a rate of some eight or nine miles an hour, preserv-
ing its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually
diminished, and after a chase of one or two miles I
lost it in the windings of the channel. Such, in the
month of August 1834, was my first chance interview
with that singular and beautiful phenomenon which
I have called the Wave of Translation”.

This hump-shape localized wave that propagates along
one space-direction with undeformed shape has spectacu-
lar stability properties. John Scott Russell carried out many
experiments to get the properties of this wave.� Solitons:
Historical and Physical Introduction.

A model equation describing the unidirectional prop-
agation of long waves in water of relatively shallow depth
with a localized solution (representing a single hump as
discovered by Russell) was obtained by Korteweg and de
Vries. This equation has become very famous and is now
known as the Korteweg–de Vries equation or KdV equa-
tion. � Water Waves and the Korteweg–de Vries Equa-
tion.

There exists a certain class of nonlinear partial dif-
ferential equations that leads to solitons. The Korteweg–
de Vries equation, Kadomtsev–Petviashvili (KP) equation,
Klein–Gordon (KG) equation, Sine–Gordon (SG) equa-
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tion, nonlinear Schrodinger (NLS) equation, Korteweg–de
Vries Burger’s (KdVB) equation, etc. . . are some known
equations that lie in this specific class of this NLPDE. This
class of nonlinear equations has a special type of the travel-
ing wave solutions which are either solitary waves or soli-
tons.� Partial Differential Equations that Lead to Solitons.

The Korteweg–de Vries equation is a canonical equa-
tion in nonlinear wave physics demonstrating the exis-
tence of solitons and their elastic interactions. This KdV
equation attracted many authors to publish an enormous
number of publications. Different analytical methods for
solving this well-known equation are presented in � Ko-
rteweg–de Vries Equation (KdV), Different Analytical
Methods for Solving the.

One of the most famous analytical methods for solv-
ing the KdV equation is the Inverse Scattering Transforma-
tion. This method was first introduced by the well-known
scientists Gardener, Green, Kruskal, and Miura. In 1967,
Gardner et al. published a magnificent and original paper
on the analytical solution to the initial value problem due
to a disturbance of finite amplitude in an infinite domain.
This systematic method is not easy, and needs several long
steps to get the complete solution. � Inverse Scattering
Transform and the Theory of Solitons.

There are various algebraic and geometric character-
istics that the KdV equation possesses. More significantly,
a lot of physically important solutions to the KdV equa-
tion can be presented explicitly through a simple, spe-
cific form, called the Hirota bilinear form. More compli-
cated types of solutions leading toN-solitons are presented
in � Korteweg–de Vries Equation (KdV), History, Exact
N-Soliton Solutions and Further Properties of the.

It was suitable to search for an easier method to solve
this famous and well-known nonlinear partial differen-
tial equation (KdV). Many semi-analytical methods have
been developed and used to solve the KdV equation. The
most popular and famous semi-analytical method that
was introduced to solve this nonlinear partial differential
equation (KdV), was theAdomian DecompositionMethod.
� Adomian Decomposition Method Applied to Non-lin-
ear Evolution Equations in Soliton Theory.

Other semi-analyticalmethods like the variational iter-
ation method (VIM), homotopy analysis method (HAM),
and homotopy perturbation method (HPM) are usable to
solve these types of NLPDE such as the Korteweg–deVries
equation and even the modified Korteweg–de Vries equa-
tion (mKdV). � Korteweg–de Vries Equation (KdV) and
Modified Korteweg–de Vries Equations (mKdV), Semi–
analytical Methods for Solving the.

It is indispensable to introduce other methods to il-
lustrate the solution of this NLPDE. The numerical tech-

nique is a powerful tool which is always needed to present
and compare the results in the easiest manner. There exist
different numerical tools for solving the KdV and mKdV
equations, and even for any evolution equations � Ko-
rteweg–de Vries Equation (KdV), Some Numerical Meth-
ods for Solving the.

In hydrodynamical problems, the motion of incom-
pressible inviscid fluid subject to a constant vertical gravi-
tational force (where the fluid is bounded below by an im-
permeable bottom and above by a free surface) with some
physical assumptions lead to the shallow water model. The
shallow water wave equations are usually used in oceanog-
raphy and atmospheric science. The shallowwater approx-
imation theory leads to the KdV equation. This means
that the soliton solution as well as the solitary waves are
the straight forward solutions for many physical problems.
� Shallow Water Waves and Solitary Waves.

The study of the water waves in the Pacific Ocean
leads directly to a special type of long gravity waves named
tsunamis. This word is a Japanese one, which means har-
bor’s wave.

A tsunami is essentially a long wavelength water wave
train or a series of waves generated in a body of water
(mostly in oceans) that vertically displaces the water col-
umn. Earthquakes, landslides, volcanic eruptions, nuclear
explosions and the impact of cosmic bodies can gener-
ate tsunamis. Tsunamis, as they approach coastlines, can
rise enormously and savagely attack and inundate to cause
huge damage to properties and cost thousands of lives.

The theoretical study of waves in oceanography is very
complicated. The simplest mathematical model includes
the KdV equation. This KdV represents the governing
equation that lead to tsunamis. � Solitons, Tsunamis and
Oceanographical Applications of.

The rapid change in water density with depth is called
Pycnocline. This happens in open or closed seas, as well
as in oceans. In the frame of shallow water approximation
theory that governs the oceans, and due to the pycnocline
the nonlinear internal gravity waves are presented. They
arise from perturbations to hydrostatic equilibrium, where
balance is maintained between the force of gravity and the
buoyant restoring force. An illustrative study of nonlinear
waves (that was generated inside a stratified fluid occupy-
ing a semi infinite channel of finite and constant depth by
a wave maker situated in motion at the finite extremity of
the channel) is presented in this section.�Non-linear In-
ternal Waves.

The soliton perturbation theory is used to study soli-
tons that are governed by the various nonlinear equations
in the presence of the perturbation terms. � Soliton Per-
turbation.
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A compacton is a special solitary traveling wave that,
unlike a soliton, does not have exponential tails.

Another expression and terminology called com-
pacton-like soliton is a special wave solution which can
be expressed by the squares of sinusoidal or cosinusoidal
functions.

Soliton and compacton are two kinds of nonlinear
waves. They play an indispensable and vital role in all
branches of science and technology, and are used as con-
structive elements to formulate the complex dynamical be-
havior of wave systems throughout science: from hydrody-
namics to nonlinear optics, from plasmas to shock waves,
from tornados to the Great Red Spot of Jupiter, and from
tsunamis to turbulence. More recently, soliton and com-
pacton have been of key importance in the quantum fields
and nanotechnology especially in nano-hydrodynamics.
� Solitons and Compactons.
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Glossary

Soliton A class of nonlinear dispersive wave equations in
(1+1) dimensions having a delicate balance between
dispersion and nonlinearity admit localized solitary
waves which under interaction retain their shapes and
speeds asymptotically. Such waves are called solitons
because of their particle like elastic collision property.
The systems include Korteweg–de Vries, nonlinear
Schrödinger, sine-Gordon and other nonlinear evolu-
tion equations. Certain (2+1) dimensional generaliza-
tions of these systems also admit soliton solutions of

different types (plane solitons, algebraically decaying
lump solitons and exponentially decaying dromions).

Shallow and deep water waves Considering surface grav-
ity waves in an ocean of depth h, they are called shal-
low-water waves if h
 , where  is the wavelength
(or from a practical point of view if h < 0:07). In
the linearized case, for shallow water waves the phase
speed c D

p
gh, where g is the acceleration due to

gravity. Water waves are classified as deep (practi-
cally) if h > 0:28 and the corresponding wave speed
is given by c D

p
g/k, k D 2	

�
.

Tsunami Tsunami is essentially a long wavelength wa-
ter wave train, or a series of waves, generated in
a body of water (mostly in oceans) that vertically
displaces the water column. Earthquakes, landslides,
volcanic eruptions, nuclear explosions and impact of
cosmic bodies can generate tsunamis. Propagation of
tsunamis is in many cases in the form of shallow wa-
ter waves and sometimes can be of the form of solitary
waves/solitons. Tsunamis as they approach coastlines
can rise enormously and savagely attack and inundate
to cause devastating damage to life and property.

Internal solitons Gravity waves can exist not only as sur-
face waves but also as waves at the interface between
two fluids of different density.While solitons were first
recognized on the surface of water, the commonest
ones in oceans actually happen underneath, as inter-
nal oceanic waves propagating on the pycnocline (the
interface between density layers). Such waves occur in
many seas around the globe, prominent among them
being the Andaman and Sulu seas.

Rossby solitons Rossby waves are typical examples of
quasigeostrophic dynamical response of rotating fluid
systems, where long waves between layers of the atmo-
sphere as in the case of the Great Red Spot of Jupiter or
in the barotropic atmosphere are formed and may be
associated with solitonic structures.

Bore solitons The classic bore (also called mascaret,
poroca and aeger) arises generally in funnel shaped es-
tuaries that amplify incoming tides, tsunamis or storm
surges, the rapid rise propagating upstream against the
flow of the river feeding the estuary. The profile de-
pends on the Froude number, a dimensionless ratio of
intertial and gravitational effects. Slower bores can take
on oscillatory profile with a leading dispersive shock-
wave followed by a train of solitons.

Definition of the Subject

Surface and internal gravity waves arising in various
oceanographic conditions are natural sources where one
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can identify/observe the generation, formation and prop-
agation of solitary waves and solitons. Unlike the standard
progressive waves of linear dispersive type, solitary waves
are localized structures with long wavelengths and finite
energies and propagate without change of speed or form
and are patently nonlinear entities. The earliest scientifi-
cally recorded observation of a solitary wave was made by
John Scott Russel in August 1834 in the Union Canal con-
necting the Scottish cities of Glasgow and Edinburgh. The
theoretical formulation of the underlying phenomenon
was provided by Korteweg and de Vries in 1895 who de-
duced the now famous Korteweg–de Vries (KdV) equa-
tion admitting solitary wave solutions. With the insightful
numerical and analytical investigations of Martin Kruskal
and coworkers in the 1960s the KdV solitary waves have
been shown to possess the remarkable property that un-
der collision they pass through each other without change
of shape or speed except for a phase shift and so they are
solitons. Since then a large class of soliton possessing non-
linear dispersive wave equations such as the sine-Gordon,
modified KdV (MKdV) and nonlinear Schrödinger (NLS)
equations occurring in a wide range of physical phenom-
ena have been identified.

Several important oceanographic phenomena which
correspond to nonlinear shallow water wave or deep wa-
ter wave propagation have been identified/interpreted in
terms of soliton propagation. These include tsunamis, es-
pecially earthquake induced ones like the 1960 Chilean
or 2004 Indian Ocean earthquakes, internal solitary waves
arising in stratified stable fluids such as the ones observed
in Andaman or Sulu seas, Rossby waves including the
Giant Red Spot of Jupiter and tidal bores occurring in
estuaries of rivers. Detailed observations/laboratory ex-
periments and theoretical formulations based on water
wave equations resulting in the nonlinear evolution equa-
tions including KdV, Benjamin–Ono, Intermediate Long
Wave (ILW), Kadomtsev–Petviashivili (KP), NLS, Davey–
Stewartson (DS) and other equations clearly establish the
relevance of soliton description in such oceanographic
events.

Introduction

Historically, the remarkable observation of John Scott
Russel [1,2] of the solitary wave in the Union Canal con-
necting the cities of Edinburgh and Glasgow in the month
of August 1834 may be considered as the precursor to the
realization of solitons inmany oceanographic phenomena.
While riding on a horse back and observing the motion of
boat drawn by a pair of horses which suddenly stopped
but not so the mass of water it had set in motion, the wave

(which he called the ‘Great Wave of Translation’) in the
form of large solitary heap of water surged forward and
travelled a long distance without change of form or diminu-
tion of speed. The wave observed by Scott Russel is nothing
but a solitary wave having a remarkable staying power and
a patently nonlinear entity. Korteweg and de Vries in 1895,
starting from the basic equations of hydrodynamics and
considering unidirectional shallow water wave propaga-
tion in rectangular channels, deduced [3] the now ubiqui-
tous KdV equation as the underlying nonlinear evolution
equation. It is a third order nonlinear partial differential
equation in (1+1) dimensions with a delicate balance be-
tween dispersion and nonlinearity. It admits elliptic func-
tion cnoidal wave solutions and in a limiting form exact
solitary wave solution of the type observed by John Scott
Russel thereby vindicating his observations and putting to
rest all the controversies surrounding them.

It was the many faceted numerical and analytical study
of Martin Kruskal and coworkers [4,5] which firmly estab-
lished by 1967 that the KdV solitary waves have the further
remarkable feature that they are solitons having elastic col-
lision property (Fig. 1).

It was proved decisively that the KdV solitary waves on
collision pass through each other except for a finite phase
shift, thereby retaining their forms and speeds asymp-
totically as in the case of particle like elastic collisions.
The inverse scattering transform (IST) formalism devel-
oped for this purpose clearly shows that the KdV equation
is a completely integrable infinite dimensional nonlinear
Hamiltonian system and that it admits multisoliton solu-
tions [6,7,8,9]. Since then a large class of nonlinear disper-
sive wave equations such as the sine-Gordon (s-G), mod-
ified Korteweg–de Vries (MKdV), NLS, etc. equations in
(1+1) dimensions modeling varied physical phenomena
have also been shown to be completely integrable soliton
systems [6,7,8,9]. Interesting (2+1) dimensional versions
of these systems such as Kadomtsev–Petviashvile (KP),
Davey–Stewartson (DS) and Nizhnik–Novikov–Veselov
(NNV) equations have also been shown to be integrable
systems admitting basic nonlinear excitations such as line
(plane) solitons, algebraically decaying lump solitons and
exponentially localized dromion solutions [7,8].

It should be noted that not all solitary waves are soli-
tons while the converse is always true. An example of
a solitary wave which is not a soliton is the one which oc-
curs in double-well �4 wave equation which radiates en-
ergy on collision with another such wave. However even
such solitary waves having finite energies are sometimes
referred to as solitons in the condensed matter, particle
physics and fluid dynamics literature because of their lo-
calized structure.
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Solitons, Tsunamis and Oceanographical Applications of, Figure 1
KdV equation: aOne soliton solution (solitary wave) at a fixed time, say t D 0, b Two soliton solution (depicting elastic collision)

As noted above solitary waves and solitons are abun-
dant in oceanographic phenomena, especially involving
shallow water wave and deep water wave propagations.
However, these events are large scale phenomena very
often difficult to measure experimentally, rely mostly on
satellite and other indirect observations and so controver-
sies and differing interpretations do exist in ascribing exact
solitonic or solitary wave properties to these phenomena.
Yet it is generally realized that many of these events are
closely identifiable with solitonic structures. Some of these
observations deserve special attention.

Tsunamis

When large scale earthquakes, especially of magnitude 8.0
in Richter scale and above, occur in seabeds at appropri-
ate geological faults tsunamis are generated and can prop-
agate over large distances as small amplitude and long
wavelength structures when shallowness condition is sat-
isfied. Though the tsunamis are hardly felt in the mid-
sea, they take monstrous structures when they approach
land masses due to conservation of energy. The power-
ful Chilean earthquake of 1960 [10] led to tsunamis which
propagated for almost fifteen hours before striking Hawaii
islands and a further seven hours later they struck the
Japanese islands of Honshu and Hokkaido. More recently
the devastating Sumatra–Andaman earthquake of 2004
in the Indian Ocean generated tsunamis which not only
struck the coastlines of Asian countries including Indone-
sia, Thailand, India and Srilanka but propagated as far as
Somalia and Kenya in Africa, killing more than a quarter
million people. There is very good sense in ascribing soli-
ton description to such tsunamis.

Internal Solitons

Peculiar striations, visible on satellite photographs of the
surface of the Andaman and Sulu seas in the far east (and
in many other oceans around the globe), have been inter-
preted as secondary phenomena accompanying the pas-

sage of “internal solitons”. These are solitary wavelike dis-
tortions of the boundary layer between the warm upper
layer of sea water and cold lower depths. These inter-
nal solitons are travelling ridges of warm water, extend-
ing hundreds of meters down below the thermal bound-
ary, and carry enormous energy. Osborne and Burch [11]
investigated the underwater currents which were experi-
enced by an oil rig in the Andaman sea, which was drilling
at a depth of 3600 ft. One drilling rig was apparently spun
through ninety degrees and moved one hundred feet by
the passage of a soliton below.

Rossby Waves and Solitons

Rossby waves [12] are long waves between layers of the at-
mosphere, created by the rotation of the planet. In particu-
lar, in the atmosphere of a rotating planet, a fluid particle is
endowedwith a certain rotation rate, determined by its lat-
itude. Consequently its motion in the north-south direc-
tion is constrained by the conservation of angularmomen-
tum as in the case of internal waves where gravity inhibits
the vertical motion of a density stratified fluid. There is an
analogy between internal waves and Rossby waves under
suitable conditions. The KdV equation has been proposed
as a model for the evolution of Rossby solitons [13] and
NLS equation for the evolution of Rossby wave packets.
The Great Red Spot of the planet of Jupiter is often associ-
ated with a Rossby soliton.

Bore Solitons

Rivers which flow to the open oceans are very often af-
fected by tidal effects, tsunamis or storm surges. Tidal mo-
tions generate intensive water flows which can propagate
upstream on tens of kilometers in the form of step-wise
perturbation (hydraulic jumps) analogous to shock waves
in acoustics. This phenomenon is known as a bore or mas-
caret (in French). Examples of such bores include the tidal
bore of Seine river in France, Hooghly bore of the Ganges
in India, the Amazon river bore in Brazil and Hangzhou
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bore in China. Bore disintegration into solitons is a possi-
ble phenomenon in such bores [14].

Besides these there are other possible oceanographic
phenomena such as capillary wave solitons [15], resonant
three-wave or four wave interaction solitons [16], etc.,
where also soliton picture is useful.

In this article we will first point out how in shal-
low channels the long wavelength wave propagation
is described by KdV equation and its generalizations
(Sect. “Shallow Water Waves and KdV Type Equations”).
Then we will briefly point out how NLS family of equa-
tions arise naturally in the description of deep water waves
(Sect. “Deep Water Waves and NLS Type Equations”).
Based on these details, we will point how the soliton pic-
ture plays a very important role in the understanding of
tsunami propagation (Sect. “Tsunamis as Solitons”), gen-
eration of internal solitons (Sect. “Internal Solitons”), for-
mation of Rossby solitons (Sect. “Rossby Solitons”) and
disintegration of bores into solitons (Sect. “Bore Soli-
tons”).

ShallowWaterWaves and KdV Type Equations

Kortweg and de Vries [3] considered the wave phe-
nomenon underlying the observations of Scott Russel
from first principles of fluid dynamics and deduced the
KdV equation to describe the unidirectional shallow wa-
ter wave propagation in one dimension.

Consider the one-dimensional (x-direction) wave mo-
tion of an incompressible and inviscid fluid (water) in
a shallow channel of height h, and of sufficient width with
uniform cross-section leading to the formation of a soli-
tary wave propagating under gravity. The effect of surface
tension is assumed to be negligible. Let the length of the
wave be l and the maximum value of its amplitude, �(x; t),
above the horizontal surface be a (see Fig. 2).

Then assuming a
 h (shallow water) and h
 l
(long waves), one can introduce two natural small parame-
ters into the problem � D a/h and ı D h/l . Then the anal-
ysis proceeds as follows [3,6].

Equation of Motion: KdV Equation

The fluid motion can be described by the velocity vec-
tor V(x; y; t) D u(x; y; t)i C v(x; y; t) j, where i and j are
the unit vectors along the horizontal and vertical direc-
tions, respectively. As the motion is irrotational, we have
r � V D 0. Consequently, we can introduce the velocity
potential �(x; y; t) by the relation V D r�.

Conservation of Density The system obviously admits
the conservation law for the mass density �(x, y, t) of the

Solitons, Tsunamis and Oceanographical Applications of, Fig-
ure 2
One-dimensional wavemotion in a shallow channel

fluid, d�/dt D �t C r � (�V ) D 0. As � is a constant, we
have r � V D 0. Consequently � obeys the Laplace equa-
tion

r2�(x; y; t) D 0 : (1)

Euler’s Equation As the density of the fluid � D �0 D

constant, using Newton’s law for the rate of change of mo-
mentum, we can write dV /dt D @V /@t C (V � r )V D
� 1
�0
r p � g j, where p D p(x; y; t) is the pressure at the

point (x; y) and g is the acceleration due to gravity, which
is acting vertically downwards (here j is the unit vector
along the vertical direction). Since V D r� we obtain (af-
ter one integration)

�t C
1
2
(r�)2 C

p
�0
C g y D 0 : (2)

Boundary Conditions The above two Eqs. (1) and (2)
for the velocity potential �(x; y; t) of the fluid have to
be supplemented by appropriate boundary conditions, by
taking into account the fact (see Fig. 2) that (a) the hor-
izontal bed at y D 0 is hard and (b) the upper boundary
y D y(x; t) is a free surface. As a result
(a) the vertical velocity at y D 0 vanishes, v(x; 0; t) D 0,
which implies

�y(x; 0; t) D 0 : (3)

(b) As the upper boundary is free, let us specify it by y D
hC�(x; t) (see Fig. 2). Then at the point x D x1, y D y1 �
y(x; t), we canwrite dy1

dt D
@�
@tC

@�
@x �

dx1
dt D �tC�xu1 D v1.

Since v1 D �1y , u1 D �1x , we obtain

�1y D �t C �x�1x : (4)
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(c) Similarly at y D y1, the pressure p1 D 0. Then from
(2), it follows that

u1t C u1u1x C v1v1x C g�x D 0 : (5)

Thus the motion of the surface of water wave is es-
sentially specified by the Laplace Eq. (1) and Euler Eq. (2)
along with one fixed boundary condition (3) and two vari-
able nonlinear boundary conditions (4) and (5). One has
to then solve the Laplace equation subject to these bound-
ary conditions.

Taylor Expansion of �(x; y; t) in y Making use of the
fact ı D h/l 
 1, h
 l , we assume y(D hC �(x; t)) to
be small to introduce the Taylor expansion

�(x; y; t) D
1X

nD0

yn�n(x; t) : (6)

Substituting the above series for � into the Laplace
Eq. (1), solving recursively for �n(x; t)’s andmaking use of
the boundary condition (4), �y(x; 0; t) D 0, one can show
that

u1 D �1x D f �
1
2
y21 fxx C higher order in y1 ; (7)

v1 D �1y D �y1 fxC
1
6
y31 fxxxC higher order in y1 ; (8)

where f D @�0/@x. We can then substitute these expres-
sions into the nonlinear boundary conditions (4) and (5)
to obtain equations for f and �.

Introduction of Small Parameters � and ı So far the
analysis has not taken into account fully the shallow
nature of the channel (a/h D �
 1) and the solitary
nature of the wave (a/l D a/h � h/l D �ı 
 1, �
 1,
ı 
 1), which are essential to realize the Scott Russel
phenomenon. For this purpose one can stretch the inde-
pendent and dependent variables in the above equations
through appropriate scale changes, but retaining the over-
all form of the equations. To realize this one can introduce
the natural scale changes

x D l x0 ; � D a�0; t D
l
c0
t0 ; (9)

where c0 is a parameter to be determined. Then in order to
retain the form of (7) and (8) we require

u1 D �c0u01 ; v1 D �ıc0v01 ; f D �c0 f 0;
y1 D hC �(x; t) D h

�
1C ��0

�
x0; t0


:

(10)

Then

u01 D f 0 �
1
2
ı2
�
1C ��0

2 f 0x0x0 D f 0 �
1
2
ı2 f 0x0x0 ; (11)

where we have omitted terms proportional to ı2� as small
compared to terms of the order ı2. Similarly from (8), we
obtain

v01 D �
�
1C ��0


f 0x0 C

1
6
ı2 f 0x0x0x0 : (12)

Now considering the nonlinear boundary condition (4) in
the form v1 D �t C �xu1, it can be rewritten as

�0t0 C f 0x0 C ��
0 f 0x0 C � f

0�0x0 �
1
6
ı2 f 0x0x0x0 D 0 : (13)

Similarly considering the other boundary condition (5)
and making use of the above transformations, it can be
rewritten, after neglecting terms of the order �2ı2, as

f 0t0 C � f
0 f 0x0 C

ga
�c20

�0x0 �
1
2
ı2 f 0x0x0 t0 D 0 : (14)

Now choosing the arbitrary parameter c0 as c20 D gh so
that �0x0 term is of order unity, (14) becomes

f 0t0 C �
0
x0 C � f

0 f 0x0 �
1
2
ı2 f 0x0x0 t0 D 0 : (15)

(Note that c0 D
p
gh is nothing but the speed of the wa-

ter wave in the linearized limit). Omitting the primes for
convenience, the evolution equation for the amplitude of
the wave and the function related to the velocity potential
reads

�t C fx C �� fx C � f �x �
1
6
ı2 fxxx D 0 ; (16)

ft C �x C � f fx �
1
2
ı2 fxx t D 0 : (17)

Note that the small parameters � and ı2 have occurred in
a natural way in (16), (17).

PerturbationAnalysis Since the parameters � and ı2 are
small in (16), (17), we can make a perturbation expansion
of f in these parameters:

f D f (0) C � f (1) C ı2 f (2) C higher order terms ; (18)

where f (i), i D 0; 1; 2; : : : are functions of � and its spatial
derivatives. Note that the above perturbation expansion is
an asymptotic expansion. Substituting this into Eqs. (16)
and (17) and regrouping and comparing different powers
proportional to (�, ı2) and solving them successively one



Solitons, Tsunamis and Oceanographical Applications of S 8511

can obtain (see for example [6] for further details) in a self
consistent way,

f (0) D �; f (1) D �
1
4
�2 ; f (2) D

1
3
�xx : (19)

Using these expressions into (18) and substituting it in
(16) and (17), we ultimately obtain the KdV equation in
the form

�t C �x C
3
2
���x C

ı2

6
�xxx D 0 ; (20)

describing the unidirectional propagation of long wave-
length shallow water waves.

The Standard (Contemporary) Form of KdV Equation
Finally, changing to a moving frame of reference, � D
x � t; � D t, and introducing the new variables u D
(3�/2ı2)�; � 0 D (6/ı2)� and redefining the variables � 0

as t and � as x, we finally arrive at the ubiquitous form of
the KdV equation as

ut C 6uux C uxxx D 0 : (21)

The Korteweg–de Vries Eq. (21) admits cnoidal wave
solution and in the limiting case solitary wave solution as
well. This form can be easily obtained [6,17] by looking for
a wave solution of the form u D 2 f (�), � D (x � ct), and
reducing the KdV equation into a third order nonlinear
ordinary differential equation of the form

� c
@ f
@�
C 12 f

@ f
@�
C
@3 f
@�3
D 0 : (22)

Integrating Eq. (22) twice and rearranging, we can obtain

�
@ f
@�

�2
D �4 f 3 C c f 2 � 2d f � 2b � P( f ) ; (23)

where b and d are integration constants. Calling the three
real roots of the cubic equation P( f ) D 0 as ˛1; ˛2 and ˛3
such that
�
@ f
@�

�2
D �4( f � ˛1)( f � ˛2)( f � ˛3); (24)

the solution can be expressed in terms of the Jacobian el-
liptic function as

f (�) D f (x � ct) D ˛3 � (˛3 � ˛2)sn2

�
�p
˛3 � ˛1 (x � ct) ;m

�
;
(25a)

where

(˛1 C ˛2 C ˛3) D
c
4
; m2 D

˛3 � ˛2

˛3 � ˛1
; ı D constant :

(25b)

Here m is the modulus parameter of the Jacobian elliptic
function. Eq. (25a) represents in fact the so called cnoidal
wave (because of its elliptic function form). In the limiting
case m D 1, the form (25a) reduces to

f D ˛2C (˛3 � ˛2) sech2
� p

˛3 � ˛1 (x � ct)
�
: (26)

Choosing now ˛1 D 0, ˛2 D 0, and using (25b) we have

f D
c
4
sech2

�p
c
2

(x � ct)
�
: (27)

Then the solitary wave solution to the KdV Eq. (21) can be
written in the form

u(x; t) D
c
2
sech2

p
c
2

(x � ct C ı); ı : constant (28)

Note that the velocity of the solitary wave is directly pro-
portional to the amplitude: larger the wave the higher is
the speed. More importantly, the KdV solitary wave is
a soliton: it retains its shape and speed upon collision with
another solitary wave of different amplitude, except for
a phase shift, see Fig. 1 [6,7,8]. In fact for an arbitrary initial
condition, the solution of the Cauchy initial value problem
consists of N-number of solitons of different amplitudes
in the background of small amplitude dispersive waves.
All these results ultimately lead to the result that the KdV
equation is a completely integrable, infinite dimensional,
nonlinear Hamiltonian system. It possesses [6,7,8]

(i) a Lax pair of linear differential operators and is solv-
able through the so called inverse scattering trans-
form (IST) method,

(ii) infinite number of conservation laws and associated
infinite number of involutive integrals of motion,

(iii) N-soliton solution,
(iv) Hirota bilinear form,
(v) Hamiltonian structure

and a host of other interesting properties (see for exam-
ple [6,7,8,9]).

KdV Related Integrable and Nonintegrable NLEEs

Depending on the actual physical situation, the derivation
of the shallow water wave equation can be suitably mod-
ified to obtain other forms of nonlinear dispersive wave
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equations in (1+1) dimensions as well as in (2+1) dimen-
sions relevant for the present context. Without going into
the actual derivations, some of the important equations
possessing solitary waves are listed below [6,7,8,9].

1. Boussinesq equation [7]

ut C uux C g�x �
1
3
h2utxx D 0; (29a)

�t C [u(hC �)]x D 0 (29b)

2. Benjamin–Bona–Mahoney (BBM) equation [18]

ut C ux C uux � uxx t D 0 (30)

3. Camassa–Holm equation [19]

ut C 2�ux C 3uux � uxx t D 3uxuxx C uuxxx (31)

4. Kadomtsev–Petviashville (KP) equation [7]

(ut C 6uux C uxxx )x C 3�2uyy D 0 (32)

(�2 = –1: KP-I, �2 = +1: KP-II).

In the derivation of the above equations, generally the bot-
tom of water column or fluid bed is assumed to be flat.
However in realistic situations the water depth varies as
a function of the horizontal coordinates. In this situation,
one often encounters inhomogeneous forms of the above
wave equations. Typical example is the variable coefficient
KdV equation [14]:

ut C f (x; t)uux C g(x; t)uxxx D 0; (33)

where f and g are functions of x, t. More general forms can
also be deduced depending upon the actual situations, see
for example [14].

DeepWater Waves and NLS Type Equations

Deep water waves are strongly dispersive in contrast to
the weakly dispersive nature of the shallow water waves
(in the linear limit). Various authors (see for details [8])
have shown that nonlinear Schrödinger family of equa-
tions models the evolution of a packet of surface waves in
this case. There are several oceanographic situations where
such waves can arise [8]:

(i) A localized storm at sea can generate a wide spec-
trum of waves, which then propagates away from the
source region in all horizontal directions. If the propagat-

ing waves have small amplitudes and encounter no wind
away from the source region, these waves can eventually
sort themselves into nearly one-dimensional packets of
nearly monochromatic waves. For appropriately chosen
scales, the underlying evolution of each of these packets
can be shown to satisfy the nonlinear Schrödinger equa-
tion and its generalizations in (2+1) dimensions.

(ii) Nearly monochromatic, nearly one-dimensional
waves can cover a broad range of surface waves in the sea
that results due to a steadywind of long duration and fetch.
Then the generalization of the NLS equation in (2+1) di-
mensions can describe the waves that result in when the
wind stops.

In all the above situations one looks for the solu-
tion of the equations of motion (1)-(5) but generalized
in three dimensions which consists mainly in the form of
a small amplitude, nearly monochromatic, nearly one-di-
mensional wave train. Assuming that this wave train trav-
els in the x-direction with a mean wave number � D (k; l)
with a characteristic amplitude ‘a’ of the disturbance and
a characteristic variation ık in k, one can deduce the NLS
equation in (2+1) dimensions under the following condi-
tions:

(i) small amplitudes such that �̂ D �ı � �a
 1
(ii) slowly varying modulations, ık

�

 1

(iii) nearly one dimensional waves, jl jk 
 1
(iv) balance of all three effects, ık

�
D jl jk � O(�̂)

(v) for finite and deep water waves, (kh)2 	 �̂

In the lowest order approximation (linear approximation)
of water waves, the prediction is that a localized initial state
will generally evolve into wave packets with a dominant
wave number � and corresponding frequence !, given
by the dispersion relation ! D (g� C ��3)tanh�h; � D
j�j D

p
k2 C l2 within which each wave propagates with

the phase speed c D !/k, while the envelope propagates
with the group velocity cg D d!/d�. After a sufficiently
long time the wave packet tends to disperse around the
dominant wave number.

This tendency for dispersion can be offset by cumula-
tive nonlinear effects. In the absence of surface tension, the
outcome for unidirectional waves can be shown to be de-
scribable by the NLS equation. If the surface wave in the
lowest order is � � Aexpi(kx � ! t)+c.c, where � is the
velocity potential, then to leading order the wave ampli-
tude evolves as

i(At C cgAx )C
1
2
Axx C �jAj2AD 0: (34)



Solitons, Tsunamis and Oceanographical Applications of S 8513

The coefficients here are given by

 D
@2!

@k2
;

� D �
!k2

16S4
(8C2S2 C g � 2T2)

C
!

8C2S2
(2!C2 C kcg )2

(gh � c2g )
;

(35)

where C D cosh(kh), S D sinh(kh), T D S
C . Equation

(34) has been obtained originally by Zakharov in 1968
for deep water waves [20] and by Hasimoto and Ono for
waves of finite depth in 1972 [21].

The NLS equation is also a soliton possessing inte-
grable system and is solvable by the IST method [6,7,8,9].
For  > 0 (focusing case), the envelope solitary (soliton)
wave solution (also called bright solitons in the optical
physics context) is given by

A(x; t) D a sech� (x � cg t)exp(�i˝ t); (36)

where �a2 D � 2,˝ D C 1
2�a

2.
When the effects of modulation in the transverse y-di-

rection are taken into account, so that the wave amplitude
is now given by A(x; y; t), the NLS equation is replaced by
the Benney–Roskes system [22] also popularly known as
the Davey–Stewartson equations [23],

i(AtC cgAx )C
1
2
Axx C

1
2
ıAyy C�jAj2ACUAD 0 ;

(37a)

˛Uxx C Uyy C ˇ(jAj2)y y D 0 ; (37b)

where ı D c g
k , ˛ D 1 �


 c2g
gh

�
, ghˇ D !

8C2S2 (2!C
2 C

kcg )2. Here U(x; y; t) is the wave induced mean flow. In

Solitons, Tsunamis and Oceanographical Applications of,
Figure 3
Exponentially localized dromion solution of the Davey–
Stewartson equation at a fixed time (t D 0) for suitable choice
of parameters

the deep water wave limit, kh!1, and U ! 0, ˇ ! 0
and one has the nonintegrable (2+1) dimensional NLS
equation. On the other hand in the shallow water limit,
one has the integrable Davey–Stewartson (DS) equations.
For details see [7,8]. The DS-I equation admits alge-
braically decaying lump solitons and exponentially decay-
ing dromions [24] besides the standard line solitons for
appropriate choices of parameters. A typical dromion so-
lution of DS-I equation is shown in Fig. 3.

Tsunamis as Solitons

The term ‘tsunami’ (tsu:harbour, nami:wave in Japanese)
which was perhaps an unknown word even for scientists in
countries such as India, Srilanka, Thailand, etc. till recently
has become a house-hold word since that fateful morn-
ing of December 26, 2004.When a powerful earthquake of
magnitude 9.1–9.3 on the Richter scale, epicentered off the
coast of Sumatra, Indonesia, struck at 07:58:53, local time,
described as the 2004 Indian Ocean earthquake or Suma-
tra–Andaman earthquake (Fig. 4), it triggered a series of
devastating tsunamis as high as 30 meters that spread
throughout the Indian Ocean killing about 275,000 peo-
ple and inundating coastal communities across South and
Southeast Asia, including parts of Indonesia, Srilanka, In-
dia and Thailand and even reaching as far as the east coast
of Africa [25]. The catastrophe is considered to be one of
the deadliest disasters in modern history.

Since this earthquake and consequent tsunamis, sev-
eral other earthquakes of smaller and larger magnitudes
keep occurring off the coast of Indonesia. Even as late
as July 17, 2006 an earthquake of magnitude 7.7 on the
Richter scale struck off the town of Pandering at 15.19 lo-

Solitons, Tsunamis and Oceanographical Applications of, Fig-
ure 4
26 December 2004 Indian Ocean tsunami (adapted from the
website www.blogaid.org.ukwith the courtesy of Andy Budd)

http://www.blogaid.org.uk
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cal time and set off a tsunami of 2m high which had killed
more than 300 people.

These tsunamis, which can become monstrous tidal
waves when they approach coastline, are essentially trig-
gered due to the sudden vertical rise of the seabed by
several meters (when earthquake occurs) which displaces
massive volume of water. The tsunamis behave very dif-
ferently in deep water than in shallow water as pointed out
below. By no means the tsunami of 2004 and later ones are
exceptional; More than two hundred tsunamis have been
recorded in scientific literature since ancient times. The
most notable earlier one is the tsunami triggered by the
powerful earthquake (9.6 magnitude) off southern Chile
on May 22, 1960 [10] which traveled almost 22 hours be-
fore striking Japanese islands.

It is clear from the above events that the tsunami waves
are fairly permanent and powerful ones, having the capac-
ity to travel extraordinary distances without practically di-
minishing in size or speed. In this sense they seem to have
considerable resemblance to shallow water nonlinear dis-
persive waves of KdV type, particularly solitary waves and
solitons. It is then conceivable that tsunami dynamics has
close connection with soliton dynamics.

Basics of TsunamiWaves

As noted above tsunami waves of the type described above
are essentially triggered by massive earthquakes which
lead to vertical displacement of a large volume of water.
Other possible reasons also exist for the formation and
propagation of tsunami waves: underwater nuclear explo-
sion, larger meteorites falling into the sea, volcano explo-
sions, rockslides, etc. But the most predominant cause of
tsunamis appear to be large earthquakes as in the case of
the Sumatra–Andaman earthquake of 2004. Then there
are three major aspects associated with the tsunami dy-
namics [26]:

1. Generation of tsunamis
2. Propagation of tsunamis
3. Tsunami run up and inundation

There exist rather successful models to approach the gen-
eration aspects of tsunamis when they occur due to the
earthquakes [27]. Using the available seismic data it is pos-
sible to reconstruct the permanent deformation of the sea
bottom due to earthquakes and simple models have been
developed (see for example, [28]). Similarly the tsunami
run up and inundation problems [29] are extremely com-
plex and they require detailed critical study from a practi-
cal point of view in order to save structures and lives when
a tsunami strikes.

However, here we will be more concerned with the
propagation of tsunami waves and their possible relation
to wave propagation associated with nonlinear dispersive
waves in shallow waters. In order to appreciate such a pos-
sible connection, we first look at the typical characteristic
properties of tsunami waves as in the case of 2004 Indian
Ocean tsunami waves or 1960 Chilean tsunamis.

The Indian Ocean Tsunami of 2004

Considering the Indian Ocean 2004 tsunami, satellite ob-
servations after a couple of hours after the earthquake es-
tablish an amplitude of approximately 60 cms in the open
ocean for the waves. The estimated typical wavelength is
about 200 kms [30]. The maximum water depth h is be-
tween 1 and 4 kms. Consequently, one can identify in an
average sense the following small parameters (� and ı2) of
roughly equal magnitude:

� D
a
h
� 10�4 
 1; ı2 D

h2

l2
� 10�4 
 1 (38)

As a consequence, it is possible that a nonlinear shallow
water wave theory where dispersion (KdV equation) also
plays an important role (as discussed in Sect. “Shallow
Water Waves and KdV Type Equations”) has consider-
able relevance [26]. However, we also wish to point out
here that there are other points of view: Constantin and
Johnson [31] estimate � � 0:002 and ı � 0:04 and con-
clude that for both nonlinearity and dispersion to become
significant the quantity ı��3/2�wavelength estimated as
90,000 kms is too large and shallow water equations with
variable depth (without dispersion) should be used. How-
ever, it appears that these estimates can vary over a rather
wide range and with suitable estimates it is possible that
the range of 10,000–20,000kms could be also possible
ranges and hence taking into account the fact that both
the Indian Ocean 2004 and Chilean 1960 tsunamis have
traveled over 10 hours or more (in certain directions) be-
fore encountering land mass appears to allow for the pos-
sibility of nonlinear dispersive waves as relevant features
for the phenomena. Segur [32] has argued that in the 2004
tsunamis, the propagation distances from the epicenter of
the earthquake to India, Srilanka, or Thailand were too
short for KdV dynamics to develop. In the same way one
can argue that the waves that hit Somalia and Kenya in
the east coast of Africa (or as in the case of Chilean earth-
quake see also [32]) have traveled sufficiently long distance
for KdV dynamics to become important [33]. In any case
one can conclude that at least for long distance tsunami
propagation solitary wave and soliton picture of KdV like
equations become very relevant.
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Internal Solitons

For a long time seafarers passing through the Strait of
Malacca on their journeys between India and the Far East
have noticed that in the Andaman sea, between Nicobar
islands and the north east coast of Sumatra, often bands of
strongly increased surface roughness (ripplings or bands
of choppy water) occur [11,34]. Similar observations have
been reported in other seas around the globe from time to
time. In recent times there has been considerable progress
in understanding these kind of observations in terms of in-
ternal solitons in the oceans [7]. These studies have been
greatly facilitated by photographs taken from satellites and
space-crafts orbiting the earth, for example by synthetic
aperture radar (SAR) images of ERS-1/2 satellites [34,35].

Peculiar striations of 100 km long, separated by 6 to
15 km and grouped in packets of 4 to 8, visible on satellite
photographs (see Fig. 5) of the surface of the Andaman

Solitons, Tsunamis and Oceanographical Applications of, Fig-
ure 5
SAR image of a 200 km × 200km large section of the Andaman
Sea acquired by the ERS-2 satellite on April 15, 1996 showing
sea surfacemanifestations of two internal solitary wave packets,
see [34]. Figure reproduced from ESA website www.earth.esa.
int/workshops/ers97/papers/alpers3 with the courtesy of Euro-
pean Space Agency andW. Alpers

and Sulu seas in the Far East, have been interpreted as
secondary phenomena accompanying the passage of ‘in-
ternal solitons’, which are solitary wavelike distortions of
the boundary layer between warm upper layer of sea water
and cold lower depths. These internal solitons are traveling
edges of warm water, extending hundreds of meters down
below the thermal boundary [7]. They carry enormous en-
ergy with them which is perhaps the reason for unusu-
ally strong underwater currents experienced by deep-sea
drilling rigs. Thus these internal solitons are potentially
hazardous to sub-sea oil and gas explorations. The ability
to predict them can improve substantially the cost effec-
tiveness and safety of offshore drilling.

A systematic study of the underwater currents experi-
enced by an oil rig in the Andaman sea which was drilling
at a depth of 3600 ft was carried out by Osborne and Burch
in 1980 [11]. They spent four days measuring underwater
currents and temperatures. The striations seen on satellite
photographs turned out to be kilometer-wide bands of ex-
tremely choppy water, stretching from horizon to horizon,
followed by about two kilometers of water “as smooth as
a millpond”. These bands of agitated water are called “tide
rips”, they arose in packets of 4 to 8, spaced about 5 to
10 km apart (they reached the research vessel at approxi-
mately hourly intervals) and this pattern was repeatedwith
the regularity of tidal phenomenon.

As described in [7], Osborne and Burch found that
the amplitude of each succeeding soliton was less than
the previous one, is precisely what is expected for soli-
tons (note that the velocity of a solitary wave solution of
KdV equation increases with amplitude, vide Eq. (22)).
Thus if a number of solitons are generated together, then
we expect them eventually to be arranged in an ordered
sequence of decreasing amplitude. From the spacing be-
tween successive waves in a packet and the rate of sep-
aration calculated from the KdV equation, Osborne and
Burch were able to estimate the distance the packet had
traveled from its source and thus identify possible source
regions [7]. They concluded that the solitons are gener-
ated by tidal currents off northern Sumatra or between the
islands of the Nicobar chain that extends beyond it and
that their observations have good general agreement with
the predictions for internal solitons as given by the KdV
equation. Numerous recent observations and predictions
of solitons in the Andaman sea have clearly established
that it is a site where extraordinarily large internal solitons
are encountered [34,35].

Further, Apel and Holbrook [36] undertook a detailed
study of internal waves in the Sulu sea. Satellite pho-
tographs had suggested that the source of these waves was
near the southern end of the Sulu sea and their research

http://www.earth.esa.int/workshops/ers97/papers/alpers3
http://www.earth.esa.int/workshops/ers97/papers/alpers3
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ship followed one wave packet for more than 250 miles
over a period of two days – an extraordinary coherent phe-
nomenon [7]. These internal solitons travel at speeds of
about 8 kilometers per hour (5 miles per hour), with am-
plitude of about 100 meters and wavelength of about 1700
meters.

Similar observations elsewhere have confirmed the
presence of internal solitons in oceans including the strait
of Messina, the strait of Gibraltar, off the western side of
Baja California, the Gulf of California, the Archipelago of
La Maddalena and the Georgia strait [7]. There has also
been a number of experimental studies of internal solitons
in laboratory tanks in the last few decades [37]. These ex-
periments provide detailed quantitative information usu-
ally unavailable in the field conditions, and are also an ef-
ficient tool for verifying various theoretical models.

As a theoretical formulation of internal solitons [7],
consider two incompressible, immiscible fluids, with den-
sities �1 and �2 and depths h1 and h2 respectively such that
the total depth h D h1 C h2. Let the lighter fluid of height
h1 be lying over a heavier fluid of height h2, in a constant
gravitational field (Fig. 6). The lower fluid is assumed to
rest on a horizontal impermeable bed, and the upper fluid
is bounded by a free surface.

Then as in Sect. “Shallow Water Waves and KdV
Type Equations”, we denote the characteristic amplitude
of wave by ‘a’ and the characteristic wavelength l D k�1.
Then the various nonlinear wave equations to describe the
formation of internal solitons follow by suitable modifi-
cation of the formulation in Sect. “Shallow Water Waves
and KdV Type Equations”, assuming viscous effects to be
negligible. Each of these equations is completely integrable
and admits soliton solutions [7].

Solitons, Tsunamis and Oceanographical Applications of, Figure 6
Formation of internal soliton (note that under suitable conditions small amplitude surface soliton can also be formed)

(a) KdV equation (Eq. (21)) follows when

(i) the waves are of long wavelength ı D h
l 
 1,

(ii) the amplitude of the waves are small, � D a
h 
 1, and

(iii) the two effects are comparable ı2 D O(�)

(b) Intermediate-Long-Wave (ILW) equation [38]

ut C ux C 2uux C Tuxx D 0; (39)

where Tu is the singular integral operator

(T f )(x) D
1
2l

1Z
�

�1

coth
�
�

2l
(y � x)

�
f (y)dy (40)

with
R
�
1
�1 the Cauchy principal value integral is obtained

under the assumption that

(a) there is a thin (upper) layer, � D h1
h2 
 1,

(b) the amplitude of the waves is small, a
 h1,
(c) the above two effects balance, a

h1 D O(�),
(d) the characteristic wavelength is comparable to the to-

tal depth of the fluid, l D kh D O(1) and
(e) the waves are long waves in comparison with the thin

layer, kh1 
 1.

(c) Benjamin–Ono equation [39]

ut C 2uux C Huxx D 0; (41)

where Hu is the Hilbert transform

(H f )(x) D
1
�

1Z
�

�1

f (y)
y � x

dy; (42)

is obtained under the assumption
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Solitons, Tsunamis and Oceanographical Applications of, Figure 7
A coupled high/low pressure systems in the form of a Rossby soliton formed off the coast of California/Washington on Valentine’s
Day 2005. The low pressure front hovers over Los Angeles dumping 30 inches of rain on the city in two weeks. The high pressure
system lingers off the coast of Washington state providing unseasonally warm and sunny weather. This particular Rossby soliton
proved exceptionally stable because of its remarkable symmetry. In an accompanying animated gif in this website one canwatch the
very interesting phenomenon as the jet stream splits around the soliton suctioning warmwet air from the off the coast of Mexico to
Arizona, leaving behind a welcome drenching of rain. The figure and caption have been adapted from the website http://mathpost.
la.asu.edu/~rubio/rossby_soliton/rs.html with the courtesy of the National Oceanic and Atmospheric Administration (NOAA) and
Antonio Rubio

(a) there is a thin (upper) layer h1 
 h2,
(b) the waves are long waves in comparison with the thin

layer, kh1 
 1,
(c) the waves are short in comparison with the total depth

of the fluid, kh	 1 and
(d) the amplitude of the waves is small, a
 h1.

It may be noted that in the shallow water limit, as
ı ! 0, the ILW equation reduces to the KdV equation,
while the Benjamin–Ono equation reduces to it in the
deep water wave limit as ı !1. Each of these equations
have their own ranges of validity and admit solitary wave
and soliton solutions to represent internal solitons of the
oceans.

Rossby Solitons

The atmospheric dynamics is an important subject of hu-
man concern as we live within the atmosphere and are
continuously affected by the weather and its rather com-
plex behavior. The motion of the atmosphere is intimately

connected with that of the ocean with which it exchanges
fluxes of momentum, heat and moisture [40]. Then the
atmospheric dynamics is dominated by the rotation of
the earth and the vertical density stratification of the sur-
rounding medium, leading to newer effects. Similar effects
are also present in other planetary dynamics as well.

In the atmosphere of a rotating planet, a fluid parti-
cle is endowed with a certain rotation rate (Coriolis fre-
quency), determined by its latitude. Consequently its mo-
tion in the north-south direction is inhibited by conserva-
tion of angular momentum. The large scale atmospheric
waves caused by the variation of the Coriolis frequency
with latitude are called Rossby waves. In Sect. “Internal
Solitons” we saw that KdV equation and its modifications
model internal waves. Since there is a resemblance be-
tween internal waves and Rossby waves, it is expected that
KdV like equations can model Rossby waves as well [8].
Under the simplest assumptions like long waves, incom-
pressible fluid, ˇ-plane approximations, etc. Benney [41]
had derived the KdV equation as a model for Rossby

http://mathpost.la.asu.edu/~rubio/rossby_soliton/rs.html
http://mathpost.la.asu.edu/~rubio/rossby_soliton/rs.html
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waves in the presence of east-west zonal flow. Boyd [42]
had shown that long, weakly nonlinear, equatorial Rossby
waves are governed either by KdV or MKdV equation.
Recently it has been shown by using the eight years of
Topex/Poseidon altimeter observations [43] that a detailed
characterization of major components of Pacific dynamics
confirms the presence of equatorial Rossby solitons.

Also observational and numerical studies of propaga-
tion of nonlinear Rossby wave packets in the barotropic
atmosphere by Lee and Held [44,45] have established their
presence, notably in the Northern Hemisphere as storm
tracks, but more clearly in the Southern Hemisphere (see
Fig. 7). They also found that the wavepackets both in the
real atmosphere and in the numerical models behave like
the envelope solitons of the nonlinear Schrödinger equa-
tion (Fig. 7).

An interesting application of KdV equation to de-
scribe Rossby waves is the conjecture of Maxworthy and
Redekopp [46] that the planet Jupiter’s Great Red Spot
might be a solitary Rossby wave. Photographs taken by
the spacecraft Voyager of the cloud pattern show that the
atmospheric motion on Jupiter is dominated by a num-
ber of east-west zonal currents, corresponding to the jet
streams of the earth’s atmosphere [8]. Several oval-shaped
spots are also seen, including the prominent Great Red
Spot in the southern hemisphere. The latter one has been
seen approximately this latitude for hundreds of years and
maintains its form despite interactions with other atmo-
spheric objects. One possible explanation is that the Red
Spot is a solitary wave/soliton of the KdV equation, de-
duced from the quasigeostrophic form of potential vor-
ticity equation for an incompressible fluid. A second test
of the model is the combined effect of interaction of the
Red Spot and Hollow of the Jupiter atmosphere on the
South Tropical Disturbance which occurred early in the
20th century and lasted several decades. Maxworthy and
Redekopp [46] have interpreted this interaction as that of
two soliton collision of KdV equation, with the required
phase shift [6,7,8].

The above connection between the KdV solitary wave
and the rotating planet may be seen more concretely by
the following argument as detailed in [8]. One can start
with the quasigeostrophic form of the potential vorticity
equation for an incompressible fluid in the form
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(43)

where x, y and z represent the east, north and vertical di-
rections, while the function U is related to the horizon-
tal stream function ˚ as ˚(x; y; z; t) D

R y
y0 U(�)d� C

� (x; y; z; t) in terms of a zonal shear flow and a pertur-
bation. In (43), in the ˇ-plane approximation, the Coriolis
parameter is given as f D 2˝ sin �0 C ˇy and the func-
tion K(z) is given by K(z) D 2˝ sin �0 l2/N(z)d, where
N(z) is the Brunt–Väisälä frequency and l2 is the charac-
teristic length scales in the north-south direction while d is
the length scale in the vertical direction. Note that K com-
pares the effects of rotation and density of variation. Then
� D l2/l1 represents the ratio of the length scales in the
north-south and east-west directions.

In the linear (� ! 0), long wave (� ! 0) limit,
the potential function  has the form  D

P
n An(x �

cn t)�n(y)pn(z), where cn is deduced by solving two related
eigenvalue problems [8], (K2p0n)0 C k2n pn D 0; pn(0) D
pn(1) D 0 and � 00n � k2n�n C [(ˇ �U 00)/(U � cn)]�n D 0,
�n(ys ) D �n(yN ) D 0. If the various modes are separable
on a short time scale, one can then deduce an evolution
equation for the individual modes, by eliminating secular
terms at higher order in the expansion. Depending on the
nature and existence of a stable density of stratification,
which is characterized by the function N(z) mentioned
above, either KdV or mKdV equation can be deduced for
a given mode and thereby establishing the soliton connec-
tion in the present problem.

In spite of the complexity of the phenomenon under-
lying Rossby solitons there is clear evidence of the signifi-
cance of solitonic picture.

Bore Solitons

Rivers which flow into the open oceans are usually affected
by tidal flows, tsunami or storm surge. For a typical estu-
ary as one moves towards the mouth of the river, the depth
increases and width decreases.When a tidal wave, tsunami
or storm surge hits such an estuary, it can be seen as a hy-
draulic jump (step-wise perturbations like a shock-wave)
in the water height and speed which will propagate up-
stream [47]. Far less dangerous but very similar is the bore
(mascaret in French), a tidal wave which can propagate in
a river for considerable distances.

Typical examples of bores occur in Seine river in
France and the Hooghli river in West Bengal in India.
A bore existed in the Seine river upto 1960 and disap-
peared when the river was dredged. The tide amplitude
here is one of the largest in the world. The Hughli river is
a branch of the Ganges that flows through Kolkata where
a bore of 1m is present, essentially due to the shallowness
of the river. Another interesting example is that at the time
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ure 8
Tidal bore at the mouth of the Araguari River in Brazil. The bore
is undular with over 20 waves visible. (Adapted from the book
“Gravity Currents in the Environment and the Laboratory” by
John E. Simpson, Cambridge University Press with the courtesy
of D.K. Lynch, John E. Simpson and Cambridge University Press)

of the 1983 Japan sea tsunami, waves in the form of a bore
ascended many rivers [48]. In some cases, bores had the
form of one initial wave with a train of smaller waves and
in other cases only a step with flat water surface behind was
observed (Fig. 8). The Hangzhou bore in China is a tourist
attraction. Other well known bores occur in the Amazon
in Brazil and in Australia.

Another interesting situation where bore solitons were
observed was in the International H2O Project (IHOP),
as a density current (such as cold air from thunderstorm)
intrudes into a fluid of lesser density that occurs beneath
a low level inversion in the atmosphere. A spectacular bore
and its evolution into a beautiful amplitude-ordered train
of solitary waves were observed and sampled during the
early morning of 20 June 2002 by the Leandre-II abroad
the P-3 aircraft. The origin of this bore was traceable to
a propagating cold outflow boundary from a mesoscale
convective system in extreme western Kansas [49].

In the process of propagation the bore undergoes dissi-
pation, dispersive disintegration, enhancement due to de-
crease of the river width and depth, influence of nonlinear
effects and so on. The profile depends on the Froude num-
ber which is a dimensionless ratio of inertial and gravi-
tational effects. Theoretical models have been developed
to study these effects based on KdV and its generaliza-
tions [14]. For example, bore disintegration into solitons
in channel of constant parameters can be studied in sig-
nal coordinates in terms of the KdV like equation for the
perturbation of water surface,

�x C
1
c0
(1 � ˛�)�t � ˇ�t t t D 0 ; (44)

where c0 D
p
gh, ˛ D 3/2h, ˇ D h2/6c30, h being the

depth of the river, with the bore represented by aHeaviside

step function as the boundary condition at x D 0. Other
effects then can be incorporated into a variable KdV equa-
tion of the form (26).

Future Directions

We have indicated a few of the most important oceano-
graphical applications of solitons including tsunamis, in-
ternal solitons, Rossby solitons and bore solitons. There
are other interesting phenomena like capillary wave soli-
tons [15], resonant three and four wave interaction soli-
tons [16], etc. which are also of considerable interest de-
pending on whether the wave propagation corresponds
to shallow, intermediate or deep waters. Whatever be
the situation, it is clear that experimental observations as
well as their theoretical formulation and understandings
are highly challenging complex nonlinear evolutionary
problems. The main reason is that the phenomena are es-
sentially large scale events and detailed experimental ob-
servations require considerable planning, funding, tech-
nology and manpower. Often satellite remote sensing
measurementsneed to be carried out as in the case of inter-
nal solitons and Rossby solitons. Events like tsunami prop-
agation are rare and time available for making careful mea-
surements are limited and heavily dependent on satellite
imaging, warning systems and after event measurements.
Consequently developing and testing theoretical models
are extremely hazardous and difficult. Yet the basic mod-
eling in terms of solitary wave/soliton possessing nonlin-
ear dispersive wave equations such as the KdV and NLS
family of equations and their generalizations present fas-
cinating possibilities to understand these large scale com-
plex phenomena and opens up possibilities of prediction.
Further understanding of such nonlinear evolution equa-
tions, both integrable and nonintegrable systems partic-
ularly in higher dimensions, can help to understand the
various phenomena clearly and provide means of predict-
ing events like tsunamis and damages which occur due to
internal solitons and bores. Detailed experimental obser-
vations can also help in this regard. It is clear that what
has been understood so far is only the qualitative aspects
of these phenomena and much more intensive work is
needed to understand the quantitative aspects to predict
them.
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Glossary
Alfvén wave Transverse magnetohydrodynamic wave

that propagates along the magnetic field line direction
in an electrically conducting fluid.

Anomalous resistivity Nonclassical resistivity in plasma
dynamics.

Astronomical unit (AU) Unit of length nearly equal to
the semi-major axis of Earth’s orbit around the Sun.

Auroral electrojet index (AE) Empirical index that mea-
sures magnetic perturbations in the auroral zone. It
provides a gauge for the horizontal current strength in
the auroral ionosphere.

Auroral zone Region where auroral activities are ob-
served.

Castaing distribution A convolution of Gaussians with
variances distributed according to a log-normal distri-
bution.

Chaos Nonsteady, nonperiodic, complex dynamical mo-
tion.

Coarse-grained dissipation Apparent dissipation due to
interactions of coherent structures.

Coarse-graining Replacement of a detailed description
with a lower-resolution coarse-grained model.

Coherent structure Large scale structure of nonlinearly
interacting dynamical systems.

Correlation function Ensemble average of the correla-
tion of fluctuations.

Criticality Behavior of extended system at which scale-
invariance prevails.

Crossover Transition from one critical state to another
or multitudes of critical states; or, transition from one
fractal state to another or multitudes of fractal states.

Current sheet Sheet-like region with strong current den-
sity usually generated by strong local magnetic shear.

Cusp Funnel shaped region dividing the sunward and
tailward sides of the magnetic field lines of the Earth.

Drift Alfvén vortex Field-aligned coherent Alfvénic vor-
tex structure that drifts across the magnetic field.

Dynamical complexity Complex stochastic behavior of
numerous nonlinearly interacting coherent structures
of various sizes.

Dynamical renormalization group Group generated by
coarse-graining scale transformations of a nonlinear
dynamical system.

Extended similarity scaling (ESS) Scale invariant prop-
erty among the structure or partition functions of
a fluctuating event.

Exponent relation Algebraic relation among scaling ex-
ponents.

Extreme value theory Statistical theory dealing with ex-
treme deviations from the mean.
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Flatness (kurtosis) A normalized scale dependent mea-
sure related to the fourth order moment of the scale
dependent coarse-grained probability distribution. It
may be evaluated by taking the ensemble average of
the square of the normalized power using the wavelet
transform.

Forced and/or self-organized criticality (FSOC)
Organization of a dynamical system into a scale in-
variant critical state with or without some tuning or
forcing.

Fractal Fluctuations that exhibit generalized dimension
of an irrational number.

Gaussian distribution Normal distribution.
Generalized dimension Dimension of the measure of

fractal characteristics of a fluctuating event based on
the limiting characteristic of the logarithm of the par-
tition function at small scales.

Helicity Extent to which the magnetic field wraps around
itself.

Heliosphere Magnetic bubble containing our solar sys-
tem, including the solar wind.

Hysteresis History dependence of physical system that
dissipates energy.

Intermittency Random fluctuations that exhibit non-
self-similar characteristics.

Irrelevant parameter Parameter that becomes irrelevant
under repeated coarse-graining transformations.

Ionosphere Upper most portion of atmosphere that is
ionized and connected to the magnetosphere.

Local intermittency measure, Lim Normalized power in
wavelet transform that is intensity, scale and location
dependent.

Low-dimensional chaos Chaotic motion characterized
by a small number of parameters.

Lu/Klimas model One-dimensional dynamical model
with anomalous diffusion involving hysteresis, which
exhibits scale invariant stochastic processes.

Magnetic reconfiguration (and/or reconnection)
Reconfiguration of magnetic topology, which may
or may not involve the phenomenon of magnetic re-
connection of field lines.

Magnetohydrodynamics Mathematical description of
electrically conducting fluids moving within electro-
magnetic environments.

Magnetosphere Region of space around the Earth (or any
astrophysical object), that is controlled by its magnetic
field.

Magnetotail Tail region (away from the Sun) of the mag-
netosphere of the Earth or any object in the helio-
sphere.

Multifractals Fluctuations characterized by multitudes of
fractal dimensions that are not linearly related.

P-model Two-scale cascade model with “p” as the param-
eter that characterizes the fragmentation probability of
the cascading process of intermittency.

Partition function of order q qth moment-order of the
segmental coarse-grained probabilities.

PDF Probability distribution function.
Plasma resonance Site at which a particular plasma prop-

agation mode vanishes.
Rank-ordered multifractal analysis, ROMA Analysis of

multifractal characteristics based on the ordering of
fractal dimensions in terms of scaled sizes of the in-
termittent fluctuations.

Relevant parameter Parameter that becomes more and
more relevant under repeated coarse-graining trans-
formations.

Response function Ensemble average of the response of
the system due to fluctuations.

Scale invariants Quantities that do not vary under
coarse-graining scale transformations.

Singularity spectrum f (˛) Continuum distribution of
differential measures with singularity index ˛.

Self-organized criticality (SOC) Auto-organization of
a dynamical system into a scale-invariant critical state
without significant tuning.

Solar wind Stream of charged particles in interplanetary
space ejected from the upper atmosphere of the Sun.

Space plasma Ionized medium in the space environment.
Structure function of order q qth order moment of the

probability distribution function of scale-dependent,
coarse-grained fluctuations. It may be evaluated in
terms of the ensemble average of the qth power of the
scale-dependent fluctuations.

Taylor hypothesis Hypothesis that interprets temporal
fluctuations as spatial fluctuations when the transit
time of the fluctuations is much less than the charac-
teristic evolution time. Also called Taylor’s “frozen-in”
hypothesis.

Turbulence Chaotic stochastic flow of a continuum or
discrete medium with infinite number of degrees of
freedom.

Wavelet transform Transform generated by a basis set of
wave-packet-like functions, which provides informa-
tion of intensity, location and scale of a fluctuating
quantity.

Whistler wave Right-hand polarized electromagnetic
wave in a plasma with frequency well below the elec-
tron cyclotron frequency and above the ion cyclotron
frequency. The high frequency whistler waves travel
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faster than the low frequency ones along the magnetic
field lines in the plasma medium.

Definition of the Subject

Commonly called the fourth state of matter, plasmas make
up 99 per cent of the Universe. They are the major con-
stituents of the solar-terrestrial, interstellar, and inter-
galactic media – generally in the form of ionized gases.
According to Tonks [118] who co-authored the celebrated
Tonks and Langmuir [119] paper on oscillations in ionized
gases, Langmuir [70] coined the terminology “plasma” to
describe, in today’s language, a quasineutral mixture –
probably because of the likeness between the electrons and
ions in an ionized medium and the red and white corpus-
cles in a blood plasma [99]. Recent observations, partic-
ularly in-situ measurements in the heliosphere and solar-
terrestrial regions, have indicated that space plasmas com-
monly exhibit random, intermittent, and anisotropic fluc-
tuating characteristics at all spatiotemporal scales while
interacting with the electromagnetic environment. Such
observations have led theoreticians and experimentalists
alike to regard the stochastic behaviors of space plasmas as
prime candidates of naturally occurring examples of dy-
namical complexity.

By definition, “dynamical complexity” is a phe-
nomenon exhibited by a nonlinearly interacting dynam-
ical system within which multitudes of different sizes of
large scale “coherent structures” are formed, resulting in
a complicated global nonlinear stochastic behavior for the
dynamical system – vastly different from that could be sur-
mised from the original dynamical equations.

The main purpose of this article is to demonstrate the
prevalence of dynamical complexity in space plasmas and
to indicate the various statistical methods of analyzing this
kind of dynamical processes as well as to discuss theoreti-
cal and numerical methods that can provide the basic un-
derstanding of such processes.

Introduction

Traditionally, analyzes of space plasma processes are based
on fluid or kinetic formulations. Among the fluid descrip-
tions, the simplest is that based on the so-called one-com-
ponent magnetohydrodynamic (MHD) equations, which
includes the equations of motion, continuity, and energy
conservation, the Ohm’s law and the Maxwell equations
for a single conducting fluid medium (see, e. g. [7]). Asso-
ciated with such a formulation are the concepts of mag-
netic field lines, streamlines and other continuum vari-
ables such as velocity, electric and magnetic fields, as well
as plasma, charge and current densities. The dynamical

state of the system is understood in terms of a topology
generally characterized by the relatively smooth or piece-
wise continuous variations of such entities with space and
time.

Most of the observed space plasma processes, how-
ever, generally exhibit discernible turbulent fluctuations
of such quantities. The standard approach to the theo-
retical analyzes of dynamically fluctuating states is based
on the concepts of linear instabilities, nonlinear growths
and interactions of the wave modes. Although the ba-
sic governing equations generally contain strong nonlin-
earities, one is led to believe that turbulent motions may
be understood by expressing the fluctuations in Fourier
modes (plane waves) and then considering the interactions
among these nonlocal modes by requiring them to satisfy
the “basic” equations. This procedure produced such in-
tractable complications that have led to decades of futile
search for a workable theory of “turbulence”.

In reality, turbulent fluctuations in space plasmas are
generally composed of the simultaneous coexistence of
propagating modes and intermittent nonlinearly interact-
ing spatiotemporal structures [32,33]. The “physics” of the
bimodal state of such type of admixture of turbulent fluc-
tuations may be understood from the point of view of the
development and interactions of coherent structures aris-
ing from plasma resonance sites and the ensuring dynam-
ical complexity resulting from such developments and in-
teractions. In this article, we shall consider the dynamical
complexity in space plasmas from such a concept. Sam-
ple results of direct numerical simulations and dynamical
modeling including the calculated fluctuation probability
distribution functions and local intermittency measures
based on the wavelet transforms are provided to charac-
terize the sporadic, localized, and scale-dependent nature
of the intermittent turbulence. The concepts of multifrac-
tals, scale invariance and symmetry-breaking will be in-
troduced. Observational examples demonstrating the ex-
istence of such phenomena and the associated invariance
properties of intermittent space plasma turbulence will be
provided.

Applications of the ideas of dynamical complexity
to space plasmas were relatively recent. The first con-
tact of these ideas with space plasmas was probably con-
tained in a series of papers addressing the apparent low-
dimensional chaotic behavior related to the dynamics of
the Earth’s magnetosphere [4,65,101,103,104,105]. These
ideas were followed by a paper by Chang [22] that sug-
gested the possibility of interpreting such phenomenon
from the point of view of forced and/or self-organized crit-
icality (FSOC) surmised from the method of the dynamic
renormalization group (DRG). This suggestion was moti-
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Space Plasmas, Dynamical Complexity in, Figure 1
Vector representation of the components of the magnetic field (By;Bz), ion plasma flow (Vy;Vz), and current density (Jx; Jz) during
amagnetic substorm (i. e., when therewas intense auroral activity) on August 22, 2001 observed by the Cluster spacecraft at a down-
stream distance of about 19Re (Earth radii) in the magnetotail showing the large variability of these plasma parameters. Reprinted
from [82] with thanks to the European Geophysical Union

vated by the low-dimensional chaos papers as well as the
interpretation of the observed large variability of plasma
fluctuations in the Earth’s magnetotail as the result of spo-
radic and localized current disruptions [78], Figs. 1 and 2.
At approximately the same time, Lu and Hamilton [74]
used the idea of self-organized criticality (SOC) of Bak et
al. [3] to explain the curious scale-independent behavior

of the solar flare occurrence rate on the flare sizes. Such
ideas suggest that complex dynamical systems generally
organize themselves into states with statistical properties
describable by power laws. (A succinct tutorial review of
the SOC concept may be found in Jensen [63]). An al-
ternative viewpoint of dynamical complexity is based on
the concept of multifractals [54,98] which is a generaliza-
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Space Plasmas, Dynamical Complexity in, Figure 2
A temporal sequence of synoptic patterns of total plasma flow showing large variabilities constructed from superposed epoch anal-
ysis of 102magnetic substorm events from Geotail spacecraft observations. The scale is 100 km/s per Re (Earth radius). The acronym
GSM stands for Geocentric Solar Magnetospheric coordinate system. The X-axis points to the Sun. The XZ-plane contains the Earth’s
dipole axis, and the Y-axis completes the right-handed coordinate system in units of Re. Reprinted from [80] with thanks to the
American Geophysical Union
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tion of the original ideas of fractals introduced by Man-
delbrot [83]. Burlaga [12,13,14] was the first to incorpo-
rate such ideas to interpret the intermittent turbulent be-
havior of the solar wind. Other solar wind studies based
on such a point of view followed, e. g. [16,17,18,19,20,58,
59,60,84,102]. These ideas were followed by Consolini et
al. [41] and Consolini [37] in their interpretations of the
observed fractal time series of the Auroral Electrojet (AE)
indices.

Since then, a flurry of activities has blossomed into the
current investigations of the phenomenon of complexity
in space plasmas. Perhaps the most noteworthy are the
connection of such phenomena with the traditional ideas
of intermittent turbulence in plasmas and the develop-
ment of the concept of crossovers (transitions) from one
criticality to another and onto multifractals [27,28]. This
article will provide simple descriptions of some of these
modern ideas in conjunction with actual observational re-
sults and numerical simulations.

Due to the limitation of space, this entire article will
center on the discussion of the complexity of space plas-
mas from the fluid description. It should be understood
that situations also exist in space plasmas where the phys-
ical phenomena are related to the complexity of kinetic
plasma effects, see, e. g., [33,111,115]. Since the purpose
of this article is to introduce to the readers the basic con-
cepts of – and recent developments in – the physics of dy-
namical complexity in space plasmas, only those primary
references that touch upon these introductory ideas are in-
cluded.No attempt has beenmade to include the hundreds
of outstanding contributions that are available on the sub-
ject.

The contents of this article are structured as follows.
In the next section, the concepts of plasma resonances
and coherent structures are introduced. This is followed
by a discourse on coarse-grained dissipation and mag-
netic reconfiguration. The ideas of non-Gaussian proba-
bility distributions of turbulent fluctuations, wavelet trans-
forms and intermittency are then discussed in the two
subsequent sections. Next, we introduce the basic ideas
of multifractals in terms of structure functions, partition
functions, singularity measures and rank-ordered multi-
fractal spectra in Sect. “Multifractals”. The concepts of
scale invariants, forced and/or self-organized criticality are
described in Sect. “Invariant Scaling” along with a dis-
course relating these ideas to multifractals. In Sect. “Dy-
namical Modeling – The Lu–Klimas Magnetic Field Re-
versal Model”, we discuss the utility of dynamical models.
A simple one-dimensional model, the Lu–Klimas model,
is provided to illustrate the usefulness of such methods.
This is followed by a brief discussion of what future en-

tails in the study and research of dynamical phenom-
ena of complexity related to space plasmas. In addition
to the primary list of references that are cited in the
article, we also provide a secondary list of review arti-
cles and books in the bibliography for further in-depth
study.

Plasma Resonances and Coherent Structures

Plasmas are known for their ability to form numerous
types of coherent structures of varied sizes with scales that
are generally much larger than those of the constituent
particles (ions, electrons, neutrals) of the plasma medium.
The reason behind this is closely related to the nonlinear
and long range forces of the dynamical couplings among
the constituent particles and species interacting within the
electromagnetic environment.

Examples of coherent structures abound in the lit-
erature on theories and observations of nonlinear space
plasma processes. They may appear as convective forms,
nonlinear solitary structures, pseudo-equilibrium config-
urations, or other types of spatiotemporal entities. They
may be locally generated or convected from elsewhere.
Some of these structures may be more stable and long-
lived; others may be less stable and relatively short-lived
and sometimes partially formed. Generally, such struc-
tures are not purely laminar entities; they are likely com-
posed of bundled fluctuations of all frequencies and scales.
Due to the nature of the physics of complexity, it would be
futile to attempt to evaluate and/or study the details and
stabilities of each of these countless interacting structures
or partially formed structures, though some basic under-
standing of the different types of structures would be help-
ful in the comprehension of the full stochastic complex-
ity that results from their underlying nonlinear dynam-
ics.

As an example of such coherent structures, let us con-
sider the behavior of Alfvénic flux tubes in magnetized
plasmas. We shall base our theoretical discussion by con-
sidering the plasma medium as a single, charge-neutral,
conducting fluid moving in and interacting self-consis-
tently with its electromagnetic environment. Because the
plasmas in the space environment are generally highly rar-
efied, we can typically neglect the dissipative effects from
particle collisions and assume the plasma is perfectly con-
ducting and inviscid. The most elemental mathematical
formulation for magnetized plasmas under such simpli-
fying assumptions is the so-called ideal incompressible
magnetohydrodynamics (MHD). The basic equations are
the equations of continuity and motion, and the relevant
Maxwell’s equations where the displacement current is ne-
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glected for nonrelativistic motion.

r � v D 0
(continuity equation for incompressible medium)

(1)

�dv/dt D j � B � rp
(equation of motion for an inviscid medium) (2)

r � B D 0 (Gauss’ law) (3)

@B/@t Cr � E D 0
(Faraday’s law) (4)

j D r � B
(Ampère’s law neglecting the displacement current)

(5)

where d/dt D @/@t C v � r is the convective derivative, �
is the density of the medium, v is the velocity, j is the cur-
rent density, B is the magnetic field, j � B is the Lorentz
force, p is the fluid pressure, and E is the electric field.
These equations are written in SI units with the vacuum
permeability set equal to 1.

To complete the set of equations of such a formulation,
we complement the above equations with the Ohm’s law
for a perfectly conducting medium:

EC v � B D 0 (6)

These equations may be combined to form the following
set of equations of motion and induction:

�dv/dt D (B � r)BC � � � (7)

dB/dt D (B � r)v (8)

where the eclipses represent the gradient of the total pres-
sure (pC B2/2). Standard arguments lead Eqs. (7) and (8)
to a linearized wave equation characterizing the funda-
mental propagation of small fluctuations of v and B. This
wave equation admits the well-known Alfvén waves which
are transverse waves to the magnetic field B and propagate
along themagnetic field direction. The phase velocity vA of
the Alfvén wave is B/p�, i. e., proportional to the strength
of the magnetic field and inversely proportional to the
square root of the density � of the plasma. For such waves
to propagate, the operators on the right hand sides of (7)
and (8) must not vanish, i. e., B � r ! ik � B D kk ¤ 0.
Therefore, the propagation vector k must contain a field-
aligned component kk. When the parallel component kk

of the propagation vector vanishes (i. e., at the resonance
sites), the fluctuations are localized. Around these reso-
nance sites (usually in the form of three-dimensional space
curves), it may be shown that the fluctuations – which will
try to propagate away as Alfvén waves – are held back by
the background magnetic field and the plasmas medium,
thereby forming the so-called Alfvénic coherent structures
(which are actually domains of bundled stochastic fluctu-
ations).

Coarse-Grained Helicity

We now consider such magnetized domains near the
Alfvenic resonance sites. For an ideal MHD system,
any physically acceptable magnetic field must satisfy the
solenoidal condition (Gauss’ law): r � B D 0. Also, any
variation of the field away from the initial value must sat-
isfy the constraints (4) and (6), i. e., Faraday’s law and
Ohm’s law for infinite conductivity.

It may be easily demonstrated that these constraints
are equivalent to an infinite set of integral constraints in-
volving the helicity K , such that

K D
Z

V

A � BdV (9)

is an invariant for any single connected volumeV enclosed
by a flux surface, whereA D r � B is the vector potential.

Taylor’s Conjecture

We are interested in the situation where there are domains
with stochastic turbulent fluctuations within which field
lines merge and mix indistinguishably. Thus, it will be dif-
ficult – in fact, unpractical – to discuss the topology of in-
dividual field lines. Nonetheless, it was suggested by Tay-
lor [114] that when the volume integral of (9) is taken
over the stochastic region, the coarse-grain averaged he-
licity in a relaxing state would be essentially conserved. As
the domain of the stochastic region near the Alfvenic reso-
nance site relaxes to a statistically stationary minimum en-
ergy state under the constraint of this conjecture of con-
servation of coarse-grained helicity, it may be shown us-
ing the variational principle that such a domain (coher-
ent structure) will be essentially force-free in the sense that
j � B D 0 where j and B are the mean current density and
magnetic field, respectively.

We are, of course, interested in dynamical states that
are far from equilibrium. Thus, in visualizing the relaxed
states from the point of view of this Taylor’s conjecture,
we shall consider timescales such that “nearly coherent”
structures are formed. These structures actually move, mix



8528 S Space Plasmas, Dynamical Complexity in

Space Plasmas, Dynamical Complexity in, Figure 3
Top: Schematics of tangled flux tubes in the solar wind. Each flux tube is characterized by a local magnetic field direction aligned ap-
proximately with the background field and the presence of Alfvénic fluctuations makes the magnetic field vector wander randomly
about this direction. Moving across the tubes, strong intermittent interactions of predominantly nonpropagating (i. e., resonant)
fluctuations are expected. Reprinted from [10] with permission from Elsevier. Bottom: 2D MHD simulation of cross-sectional view
of interacting flux tubes for homogeneous intermittent turbulence. Colors represent current intensities and directions. Adapted
from [33] with thanks to the American Institute of Physics

and sometimes merge together while immersed in an oth-
erwise turbulently diffusing plasma medium.

To obtain some physical insight of the geometries of
thesemagnetic coherent structures, let us consider the spe-
cial situation in the solar wind and make the reasonable

assumption that the perturbed magnetic field fluctuations
are much smaller than – and essentially transverse to – the
meanmagnetic field B0 which will be temporarily assumed
to be uniform for the current discussion [89]. Thus, let
us write B D (ıBx ; ıBy ; B0), where z is in the direction of
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the meanmagnetic field, and (x; y) are orthogonal coordi-
nates normal to z. The force-free condition for constant B0
and r � j D 0 then leads approximately to the scalar con-
ditionB � r jz D 0, obtained by taking the z-component of
the curl of j � B D 0. We have, then,

B0@ jz /@z D �(ıBx@/@x C ıBy@/@y) jz : (10)

For convenience, let us introduce the flux function  

by writing (@ /@y;�@ /@x) D (ıBx ; ıBy) for the per-
turbed transverse components of the magnetic field in the
(x; y) directions such that the Gauss law of magnetism,
r � B D 0 is satisfied. Then, jz and  are governed by
Eq. (10) and the Ampere’s law, r � B D j.

A simple example of the flux function and axial cur-
rent density satisfying the above conditions would be
the class of circularly cylindrical solutions of  (r) and
jz (r), [25,26]. Generally, the solutions would be more in-
volved because of the variabilities of the local conditions
of the plasma and the three-dimensional geometry. More-
over, the dynamic coherent structures with the inclusion
of plasma pressure and other modifying effects (includ-
ing electron-inertia terms) would be even more compli-
cated. However, we expect these structures to be in the
form of nearly field-aligned flux tubes, Fig. 3 [10,25,26,
136,137,138]. Existence of Alfvénic flux tubes in the mag-
netopause and magnetotail have also been suggested by
Tetreault [116,117] and Chang [23,24], respectively.

Generally, there exist various types of propagation
modes (whistler modes, electromagnetic ion cyclotron
waves, etc.) in magnetized plasmas. Thus, we envision
a corresponding number of different types of plasma res-
onances and associated coherent structures that typically
characterize the dynamics of the plasma medium under
the influence of an electromagnetic background.

Coarse-GrainedDissipation
andMagnetic Reconfiguration

When coherent Alfvénic flux tubes with the same polarity
migrate toward each other, strong local magnetic shears
are created, Fig. 4. Wu and Chang [136,137,138] have
demonstrated that the existing sporadic nonpropagating
fluctuations in the strong local shear region, particularly
those close to the neutral sheet (i. e., at the location where
the local magnetic field vanishes), will stay in the region
and continue to interact nonlinearly. On the other hand,
fluctuations away from the neutral sheet region, are non-
resonant and will therefore propagate away along mag-
netic field lines as Alfvén waves. Combined with the mag-
netic shear geometry, the resonant fluctuations will induce
a nonlinear instability near the neutral sheet region, which

will produce more fluctuations – nonresonant and reso-
nant. The nonresonant fluctuations will again propagate
away as Alfvén waves while the resonant ones will join
the other resonant fluctuations and interact nonlinearly,
thereby broadening the resonance region, Fig. 5.

This combined phenomenon of “coarse-grained dis-
sipation” depletes the energy originally contained in the
coarse-grained magnetic fields near the shear region, ini-
tiating a reconfiguration of the coherent structures. In
coarse-grained sense, it breaks some of the closed field
lines of each of the coherent structures and then recon-
nects them into single closed field lines. And this process
continues with the system adjusting intermittently with
the surrounding environment until all free energies are ex-
hausted, eventually leading to the formation of one sin-
gle combined coherent structure with one set of coarse-
grained concentric closed field lines, Fig. 6.

The final state of the resulting coherent structure will
have less average energy due to the combined dissipa-
tion of Alfvénic propagation of nonresonant fluctuations
and nonlinear interactions of the resonant fluctuations
(i. e., resonance broadening). Such is the manifestation of
continuous magnetic topological reconfiguration due to
the dynamic “fluctuation-induced nonlinear instability”.
And this merging process may repeat over and over again
among the coherent structures of the same polarity, from
the largest scales to the smallest scales where kinetic effects
may have to be included.

On the other hand, when coherent structures of oppo-
site polarities approach each other due to the forcing of the
surrounding plasma, they might repel each other, scatter,
or induce magnetically quiescent localized regions.

Under any of the conditions of the above interaction
scenarios, new fluctuations will be generated. And these
new fluctuations can provide new resonance sites, thereby
nucleating new coherent structures of varied sizes. This
kind of tangled geometry of interacting flux tubes leading
to dynamical complexity has been described by Bruno et
al. [10] who first deduced their existence in the solar wind,
as “cooked spaghetti”, Fig. 3 (top panel), and demon-
strated by Wu and Chang [136,137,138], Fig. 3 (bottom
panel), Matthaeus et al. [90], Fig. 7, and others with MHD
simulations. And they are the source of the observed spo-
radic and localized current disruptions in the Earth’s mag-
netotail and elsewhere [75,78,82].

Topological reconfigurations of such nature occur
quite frequently for the dynamical interactions of coherent
structures in space plasmas and are not limited just to flux
tubes; for example, Sundkvist et al. [109] and Alexandrova
et al. [1] have observed intermittent interactions of drift
Alfvén vortices in the cusp and magnetosheath, respec-
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Space Plasmas, Dynamical Complexity in, Figure 4
Cross-sectional views of interacting Alfvénic flux tubes. Left: Schematic of merging. Arrows indicate directions of magnetic field and
blackened area indicates location of strong shear. Right: 2DMHD simulation of the current intensities for homogeneous intermittent
turbulence. Colors represent the intensities and directions. Adapted from [137] with permission from Elsevier

tively. Similarly, such enhanced intermittency at the in-
tersection regions of whistler coherent structures has also
been surmised by Consolini and Lui [40] and Consolini et
al. [42] in the plasma sheet. All such intermittent interac-
tions are quite akin to the avalanche phenomenon preva-
lent in sandpile models [3,35,36,62,133]. They are the ori-
gin of the various observed magnetic reconnection signa-
tures in space plasmas.

This stochastic behavior of the interactions of the
plasma coherent structures is a phenomenon of “dynami-
cal complexity” as defined in Sect. “Definition of the Sub-
ject”, which, for emphasis, is reproduced below:

“Dynamical complexity” is a phenomenon exhibited by
a nonlinearly interacting dynamical system within which
multitudes of different sizes of large scale “coherent struc-
tures” are formed, resulting in a complicated global nonlin-
ear stochastic behavior for the dynamical system – vastly
different from that could be surmised from the original dy-
namical equations.

Non-Gaussian Probability Distribution Functions

The fluctuations that are induced by the interactions and
mergings of coherent structures are sporadic and local-
ized. Since the coherent structures are numerous and out-
sized, we expect the fluctuations within the interaction re-
gions of these structures (resonance overlap regions) to be
large and occur relatively more frequently than those that

would have been expected from a medium of the origi-
nal minute plasma particles (electrons, ions and neutrals).
A technique useful in gauging the degree of such effects is
by studying the shapes of the probability distribution func-
tions (PDFs) of intermittent fluctuations at varying scales.

To demonstrate this, let us refer to one of the 2DMHD
simulations described previously [32,33,136,137,138]. (In
the following discussions, the measured fluctuations may
be those of any physical property of the MHD medium.
We shall choose the physical property as the strength of
the magnetic field B(xi) to render the discussions more
specific). Consider, for example, the spatial series of the
strength of the magnetic field B(xi) for a given time t and
at fixed y, with xi D iı where i D 0; 1; 2; : : : ;N , and ı
is the grid size of the simulation. We can then form the
coarse-grained differences

ıB2
i (�) D B2(xi C�) � B2(xi) (11)

within the interval with � D kı (k: an integer) and gen-
erate the probability distribution function P(ıB2; �). Fig-
ure 8 displays the calculated results of P(ıB2; �) for a 2D
MHD simulation for the homogeneous case for several
coarse-grained scales,�. From this figure, we note that the
distribution for each scale falls nearly onto a smooth curve
with the exception at the tails where scatterings from the
mean are more visible. And the shapes of the PDF curves
deviate more and more from that of a Gaussian at smaller
and smaller scales.
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Space Plasmas, Dynamical Complexity in, Figure 5
2D MHD simulation of coarse-grained dissipation in sheared magnetic field. Left: Contours of magnetic flux. Right: Correspond-
ing current density distributions. Initially, new fluctuations are excited and the resonant fluctuations begin to interact nonlinearly
near the neutral sheet region (near y D �/2;3�/2). Eventually, the field lines are reconnected in the coarse-grained sense. Adapted
from [137] with permission from Elsevier

Such PDFs sometimes satisfy the one-parameter scal-
ing form:

P(ıB2; �)�s D Ps(ıB2/�s ) (12)

where s is the parameter (or scaling exponent) such that all
PDFs essentially collapse onto one master scaling function
Ps. Such scaling behavior seems to be approximately satis-
fied for the above simulated result with s � 0:335 (Fig. 9),
although closer examination reveals some discrepancies –
particularly in the tail regions [33]. The more subtle nature
of the scaling properties of such PDFs will be considered
further in Sect. “Multifractals”.

We shall now proceed to make contact with in-situ
spacecraft observations. Until recently, most of the turbu-
lence data in space came from measurements obtained by
one single spacecraft. The data are then analyzed based
on the Taylor hypothesis [113] which assumes that the
transit time of eddies (bundled fluctuations) is much less

than the characteristic evolution time. For fully developed
MHD turbulence, the characteristic eddy turnover (evolu-
tion) time may be estimated:

t(evolution) � (/2�)/[(ıB/B0)vA] (13)

where  is the typical size of the eddy, vA is the Alfvén
speed based on the mean magnetic field B0 and ıB is the
average fluctuating magnetic field of the eddy in question.
The transit time of the eddy is:

t(transit) � /vs (14)

where vs is the relative streaming speed between the
plasma medium and the spacecraft.

Thus, as it has been demonstrated by Matthaeus and
Goldstein [88] that the requirement of t(evolution) 	
t(transit) becomes:

vs/vA 	 2�(ıB/B0) (15)
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Space Plasmas, Dynamical Complexity in, Figure 6
2D MHD simulation of merging of flux tubes. Arrows indicate magnitudes and directions of magnetic fields. Reprinted from [137]
with permission from Elsevier

As pointed out by Tu and Marsch [120], at 1 AU for solar
wind observations the wind speed (which is essentially the
relative speed between the plasma medium and the space-
craft since it is much larger than the spacecraft speed) is of
the order of 10 times that of the ambient Alfvén speed and
ıB/B0 ' 0:5. Therefore, condition (15) is satisfied for so-
lar wind turbulence in that region. Because the spacecraft
speed is much smaller than the solar wind speed, the data
gathered by instruments aboard the spacecraft essentially
sample the spatial fluctuations in the direction of the so-
lar wind, particularly at times when the solar wind turbu-
lence is homogeneous at large scales and fully developed.
Thus, for example, the time series of such measurements
of the strength of the magnetic field B(ti ), where ti D iı
with i D 0; 1; 2; : : : ;N and ı is the sampling interval, may
be interpreted based on the hypothesis as the spatial series

of the ambient turbulence fluctuations with x D vs t (x: di-
rection of the solar wind velocity). We can then construct
the probability distribution function P(ıB; �) or P(ıB2; �)
with the coarse-grained scale � D kı (k: integer) in anal-
ogy to the calculations related to the simulation results dis-
cussed above.

Non-Gaussian probability distribution functions from
such statistics have been commonly observed in the so-
lar wind for fluctuations related to the magnetic, veloc-
ity, density and other field variables, e. g. [15,47,48,56,
71,72,85,107,108]. Figure 9 depicts the typical PDFs of
magnetic field fluctuations obtained from such an anal-
ysis for both the slow (� (400˙ 200) km/s) and fast
(� (700˙ 100) km/s) solar wind [108]. The similarities
between the simulated results and results from such ob-
servations as exhibited in Fig. 9 are quite striking.
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Space Plasmas, Dynamical Complexity in, Figure 7
MHD simulation of a two-component model, with 80% of its en-
ergy in two-dimensional modes, exhibiting tangled flux tubes
with considerable transverse complexity. Reprinted from [90]
with permission from the American Astronomical Society

Space Plasmas, Dynamical Complexity in, Figure 8
Probability distribution function P(ıB2;�) from a 2D MHD sim-
ulation for homogeneous turbulence for� D 2 (green), 8 (red),
32 (blue) units of grid spacing. The black curve is the PDF for
Gaussian fluctuations. Reprinted from [34] with permission from
Springer Science and Business Media

One popular empirical technique in expressing the
shape of the PDFs of the observed intermittent turbu-
lent fluctuations is the Castaing distribution. In 1990, Cas-
taing et al. [21] suggested that the intermittent fluctuations
might perhaps be viewed as an ensemble of subsets of fluc-

Space Plasmas, Dynamical Complexity in, Figure 9
Scaled probability distribution function Ps(ıB2s ;�) with ıB2s D
ıB2/�s, s D 0:335, and� D 2 (green), 8 (red), 32 (blue) units of
grid spacing. Adapted from [33] with thanks to the American In-
stitute of Physics

tuations � , each subset having a normal distribution:

P
 (�) D
1

�
p
2�

exp(��2/2�2) (16)

where � is the variance. The intermittency is then assumed
to be due to the fluctuations of the variances that satisfy
a log-normal distribution:

Q�(�)d� D
1


p
2�

exp
�
�
`n2(� /�0)

22

�
d`n� (17)

where �0 is the most probable variance of � , and  is the
variance of `n� . Combining (16) and (17) gives the Cas-
taing distribution

˘�(�) D

1
2�

Z C1

0
exp

�
�
�2

2�2

�
exp

�
�
`n2(� /�0)

22

�
d�
�2

:

(18)

Such fits of data to (18) are shown as solid curves in Fig. 10.
How well does such an ansatz characterize the data de-
pends very much on the type and scale of the fluctua-
tions [47]. Other empirical fits such as the kappa-distri-
bution and gamma-distribution have also been suggested,
but we do not have space here to enumerate and discuss
these and other phenomenological models.

Similar observational results have been detected for
the magnetic field and velocity fluctuations in the plasma
sheet [2,134], in the cusp [44,139], for the electric field
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Space Plasmas, Dynamical Complexity in, Figure 10
PDF for ıB calculated from the observational data in the (left) fast solar wind (� 700km/s) and (right) slow solar wind (� 400km/s)
streams. Solid lines represent fits obtained with the model suggested by Castaing et al. [21]. Reprinted from [108] with permission
from Elsevier

fluctuations in the auroral zone [111,112], as well as for
fluctuations of other field variables, though caution must
be exercised in interpreting some of these results as the
Taylor hypothesis may or may not be satisfied in the ob-
servational regions.

Wavelet Transforms and Intermittency

Traditional procedure for analyzing fluctuations is to per-
form Fourier transforms of the observational, numerical
or experimental data. The basis functions of the Fourier
transform are sines and cosines. Each such basis function
extends in space (or time) all the way from minus infinity
to plus infinity. Thus, Fourier transform essentially wipes
out the localized information of the intermittent fluctua-
tions resulting from the confined interactions of the coher-
ent structures. Therefore, for intermittent turbulence, it
will be more appropriate to consider transforms whose ba-
sis functions are localized and scale dependent instead of
sines and cosines. Such a transform has the generic name
of “wavelet transform” [43,46]. Below, we restrict our dis-
cussions to one-dimensional wavelet transforms.

To be more specific, a wavelet transform replaces
(transforms) the fluctuating spatial (or temporal) series
into the coefficients of a set of basis functions that are lo-
calized in space (or time) with different scales in space
(or time). The basis functions are usually chosen such
that they are square-integrable and generated by a sin-
gle mother wavelet, a rescalable and translatable function
 [(x � b)/a] where a is the scale and b defines the trans-
lation along x. Two of the more popular mother wavelets
are the complex-valued Morlet wavelet [94] defined by

 0(y) D ei k�ye�jyj
2/2 (19)

and the Haar wavelet [52] given by

 0(y) D

8
<̂

:̂

1 if y 2 [0; 1/2);
�1 if y 2 [1/2; 1); and
0 if y … [0; 1) :

(20)

To generate the full set of functions, we simply replace the
argument in (19) or (20) by (x � b)/a and allow the pa-
rameters (a; b) to vary within the domain of interest.
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The Morlet wavelet is appealing to the physicists be-
cause it fits in with the usual understanding of wave pack-
ets. And due to its continuous nature, the transform is
amenable to analytical manipulations. One disadvantage
of the Morlet wavelets is that they are not entirely orthog-
onal to each other. The Haar wavelet, on the other hand,
is truly local and the basis functions are real and orthog-
onal to each other. The simple and discrete nature of the
Haar wavelets renders it ideal for numerical applications.
One disadvantage of the Haar wavelets is that they are not
symmetrical with respect to the midpoint, thus producing
slanted spectral plots. This asymmetry, however, becomes
less and less noticeable for smaller and smaller scales.

To obtain the coefficients of a wavelet transform for
a particular fluctuating spatial (or temporal) series S(x), we
evaluate the convolution integral as follows:

C(a; b) D (K/a)
Z

S(x0) [(x0 � b)/a]dx0 (21)

where K is a normalization constant.
From C(a; b), we can calculate, for example, the nor-

malized power NP(a; b):

NP(a; b) D jC(a; b)j2 /
˝ˇ̌
C(a; b)2

ˇ̌˛
x (22)

where h: : : ix denotes the spatial (or temporal) average;
and, here, the average is essentially the Fourier trans-
formed power for the entirety of the fluctuations. In usual
applications, only a truncated finite set of coefficients are
used to perform practical calculations. The normalized
power is a power spectrum of both scale and location; thus,
it is sometimes called the Local Intermittency Measure,
LIM. By definition, LIM is equal to 1 for the Fourier trans-
form. Figure 11(top) is a color representation of the Lo-
cal Intermittency Measure or LIM of the magnetic field
intensity using the Haar transform for the 2D homoge-
neous MHD simulation discussed previously at a given
time t and for fixed y. The scale-dependent, sporadic and
localized powers of the fluctuations are vividly displayed.
We note that the intermittency increases as the scale is
reduced. And, the intensity can be rather strong at small
scales – even when the fluctuations are strongly intermit-
tent and localized.

Normalized power of wavelet transforms have been
used to evaluate the Local Intermittency Measure LIM in
the solar wind (e. g. [9,10]), for the AE index [38,39], in
the magnetotail (e. g. [42,77,131]), in the cusp (e. g. [44,
139]), and in the auroral zone [112]. Figure 11 (bottom) is
a color representation of the Local Intermittency Measure

LIM using the Haar transform for the electrical field fluc-
tuations in the transverse direction to the magnetic field in
the auroral zone [112]. The characteristics of strong inter-
mittency at small scales are clearly visible.

As it has been pointed out in Sect. “Non-Gaussian
Probability Distribution Functions”, intermittent fluctu-
ations have non-Gaussian probability distributions espe-
cially at small scales. We may look for a quantity which
provides ameasure of the non-Gaussian nature of the fluc-
tuations as a function of scale. A normalized scale depen-
dent measure related to the fourth order moment of the
coarse-grained probability distribution is called the Flat-
ness. It indicates whether the data are more peaked or flat-
ter relative to the Gaussian distribution. It is also called the
Kurtosis. It has been suggested by Meneveau [91] that the
average over space (or time) of the square of the normal-
ized power is essentially the scale dependent Flatness of the
probability distribution.

Flatness D
˝
[NP(a:b)]2

˛
x (23)

For Gaussian probability distributions, the value of the
Flatnessmay be shown to be equal to 3. For an intermittent
event, the Flatness increases without bound at small scales.
The rate at which the Flatness increases with the decrease
of scale is a measure of intermittency. Figure 12(top) plots
the values of the Flatness calculated as a function of scale
corresponding to the fluctuations discussed above for the
magnetic field fluctuations for the 2DMHD simulation for
given y and fixed t. We note that the value of the Flat-
ness becomes larger than 3 and continues to increase as
the scale becomes smaller and smaller.

Flatness has been evaluated for the solar wind turbu-
lence by Bruno et al. [10,11], Fig. 12(bottom). It is one of
the tools used by Bruno et al. [10] to arrive at the con-
clusion that solar wind turbulence is the manifestation of
interacting tangled flux tubes or “cooked spaghetti” as de-
picted in Fig. 3(top). Wavelet transforms have been used
by various authors to evaluate Flatnesses of intermittent
turbulence in other regions of space plasmas, e. g. [44,77,
112,131,139]. Other more generalized techniques of gaug-
ing the intermittency in space plasma turbulence have also
been employed by Vörös [129] and Vörös et al. [130,132],
which we shall not discuss here.

The normalized power and Flatness are only two tools
that provide gauges of intermittency of a fluctuating series.
One might ask: Are there other measures such that in their
totality fully characterize the intermittency nature of the
fluctuating series? This will be addressed briefly in the next
section.
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Space Plasmas, Dynamical Complexity in, Figure 11
Top: Normalized power or LIM for the intermittent magnetic field fluctuations B(x) using the Haar transform for a 2D homogeneous
MHD simulation at given time t and for fixed y, in units of grid spacing.Color indicates intensity. Bottom: Normalized power or LIM for
the intermittent transverse electric field fluctuations in the auroral zone. Color indicates intensity. Adapted from [112] with thanks
to the American Geophysical Union

Multifractals

Another popular modus operandi designed to study the
phenomenon of intermittency is based on the concept of
multifractals. As we have seen above, turbulence in space
plasmas generally encompass fluctuations of all varieties
and sizes, which interact and propagate throughout the
plasma medium. For illustrative purposes, let us visual-
ize some particular fluctuations that have conventional
geometrical properties in a three-dimensional Euclidean
space. Because of their sporadic and localized nature, it
is easy to imagine that they generally cannot fill the full
three-dimensional space that they occupy at a given time.
Or said in another way, the space these fluctuations occupy
is only a fraction of the full three-dimensional space. Such
geometrical property was popularized by Mandelbrot [83]
when he coined the word “fractals” or fractal geometry.

Actual fluctuations in plasma turbulence generally do
not have the conventional geometrical properties. We
must then devise some abstract “measure” to character-
ize the properties of the fluctuations and evaluate its frac-

tal characteristics which may be interpreted with geomet-
rical analogs. Consider, for example, the spatial series of
the simulated fluctuations of the strength of the mag-
netic field, B(xi), along some constant value of y at time t
for the two-dimensional homogeneous MHD turbulence
discussed in the previous sections, where xi D iı with
i D 0; 1; 2; : : : ;N and ı is the length between grid points.
From this series, we can construct a spatial series by con-
sidering, for example, the absolute value of the fluctuations
due to the coarse-grained difference of the strength of the
magnetic field between two spatial values xi C� and xi
with � D kı, some multiple of ı:

ıBi D jB(xi C�) � B(xi)j (24)

within the spatial interval X D Nı. The simulation is sta-
tistically homogeneous over the interval X. Thus, we may
calculate the ensemble average of ıBi over the interval X,

S1(ıB; �) D hjB(xi C�) � B(xi)ji (25)

and use it as a “measure” for the coarse-grained fluctua-
tions of the simulated spatial series. The choice of taking
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Top: Flatness as a function of scale in units of grid spacing for
the intermittent magnetic field fluctuations B(x) using the Haar
transform for a 2DhomogeneousMHDsimulation at given time t
and for fixed y.Bottom: Flatness versus time scale for threediffer-
ent time intervals for the solar wind during solar minimum (i. e.,
when the solar activity is very weak) as measured by the WIND
spacecraft. Reprinted from [11] with thanks to the American In-
stitute of Physics

the ensemble average of the absolute values of the coarse-
grained differences instead of the values of the raw differ-
ences is for the purpose of better statistical convergence [8,
127]. We can then plot log S1(ıB; �) against log� for
different choices of � (or k). If the result approximates
a straight line for some range of � for small �, we can
then assign a fractal number �1(ıB) to the fluctuations of
the strength of the magnetic field as:

�1(ıB) D d(log S1(ıB; �))/d(log�) (26)

for this range of small�. In other words, within this range
of small� wemay represent S1(ıB; �) as power of� with
exponent �1(ıB). This exponent may be considered as an
analog to the classical concept of dimension. It is gener-
ally an irrational number and usually cannot be surmised
from simple dimensional analysis arguments; thus it is sort
of a “fractal dimension” for the particular choice of “mea-
sure” described above.

Structure Functions

It is obvious that if another choice of measure is made, the
corresponding fractal number for the same spatial series
will generally be different. For example, one might wish to
look at higher order moments of the PDFs P(ıB; �) of ıB,
the so-called structure functions:

Sq(ıB; �) D
Z

(ıB)qP(ıB; �)d(ıB)

D
˝
jB(xi C�) � B(xi)jq

˛ (27)

The motivation here is that different moments em-
phasize different peaks in the fluctuating series. Generally,
corresponding to each �q there will be a fractal exponent
�q for small �. If �q D �1q, then the fractal property of
the fluctuating series is fully characterized by the value of
�1. Such fluctuations are then said to be “monofractal” or
“self-similar”, i. e., the fractal characteristics for all the mo-
ment orders are similar to each other. For general inter-
mittent turbulence, on the other hand, �q would be a non-
linear function of q, or “multifractal”.

In practical calculations, it has been suggested by Benzi
et al. [6] for hydrodynamic turbulence studies that the
correlations among the structure functions seemed to be
much more apparent than those exhibited by the cor-
relations of individual structure functions directly with
coarse-grained scaling. This is particularly true for struc-
ture functions based on the absolute values of the differ-
ences of fluctuations as it is defined here [51]. This also
seemed to be true for plasma turbulence studies [19,20,95,
100]. Thus, it has become very popular to first determine
the relative values of the structure function exponents with
respect to the structure function exponent of a particu-
lar order, and then determine the exponent for that par-
ticular order more accurately by some phenomenologi-
cal, dimensional, or empirical reasoning. This procedure is
called “extended similarity scaling” (ESS). Figure 13 is the
result of such a statistical calculation for the fluctuations of
the magnetic field strength B(xi) of the 2D homogeneous
MHD simulation for given y and t. We note that the struc-
ture function exponents exhibit nonlinear, i. e., multifrac-
tal, behavior as expected for intermittent turbulence.
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Structure function exponents for the magnetic field intensity at
given time t and for fixed y using ESS for a 2D MHD simulation
for homogeneous intermittent turbulence. The values of the ex-
ponents at high orders are less accurate than those for the low
orders due to the size limitation of the simulation box. Reprinted
from [27] with thanks to the American Institute of Physics

Space Plasmas, Dynamical Complexity in, Figure 14
Structure function exponents using ESS for the time series of the
strength of the magnetic field collected for extended periods
during solar minimum (low solar activity) by the WIND space-
craft (circles) and solar maximum (high solar activity) by the ACE
spacecraft (filled circles). Adapted from [11] with thanks to the
American Institute of Physics

Calculations for structure function exponents have
been carried out for magnetic and velocity fluctuations
in the solar wind, e. g. [11,12,13,14,17,58,59,60,86,97,121]
and elsewhere in the space environment, e. g. [57], usually
by assuming the applicability of the Taylor hypothesis. We
caution here again that except for most of the solar wind
studies, the assumption of the Taylor hypothesis must be
exercised with a critical eye. In Fig. 14, the results for such
calculations for the time series of the strength of the mag-

netic field collected for extended periods during solar min-
imum (low activity) and solar maximum (high activity) by
two separate spacecraft (Wind and ACE) are presented.
The multifractal nature of the intermittent turbulence is
apparent in both calculated results [11].

Structure function calculations may be performed
conveniently for a fluctuating series for positive values
of q; but will generally diverge for q < 0. An alternative
procedure to evaluate the fractal characteristics of differ-
ent moment orders is the so-called “singularity analysis”
described below.

Partition Functions, Generalized Dimensions
and Singularity Spectra

As we have seen in the previous discussions, turbulence
in space plasmas is generally intermittent and therefore
probably composed of an admixture of fluctuations of dif-
ferent fractal characteristics. We may attempt to extract
this “multifractal” nature of the observed fluctuating time
series by searching for the “dominant singular behavior”
for different moment orders at small scales following the
technique suggested by Parisi and Frisch [98] and Halsey
et al. [54] and first applied to solar wind turbulence by
Burlaga [12,13,14,15], and later for the auroral electrojet
(AE) index by Consolini [41], for the high latitude geo-
magnetic fluctuations by Vörös [129,130], for the plasma
sheet by Lui [76] and Weygand et al. [134], to the magne-
tospheric cusp by Yordanova et al. [139], and to the auro-
ral electric field fluctuations by Chang et al. [34].

The basic idea here is to define an appropriate measure
that is scale dependent. (Instead of referring to a spatial se-
ries such as that considered above for the numerical sim-
ulation, for variance, we consider below a generic time se-
ries based on temporal observations). To proceed, we first
define an “incremental measure”:

ı� j D
ˇ̌
B(t j C ı) � B(t j)

ˇ̌
(28)

where ı is the sampling interval. We now subdivide the
total time interval T into M D T/� segments with � D kı
and calculate the normalized scale-dependent “segmental
measure”

�i (�) D
i kX

jD(i�1)kC1

ı� j/� with � D

NX

jD1

ı� j (29)

For convenience, we will generally choose M to be an
integer.

The normalization of �i (�) is an attempt to represent
the segmental measure as a measure of probability. This
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is the scale dependent measure that we seek to define. We
shall assume that each such measure varies with the scale �
in a singular manner as a power law.We now form the qth
moment order of the coarse-grained probabilities �i (�),
traditionally called the “partition function” [54]:

� (q; �) D
MX

iD1

�
q
i (�) (30)

where q can be any real number. We shall now search for
the dominant singular behavior of � (q; �) as character-
ized by a power law in � with exponent � (q) for small �
similar to that for the structure function analysis. In gen-
eral, for each moment order, � (q) is a different number
characterizing the particular fractal behavior of the subset
of fluctuations, which dominates the (singular) scaling be-
havior of that particular moment order.

As mentioned above, Consolini et al. [41] have car-
ried out such a singularity measure multifractal analysis
for a typical time series of the auroral electrojet (AE) in-
dex, Fig. 15 (top left panel). In their calculations, the in-
cremental measure was chosen as:

ı� j D
ˇ̌
�AE(t j C ı) � �AE(t j)

ˇ̌2 (31)

where �AE(t j) is the measured AE index at time t j and ı is
the sampling interval. We note from the figure that � (q)
is indeed a nonlinear function of q, and thus, a “multi-
fractal”. There are two distinct asymptotic regimes of q
(q < �2, and q > C2) for which � (q) varies with q nearly
linearly and a nonlinear crossover region between the two
asymptotes.

Henschel and Procaccia [55] suggested the concept of
the so-called “generalized dimensions” for fractals. Their
definition of the generalized dimension Dq is related to the
partition function � (q) as follows:

Dq D (q�1)�1 lim
�!0

log� (q)/ log � D � (q)/(q�1) : (32)

It is called the generalized dimension because in the limit
of q! 0,D0 is essentially the fractal (or similarity) dimen-
sion defined by Mandelbrot [83]. Also, it may be shown
that, in the limit of q! 1,D1 corresponds to the so-called
information dimension [5]. In addition, Dq’s for q � 2 are
the corresponding qth correlation dimensions [50]. The
calculated generalized dimension Dq as a function of mo-
ment order q for the AE index is shown in Fig. 15 (top right
panel). As shown by Consolini et al. [41], such a nonlin-
ear variation may be modeled rather accurately by the so-
called p-model which is a “two-scale cascademodel” as fol-

lows [16,92]:

Dq D log2[p
qC(1�p)q ]1/(1�q) with p D 0:746˙0:002:

(33)

where p is the single fitting parameter associated with
the fragmentation probability of the cascade process. This
one-parameter representation of the generalized dimen-
sion for the multifractal phenomenon of the AE index re-
inforces the idea stated earlier that the multifractal phe-
nomenon can be thought of as the crossover phenomenon
between two invariant regions.

Another way to gauge the multifractal characteristics
in terms of the partition function formalism is the method
of the singularity spectrum f (˛) [54,98]. If we associate
with each segmental measure �i a singularity index ˛i
such that �i D �

˛i where ˛i is within some range be-
tween ˛ and ˛ C�˛ and pass on to the continuum limit
by writing the number of differential measures whose sin-
gularity index is between ˛ and ˛ C d˛ as �(˛)�� f (˛)d˛,
then the partition function as defined in (30) in the con-
tinuum limit is:

� (q; �) D
Z

d˛0�(˛0)�� f (˛0)Cq˛0 : (34)

Since we are interested in the phenomenon for very
small � , the integral is dominated by the value of ˛0 which
makes the expression � f (˛0)C q˛0 the smallest. Assum-
ing �(˛0) ¤ 0 and f (˛0) smooth, the minimum is located
at ˛0 D ˛(q) with

f 0(˛(q)) D q and f 00(˛(q)) < 0 (35)

Therefore the partition function for very small � is approx-
imately

� (q; �) � exp
˚
[q˛(q) � f (˛(q))] ln �

�
(36)

This leads immediately to the identification of

� (q) D Dq(1 � q) D [q˛(q) � f (˛(q))] (37)

Differentiating (37) with respect to q and using the first
expression of (35), we obtain

˛(q) D � 0(q) � d� /dq (38)

Thus, given � (q), we may determine ˛(q) and then, f (˛).
Such a singularity spectrum for the AE index considered
by Consolini et al. [41] is given in Fig. 15 (bottom panel).
Because ˛(q) is intimately related to � (q) (and therefore
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Space Plasmas, Dynamical Complexity in, Figure 15
Top left: Partition function exponent �(q) for a time series of the AE (auroral electrojet) index. Top right: Generalized dimension Dq
for the same AE time series. Solid line is the best fit using the P-model. Bottom: Singularity spectrum f (˛) for the same AE time series
obtained from the Legendre transform. Adapted from [41] with thanks to the American Physical Society

also to the partition function � (q)); f (˛) sorts out the
spectrum of singularities of the intermittent fluctuations,
that may be mapped to the multifractal dimensions Dq as
defined by (32).

In the above, we have introduced a sequence of alge-
braic manipulations mainly for the purpose of connecting
three different popular approaches of identifying the sin-
gularity nature of the multifractal characteristics of a time
(or spatial) series based on the partition function formu-
lation. We must emphasize that these are merely differ-
ent approaches of viewing fracture characteristics of inter-
mittent fluctuations with no additional physics involved,
except perhaps with the following useful thermodynamic
analogy. That is, the relationship between (� (q); q) – or
equivalently (Dq ; q) – and ( f (˛); ˛) is formally a Legendre
transform. Thus, one may easily associate the relationships
among such measures with the standard notion of Leg-

endre transforms of classical thermodynamics [96]. Such
a connection may become useful in identifying analogies
between singularity measures of multifractals with multi-
criticality measures in thermodynamics.

It is interesting to note that in multifractal analyzes of
space plasma turbulence in regions where intermittency
are expected, similar functional dependence of � (q) on q
as above is also generally obtained [12,13,14,15,18,34,87,
134,139]. Although, we must recall that for turbulence in
the plasma sheet or the auroral zone and even sometimes
in the solar wind, the assumption of the validity of the Tay-
lor hypothesis must be applied with caution.

In the previous section, it was demonstrated that in-
termittency characteristics of a fluctuating series could be
brought out using the technique of wavelet transforms.
Certain quantities, Local Intermittency Measure LIM or
Normalized Power and Flatness, were introduced using
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the wavelet transforms to gauge the intermittency effects.
Since the complete set of coefficients of the wavelet trans-
forms essentially represents the full fluctuating event, it
is reasonable to inquire if it can be used to advantage to
describe the full characteristics of intermittency of a fluc-
tuating series. The answer is a definite yes. For example,
wavelet transforms have been used to study multifractal
characteristics of time series related to intermittent turbu-
lence in space plasmas by Yordonova et al. [139] for the
magnetospheric cusp and Vörös et al. [131] for the plasma
sheet.

Rank-Ordered Multifractal Analysis (ROMA)

In the above, intermittent fluctuations were analyzed using
the structure function and/or partition function methods
based on the statistics of the full set of fluctuations. Since
most of the observed or simulated intermittent fluctua-
tions are dominated by fluctuations with small amplitudes,
the subdominant fractal characteristics of the minority
fluctuations – generally of larger amplitudes – are easily
masked by those characterized by the dominant popula-
tion. It therefore appears useful to search for a procedure
that explores the fractal nature of the subdominant fluc-
tuations by first appropriately isolating out the minority
populations and then perform statistical investigations for
each of the isolated populations.

Phrasing it differently, for intermittent fluctuations ex-
hibiting multifractal characteristics, we visualize that these
fluctuations are composed of many types, each type being
characterized by a particular fractal dimension. The ques-
tions to ask then are (i) what are the different fractal di-
mensions? and (ii) how are the various types or classes
of fluctuations distributed within the turbulent medium?
We answer these questions quantitatively by constructing
a “rank-ordered multifractal spectrum”.

Using the example of a 2D MHD simulation that
was discussed in Sect. “Non-Gaussian Probability Distri-
bution Functions”, we demonstrate below how this idea
may be achieved with a rank-order method that subdi-
vides the fluctuations into groupings based on the range
of the scaled-sizes of the fluctuations [28]. In the simula-
tion, ideal compressible MHD equations expressed in con-
servative forms are solved numerically with 1024 � 1024
grid points in a doubly periodic (x; z) domain of length
2� in both directions using the WENO code [64] so that
the total mass, energy, magnetic fluxes and momenta are
conserved. The initial condition consists of random mag-
netic field and velocity with a constant total pressure for
a high beta plasma. As discussed previously, after sufficient
elapsed time, the system evolves into a set of randomly in-

teracting multiscale coherent structures exhibiting classi-
cal aspects of intermittent fluctuations.

We recall that the PDFs P(ıB2; �) of the square of the
magnitude of the magnetic field ıB2 for such intermittent
fluctuations were non-Gaussian and became more and
more heavy-tailed at smaller and smaller scales (Fig. 8).
An attempt to collapse the unscaled PDFs according to the
one-parameter scaling formula (12) re-displayed below as
(39):

P(ıB2; ı)ıs D Ps(ıB2/ıs ) (39)

indicated approximate scaling with an estimated scaling
exponent of s D 0:335 (Fig. 9). The scaling formula (39)
may be interpreted from the concept of fractals. We be-
gin the interpretation by assuming that ıB2 and P vary
with ı as power laws: ıB2/ıa D I and P/ıb D J, where
(a; b) are the power-law (fractal) exponents and (I; J) are
constants – i. e. invariants with respect to the scale ı. If the
form of P(ıB2; ı) is invariant as the scale changes, then it
has been shown that a functional relation exists between
the two invariants, (I; J) [29]. Imposing the normalization
condition for the PDFs, we obtain the one-parameter scal-
ing form (39) with s D a D �b.

Such a phenomenon is self-similar and the PDFs col-
lapse onto one scaled PDF Ps(Y) where Y D ıB2/ıs is
a scale invariant. In such a case, the structure function ex-
ponents for the PDFs will satisfy the monofractal property
of �q D sq. The scaling exponent s may be interpreted as
a single fractal measure that characterizes the fluctuations
of all scales through the scaling relation (39). If the PDFs
are self-similar Gaussian distributions for all scales, repre-
senting random diffusion, the scaling exponent s is equal
to 0.5. For other monofractal distributions, the scaling ex-
ponent may take on any positive real value.

For the current example, structure function calcula-
tions based on the full set of simulated fluctuations showed
a nonlinear relation between the exponents and the mo-
ment order, indicating the phenomenon is multifractal in
nature [27]. However, the physical interpretation of the
multifractal nature is not easily deciphered by merely ex-
amining the curvature of the deviation from linearity.

We shall therefore attempt to perform statistical ana-
lyzes individually for subsets of the fluctuations that char-
acterize the various fractal behaviors within the full mul-
tifractal set. Such grouping of fluctuations must depend
somehow on the sizes of the fluctuations. However, the
groupings cannot depend merely on the raw values of the
sizes of the fluctuations because the ranges will be differ-
ent for different scales. Thus, we proceed to rank-order the
sizes of the fluctuations based on the ranges of the scaled
variable Y D

ˇ̌
ıB2

ˇ̌
/�s where s is the scaling exponent for
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each grouping defined in (39). (Absolute values of the fluc-
tuations are used to take advantage of the symmetry prop-
erty of the PDFs and for the purpose of better statistical
convergence.) For each chosen range we shall assume that
the fluctuations of all scales will exhibit monofractal be-
havior satisfying the form of (39) and be characterized by
an scaling exponent s. The question is then how can this
procedure be accomplished.

We begin by considering a differential range of scales
dY in the vicinity of some scaled size Y D

ˇ̌
ıB2

ˇ̌
/�s . Fluc-

tuations whose sizes fall within such a differential range
will probably exhibit monofractal behavior characterized
by some scaling exponent s such that the differential struc-
ture function dSq will vary with the scale as�sq , i. e.,

dSq , (jıB2j)qP(jıB2j; �)d(jıB2j) D �sqYqPs(Y)dY
(40)

Given a set of PDFs P(jıB2j; �), the corresponding
multifractal spectrum s(Y)may be obtained approximately
(if the ansatz is valid) by integrating the functional differ-
ential expression (40) over small contiguous ranges of�Y
with the assumption that within each incremental range
the scaling exponent s is essentially a constant [28]. Thus,
for a generic range of �Y within (Y1;Y2), we form such
a range-limited structure function as follows:

�Sq(
ˇ̌
ıB2 ˇ̌ ; �) D

a2Z

a1

ˇ̌
ıB2 ˇ̌qP(

ˇ̌
ıB2 ˇ̌ ; �)d

ˇ̌
ıB2 ˇ̌

' �sq

Y2Z

Y1

YqPs(Y)dY (41)

where a1 D Y1�s and a2 D Y2�s . We then search the
value of s such that the scaling property of the range-lim-
ited structure function that varies with s is �Sq(s) � �sq .
If such a value of s exists, then we have found one region
of the multifractal spectrum of the fluctuations such that
the PDFs in the range of �Y collapses onto one scaled
PDF. Performing this procedure for all contiguous ranges
of �Y produces the rank-ordered multifractal spectrum
s(Y) that we are looking for. The determined value of s
for each grouping should be un-affected by the statistics of
other subsets of fluctuations that are not within the chosen
range�Y and therefore should be quantitatively quite ac-
curate. The physical meaning of this spectrum is that the
PDFs for all time lags collapse onto onemastermultifractal
scaled PDF. The spectrum is implicit since Y is a defined
as a function of s.

Space Plasmas, Dynamical Complexity in, Figure 16
Rank-ordered multifractal spectrum, s(Y). Y D jıB2j/�s; jıB2j
in units of bin size and� in grid spacing. The spectrum is calcu-
lated for 8 contiguous ranges of�Y. Reproduced from [28] with
thanks to the American Physical Society

Interestingly, for this particular example, there exists
one and only one value of s in each range of �Y , that sat-
isfies the above constraint. Unlike the structure functions
defined for the full range of fluctuations, the range-limited
structure functions based on (41) exists also for negative
real values of q (except for the range including Y D 0).
Figure 16 displays the calculated rank-ordered spectrum
s(Y) based on eight contiguous ranges of �Y [28]. It is
noted that the spectrum has values of s ranging between
0.5 and 0.0. The spectrum can be refined by choosing more
range intervals with smaller range sizes of �Y , although
in practice this procedure is limited by the availability of
simulated data points. At Y D 0, the scaling exponent s
appears to approach the self-similar Gaussian value of 0.5
representing random diffusion. As the value of the scaled
fluctuation size Y increases the scaling exponent decreases
accordingly indicating the fluctuations are becoming less
and less space filling. At very large value of Y , the scal-
ing exponent s seems to asymptotically approach the value
of zero indicating the fluctuations have become extremely
sparse.

Such an implicit multifractal spectrum has several ad-
vantages over the results obtainable using the conventional
structure function calculations. Firstly, the utility of the
spectrum is to fully collapse the unscaled PDFs. Secondly,
the physical interpretation is clear. It indicates how space-
filling (in terms of the value of s) are the scaled fluctuations
once the value of Y is given. Thirdly, the determination of
the values of the fractal nature of the grouped fluctuations
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is not affected by the statistics of other fluctuations that
do not exhibit the same fractal characteristics. Fourthly, it
provides a natural connection between the one-parameter
scaling idea (39) and the multifractal behavior of intermit-
tency.

Invariant Scaling

Forced and/or Self-Organized Criticality (FSOC)

In the above sections, we provided some convincing argu-
ments as well as numerical and observational evidences in-
dicating that space plasma turbulence is generally in a state
of dynamic “topological complexity”. By “complex” topo-
logical states we mean magnetic topologies that are not
immediately deducible from the basic (e. g., MHD) equa-
tions.We also discovered that the structure/partition func-
tions for turbulence generally scale as power laws at least
at small scales. Expressed another way, we found that there
were power-law scale invariants with respect to coarse-
graining at small scales where intermittency prevails. Be-
low, we shall briefly address the salient features of such
“topological phase transitions” as well as the associated
scale invariant properties in turbulent plasmas. (We note
here that the concept of phase transitions has also been
employed to address the phenomenon of complexity in
space plasmas by Sitnov et al., [106] using the singular
spectrum method.)

For nonlinear stochastic systems exhibiting complex-
ity, the correlations among the fluctuations of the random
dynamical fields (electric, magnetic and velocity fields,
etc.) are generally very long-ranged and there exist many
correlation scales (as exhibited by the various outsized
plasma coherent structures). The dynamics of such sys-
tems are notoriously difficult to handle either analytically
or numerically. On the other hand, since the correlations
are extremely long-ranged, it is reasonable to expect that
the system will exhibit some sort of invariance property
under coarse-graining scale transformations. A powerful
analytical technique that exploits this invariance prop-
erty is the method of the dynamic renormalization group
(DRG) which we shall briefly describe below. The tech-
nique is a generalization of the static renormalization
group introduced byWilson in 1972 [135] for equilibrium
phase transitions. Dynamic renormalization group was
originally developed as a perturbation theory by Halperin
et al. [53] and first applied to hydrodynamic problems by
Forster et al. [49]. A closed form exact theory of DRG was
developed by Chang et al. [30]. And a review of the basic
elements of this theory may be found in Sect. “Non-Gaus-
sian Probability Distribution Functions” of a Physics Re-
port by Chang et al. [31].

No matter how complex the stochastic behavior is for
the turbulent system, we may conjecture that the system
is somehow characterized by a set of dynamically evolving
parameters fPng. We now transform the stochastic system
by coarse-graining and ask how these parameters trans-
form accordingly (subject to the rules stipulated by the un-
derlying dynamical equations, e. g., those for the interact-
ing flux tubes). Symbolically, we write

@fPng@` D RfPng (42)

where R represents the coarse-graining (renormalization-
group) transformation operator and ` is the coarse-grain-
ing parameter. The operator is generally very complicated
for even relatively simple stochastic systems. Instead of ac-
tually delving into the mathematical formalism of DRG,
we shall merely explore some of the basic concepts related
to such ideas.

Forced and/or Self-organized Criticality Generally, if
one starts at some initial state fPn(0)g and proceeds with
the coarse-graining procedure following the prescription
dictated by (42), the result would be a trajectory in the
phase space characterized by the parameters. In analogy
to nonlinear dynamics, we expect that there may be fixed
points (singular points) in the phase space flow field, at
which dfPng/d` D 0. At such a point, e. g., fP�n g, the corre-
lation length should not be changing. However, the coarse-
graining transformation requires that all length scales to
change with `. Therefore, to satisfy both requirements, the
correlation length must be either infinite or zero at the
fixed point. When it is at infinity, the state of the dynam-
ical system would then be at a state of dynamic criticality,
analogous to the state of criticality in equilibrium phase
transitions.

Generally, a dynamical system will not be near a para-
metric state such as fP�n g. But, if the coarse-graining pro-
cedure (i. e., the renormalization group trajectory) leads
it eventually to a point in the parametric space close to
a fixed point such as fP�n g, then in a coarse-grained sense
the stochastic system would be close to a state of dynamic
criticality. We may then approximate the coarse-graining
transformation (42) by linearizing the operator R. The re-
sult is a set of coupled linear differential equations charac-
terizing the variations of the deviations of the parameters
fPng from fP�n g.

dfQng/d` D RLfQng (43)

where Qn D Pn � P�n and RL is the linearized renormal-
ization-group matrix operator.
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We assume that expression (43) may be expressed in
terms of a set of eigenvalue equations:

d�i /dl D i�i (44)

where the eigenvectors �i’s are linear combinations of the
parameters Qn and the i’s are the corresponding eigen-
values.We shall assume that the eigenvectors are complete
and the eigenvalues are all real. (Nondiagonalizable oper-
ator RL may render the eigenvectors incomplete and lead
to logarithmic corrections to the discussion below, which
will not be considered here).

The solutions of (44) are simply �i D �
0
i expi`

where f�0
i g represents some arbitrary state that is close to

fP�n g. From this, it can be verified immediately that

�i /�
�i /� j
j D constants (45)

i. e., the�i’s form power law invariants which are indepen-
dent of the coarse-graining scale transformation `.

Expressing this result in words: Themathematical con-
sequence of the linear approximation is that, close to dy-
namic criticality, certain linear combinations of the per-
turbations of the parameters that characterize the stochas-
tic phenomenon will correlate with each other in the form
of power laws. These include the (k; !), i. e. mode num-
ber and frequency, spectra of the correlations of the var-
ious fluctuations of the dynamic field variables in space
and time, etc. The fact that the dynamical (stochastic) sys-
temmust initiate from some state so that the coarse-grain-
ing trajectory will carry it to the close proximity of a fixed
point such as fPng means that there may need some ini-
tial tuning of the state for the system to have such behavior.
For this reason, we shall refer to such dynamical systems

Space Plasmas, Dynamical Complexity in, Figure 17
Flare probability distributions of avalanche lifetime (left), emission flux (middle) and peak area (right) for solarmax (high activity) and
min (low activity) obtained for emissions detected by the EIT (extreme ultraviolet imaging telescope) aboard the SOHO spacecraft in
the 195Åwavelength above a threshold of 40%of the average emission. Themin distributions are shifted downward for comparison.
Adapted from [126] with thanks to the American Physical Society

as systems near Forced and/or Self-organized Criticality
(FSOC) [22]. The phenomenon of FSOC is spatiotemporal
and the invariant scaling idea permeates throughout the
time-space domain. In addition, the scaling between time
and space generally is not isotropic.

Such power law behavior has been detected in prob-
ability distributions related to the solar flares [74,126],
Fig. 17, in the AE burst occurrences as a function of
the AE burst strength [37], Fig. 18, in the global auro-
ral UVI imagery of the statistics of size and energy dissi-
pated by the magnetospheric system [81], in the probabil-
ity distributions of spatiotemporal magnetospheric distur-
bances as seen in the UVI images of the nighttime iono-
sphere [124], in the probability distributions of durations
of Bursty Bulk Flows [2], and in the magnetic field fluctu-
ations of the Earth’s magnetotail [61,93]. Similar behav-
ior has also been obtained in numerical simulations for
the distributions for solar flares [45], for dynamical mod-
els for the current sheet [66,110,122] and other applica-
tions. This invariant behavior had been called self-orga-
nized criticality (SOC) [3], i. e., tuning is generally not nec-
essary.

An eigenvector (eigen-parameter) �i is “irrelevant” if
the corresponding eigenvalue i is less than zero because
in the limit of large ` the value of �i will become negligi-
ble. The reverse is true for positive i’s. We shall not con-
sider the special case of i D 0 which introduces singular-
ities of fractional powers of logarithms. If there are only
a small number of relevant eigenvalues with i > 0, the
corresponding FSOC system has only a small number of
“relevant parameters” that are needed to characterize the
stochastic state, i. e., the system may appear to have low
dimensionality in parameter space near criticality [22].
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Space Plasmas, Dynamical Complexity in, Figure 18
Distribution D(s) of the burst size s D R

˝ [AE(t)� L]dt of an AE
index time series, where the integration is performed over the
time interval ˝ when the quiet level of L D (45˙ 15)nT is ex-
ceeded. The solid line is a power-lawbest fit. Reprinted from [37]
with permission from the Italian Society of Physics

From Criticality to Intermittency

We now ask a deeper question: How does the invariant
behavior of the structure or partition functions, which
changes with moment order for intermittent turbulence
amalgamate (reconcile) with the concept of criticality
(SOC or FSOC) outlined above?

For systems near criticality the correlation functions
are generally related to the correlation time and space as
power laws. Since the structure functions are related to the
spatial correlation functions [7], it is therefore not surpris-
ing that for systems near SOC/FSOC, the structure func-
tion exponents for intermittent turbulence are power law
scale-invariants in coarse-graining scale transformations.

For a stochastic process that is monofractal, the struc-
ture function exponents vary with the moment order lin-
early. Thus a single invariant, such as I1 D S1/��1 would
suffice to characterize the behavior of fully developed tur-
bulence that is self-similar. For example, it was demon-
strated in Subsect. “Rank-Ordered Multifractal Analysis
(ROMA)”, that if the probability distributions functions
(PDFs) satisfy the one-parameter scaling law of (39), the
structure function exponents �q D sq where s is the scal-
ing exponent, and the PDFs collapse onto one master
scaling function Ps(ıB2/�s ). This is approximately sat-
isfied by the PDFs for the numerical simulation results
discussed in Sect. “Non-Gaussian Probability Distribution
Functions” [33] (Fig. 9 and re-displayed here as Fig. 19,
middle panel). Similar results have been found by Hnat et
al. [56] for their study of the PDFs of solar wind turbulence
as seen by the WIND spacecraft and Tam et al. [112] for

the electric field intensity fluctuations in the auroral zone
as detected by the SIERRA rocket experiment (Fig. 19, top
and bottom panels). However, it is to be noted that in all
three scaling plots the deviations from the mean become
larger for larger fluctuations, which are indications that
multifractal characteristics will still need to be addressed.
This was demonstrated in terms of the rank-ordered mul-
tifractal spectrum as discussed in Subsect. “Rank-Ordered
Multifractal Analysis (ROMA)”.

We note that generally – e. g., Fig. 8 – the portions
of the PDFs for small fluctuations for most of the ob-
served and simulated intermittent turbulence have shapes
very close to that of a Gaussian. This is the reason why
the calculated exponent s for small scaled fluctuations is
close to the value of 0.5 (characteristic of self-similar ran-
dom diffusion). In the numerical example considered in
Subsec. “Plasma Resonances and Coherent Structures”,
s � 0:42 for the range of �Y between (0; 10). And the
behavior of the fluctuations within this range was shown
to be essentially monofractal. This would have given the
value of the first structure function exponent �1 D 0:42
and the related power spectrum index would therefore be
approximately 1C �2 D 1C 2�1 � 1:84 (Frisch, 1995). If
no attempt were made in rank-ordering and the value of s
were determined for the full set of fluctuations by look-
ing for power-law behavior of P(0; �) � �s , the best value
was found to be approximately 0.335. Assuming approxi-
matemonofractal scaling, this number would give a power
spectrum index of approximately 1.67. Both numbers are
not very different from that obtainable using classical ar-
guments for hydrodynamic or MHD turbulence.

Most observational or numerical “critical exponents”
of SOC are obtained either using first order box count-
ing or from calculations of density, optical, and other field
intensities such as electric, magnetic, velocity, and energy
fields, which generally involve statistical averages over the
zeroth, first, or second (i. e. low) order moments of their
related PDFs and therefore each represents an approxi-
mate monofractal behavior of some sort of weighted av-
erage of the fractal values for small scaled fluctuations.

In fact, if the experimental or numerical evaluations
are based on rough estimates, the values of the exponents
will generally take on essentially the Gaussian – i. e., mean-
field – values. And such observed “critical exponents”
would satisfy the standard scaling relations. We suggest
that this is the reason why recent observations [126] and
numerical simulations [69] seem to indicate the coexis-
tence of the phenomenon of SOC and multifractal signa-
tures for intermittent turbulence. See, e. g. Figs. 17 and 20.

Thus, based on the example of rank-order procedure
of the multifractal behavior of intermittent fluctuations
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described in Subsect. “Rank-Ordered Multifractal Analy-
sis (ROMA)”, we suggest that power-law relations of SOC
can be made more precise if the exponents are determined
more meticulously using rank-ordered fluctuations. For
each rank-order, particularly for the rank-order of the
smallest scaled fluctuations, one can determine a corre-

� Space Plasmas, Dynamical Complexity in, Figure 19
Top: Scaled PDF based on the one-parameter scaling form of
(39) with �1 D s � 0:42 for the fluctuations of the magnetic
field energy density as seen by the WIND spacecraft. The data
shown correspond to � between 46 seconds and 26 hours.
Adapted from [56] with thanks to the American Geophysical
Union.Middle: Scaled PDF for magnetic field energy density fluc-
tuations based on the one-parameter scaling form of (39) with
�1 D s� 0:335 from a 2D MHD simulation for homogeneous
turbulence for � D 2 (green), 8 (red), 32 (blue) units of grid
spacing. Adapted from [33] with thanks to the American Insti-
tute of Physics. Bottompanel: Normalized PDF for fluctuations of
transverse electric field intensity Enorth/� at � D 5;80;1280ms,
where � D ��1 (�1 � 0:8) is the root mean square of the fluc-
tuations. The solid line corresponds to the normalized Castaing
distribution with� D 1:02. The results of the analyzes for Gaus-
sian fluctuations (dashed) are shown for comparison. Reprinted
from [112] with thanks to the American Geophysical Union

sponding set of more accurately determined “critical ex-
ponents” that satisfy the classical exponent relations.

In summary, the conventional concepts of SOC or
FSOC as tested by the lower order spatiotemporal statis-
tical averages would generally be satisfied for intermittent
turbulence. However, the ideas of invariant scaling and
scaling relations will need to be generalized to include the
“crossover effects” for large scaled fluctuations.

Dynamical Modeling – The Lu–KlimasMagnetic
Field ReversalModel

By utilizing results obtained from direct numerical sim-
ulations, investigators were able to confirm a number of
the theoretical predictions of intermittent turbulence and
complexity phenomena in space plasmas that could arise
from the process of merging and interactions of plasma
coherent structures. The system sizes of direct numerical
simulations, however, are generally limited by the capa-
bilities of the present day computers. To circumvent this
limitation, an alternative approach to study the intermit-
tency in space plasma turbulence numerically would be
to mimic the coarse-grained dissipation and the devel-
opment of complexity by means of dynamical modeling
which, in turn, may lead to a better theoretical understand-
ing of the fundamental underlying stochastic processes.

While there exists a number of dynamical models that
mimic avalanche processes exhibiting scaling and some
also intermittency, only a few have attempted to incor-
porate the basic physics of plasmas in their formulations.
From these, we select one simple model, the Lu–Klimas
fast-field annihilation model of magnetic field reversal, for
further discussion and comments. The model has the basic
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ingredient of a diffusive equation [66]:

@Bx

@t
D

@

@z

�
D(z; t)

@

@z

�
Bx C S(z; t) : (46)

It may be obtained through the drastic reduction of the
resistive MHD system in an idealized one-dimensional
limit. In (46), Bx (z; t) is the magnetic flux and S(z; t) is
a source term which could be interpreted as that charac-
terizes the convection of the magnetic flux, although in
discussions below it will be arbitrarily prescribed and as-
sumed to be independent of time. The diffusion coefficient
D(z; t) is linearly proportional to an anomalous resistivity
with a hysteresis characteristic as stipulated below:

@D
@t
C

D
�
D

Q(j@Bx /@zj)
�

(47)

where Q D Dmin (low state) for j@Bx /@zj < k, and
Q D Dmax	 Dmin (high state) for j@Bx /@zj > ˇk with
ˇ < 1. Thus, Q is double-valued and dependent upon
the history for ˇk < j@Bx /@zj < k. The value k may be
thought of as a stability threshold which Klimas et al. [66]
attributed to some sort of current driven instability (e. g.,
Lui et al. [79]). The value of Q remains in the low state
(D Dmin) until the threshold is reached and switches to
the high state (D Dmax). It stays at the high state until
j@Bx /@zj < ˇk. This anomalous diffusive model is essen-
tially that originally suggested by Lu [73], which was moti-
vated by his studies related to the phenomena of self-orga-
nized criticality [3]; in particular, those related to the prob-
ability distributions of solar flares [74]. Unlike the Klimas’
model, the source term in Lu’s original formulation was
assumed to be random and the boundary conditions were
chosen to allow transport through the boundaries.

Klimas et al. [66] and Uritsky et al. [123] have studied
their model numerically on a spatial interval �L � z � L
subject to the boundary conditions @Bx /@z D 0 at z D
˙L, i. e., no transport of Bx through the boundaries. They
considered antisymmetric solutions with a field reversal
at z D 0 and a time-independent source term S(z; t) D
S0 sin(�z/2L) which may be considered as a steady con-
vection of Bx into the field reversal region. Setting � D 1
as the fundamental time scale and L D 20, they found that
there exists a range of choices of parameters for which the
dynamical model evolves in a sequence of quasi-periodic
loading (dE/dt > 0)-unloading (dE/dt < 0) cycles where
the total field energy E(t) is defined by:

E(t) �
LZ

�L

dzB2
x (z; t) : (48)

Space Plasmas, Dynamical Complexity in, Figure 20
Relative structure function exponents with respect to the third
order exponent using ESS for flare statistics at solar maximum
(high activity) and solar minimum (low activity) based on emis-
sions detected by the EIT (extreme ultraviolet imaging tele-
scope) aboard the SOHO spacecraft in the 195Å wavelength.
Adapted from [126] with thanks to the American Physical Soci-
ety

During the loading intervals, when the system is quiet,
the slow increase of E(t) is the sole evolutionary feature
of the system. As loading continues, the field gradient
jdBx /dzj, i. e. the current density, reaches the critical level
for Q somewhere in the field distribution (usually at a pair
of points symmetrically placed near z D 0). Subsequently
a complicated process of unloading ensues, which is best
understood in terms of the spatiotemporal evolution of the
diffusion coefficient D(z; t) as depicted in Fig. 21 during
the initial stage of development of the unloading process,
where the color scale of the figure indicates the intensity
of the diffusion coefficient. In the figure, a white dot is
placed at each point where the critical level of jdBx /dzj –
or current density – for Q is reached and Q(z; t) D Dmax.
As the instabilities spread and propagate toward both the
center and the edges of the field distribution, more cur-
rent sheets (i. e., sheet regions with strong current density)
are excited and their topology becomes increasingly com-
plex. The current sheets generate diffusion and the dif-
fusion coefficient D(z; t) is at a local maximum just af-
ter the passage of a current sheet at any given position.
This strong localized diffusion enhances the transport of
the magnetic flux toward z D 0 where fluxes of opposite
signs meet and annihilate. This process of generation of
complicated current sheet topology, transport of magnetic
flux and annihilation adjusts self-consistently with the im-
posed source function such that there is a dynamically
pseudo-stationary state. And, the loading-unloading pro-
cess repeat quasi-periodically after an initial transient.
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Space Plasmas, Dynamical Complexity in, Figure 21
Spatiotemporal evolution of the diffusion coefficient D(z; t) for the Lu–Klimas model during the initial stage of development of an
unloading process. The color scale of the figure indicates the intensity of the diffusion coefficient. Awhite dot is placed at each point
where the critical level for Q is reached andQ(z; t) D Dmax. Reprinted from [66] with thanks to the American Geophysical Union

Space Plasmas, Dynamical Complexity in, Figure 22
Avalanche size (left) and lifetime (right) distributions for the Lu–Klimas model for early (blue) and late (red) intervals during a single
unloading event. Reprinted from [123] with permission from Elsevier

The above phenomenon of continued sporadic gen-
eration of unstable current sheets and the accompany-
ing broadening of the diffusive layer during the unload-
ing process is reminiscent of the resonance broadening
phenomenon of the “apparent reconnection” process in
the 2D MHD simulation result for the sheared magnetic
field geometry discussed earlier. Klimas et al. [67,68,69],

Uritsky et al. [125] and Uritsky and Klimas [122] have
recently extended their dynamical modeling effort based
on the anomalous resistivity idea with hysteresis to the
2D geometry and the similarity between their calculated
results of sporadic localized reconnections and the direct
2D MHD simulation results of resonance-broadening and
coarse-grained dissipation – as well as the ensuing mag-
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netic reconfiguration process – due to the sporadic, local-
ized merging of coherent structures is even more notice-
able, even though the boundary and initial conditions as
well as the presumed instabilities of both sets of calcula-
tions were quite different. The main point to note is that
the phenomenon of coarse-grained dissipation in the re-
sults of direct numerical simulation is replaced in the dy-
namical model by the assumed anomalous resistivity with
hysteresis. Thus, other than the arbitrariness of the dissi-
pation mechanism, such type of dynamical modeling has
almost achieved its purported aim; i. e., using a much sim-
plified dissipation model, large scale simulations of com-
plexity of space plasmas may perhaps be achieved with rel-
atively small scale computers.

However, the existing dynamical models may be too
crude to lead to quantitatively comparable results of ac-
tual observations. For example, in the Lu–Klimas model,
the critical threshold was arbitrary and kept at a constant
value. In addition the phenomenon of hysteresis was again
quite arbitrary and the double-valuedness of Q was also
triggered at arbitrary levels. In the coarse-grained dissipa-
tion scenario acquired from, for example, direct numer-
ical simulations, there was actually no specific threshold
for triggering the “fluctuation induced nonlinear instabil-
ity” and the dissipation during “apparent reconnection”
was due to the combination of wave (e. g., Alfvén wave)
propagation and resonance broadening. The hope is that
perhaps even with some of such arbitrary ad hoc assump-
tions in the present and/or future modeling of local dis-
sipation, the hypothesized model(s) will still lead to some
of the global features such as the scale-invariant proper-
ties that will fall in the same universality class as the actual
physical phenomena.

We now proceed to discuss the invariant properties of
the simulated result of the one-dimensional magnetic field
reversal and annihilation model. There are at least two sets
of statistics that may shed light on the scale free invariant
properties of SOC for the loading-unloading events that
emerge from the numerical calculations of the Lu–Klimas
model. Firstly, after an initial transient, the sequence of
burst-like unloading events seem to occur by clustering
around an average field strength, i. e., on average, the in-
creasing strength of the field reversal is more-or-less bal-
anced by the annihilation of the magnetic field in the cur-
rent sheet. Thus, we expect that the unloading events ex-
hibit power law distributions in, for example, energy dis-
sipation and burst duration. These results were essentially
uncovered by Klimas et al. [66] for the special situation of
very low driving rates and Dmin D 0.

We may also ask the question about the scale free in-
variant behavior for the complicated current sheet distri-

butions triggered by the instabilities associated with the
anomalous resistivity for a single unloading event. Such
small scale fluctuations again seem to self-consistently bal-
ance between the anomalous transport and field annihi-
lation. Thus, we may again expect certain universal SOC
behavior for these small scale fluctuations. To search for
such behavior, Uritsky et al. [123] defined avalanches in
terms of the size and duration of contiguous unstable grid
points in the spatiotemporal domain. Power law statistics
of the probability distributions of avalanche size and life
time emerged from the statistics of their numerical calcu-
lations, Fig. 22. And, these exponents have been demon-
strated to satisfy the standard exponent relations known
for SOC processes [128]. There are other statistical verifi-
cations of SOC behavior from both the 1D and 2D dynam-
ical modeling results, which we shall not discuss here.

More interestingly, Klimas et al. [69] recently demon-
strated that the velocity fluctuations of their 2D simula-
tion of the dynamical model exhibited both SOC andmul-
tifractal characteristics very similar to those expected for
intermittent MHD turbulence; thus, corroborating with
some of the basic concepts of interwoven connection and
crossover phenomenon between SOC/FSOC and intermit-
tent turbulence as espoused in the previous section.

Future Directions

We have now come to perhaps the most important part
of this article. As discussed in the introduction, the devel-
opment of the modern concepts of dynamical complexity
in space plasmas is very recent. Despite a flurry of activi-
ties, current investigations – both from the theoretical and
observational points of view – have barely scratched the
surface of what may be achieved and understood. For ex-
ample, we need to know more about the complexity be-
havior of the plasmas from the kinetic point of view. We
also need to know how the plasma particle distributions
respond to the fluctuations of its turbulent environment.
In addition, the global space environment is generally in-
homogeneous with complex initial and boundary condi-
tions. Thus we need to address processes that are statisti-
cally nonstationary and spatially inhomogeneous as well as
those that evolve temporally and nonuniformly. We also
need to understand how the complexity and multifractal
phenomena of space plasmas influence the global dynam-
ics of the space plasma environment.

Throughout the discourse, we have placed our empha-
sis of dynamical complexity in space plasmas on the ba-
sic underlying physics. We have come to realize that such
fundamental ideas must come from the understanding of
the complicated stochastic behavior arisen from the inter-
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actions of the multitudes of coherent structures that are
prevalent in the natural development of the dynamics of
space plasmas.We learned that there were various types of
invariant concepts related to coarse-graining, which char-
acterize the primary phenomena that we are attempting to
study, analyze and understand. We studied a suite of sta-
tistical methodology to analyze complexity, some of which
are new and some are carryovers from other fields of com-
plexity, including hydrodynamic turbulence.

We realized that most of the so-called theories that ex-
ist today in dynamical complexity of space plasmas are
mainly phenomenological concepts and generally mimic
those that were prevalent before themodern developments
of complexity. We know that these theories cannot carry
us too far as we know that they had not advanced the true
understanding of complexity phenomena in the past. For
this reason, we have broken the tradition in this article and
tried not to continually compare our statistically acquired
results and theoretically developed understandings with
the prevalent classical ideas and numerology. Such com-
parisons abound in the literature and generally murk the
basic concepts that we are trying to convey.

We have learned that most of the phenomena of com-
plexity in space plasmas are scale invariant concepts and
yet very little theory has been developed to try to explore
these invariant characteristics. We are still stuck with the
dogma that we must develop our theories from the “basic
elemental equations”, while fully aware that the phenom-
ena that we are trying to address generally have nothing
to do with these equations directly. After all, nearly every
invariant result gained from the coarse-graining concept
breaks most of the symmetries and invariance properties
of the basic elemental equations.

We have learned that the elemental dissipation such
as classical resistivity and viscosity generally has nothing
to do with the apparent dissipation that are everywhere in
dynamical complexity. And yet every existing theoretical
idea insists on including these almost irrelevant dissipative
terms in its basic development.

We learned that intermittency generally involve large
deviations from the mean and yet we insist on fitting every
statistical result into neatly packed curves as if all physics
and theories must result in smooth curves in parametric
studies. It is time to bring in the ideas of Lebesgue mea-
sure, extreme value statistics and thermodynamics of rare
events, as well as rank-ordered groupings and associated
analyzes to our future developments of new theories and
statistical methods

With enthusiasm, we look forward to the dawning of
a new era from the future horizon when these new con-
cepts and theoretical understandings finally establish their

footings in the modern development of dynamical com-
plexity in space plasmas.
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Abelian group A in a separable Hilbert space H then
a decomposition H D

L1
iD1A(xi) is called spectral

if �x1 	 �x2 	 : : : (such a sequence of measures is
also called spectral); here A(x) :D spanfUax : a 2 Ag
is called the cyclic space generated by x 2 H and �x
stands for the spectral measure of x.

Maximal spectral type and the multiplicity function ofU
The maximal spectral type �U of U is the type of �x1
in any spectral decomposition of H; the multiplicity
function MU : bA! f1; 2; : : :g [ fC1g is defined �U-
a.e. and MU(�) D

P1
iD1 1Yi (�), where Y1 D bA and

Yi D supp d�xi /d�x1 for i � 2.
A representationU is said to have simple spectrum ifH
is reduced to a single cyclic space. The multiplicity is
uniform if there is only one essential value of MU. The
essential supremum of MU is called themaximal spec-
tral multiplicity.U is said to have discrete spectrum ifH
has an orthonormal base consisting of eigenvectors of
U;U has singular (Haar, absolutely continuous) spec-
trum if the maximal spectral type ofU is singular with
respect to (equivalent to, absolutely continuous with
respect to) a Haar measure of bA.

Koopman representation of a dynamical systemT Let
A be a l.c.s.c. (and not compact) Abelian group and
T : a 7! Ta a representation of A in the group
Aut(X;B; �) of (measure-preserving) automorphisms
of a standard probability Borel space (X;B; �).
The Koopman representation U D UT of T in
L2(X;B; �) is defined as the unitary representation
a 7! UTa 2 U(L2(X;B; �)), where UTa ( f ) D f ı Ta .

Ergodicity, weak mixing, mild mixing, mixing and
rigidity of T A measure-preserving A-action T D

(Ta)a2A is called ergodic if �0 � 1 2 bA is a simple
eigenvalue ofUT . It is weakly mixing ifUT has a con-
tinuous spectrum on the subspace L20(X;B; �) of zero
mean functions. T is said to be rigid if there is a se-
quence (an) going to infinity in A such that the se-
quence (UTan ) goes to the identity in the strong (or
weak) operator topology; T is said to bemildly mixing
if it has no non-trivial rigid factors. We say that T is
mixing if the operator equal to zero is the only limit
point of fUTa jL20(X;B;�) : a 2 Ag in the weak operator
topology.

Spectral disjointness Two A-actions S and T are called
spectrally disjoint if the maximal spectral types of their
Koopman representations UT and US on the corre-
sponding L20-spaces are mutually singular.

SCS property We say that a Borel measure � on bA sat-
isfies the strong convolution singularity property (SCS
property) if, for each n � 1, in the disintegration
(given by the map (�1; : : : ; �n) 7! �1 � : : : � �n)

�˝n D
R
bA �� d�

(n)(�) the conditional measures ��
are atomic with exactly n! atoms (� (n) stands for the
nth convolution �  : : :  �). An A-action T satisfies
the SCS property if the maximal spectral type of UT
on L20 is a type of an SCS measure.

Kolmogorov group property AnA-actionT satisfies the
Kolmogorov group property if �UT  �UT 
 �UT .

Weighted operator Let T be an ergodic automorphism
of (X;B; �) and � : X ! T be a measurable func-
tion. The (unitary) operator V D V�;T acting on
L2(X;B; �) by the formula V�;T ( f )(x) D �(x) f (Tx) is
called a weighted operator.

Induced automorphism Assume that T is an automor-
phism of a standard probability Borel space (X;B; �).
Let A 2 B, �(A) > 0. The induced automorphism TA
is defined on the conditional space (A;BA; �A), where
BA is the trace of B on A, �A(B) D �(B)/�(A) for
B 2 BA and TA(x) D TkA(x)x, where kA(x) is the
smallest k � 1 for which Tkx 2 A.

AT property of an automorphism An automorphism T
of a standard probability Borel space (X;B; �)
is called approximatively transitive (AT for short)
if for every " > 0 and every finite set f1; : : : ; fn
of non-negative L1-functions on (X;B; �) we can
find f 2 L1(X;B; �) also non-negative such that
k fi �

P
j ˛i j f ı T

n jkL1 < " for all i D 1; : : : ; n (for
some ˛i j � 0, nj 2 N).

Cocycles and group extensions If T is an ergodic auto-
morphism, G is a l.c.s.c. Abelian group and ' : X ! G
is measurable then the pair (T; ') generates a cocycle
'(�)(�) : Z � X ! G, where

'(n)(x) D

8
<

:

'(x)C : : :C '(Tn�1x) for n > 0 ;
0 for n D 0 ;
�('(Tnx)C : : :C '(T�1x)) for n < 0 :

(That is ('(n)) is a standard 1-cocycle in the algebraic
sense for the Z-action n( f ) D f ı Tn on the group of
measurable functions on X with values in G; hence the
function ' : X ! G itself is often called a cocycle.)
Assume additionally that G is compact. Using the co-
cycle ' we define a group extension T' on (X �G;B˝
B(G); � ˝ G ) (G stands for Haar measure of G),
where T'(x; g) D (Tx; '(x)C g).

Special flow Given an ergodic automorphism T on
a standard probability Borel space (X;B; �) and a pos-
itive integrable function f : X ! RC we put

X f D f(x; t) 2 X � R : 0 � t < f (x)g ;

B f D B˝ B(R)jX f ;
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and define � f as normalized �˝ RjX f . By a spe-
cial flow we mean the R-action T f D (T f

t )t2R under
which a point (x; s) 2 X f moves vertically with the
unit speed, and once it reaches the graph of f , it is iden-
tified with (Tx; 0).

Markov operator A linear operator J : L2(X;B; �) !
L2(Y ;C; �) is called Markov if it sends non-
negative functions to non-negative functions and
J1 D J�1 D 1.

Unitary actions on Fock spaces If H is a separable
Hilbert space then by Hˇn we denote the subspace
of n-tensors of H˝n symmetric under all permuta-
tions of coordinates, n � 1; then the Hilbert space
F(H) :D

L1
nD0 H

ˇn is called a symmetric Fock space.
If V 2 U(H) then F(V) :D

L1
nD0 V

ˇn 2 U(F(H))
where Vˇn D V˝n jHˇn .

Definition of the Subject

Spectral theory of dynamical systems is a study of special
unitary representations, called Koopman representations
(see the glossary). Invariants of such representations are
called spectral invariants of measure-preserving systems.
Together with the entropy, they constitute the most im-
portant invariants used in the study of measure-theoretic
intrinsic properties and classification problems of dynam-
ical systems as well as in applications. Spectral theory was
originated by vonNeumann, Halmos and Koopman in the
1930s. In this article we will focus on recent progresses in
the spectral theory of finite measure-preserving dynamical
systems.

Introduction

Throughout A denotes a non-compact l.c.s.c. Abelian
group (A will be most often Z or R). The assumption
of second countability implies that A is metrizable, �-
compact and the space C0(A) is separable. Moreover the
dual group bA is also l.c.s.c. Abelian.

General Unitary Representations

We are interested in unitary, that is with values in the uni-
tary groupU(H) of a Hilbert spaceH, (weakly) continuous
representations V : A 3 a 7! Va 2 U(H) of such groups
(the scalar valued maps a 7! hVax; yi are continuous for
each x; y 2 H).

Let H D L2(bA;B(bA); �), where B(bA) stands for the
�-algebra of Borel sets of bA and � 2 MC(bA) (whenever
X is a l.c.s.c. space, by M(X) we denote the set of com-
plex Borel measures on X, while MC(X) stands for the

subset of positive (finite) measures). Given a 2 A, for
f 2 L2(bA;B(bA); �) put

V�a ( f )(�) D i(a)(�) � f (�) D �(a) � f (�) (� 2 bA) ;

where i : A! bbA is the canonical Pontriagin isomorphism
of A with its second dual. Then V� D (V�a )a2A is a uni-
tary representation ofA. Since C0(bA) is dense in L2(bA; �),
the latter space is separable. Therefore also direct sumsL1

iD1 V
�i of such type representations will be unitary

representations ofA in separable Hilbert spaces.

Lemma 1 (Wiener Lemma) If F � L2(bA; �) is a closed
V�a -invariant subspace for all a 2 A then F D 1YL2(bA;
B(bA); �) for some Borel subset Y � bA.

Notice however that since A is not compact (equivalently,
bA is not discrete), we can find � continuous and there-
fore V� has no irreducible (non-zero) subrepresentation.
From now on only unitary representations ofA in separa-
ble Hilbert spaces will be considered and we will show how
to classify them.

A function r : A! C is called positive definite if

NX

n;mD0

r(an � am)znzm � 0 (1)

for each N > 0, (an) � A and (zn) � C. The central result
about positive definite functions is the following theorem
(see e. g. [173]).

Theorem 1 (Bochner–Herglotz) Let r : A! C be con-
tinuous. Then r is positive definite if and only if there exists
(a unique) � 2 MC(bA) such that

r(a) D
Z

bA
�(a) d�(�) for each a 2 A :

If now U D (Ua)a2A is a representation of A in H then
for each x 2 H the function r(a) :D hUax; xi is contin-
uous and satisfies (1), so it is positive definite. By the
Bochner–Herglotz Theorem there exists a unique mea-
sure �U;x D �x 2 MC(bA) (called the Spectral measure of
x) such that

b� x (a) :D
Z

bA
i(a)(�) d�x (�) D hUax; xi

for each a 2 A. Since the partial map Uax 7!

i(a) 2 L2(bA; �x ) is isometric and equivariant, there
exists a unique extension of it to a unitary operator
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W : A(x)! L2(bA; �x ) giving rise to an isomorphism of
UjA(x) and V
x . Then the existence of a spectral de-
composition is proved by making use of separability and
a choice of maximal cyclic spaces at every step of an in-
duction procedure. Moreover, a spectral decomposition is
unique in the following sense.

Theorem 2 (Spectral Theorem) If H D
L1

iD1A(xi) DL1
iD1A(x0i) are two spectral decompositions of H then

�xi � �x0i
for each i � 1.

It follows that the representationU is entirely determined
by types (the sets of equivalent measures to a given one)
of a decreasing sequence of measures or, equivalently, U
is determined by its maximal spectral type �U and its mul-
tiplicity function MU.

Notice that eigenvalues of U correspond to Dirac
measures: � 2 bA is an eigenvalue (i. e. for some kxk D 1,
Ua(x) D �(a)x for each a 2 A) if and only if �U;x D ı�.
ThereforeU has a discrete spectrum if and only if themax-
imal spectral type ofU is a discrete measure.

We refer the reader to [64,105,127,147,156] for pre-
sentations of spectral theory needed in the theory of dy-
namical systems – such presentations are usually given for
A D Z but once we have the Bochner–Herglotz Theorem
and the Wiener Lemma, their extensions to the general
case are straightforward.

Koopman Representations

We will consider measure-preserving representations of
A. It means that we fix a probability standard Borel
space (X;B; �) and by Aut(X;B; �) we denote the
group of automorphisms of this space, that is T 2

Aut(X;B; �) if T : X ! X is a bimeasurable (a.e.) bi-
jection satisfying �(A) D �(TA) D �(T�1A) for
each A 2 B. Consider then a representation of A
in Aut(X;B; �) that is a group homomorphism a 7!
Ta 2 Aut(X;B; �); we write T D (Ta)a2A. More-
over, we require that the associated Koopman repre-
sentation UT is continuous. Unless explicitly stated,
A-actions are assumed to be free, that is we assume that
for �-a.e. x 2 X the map a 7! Tax is 1�1. In fact, since
constant functions are obviously invariant for UTa , that is
the trivial character 1 is always an eigenvalue of UT , the
Koopman representation is considered only on the sub-
space L20(X;B; �) of zero mean functions. We will restrict
our attention only to ergodic dynamical systems (see the
glossary). It is easy to see that T is ergodic if and only if
wheneverA 2 B and AD Ta(A) (�-a.e.) for all a 2 A then
�(A) equals 0 or 1. In case of ergodic Koopman represen-
tations, all eigenvalues are simple. In particular, (ergodic)

Koopman representations with discrete spectra have sim-
ple spectra. The reader is referred to monographs men-
tioned above as well as to [26,158,177,196,204] for basic
facts on the theory of dynamical systems.

The passage T 7! UT can be seen as functorial (con-
travariant). In particular a measure-theoretic isomor-
phism of A-systems T and T 0 implies spectral isomor-
phism of the corresponding Koopman representations;
hence spectral properties are measure-theoretic invari-
ants. Since unitary representations are completely clas-
sified, one of the main questions in the spectral theory
of dynamical systems is to decide which pairs ([�];M)
can be realized by Koopman representations. The most
spectacular, still unsolved, is the Banach problem con-
cerning ([T ];M � 1). Another important problem is to
give complete spectral classification in some classes of
dynamical systems (classically, it was done in the the-
ory of Kolmogorov and Gaussian dynamical systems).
We will also see how spectral properties of dynamical
systems can determine their statistical (ergodic) prop-
erties; a culmination given by the fact that a spec-
tral isomorphism may imply measure-theoretic simili-
tude (discrete spectrum case, Gaussian–Kronecker case).
We conjecture that a dynamical system T either is spec-
trally determined or there are uncountably many pair-
wise non-isomorphic systems spectrally isomorphic to
T .

We could also consider Koopman representations in
Lp for 1 � p ¤ 2. However wheneverW : Lp(X;B; �)!
Lp(Y ;C; �) is a surjective isometry and W ı UTa D

USa ı W for each a 2 A then by the Lamperti Theo-
rem (e. g. [172]) the isometryW has to come from a non-
singular pointwise map R : Y ! X and, by ergodicity, R
“preserves” the measure � and hence establishes a mea-
sure-theoretic isomorphism [94] (see also [127]). Thus
spectral classification of such Koopman representations
goes back to the measure-theoretic classification of dy-
namical systems, so it looks hardly interesting. This does
not mean that there are no interesting dynamical ques-
tions for p ¤ 2. Let us mention still open Thouvenot’s
question (formulated in the 1980s) for Z-actions: For ev-
ery ergodic T acting on (X;B;�), does there exist f 2
L1(X;B; �) such that the closed linear span of f ı Tn ,
n 2 Z equals L1(X;B; �)?

Iwanik [79,80] proved that if T is a system with pos-
itive entropy then its Lp-multiplicity is 1 for all p > 1.
Moreover, Iwanik and de Sam Lazaro [85] proved that for
Gaussian systems (they will be considered in Sect. “Spec-
tral Theory of Dynamical Systems of Probabilistic Ori-
gin”) the Lp-multiplicities are the same for all p > 1 (see
also [137]).



8558 S Spectral Theory of Dynamical Systems

Markov Operators, Joinings and Koopman
Representations, Disjointness
and Spectral Disjointness, Entropy

We would like to emphasize that spectral theory is closely
related to the theory of joinings (see� Joinings in Ergodic
Theory for needed definitions). The elements � of the set
J(S;T ) of joinings of two A-actions S and T are in a 1-
1 correspondence with Markov operators J D J� between
the L2-spaces equivariant with the corresponding Koop-
man representations (see the glossary and � Joinings in
Ergodic Theory). The set of ergodic self-joinings of an er-
godicA-action T is denoted by J e2 (T ).

Each Koopman representationUT consists of Markov
operators (indeed, UTa is clearly a Markov operator). In
fact, if U 2 U(L2(X;B; �)) is Markov then it is of the
form UR , where R 2 Aut(X;B; �) [133]. This allows us to
see Koopman representations as unitaryMarkov represen-
tations, but since a spectral isomorphism does not “pre-
serve” the set of Markov operators, spectrally isomorphic
systems can have drastically different sets of self-joinings.

We will touch here only some aspects of interactions
(clearly, far from completeness) between the spectral the-
ory and the theory of joinings.

In order to see however an example of such interac-
tions let us recall that the simplicity of eigenvalues for er-
godic systems yields a short “joining” proof of the clas-
sical isomorphism theorem of Halmos-von Neumann in
the discrete spectrum case: Assume that S D (S�)�2A

and T D (Ta)a2A are ergodic A-actions on (X;B; �)
and (Y ;C; �) respectively. Assume that both Koopman rep-
resentations have purely discrete spectrum and that their
group of eigenvalues are the same. Then S and T are mea-
sure-theoretically isomorphic. Indeed, each ergodic joining
of T and S is the graph of an isomorphism of these two
systems (see [127]; see also Goodson’s proof in [66]). An-
other example of such interactions appear in the study
Rokhlin’s multiple mixing problem and its relation with
the pairwise independence property (PID) for joinings of
higher order. We will not deal with this subject here, refer-
ring the reader to � Joinings in Ergodic Theory (see how-
ever Sect. “Lifting Mixing Properties”).

Following [60], two A-actions S and T are called dis-
joint provided the product measure is the only element in
J(S;T ). It was already noticed in [72] that spectrally dis-
joint systems are disjoint in the Furstenberg sense; indeed,
Im(J�jL20) D f0g since �T ;J� f 
 �S; f .

Notice that whenever we take � 2 J e2(T ) we obtain
a new ergodic A-action (Ta � Ta)a2A defined on the
probability space (X � X; �). One can now ask how close
spectrally to T is this new action? It turns out that ex-

cept of the obvious fact that the marginal �-algebras are
factors, (T � T ; �) can have other factors spectrally dis-
joint with T : the most striking phenomenon here is a re-
sult of Smorodinsky and Thouvenot [198] (see also [29])
saying that each zero entropy system is a factor of an
ergodic self-joining system of a fixed Bernoulli system
(Bernoulli systems themselves have countable Haar spec-
trum). The situation changes if � D �˝ �. In this case for
f ; g 2 L2(X;B; �) the spectral measure of f ˝ g is equal
to �T ; f  �T ;g . A consequence of this observation is that
an ergodic action T D (Ta)a2A is weakly mixing (see the
glossary) if and only if the product measure �˝ � is an
ergodic self-joining of T .

The entropy which is a basic measure-theoretic invari-
ant does not appear when we deal with spectral proper-
ties. We will not give here any formal definition of entropy
for amenable group actions referring the reader to [153].
Assume that A is countable and discrete. We always as-
sume that A is Abelian, hence it is amenable. For each
dynamical system T D (Ta)a2A acting on (X;B; �), we
can find a largest invariant sub-� field P � B, called the
Pinsker �-algebra, such that the entropy of the corre-
sponding quotient system is zero. Generalizing the classi-
cal Rokhlin-Sinai Theorem (see also [97] for Zd -actions),
Thouvenot (unpublished) and independently Dooley and
Golodets [31] proved this theorem for groups even more
general than those considered here: The spectrum of UT
on L2(X;B; �)� L2(P) is Haar with uniform infinite mul-
tiplicity. This general result is quite intricate and based on
methods introduced to entropy theory by Rudolph and
Weiss [179] with a very surprising use of Dye’s Theo-
rem on orbital equivalence of all ergodic systems. For A
which is not countable the same result was recently proved
in [17] in case of unimodular amenable groups which are
not increasing union of compact subgroups. It follows that
spectral theory of dynamical systems essentially reduces to
the zero entropy case.

Maximal Spectral Type of a Koopman
Representation, Alexeyev’s Theorem

Only few general properties of maximal spectral types
of Koopman representations are known. The fact that
a Koopman representation preserves the space of real
functions implies that its maximal spectral type is the type
of a symmetric (invariant under themap � 7! �) measure.

Recall that the Gelfand spectrum �(U) of a repre-
sentation U D (Ua)a2A is defined as the of approxima-
tive eigenvalues of U, that is �(U) 3 � 2 bA if for a se-
quence (xn) bounded and bounded away from zero,
kUaxn � �(a)xnk ! 0 for each a 2 A. The spectrum
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is a closed subset in the topology of pointwise con-
vergence, hence in the compact-open topology of bA.
In case of A D Z, the above set �(U) is equal to
fz 2 C : U � z � Id is not invertibleg.

Assume now that A is countable and discrete (and
Abelian). Then there exists a Fölner sequence (Bn)n�1
whose elements tile A [153]. Take a free and ergodic ac-
tion T D (Ta)a2A on (X;B; �). By [153] for each " > 0
we can find a set Yn 2 B such that the sets TbYn are
pairwise disjoint for b 2 Bn and �(

S
b2Bn

TbYn) > 1 � ".
For each � 2 bA, by considering functions of the form
fn D

P
b2Bn

�(b)1TbYn we obtain that � 2 �(UT ). It fol-
lows that the topological support of the maximal spec-
tral type of the Koopman representation of a free and
ergodic action is full [105,127,147]. The theory of Gaus-
sian systems shows in particular that there are symmet-
ric measures on the circle whose topological support is the
whole circle but which cannot be maximal spectral types
of Koopman representations.

An open well-known question remains whether an ab-
solutely continuous measure � is themaximal spectral type
of a Koopman representation if and only if � is equivalent
to a Haar measure of bA (this is unknown for A D Z).

Another interesting question was recently raised by A.
Katok (private communication): Is it true that the topo-
logical supports of all measures in a spectral sequence of
a Koopman representation are full? If the answer to this
question is positive then for example the essential supre-
mum of MUT is the same on all balls of bA.

Notice that the fact that all spectral measures in a spec-
tral sequence are symmetric means thatUT is isomorphic
to UT�1 . A. del Junco [89] showed that generically for
Z-actions, T and its inverse are not measure-theoretically
isomorphic (in fact he proved disjointness).

LetT be anA-action on (X;B; �). One can ask wether
a “good” function can realize the maximal spectral type of
UT . In particular can we find a function f 2 L1(X;B; �)
that realizes the maximal spectral type? The answer is
given in the following general theorem (see [139]).

Theorem 3 (Alexeyev’s Theorem) Assume that U D

(Ua)a2A is a unitary representation of A in a separa-
ble Hilbert space H. Assume that F � H is a dense linear
subspace. Assume moreover that with some F-norm � –
stronger than the norm k � k given by the scalar product – F
becomes a Fréchet space. Then, for each spectral measure �
(
 �U) there exists y 2 F such that �y 	 � . In particular,
there exists y 2 F that realizes the maximal spectral type.

By taking H D L2(X;B; �) and F D L1(X;B; �) we ob-
tain the positive answer to the original question. Alex-
eyev [14] proved the above theorem for A D Z using

analytic functions. Refining Alexeyev’s original proof,
Fra̧czek [52] showed the existence of a sufficiently regu-
lar function realizing the maximal spectral type depend-
ing only on the “regularity” of the underlying probability
space, e. g. when X is a compact metric space (compact
manifold) then one can find a continuous (smooth) func-
tion realizing the maximal spectral type.

By the theory of systems of probabilistic origin (see
Sect. “Spectral Theory of Dynamical Systems of Prob-
abilistic Origin”), in case of simplicity of the spec-
trum, one can easily point out spectral measures whose
types are not realized by (essentially) bounded func-
tions. However, it is still an open question whether for
each Koopman representationUT there exists a sequence
( fi)i�1 � L1(X;B; �) such that the sequence (� f i )i�1 is
a spectral sequence for UT . For A D Z it is unknown
whether the maximal spectral type of a Koopman repre-
sentation can be realized by a characteristic function.

Spectral Theory ofWeighted Operators

We now pass to the problem of possible essential values
for the multiplicity function of a Koopman representation.
However, one of known techniques is a use of cocycles,
so before we tackle the multiplicity problem, we will go
through recent results concerning spectral theory of com-
pact group extensions automorphisms which in turn entail
a study of weighted operators (see the glossary).

Assume that T is an ergodic automorphism of a stan-
dard Borel probability space (X;B; �). Let � : X ! T
be a measurable function and let V D V�;T be the cor-
responding weighted operator. To see a connection of
weighted operators with Koopman representations of
compact group extensions consider a compact (metric)
Abelian group G and a cocycle ' : X ! G. Then UT' (see
the glossary) acts on L2(X � G; �˝ G ). But

L2(X�G; �˝G ) D
M

�2bG

L�; where L� D L2(X; �)˝�;

where L� is a UT' -invariant (clearly, closed) subspace.
Moreover, the map f ˝ � 7! f settles a unitary isomor-
phism of UT' jL� with the operator V�ı';T . Therefore,
spectral analysis of such Koopman representations re-
duces to the spectral analysis of weighted operators V�ı';T
for all � 2 bG.

Maximal Spectral Type
of Weighted Operators over Rotations

The spectral analysis of weighted operators V�;T is es-
pecially well developed in case of rotations, i. e. when
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we additionally assume that T is an ergodic rotation on
a compact monothetic group X: Tx D x C x0, where x0 is
a topologically cyclic element of X (and � will stand for
Haar measure x of X). In this case Helson’s analysis [74]
applies (see also [68,82,127,160]) leading to the following
conclusions:

� The maximal spectral type �V�;T is either discrete or
continuous.

� When �V�;T is continuous it is either singular or
Lebesgue.

� The spectral multiplicity of V�;T is uniform.

We now pass to a description of some results in case
when Tx D x C ˛ is an irrational rotation on the addi-
tive circle X D [0; 1). It was already noticed in the origi-
nal paper by Anzai [16] that when � : X ! T is an affine
cocycle (�(x) D exp(nx C c), 0 ¤ n 2 Z) then V�;T has
a Lebesgue spectrum. It was then considered by several au-
thors (originated by [123], see also [24,26]) to which extent
this property is stable when we perturb our cocycle. Since
the topological degree of affine cocyles is different from
zero, when perturbing them we consider smooth pertur-
bations by cocycles of degree zero.

Theorem 4 ([82]) Assume that Tx D x C ˛ is an irra-
tional rotation. If � : [0; 1)! T is of non-zero degree, abso-
lutely continuous, with the derivative of bounded variation
then V�;T has a Lebesgue spectrum.

In the same paper, it is noticed that if we drop the as-
sumption on the derivative then the maximal spectral type
of V�;T is a Rajchman measure (i. e. its Fourier transform
vanishes at infinity). It is still an open question, whether
one can find � absolutely continuous with non-zero de-
gree and such that V�;T has singular spectrum. “Below”
absolute continuity, topological properties of the cocycle
seem to stop playing any role – in [82] a continuous, de-
gree 1 cocycle � of bounded variation is constructed such
that �(x) D �(x)/�(Tx) for a measurable � : [0; 1)! T
(that is � is a coboundary) and therefore V�;T has purely
discrete spectrum (it is isomorphic to UT ). For other re-
sults about Lebesgue spectrum for Anzai skew products
see also [24,53,81] (in [53] Zd -actions of rotations and so
called winding numbers instead of topological degree are
considered).

When the cocycle is still smooth but its degree is zero
the situation drastically changes. Given an absolutely con-
tinuous function f : [0; 1)! R M. Herman [76], using
the Denjoy–Koksma inequality (see e. g. [122]), showed
that f (qn)0 ! 0 uniformly (here f0 D f �

R 1
0 f d[0;1) and

(qn) stands for the sequence of denominators of ˛). It fol-
lows that Te2
 i f is rigid and hence has a singular spec-

trum. B. Fayad [37] shows that this result is no longer
true if one dimensional rotation is replaced by a multi-di-
mensional rotation (his counterexample is in the analytic
class). See also [130] for the singularity of spectrum for
functions f whose Fourier transform satisfies o(1/jnj) con-
dition or to [84], where it is shown that sufficiently small
variation implies singularity of the spectrum.

A natural class of weighted operators arises when we
consider Koopman operators of rotations on nil-mani-
folds. We only look at the particular example of such
a rotation on a quotient of the Heisenberg group (R3;)
(a general spectral theory of nil-actions was mainly de-
veloped by W. Parry [157]) – these actions have count-
able Lebesgue spectrum in the orthocomplement of the
subspace of eigenfunctions) that is take the nil-manifold
R3/�Z3 on which we define the nil-rotation S((x; y; z) 
Z3) D (˛; ˇ; 0)(x; y; z)Z3 D

�
x C ˛; y C ˇ; z C ˛y




Z3, where ˛; ˇ and 1 are rationally independent. It can be
shown that S is isomorphic to the skew product defined on
[0; 1)2 � T by

T' : (x; y; z) 7!


x C ˛; y C ˇ; z � e2	 i'(x;y)

�
;

where '(x; y) D ˛y �  (x C ˛; y C ˇ)C  (x; y) with
 (x; y) D x[y]. Since nil-cocycles can be considered as
a certain analog of affine cocycles for one-dimensional ro-
tations, it would be nice to explain to what kind of pertur-
bations the Lebesgue spectrum property is stable.

Yet another interesting problem which is related to the
spectral theory of extensions given by so called Rokhlin
cocycles (see Sect. “Rokhlin Cocycles”) arises, when given
f : [0; 1)! R, we want to describe spectrally the one-pa-
rameter set of weighted operators Wc :D Ve2
 i c f ;T ; here T
is a fixed irrational rotation by ˛. As proved by quite so-
phisticated arguments in [84], if we take f (x) D x then for
all non-integer c 2 R the spectrum of Wc is continuous
and singular (see also [68] and [145] where some special
˛’s are considered). It has been open for some time if at
all one can find f : [0; 1)! R such that for each c ¤ 0,
the operator Wc has a Lebesgue spectrum. The positive
answer is given in [205]: for example if f (x) D x�(2C")

(" > 0) and ˛ has bounded partial quotients then Wc
has a Lebesgue spectrum for all c ¤ 0. All functions with
such a property considered in [205] are non-integrable. It
would be interesting to find an integrable f with the above
property.

We refer to [66] and the references therein for further
results especially for transformations of the form (x; y) 7!
(xC˛; 1[0;ˇ )(x)C y) on [0; 1)�Z/2Z. Recall however that
earlier Katok and Stepin [104] used this kind of transfor-
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mations to give a first counterexample to the Kolmogorov
group property (see the glossary) for the spectrum.

TheMultiplicity Problem
for Weighted Operators over Rotations

In case of perturbations of affine cocycles, this problem
was already raised by Kushnirenko [123]. Some signifi-
cant results were obtained by M. Guenais. Before we state
her results let us recall a useful criterion to find an upper
bound for the multiplicity: If there exist c > 0 and a se-
quence (Fn)n�1 of cyclic subspaces of H such that for each
y 2 H, kyk D 1 we have lim infn!1 kpro jFn yk2 � c,
then esssup(MU ) � 1/c which follows from a well-known
lemma of Chacon [23,26,111,127]. Using this and a tech-
nique which is close to the idea of local rank one
(see [44,111]) M. Guenais [69] proved a series of results
on multiplicity which we now list.

Theorem 5 Assume that Tx D x C ˛ and let
� : [0; 1)! T be a cocycle.

(i) If �(x) D e2	 i cx then MV�;T is bounded by jcj C 1.
(ii) If � is absolutely continuous and � is of topological de-

gree zero, then V�;T has a simple spectrum.
(iii) if � is of bounded variation, then

MV�;T � max(2; 2�Var(�)/3).

Remarks on the Banach Problem

We already mentioned in Introduction the Banach prob-
lem in ergodic theory, which is simply the question
whether there exists a Koopman representation forA D Z
with simple Lebesgue spectrum. In fact no example of
a Koopman representation with Lebesgue spectrum of fi-
nite multiplicity is known. Helson and Parry [75] asked
for the validity of a still weaker version: Can one con-
struct T such that UT has a Lebesgue component in its spec-
trum whose multiplicity is finite? Quite surprisingly in [75]
they give a general construction yielding for each ergodic
T a cocycle ' : X ! Z/2Z such that the unitary opera-
tor UT' has a Lebesgue spectrum in the orthocomple-
ment of functions depending only on the X-coordinate.
Then Mathew and Nadkarni [144] gave examples of co-
cycles over so called dyadic adding machine for which
the multiplicity of the Lebesgue component was equal
to 2. In [126] this was generalized to so called Toeplitz
Z/2Z-extensions of adding machines: for each even num-
ber k we can find a two-point extension of an adding
machine so that the multiplicity of the Lebesgue compo-
nent is k. Moreover, it was shown that Mathew and Nad-
karni’s constructions from [144] in fact are close to sys-

tems arising from number theory (like the famous Rudin–
Shapiro sequence, e. g. [160]), relating the result about
multiplicity of the Lebesgue component to results by Ka-
mae [96] and Queffelec [160]. Independently of [126],
Ageev [8] showed that one can construct 2-point exten-
sions of the Chacon transformation realizing (by taking
powers of the extension) each even number as the mul-
tiplicity of the Lebesgue component. Contrary to all pre-
vious examples, Ageev’s constructions are weakly mix-
ing.

Still an open question remains whether for A D Z
one can find a Koopman representation with the Lebesgue
component of multiplicity 1 (or even odd).

In [70], M. Guenais studies the problem of Lebesgue
spectrum in the classical case of Morse sequences
(see [107] as well as [124], where the problem of spectral
classification in this class is studied). All dynamical sytems
arising fromMorse sequences have simple spectra [124]. It
follows that if a Lebesgue component appears in a Morse
dynamical system, it has multiplicity one. Guenais [70]
using a Riesz product technique relates the Lebesgue spec-
trum problem with the still open problem of whether
a construction of “flat” trigonometric polynomials with
coefficients ˙1 is possible. However, it is proved in [70]
that such a construction can be carried out on some com-
pact Abelian groups and it leads, for an Abelian countable
torsion group A, to a construction of an ergodic action of
Awith simple spectrum and aHaar component in its spec-
trum.

Lifting Mixing Properties

We now give one more example of interactions between
spectral theory and joinings (see Introduction) that gives
rise to a quick proof of the fact that r-fold mixing prop-
erty of T (r � 2) lifts to a weakly mixing compact group
extension T' (the original proof of this fact is due to D.
Rudolph [175]). Indeed, to prove r-fold mixing for a mix-
ing( = 2-mixing) transformation S (acting on (Y ;C; �))
one has to prove that each weak limit of off-diagonal self-
joinings (given by powers of S, see � Joinings in Ergodic
Theory) of order r is simply the product measure �˝r .
We need also a Furstenberg’s lemma [62] about relative
unique ergodicity (RUE) of compact group extensions T' :
If � ˝ G is an ergodic measure for T' then it is the only
(ergodic) invariant measure for T' whose projection on the
first coordinate is �. Now the result about lifting r-fold
mixing to compact group extensions follows directly from
the fact that whenever T' is weakly mixing, (� ˝ G )˝r

is an ergodic measure (this approach was shown to me by
A. del Junco). In particular if T is mixing and T' is weakly
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mixing then for each � 2 bG n f1g, the maximal spectral
type of V�ı';T is Rajchman.

See Sect. “Rokhlin Cocycles” for a generalization of the
lifting result to Rokhlin cocycle extensions.

TheMultiplicity Function

In this chapter only A D Z is considered (for other
groups, even for R, much less is known; see however the
case of so called product Zd -actions [50]). Contrary to the
case of maximal spectral type, it is rather commonly be-
lieved that there are no restrictions for the set of essential
values of Koopman representations.

Cocycle Approach

Wewill only concentrate on some results of the last twenty
years. In 1983, E.A. Robinson [164] proved that for each
n � 1 there exists an ergodic transformation whose max-
imal spectral multiplicity is n. Another important result
was proved in [165] (see also [98]), where it is shown that
given a finite setM � N containing 1 and closed under the
least common multiple one can find (even a weakly mix-
ing) T so that the set of essential values of the multiplicity
function equalsM. This result was then extended in [67] to
infinite sets and finally in [125] (see also [11]) to all subsets
M � N containing 1. In fact, as we have already noticed
in the previous section the spectral theory for compact
Abelian group extensions is reduced to a study of weighted
operators and then to comparing maximal spectral types
for such operators. This leads to sets of the form

M(G; v;H) D
n
](f� ı vi : i 2 Zg \ anih(H)) :

� 2 anih(H)
o

(H � G is a closed subgroup and v is a continuous group
automorphism of G). Then an algebraic lemma has been
proved in [125] saying that each set M containing 1 is
of the form M(G; v;H) and the techniques to construct
“good” cocycles and a passage to “natural factors” yielded
the following: For each M � f1; 2; : : :g � f1g contain-
ing 1 there exists an ergodic automorphim such that the set
of essential values for its Koopman representation equalsM.
See also [166] for the case of non-Abelian group exten-
sions.

A similar in spirit approach (that means, a passage
to a family of factors) is present in a recent paper of
Ageev [13] in which he first applies Katok’s analysis
(see [98,102]) for spectral multiplicities of the Koopman
representation associated with Cartesian products T�k for

a generic transformation T. In a natural way this approach
leads to study multiplicities of tensor products of unitary
operators. Roughly, the multiplicity is computed as the
number of atoms (counted modulo obvious symmetries)
for conditional measures (see [98]) of a product measure
over its convolution. Ageev [13] proved that for a typical
automorphism T the set of the values of the multiplicity
function for UT�k equals fk; k(k � 1); : : : ; k!g and then
he just passes to “natural” factors for the Cartesian prod-
ucts by taking sets invariant under a fixed subgroup of per-
mutations of coordinates. In particular, he obtains all sets
of the form f2; 3; : : : ; ng on L20. He also shows that such
sets of multiplicities are realizable in the category of mix-
ing transformations.

Rokhlin’s UniformMultiplicity Problem

The Rokhlin multiplicity problem (see the recent book by
Anosov [15]) was, given n � 2, to construct an ergodic
transformation with uniform multiplicity n on L20. A solu-
tion for n D 2 was independently given by Ageev [9] and
Ryzhikov [188] (see also [15] and [66]) and in fact it con-
sists in showing that for some T (actually, any T with sim-
ple spectrum for which 1/2(Id C UT ) is in the weak oper-
ator closure of the powers of UT will do) the multiplicity
of T � T is uniformly equal to 2 (see also Sect. “Future Di-
rections”).

In [12], Ageev proposed a new approach which con-
sists in considering actions of “slightly non-Abelian”
groups; and showing that for a “typical” action of
such a group a fixed “direction” automorphism has
a uniform multiplicity. Shortly after publication of [12],
Danilenko [27], following Ageev’s approach, considerably
simplified the original proof. We will present Danilenko’s
arguments.

Fix n � 1. Denote ei D (0; : : : ; 1; : : : ; 0) 2 Zn ; i D
1; : : : ; n. We define an automorphism L of Zn setting
L(e i) D eiC1, i D 1; : : : ; n � 1 and L(en) D e1. Using
L we define a semi-direct product G : D Zn Ì Z defin-
ing multiplication as (u; k) � (w; l) D (u C Lkw; k C l).
Put e0 D (0; 1), ei D (ei ; 0), i D 1; : : : ; n (and Lei D
(Lei ; 0)). Moreover, denote enC1 D en0 D (0; n). Notice
that e0 � ei � e�10 D Lei for i D 1; : : : ; n (L(enC1) D enC1).

Theorem 6 (Ageev, Danilenko) For every unitary repre-
sentationU of G in a separable Hilbert space H, for which
Ue1�Lr e1 has no non-trivial fixed points for 1 � r < n, the
essential values of the multiplicity function for UenC1 are
contained in the set of multiples of n. If, in addition, Ue0
has a simple spectrum, then UenC1 has uniform multi-
plicity n.
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It is then a certain work to show that the assumption of the
second part of the theorem is satisfied for a typical action
of the groupG. Using a special (C; F)-construction with all
the cut-and-stack parameters explicit Danilenko [27] was
also able to show that each set of the form k �M, where
k � 1 and M is an arbitrary subset of natural numbers
containing 1, is realizable as the set of essential values of
a Koopman representation.

Some other constructions based on the solution of
the Rokhlin problem for n D 2 and the method of [125]
are presented in [103] leading to sets different than those
pointed above; these sets contain 2 as their minimum.

Rokhlin Cocycles

We consider now a certain class of extensions which
should be viewed as a generalization of the concept of
compact group extensions. We will focus on Z-actions
only.

Assume that T is an ergodic automorphism of (X,
B; �). Let G be a l.c.s.c. Abelian group. Assume that this
group acts on (Y ;C; �), that is we have a G-action S D
(Sg )g2G on (Y ;C; �). Let ' : X ! G be a cocycle. We then
define an automorphism T';S of the space (X � Y ;B ˝
C; �˝ �) by

T';S(x; y) D (Tx; S'(x)(y)):

Such an extension is called a Rokhlin cocycle extension
(the map x 7! S'(x) is called a Rokhlin cocycle). Such an
operation generalizes the case of compact group exten-
sions; indeed, when G is compact the action of G on it-
self by rotations preserves Haar measure. (It is quite sur-
prising, that when only we admit G non-Abelian, then, as
shown in [28], each ergodic extension of T has a form of
a Rokhlin cocycle extension.) Ergodic and spectral prop-
erties of such extensions are examined in several pa-
pers: [63,65,129,131,132,133,167,176]. Since in these pa-
pers rather joining aspects are studied (among other things
in [129] Furstenberg’s RUE lemma is generalized to this
new context), we will mention here only few results,
mainly spectral, following [129] and [133]. We will con-
stantly assume that G is non-compact. As ' : X ! G is
then a cocycle with values in a non-compact group, the
theory of such cocycles is much more complicated (see
e. g. [193]), and in fact the theory of Rokhlin cocycle ex-
tensions leads to interesting interactions between classi-
cal ergodic theory, the theory of cocycles and the theory
of non-singular actions arising from cocycles taking val-
ues in non-compact groups – especially, the Mackey ac-
tion associated to ' plays a crucial role here (see the prob-
lem of invariant measures for T';S in [132] and [28]);

see also monographs [1,98,101,193]. Especially, two Borel
subgroups of bG are important here:

˙' D f� 2 bG : � ı ' D c � �/� ı T for a measurable
� : X ! T and c 2 Tg :

and its subgroup �' given by c D 1. �' turns out to be
the group of L1-eigenvalues of the Mackey action (of G)
associated to the cocycle '. This action is the quotient ac-
tion of the natural action of G (by translations on the sec-
ond coordinate) on the space of ergodic components of the
skew product T' – the Mackey action is (in general) not
measure-preserving, it is however non-singular. We refer
the reader to [2,78,147] for other properties of those sub-
groups.

Theorem 7 ([132,133])

(i) �T';S jL2(X�Y;�˝�)�L2(X;�) D
R
Ĝ �V�ı';T d�S.

(ii) T';S is ergodic if and only if T is ergodic and
�S(�') D 0.

(iii) T';S is weakly mixing if and only if T is weakly mixing
and S has no eigenvalues in˙' .

(iv) if T is mixing, S is mildly mixing, ' is recurrent and
not cohomologous to a cocycle with values in a com-
pact subgroup of G then T';S remains mixing.

(v) If T is r-fold mixing, ' is recurrent and T';S is mildly
mixing then T';S is also r-fold mixing.

(vi) If T and R are disjoint, the cocycle ' is ergodic and S
is mildly mixing then T';S remains disjoint with R.

Let us recall [61,195] that an A-action S D (Sa)a2A is
mildly mixing (see the glossary) if and only if theA-action
(Sa � �a)a2A remains ergodic for every properly ergodic
non-singularA-action � D (�a)a2A.

Coming back to Smorodinsky–Thouvenot’s result
about factors of ergodic self-joinings of a Bernoulli au-
tomorphism we would like to emphasize here that the
disjointness result (vi) above was used in [132] to give
an example of an automorphism which is disjoint from
all weakly mixing transformations but which has an er-
godic self-joining whose associated automorphism has
a non-trivial weakly mixing factor. In a sense this is op-
posed to Smorodinsky–Thouvenot’s result as here from
self-joinings we produced a “more complicated” system
(namely the weakly mixing factor) than the original sys-
tem.

It would be interesting to develop the theory of spectral
multiplicity for Rokhlin cocycle extensions as it was done
in the case of compact group extensions. However a diffi-
culty is that in the compact group extension case we deal
with a countable direct sum of representations of the form
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V�ı';T while in the non-compact case we have to consider
an integral of such representations.

Rank-1 and Related Systems

Although properties like mixing, weak (and mild) mixing
as well as ergodicity, are clearly spectral properties, they
have “good” measure-theoretic formulations (expressed
by a certain behavior on sets). Simple spectrum prop-
erty is another example of a spectral property, and it was
a popular question in the 1980s whether simple spectrum
property of a Koopman representation can be expressed
in a more “measure-theoretic” way. We now recall rank-
1 concept which can be seen as a notion close to Ka-
tok’s and Stepin’s theory of cyclic approximation [104]
(see also [26]).

Assume thatT is an automorphism of a standard prob-
ability Borel space (X;B; �). T is said to have rank one
property if there exists an increasing sequence of Rokhlin
towers tending to the partition into points (a Rokhlin tower
is a family fF; TF; : : : ; Tn�1Fg of pairwise disjoint sets,
while “tending to the partition into points” means that we
can approximate every set in B by unions of levels of tow-
ers in the sequence). Baxter [20] showed that the maxi-
mal spectral type of such a T is realized by a characteristic
function. Since the cyclic space generated by the charac-
teristic function of the base contains characteristic func-
tions of all levels of the tower, by the definition of rank
one, the increasing sequence of cyclic spaces tends to the
whole L2-space, therefore rank one property implies sim-
plicity of the spectrum for the Koopman representation. It
was a question for some time whether rank-1 is just a char-
acterization of simplicity of the spectrum, disproved by del
Junco [88]. We refer the reader to [46] as a good source for
basic properties of rank-1 transformations.

Similarly to the rank one property, one can define fi-
nite rank automorphisms (simply by requiring that an ap-
proximation is given by a sequence of a fixed number of
towers) – see e. g. [152], or even, a more general property,
namely the local rank one property can be defined, just by
requiring that the approximating sequence of single tow-
ers fills up a fixed fraction of the space (see [44,111]). Lo-
cal rank one (so the more finite rank) property implies
finite multiplicity [111]. Mentzen [146] showed that for
each n � 1 one can construct an automorphism with sim-
ple spectrum and having rank n; in [138] there is an ex-
ample of a simple spectrum automorphism which is not
of local rank one. Ferenczi [45] introduced the notion of
funny rank one (approximating towers are Rokhlin tow-
ers with “holes”). Funny rank one also implies simplic-
ity of the spectrum. An example is given in [45] which is

even not loosely Bernoulli (see Sect. “Inducing and Spec-
tral Theory”, we recall that local rank one property implies
loose Bernoullicity [44]).

The notion of AT (see the glossary) has been in-
troduced by Connes and Woods [25]. They proved that
AT property implies zero entropy. They also proved that
funny rank one automorphisms are AT. In [32] it is proved
that the system induced by the classical Morse-Thue sys-
tem is AT (it is an open question by S. Ferenczi whether
this system has funny rank one property). A question by
Dooley and Quas is whether AT implies funny rank one
property. AT property implies “simplicity of the spectrum
in L1” which we already considered in Introduction (a
“generic” proof of this fact is due to J.-P. Thouvenot).

A persistent question was formulated in the 1980s
whether rank one itself is a spectral property. In [49] the
authors maintained that this is not the case, based on an
unpublished preprint of the first named author of [49] in
which there was a construction of a Gaussian–Kronecker
automorphism (see Sect. “Spectral Theory of Dynamical
Systems of Probabilistic Origin”) having rank-1 property.
This latter construction turned out to be false. In fact
de la Rue [181] proved that no Gaussian automorphism
can be of local rank one. Therefore the question whether:
Rank one is a spectral property remains one of the inter-
esting open questions in that theory. Downarowicz and
Kwiatkowski [33] proved that rank-1 is a spectral property
in the class of systems generated by generalized Morse se-
quences.

One of the most beautiful theorems about rank-1 au-
tomorphisms is the following result of J. King [110] (for
a different proof see [186]).

Theorem 8 (WCT) If T is of rank one then for each ele-
ment S of the centralizer C(T) of T there exists a sequence
(nk ) such that U

nk
T ! US strongly.

A conjecture of J. King is that in fact for rank-1 auto-
morphisms each indecomposableMarkov operator J D J�
(� 2 J e2(T)) is a weak limit of powers of UT (see [112],
also [186]). To which extent the WCT remains true for
actions of other groups is not clear. In [214] the WCT is
proved in case of rank one flows, however the main argu-
ment seems to be based on the fact that a rank one flow has
a non-zero time automorphism Tt0 which is of rank one,
which is not true. After the proof of theWCT by Ryzhikov
in [186] there is a remark that the rank one flow version of
the theorem can be proved by a word for word repetition
of the arguments. He also proves that if the flow (Tt)t2R is
mixing, then T1 does not have finite rank. On the other
hand, for A D Z2, Downarowicz and Kwiatkowski [34]
gave recently a counterexample to the WCT.
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Even though it looks as if rank one construction is
not complicated, mixing in this class is possible; histori-
cally the first mixing constructions were given by D. Orn-
stein [151] in 1970, using probability type arguments for
a choice of spacers. Once mixing was shown, the ques-
tion arose whether absolutely continuous spectrum is also
possible, as this would give automatically the positive an-
swer to the Banach problem. However Bourgain [21], re-
lating spectral measures of rank one automorphisms with
some classical constructions of Riesz product measures,
proved that a certain subclass of Ornstein’s class consists
of automorphisms with singular spectrum (see also [5]
and [6]). Since in Ornstein’s class spacers are chosen in
a certain “non-constructive” way, quite a lot of attention
was devoted to the rank one automorphism defined by
cutting a tower at the nth step into rn D n subcolumns of
equal “width” and placing i spacers over the ith subcol-
umn. The mixing property conjectured by M. Smorodin-
sky, was proved by Adams [7] (in fact Adams proved
a general result on mixing of a class of staircase trans-
formations). Spectral properties of rank-1 transformations
are also studied in [114], where the authors proved that
whenever

P1
nD1 r

�2
n D C1 (rn stands for the number of

subcolumns at the nth step of the construction of a rank-
1 automorphism) then the spectrum is automatically sin-
gular. H. Abdalaoui [5] gives a criterion for singularity
of the spectrum of a rank one transformation; his proof
uses a central limit theorem. It seems that still the ques-
tion whether rank one implies singularity of the spectrum
remains the most important question of this theory.

We have already seen in Sect. “Spectral Theory of
Weighted Operators” that for a special class of rank one
systems, namely those with discrete spectra ([87]), we have
a nice theory for weighted operators. It would be extremely
interesting to find a rank one automorphism with contin-
uous spectrum for which a substitute of Helson’s analysis
exists.

B. Fayad [39] constructs a rank one differentiable flow,
as a special flow over a two-dimensional rotation. In [40]
he gives new constructions of smooth flows with singular
spectra which are mixing (with a new criterion for a Ra-
jchman measure to be singular). In [35] a certain smooth
change of time for an irrational flows on the 3-torus is
given, so that the corresponding flow is partially mixing
and has the local rank one property.

Spectral Theory of Dynamical Systems
of Probabilistic Origin

Let us just recall that when (Yn)1nD�1 is a stationary
process then its distribution � on RZ is invariant un-

der the shift S on RZ: S((xn)n2Z) D (yn)n2Z, where
yn D xnC1; n 2 Z. In this way we obtain an automor-
phism S defined on (RZ;B(RZ); �). For each auto-
morphism T we can find f : X ! R measurable such
that the smallest �-algebra making the stationary process
( f ı Tn)n2Z measurable is equal to B, therefore, for the
purpose of this article, by a system of probabilistic ori-
gin we will mean (S; �) obtained from a stationary in-
finitely divisible process (see e. g. [142,192]). In particu-
lar, the theory of Gaussian dynamical systems is indeed
a classical part of ergodic theory (e. g. [149,150,211,212]).
If (Xn)n2Z is a stationary real centered Gaussian pro-
cess and � denotes the spectral measure of the process, i. e.
b�(n) D E(Xn � X0), n 2 Z, then by S D S
 we denote the
corresponding Gaussian system on the shift space (recall
also that for each symmetric measure � on T there is ex-
actly one stationary real centered Gaussian process whose
spectral measure is �). Notice that if � has an atom, then
in the cyclic space generated by X0 there exists an eigen-
function Y for S
 – if now S
 were ergodic, jY j would be
a constant function which is not possible by the nature of
elements in Z(X0). In what follows we assume that � is
continuous.

It follows thatUS� restricted to Z(X0) is spectrally the
same as V D V
 acting on L2(T ; �), and we obtain that
(US� ; L2(RZ; �
 )) can be represented as the symmetric
Fock space built over H D L2(T ; �) and US� D F(V) –
see the glossary (Hˇn is called the n-th chaos). In other
words the spectral theory of Gaussian dynamical systems
is reduced to the spectral theory of special tensor products
unitary operators. Classical results (see [26]) which can be
obtained from this point of view are for example the fol-
lowing:

(A) ergodicity implies weak mixing,
(B) the multiplicity function is either 1 or is unbounded,
(C) the maximal spectral type of US� is equal to exp(�),

hence Gaussian systems enjoy the Kolmogorov group
property.

However we can also look at a Gaussian system in a dif-
ferent way, simply by noticing that the variables e2	 i f (f
is a real variable), where f 2 Z(X0) generate L2(RZ; �
 ).
Now calculating the spectral measure of e2	 i f is not diffi-
cult and we obtain easily (C). Moreover, integrals of type
R
e2	 i f0e2	 i f1ıTne2	 i f2ıTnCm d�
 can also be calculated,

whence in particular we easily obtain Leonov’s theorem on
the multiple mixing property of Gaussian systems [141].

One of the most beautiful parts of the theory of Gaus-
sian systems concerns ergodic properties of S
 when � is
concentrated on a thin Borel set. Recall that a closed sub-
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set K � T is said to be a Kronecker set if each f 2 C(K) is
a uniform limit of characters (restricted to K). Each Kro-
necker set has no rational relations. Gaussian–Kronecker
automorphisms are, by definition, those Gaussian systems
for which the measure � (always assumed to be contin-
uous) is concentrated on K [ K, K a Kronecker set. The
following theorem has been proved in [51] (see also [26]).

Theorem 9 (Foiaş–Stratila Theorem) If T is an ergodic
automorphism and f is a real-valued element of L20 such
that the spectral measure � f is concentrated on K [ K,
where K is a Kronecker set, then the process ( f ı Tn)n2Z

is Gaussian.

This theorem is indeed striking as it gives examples of
weakly mixing automorphisms which are spectrally de-
termined (like rotations). A relative version of the Foiaş–
Stratila Theorem has been proved in [129].

The Foiaş–Stratila Theorem implies that whenever
a spectral measure � is Kronecker, it has no realization
of the form � f with f bounded. We will see however in
Sect. “Future Directions” that for some automorphisms T
(having the SCS property) the maximal spectral type �T
has the property that S
T has a simple spectrum.

Gaussian–Kronecker automorphisms are examples of
automorphisms with simple spectra. In fact, whenever �
is concentrated on a set without rational relations, then S

has a simple spectrum (see [26]). Examples of mixing au-
tomorphisms with simple spectra are known [149], how-
ever it is still unknown (Thouvenot’s question) whether
the Foiaş–Stratila property may hold in themixing class. F.
Parreau [154] using independent Helson sets gave an ex-
ample of mildly mixing Gaussian system with the Foiaş–
Stratila property.

In [165] there is a remark that the set of finite essential
values of the multiplicity function of US� forms a (multi-
plicative) subsemigroup ofN . However, it seems that there
is no “written” proof of this fact.

Joining theory of a class of Gaussian system, called
GAG, is developed in [136]. A Gaussian automorphism S

with the Gaussian space H � L20(R

Z; �
 ) is called a GAG
if for each ergodic self-joining � 2 J e2(S
 ) and arbitrary
f ; g 2 H the variable

(RZ �RZ; �) 3 (x; y) 7! f (x)C g(y)

is Gaussian. For GAG systems one can describe the cen-
tralizer and factors, they turn out to be objects close to the
probability structure of the system. One of the crucial ob-
servations in [136] was that all Gaussian systems with sim-
ple spectrum are GAG.

It is conjectured (J.P. Thouvenot) that in the class of
zero entropy Gaussian systems the PID property holds
true.

For the spectral theory of classical factors of a Gaus-
sian system see [137]; also spectrally they share basic spec-
tral properties of Gaussian systems. Recall that historically
one of the classical factors namely the �-algebra of sets in-
variant for the map

(: : : ; x�1; x0; x1; : : :) 7! (: : : ;�x�1;�x0;�x1; : : :)

was the first example with zero entropy and countable
Lebesgue spectrum (indeed, we need a singular measure �
such that �  � is equivalent to Lebesgue measure [150]).
For factors obtained as functions of a stationary process
see [83].

T. de la Rue [181] proved that Gaussian systems are
never of local rank-1, however his argument does not ap-
ply to classical factors. We conjecture that Gaussian sys-
tems are disjoint from rank-1 automorphisms (or even
from local rank-1 systems).

We now turn the attention to Poissonian systems
(see [26] for more details). Assume that (X;B; �) is a stan-
dard Borel space, where � is infinite, �-finite. The new
configuration space eX is taken as the set of all countable
subsets fxi : i � 1g of X. Once a set A 2 B, of finite mea-
sure is given one can define a map NA : eX ! N([f1g)
just counting the number of elements belonging to A.
The measure-theoretic structure (eX;eB;e�) is given so
that the maps NA become random variables with Pois-
son distribution of parameter �(A) and such that when-
ever A1; : : : ;Ak � X are of finite measure and are pair-
wise disjoint then the variablesNA1 ; : : : ;NAk are indepen-
dent.

Assume now that T is an automorphism of (X;B; �).
It induces a natural automorphism on the space (eX;eB;e�)
defined by eT(fxi : i � 1g D fTxi : i � 1g. The automor-
phism eT is called the Poisson suspension of T (see [26]).
Such a suspension is ergodic if and only if no set of positive
and finite �-measure is T-invariant. Moreover ergodicity
of eT implies weak mixing. In fact the spectral structure of
UeT is very similar to the Gaussian one: namely the first
chaos equals L2(X;B; �) (we emphasize that this is about
the whole L2 and not only L20) on whichUeT acts asUT and
the L2(eX;e�) together with the action of UeT has the struc-
ture of the symmetric Fock space F(L2(X;B; �)) (see the
glossary).

We refer to [22,86,168,169] for ergodic properties of
systems given by symmetric ˛-stable stationary processes,
or more generally infinitely divisible processes. Again, they
share spectral properties similar to the Gaussian case: er-
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godicity implies weak mixing, while mixing implies mix-
ing of all orders.

In [171], E. Roy clarifies the dynamical “status” of such
systems. He uses Poisson suspension automorphisms and
theMaruyama representation of an infinitely divisible pro-
cess mixed with basic properties of automorphisms pre-
serving infinite measure (see [1]) to prove that as a dynam-
ical system, a stationary infinitely divisible process (with-
out the Gaussian part), is a factor of the Poisson suspen-
sion over the Lévy measure of this process. In [170] a the-
ory of ID-joinings is developed (which should be viewed as
an analog of the GAG theory in the Gaussian class). Par-
reau and Roy [155] give an example of a Poisson suspen-
sion with a minimal possible set of ergodic self-joinings.

Many natural problems still remain open here, for
example (assuming always zero entropy of the dynam-
ical system under consideration): Are Poisson suspen-
sions disjoint from Gaussian systems? What is the spec-
tral structure for dynamical systems generated by symmet-
ric ˛-stable process? Are such systems disjoint whenever
˛1 ¤ ˛2? Are Poissonian systems disjoint from local rank
one automorphisms (cf. [181])? In [91] it is proved that
Gaussian systems are disjoint from so called simple sys-
tems (see � Joinings in Ergodic Theory and [93,208]); we
will come back to an extension of this result in Sect. “Fu-
ture Directions”. It seems that flows of probabilistic origin
satisfy the Kolmogorov group property for the spectrum.
One can therefore ask how different are systems satisfying
the Kolmogorov group property from systems for which
the convolutions of the maximal spectral type are pairwise
disjoint (see also Sect. “Future Directions” and the SCS
property).

We also mention here another problem which will be
taken up in Sect. “Special Flows and Flows on Surfaces, In-
terval Exchange Transformations” – Is it true that flows
of probabilistic origin are disjoint from smooth flows on
surfaces? Recently A. Katok and A. Windsor announced
that it is possible to construct a Kronecker measure so
that the corresponding Gaussian system (Z-action (!)) has
a smooth representation on the torus.

Yet onemore (joining) property seems to be character-
istic in the class of systems of probabilistic origin, namely
they satisfy so called ELF property (see [30] and � Join-
ings in Ergodic Theory). Vershik asked whether the ELF
property is spectral – however the example of a cocy-
cle from [205] together with Theorem 7 (i) yields a cer-
tain Rokhlin extension of a rotation which is ELF and has
countable Lebesgue spectrum in the orthocomplement of
the eigenfunctions (see [206]); on the other hand any affine
extension of that rotation is spectrally the same, while it
cannot have the ELF property.

Prikhodko and Thouvenot (private communication)
have constructed weakly mixing and non-mixing rank one
automorphisms which enjoy the ELF property.

Inducing and Spectral Theory

Assume that T is an ergodic automorphism of a standard
probability Borel space (X;B; �). Can “all” dynamics be
obtained by inducing (see the glossary) from one fixed au-
tomorphism was a natural question from the very begin-
ning of ergodic theory. Because of Abramov’s formula for
entropy h(TA) D h(T)/�(A) it is clear that positive en-
tropy transformations cannot be obtained from inducing
on a zero entropy automorphism. However here we are
interested in spectral questions and thus we ask howmany
spectral types we obtain when we induce. It is proved
in [59] that the family of A 2 B for which TA is mixing is
dense for the (pseudo)metric d(A1;A2) D �(A14A2). De
la Rue [182] proves the following result: For each ergodic
transformation T of a standard probability space (X;B; �)
the set of A 2 B for which the maximal spectral type of
UTA is Lebesgue is dense in B. The multiplicity function is
not determined in that paper. Recall (without giving a for-
mal definition, see [152]) that a zero entropy automor-
phism is loosely Bernoulli (LB for short) if and only if it can
be induced from an irrational rotation (see also [43,99]).
The LB theory shows that not all dynamical systems can
be obtained by inducing from an ergodic rotation. How-
ever an open question remained whether LB systems ex-
haust spectrally all Koopman representations. In a deep
paper [180], de la Rue studies LB property in the class
of Gaussian–Kronecker automorphisms, in particular he
constructs S which is not LB. Suppose now that T is LB
and for some A 2 B,UTA is isomorphic toUS . Then by the
Foiaş–Stratila Theorem, TA is isomorphic to S, and hence
TA is not LB. However an induced automorphism from an
LB automorphism is LB, a contradiction.

Special Flows and Flows on Surfaces,
Interval Exchange Transformations

We now turn our attention to flows. The cases of the
geodesic flow, horocycle flows on homogenous spaces of
SL(2;R) and nilflows are classical (we refer the reader
to [105] with a nice description of the first two cases,
while for nilflows we refer to [157]: these classes of flows
on homogenous spaces have countable Lebesgue spec-
trum, in the third case – in the orthocomplement of the
eigenspace). On the other hand the classical cyclic approx-
imation theory of Katok and Stepin [104] (see [26]) leads
to examples of smooth flows on the torus with simple con-
tinuous singular spectra.
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Given an ergodic automorphism T on (X;B; �) and
a positive integrable function f : X ! RC consider the
corresponding special flow T f (see the glossary). Obvi-
ously, such a flow is ergodic. Special flows were introduced
to ergodic theory by von Neumann in his fundamental
work [148] in 1932. Also in that work he explains how
to compute eigenvalues for special flows, namely: r 2 R is
an eigenvalue of T f if and only if the following functional
equation

e2	 ir f (x) D
�(x)
�(Tx)

has a measurable solution � : X ! T . We recall also that
the classical Ambrose-Kakutani theorem asserts that prac-
tically each ergodic flow has a special representation ([26],
see also Rudolph’s theorem on special representation
therein).

A classical situation when we obtain “natural” spe-
cial representations is while considering smooth flows
on surfaces (we refer the reader to Hasselblatt’s and Ka-
tok’s monograph [73]). They have transversals on which
the Poincaré map is piecewise isometric, and this en-
tails a study of interval exchange transformations (IET),
see [26,108,163]. Formally, to define IET ofm intervals we
need a permutation � of f1; : : : ;mg and a probability vec-
tor  D (1; : : : ; m) (with positive entries). Then we de-
fine T D T�;	 of [0; 1) by putting

T�;	 (x) D x C ˇ	i � ˇi for x 2 [ˇi ; ˇiC1) ;

where ˇi D
P

j<i  j , ˇ	i D
P
	 j<	 i ˇ j . Obviously, each

IET preserves Lebesgue measure. One of possible ap-
proaches to study ergodic properties of IET is an “a.e”
approach “seen” in the definition of T�;	 . It is based on
the fundamental fact that the induced transformation on
a subinterval of [0; 1) is also IET (see [26]). This leads
to a very delicate and deep mathematics based on Rauzy
induction, which is a way of inducing on special inter-
vals, considering only irreducible permutations whose set
is partitioned into orbits of some maps (any such an or-
bit is called a Rauzy class). If now R is a Rauzy class of
permutations and  lies in the standard simplex �m�1
then the Rauzy induction together with a natural renor-
malization leads to a map P : R ��m�1 ! R ��m�1.
For a better understanding of the dynamics of the Rauzy
map Veech [209] introduced the space of zippered rectan-
gles. A zippered rectangle associated to the Rauzy classR is
a quadruple (; h; a; �), where  2 Rm

C, h 2 Rm
C, a 2 Rm

C,
� 2 R and the vectors h and a satisfy some equations and
inequalities. Every zippered rectangle (; h; a; �) deter-
mines a Riemann structure on a compact connected sur-

face. Denote by ˝(R) the space of all zippered rectan-
gles, corresponding to a given Rauzy classR and satisfying
the condition h; hi D 1. In [209], Veech defined a flow
(Pt)t2R on the space˝(R) putting

Pt(; h; a; �) D (et; e�t h; e�t a; �)

and extended the Rauzy map. On so called Veech moduli
space of zippered rectangles, the flow (Pt) becomes the Te-
ichmüller flow and it preserves a natural Lebesgue measure
class; by passing to a transversal and projecting the mea-
sure on the space of IETs R ��m�1 Veech has proved
the following fundamental theorem ([209], see also [143])
which is a generalization of the fact that Gauss measure
1/(ln 2)1/(1C x)dx is invariant for the Gauss map which
sends t 2 (0; 1) into the fractional part of its inverse.

Theorem 10 (Veech, Masur, 1982) Assume that R is
a Rauzy class. There exists a �-finite measure �R on R �
�m�1 which is P-invariant, equivalent to “Lebesgue” mea-
sure, conservative and ergodic.

In [209] it is proved that a.e. (in the above sense) IET is
then of rank one (and hence is ergodic and has a sim-
ple spectrum). He also formulated as an open problem
whether we can achieve the weakmixing property a.e. This
has been recently answered in positive by A. Avila and G.
Forni [19] (for � which is not a rotation).

Katok [100] proved that IET have no mixing factors
(in fact his proof shows more: the IET class is disjoint with
the class of mixing transformations). By their nature, IET
transformations are of finite rank (see [26]) so they are of
finite multiplicity. They need not be of simple spectrum
(see remarks in [105] pp. 88–90). It remains an open ques-
tion whether an IET can have a non-singular spectrum.
Joining properties in the class of exchange of 3 and more
intervals are studied in [47,48]. An important question of
Veech [208] whether a.e. IET is simple is still open.

When we consider a smooth flow on a surface pre-
serving a smooth measure, whose only singularity (we as-
sume that we have only finitely many singularities) are
simple (non-degenerated) saddles then such a flow has
a special representation over an interval exchange auto-
morphism under a smooth function which has finitely
many logarithmic singularities (see [73]). In the article by
Arnold [18] the quasi-periodic Hamiltonian case is con-
sidered:H : R2 ! R satisfiesH(xCm; yCn) D H(x; y)C
n˛1Cm˛2, ˛1/˛2 … Q, andwe then consider the following
system of differential equations on T 2

dx
dt
D
@H
@y
;
dy
dt
D
�@H
@x

: (2)



Spectral Theory of Dynamical Systems S 8569

As Arnold shows the dynamical system arising from the
system (2) has one ergodic component which has a special
representation over the irrational rotation by ˛ :D ˛1/˛2
under a smooth function with finitely many logarith-
mic singularities (all other ergodic components are peri-
odic orbits and separatrices). By changing a speed as it
is done in [57] so that critical points of the vector field
in (2) become singular points, Arnold’s special represen-
tation is transformed to a special flow over the same irra-
tional rotation however under a piecewise smooth func-
tion. If the sum of jumps is not zero then in fact we come
back to von Neumann’s class of special flows considered
in [148]. Similar classes of special flows (when the roof
function is of bounded variation) are obtained from er-
godic components of flows associated to billiards in con-
vex polygones with rational angles [106]. Kochergin [115]
showed that special flows over irrational rotations and un-
der bounded variation functions are never mixing. This
has been recently strengthened in [54] to the following:
If T is an irrational rotation and f is of bounded vari-
ation then the special flow T f is spectrally disjoint from
all mixing flows. In particular all such flows have sin-
gular spectra. Moreover, in [54] it is proved that when-
ever the Fourier transform of the roof function f is of
order O(1/n) then T f is disjoint from all mixing flows
(see also [55]). In fact in the papers [54,55,56,57] the au-
thors discuss the problem of disjointness of those spe-
cial flows with all ELF-flows conjecturing that no flow
of probabilistic origin has a smooth realization on a sur-
face. In [140] the analytic case is considered leading to
a “generic” result on disjointness with the ELF class gen-
eralizing the classical Shklover’s result on the weak mixing
property [197].

Kochergin [117] proved the absence of mixing for
flows where the roof function has finitely many singulari-
ties, whenever the sum of “left logarithmic speeds” and the
sum of “right logarithmic speeds” are equal – this is called
a symmetric logarithmic case, however some Diophantine
restriction is put on ˛.

In [128], where also the absence of mixing is con-
sidered for the symmetric logarithmic case, it was con-
jectured (and proved for arbitrary rotation) that a nec-
essary condition for mixing of a special flow T f (with
arbitrary T and f ) is the condition that the sequence of
distributions (( f (n)0 )�)n tends to ı1 in the space of prob-
ability measures on R. K. Schmidt [194] proved it using
the theory of cocycles and extending a result from [3] on
tightness of cocycles.

A. Katok [100] proved the absence of mixing for spe-
cial flows over IET when the roof function is of bounded
variation (see also [187]). Katok’s theorem was strength-

ened in [56] to the disjointness theorem with the class of
mixing flows.

On the other hand there is a lot of (difficult) results
pointing out classes of special flows over irrational rota-
tions which are mixing, especially (but not only) in the
class of non-symmetric logarithmic singularities: [36,38]
(B. Fayad was able to give a speed of convergence to zero
for Fourier coefficients), [109,119,120]. Recently mixing
property has been proved in a non-symmetric case in [203]
when the base transformation is a special class of IETs.

The eigenvalue problem (mainly how many frequen-
cies can have the group of eigenvalues) for special flows
over irrational rotations is studied in [41,42,71].

A. Avila and G. Forni [19] proved that a.e. translation
flow on a surface (of genus at least two) is weakly mixing
(which is a drastic difference with the linear flow case of
the torus, where the spectrum is always discrete).

The problem of whether mixing flows indicated in this
chapter are mixing of all orders is open (it is also unknown
whether they have singular spectra). One of several pos-
sible approaches (proposed by B. Fayad and J.-P. Thou-
venot) toward positive solution of this problem would be
to show that such flows enjoy so called Ratner’s property
(R-property). This property may be viewed as a particular
way of divergence of orbits of close points; it was shown
to hold for horocycle flows by M. Ratner [162]. We re-
fer the reader to [162] and the survey article [201] for the
formal definitions and basic consequences of R-property.
In particular, R-property implies “rigidity” of joinings and
it also implies the PID property; hence mixing and R-
property imply mixing of all orders. In [57,58] a version of
R-property is shown for the class of von Neumann special
flows (however ˛ is assumed to have bounded partial quo-
tients). This allowed one to prove there that such flows are
even mildly mixing (mixing is excluded by a Kochergin’s
result). We conjecture that an R-property may also hold
for special flows overmultidimensional rotations with roof
functions given by nil-cocycles which we mentioned in
Sect. “Spectral Theory of Weighted Operators”.

If indeed the R-property is ubiquitous in the class of
smooth flows on surfaces it may also be useful to show that
smooth flows on surfaces are disjoint with flows of proba-
bilistic origin – see [91,92,135,190,202].

B. Fayad [40] gives a criterion that implies singular-
ity of the maximal spectral type for a dynamical system
on a Riemannian manifold. As an application he gives
a class of smooth mixing flows (with singular spectra) on
T 3 obtained from linear flows by a time change (again
this is a drastic difference with dimension two, where
a smooth time change of a linear flow leads to non-mix-
ing flows [26]).



8570 S Spectral Theory of Dynamical Systems

The spectral multiplicity problem for special flows
(with sufficiently regular roof functions) over irrational ro-
tations seems to be completely untouched (except for the
case of a sufficiently smooth f – the spectrum of T f is then
simple [26]). It would be nice to have examples of such
flows with finite bigger than onemultiplicity. In particular,
is it true that the von Neumann class of special flows have
finite multiplicity? This was partially solved by A. Katok
(private communication) on certain subspaces in L2, but
not on the whole L2-space.

Problem. Given Tx D x C ˛ (with ˛ irrational) can
we find f : [0; 1) ! RC sufficiently regular (e. g. with
finitely many “controllable” singularities) such that T f has
a Lebesgue spectrum?

Of course the above is related to the question whether at all
one can find a smooth flow on a surface with a Lebesgue
spectrum (for Z-actions we can even see positive entropy
diffeomorphisms on the torus).

We mention at the end that if we drop here (and in
other problems) the assumption of regularity of f then the
answers will be always positive because of the LB theory;
in particular there is a section of any horocycle flow (it
has the LB property [161]) such that in the correspond-
ing special representation T f the map T is an irrational
rotation. Using a Kochergin’s result [118] on cohomology
(see also [98,176]) the L1-function f is cohomologous to
a positive function g which is even continuous, thus T f is
isomorphic to Tg .

Future Directions

We have already seen several cases where spectral proper-
ties interact with measure-theoretic properties of a system.
Let us mention a few more cases which require further re-
search and deeper understanding.

We recall that the weakmixing property can be under-
stood as a property complementary to discrete spectrum
(more precisely to the distality [62]), or similarly mild
mixing property is complementary to rigidity. This can
be phrased quite precisely by saying that T is not weakly
(mildly) mixing if and only if it has a non-trivial factor
with discrete spectrum (it has a non-trivial rigid factor). It
has been a question for quite a long time if in a sense mix-
ing can be “built” on the same principle. In other words we
seek a certain “highly” non-mixing factor. It was quite sur-
prising when in 2005 F. Parrreau (private communication)
gave the positive answer to this problem.

Theorem 11 (Parreau) Assume that T is an ergodic au-
tomorphism of a standard probability space (X;B; �). As-
sume moreover that T is not mixing. Then there exists

a non-trivial factor (see below) of T which is disjoint with
all mixing automorphisms.

In fact, Parreau proved that each factor of T given
by B1(�) (this �-algebra is described in [136]), where
Unk

T ! J�, is disjoint from all mixing transformations.
This proof leads to some other results of the same type,
for example: Assume that T is an ergodic automorphism
of a standard probability space. Assume that there exists
a non-trivial automorphism S with a singular spectrum
which is not disjoint with T. Then T has a non-trivial factor
which is disjoint with any automorphism with a Lebesgue
spectrum.

The problem of spectral multiplicity of Cartesian prod-
ucts for “typical” transformation studied by Katok [98]
and then its solution in [13] which we already consid-
ered in Sect. “The Multiplicity Function” lead to a study
of those T for which

(CS) � (m) ? � (n) whenever m ¤ n ;

where � D �T just stands for the reduced maximal spec-
tral type of UT (which is constantly assumed to be a con-
tinuous measure), see also Stepin’s article [199].

The usefulness of the above property (CS) in ergodic
theory was already shown in [90], where a spectral coun-
terexample machinery was presented using the following
observation: If A is a T�1-invariant sub-�-algebra such
that the maximal spectral type on L2(A) is absolutely con-
tinuous with respect to �T then A is contained in one of
the coordinate sub-�-algebras B. Based on that in [90] it
is shown how to construct two weakly isomorphic action
which are not isomorphic or how to construct two non-
disjoint automorphisms which have no common non-
trivial factors (such constructions were previously known
for so called minimal self-joining automorphisms [174]).
See also [200] for extensions of those results toZd -actions.

Prikhodko and Ryzhikov [159] proved that the clas-
sical Chacon transformation enjoys the (CS) property.
The SCS property defined in the glossary is stronger than
the (CS) condition above; the SCS property implies that
the corresponding Gaussian system S
T has a simple spec-
trum. Ageev [10] shows that Chacon’s transformation sat-
isfies the SCS property; moreover in [13] he shows that the
SCS property is satisfied generically and he gives a con-
struction of a rank onemixing SCS-system (see also [191]).
In [134] it is proved that some special flows considered
in Sect. “Special Flows and Flows on Surfaces, Interval
Exchange Transformations” (including the von Neumann
class, howeverwith ˛ having unbounded partial quotients)
have the SCS property. Since the corresponding Gaus-
sian systems have simple spectra, it would be interesting
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to decide whether �T (for an SCS-automorphism) can
be concentrated on a set without rational relations. It is
quite plausible that the SCS property is commonly seen for
smooth flows on surfaces.

Katok and Thouvenot (private communication) con-
sidered systems called infinitely divisible. These are sys-
tems T on (X;B; �) which have a family of factors B! in-
dexed by ! 2

S1
nD0f0; 1g

n (B" D B) such that B!0 ?
B!1; B!0 _ B!1 D B! and for each � 2 f0; 1gN ,
\n2NB�[0;n] D f;; Xg. They showed (unpublished) that
there are discrete spectrum transformations which are ID,
and that there are rank one transformations with contin-
uous spectra which are also ID (clearly Gaussian systems
are ID). It was until recently that a relationship between ID
automorphisms and systems coming from stationary ID
processes was unclear. In [135] it is proved that dynamical
systems coming from stationary ID processes are factors
of ID automorphisms; moreover, ID automorphisms are
disjoint with all systems having the SCS property. It would
be nice to decide whether Koopman representations asso-
ciated to ID automorphisms satisfy the Kolmogorov group
property.
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49. Ferenczi S, Lemańczyk M (1991) Rank is not a spectral invari-
ant. Stud Math 98:227–230

50. Filipowicz I (1997) Product Zd-actions on a Lebesgue space
and their applications. Stud Math 122:289–298

51. Foiaş C, Stratila S (1968) Ensembles de Kronecker
dans la théorie ergodique. CR Acad Sci Paris, Ser A-B
267:A166–A168

52. Fra̧czek K (1997) On a function that realizes themaximal spec-
tral type. Stud Math 124:1–7

53. Fra̧czek K (2000) Circle extensions of Zd-rotations on the d-di-
mensional torus. J London Math Soc 61(2):139–162
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128. Lemańczyk M (2000) Sur l’absence de mélange pour des flots
spéciaux au dessus d’une rotation irrationnelle. Coll Math
84/85:29–41
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134. Lemańczyk M, Parreau F (2007) Special flows over irrational
rotation with simple convolution property. (in press)
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Glossary

Atomic units, a. u. The electron-charge jej, and the
mass me are taken as unity. The unit of time is fixed
by setting the Plank constant „ to unity. The Bohr
radius a0 D „2/(mee2) is one a.u. of length in the
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centimeter-gram-second(CGS) system which uses the
“esu”(electrostatic unit of charge). The SI system uses
the meter, kilogram, second (with the Ampere as the
unit of current), a0 D (4�"0„2/(mee2) where " is the
electric permittivity of the vacuum. The value of a0 is
5:29177 � 10�9 cm. The unit of energy, the Hartree, is
e2/a0 in the CGS system, being 27.2116 eV. In semi-
conductor physics, effective atomic units are used, with
e2/", replacing e2, where " is the dielectric constant.
The band mass mb is used instead of me, so that the
effective Bohr radius a�0 D a0("/m�), where m� is the
effective mass. Then the effective Hartree is of the or-
der of millivolts.

Confining potential This potential keeps the electron in
a given spatial region. It is due to the physical structure
of the device, the applied gate voltages etc.

Correlation energy The contribution to the total en-
ergy beyond the Hartree–Fock approximation, de-
noted by Ec.

Correlation hole is the depletion of electron density near
an electron due to Coulomb repulsion effects.

Coupling constant is the ratio of the potential en-
ergy(PE) to the kinetic energy (KE). In a classical elec-
tron fluid, the KE (thermal energy) is T, and the PE is
1/rs (atomic units), and rs is the Wigner–Seitz radius.
The coupling constant D PE/KE D � D 1/(rsT). In
quantum systems, the Fermi energy EF is used instead
of T for the KE, and � D rs.

Classical-map hyper-netted-chain (CHNC) A method
for using the classical hyper-netted-chain equation to
calculate the correlation functions of quantum sys-
tems.

Effective mass is denoted bym�, and is the bandmassmb
in units of the electron massme.

Exchange energy The part of the Hartree–Fock energy
due to electron exchange, i. e., the “Fock” part, denoted
by Ex. It is first order in the Coulomb interaction.

Fermi hole This denotes the reduction in the probabil-
ity of finding a like-spin electron near another, due to
Fermi statistics.

Hartree–Fock Hartree’s self-consistent one-body ap-
proximation for interacting electrons is based on
a product wavefunction. Fock included exchange using
an antisymmetrized product. “Hartree–Fock” is the la-
bel for calculations of the energy, wavefunctions etc.,
where the electronmoves in this mean potential gener-
ated by the electrostatics and the exchange effects. The
Hartree term is zero in uniform systems.

HIGFET
Heterojunction-Insulated-Gate Field-effect Tran-
sistor.

Jellium Amodel “metal” where the positive ionic charges
are replaced by a uniform static charge which neutral-
izes the free-electron charge.

MOSFET Metal-oxide semiconductor field-effect transis-
tor.

Heterojunction A semiconductor-interface involving
two dissimilar materials.

Hyper-netted-chain (HNC) A classical integral equation
due to van Leeuwen, Groenveld and de Boer (1959)
which non-perturbatively sums “hyper-netted-chain”
diagrams, going beyond mean-field theory.

Electron gas parameter rs See Wigner–Seitz radius.
Pair-correlation function Denoted by h(Er) D g(Er) � 1

where g(r) is the pair-distribution function(PDF).
Pair-distribution function The pair-distribution func-

tion(PDF), g(Er), is the probability of finding a particle
at the location Er, given a reference particle at the origin.

Plasma analogy A class of methods for approximately re-
placing a charged quantum fluid by an equivalent clas-
sical fluid at a finite temperature.

Pseudo-spin Discrete degrees of freedom beside the elec-
tron spin. The electrons in Si/SiO2 interfaces occupy
two valleys. The valley index is a pseudospin.

Quantum-Monte Carlo (QMC) In molecular dynamics
(MD), Newton’s equations of motion are integrated
using a stochastic scheme based on the Metropo-
lis algorithm. In QMC a trial wavefunction provides
a probability measure for the Metropolis algorithm.
The wavefunction is optimized in various ways, lead-
ing to “variational QMC”, where the nodes of the trial
wavefunction are held fixed. In “Diffusion QMC”, the
nodes are also relaxed.

Random-phase approximation (RPA) A time-depen-
dent self-consistent field method where an electron
with momentum Ek moves in an effective potential
which contains the external potential and a Ek; ! de-
pendent screened potential. It reduces in the static
k! 0 limit to Thomas-Fermi screening, (or Debye–
Hŭkel screening in classical systems). It is also called
the “ring sum” or “bubble sum”, and contains no ex-
change effects.

Subbands The electrons with the z-motion confined to
a quantum well have discrete energy levels (index n).
Each level carries with it a band of energies for the x, y
motion. These are energy “subbands”.

Singwi–Tosi–Land–Sjölander (STLS) A method due to
Singwi et al. for determining the density-density cor-
relation function of electrons (and other quantum sys-
tems) by truncating the equation of motion via an in-
tuitive decoupling scheme involving the PDFs. STLS
has been extended by Vashista, Ichimaru and others.
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Wigner–Seitz radius In 2D this is the radius, denoted
by rs, of the circle containing, on the average, just one
electron.

Definition of the Subject

Since the advent of density-functional theory (DFT), the
exchange-correlation energy Exc of an interacting sys-
tem has become a basic quantity in many-particle the-
ory. Here we study the Exc of two-dimensional (2D) elec-
tron layers. Such layers contain electrons which move
in the x and y directions, while confined in z. 2D lay-
ers are formed at insulator-semiconductor interfaces in
heterojunctions, and more particularly at metal-oxide-
semiconductor(MOS) interfaces. These include two types
of semiconductors (e. g., GaAs and the alloyed form
AlxGa1�xAs, containing a small fraction x of Al, and
written as AlGaAs for brevity). The interface region de-
fines a “confining potential” where an electron layer may
from [2]. SiO2 is an insulator with a large bandgap, while
Si can be doped in a controlled manner to behave as a con-
ductor. The Si/SiO2 interface supports the formation of an
electron layer at the interface. The electron density n in
such layers can be controlled using external potentials, and
it is this which is the key to the importance of these mate-
rials systems. These structures are the basis of metal-oxide
field-effect transistors (MOSFETS), ubiquitous in modern
electronic devices (Fig. 1). The Si-MOSFET was developed
in the 1960s, while it had been fore-shadowed as early as
the 1930s in the work of Shockley and others.

Electron layers confined at the air-liquid interface of
a fluid (e. g., Helium) were studied in the 1970s, but did
not provide easy tunability of the density. High-mobility
2D systems in GaAs/GaAlAs heterostructures and in Si-
MOSFETS ushered themore recent phase, unearthing new
physics and new technologies, with the quantum Hall ef-
fect(QHE) [4], discovered in 1980, providing a classic ex-
ample of fundamental physics directly leading to practical
applications in metrology. Modern nanotechnology, spin-
tronics, plasmonics etc., greatly dependent on the theory
of electron layers.

Graphite is made of 2D sheets of carbon atoms, i. e.,
“graphene” sheets, held together by weak inter-layer bonds
The 2D electrons in graphene behave asmassless Fermions
with �(Ek) D „vFEk, where vF is the Fermi velocity. The
hexagonal unit cell of graphene contains two inequiva-
lent Carbon atoms. Thus there are two degenerate con-
duction bands and two valance bands, with a zero band
gap located at two inequivalent points, labeledK andK0, in
the hexagonal 2D-Brillouin zone of graphene. This system
needs a spin index, a pseudospin index and also a band

Spin Dependent Exchange and Correlation in Two-Dimensional
Electron Layers, Figure 1
Top: A cross section of a p-type MOSFET. The n-type contacts la-
beled S (source) and D (drain) aremade by ion-implantation into
the p-type substrate. A voltage on the metal gate controls the
current between S and D flowing in the Si/SiO2 interface (chan-
nel region). Panel a shows the conduction band (c.b.), the accep-
tor levels (A), and the valance band (v.b.) modified by the appli-
cation of negative bias to the metal gate. A sufficiently strong
negative bias can produce an accumulation layer of holes. In b
a sufficiently positive gate voltage is applied, bending the con-
duction band below the Fermi energy EF, and creating a poten-
tial well which supports a 2D layer of electrons, known as an ‘in-
version layer’

index. Graphene is a rich 2D system with novel physics
(e.g, QHE) and the promise of new technological applica-
tions [9].

The Coulomb interaction conspires to destroy the
“single-particle” (i. e., “free” particle) picture of electron
systems. Only the kinetic energy and the confining poten-
tial (called the “external potential”) are needed in the sim-
plest models. Mean-field (e.g, Hartree–Fock) models pro-
vide an “effective” single-particle picture. The “many-body
effects”, which transcend the simple picture, lead to new
effects like plasmons, charge density waves, spin-polarized
states, Wigner crystallization, fractional-QHE, and super-
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Spin Dependent Exchange and Correlation in Two-Dimensional
Electron Layers, Figure 2
Upper panel shows the pair-distribution function (PDF) for non-
interacting parallel-spin electrons in 2D and 3D electron gases.
The depletion near the origin is the “Fermi hole”. The lower panel
shows the equivalent classical potential (Pauli exclusion poten-
tial, inˇ D 1/T units) whichwould create such a depletion in the
PDF at the temperature T (at T D 0, only the product ˇP(r) is
meaningful). The x-axis is the electron-pair separation in recip-
rocal kF units

conductivity [18]. Many-body effects are more enhanced
in low dimensional (e. g., 1D and 2D systems in compar-
ison to 3D) systems. The Coulomb interactions force two
electrons to repel each other and form a “Coulomb hole”
or correlation hole, i. e., a region of low probability of ap-
proach. The energy consequence of this is the “correla-
tion energy”. Similarly, since the Pauli principle forbids
the presence of two non-interacting electrons of the same
spin in a common spatial eigenfunction, a “Fermi hole ” is
formed and leads to an exchange energy (see Fig. 2).

There is no Fermi hole for antiparallel spins, and their
non-interacting PDF, i. e., g012(r) is unity for all r.When in-

teractions are included, a Coulomb hole is formed. Hence
the evaluation of Exc is directly related to obtaining good
PDFs.

Thus the theory of Exc is of great importance in
modern density-functional many-body approaches. From
a technological point of view, the subject is of critical im-
portance in the proper design of modern nano-structure
devices and quantum-well lasers [16].

Introduction

We use “effective” atomic units, with the effective Bohr ra-
dius a�0 as the unit of length. The dielectric constant " is of
the order of 10–12 for common semiconductors, whilem�

may be 0.06 in GaAs and 0.19 in Si. Hence the effective
Hartree is measured in meV, unlike the atomic Hartree
which is 27.12 eV. Thus the properties of the material en-
ter into the theory only via ", m�, and the effective Landé
factor g�, and these are usually absorbed into the effec-
tive atomic units. Since the electrons reside in the interface
between two materials (say A, B),the dielectric constant "
relevant to the electron layer has to be evaluated from the
individual dielectric constants of A and B. This is trivial
in the case of GaAs/AlGaAs systems, since the dielectric
constants are very close. This is no longer the case with
Si/SiO2 systems where the Si and the Si-oxide have nomi-
nal dielectric constants of 11.5 and 3.9 respectively. Then
an average dielectric constant has to be used, as discussed
in the appendix of [2], and in [8].

If the z-motion of an electron is restricted to a finite
length az , as in an inversion layer, the allowed quantum
states form discrete subbands, with energies E(n; kx ; ky):

En(kx ; ky ) D �n C �(kx ; ky) :

The energy of the in-plane motion, �(kx ; ky), depends on
the in-planemomenta „kx and „ky with Ek D Ekx C Eky . For
materials like GaAs/AlGaAs, or Si/SiO2 interfaces, the in-
plane energy dispersion is essentially parabolic, with

�(kx ; ky) D
(„kx )2 C („ky)2

2m�
:

Here m� is an effective mass, assumed to be the same in
the x and y directions Only the lowest subband, say n =
1, is occupied in a 2D layer. Let �1 be the energy zero.
The highest occupied state is given by the in-plane mo-
mentum „kF, known as the Fermi momentum. The Fermi
energy (�kF ) has to be far below the bottom of the second
subband to ensure a 2D layer. The electron density, i. e.,
the number of electrons n per unit area has n1 “up-spin”,
and n2 “down-spin” electrons. If n1 ¤ n2 we have a spin-
polarized electron system. The degree of spin polarization
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� is:

� D
n1 � n2
n1 C n2

:

Thus the state of a clean 2D-electron layermay be specified
by n, �, and the temperature T. Additional pseudo-spin or
valley indices are sometimes necessary.

The Fermi Energy and the Role of rs
as a Coupling Constant

When the electron-number density per a.u. of area is n, the
Wigner–Seitz radius rs is given by rs D 1/

p
(�n). We also

have n1 D nx1; x1 D (1 C �)/2; n2 D nx2; x2 D (1 �
�)/2. The Fermi momentum kF
 of a given spin species �
is evaluated by requiring that the sum of all occupied states
of the species � adds upto the density n
 .

kFZ

0

2�
kdk
(2�)2

D n
 :

This gives k
 D (4�n
 )1/2. Since n D n1 C n2, the overall
kF D (2�n)1/2, i. e., kF D

p
2/rs and EF D k2F/2 D 1/r2s .

Hence, the “coupling strength”, i. e., ratio of the
Coulomb energy (1/rs) to the kinetic energy (�EF ) at
T D 0 is clearly rs. High density systems (rs < 1) are
weakly coupled, while low density systems (high rs) are
strongly correlated. When rs � 26 � 27, the 2D elec-
tron system acquires a ferromagnetic ground state. At
stronger coupling, rs ' 35, a 2DWigner crystal is formed.
The strength of the 2D massless electron interactions in
graphene cannot be specified by an rs since a Bohr ra-
dius cannot be specified. Instead, the coupling constant g
is taken as the ratio of a typical Coulomb energy (1/a0) to
the hopping energy (t) on the Hexagonal 2D unit cell with
a lattice constant of a0.

g D
e2/a0"0
„EF

D
˚
e2/a0"0

�
ft
p
3/2g :

If "0 D 1, then g ' 2:7. Thus, when the graphene sheet is
placed on most substrates, " > 1, and the electron interac-
tions become weak, i. e., g � 1.

Fourier Transforms

The Fourier transform of 2D-functions relating their
r-space forms with q-space forms is very useful. If the 2D
electron system is uniform in all directions of the x � y
plane, i. e., isotropic, then we only need radial Fourier

transforms. These are obtained using the relations:

F(Er) D
1Z

0

F(Eq)J0(qr)qdq/(2�)

F(Eq) D
1Z

0

F(Er)J0(qr)2�rdr :

Here J0(qr) is a Bessel function [1] such that:

J0(qr) D 2
	Z

0

cos(qr cos �)d� :

Then it is easy to show that the Coulomb interaction 1/r
has the Fourier form 2�/q. Here we assume ideally thin
layers (unlike in Sect. “Graphene: 2D Two-Valley System
on aHoney-Comb Lattice”). A screened Coulomb interac-
tion Vs(r), with an exponential damping is often encoun-
tered. This potential has an analytic Fourier transform and
is:

Vs(r) D exp (�ksr) /r Vs(q) D 2�/
n�
q2 C k2s

1/2o
:

The potential contains a “screening wavevector” ks, and
appears in what is known as “Thomas-Fermi” screening.
This type of potential is also called a “Yukawa potential”.
The ‘range’ of the potential is of the order of 1/ks, and is
known as the screening length.

The Hamiltonian of the System

The total Hamiltonian contains a contribution from a uni-
form neutralizing background of positive charge nb which
is static. In a real system, e. g., a metal, the neutralizing
background is provided by the ion subsystem. Each ion
has a short-ranged core-region and a Coulomb-like long-
range potential which overlaps the long-range potential of
the neighbours. In many metals (e. g., Sodium) the result-
ing overlapping positive potential is, to a very good ap-
proximation, similar to a smudged-out, structureless “jel-
lium”. In a plasma, the positive ions are dynamical but ex-
tremely heavy, and hence a jellium approximation, known
as the one-component plasma (OCP) is often used. The
jellium model is used in theories of electron layers as the
physics then focuses entirely on electron-electron effects.

We write the electron density operator and the
Coulomb interaction as:

n(Er) D
X

i

ı(Er � Eri ) ; Vee D
1
2

X

i j

n( Eri )n( Er j)
j Eri � Er j j

:
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The latter has a divergence when i ! j, with the electron
interacting with “itself”. We also have the terms Vbb and
Vbe, involving the background. For example,

Vbe D �
X

i j

nb
n(Er j )
j Eri � Er jj

where nb D n is the uniform-background density. The
background termVbb has a divergent self-interaction term
similar to that in Vee, with (positive) sign. However, the
interaction of the electron charge with the background,
i. e., Vbe, has a negative divergent term, and cancels both
divergent (positive) self-interaction terms. Thus the total
Hamiltonian, inclusive of the background is free of diver-
gences. In Fourier space, the coulomb interaction is 2�/q,
and hence the divergence manifests in the limit q! 0.
This is exactly canceled by the corresponding q! 0 terms
in the background. Also, since the background is uniform,
there are no other Fourier components. The above discus-
sion involves the “subtraction” of divergent quantities, and
can be made more rigorous using the screened Coulomb
potential Vs(r), and taking the limit ks ! 0 at the end.

The electron number-density operator n(r) in real
space has a Fourier transform n(q), defining the occupa-
tion number in the momentum state q. The expectation
value of n(r) is of course the constant n, which may be
written as n where needed.

The momentum eigenstates of the uniform noninter-
acting system are the complete set of plane waves.

�q D �(Eq) D eEq�Er/˝1/2

Here we use a normalization volume ˝ , which is some-
times set to unity, or the infinite-volume limit is taken,
when the normalization becomes 1/(2�)1/2. The occupa-
tion number in eachmomentum state, for non-interacting
Fermions at a temperature T, and chemical potential � is
given by:

nk D
1

1C eˇ (�k��)
:

Here ˇ D 1/T where T is expressed in energy units. At
T D 0, the chemical potential� becomes the Fermi energy
EF, and the occupation numbers reduce to unity for ener-
gies �k < EF , and zero for higher energies. The occupa-
tion number nk given above is really the expectation value
of the operator nk. When we need to emphasize this dis-
tinction, we write the operator as n̂k , and the meanvalue
as nk . In a uniform system, most properties are depen-
dent only on the modulus jkj of the momentum Ek, and
we sometimes suppress the vector notation for brevity.We

also introduce creation and annihilation operators aCk and
ak which add an electron to a momentum state Ek, or re-
move an electron from the momentum state Ek. Thus the
number operator acting on the eigenstate j�ki is given as:

n̂k j�k >D aCk ak j�ki D nk j�ki :

The total Hamiltonian of the system is:

H D (H0 � �N)C V 0ee :

Here we are using a thermal ensemble which allows for
the definition of a chemical potential � and a tempera-
ture T. Also, N D

P
Ek n̂k is an operator fixing the mean

Spin Dependent Exchange and Correlation in Two-Dimensional
Electron Layers, Figure 3
Top Panel: Feynman diagram for the bare Coulomb interaction
Vee(q) of two electrons. Bottom panel: a shows the exchange in-
teraction which is first order in the bare interaction Vee(q). b
is the bare exchange, and c has the RPA “bubble sum”, where
Ṽee(q; ) is given by an integral equation (a geometric series in
this case) involving the polarization “bubble” �(q; ). Contribu-
tions from diagrams like c–d are not included in the RPA propa-
gators



Spin Dependent Exchange and Correlation in Two-Dimensional Electron Layers S 8581

number of particles hNi in the volume˝ , given � and T.
The Coulomb interaction V 0ee carries a prime to indicate
that a jellium background has been included to remove the
divergencies at zeromomentum transfer. Thenwe have, in
momentum space:

H D
X

Ek

(�k��)aCk akC
1
2˝

0X

Ek1 Ek2 Eq

VqaCk1a
C
k2Cqak2ak1Cq :

The prime on the summation indicates that the case q D 0
is excluded, as it is exactly cancelled by the jellium back-
ground. The suffixes on the cluster of four operators are
such that the total momentum of the two electrons is con-
served during the interaction. That is, an electron in the
initial state Ek1 C Eq is in the final state Ek1, while the sec-
ond electron, in the initial state Ek2 is transfered to the state
Ek2 C Eq. The momentum transfer Eq is effected through the
Coulomb interaction Vq D 2�/q. The momentum is con-
served in the Coulomb collision since we are dealing with
a uniform system (see top panel in Fig. 3).

Ideally Thin 2D Electron Layers

This system is most closely approximated in Si/SiO2 sys-
tems, or in specially fabricated GaAs/GaAlAs quantum
wells (HIGFETs tend to yield thick 2D electron layers and
are discussed in Sect. “2D Layers with Finite Thickness”).
Microscopic many-body theories have used this system
as the basic “work horse”. Early work used diagrammatic
and other perturbation methods, or truncated equation
of motion methods, like STLS, developed by Singwi and
coworkers. The objective of the latter is to develop PDFs
non-perturbatively, and calculate the exchange and corre-
lation energies from an integration over the coupling con-
stant (described below). However, the perturbation meth-
ods (restricted to the high-density regime in validity) pro-
vide basic reference results.

A Brief Outline of the Diagrammatic Method

Much of the initial work was based on a perturbation
expansion of the energy or the electron propagator in
powers of the Coulomb interaction Vee(q), as in Fig. 3.
In the graphs labeled a–f we look at the self-energy (i.e,
the effective potential) of an electron propagating through
the interacting fluid. In (a) an electron propagates for-
ward, while the interaction with the second electron oc-
curs with zero-momentum transfer (q D 0), i.e, one may
imagine that the “2-out” line “falls into” the “2-in” line
to from a bubble, when Ek2 C Eq D Ek2 by momentum con-
servation. Such q D 0 terms are Hartree terms, and have

already been eliminated via the static background. The
graph (b) is the first-order exchange diagram (the “Fock”
term). This may be pictured as the “1-out” line “falling”
into the “2-in” line, exchanging electron identities. This
is possible only if both electrons have the same spin. The
graph (c) is the screened exchange diagram where the
Coulomb interaction is dynamically screened by summing
the simple polarization loops L1, L2 etc. This is known as
the RPA-screened exchange, where RPA (random-phase
approximation) is a name originating from methods of
derivation using self-consistent equations. However, each
term in such an expansion is infinite; e. g., the second-
order perturbation term L1, and those beyond it (L2 etc.)
are all divergent, as they involve integrals of the formR
(2�/q)nqdq : : :, where n � 2 (there are standard “Feyn-

man rules” for converting the graphs shown in Fig. 3 into
algebraic expressions [18]; they are not needed for our
purpose). The divergence arises from perturbation terms
containing simple polarization loops (denoted by �(q; !)
in Fig. 3) connected by two or more direct interaction
lines. However, although each term is infinite, the sum
L1C L2C : : : is finite. The bare interaction Vee(q; !) gets
“screened” by the polarization processes denoted by the
bubble (particle- hole pairs), and gives the well-behaved
(non-divergent) Ṽee(q) which is used in the graph (c). The
contributions from scattering processes shown in Fig. 3d–
f, etc., are not included in the RPA sum.

Thus the contribution to the effective potential seen by
an electron at the Fermi level can be written as

Veff D Vxc D Vx C Vc

where Vx is the exchange potential, arising from the first-
order diagram Fig. 3b, while Vc is the contribution from
all other higher processes. Thus Vc in the RPA is simply
the sum of contributions from L1, L2 etc. A better approx-
imation would be a Vc which involves Fig. 3e–f, and all
other terms. But the numerous higher terms are virtually
impossible to evaluate, and their partial inclusion is prob-
lematic as various sum rules, Ward identities etc., have to
be satisfied [18]. In analogy with the effective potential, we
can also divide the total energy of the system (beyond the
kinetic energy) as:

Exc D Ex C Ec; �x D Ex/N ; �c D Ec/N

where Ex is the exchange energy, and Ec is the correlation
energy. The latter by definition contains all contributions
other than exchange. A large part of the spin dependence
of Exc is contained in Ex. The RPA is an evaluation of Ec
via the series L1, L2 etc.
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The Adiabatic Connection Formula

Another approach to Exc is to begin with the non-
interacting system and “build-up” the interacting system
by increasing the value of the “coupling constant”  from
0! 1 in the scaled Coulomb potential

Vee(; r) D /r :

The usual coupling parameter rs is here assumed to be
merely a density parameter (rs D 1/

p
�n) held constant

during this “charging process”. As  increases to unity,
the PDFs gi j(; r), where i, j indicate spin species, change
from the non-interacting g0i j(r), Fig. 2, to the interacting
from gi j(r). This is accompanied by the “build up” of the
energies arising from the interactions. Thus the exchange-
correlation energy Exc appears as an integration over the
coupling constant (if we are dealing with a system at a fi-
nite temperature T, then we have Helmholtz free energies
Fxc instead of Exc). Thus, if x1; x2 are the fractional com-
positions ni /n, then the exchange-correlation energy per
particle Exc/N is

Exc/N D
1Z

0

d


n
2

Z
2�rdr



r

X

i j

xi x j(gi j(; r)�1): (1)

This is known as the adiabatic connection formula [11],
and is due to Pauli. Thus if the fully interacting PDF is
known, the exchange-correlation energy can be obtained
without the limitations of perturbation theory. The full
PDF can be evaluated by (i) QuantumMonte Carlo meth-
ods (QMC), (ii) integral-equation methods developed
from correlated wavefunctions using Feenberg-type analy-
ses, (iii) classical-map hyper-netted chain (CHNC) meth-
ods, (iv) methods for specific applications as in Giorgi et
al. [10] (v) SLTS methods for moderately coupled fluids.

The Exchange Energy

Note that the exchange energy alone is given by

Ex/N D
n
2

Z
2�rdrv(r)

X

i j

xi x j


g0i j(r) � 1

�
: (2)

That is, the Fermi hole of the non-interacting PDF deter-
mines the exchange energy. This was defined as a contri-
bution taken to first order, Fig. 3b. Since one factor of v(r)
is already included in Eq. (2), we can only use g0i j(r) as
a better form would have go beyond first order in Vee. The
noninteracting PDF g0i j(r) can be evaluated [18] directly
from the noninteracting one-body wavefunctions (plane

waves):

hi j D gi j � 1

h0i j(r) D �ıi jFi(r)Fj(r)

Fi(r) D
1
ni

Z
dEk

(2�)2
fi(k)ei

Ek�Er :

Here f i(k) is the Fermi occupation number for the
momentum state k. At T D 0, Fi(r) D 2J1(ki r)/(ki r);
ki D

p
4�ni where J1(x) is a Bessel function [1], and ki is

the Fermi momentum of the spin species i. At finite tem-
peratures, the integrations have to be done numerically.

Formulae for the Kinetic and Exchange Energies.

At zero temperature, the Hartree–Fock energy can be writ-
ten in terms of the spin polarization � and the density pa-
rameter rs. The Hartree energy EH is zero.

EHF D E0 C EH C EX ; EH D 0E0/N D
1C �
2r2s

;

Ex/N D �
2
p
2

3�rs

�
(1C �)3/2 C (1 � �)3/2

�

The spin-dependent energies, e. g. Ex(�), may be written
as:

Ex(�) D Ex(0)C (Ex(1) � Ex(0))P(�)

P(�) D
�˛C C �

˛
� � 2

2˛ � 2
:

Here �˙ D (1˙ �), and P(�) is called the “polarization
function”; ˛ D 3/2 in Hartree–Fock theory.

The Correlation Energy

The calculation of the correlation energy Ec is the heart
of the many-body problem, and is the main challenge.
If Ec were known, the total ground state energy is
ET D EHF C Ec. A widely usedQMC evaluationwas given
in 1989 by Tanatar and Ceperley [23] using a variational
Monte Carlo method (VMC) as well as a Greens Function
Monte Carlo method. They gave parametrized forms for
the unpolarized (� D 0) and fully polarized (� D 1) ener-
gies per electron, i. e., �c(rs), in the form

�c(rs) D a0
1C a1x

1C a1x C a2x2 C a3x3

where x D
p
rs. The parameters have the values,

a0 : : : a3 D �0:1784, 1.1300, 0.9052, 0.4165 for � D 0
and �0.02575, 340.5813, 75.2293, 37.0170 for � D 1. No
simulations were done for intermediate �, and hence it
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was often assumed that the exchange-like polarization
function P(�) could be used for the correlation energy as
well.

�c(�) D �c(0)C (�c(1) � �c(0))P(�)

A more detailed study, given by Attaccalite et al. in 2002
is currently the best available QMC form of Ec. These au-
thors [3] did simulations for finite-� as well and proposed
a parameterized form.

�c(rs; �) D (e�ˇ rs � 1)�6x (rs; �)

D C�c(rs; 0)C ˛1(rs)�2 C ˛2�4

˛1(rs) D (1/2
�
@2�c(rs; �)/@2�2

�
�D0

˛2(rs) D (1/24)[@4�4]�D0

�6x (rs; �) D �x (rs; �) � f1C (3�2)(1C �2/16)g

Here parameters ˛1; ˛2 are spin-stiffness constants.
A short computer program for the calculation of �c is avail-
able [24].

CHNC Approaches

QMC procedures are computationally very demanding,
and hence the development of other, simpler methods is
of great interest. The accuracy of such methods can be as-
certained by comparison with QMC results, and then such
methods can be used in areas where QMC is prohibitive
(e. g., at finite temperatures, many valley systems). In this
respect, the classical-map HNC approach (CHNC) is wor-
thy of note. In CHNC [21], the quantum fluid at T D 0
is replaced by a classical Coulomb fluid at a finite temper-
ature Tq. The latter is chosen requiring that (i) the non-
interacting classical fluid has the same g0i i(r) as the quan-
tumfluid. (ii) the correlation energy of the interacting clas-
sical fluid has the same correlation energy as the quantum
fluid. The first requirement is easily met, and involves the
construction of a classical potential which would give the
same Fermi hole as the quantum fluid (see Fig. 2). The
classical potential, ˇVpau(r) is called the “Pauli potential”
and is a universal function of rkF. This potential is zero
for anti-parallel spins. This procedure fixes a ‘Pauli po-
tential’ but not the temperature Tq, since only the prod-
uct ˇ � Vpau(r) is obtained. The second condition is used
to determines Tq by evaluating �c(rs) using the adiabatic
connection formula, for a trial value of Tq., and a chosen
�, say � D 1. Then Tq is adjusted till the QMC value of
�c(rs; � D 1) is obtained. Thus a table of Tq for each rs,
i. e., Tq(rs), is obtained. The classical PDFs needed here
are easily calculated using a well established hyper-netted-
chain technique. Only the �c value at � D 1 is used as the

input to the fit. The output is the full tabulation of the in-
teracting gi j(r). It is found to be in remarkably good agree-
ment with the QMC generated gi j(r). This is perhaps a con-
sequence of DFT where it is asserted that the true den-
sity distribution is obtained if the true ground state en-
ergy (i.e, E0 C EX C Ec) is captured. It is also found that
this CHNC procedure yields accurate �c(rs) values at spin-
polarizations different to the input value. The Tq(rs) func-
tion is found to be transferable to many Coulomb-fluid
problems including hydrogen plasmas [6].

Fermi-Liquid Parameters

A knowledge of the correlation energy as a function of
the rs; �, and T enables an easy evaluation of Landau
Fermi liquid parameters (LFLP). These are usually eval-
uated from complicated perturbation theory calculations
whose domain of validity is, strictly speaking, restricted
to small rs. Three quantities are of great interest for the
LFLP. These are, the inverse compressibility � which is
the density derivative of the chemical potential �, the en-
hanced spin-susceptibility � compared to the Pauli sus-
ceptibility �P, (incorporated in g�, the effective Landé g
factor), and the effective mass m�. The latter involves the
interacting and ideal specific heats Cv ;C0

v . AT finite T, the
correlation energy is replaced by the correlation Free en-
ergy, Fc(rs; �; T). This is the correction to the Helmholtz
free energy beyond the Hartree–Fock approximation. If
Fc(rs; �; T) is known, a non-perturbative result becomes
available for �;m� and g� (for detailed, see [8]). Thus:

m� D Cv/C0
v D 1C

�
@2Fxc(t)/@t2

�

�
@2F0(t)/@t2

�

�P/�s D (m�g�)�1 D 1C
�
@2Fxc(�)/@�2

�

�
@2F0(�)/@�2

�

1/� D n2@�/@n D n2@2[F0 C Fx C Fc]/@n2 :

Calculations of the ground-state energy as a function of
rs; �, as well as the spin-susceptibility enhancement us-
ing the QMC and the CHNC methods show that the 2D
fluid (which is paramagnetic � D 0 at high densities), be-
comes a ferromagnetic liquid (see [3,7]) for rs ' 26. Thus
the gain in kinetic energy due to spin-polarization is com-
pensated by the exchange-correlation energy at sufficiently
low densities. If simple perturbation methods are used
for evaluating Exc(rs), incorrect predictions (e. g., a mag-
netic transition at rs � 2 in RPA) are obtained. The spin-
susceptibility enhancement “blows up” towards infinity, as
the transition is approached. These theoretical predictions
have been confirmed experimentally (see [22]).
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2D Layers with Finite Thickness

The assumption that the 2D layer is infinitely thin (i. e.,
“ideal”) is often incorrect in practice. The lowest sub-
band of a quantum well supporting a 2D layer may have
an z-extension w of 10–20nm, with a density distribu-
tion n(z). If the next subband is inaccessible to the elec-
trons, then they are 2D systems with a finite thickness. The
HIGFETS used in many experiments contain a nearly tri-
angular potential well (see Fig. 1) and the lowest subband
wavefunction is approximated by the Fang-Howard(FH)
function [2] �fh(z). The difficulty of modeling exchange
and correlation in such systems using either the ideal-2D
parametrized Exc forms, or the 3D forms (to allow for the
z-extension) was noted by Martin et al. [14]. In fact, new
exchange-correlational functionals have to be constructed
for the effective-2D potential found in thick-2D layers [5].
We denote the Coulomb potential in an infinitely thin
layer by V(r) D 1/r, while W(r) is used for the effective
2-D potential of a thick layer. The potentialW(r) between
two electrons having coordinates ( Er1; z1) and ( Er2; z2), with
Er D Er1 � Er2 is given by,

W(r) D
zmZ

0

zmZ

0

dz1dz2n(z1)n(z2)
�
r2 C (z1 � z2)2

�1/2 : (3)

Here zm is1 for FH, while zm D w for a quantum well.
The potential W(r) D (1/r)F(r) and the form factor F(r)
reflects the effect of the z-extension of the density. It has
been shown that any arbitrary density distribution n(z)
can be replaced by a electrostatically equivalent rectangu-
lar slab of widthw by choosingw such that: in the 2D plane
as n(z).

ncd D 1/w D
Z

n(z)2dz : (4)

The quasi-2D potential for a constant-density slab of
width w is given by

W(r) D V(r)F(s); s D r/w; t D
p�

1C s2


(5)

F(s) D 2s
�
log

1 � t
s
C 1 � t

�
: (6)

This potential tends to 1/r for large r, and behaves as

2
w

�
ln

2w
r
C

r
w
� 1

�

for r < w. Thus the short-range behaviour is logarithmic
and weaker than the Coulomb potential. The k-space form

of the CDM potential is:

W(k;w) D V(k)F(p); p D kw (7)

F(p) D (2/p)f(e�p � 1)/pC 1g : (8)

The form factors F(s) and F(p) tend to unity as w ! 0.
The effective w in HIGFETS depends on rs, i. e., in atomic
units.

w D 16/(3b)b3 D 33/
�
2r2s

:

Using these potentials, layer-thickness dependent ex-
change-correlations functionals Exc(rs; �;w) can be eval-
uated using perturbation methods, or using the CHNC.
The resulting xc-functionals have been given in [5], and
displayed in Fig. 4. It is found that the exchange energy is
reduced due to layer thickness which enters as w/rs, thus

Spin Dependent Exchange and Correlation in Two-Dimensional
Electron Layers, Figure 4
a The exchange energy Ex (Hartree a.u.) of a 2DES in a HIGFET
compared to that of an ideal 2DES, at T/EFD0 and 0.2, with� D 0.
Solid line with circles, ideal 2D, T D 0, Solid line with triangles,
HIGFET at T D 0. Corresponding broken lines are for T D 0:2EF.
b The correlation energy Ec at T D 0 and � D 0, for the HIGFET
layer. HIGFET(upg), black solid line, is the “unperturbed-g” ap-
proximation. The deep grey dashed line, HIGFET(CHNC), is the full
calculation. This is comparedwith the correlation energy of a 3D
slab model (line with squares), and the “slab+rod”model (trian-
gles). For details, see [5]. The QMC datum (blackedhatched circle)
for a HIGFET, rs D 5, is from [22]
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affecting high densities and thick layers. A most interest-
ing observation is that the transition to a ferromagnetic
state which occurs at rs ' 26 � 27 in ideal 2D, is pushed
to higher rs as the thickness w is increased.

Multi-Component 2D Layers

The twomost important multi-component systems are 2D
layers found in Si/SiO2 interfaces, and in graphene mono-
layers.

Two-Valley System in Silicon-Silica Interfaces

Bulk Si has six equivalent valleys. However, when SiO2
layers are grown on the (001) surface, with z the growth
direction, the 2D layer occupies two degenerate layers in
the (001) plane. This is a 4-component fluid, with two
spin states and two valley states. Thus using an index
� D 1; 2; 3; 4 where the first two are for spin, and the last
two are for the valleys, there are 10 PDFS in the upper
triangle of the matrix g��(r). Only five of these are in-
dependent even for � ¤ 0. Four of these 10 are diagonal
and contribute to both exchange and correlation, where
as the off diagonals contribute only to the correlation en-
ergy Ec. This contrasts with the usual single valley sys-
tem where there are two diagonals, and one off-diagonal
PDF in the matrix of PDFs. Thus correlation effects dom-
inate over exchange effects in multi-valley systems, and
they show less tendency to spin-polarization effects which
are driven by exchange effects. Thus there is no sponta-
neous spin-polarized state in the 2D-two valley system.
However, the large increase in the correlation energy has
been argued to be responsible for a rapid increase in the
effective mass of electrons in Si MOSFETS as the density n
decreases towards ' 8 � 1010 electrons/cm2 [8,15]. How-
ever, this is found to be sensitive to slight changes in the
CHNC parametrization.

Quantum Monte Carlo results of Exc(rs) at � D 0; 1
and CHNC results (at many values of �) are available,
and are in excellent agreement with each other. If the to-
tal electron number density per unit area in the 2D layer
is n in atomic units, then the overall rs D 1/

p
�n, while

the valley density, n/2 yields an rsv D
p
2rs. This rsv and

the corresponding kFv are used in constructing the non-
interacting PDFs g0�� from which the exchange energy can
be calculate. Clearly, this is 2�x(rsv), where �x is the usual
one-valley formula for Ex/N .

The correlation energy cannot be completely mapped
into results based on the 1-valley system. Thus Ec is de-
termined via a coupling constant integration over the 10
PDFs, obtained from QMC or CHNC, using the adiabatic

connection formula. Detailed results and numerical fits are
available in [8].

Graphene: 2D Two-Valley System
on a Honey-Comb Lattice

The electrons in the two-valley 2D system of Si/SiO2
interfaces carry a valley index, but the single-particle
wavefunctions are simple plane waves. In graphene, the
two-component wavefunctions of massless fermions have
a “chiral” character, since they carry phase angles �k ,
where Ek is the momentum vector in the 2D plane. The
valence and conduction bands touch at the K;K0 points,
and we need a band index b D 1;�1, to indicate the con-
duction and valence bands. Thus, we may have simulta-
neous electron and hole occupations, leading to an eight-
component problem. Although the �x can be calculated
explicitly, the calculation of the �c becomes very demand-
ing. However, as the coupling constant g is independent of
of the electron density, being' 2:7/", the interactions are
weak. Also, for pure electron doping or pure hole doping,
the �c of the 4-component system in Si/SiO2 at the same
coupling strength as g (i.e, rs D g) may be used as an esti-
mate. Hence we focus on Ex and introduce a unit of energy
Eu D vFkc Here vF is the Fermi velocity of the massless
fermions, and kc is a cutoff wavenumber chosen so that the
number of states in the Brillouin zone is conserved, that is,
ifA0 is the area per carbon atom, k2c D 4�(1/A0). Then the
exchange energy per Carbon atom can be written as:

Ex/Eu D�
A0g0/kc
(2�)2

1
4

X

b1;b2;


2	Z

0

d�dkdp

� kp
1C b1b2 cos(�)
jk � pj

nb1;
 (k)nb2;
 (p) : (9)

In the above g0 D 2:7/". A special feature, not found in the
usual (non-chiral) 2D system is the occurrence of a term
which depends on � , the scattering angle. Because of this
modulation of the interaction potential, the exchange en-
ergy in graphene is weaker than in a normal 2D layer with
the same coupling strength. The above expressions for the
exchange energy may be expressed [19] in terms of in-
tegrals over PDFs involving Bessel and Struve functions,
or as elliptic elliptic integrals which depend on � and the
fractional doping. Calculations of the total energy, (i.e, ki-
netic+Exc) for graphene layers doped with electrons, holes
or both, do not support a transition to a spin-polarized
ground state. This is not surprising since the strength of
the coulomb interaction is � 2:7/", i. e., weak, given that
the spin transition in usual 2D systems occur for rs � 26.
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Exchange and Correlation in aMagnetic Field

Electrons respond to an external magnetic field by form-
ing Landau Levels. If B is the magnetic field in the z-direc-
tion, then the energy spectrum is that of a harmonic oscil-
lator, where the cyclotron frequency !c and the magnetic
length ` are given by:

!c D jejB/(mbc) ; ` D f„c/(jejB)g1/2 : (10)

Heremb is the band mass and c is the velocity of light. The
Harmonic oscillator energy levels with index � are:

�� D (�C 1/2)„!c C �sb (11)

contains the lowest subband energy �sb of z-motion, and
this may be taken as the zero of energy. The momentum
states of the 2D system collapse into degenerate states, with
each Landau level having NL D eBA/hc states, where A is
the area of the system. If there areN electrons in A, the fill-
ing factor � D N/NL D n/(2�`2). The integer part � of �
gives the number of filled Landau levels, while � � � is
the part of the highest landau level which is partially field.
The filled Landau levels are like “inert shells” of atoms,
while the partially filed part is polarizable and accounts for
the more interesting aspects of exchange and correlation
among electrons in magnetic fields. The total filling factor
� D �1 C �2 where �i is for the ith spin species.

Since we are interested in �xc, we need the PDFs for use
in Eq. (1). Thus it is convenient to work in the symmetric
gauge where the eigenstates are functions of the radial dis-
tance r and the angle � in the 2D plane, having radial and
angular momentum quantum numbers nr and m. Then,
with „ D 1,

�nr;m D fnr C (jmj � m)/2C 1/2g!c : (12)

When the field is weak, there are a large number of Landau
levels, and the usual 2D formulae for exchange and cor-
relation can be used. This can be improved by using the
summations over the density of states instead of integra-
tions over kx ; ky . A discussion may be found in, e. g., [4].
The high magnetic field limit, where only a few occupied
Landau levels is of great importance. The integer and frac-
tional QHE are found in this ‘high-field’ regime. If the
number of full Landau levels of spin � is �
 , the non-
interacting PDF g0(r) is:

g0(r) D 1 �
e�x/2

�2

X




�
L1���1(x

2/2)
�2 (13)

where x D r/`, and Ln1 is an associated Laguerre polyno-
mial. The spin summation is unimportant in high fields,

when the LLL is fully polarized by the field. �x can be
evaluated from Eq. (2). The 2D Coulomb interaction may
contain finite-layer thickness corrections. The effect of the
magnetic field is totally contained in emag D e2/("`) and
forms a natural energy unit for this system. The exchange
energy �� (in emag units), is�

p
�/8 at � D 1, and increases

almost linearly to 2:35�1 at � D 6.
The correlation energy �c(rs; �) of filled Landau levels

can be evaluated using the adiabatic connection formula
and the interacting PDFs. However, only an RPA evalu-
ation is available, and �c(rs; �) is very close to the zero.
Hence the B D 0 value of �c is a good approximation.

The highest occupied Landau level is partially filled if
�L D � � � is nonzero. The correlations in partially field
states are clearly manifest in the high field limit when
the lowest Landau level is fractionally occupied. Here �c
has to be calculated from Quantum Monte Carlo simula-
tions, or from methods based on the plasma analogy, via
an ansatz for the many particle wavefunction. The case
�L D 1/3 and other “odd-integer” fractional-QHE states
were elegantly explained by Laughlin [4], leading to a No-
bel prize. This can be extended to other fractions within
the plasma analogy to construct PDFs and obtain �c via the
adiabatic connection formula [17]. Quantum simulations
as well as composite-Fermionmodels have now largely su-
perseded such methods. The literature on the quantum
Hall effect [4] should be consulted for more details.

Exchange and Correlation at Finite Temperatures

The first-order (exchange) free energy Fx consists of Fi
x ,

where i denotes the two spin species. At T D 0 these re-
duce to the exchange energies:

Ex
i /n D

8
3
p
�
n1/2i : (14)

Here n1 D n(1C �)/2, and n2 D n(1 � �)/2. Then the ex-
change energy per particle at T D 0, i. e., the total Ex/n be-
comes

Ex/n D
�
Ex
1 C Ex

2

/n D �

8
3�rs

�
x3/21 C x3/22

�
(15)

where x1 and x2 are the fractional compositions (1˙ �)/2
of the two spin species.

We define a reduced temperature t D T/EF, EF D �n,
and the species-dependent reduced chemical potentials
�0
i /T by �i , reduced temperatures t1 D t/(1C �) and

t2 D t/(1 � �), based on the two Fermi energies EF1 and
EF2 which are EF(1˙ �). Then we have:

Fx
i /E

x
i D

3
16

t3/2i

�iZ

�1

I2�1/2(u)du
(�i � u)1/2

: (16)
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The I�1/2 is the Fermi integral defined as usual:

I�(z) D
1Z

0

dxx�

1C ex�z
: (17)

The �i are given by

�i D log(e1/t i � 1) : (18)

In the paramagnetic case Eq. (16) reduces to the result
given by Isihara et al. [13]. For small values of t, the ex-
change energy is of the form,

Ex(rs; t) D Ex(rs; 0)[1C (�2/16)t2 log(t)

� 0:56736t2 C : : :] : (19)

The total exchange free energy is Fx D ˙Fx
i .

A real-space formulation of Fx D Fx
1 C Fx

2 using the
zeroth-order PDFs fits naturally with the approach of our
study. Thus

Fx/n D n
Z

2�rdr
r

X

i< j

h0i j(r) : (20)

Here h0i j(r) D g0i j(r) � 1. In the non-interacting system at
temperature T, the antiparallel h012, viz., g

0
12(r; T) � 1, is

zero while

h011(r) D �
1
n2i
˙k1;k2n(k1)n(k2)e

i(k1�k2)�r D �[ f (r)]2 :

Here k, r are 2D vectors and n(k) is the Fermi occupa-
tion number at the temperature T. At T D 0 f (r) D
2J1(ki r)/kr where J1(x) is a Bessel function.

The exchange free energy is a universal function
Fx(t)/Ex, for arbitrary �. That is, the same function applies
to any component, on using the reduced Fermi tempera-
ture of the spin species. The total Fx is the sum of both spin
terms. A parametrized fit is:

Fx
i (t; �)/E

x
i (�) D

1C C1ti C C2t2i
1C C3ti C C4t2i

tanh(1/
p
ti ) : (21)

The fit coefficients Ci are 3.27603, 4.81484, 3.33100,
6.51436. The temperature ti is t/(1˙ �), appropriate to the
spin polarization. The exchange effects in the 2DES decay
more slowly with temperature than in the 3D case where
a tanh(1/t) factor appears in Eq. 3.2 of [20]. The above
form does not explicitly contain the low-temperature
logarithmic term [12], but it reproduces the value of

0.99382 at t D 0:05, while the numerical integration gives
0.9939497. Similarly, at t D 1, 10 and 30 the fit (integral)
returns 0.63839 (0.63839), 0.22999 (0.22990), and 0.13421
(0.13410) respectively.

If the 2D layer has a finite thickness, Ex is reduced. For
numerical procedures and parametrized forms, the reader
is referred to [5]. The correlation energy �c(rs; �; T) can be
easily calculated using the PDFs from CHNC [7], but they
have not been presented in a parametrized form.

Conclusion

An understanding of electron-exchange and correla-
tion, i. e., many-body effects, is crucial to the design of
quantum-well lasers, field-effect transistors, spintronics
and other areas of nanostructure technology. We cur-
rently have excellent results for uniform electron systems
at zero magnetic fields. The case of moderate magnetic
fields is poorly understood. The very high-field case has
progressed with our understanding of the fractional and
integer quantum Hall effects.
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Glossary

Averaging Two kinds of averaging are necessary for any
observable Q̂: a standard quantum mechanical one
Q D hQ̂i D Tr(Q̂�), where � is the density matrix,
and consequent averaging over all possible positions
of particles in disordered media hQic D hhQ̂iic .

Continuummedia approximationj Positions of parti-
cles forming the disordered solids can be considered
as a subset (impurity sites) of crystal lattice sites, ran-
domly distributed on the lattice with a small probabil-
ity c 
 1 to find a given site occupied. Many impor-
tant results can be received in continuum media ap-
proximation (CMA) when prime cell volume˝c ! 0
together with impurity concentration c! 0 at a fixed
value of impurity density n D c/˝c.

Disordered solids Statically disorderedmedia are consid-
ered, this means that constituent particles (atoms, ions
and so on) do not participate in significant transla-
tional motions during the relaxation time under dis-
cussion, and therefore their positions are fixed (frozen)
in the main approximation.

High-temperature approximation High-temperature
approximation (HTA) in spin dynamics consists of
using the simplest density matrix � D 1/ Tr 1, cor-
responding to the limit of infinite temperature T
of canonical Gibbs distribution �G D exp(�H/T)/
Tr exp(�H/T); here H is the Hamiltonian. Spin dy-
namics remains nontrivial and rich in this limit. Some-
times HTA means application of � D (1� H/T)/ Tr 1.

Local field See “Secular part of dipole–dipole interac-
tions”.

Local frequency The frequency !loc D �Hloc of rotation
of the spin in local field Hloc.

Secular part of dipole–dipole interactions As a rule any
spin is considered as subjected to an external static
magnetic field H0 D H0nz (directed along the z-axis)
and local field, produced by dipole magnetic mo-
ments of surrounding spins. The Hamiltonian of the
dipole–dipole interaction of spins Ii and I j is of the
form H(0)

d (i; j) D r�3i j ((mim j) � 3(ni jmi )(3ni jm j)),
where ri j D ni jri j D ri � r j , and ri is the position
of spin “i” having magnetic moment mi D „�i Ii . If
H0 	 Hloc, where H loc is the mean square field pro-
duced at any spin by surrounding spins (local field),
then the Hamiltonian H(0)

d (i; j) can be substituted
by the so-called secular dipole–dipole Hamiltonian
Hd (i; j)D 1

2r3i j
(1�3(ni jnz)2)(mim j�3(minz)(m jnz)).

The accuracy of the substitution is not less than
� Hloc/H0.

Spin dynamics Spin dynamics is considered as a time
evolution of correlation functions directly connected
with measurable quantities of paramagnetic samples.

Units As a rule ¯ D 1 is supposed. Part of the equations
contains ¯ written explicitly.

Definition of the Subject

Themain specifics of the theory of spin dynamics in disor-
dered solids result from the fact that calculation of observ-
able values must start from the solution of the equation of
motion, and then they should be averaged over random
distribution of spins in the sample. Nominally any prob-
lem in statistical physics looks analogous, but the content
of existing text books contains much more simple bypass
methods to achieve the results. An important bypass class,
determined in the preceding century, consists of problems
that are equivalent to the motion of weak (or seldom)
interacting (quasi)particles in translational invariant me-
dia. The basis of this solution is formed by the Boltzmann
equation (devised in the 19th century) and by methods of
deriving hydrodynamic equations based on this founda-
tion [1]. Other important advancements in physical kinet-

http://babylon.phy.nrc.ca/ims/qp/chandre/
http://babylon.phy.nrc.ca/ims/qp/chandre/
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ics are connected with the invention of a projection tech-
nique by Nakajima–Zwanzig for deriving various master
equations and with the development of effective approxi-
mations for corresponding memory functions [1,2]. Both
these bypass methods produce satisfactory predictions if
the system has such small parameters as, for example, the
ratio of collision duration to time between collisions, or ra-
tio of memory time to time of variation of substantial ob-
servables (the observables whereon the system evolution
is projected). Similar small parameters do not exist in dis-
ordered solids after a beginning stage, or they are totally
absent. Therefore, other more refined methods are neces-
sary to predict experimental results. They are partially pre-
sented below.

Introduction

The first correct solutions of the problems of disordered
media kinetics, which are directly connected with the spin
dynamics, were obtained by Forster [3] and Anderson [4].

Forster’s problem (in application to spin kinetics) de-
scribes the relaxation of impurity nuclei via paramagnetic
impurities in the absence of nuclear spin diffusion. The
evolution of the polarization p j(t) D hIzj (t)i of the jth nu-
cleus, placed at site r j , and having the spin I, is described
by the kinetic equation

ṗ j D �
XN

aD1
va j p j D �

X

r
nrvr j p j ; p j(t D 0) D 1:

(1)

Here vaj is the depolarization rate under influence of the
ath paramagnetic center (acceptor), N is the total number
of acceptors in the sample, vr j D va j(ra D r), and nr is the
occupation number of the site r by an acceptor (nr D 1 (0)
if the site r is (not) occupied by an acceptor). Occupations
of different sites will be assumed to be independent and
having no dependence on r (with a small probability of
occupation c 
 1 as a rule):

hnric D c ; hnrnxic D cırx C c2(1 � ırx) ;
�Y0m

jD1
nr j

	

c
D
Y0m

jD1

˝
nr j
˛
c D cm : (2)

All r j are different in the last relation. Coincidence in in-
dexes can be treated using the identity n2r D nr. The prob-
lem consists of calculation of the observable polarization,
averaged over all possible positions of acceptors in the
sample. Ensemble averaging can be used for macroscopic
samples: p(t) D

˝
p j(t)

˛
c . Occupation number represen-

tation gives the simplest and general solution of the last

problem [5]. Indeed

p(t) D
˝
p j(t)

˛
c D

D
exp



�
X

r
nrvr j t

�E

c

D
Y

r

˝
exp

�
�nrvr j t

˛
c

D
Y

r

˝
1C nr

�
exp

�
�vr j t


� 1

�˛
c

D
Y

r

˝
1C c

�
exp

�
�vr j t


� 1

�˛
c

D exp
nX

r
ln
�
1C c

�
exp

�
�vr j t


� 1

�o
: (3)

The identity f (nr) D f (0)C nr( f (1) � f (0)) is applied
here. It is valid for any realistic function f (x). The rela-
tion (3) is exact for any c.

The typical depolarization rate is of the form va j D
v0r60�(na j)/r6a j , where v0 scales the transport at minimal
distance r0, na j D ra j/ra j , ra j D ra�r j , �(n) D jY21(n)j2,
and Ylm(n) is the spherical harmonics. Additional simpli-
fication is possible for the continuum media approxima-
tion (CMA), when c ! 0, but p(0) � p(t) ¤ 0:

p(t; c ! 0) D exp
�
n
Z

dd r
�
e�vr j t � 1

�

D exp


� (ˇF t)d/6

�
; ˇF / n6/dv0r60 : (4)

Here arbitrary spatial dimension d is considered, and im-
purity density n D c/˝c is introduced together with the
prime cell volume˝c.

The most important properties of Forster’s result (4)
consist of replacement of the simple exponential kinetics
by a slower law, and in proportionality of ˇF to transfer
rate at average distance r̄ D n�1/d : ˇF D const � vr j(jr �
r jj D r̄), where const doesn’t depend on concentration.

Anderson introduced the model to calculate the EPR
line form function g(!) D

R1
�1

dt
2	 e
�i! t F(t) and free in-

duction decay F(t) D hhSC(t)S�iic / hhSCS�iic for the
system of equivalent spins S j D 1/2, randomly distributed
inside a sample and having dipole–dipole interaction. The
model consists of substitution of exact secular interaction

H D
1
2

X

i j

bi j
�
Szi S

z
j �

1
3
SiS j

�

D
1
2

X

r;q
nqnrbrq

�
Szr S

z
q �

1
3
SrSq

�
(5)

by a simpler one, depending on spin z-components only:

HA D
1
2

X

r;q
nqnrbrqSzr S

z
q ; (6)

where S˛r is the ˛ component of spin Sr placed at site
r and brq D b0r30(1 � 3 cos2 #rq)/ jr � qj3 is the standard
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dipole–dipole coefficient [2] (here and below brr D 0).
It is of great importance, that free induction sig-
nals F2(t) D hSC(t)S�i0/hSCS�i0 are the same for both
Hamiltonians for two spin problem, if S j D 1/2. Ander-
son’s model has an exact solution for arbitrary concen-
tration [6]. Indeed, the equation of motion for orthogonal
spin components has the solution

nrSCr (t) D nr exp(iHAt)SCr exp(�iHAt)

D nrSCr exp
�
i
X

q
nqbrqSzqt

�
:

Introducing total moment of the sample S D
P

r nrSr, and
using standard high-temperature approximation for free
induction decay (FID) we have

F(t) D
hhSC(t)S�iic
hhSCS�iic

D

��
exp

�
i
X

q
nqbrqSzqt

�		

c

D
Y

q

˝
cos(nqbqr t/2)

˛
c

D
Y

q

�
1C c

�
cos

�
bqr t/2


� 1



D exp
�X

q
ln
�
1C c

�
cos(bqr t/2)� 1

�
: (7)

Applying CMA to (7) we arrive at Anderson’s result:

F(t; c! 0) D exp
�
�n

Z
dd q

�
1 � cos

�
bqr t/2

�

D exp


� (DAt)d/3

�
: (8)

For three-dimensional systems the model evidently has
simple Lorentz form function:

g(!) D gA(!) D
DA

�
�
!2 C D2

A
 :

Anderson’s parameter DA, as well as ˇF , is proportional
to the rate of the process taken at the average distance:
DA / bqr(jq � rj D r̄). Other derivations of Eq. (8) (closer
to the original Anderson’s treatment fulfilled for d D 3)
can be found in [7].

Delocalizationof Nuclear Polarization
in a Disordered Spin System

One of the most important generalizations of the Forster
process is presented by delocalization of nuclear polar-
ization in the system of impurity nuclei, randomly dis-
tributed in a diamagnetic matrix, when host nuclei have

faster phase relaxation and flip-flop transitions then im-
purities. Examples of such systems: nuclei 6Li in the single
crystal 7Li19F or spins 107Ag in the single crystal 109Ag19F.
The former system is of special interest, because it is ac-
cessible for direct experimental study due to unique coin-
cidence of g-factors of stable nuclei 6Li and ˇ-active nuclei
8Li (ˇ-nuclei) [8]. The system has simple and instructive
ergodic properties as well [9]. Therefore, we will consider
below a specific system (consisting of 6Li nuclei in a LiF
single crystal with addition of one ˇ-nucleus 8Li) where
nuclear polarization transfers from initially polarized 8Li
nucleus to the nearest nonpolarized 6Li nuclei and then
migrates over other 6Li nuclei and might return back to
the 8Li.

It was shown in [10] that modern master equation
treatment leads to a description of the system by follow-
ing kinetic equations, which have been formulated in [5]:

@pi0
@t
D �

X

j

�
� ji pi0 � �i j p j0


; pi0(t D 0) D ıi0 :

(9)

Here pi0 D
˝
Izi
˛
is the quantum statistical average value of

the z-component (polarization) of the ith nucleus of the
system 8Li-6Li, placed at ri (i D 0 corresponds to 8Li with
a spin I0 D I D 2, and i ¤ 0 to 6Li with a spin Ii D S D
1). The rates of polarization transfer are of the form:

� ji D � j�
0
ji r

6
0 �

 
1 � 3 cos2 � ji

r3ji

!2

;

�0ji D
�

6
S(S C 1)

 
gi g jˇ2

n

„r30

!2

gi j(!i j) :

(10)

Here � j D I j(I j C 1)/[S(S C 1)], g0 D gI D 0:8267 and
gi¤0 D gS D 0:8220 are g-factors of 8Li and 6Li corre-
spondingly, ˇn is nuclear magneton, � ji is the angle be-
tween external static fieldH0 and r ji D r j � ri , r0 D 2:01 �p
2Å is the minimal distance between Li nuclei, and ! ij is

the difference of the Larmor frequencies. The cross-relax-
ation form function gi j(!) was studied in [11], and it can
be taken as Gaussian gi j(!) � exp(�!2/(2M))/(2�M)1/2

in the main approximation. Here M D 2M2, whereM2 is
the second moment of the 8Li NMR line. As a result �0i j
have two values only, �0i j D �0 for transfer between 6Li
spins (at that !i j D 0), and �0i0 D �1 for transfer between
8Li and 6Li (with !i j D �).
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The occupation number representation of the Eq. (9)
is of the form [5]

@P̃x0
@t
D �

X

z

�
nz�zxP̃x0 � nx�xzP̃z0


;

P̃x0(t D 0) D nxıx0/c ; (11)

where propagator P̃x0 gives polarization of the lattice site x
when initially the site 0 was polarized, and �zx D �i j(ri D
z; r j D x). Equation (9) is a direct consequence of Eq. (11),
that is evident, if we omit all empty sites for which nx D 0
and, consequently, P̃x0 D 0.

The experimentally observable value is polarization of
the ˇ-nucleus, averaged over a random distribution of 8Li-
6Li nuclei P00(t) D hp00ic D hP̃00ic . A calculation of such
a value belongs to the problems of random walks in disor-
dered media (RWDM), which is one of the most complex
modern fields of statistical physics, which defines the ac-
tuality of this kind of study. To clarify the status of the
problem we note that its solution in CMA can be con-
nected [12] with the calculation of the path integral of the
form:

Pxy(t) D
Z q(t)Dy

q(0)Dx
Dp(�)Dq(�) exp

�
i
Z y

x
pdqC L

�
q;p; t

��

(12)

L
�
q;p; t

�
D n

Z
d3z



e�

R t
0 d�Az(q(�);p(�)) � 1

�
; (13)

where Az (q;p) D �zq
�
1 � e�ip(z�q)


. The representa-

tion (12) is similar to, but more complex than path inte-
grals in the famous polaron problems (PP) [12]. The main
difference consists of multi-time action L in (13) instead of
two-time action in PP, in strong singularity of �zq instead
of the less singular kernel 1/ jz� qj in PP, in additional
path integral over all p(�) and in strong dependence of the
infinite-fold integral (12) on the exact form of approxima-
tions by the integrals with finite multiplicity.

Field and superfield path integral representations for
Pxy(t) D hP̃xyic exist as well [13]. They demonstrate the
relation of the RWDMwith general problems of the mod-
ern field theory. It should be noted, that Eq. (9) and cor-
responding propagator Pxy(t) have wide applications in
many fields of physics. For example they describe (after
minimal corrections, but retaining the dipole long-range
action) incoherent spatial transport of the localized elec-
tronic excitations (which is of importance in optics and
biophysics) [14], and with ln(�i j) / ri j the same equations
are used in the theory of the hopping conductivity [15],
where their applications are combined with percolation
theory.

The prognosis of the measurements with dipole trans-
port has been based on the relation [10]

P00(t) D F(t) D exp


�
p
ˇ1t
�
C �

1 � exp


�
p
ˇ1t

�

(�ˇ(t C �))3/2

�

 

1C
'

p
�ˇ(t C �)

!

;

(14)

where � D �0 D I(I C 1)/[S(S C 1)] D 3, Forster param-
eters ˇ D 256

243
r60
˝2

c
�3c2�0 and ˇ1 D ˇ � �1/�0, and the limit

of small c is assumed (CMA). The values ' D 2:09 and
�ˇ� D 5:11 were chosen here to construct Eq. (14) as
an interpolating formula between exact results [16] of
the expansion of P00 in terms of cm (which is an expan-
sion in powers of (ˇt)m/2 in reality) and expansion in
terms of 1/(ˇt)m/2, produced by the approximative or nu-
merical treatment of the long time asymptotics (where
dipole long ranging induces exact dependence between
the first and second terms [10]). The value of � is con-
nected with the main values D˛ of the diffusion tensor:
�ˇ D 4�(c/˝c)2/3(

Q3
˛D1 D˛)

1/3. It should be stressed
that an analytical solution for the nature of the long time
asymptotics is absent up to now, but studies of realis-
tic models [17] and modern numerical-analytical stud-
ies [13,18,19] indicate that it is of diffusion type. The diffu-
sion tensor is calculated now with 1% uncertainty [18,19]
giving � D 0:71. As a result the relation (14) holds to
within (ˇt)1/2 at small ˇt, and it holds to within (ˇt)�2

at large ˇt.
The applicability of the Eq. (14) (having no fitting pa-

rameters) was checked at ˇ1t � 10 in [8] and at ˇ1t � 15
in [20]. The last experimental results [21,22] of the ITEP
group indicate that at ˇ1t � 25 some correction is neces-
sary. It can be introduced in simplest form as

P00(t) D F(t)G(t)

G(t) D Gexp D

 

1 �
� 1
8 C ˛


ˇ1t � u(ˇ1t)2

(1C vˇt)3

!

:
(15)

Here F(t) is defined in (14), ˛ D ˛(�) is tabulated in [10]
(at that ˛(�! 0) D 0:013), and fitting parameters u and
v should be determined by experimental data. The rela-
tion (15) holds to within ˇt at small ˇt, and it holds to
within (ˇt)�2 at large ˇt. The fitting produces u � 0:06
and v � 0:12 [21]. Direct numerical simulation of the
P00(t) fulfilled in [19] for a small external magnetic field
corresponding to ˇ � ˇ1 justified this correction and gave
more precise form and values for F(t) indicating that
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0:9 � F(t) � 2. New experimental results [23] have been
obtained for larger magnetic fields, when ˇ � ˇ1 / ˇ1.
More detailed numerical simulation is expected for de-
scription of the process in this region of fields. This should
take into account correlations of local fields on impurity
spins [11].

The numerical simulation [13,18,19] is based on the
substitution of infinite disordered media by a crystal with
a large disordered elementary cell, containing Nd � 1000
impurity spins, and on checking of stability of the results
with regard to variation ofNd. It starts from Eq. (9) written
as

@pi0
@t
D �

X

j

Bi j p j0 ; Bi j D ıi j
X

k

�ki � �i j ;

pi0(t D 0) D ıi0 ; (16)

and Nd impurities randomly placed in sites of a su-
percell, having N D Nd /c D N3

g lattice sites, and edges
R˛ D Ngb˛ , where b˛ form the basis of the matrix crystal
(LiF for the system 8Li-6Li). Then the supercell is contin-
ued periodically to cover all space. If Nd !1, then we go
back to random media. It is very important that the ini-
tial condition remains of the correct form and that it is not
continued periodically. The eigenvalue problem

X

j

Bi j� j(m) D "m�i(m) (17)

has Bloch’s solution

� j(m) D exp(ikr j)� j(k; �) ; m D fk; �g ; (18)

where � j(k; �) has periodical dependence on impurity po-
sition r j and k belongs to Brillouin zone VB formed by all
k satisfying the condition

jkR˛j � � :

Therefore, we have a finite eigenproblem for � j(k; �):

Nd�1X

jD0

B̄i j(k)� j (k; �) D "k;�� j(k; �) ; (19)

B̄i j(k) D
X

n˛

e�ik(ri�r j�R(n))Bi j
�
r j C R(n)


: (20)

Here R(n) D
P3
˛D1 n˛R˛ , and Bi j

�
r j C R(n)


is Bij with

substitution r j ! r j C R(n). As a result

p j0(t) D
1
VB

Z

VB

d3k exp
�
ikr j

 �
exp

�
�B̄(k)t


j0 ; (21)

P00(t) D
1
VB

Z

VB

d3k
˝�
exp

�
�B̄(k)t


00

˛
c ; (22)

Px0(t) D
c
VB

Z

VB

d3k exp (ikx)
˝�
exp

�
�B̄(k)t


10

˛(r1Dx)
c :

(23)

Here h(exp(�B̄(k)t))10i(r1Dx)
c means that averaging is ful-

filled under condition that site x is occupied by an impu-
rity spin having number 1 (the site 0 is always occupied by
spin “0”).

For identical impurities

P00(t) D
1

VBNd

Z

VB

d3k
˝
Tr
˚
exp

�
�B̄(k)t

�˛
c : (24)

The Eqs. (22–24) were applied for numerical simulation
basing on modern programs of matrix diagonalization.
The results for the 8Li-6Li system and for electrodipole
transport of localized electronic excitations among iden-
tical impurities can be found in [19].

Nuclear Relaxation via Paramagnetic Impurities

Another important generalization of Forster’s process is
presented by nuclear relaxation via paramagnetic impuri-
ties, which is themain relaxation channel in isolators if nu-
clear spin I D 1/2. The fundamental studies [2,24,25,26]
were based on calculation of the linear (in impurity con-
centration c) term of the time dependence of the sam-
ple magnetization P(t) D 1 � cQ(t) (for 3d-systems) with
following substitution P(t) D exp(�cQ(t)). Analysis of
two- and one-dimensional problems was absent whereas
experiments are already aimed at fractal objects [27].
Therefore, new theory was constructed [28]. It produced
the relation P(t) D exp(�cQ(t)) as the main approxi-
mation, and the function Q(t) is calculated for arbitrary
d � 3.

The process used to be described by the kinetic equa-
tion

@p(x; t)
@t

D D�p(x; t) �
X

z
nzvzxp(x; t) ;

vzx D
v0r60
jx � zj6

D
C

jx� zj6
; (25)

with the initial condition p(x; t) D p0. Here p(x; t) is po-
larization of the nucleus, placed at the crystal site x, D is
spin-diffusion coefficient, and the angular dependence of
vzx is neglected together with the difference in eigenvalues
of the diffusion tensor. The observable nuclear polariza-
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tion (normalized to p̄(t D 0) D 1) is

p̄(t) D
1
˝

Z
dd xp(x; t) D h0 jG(t)j 0i D h0 jhG(t)ic j 0i :

(26)

Here d is the space dimensionality, ˝ is the crystal vol-
ume, the symbol j0i presents a vector having components
hxj0i D 1/

p
˝ , and the propagator Gxy(t) D hxjG(t)jyi

obey Eq. (25), but for initial condition Gxy(t D 0) D
ı(x � y).

Expansion of the observable p̄(t) in concentration
powers [16] gives in first terms

p̄(t) D h0 jG(t)j 0i D
D
0
ˇ̌
ˇG(0)(t)

ˇ̌
ˇ 0
E

C n
Z
dd r

D
0
ˇ̌
ˇ
h
G(1)(t; r) � G(0)(t)

iˇ̌
ˇ 0
E
C O(n2)

D exp
�
�M0(t)(1C O(n2))


;

(27)

M0(t) D n
Z

dd r
D
0
ˇ̌
ˇ
h
G(0)(t) � G(1)(t; r)

iˇ̌
ˇ 0
E
: (28)

The propagatorG(0)(t) corresponds to evolution in the ab-
sence of acceptors, and G(1)(t; r) is the propagator of the
system, having only one acceptor, placed at r. Then, using
operator representation of Eq. (25), translational invari-
ance, resolvent identity and spectral expansion, we have

M0() D
Z 1

0
dte��tM0(t)

D
n˝


�
0
ˇ
ˇ̌
ˇU0

1
C AC U0

ˇ
ˇ̌
ˇ 0
	

D
n˝


�
0
ˇ̌
ˇ̌U0

1
(AC U0)(C AC U0)

U0

ˇ̌
ˇ̌ 0
	

D
n˝


X

n

jhn jU0j 0ij2

(C En) En
: (29)

Here AD�D�, hxjU0jziDıxzvx0, and (A C U0)jni D
En jni. This representation is too complex for direct cal-
culations, but it is useful for different asymptotical treat-
ments (see, for example, [8]). The most important are
short time and long time studies, because a satisfactory
precision can be achieved with the aid of the representa-
tion

M0(t) D MF (t)CM1(t) : (30)

Here the first term

MF(t) D n
Z

dd x (1 � exp (�vx0 t)) D (ˇF t)d/s

describes the initial (Forster’s) part of the relaxation, while
M1(t) is the long-time asymptotic expression, calculated
on the basis of the representation (30) and formally con-
tinued to arbitrary positive values of t. Here we use
vx0 D v0rs0/x

s to clarify some parametrical dependencies.
The results, obtained for M1(t) at arbitrary d � 3, are pre-
sented in detail in Ref [28]. In particular, at long time

M1(t; d D 1) D 4n
r

Dt
�
;

M1(t; d D 2) D
4�Dnt

ln
�
Dt/b2

 ;

M1(t; d D 3) D 4�Dbnt ;

(31)

where b / (C/D)1/(s�2) is a “scattering length”, which in-
corporates all dependence on the “potential” vx0. It is evi-
dent, that at d D 1 the dependence on b is absent here, and
for d D 2 it is rather weak.

In order to find an argument for regrouping (27) of
the concentration expansion, we represent the propagator
G(t) in the form

G(t) D hexp (�(AC U)t)ic D exp (�B(t)) ;
B(t) D AtC M(t) ;

(32)

U D
X

z
nzUz ; Uz

xq D ıxqvxz : (33)

The operatorM(t), which is as-yet undefined, can be writ-
ten in the form M(t) D

P
z Mz(t) similar to the form ofU

in (33). It can be said that the operators Mz(t) must ad-
equately describe the effect of acceptors in the so-called
effective medium that appears upon averaging over the
configurations of acceptors. It is therefore natural to as-
sume that, on average, the propagator G(t) undergoes no
changes if one of the sites of the effective medium is re-
placed by an actual one and if the result is thereupon aver-
aged over the distribution of acceptors; that is,

G(t) D
˝
exp

�
�At �M(t)C Mz(t) � nzUz t

˛
c : (34)

Relations (32)–(34) form a closed set of nonlinear operator
equations. The solution, according to [28], practically co-
incides with P(t) D exp(�M0(t)), if cQ(t) D M0(t) � 1
and c 
 1, and corrections are important for longer time.

It should be stressed, that (1) to clarify the influence
of corrections to this solution in more detail we can calcu-
late the next (/ c2) term of the concentration expansion,
and (2) there exist physical [29] and mathematical [30,31]
studies, giving the law log

�
1/p̄(t !1)


/ td/(dC2),

which is expected [32] to be valid at p̄(t) . 10�12. The
asymptotics can be received bymethods of field theory, but
up to a preexponential multiplier only [33], therefore these
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methods did not produce useful results for the problem of
randomwalks in disorderedmedia, discussed in Sect. “De-
localization of Nuclear Polarization in a Disordered Spin
System”, where the exponential part of the asymptotics is
absent.

Resonance Line Form Function
for MagneticallyDiluted Solids

The line shape and the Fourier-transform-related free in-
duction decay (FID) belong to the most important ob-
servable values in the physics of magnetic resonance. In
the study of nuclear spin systems forming a crystal lat-
tice the first (/ t2 and / t4) terms of the expansion of
FID in powers of time carry information of high impor-
tance [2]. In the theory of the line shape of disordered
(magnetically diluted) electron spin systems, the first (/ c
and/ c2) terms in the expansion in powers of the concen-
tration c of paramagnetic centers play the same role [6].
The third (/ c2) term was calculated in a recent study [34]
for the first time. This consideration is particularly topi-
cal in connection with the new experiments on measuring
the EPR spectra of paramagnetic impurities distributed at
the solid surface [35,36]. It can be expected, that modern
pulse methods will produce new possibilities for measure-
ment of FID in such magnetically disordered nuclear sys-
tems as 29Si in silicon crystals for example. Some efforts in
this direction can be found in the recent article [37] and in
references therein.

Let the paramagnetic centers (PCs) be randomly dis-
tributed in a d-dimensional crystal lattice with the prime-
cell volume˝c. The free induction decay in the high-tem-
perature approximation is given by

G(t) D
˝˝
SC(t)S�

˛
0

˛
c /
˝˝
SCS�

˛
0

˛
c ; (35)

where S˙D
P

rnrS
˙
r , S˙r DSxr ˙ iSyr , SC(t)DeiHt SCe�iHt,

nr is the occupation number, h� � � i0 D Tr (� � � ) /Tr1, h� � � ic
stands for the averaging over the spatial spin distributions
(over occupation numbers), and H is the secular part of
dipole–dipole interactions:

H D
3
4

X

rq
nrnqA(r; q)



Szr S

z
q �

a
3
SrSq

�
: (36)

Here A(r; q) D „� 2
�
1 � 3 cos2 #rq


/ jr � qj3, � is the gy-

romagnetic ratio, and # rq is the angle between r � q and
external static field H0. Parameter a D 0 in the Anderson
model and a D 1 for pure dipole interaction. For other
a values, Hamiltonian (36) corresponds to a system with
the anisotropic axisymmetric g-factor. In what follows,
S D 1/2 for all PCs. Let us expand FID in power of nx and

perform configurational averaging [6]. To terms / O(c3)
one has

G(t) D 1C c
X

r1

(2K01(t) � 1)

C
c2

2

X

r1¤r2

(2K012(t) � 2K01(t) � 2K02(t)C 1) ;

(37)

and, applying CMA we have up to terms/ O(n3)

G(t) D 1C n
Z

dd r1 (2K01(t) � 1)

C
n2

2

Z
dd r1dd r2 (2K012(t) � 2K01(t)

�2K02(t)C 1) ; (38)

where n D c/˝c is the d-dimensional PC density, and

K01(t) D
D
eiH01 t SC0 e�iH01 t(S�0 C S�1 )

E

0
;

K012(t) D
D
eiH012 t SC0 e�iH012 t(S�0 C S�1 C S�2 )

E

0
:

Here, according to Eq. (36),

Hi j D
1
2Ai j(3Szi S

z
j �aSiS j); H012 D H01CH02CH12 ;

(39)

with Ai j D A(ri ; r j). The interaction Ai j /
ˇ̌
ri � r j

ˇ̌�3.
Therefore, substitution of integration variables ri ! t1/3ri
excludes time from the integrands and reveals that the
mth term in (38) is / (ntd/3)m . That is Eq. (38) is ex-
panded [16] in terms of dimensionless parameter

(Dd t)d/3 D n
Z

dd r1 (1 � 2K01(t)) ; (40)

and, hence, can be represented as

G(t) D 1�(Dd t)
d
3 C

1
2
�d (a)(Dd t)

2d
3 CO



(Dd t)d

�
: (41)

The functions �d (a) were calculated numerically basing on
the Eq. (38). It was supposed, that at d � 2 all field direc-
tions are equally probable. For this case, after averaging
of (41) we have

Ḡ(t) D 1�(D̄d t)
d
3 C

�̄d (a)
2

(D̄d t)
2d
3 CO



(D̄d t)d

�
; (42)

and

D̄d D ˇdnd/3� 2„ ; ˇ3 D
2�2

3
p
3
;

ˇ2 D 4:647 ; ˇ1 D 6:348 :
(43)
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It should be noticed, that D̄3 D D3, and D3 coincides with
Anderson’s result [4].

The results are presented in the following table:

a 0 0:2 0:4 0:6 0:8 1:0 1:2 1:4 1:6
�3 1 1:01 1:03 1:05 1:08 1:11 1:13 1:15 1:18
�̄2 1:027 1:07 1:11 1:15 1:19 1:22 1:25 1:27 1:29
�̄1 1:062 1:16 1:20 1:25 1:28 1:32 1:35 1:37 1:40

(44)

These relations can be used directly for analysis of the
wings of experimental EPR lines [34]. But treatment of the
full line or FID requires regrouping of the expansion (42)
in such a way to receive a physically adopted result for all
t. One of the simplest approaches [38,39,40] was general-
ized for this aim in [34]. It introduces the most essential
properties of the disordered systems into the Anderson–
Weiss–Kubo (AWK) theory [41,42], which was originally
developed for the description of line narrowing bymotion.
The result is of the form

G(t) D exp

 

�

�
2B2

d

Z t

0
d�(t � �)F(Bd�)

�d/6!

;

F(x) D exp


�(qd x)d/3

�
:

(45)

Being approximative Eq. (45) nevertheless reproduces the
structure of the expansion (41), non-negativity of the reso-
nance line shape and parameters Bd and qd can be defined
using Dd and �d, that gives

B3 D D3 ; B2 D D̄2 ;

q3 D 3(�3 � 1) ; q2 D
�
(10/3)(�̄2 � 1)

3/2
:

(46)

The dimensionality d D 1 requires more refined treat-
ment, because system orientations near the “magic” di-
rection � D arccos(1/

p
3) produce a singularity g1(! !

0) / ln(1/!).
In application to pure dipole interaction with a D 1

the Eqs. (46) and (44) give q3 D 0:33 � 1/3 and q2 D
0:63. Fitting of the experimental data of [35] in the re-
gion, where the sample was considered as two-dimen-
sional gives q2 D qexp2 � 0:05 with significant distinctions
from both q2 D 0, and q2 D 0:63. Additional studies are
necessary to clarify the nature of this deviation from pure
dipole evolution.

Application of the approach to magnetically diluted
nuclear spin systems (like 29Si in silicon) requires one im-
portant modification connected with the fact that typi-
cal nuclear concentration c D 0:01� 0:1 is not sufficiently
small to replace lattice sums by integrals in Eq. (38). There-

fore, FID for such concentrations can be represented by
the Eq. (45) with substitution

(Dd t)d/3 ! ~(t) D c
X

r1

(1 � 2K01(t)) : (47)

For example, if d D 3 and a D 1, then Eqs. (45), (46) pro-
duce

G(t) D exp


� (6 (D3t C 3 exp(�D3 t/3)� 3))1/2

�
: (48)

Applying the recipe (47) we receive the representation

G(t) D exp


� (6 (~(t)C 3 exp (�~(t)/3) � 3))1/2

�
; (49)

which is exact at small ~(t) up to O(~2(t)) and coincides
with (48) for ~(t) & 1.

Saturation on theWing of a Dipole-Broadened
EPR Line and Cluster Expansions

A bright demonstration of peculiarities of spin dynam-
ics in disordered media is realized in the shape of the
hole burned on the wing of the EPR line. The EPR
spectrum in dipole-broadened 3d solids has the Lorentz
wing, but experimentation [43] revealed that the wing
of the hole falls down exponentially contrary to ex-
pectations, that a dipole broadened line should be ho-
mogeneous. To solve this contradiction a new method
of cluster expansions [39,40] was invented, which gives
a constructive alternative to both concentration expan-
sion, discussed in Sect. “Resonance Line Form Function
for Magnetically Diluted Solids”, and spin pockets con-
ception [44], used in [43] for interpretation of the
data.

If interaction inside a pair of spins exceeds interac-
tions with any other spin, then the spectrum of the pair
is similar to a discrete one, broadened by small interac-
tions with surrounding spins. The pair forms a two-spin
cluster (2-cluster). Analogically we can define 3- and other
many-spin clusters. It is sufficient for many tasks to di-
vide all spins into three groups: 2- and 3-clusters and all
other “mass” spins. Numerical analysis [39] shows, that
2- and 3-clusters contain 51(1)% and 11(1)% of all spins
correspondingly, but 2-clusters define all Lorentz wings
of the EPR line. Mass spins (similar to nuclear spins in
a crystal) have finite heat capacity, which is defined by
interaction at average distance contrary to infinite heat
capacity of a full dipole–dipole reservoir, calculated in
CMA. Mass spins produce fluctuating fields, which gave
the main broadening of the clusters spectra. Transitions
between states of the cluster take place due to interac-
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tions with other clusters and with mass spins, and they
are slow. As a result saturation at the EPR line wing in-
duce transitions between states of the 2-cluster, and the
line shape of the hole is defined by interaction of the
cluster with mass spins. If this interaction is estimated
within the AWKmodel, then any mass configuration pro-
duces exponential wings of the hole g(�) / exp (��/�),
where � is detuning of the saturating field from the clus-
ter transition frequency, and � is defined by magnitude
of the fields produced by other spins on the cluster, and
by the rate of their fluctuations. After configurational av-
eraging the wings became hg (�)ic / �

�4, but averaged
hole shape described the transitions for small magnitude
!1 of the saturating field only. In a general case the ob-
servable area of the hole � should be averaged. For large
!1 we have � / ln

�
tp!2

1 /�

, where tp is the duration of

the saturating pulse. Logarithm is a slow function, there-
fore h�ic / ln

�
tp!2

1 / h�ic

, which was observed in [43]

and was interpreted as the exponential wing of Portis’s
pockets. The described theory produces amicroscopic pic-
ture of the phenomenon and indicates that Portis’s pock-
ets have limited relation to the problem, because they are
homogeneous by definition, i. e. g(�) D hg(�)ic , while in
the cluster theory this relation isn’t fulfilled.

Future Developments

Methods described in Sect. “Delocalization of Nuclear Po-
larization in a Disordered Spin System” are expected to be
useful for understanding of studies of delocalization of re-
laxed excitons in different problems which can be stud-
ied by optical methods (fluorescence and multi-wave mix-
ing) first of all. We expect that results obtained in this sec-
tion will also produce a reliable basis for development of
general methods of statistical physics and path integration
theory in order to reproduce and clarify these results and
many other problems of nonlinear field theory.

The results of Sect. “Nuclear Relaxation via Paramag-
netic Impurities” create a new regular method for treat-
ment of a wide class of problems of disordered media. The
method is similar to, but, nevertheless, different from stan-
dard coherent (effective) potential approximation. We ex-
pect that the same ideas applied to the second term of the
concentration expansion can produce better understand-
ing for many related problems.

The results of Sect. “Resonance Line Form Function
for Magnetically Diluted Solids” require new experimen-
tal studies for all spatial dimensions. Checking on nu-
clear spin systems like 29Si in silicon crystals is most desir-
able, because the details of interaction of nuclei are known
much better then for paramagnetic centers.

Cluster expansion, described in Sect. “Saturation on
theWing of a Dipole-Broadened EPR Line and Cluster Ex-
pansions” should be useful for different problems of spec-
tral transport in disordered solids.

The work was supported by the Russian Foundation
for Basic Research, project #06-02-17088.
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Glossary

Aharonov Bohm effect Themagnetic flux enclosed in be-
tween propagating quantum mechanical waves shifts
their relative phases as a result of the underlying elec-
tromagnetic vector potential. This gives rise to distinct
oscillations in the magnetoconductance of a ring con-
ductor.

Landauer–Büttiker formalism
For phase-coherent quantum transport, the Landauer–
Büttiker formalism relates the conductance of a device
to the transmission probability of charge carriers.

Rashba- and Dresselhaus spin-orbit coupling Coupling
of the spin degree of freedom to the orbital motion
of charge carriers due to structural or bulk inversion
asymmetry in semiconductors.

Ratchets Devices that convert unbiased fluctuations or
perturbations into directed motion.

Spintronics Extension of charge-based electronics in
metals or semiconductors by utilizing the spin degree
of freedom of the charge carriers.

Definition of the Subject

Mesoscopic conductors are electronic systems of sizes
in between nano- and micrometers, and often of re-
duced dimensionality. In the phase-coherent regime at
low temperatures, the conductance of these devices is
governed by quantum interference effects, such as the
Aharonov–Bohm effect and conductance fluctuations as
prominent examples. While first measurements of quan-
tum charge transport date back to the 1980s, spin phenom-
ena inmesoscopic transport havemoved only recently into
the focus of attention, as one branch of the field of spin-
tronics. The interplay between quantum coherence with
confinement-, disorder- or interaction-effects gives rise to
a variety of unexpected spin phenomena in mesoscopic
conductors and allows moreover to control and engineer
the spin of the charge carriers: spin interference is often the
basis for spin-valves, -filters, -switches or -pumps. Their
underlying mechanisms may gain relevance on the way to
possible future semiconductor-based spin devices.

A quantitative theoretical understanding of spin-de-
pendent mesoscopic transport calls for developing effi-
cient and flexible numerical algorithms, including matrix-
reordering techniques within Green function approaches,
which we will explain, review and employ.

Introduction

Charge and spin transport through phase-coherent con-
ductors of mesoscopic scales carry imprints of wave in-
terference as predominant and characteristic features: in
the simplest case of a point contact, the conductance in-
creases stepwise with Fermi energy, reflecting the discrete
number of quantized open transverse channels contribut-
ing to transport; for more complex mesoscopic systems,
such as ballistic quantum dots or diffusive conductors,
the conductance typically wildly fluctuates, upon varying
the Fermi energy or other parameters, around its classical
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mean value. Among the different effects on charge trans-
port, the Aharonov–Bohm (AB) effect represents possibly
the most genuine interference phenomenon at the heart
of mesoscopic physics: The magnetoconductance of a ring
conductor coupled to two leads exhibits distinct sinusoidal
oscillations when monitored as a function of a perpendic-
ular magnetic field threading the ring, with a period given
by the magnetic flux quantum. As the AB signal stems
from interfering waves traveling through the two different
arms of the ring, it requires phase coherent wave functions
extending over the ring typically on micron scales [1].
Hence the AB effect is frequently being used as a tool to
investigate phase coherence and dephasingmechanisms of
the orbital part of the wave functions, while the spin degree
of freedom was usually neglected.

With rising interest in spin-dependent transport, the
interplay of the electron spin and charge degree of freedom
has been exploited in a variety of spin interference devices,
to be discussed below. Different types of couplings to the
electron spin have been considered for spin engineering in
non-magnetic conductors. On the one hand this is pos-
sible through the Zeeman coupling to an externally ap-
plied magnetic field. Non-uniform B-fields with spatially
varying direction are being employed to achieve a tailored
spin dynamics, including the possibility for guided spin
evolution or triggering spin flips. On the other hand, in-
trinsic spin-orbit (SO) interaction proves to be relevant in
spin-dependent transport. It exists in systems with bulk in-
version asymmetry and/or structure inversion asymmetry,
e. g. due to the vertical confinement in semiconductor het-
erostructures (Rashba SO coupling [2,3]).

Among the mesoscopic spin interference systems con-
sidered in the literature, ring geometries have again played
an important role, opening up the field of spin-based AB
physics (see [4,5] for recent accounts including overviews
over the literature). This includes topics such as Berry
phase-signatures in transport, both theoretically [6,7,
8,9,10,11,12] and experimentally [13,14,15,16], spin-re-
lated conductance modulation [17,18,19], persistent cur-
rents [6,20], spin Hall effect [21], spin filters [22,23] and
detectors [24], and spin switching mechanisms [4,10].

To illustrate how the spin polarization can be tuned
by exploiting (orbital and spin) interference in such an
AB setup, we consider as an introductory example spin
switching in a two-dimensional (2D) ballistic phase-co-
herent ring symmetrically coupled to two single-chan-
nel leads (Fig. 1, [17]). We assume Rashba SO coupling
which is relevant in conductors laterally defined on GaAs-
or InAs-based two-dimensional electron gases (2DEGs).
Rashba SO coupling will be defined and discussed in
Sect. “Spin Filtering in Nanostructures”. It can be viewed
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Figure 1
Aharonov–Bohm physics with spin: Two-dimensional Aharo-
nov–Bohm ring ofmean radius r0 used for numerical calculations
of the conductance presented in Fig. 2. An additional perpendic-
ular magnetic field B generates a flux � D �r20B. The gray zone
corresponds to the region subject to a finite Rashba coupling
switched adiabatically on and off in the leads (from [17])

as the coupling of the spin to a fictitious in-plane magnetic
field directed perpendicular to the electron momentum.
Hence in a ring it points mainly in radial direction. The
strength of the SO field can be tuned by an external gate
voltage [25] allowing to control experimentally the spin
evolution.

We assume spin-polarized spin-up electrons entering
the ring from the right (see Fig. 1). Figure 2 displays
numerically computed (see Sect. “Numerical Quantum
Transport”) conductance traces as a function of the ex-
ternal magnetic flux � for weak and moderate Rashba
strengths. The overall conductance is presented as a solid
line, and its spin-resolved components, G"" and G#",
corresponding to outgoing spin-up and -down channels,
are shown as dashed and dotted lines, respectively. In the
weak SO coupling limit, Fig. 2a, the overall conductance
(solid line) shows the usual AB oscillations of period �0
and is dominated by G"" (dashed line). As expected for
weak spin-coupling, the spin polarization is almost con-
served during transport. Interesting features appear for
the case of moderate SO coupling depicted in panel (b).
There, both components,G"" (dashed line) andG#" (dot-
ted line), contribute similarly to the overall conductance
(solid line). However, the spin polarization of the trans-
mitted electrons varies as a function of the magnetic flux
� : G#" D 0 at � D 0, whileG"" D 0 at � D �0/2. Hence,
for zero flux all transmitted carriers conserve their original
(incoming) spin-orientation, while for � D �0/2 the trans-
mitted particles reverse their spin polarization. In other
words: by tuning the magnetic flux from 0 to �0/2 we
can reverse the spin-polarization of transmitted particles
in a controlled way. Hence the AB ring with SO coupling
acts as a tunable spin-switch. This switching can be traced
back to constructive or destructive AB interference [4].
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Figure 2
Mesoscopic Aharonov–Bohm spin interference: The conduc-
tance of spin-up polarized carriers entering a single-channel
two-dimensional Aharonov–Bohm ring (see Fig. 1) is shown
as a function of flux � D �r20B (in units of the flux quantum
�0 D hc/e) through the ring in the presence of Rashba spin-
orbit coupling. For panel a and b the scaled spin-orbit coupling
strength takes the values 0.2 and 1.0, expressed as the product
!RT0/2� of the precession frequency!R of the spin around the
effective spin-orbit magnetic field and the time T0 for traveling
of the electrons around the ring. The overall conductance (solid
line) is split into its components G"" (dashed line) and G#" (dot-
ted line). Note in panel b the continuous change of the spin po-
larization, related to G"" � G#", with � and the spin switching
at� D �0/2 (adapted from [17])

Switching a given spin polarization requires the gen-
eration of spin-polarized particles in non-magnetic meso-
scopic conductors in the first place. Since spin injec-
tion from ferromagnets into a semiconductor remains
problematic [26], alternative proposals have been made
to achieve spin-polarized currents or spin accumula-
tion without magnets, which we will briefly review in
Sect. “Spin Filtering in Nanostructures”. Among those are
the spin Hall effect [27] and, in the context of coherent
mesoscopic transport, concepts for Zeeman- and SO-me-
diated adiabatic spin pumping and spin ratchets.

For a recent account on spin phenomena in systems of
reduced dimensions see [28]; for a review on the related
field of magnetization dynamics and pumping in layered
magnetic heterostructures see [29].

A complete and quantitative understanding of spin
phenomena in the mesoscopic realm requires computa-
tional approaches to quantum transport which also serve

as reference calculations for analytical predictions usually
based on model assumptions. However, also numerical
approaches cannot cope with the full many-body transport
problem without relying on approximations. Here we fo-
cus on mesoscopic conductors, i. e. systems with a consid-
erable number of electrons, with strong coupling to exter-
nal leads. Then, a mean-field treatment is usually justified
which allows one to reduce the Hamiltonian to a single-
particle problem with an effective confinement potential
resulting from a combination of external and mean-field
potentials.

We further consider coherent transport close to equi-
librium at relatively low bias, excluding inelastic effects,
such that the Landauer approach to transport is justi-
fied. However, even in this case brute-force computa-
tional approaches quickly reach their limits: Conductors
at mesoscopic scales are typically characterized by exten-
sions which are (at least in one direction) much larger than
the Fermi wavelength of the charge carriers, the shortest
quantum scale involved. This implies rapidly oscillating,
complex and often irregular spinor wave functions extend-
ing throughout the systems which require for the quantum
mechanical numerical solution either huge sets of basis
functions or, in tight-binding approaches, the use of rather
fine, preferentially adapted grids. The strength of the wide-
spread tight-binding approaches for transport discussed
and reviewed here lies in their flexibility and general ap-
plicability. Moreover, tight-binding transport codes can be
combined with density-functional (DFT) calculations for
structure and electronic properties of the nano-conductors
by using the parameters computed within DFT as input.
This approach is frequently applied to transport in nano-
or molecular electronics.

The paper is organized as follows: In the methodolog-
ical Sect. “Numerical Quantum Transport” we will first
briefly summarize and provide the key relations for spin
quantum transport within the Landauer framework. In
Sect. “Matrix Reordering Strategies for Quantum Trans-
port” we focus on and explain in some detail advanced
computational concepts, making use of graph-theory, to
implement powerful and flexible algorithms for tight-
binding transport codes. The numerical strength of the
codes is demonstrated for ring-type geometries show-
ing that by efficient tight-binding implementation one
can gain orders of magnitude in performance. In Sect.
“Spin Filtering in Nanostructures” and “Pure Spin Current
Generation” we employ these numerical schemes to ad-
dress two important aspects of spin-dependent transport,
namely spin filtering and generating pure spin currents.
To this end we focus on laterally-confined 2D ballistic
nanostructures with Rashba SO interaction. We conclude
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Figure 3
Schematic view of a two-point measurement setup

with an outline of future research directions inmesoscopic
spin transport which we consider important.

Numerical Quantum Transport

Landauer–Büttiker Transport Theory

If the dimensions of a device get smaller than the phase
coherence length l� of charge carriers, classical transport
theories are not valid any more. Instead, carrier dynam-
ics is now governed by quantum mechanics and the wave-
like nature of particles becomes important. In general, the
conductance/resistance of such a device does not follow
Ohm’s law.

Consider a two-point measurement setup as shown in
Fig. 3: A scattering region is connected to large (phase-
breaking) reservoirs by leads. The leads are assumed to be
perfect and infinitely long to define asymptotic eigenstates
�n;
 (y)e˙ikx at energy E, where n is the quantum number
of transverse confinement —also called the channel num-
ber —and � is the spin index. The total scattering eigen-
state  n;
 originating from channel n with spin � in the
left lead is, within the lead region, given by

 n;
 (x) D

8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

�n;
 (y)eikx C
P

m rm;
 0 ;n;
 �m;
 0 (y)e�ikx

for x in left lead
P

m tm;
 0 ;n;
 �m;
 0 (y)eikx

for x in right lead

;

(1)

and obeys the stationary Schrödinger equation H n;
 D

E n;
 . The conductance G in linear response can
then be calculated within the Landauer–Büttiker formal-
ism [30,31,32] (for tutorials see [1,33]):

G D
e2

h

X

n;m

X


;
 0

Tm;
 0;n;
 D
e2

h
TC ; (2)

where Tm;
 0 ;n;
 D jtm;
 0 ;n;
 j2 is given by the squared
transmission amplitudes of the scattering states  n;
 . The
fraction e2/h is called the conductance quantum. The scat-
tering matrix Sm;
 0;n;
 is a useful definition that combines
reflection and transmission amplitudes for both leads into
a single matrix. In this notation the index n; � then also
contains information about the respective lead.

The problem of calculating the conductance G is thus
reduced to calculating the scattering eigenstates  n;
 .
Alternatively, the scattering amplitudes rm;
 0 ;n;
 and
tm;
 0 ;n;
 can also be derived from the retarded Greens
function GR(x; x0) of the system. The retarded Greens
function for a given energy E obeys the equation

(E � H C i�) GR(x; x0) D ı(x � x0) ; (3)

where H is the Hamiltonian of the system and � an in-
finitesimally small number. Formally this equation can be
solved as

GR D (E � H C i�)�1 : (4)

The transmission and reflection amplitudes are then given
by the Fisher–Lee relation [34]:

tm;
 0 ;n;
 D �i„
p
vmvn

Z

CR

dy

�

Z

CL

dy0�m;
 0(y)GR(x; x0)�n;
 (y0) ;
(5)

rm;
 0 ;n;
 D ımnı
 0
 � i„
p
vmvn

Z

CL

dy

�

Z

CL

dy0�m;
 0(y)GR(x; x0)�n;
 (y0) ;
(6)

where vn denotes the velocity of channel n and the integra-
tion runs over the cross-section CL(CR) of the left (right)
lead. Equations (5) and (6) are valid only for leads without
magnetic fields and no spin-orbit interaction. Baranger
and Stone [35] have extended the formalism to also ac-
count for arbitrary magnetic fields in the leads, and their
description can also be applied to finite spin-orbit interac-
tion.

Tight-binding Representation of the Hamiltonian

Except for very simple geometries, the scattering problem
cannot be solved analytically. Therefore, the use of com-
puters for a numerical solution of the scattering problem is
very often the method of choice. However, the related sta-
tionary Schrödinger equation H D E is a differential
equation with continuous degrees of freedom that are dif-
ficult to treat on a computer. In general, a numerical solu-
tion is thus only attemptedwithin a discrete basis set which
converts the differential equation into a matrix equation.
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Figure 4
Discretizing a continuous region on a square grid

The method of finite differences is a very simple and
yet powerful way to introduce such a discrete basis set and
has been applied to the Schrödinger equation already as
early as 1934 [36,37] (for an introduction see [1,33]). Here
we illustrate, as an example, the application of the method
for a simple one-dimensional effective mass Hamiltonian
including a potential

H D �
„2

2m
d2

dx2
C V(x) : (7)

In the method of finite differences, space is approxi-
mated by a grid of discrete lattice points spaced equidis-
tantly with lattice constant a. For the 2D case, usually
a square grid is used as depicted in Fig. 4. Using the Taylor
expansion of the wave function  we can write

 (x C a) D  (x)C  0(x)aC
1
2
 00(x)a2

C
1
6
 (3)(x)a3 C

1
24
 (4)(x)a4 C : : : ;

(8)

 (x � a) D  (x) �  0(x)aC
1
2
 00(x)a2

�
1
6
 (3)(x)a3 C

1
24
 (4)(x)a4 C : : : :

(9)

Adding Eq. (8) and (9), we arrive at an expression for the
second derivative of the wave function in terms of values
of the wave function on the grid,

d2

dx2
 (x)

D
1
a2

( (x C a)C  (x � a)� 2 (x))C O(a2) ;
(10)

valid up to second order in the lattice spacing a. The dif-
ferential equation

�
„2

2m
d2

dx2
 (x)C V (x) (x) D E (x) (11)

Spin-Polarized Quantum Transport in Mesoscopic Conductors,
Figure 5
Energy spectrum E(k) for the continuous Schrödinger equation
(red dashed line) and the tight-binding approximation (black
solid line)

is thus replaced by a set of difference equations

�
„2

2ma2
( (xiC1)C  (xi�1) � 2 (xi))C V(x) (xi )

D E (xi) ; (12)

where xi˙1 D xi ˙ a, yielding the tight-binding represen-
tation of the Hamiltonian:

H D
X

xi

�
„2

2ma2
(jxii hxiC1j C h.c.)

C

�
2
„2

2ma2
C V(xi)

�
jxii hxi j :

(13)

Here, jxii denotes a state localized at grid point xi.
In principle, the quality of the finite differences ap-

proximation can be improved up to a desired precision by
reducing the lattice spacing a. However, since this leads to
a larger problem size, the minimum lattice spacing achiev-
able is set by the available computing time and mem-
ory. Thus, one must keep an eye on the validity of the fi-
nite differences approximation. In Fig. 5 we show the en-
ergy spectrum E(k) for the continuous one-dimensional
Schrödinger equation and the tight-binding (finite dif-
ferences) approximation. The tight-binding approxima-
tion only holds for ka
 1 and E 
 „2/(2ma2), and it
does not make sense to consider the whole energy spec-
trum given by the tight-binding band width. The method
of finite differences presented here can straight-forwardly
be applied to more complex Hamiltonians, including for
example spin-orbit interactions [17], and will be later
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used to calculate transport phenomena including spin in
Sect. “Spin Filtering in Nanostructures” and “Pure Spin
Current Generation”.

A tight-binding representation of the Hamiltonian
can also be obtained by applying the finite element
method [38]. Furthermore tight-bindingHamiltonians are
also used in treatments beyond the effective mass approx-
imation, such as from atomic orbitals in empirical tight-
binding models [39,40,41], or from orbitals of the Kohn–
Sham equations within DFT [42,43,44].

Numerical Algorithms

Within the tight-binding approximation the Hamilto-
nian H can be represented by a matrix, even though this
matrix is still infinite as the leads are infinitely long. How-
ever, the infinite matrix problem can be reduced to a fi-
nite problem by partitioning the system into three iso-
lated parts: left lead, scattering region, and right lead. The
Hamiltonian then reads

H D

0

@
HL VLS 0
VSL HS VSR
0 VRS HR

1

A ; (14)

where HL(R) is the (infinite) Hamiltonian of the left (right)
lead, HS is the Hamiltonian of the scattering region and
of finite size. VSL D VCLS and VSR D VCRS represent the
coupling of the left and right lead to the scattering re-
gion. Since the leads are always chosen such that asymp-
totic eigenstates can be defined, the Hamiltonian of the
isolated leads must contain some periodicity that facil-
itates calculating their Greens functions gRL;R. This can
be done analytically for simple systems [1,33], for more
complex situations the Greens function can be calculated
numerically either by iteration [45,46] or semianalytical
formulas [40,44,47]. Introducing the retarded self-energy
˙R D

P
iDL;R VSi gRi ViS, [1,33] the Greens function GS

of the scattering region is given by

GR
S D

�
E � H �˙R�1 ; (15)

reminiscent of Eq. (4) but with an effective Hamiltonian
H C˙R.

The original infinite-dimensional problem has thus
been reduced to a finite size matrix problem that can,
in principle, be solved straight-forwardly on a computer.
However, for any but rather small problems, the computa-
tional task of the direct inversion in Eq. (15) is prohibitive.
Therefore, many algorithmsmake use of the sparsity of the
Hamiltonian matrix in tight-binding representation – in
particular they employ the property that this matrix can

be written in block-tridiagonal form

H D
0

BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
B
@

: : :

HL VL

V�L HL H01
: : :

H10 H11 H12 0

H21 H22 H23
: : :

H32
: : :

: : :
: : : HN�1N

0 HNN�1 HNN HNNC1

: : : HNC1N HR VR

V�R HR

: : :

1

CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
C
A

:

(16)

Here the index L(R) denotes the blocks in the left (right)
lead, 1 : : :N the blocks within the scattering region, and 0,
(N C 1) the first block in the left (right) lead. Such a form
arises naturally in the method of finite differences, when
grid points are grouped into vertical slices according to
their x-coordinates, as shown in Fig. 6, but also applies to
any other sparse tight-binding Hamiltonians.

The block-tridiagonal form of the Hamiltonian is the
foundation of several quantum transport algorithms, to-
gether with the fact that, according to Eq. (5) and (6), only
the blocks GR

NC1 0 and GR
00 of the Greens function GR are

needed for the calculation of transmission and reflection
probabilities. The transfer matrix approach applies natu-
rally to block-tridiagonal Hamiltonians, but becomes un-
stable for larger systems. However, a stabilized version
has been developed by Usuki et al. [48,49]. In the dec-
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Figure 6
Block-tridiagonal matrix form arising in the method of finite dif-
ferences. Grid points with the same x-coordinate are placed into
the same block
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Figure 7
Schematic view of the recursive Greens function algorithm: the
system is built up adding block by block

imation technique [50,51], the Hamiltonian of the scat-
tering region is replaced by an effective Hamiltonian be-
tween the two leads by eliminating internal degrees of
freedom. The contact block reduction method [52] calcu-
lates the full Greens function of the system using a limited
set of eigenstates. The recursive Greens function (RGF)
technique [53,54,55] uses Dyson’s equation to build up
the system’s Greens function block by block. It has also
been adapted to Hall geometries with four terminals [56]
and to calculate non-equilibrium densities [57,58]. Fur-
thermore, the RGF algorithm has been formulated to be
suitable for parallel computing [59], and the modular re-
cursive Greens function (MRGF) method is an extension
to take advantage of special geometries, such as circles or
rectangles [60,61].

Here we give a simple form of the RGF algorithm
as described in [33,55]. The RGF method makes use of
Dyson’s equation

G D G0 C G0VG (17)

to add successively blocks to the system, as depicted in
Fig. 7. LetGR;(i) denote the Greens function for the system
containing all blocks � i. Then, at energy E, the Greens
function GR;(i) is related to GR;(iC1) by

GR;(i)
i i D

�
E � Hi i � Hi iC1 GR;(iC1)

iC1 iC1 HiC1 i
�1 (18)

and

GR;(i)
NC1 i D GR;(iC1)

NC1 iC1 HiC1 i GR;(i)
i i : (19)

Starting from GR;(NC1)
NC1NC1 D gRR, the surface Greens func-

tion of the right lead, N slices are added recursively, un-
til GR;(1) has been calculated. The blocks of the Greens
function of the full system necessary for transport are then
given by

GR
00 D


�
gRL
�1
� H01 G

R;(1)
11 H10

��1
(20)

and

GR
NC1 0 D GR;(1)

NC1 1 H10 GR
00 ; (21)

where gRL is the surface Greens function of the left lead.
Each step of the algorithm performs inversions and

matrix multiplications with matrices of size Mi. Since the
computational complexity of matrix inversion and mul-
tiplications scales as Mi

3, the complexity of the RGF al-
gorithm is /

PNC1
iD0 M3

i . Thus, it scales linearly with the
“length” N, and cubically with the “width” Mi of the sys-
tem.

While for certain geometries the RGF algorithm can-
not compete with more specialized algorithms such as
MRGF, it is very versatile and easily adapted to many sit-
uations, and is thus our method of choice. In the next sec-
tion we will discuss matrix reordering techniques that im-
prove the runtime of the RGF algorithm considerably and
allow the treatment of arbitrary systems.

Matrix Reordering Strategies
for Quantum Transport

Graph-theoretical Approaches to Matrix Reordering

As shown in the previous section, the structure of a Hamil-
tonian matrix H does influence the runtime of the RGF
algorithm. Thus, the runtime of the algorithm can poten-
tially be improved by reordering the matrix with a permu-
tation P,

H0 D P H P�1 : (22)

At first glance, such an effort may seem pointless: For ex-
ample, the block-tridiagonal structure naturally associated
with a finite difference grid (as discussed in Sect. “Numer-
ical Quantum Transport”) leads to a sparse matrix with
a small bandwidth, as shown in Fig. 8. However, as we
show below, the choice of a suitable permutation P can still
lead to a significant speed-up of the RGF algorithm.

For this we define a weight w(H) associated with
a given matrix H as

w(H) D
NC1X

iD0

M3
i where Mi is the size of block Hii :

(23)

Optimizing the matrix for the RGF algorithm is then
equivalent to minimizing the weight w(H). SincePNC1

iD0 Mi D Ngrid, where Ngrid is the total number of
grid points, w(H) is minimal, if all Mi are equal, and
Mi D Ngrid/(N C 2). Therefore, a matrix tends to have
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Figure 8
Example of a sparsity structure of a matrix associated with a fi-
nite difference grid. Black dots mark non-zero entries. The pic-
ture of the finite difference grid can also be interpreted as
a graphical representation of a graph

small weight, if the number N of blocks is large, and all
blocks are equally sized. The reordering problem of the
matrix H is thus summarized as follows:
Matrix reordering problem: Find a reordered matrix H0

such, that

1. H000 andH
0
NC1NC1 are blocks given by the left and right

leads (as required by the RGF algorithm),
2. H0 is block-tridiagonal (H0i j ¤ 0, iff j D i C 1; i; i � 1),
3. the number N of blocks is as large as possible, and all

blocks are equally sized.

These requirements define the optimization problem of
reordering the matrix H. Usually, in such optimization
problems finding the best solution deterministically is pro-
hibitively expensive, and one has to resort to heuristic
strategies.

In order to do that, we reformulate our matrix prob-
lem using concepts from graph theory. A graph G is a pair
G D (V ; E), where V is a set of vertices i, and E a set
of pairs of vertices (i; j) 2 V � V . Such a pair is called
an edge. A graph is called undirected, if for every edge
(i; j) 2 E also ( j; i) 2 E. Two vertices i and j are called ad-
jacent, if (i; j) 2 E. A graph can be visualized by drawing
dots for each vertex i and lines connecting these dots for
every edge (i, j). It should be noted, that all the pictures
of finite difference grids shown so far can directly be inter-
preted as graphs . There is a natural one-to-one correspon-
dence between graphs and the structure of sparsematrices.
For a given n � nmatrixH, we define a graph G D (V ; E)
with V D f1; : : : ; ng and (i; j) 2 E iff Hi j ¤ 0. Thus, the
symmetric zero–nonzero structure of Hermitian matrices,
as considered in quantum transport, leads to associated
undirected graphs. An example of such a correspondence
between a graph and a matrix has already been shown in
Fig. 8. With respect to matrices, graphs are also very con-

venient for storing and handling sparse matrix data struc-
tures on a computer.

In terms of graph theory, matrix reordering corre-
sponds to renumbering the vertices of a graph. Since we
are only interested in reordering the matrix in terms of
matrix blocks (the order within a block should not mat-
ter too much), we define a partitioning of G as a set
fVi g of disjoint subsets Vi � V such that

S
i Vi D V and

Vi \ Vj D ; for i ¤ j. Using these concepts, we can now
reformulate the original matrix reordering problem into
a graph partitioning problem:
Graph partitioning problem: Find a partitioning fV0;: : : ;
VNC1g of G such that:

1. V0 and VNC1 contain the vertices belonging to left and
right leads,

2. there are edges betweenVi and Vj iff j D i C 1; i; i � 1
(block-tridiagonality),

3. the number of sets Vi is as large as possible and all sets
Vi have the same cardinality. Such a partitioning with
all Vi equally sized is called balanced.

A partitioning that meets requirement 2 is called a level
set with levels Vi and appears commonly as an interme-
diate step in algorithms for bandwidth reduction of a ma-
trix [62,63,64,65]. These algorithms seek to find a level set
of minimal width, i. e. maxiD0:::NC1 jVi j as small as pos-
sible which is equivalent to requirement 3. The major dif-
ference between our graph partitioning problem and the
bandwidth reduction algorithms is requirement 1: In our
case the start and end blocks are given by the geometry of
the system, whereas in the bandwidth reduction methods
these can be chosen freely. The implications of this differ-
ence will be discussed below.

The bandwidth reduction algorithms start with the ob-
servation that a breadth first search (BFS) starting from any
vertex in the graph creates a level set: In our situation, the
BFS starts from level V0 of the left lead. Then, successively
for i D 0; 1; 2; : : :, all vertices adjacent to Vi that have not
been assigned to a level yet are placed in ViC1. This con-
struction ensures that each level Vi only has edges con-
necting to vertices in ViC1;i;i�1 and thus ensures block-
tridiagonality. The search stops, once a vertex adjacent to
the right lead is encountered, and all unassigned vertices
are placed into the last level VN . The number of BFS steps
determines therefore the maximum number N of blocks
and is related to the minimum distance between left and
right lead in the graph. However, this construction of the
level set also suffers from a serious problem: Depending
on the distance between the leads, the last level VN can
potentially contain a large number of vertices leading to
a very unbalanced partitioning. In the bandwidth reduc-
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tion methods, the first and the last vertex are chosen to
have (to a good approximation) maximum distance, and
thus this problem does not occur there. Hence, conven-
tional bandwidth reduction algorithms can only be applied
to quantum transport problems, if the leads are —in terms
of the underlying graph —furthest apart.

In this study, we will consider two reordering algo-
rithms: First, the Gibbs–Poole–Stockmeyer (GPS) algo-
rithm [65], a widely used bandwidth reduction algorithm.
The GPS algorithm combines the level sets originating
from a BFS from both left and right lead to give an
optimized level set. Due to the limitations discussed above,
it can only be used efficiently for systems with leads far
apart. To overcome this difficulty partly, we also propose
a second algorithm, later referred to as BFS partitioning:
The system is bisected recursively by means of a simul-
taneous BFS from left and right leads. In a bisection pro-
cess, vertices that are closer (as given by the number of BFS
steps) to the left (right) lead are placed into the left (right)
level. The resulting two levels are then further bisected re-
cursively until the final level set has been constructed. This
algorithm tries to avoid an unbalanced partitioning, as ev-
ery step tries to create a balanced bisection.We have found
this global approach —as opposed to the local approach
in the BFS —to yield balanced partitionings for systems
where there are only few local minima in the weight w(H).
For general systems, a more sophisticated method should
be used [66].

Obviously, reordering thematrix will only improve the
runtime of the RGF algorithm, if the overhead of the re-
ordering process is small compared to the actual transport
calculation. Because of this reason, applying general op-
timization algorithms to the matrix reordering problem is
not an option. Instead, heuristics designed for graph prob-
lems give much better performance. The GPS algorithm
scales linearly with the number of edges jEj, and since in
a tight-binding representation jEj / Ngrid, its computa-
tional complexity is O(Ngrid), whereas the BFS partition-
ing algorithm scales as O(Ngrid logNgrid). In any case, the
scaling is much more favorable than that of the RGF algo-
rithm, /

PNC1
iD0 M3

i , so that for systems of typical size the
overhead of the reordering process becomes negligible, as
we will demonstrate in the next section.

Example: Ring Geometry

In order to demonstrate the performance of the algorithms
discussed above, we consider their application to a ring
geometry in finite difference approximation. The perfor-
mance of the RGF algorithm after matrix reordering is
compared with the performance using the ordering that

arises naturally in finite difference grids as shown in Fig. 6
(in the remainder referred to as natural partitioning).

In Fig. 9a–d we show four different approaches for
calculations in a ring geometry. A ring can be treated as
a circular cavity (see Fig. 9a), with a large potential on
the lattice points inside the inner ring diameter. This ap-
proach is easier to implement than a real ring but less ef-
ficient, as a large additional number of lattice points en-
ters the calculation. However, this approach has been used
frequently in the past, and therefore we also consider its
performance. Transport calculations in a real ring require
somewhat more bookkeeping because of the non-trivial
geometry, but can be easily done describing the grid as
a graph. For the circular cavity, we only consider natural
partitioning, as shown in Fig. 9a, for the ring we consider
natural partitioning (Fig. 9b), GPS partitioning (Fig. 9c)
and BFS partitioning (Fig. 9d).

The partitionings in Fig. 9c and d are dramatically
different from the natural partitioning. The levels align
mainly in vertical or diagonal directions as these are the
preferred directions in the square lattice. The number of
levels is increased with respect to the natural partitioning,
as the distance between both leads is much larger than the
number of vertical slices, leading to a larger number of
blocks in the block-tridiagonal matrix, as can be seen from
Fig. 9e. Both GPS and BFS partitioning lead to a drastically
reduced block size with respect to the natural partitioning
and the result is rather balanced. Though the actual parti-
tionings in Fig. 9c and d look quite different, with respect
to minimizing the weight w(H) they are equally good. The
BFS partitioner conforms to the geometric structure, as it
puts vertices in levels according to their distance from the
leads. Except for a small number of blocks in the beginning
and the end of the block-tridiagonal matrix (see Fig. 9e),
the GPS partitioner leads to an equally balanced structure,
although the partitioning looks quite different. The GPS
partitioner works well in this case, as the leads are almost
at maximum distance in this ring structure.

We now apply the recursive Greens function algorithm
from Sect. “Numerical Quantum Transport” to the differ-
ent partitionings. In Fig. 10a we show the runtime of the
algorithm as a function of the number of lattice points in
the leads, which is also the number of lattice points across
the arms of the ring. Note that in all cases the runtime
includes both the time spent in calculating the matrix re-
ordering and the time spent in the actual transport calcu-
lation.

The runtime scales similarly in all cases, as this is the
scaling of the RGF algorithm. Nevertheless, the runtimes
of the different approaches can differ by a factor that is
significant. As expected, the circular cavity is slowest, due
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Spin-Polarized Quantum Transport in Mesoscopic Conductors, Figure 9
Partitioning of the different systems considered in the performance study. a Circular cavity in natural partitioning, where the ring
structure is enforced by a potential term in the middle of the cavity, b ring in natural partitioning, c ring in GPS partitioning and d
ring in BFS partitioning. In a–d, vertices belonging to the same level in the partitioning are marked with the same color, different
levels are marked in alternating colors. Note that, in order to reveal the partitioning structuremore clearly, the grids shown here are
much smaller than in a typical calculation. e SizeMi of the blocks Hii in the block-tridiagonal matrix for a ring with 20 lattice points in
the leads for natural, GPS and BFS partitioning (the circular cavity is not shown here)

to the extra number of lattice points. GPS and BFS parti-
tionings lead to a rather similar performance that is sig-
nificantly better than the ring in natural partitioning. It
outperforms the circular cavity even by a factor of up to
100. In the remainder, we examine the performances of the
ring for different partitionings in more detail and leave out
the circular cavity. In Fig. 10b we show the relative perfor-
mance gain of GPS and BFS partitionings over the natural
partitioning. Except for the smallest of systems that are too
small to be useful in practice, the performance of GPS and
BFS partitionings is better than the natural partitionings.
Even for moderately sized systems the performance gain
through the matrix reordering is approximately 3, with the
BFS partitioner being slightly better than the GPS parti-
tioner. In Fig. 10b we also show estimates of the perfor-
mance gain calculated from the weightsw(H) of the differ-
ent partitionings. These estimates predict a performance
gain of approximately 4. For small system sizes, we see
deviations from these estimates because of the overhead
of the partitioning process, for larger system sizes we al-
most reach the estimated value. On modern computer ar-
chitectures, runtime does not only depend on the number
of arithmetic operations [67], and thus we do not achieve
the full theoretical potential of the reordering, yet still sig-

nificant improvements. In Fig. 10c we show the fraction
of time spent in calculating the matrix reordering with re-
spect to the total computation time, and as expected the
overhead becomes negligible already for moderately sized
systems. It should be noted that in actual calculations the
partitioning is commonly only done once, and transport
calculations can be done repeatedly with the same parti-
tioning: Usually one is interested in transport properties
depending on some parameters, and these generally do not
change the structure of the Hamiltonian matrix but only
the values of the respective entries. In this case, the parti-
tioning overhead becomes even more irrelevant.

It should be emphasized, that for all the situations, the
same transport code was used. In addition to the signif-
icant speedup through the graph techniques considered
here, the abstraction of the system through graph struc-
tures allows for very generic transport codes. This is an ad-
ditional strength of this approach, as the well-established
RGF algorithm is thus readily applied to arbitrary systems
that would require special treatment otherwise, such as
a scattering region with perpendicular leads, as depicted
in Fig. 11.

Of course, for any system, an algorithm designed for
that special system will probably outperform generic ap-
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Spin-Polarized Quantum Transport in Mesoscopic Conductors, Figure 10
Performance of the partitionings (for rings, Fig. 9): a runtime of the different systems as a function of the number of lattice points in
the leads, i. e. as a function of system size. The calculations were performed on a Core2Duo T5500processor and 1GB ofmemory, and
the runtime includes both partitioning overhead and transport calculation. b Performance gain of GPS and BFS partitionings with
respect to natural partitioning and c overhead of the matrix reordering as a function of system size

Spin-Polarized Quantum Transport in Mesoscopic Conductors,
Figure 11
BFS partitioning of a ring with perpendicular leads. Note that in
this case the two leads are closer together and thus the number
of blocks is reduced. Therefore the block sizes tend to be larger
than in the previous examples

proaches. However, the combination of matrix reordering
andRGF algorithm can be applied to arbitrary systems and
is thus probably the most versatile transport approach. In
addition, all the algorithms relying on the block-tridiago-

nal structure of the Hamiltonian mentioned in Sect. “Nu-
merical Quantum Transport” can benefit from these ma-
trix reordering strategies.

Modern transport calculations tend to be more and
more complex and time-consuming. For example, an
electronic calculation including the electron spin typi-
cally takes 23 D 8 times longer than a calculation on spin-
less electrons. Furthermore, calculations including disor-
der involve averages over many disorder configurations.
Any increase in computation speed is therefore beneficial,
and the added versatility through matrix reordering meth-
ods makes these techniques even more useful.

Spin Filtering in Nanostructures

In the introductory example in Sect. “Introduction” it was
shown how to realize systems that work as spin switches
making use of the interference of wavefunctions propagat-
ing clockwise and counterclockwise in Aharonov–Bohm
rings with SO-interaction. However, several other device
proposals have been put forward utilizing different con-
cepts in order to achieve spin filtering in mesoscopic sys-
tems.
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A very prominent category is transverse focusing of
ballistic electrons/holes in two dimensional electron/hole
gases (2DEGs/2DHGs) [68]. In materials that exhibit SO
interaction the cyclotron radius of ballistic electrons/holes
due to a magnetic field perpendicular to the 2DEG/2DHG
depends on the spin state of the charge carriers. Therefore,
it is possible to filter out either spin-up or spin-down elec-
trons by an appropriate arrangement of quantum point
contacts and a proper choice of the perpendicular mag-
netic field. Apart from several theoretical treatments of
this topic [69,70,71], spin filtering by transverse focusing
has already been experimentally verified in a GaAs-based
2DHG [72]. In related experiments, spin-polarized cur-
rents in 2DEGs/2DHGs were detected by a setup consist-
ing of point contacts and making use of transverse focus-
ing of the charge carriers [73]. With such a detector it was
possible to confirm the presence of spin-polarized currents
emitted frommesoscopic quantum dots utilizing quantum
interference at high in-plane magnetic fields [74] and from
quantum point contacts, which were either made spin sen-
sitive with high in-plane magnetic fields [73] or showed
a pronounced “0.7-anomaly” [75].

A further appealing approach to filter spins are three
terminal structures, that act as mesoscopic Stern–Gerlach
type spin filters [76]. In these devices one of the leads in-
jects spin-unpolarized current and, after passing a region
where the spin-degeneracy is lifted, oppositely-polarized
output currents exit through the other two leads. This sep-
aration of up and down spins can be accomplished, e. g.,
by utilizing Rashba SO interaction [77,78,79].

However, three terminals are not required to cre-
ate spin polarized currents. Many devices, as e. g. the
AB-ring presented in Sect. “Introduction”, typically rely
on two terminals only, where transport through tai-
lored geometries with SO interaction [80,81,82], magnetic
fields [83,84,85,86] or a combination of both [87] can re-
sult in a significant spin filter effect.

As a representative example for the methods men-
tioned above, in the present section we present spin fil-
tering due to Rashba SO interaction in quantum wires
connected to two terminals. We consider a quantum wire
in y-direction realized in a 2DEG in the (x, y) plane con-
nected to two nonmagnetic leads. The Hamiltonian of the
system, with spatially dependent Rashba SO interaction is
given by

H0 D
p̂2

2m�
C
˛(x)
2„

(�̂x p̂y � �̂y p̂x )

C (�̂x p̂y � �̂y p̂x )
˛(x)
2„
C V(x; y)C UB(x; y) :

(24)

Here V(x, y) is the lateral transverse confinement poten-
tial forming the quantum wire, while UB(x; y) is an ad-
ditional electrostatic potential in the system, e. g., real-
ized by gate voltages. Furthermore, �̂i denote the Pauli
spin matrices, and m� is the effective electron mass of the
semiconducting material. We consider a constant Rashba
SO interaction strength (D ˛C) in the central region of the
system, which is connected to two semi-infinite leads on
opposite sides, where ˛(x) is chosen to be zero avoiding
ambiguities in the definition of spin current that arise for
leads with SO interaction [88]. In order not to introduce
additional effects due to an abrupt jump in the SO cou-
pling strength, the parameter ˛(x) is changed sufficiently
smooth from zero to ˛C between the leads and the cen-
tral region. For the numerical calculations presented in the
next two sections the Hamiltonian (24) is discretized as
shown in Sect. “Numerical Quantum Transport” yielding
a tight-binding Hamiltonian on a square grid.

In the rest of this section we investigate the transport
properties in the linear response regime due to an in-
finitesimal bias voltage ıU applied between the left and
right contact. The charge (C) and spin (S) current in the
Landauer–Büttiker formalism are then given by

IC/S D GC/S TC/S ıU ;

where GC D e2/h and GS D e/4� are the conductance
quanta of charge and spin respectively. Since, opposite to
charge current, the spin current can be different in the
right and left lead [85], here we choose to evaluate the re-
spective currents in the right lead. Then the transmission
probabilities TC/S at the Fermi energy are given by

TC D TC;C C TC;� C T�;C C T�;� ;
TS D TC;C C TC;� � T�;C � T�;� ;

(25)

where T
;
 0 D
P

n2R;n02L jSn;
 ;n0;
 0 j
2 is the probability

for an electron, injected into the left (L) lead with spin
state � 0 to be transmitted to the right (R) lead and end
up there in spin state � . In the present and the following
section we fix the spin quantization axis to the y-axis. The
scattering matrix elements Sn;
 ;n0;
 0 and therefore also the
spin resolved transmission probabilities T
;
 0 are evalu-
ated using the recursive Greens function algorithm pre-
sented in Sect. “Numerical QuantumTransport” and “Ma-
trix Reordering Strategies for Quantum Transport”.

One general feature of Landauer transport in a quan-
tum wire with SO interaction and non-magnetic leads is
the absence of spin-polarized currents in a lead that sup-
ports only a single transversal mode. This property can be
derived from the invariance of the system under the time-
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reversal operator T̂ D �iĈ�y [89], where Ĉ is the oper-
ator of complex conjugation. For a perfect quantum wire
which is translationally invariant in the direction of trans-
port all occupied transversal subbands transmit without
reflection and spin polarization is not possible due to SO
interaction. However, if backreflection, caused by devia-
tions from a perfect quantum wire, is present, it is possi-
ble to observe spin-polarized currents in leads with at least
two transversal channels. There the typical mechanism re-
sponsible for spin polarization is the mixing of spins from
different transversal subbands due to the SO interaction.

In Eq. (24) this translational invariance in y-direction
is already broken by the spatially varying SO interaction
˛(x) even if the quantum wire was perfect in y-direction
otherwise, i. e. V(x; y) D V(y) and UB(x; y) D UB(y).
However, if the region where ˛(x) is turned on/off is suf-
ficiently long, reflection due to the change of ˛(x) is negli-
gible.

There exist several device proposals relying on this
mixing of spins from different transversal subbands due
to x-dependent lateral confinement potentials V(x, y)
or other superimposed electrostatic potentials UB(x; y).
These device designs include, e. g., constrictions [80,90],
lateral side pockets [81], or electrostatic barriers [82], to
name only a few.

In most of those proposals, systems symmetric with
respect to inversion of the x-coordinate were consid-
ered, i. e. V(x; y) D V (�x; y), UB(x; y) D UB(�x; y) and
˛(x) D ˛(�x). Then the Hamiltonian (24) is left invariant
upon application of the symmetry operation

P̂ D �i ĈR̂x �̂z ; (26)

where the operator R̂x inverses the x-coordinate. The scat-
tering wavefunctions inside the leads are changed by the
operator P̂ in the following way: R̂x exchanges the leads,
i. e., a transversal mode index n is replaced by the corre-
sponding mode index n̄ in the other lead. The operator
of complex conjugation transforms incoming (outgoing)
states into outgoing (incoming) states with complex con-
jugated amplitude. Moreover, the combined effect of Ĉ�z
is to rotate a spinor with the coordinates (�; �) on the
Bloch sphere to the coordinates (�;�� C �). Exploiting
this invariance of the Hamiltonian one can derive the rela-
tion Sn;
 ;n0;
 0 (E) D Sn̄0;
 0;n̄;
 (E) between the elements of
the scattering matrix (see [85,89] for related expressions).
This results in the equality of the spin flip transmissions
TC;� D T�;C. Therefore, for those devices to be able to
work as a spin filter, in view of Eq. (25) the spin conserv-
ing transmissions TC;C and T�;� need to be different.

As an example, in the following we consider Landauer
transport through a Rashba SO quantum wire with a con-

striction. Similar calculations were carried out in [71,80]
where it was shown, that this setup is able to produce
a spin polarized current of sizeable quantity. It was con-
jectured, that the mechanism responsible for the spin po-
larization was the depletion of higher transversal modes
of the wire and a subsequent spin dependent repopulation
of those modes when traversing the constriction [80]. To
experimentally observe the predicted spin polarization the
use of a transverse electron focusing technique was sug-
gested [71].

A typical grid (with lattice spacing a) used in the cal-
culation for the symmetric point contact in a wire of width
W D 15a is shown in Fig. 12a, where the constriction of
length LPC D 10a is formed by hard-wall potentials:

V (x; y) D

(
0 for C(x) < y < 15a � C(x)
1 else

with

C(x) D

8
<

:
2:05a

�
1 � cos

�
2	
�
xC LPC

2



LPC

��
for jxj < LPC

2

0 otherwise :

(27)

Additionally UB(x; y) is set to zero. In Fig. 12c we present
the relevant transmission probabilities with respect to the
Fermi energy E for this system. There we observe that
the total conductance TC is reduced in comparison with
that of a perfect quantum wire. In the latter case TC ex-
hibits sharp steps due to conductance quantization [91,92]
which are washed out here due to tunneling processes
through the constriction. Furthermore, for energies, where
only a single transversal mode is supported in the quan-
tum wire, the spin transmission vanishes as expected, i. e.
TC;C D T�;� for energies Ē . 0:175. Also the relation
TC;� D T�;C is fulfilled as required by the symmetry of
the setup. Finally, at energies where a new transversal
mode opens up (Ē2 � 0:18; Ē3 � 0:39) dips in the trans-
mission probabilities become apparent. Those dips can be
explained by interference of localized states in the central
region where ˛(x) D ˛C and the scattering states in the
quantum wire where ˛(x) D 0 [93].

In order to study the influence of the adiabaticity of the
constriction on the degree of spin polarization that can be
extracted, in Fig. 13 we show TS as a function of the length
of the constriction LPC for several values of ˛C. For all of
the curves we clearly observe an increase in spin transmis-
sion with increasing LPC, in accordance with the mecha-
nism suggested in [80]. There it was argued in the con-
text of Landau–Zener transitions that the repopulation of
higher transversal subbands will bemore efficient for more
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Spin-Polarized Quantum Transport in Mesoscopic Conductors, Figure 12
Panel a The square lattice discretization of a quantumwire (widthW D 15a) with a single constriction of length LPC D 10a, see also
Eq. (27). Panel b Periodic array of N D 5 electrostatic barriers with period length L and barrier height UB. Panel c Charge TC, spin TS
and spin resolved transmission probabilities T; 0 for the systemdepicted in panel a) and specified in the text at fixed SO interaction
strength ¯̨ D [(m�a)/„2]˛C D 0:1 with respect to the Fermi energy Ē D [(2m�a2)/„2] E. The nth transversalmode in the wire opens
at Ēn D (�2n2)/(W/a)2

Spin-Polarized Quantum Transport in Mesoscopic Conductors,
Figure 13
Spin transmission probability TS at fixed injection energy
Ē D 0:25 within the second transversal mode for three differ-
ent SO interaction strengths ¯̨ D 0:1 (black dots), ¯̨ D 0:075
(red squares) and ¯̨ D 0:05 (green diamonds) with respect to the
length of the constriction LPC

adiabatic constrictions or barriers, resulting in a higher
degree of spin polarization. For ¯̨ D [(m�a)/„2]˛C D 0:1
the spin transmission even approaches the highest possi-
ble value TS D 2. One drawback of the presented system is
its restriction to unidirectional spin polarization. In agree-
ment with the model of [80], Fig. 12 and 13 give evidence
that TS � 0 for the parameter range considered. This limi-
tation to output current with fixed spin polarization direc-
tion restricts the usability of the spin filter to special pur-
poses. A possible way to circumvent this constraint is the
use of a periodic array of electrostatic barriers [82], which

Spin-Polarized Quantum Transport in Mesoscopic Conductors,
Figure 14
Spin transmission probability TS plotted as a function of the
Fermi energy Ē and SO interaction strength ¯̨ for a quantumwire
with N D 5 electrostatic barriers of length L D 10a and height
ŪBarr D [(2m�a2)/„2]UBarr D 0:2

we now briefly investigate. Figure 14 shows the spin trans-
mission of a straight hard-wall quantumwire (C(x) D 0 in
Eq. (27)) subject to N D 5 electrostatic barriers,

UB(x; y) D UB(x) D

8
ˆ̂̂
<

ˆ̂
:̂

UBarr
2

�
1 � cos

�
2	
�
xC L

2



L

��

for � N L
2 < x < N L

2

0 otherwise ;
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(as shown in Fig. 12b). The spin transmission is plotted
as a function of the Fermi energy and the SO interaction
strength. Again, one observes TS D 0 for energies below
Ē2. Furthermore, different regions in parameter space ex-
hibit opposite sign of TS, enabling to change the sign of
the output polarization, e. g., by tuning ˛c via gate volt-
ages [25]. This additional functionality is due to resonant
tunneling, which is absent for a quantum wire with only
a single constriction or barrier.

Pure Spin Current Generation

In the preceding sections we focused on mesoscopic ge-
ometries that exhibit functionalities such as spin filter-
ing or spin switching when applying an external bias be-
tween the contacts in the system. In the case of a static dc
bias in a two terminal geometry those spin currents arise
due to different currents of spin-up and spin-down elec-
trons flowing into the direction of the contact with the
lower chemical potential. However, over the last few years
a growing number of device proposals has been put for-
ward, that exhibit the interesting feature of pure spin cur-
rent generation, i. e. spin currents in the absence of net
charge transport. This intriguing case appears, when the
direction of motion of spin-up electrons is opposite to the
direction of motion of spin-down electrons and both cur-
rents equal in absolute magnitude.

Among the devices sharing the prospect of creating
pure mesoscopic spin currents are systems with more than
two terminals realized in 2DEGs exhibiting Rashba [2,3]
and/or the Dresselhaus [94] SO coupling. Here a charge
current is induced in this multiterminal structure by the
application of bias voltages between the different contacts
of the system. However, if the voltage of one of the leads
is adjusted to make it work as a voltage probe, no charge
current passes this lead but a pure spin current can appear
owing to the SO coupling present in the system. The ba-
sic working principle behind these devices is the so-called
mesoscopic spin Hall effect [95], a version of the intrinsic
spin Hall effect [27], where the typical system size does not
exceed the phase coherence length of the electrons. The SO
interaction leads to different transport dynamics for differ-
ent spin species, which can be used to extract the desired
pure spin currents by a clever design of the multiterminal
geometry [21,96,97].
Complementary to the generation of pure spin current in
multiterminal geometries, there are other types of devices
not relying on the application of a net dc-bias. In spin
pumping, the cyclic variation of two or more system pa-
rameters, such as e. g. gate voltages, induces spin-polar-
ized currents at zero bias, where the induced charge cur-

rent can be tuned to disappear, leaving pure spin currents.
Several realizations of spin pumps in mesoscopic systems
have been proposed, relying on SO interaction [98,99]
or the Zeeman coupling of electrons to external mag-
netic fields [100]. The latter proposal has been experi-
mentally confirmed [101] by detecting spin-polarized cur-
rents making use of a transverse electron focusing tech-
nique [73] mentioned in the previous section.

Complementary to pumps, ratchets only require a sin-
gle driving parameter to achieve directed transport, and
the current direction can be switched upon tuning exter-
nal parameters such as temperature. In addition to the re-
quirement of a broken spatial symmetry the ratchet has
to be operated out of thermal equilibrium. The concept of
particle ratchets, which has been addressed in numerous
works [102], has recently been extended to systems called
spin ratchets. To be specific, the mesoscopic spin ratchets
proposed so far [82,85,103], are based on a quantum wire
realized in a 2DEG. Between the two contacts attached to
the quantumwire an ac bias voltageUR(t) is applied (rock-
ing ratchet) with zero net (time-averaged) bias. Further-
more, in the central region of the quantum wire the spin
degeneracy is lifted due to either SO interaction [82] or the
Zeeman coupling to an external magnetic field [85,103].
Upon appropriate choice of the system geometry and tun-
ing of the external driving the charge transported in the
forward (UR > 0) and backward bias (UR < 0) situation
can be made equal allowing for spin currents in the ab-
sence of net charge transport.
In the following we outline the model for the spin ratch-
ets introduced in [82,85,103]. There, driving with a pe-
riod t0 is considered. It is implied, that this period is much
larger than characteristic time scales related to the elec-
tron transport through the quantum wire. Therefore, the
system is assumed to be in a steady state at every instance
of time, and the Landauer–Büttiker approach to transport
is used for the computation of the ratchet currents. To
be specific, we consider an unbiased square wave driving
UR(t) D U0 sign[sin(2� t/t0)], where UR(t) is restricted to
the values ˙U0. The net current is then given by the av-
erage of the steady-state currents in the two rocking situa-
tions (labeledCU0 and �U0 respectively) for both charge
and spin,

hIC/S(U0)i D
IC/S(CU0)C IC/S(�U0)

2
: (28)

Since the spin ratchet effect requires nonlinear trans-
port [103], i. e. finite bias voltages, the Hamiltonian (24)
introduced in the previous section has to be extended to
additionally include the effective electrostatic potential in
the conductor due to the applied bias. Therefore, we add



8612 S Spin-Polarized Quantum Transport in Mesoscopic Conductors

the term HR D eURg(x; y;UR) to the Hamiltonian (24)
yielding the full Hamiltonian at finite bias:

H D H0 C HR : (29)

Furthermore at finite bias a generalized version of the ex-
pressions for charge and spin current valid at UR ¤ 0 has
to be used. For coherent Landauer transport those currents
can be obtained from an integration of the transmission
probabilities over the Fermi window [1]. Finally, the av-
eraged charge hICi and spin hISi currents can be written
as [85]

hIC/S(U0)i D
GC/S

2e

Z 1

EC
dE
 f (E;U0)
TC/S(E;U0) :

Here EC is the energy of the conduction band edge
and
 f (E;U0) D [ f (E; EF C eU0/2)� f (E; EF � eU0/2)]
is the difference between the Fermi functions of the leads
at bias voltage U0, defining the Fermi window. The av-
eraged charge/spin transmission is just the difference be-
tween the steady state transmissions in the two rocking sit-
uations:


TC/S(E;U0) D TC/S(E;CU0) � TC/S(E;�U0) : (30)

Considering the Hamiltonian (29) we now show un-
der what conditions the net charge transported after one
full rocking period is zero, i. e., hIC(U0)i D 0. If the elec-
trostatic potentials V(x, y), UB(x; y) and the Rashba SO
strength ˛(x) are invariant under inversion of the x-co-
ordinate,

V (x; y) D V(�x; y) ;
UB(x; y) D UB(�x; y) ;

˛(x) D ˛(�x) ;
(31)

it is appropriate to assume that the electrostatic potential
distribution due to the finite applied voltage g(x; y;UR)
also possesses this symmetry. Then the total Hamilto-
nian (29) is invariant under the action of the symmetry
operation P̂ D �iĈR̂U R̂x�z where RU switches the sign of
the bias voltage (˙U0 $�U0), yielding the relation

T
;
 0 (E;˙U0) D T
 0;
 (E;�U0)

between the spin-resolved transmission probabilities in
the two rocking situations [85]. Inserting this relation
into Eq. (30), we observe that the expression for the net
charge transmission 
TC is zero, resulting in vanishing
net charge current. Furthermore it can be used to simplify
the expression for the net spin current:

hIS(U0)i D
GS

e

Z 1

EC
dE 
 f (E;U0)

� [TC;�(E;CU0) � T�;C(E;CU0)] :

At U0 D 0 the Hamiltonian (29) reduces to Eq. (24),
which is invariant under the operation of Eq. (26), yielding
TC;�(E; 0) D T�;C(E; 0). This absence of net spin current
hIS(U0 D 0)i D 0 in the linear response regime is in agree-
ment with the theoretical prediction [85]. However, for fi-
nite rocking voltages U0 ¤ 0 the additional potential in-
troduced via HR breaks this symmetry and therefore en-
ables different spin flip transmissions and thus a resulting
net spin current.

We now turn our attention to the quantumwire shown
in Fig. 12a. For this system, which exhibits the symmetries
of Eq. (31), we perform numerical calculations at finite
biasU0, in order to confirm its operability as a spin ratchet.
In general, the function g(x; y;UR) has to be obtained
by self-consistently solving the Schrödinger and Poisson
equation of the system. However, in the present treatment
we make use of a simple model for g(x; y;UR) assuming
a linear voltage drop in the region where the point contact
is formed in the quantum wire:

g(x; y;UR) D g(x) D

8
ˆ̂<

ˆ̂
:

1
2 for x < � LPC

2 ;

� x
LPC for � LPC

2 < x < LPC
2 ;

� 1
2 for x > LPC

2 :

It is well known that a constriction in a quantum wire acts
as an effective potential barrier constituting a region where
the voltage applied across the wire is likely to drop. Since
the bias voltages we consider are small compared to the en-
ergy shift introduced by the constriction, this assumption
of a linear voltage drop should be an appropriate approx-
imation for the actual distribution of the electrostatic po-
tential in this wire [104]. Self-consistent calculations have
confirmed that this approximation is valid [105].

In Fig. 15 we plot the net spin transmission 
TS as
a function of ¯̨ and the injection energy in the range, where
both leads support two transversalmodes.We observe that
j
TSj reaches values of up to 0.9 in the parameter range
shown. Furthermore, for a given value of injection energy,
the sign of
TS can be switched by changing ˛C. Since the
strength of the Rashba SO interaction ˛C can be tuned via
gate voltages [25] the presented system offers also the pos-
sibility for experimentally steering and switching the spin
current direction.

Future Directions

In the present work we outlined general theoretical
and computational concepts of coherent spin-dependent
transport at low temperatures and focussed, with regard
to numerical examples and possible experimental realiza-
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Spin-Polarized Quantum Transport in Mesoscopic Conductors,
Figure 15
Net ratchet spin transmission probability 	TS(U0) D
2

�
TC;�(CU0)� T�;C(CU0)

�
for a stripe with a junction

(see text) presented as a function of injection energy Ē
and SO interaction strength ¯̨ at finite applied voltage
eU0 D 0:02 „2/(2m�a2). Note the sign change in the spin
transmission upon tuning the SO coupling

tions, onto ballistic two-dimensional nanostructures based
on non-magnetic high-mobility semiconductors.

In order to experimentally achieve high spin polar-
izations and reasonable spin currents, if possible at room
temperature, broad efforts are made to investigate and de-
sign novel materials for spintronics. Here, prominent and
promising examples, both with respect to fundamental
physics and possible applications, are magnetic semicon-
ductors such as GaMnAs [106] or semimagnetic materi-
als with huge g-factors, for instance HgTe [107]. Charge
transport in these materials is based on holes. However,
relatively few theoretical papers deal with phase coher-
ence effects for hole (spin) transport, though the rich band
structure and the interplay between heavy and light hole
(or electron- and hole-like) degree of freedoms promise
interesting additional features.

The theoretical methods for quantum transport, pre-
sented here in the context of mesoscopic systems, are
also applied and extended to treat transport in a further
prospective field, namely through single-molecule junc-
tions [108], for instance (break) junctions with a molecule
bridging the gap between two leads or scanning tunneling
microscope measurements of tunnel current through
molecules at surfaces. In Molecular Spintronics [44,109]
spin effects in transport through molecules are addressed.
This subfield of spin electronics is still in its infancy. On
the computational side these systems pose considerable
problems since an adequate approach requires an appro-

priate description of the electronic and possibly vibra-
tional properties of the molecule including the coupling
to and effects of the leads. Whether (spin) DFT calcu-
lations for such an embedded molecule, combined with
Landauer-type transport calculations, are appropriate, re-
mains to be an issue, in particular if charging or non-equi-
librium effects are involved.

As a further future direction we expect that spin trans-
port in graphene, monolayers of graphite, may evolve as
another future research line. After its experimental dis-
covery in 2004 [110], graphene has gained much ex-
perimental and huge theoretical attention owing to its
many exotic properties such as the massless charge car-
riers, internal spin-like degree of freedoms and uncon-
ventional transport characteristics. Also first experiments
on graphene-based nanoconductors, e. g., measurements
of the Aharonov–Bohm effect in graphene rings [111],
are on their way. Graphene is also viewed as a prospec-
tive candidate for spin-electronics, since the spin deco-
herence and spin relaxation times in graphene are ex-
pected to be long [112,113]. Recent promising experi-
ments already succeeded in injecting spins from ferromag-
netic metallic contacts into graphene, although the con-
ductance mismatch between graphene and the ferromag-
netic leads is expected to suppress the efficiency. Recent
theoretical proposals predict efficient spin injection into
bulk graphene from graphene ribbons employing the oc-
currence of current-carrying spin-polarized edge states in
the ribbons [114].
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16. Grbić B, Leturcq R, Ihn T, Ensslin K, Reuter D, Wieck AD (2007)
Aharonov–Bohm oscillations in the presence of strong spin-
orbit interactions. Phys Rev Lett 99:176803

17. Frustaglia D, Richter K (2004) Spin interference effects in ring
conductors subject to Rashba coupling. Phys Rev B 69:235310

18. Nitta J, Meijer FE, Takayanagi H (1999) Spin-interference de-
vice. Appl Phys Lett 75:695–697

19. Mal’shukov AG, Shlyapin VV, Chao KA (1999) Effect of the
spin-orbit geometric phase on the spectrum of Aharonov–
Bohm oscillations in a semiconductor mesoscopic ring. Phys
Rev B 60:R2161–R2164

20. Splettstoesser J, Governale M, ZülickeU (2003) Persistent cur-
rent in ballistic mesoscopic rings with Rashba spin-orbit cou-
pling. Phys Rev B 68:165341
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Glossary

Stability A globally asymptotically stable equilibrium is
a state with the property that all solutions converge to
this state, with no large excursions.
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Stabilization A system is stabilizable (with respect to
a given state) if it is possible to find a feedback law that
renders that state a globally asymptotically stable equi-
librium.

Lyapunov and control-Lyapunov functions A control-
Lyapunov functions is a scalar function which de-
creases along trajectories, if appropriate control ac-
tions are taken. For systems with no controls, one has
a Lyapunov function.

Definition of the Subject

The problem of stabilization of equilibria is one of the cen-
tral issues in control. In addition to its intrinsic interest, it
represents a first step towards the solution ofmore compli-
cated problems, such as the stabilization of periodic orbits
or general invariant sets, or the attainment of other con-
trol objectives, such as tracking, disturbance rejection, or
output feedback, all of which may be interpreted as requir-
ing the stabilization of some quantity (typically, some sort
of “error” signal). A very special case, when there are no
inputs, is that of stability.

Introduction

This article discusses the problem of stabilization of an
equilibrium, which we take without loss of generality to
be the origin, for a finite-dimensional system ẋ D f (x; u).
The objective is to find a feedback law u D k(x) which ren-
ders the origin of the “closed-loop” system ẋ D f (x; k(x))
globally asymptotically stable. The problem of stabiliza-
tion of equilibria is one of the central issues in control. In
addition to its intrinsic interest, it represents a first step
towards the solution of more complicated problems, such
as the stabilization of periodic orbits or general invariant
sets, or the attainment of other control objectives, such
as tracking, disturbance rejection, or output feedback, all
of which may be interpreted as requiring the stabilization
of some quantity (typically, some sort of “error” signal).
A very special case (when there are no inputs u) is that of
stability.

After setting up the basic definitions, we consider lin-
ear systems. Linear systems are widely used as models
for physical processes, and they also play a major role in
the general theory of local stabilization. We briefly review
pole assignment and linear-quadratic optimization as ap-
proaches to obtaining feedback stabilizers.

In general, there is a close connection between the ex-
istence of continuous stabilizing feedbacks and smooth
control-Lyapunov functions, (cfl’s), which constitute an ex-
tension of the classical concept of Lyapunov functions
from dynamical system theory. We discuss the role of clf’s

in design methods and “universal” formulas for feedback
controls.

For nonlinear systems, it has been known since the late
1970s that, in general, there are topological obstructions
to the existence of even continuous stabilizers. We review
these obstructions, using tools from degree theory.

Finally, we turn to discontinuous stabilization and the
associated issue of defining precisely a “solution” for a dif-
ferential equation with discontinuous right-hand side. We
introduce techniques from nonsmooth analysis and dif-
ferential games, in order to deal with discontinuous con-
trollers. In particular, we discuss the effect of measurement
errors on the performance of such controllers.

Preliminaries

In this article, we restrict attention to continuous-time de-
terministic systems whose states evolve in finite-dimen-
sional Euclidean spaces Rn . (This excludes many other
equally important objects of study in control theory: sys-
tems which evolve on infinite dimensional spaces and
are described by PDE’s, systems evolving on manifolds
which serve to model state constraints, discrete-time sys-
tems described by difference equations, and stochastic sys-
tems, among others.) In order to streamline the presen-
tation, we suppose throughout that controls take values
in U D Rm (constraints in controls would lead to proper
subsets U). A control (other names: input, forcing func-
tion) is any measurable locally essentially bounded map
u(�) : [0;1)! U D Rm . In general, we use the notation
jxj for Euclidean norms, and use kuk to indicate the es-
sential supremum of a function u(�). For basic terminology
and facts about control systems, see [25].

Given a map f : Rn �Rm ! Rn which is locally Lip-
schitz and satisfies f (0; 0) D 0, we consider the associated
forced system of ordinary differential equations

ẋ(t) D f (x(t); u(t)) : (1)

The maximal solution x(�) of (1) which corresponds to
a given initial state x(0) D x0 and to a given control u is
defined on some maximal interval [0; tmax(x0; u)), and is
denoted by x(t; x0; u). In the special case when f does not
depend on u, we have an unforced system, or system with
no inputs

ẋ(t) D f (x(t)) : (2)

Unforced systems are associated to a controlled system (1)
in two different ways. The first is when one substitutes
a feedback law u D k(x) in (1) to obtain a “closed-loop”
system ẋ D f (x; k(x)). The second is when one considers
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instead the autonomous system ẋ D f (x; 0) which mod-
els the behavior of (1) in the absence of any controls. All
definitions stated for unforced systems are implicitly ap-
plied also to systems with inputs (1) by setting u � 0; for
instance, we define the global asymptotic stability (GAS)
property for (2), but we say that (1) is GAS if ẋ D f (x; 0)
is. For systems with no inputs (2) we write just x(t; x0) in-
stead of x(t; x0; u).

Stability and Asymptotic Controllability Stability is
one of the most important objectives in control theory, be-
cause a great variety of problems can be recast in stability
terms. This includes questions of driving a system to a de-
sired configuration (e. g., an inverted pendulum on a cart,
to its upwards position), or the problem of tracking a ref-
erence signal (such as a pilot’s command to an aircraft).
We focus in this talk on global asymptotic stabilization.

Recall that the class of K1 functions consists of all
˛ : R�0 ! R�0 which are continuous, strictly increasing,
unbounded, and satisfy ˛(0) D 0. The class of KL func-
tions consists of those ˇ : R�0 �R�0 ! R�0 with the
properties that

(1) ˇ(�; t) 2K1 for all t, and
(2) ˇ(r; t) decreases to zero as t !1.

We will also use N to denote the set of all nondecreas-
ing functions � : R�0 ! R�0. Expressed in terms of such
comparison functions, the property of global asymptotic
stability (GAS) of the origin for a systemwith no inputs (2)
becomes:

(9ˇ 2KL) jx(t; x0)j � ˇ
�
jx0j; t


8x0 ;8t � 0 :

This definition is equivalent to a more classical “"-ı” def-
inition usually provided in textbooks, which defines GAS
as the combination of stability and global attractivity. For
one implication, simply observe that

jx(t; x0)j � ˇ
�
jx0j; 0



provides the stability (or “small overshoot”) property,
while

jx(t; x0)j � ˇ
�
jx0j; t


�!
t!1

0

gives attractivity. The converse implication is an easy ex-
ercise.

More generally, we define what it means for the sys-
tem with inputs (1) to be (open loop, globally) asymp-
totically controllable (AC) (to the origin). The definition
amounts to requiring that for each initial state x0 there
exists some control u D ux0 (�) defined on [0;1), such

that the corresponding solution x(t; x0; u) is defined for
all t � 0, and converges to zero as t!1, with “small”
overshoot. Moreover, we wish to rule out the possibility
that u(t) becomes unbounded for x near zero. The precise
formulation is as follows.

(9ˇ 2KL)(9� 2N ) 8x0 2 Rn9u(�) ; kuk � �(
ˇ
ˇx0
ˇ
ˇ) ;

jx(t; x0; u)j � ˇ
�
jx0j; t


8 t � 0 :

In particular, (global) asymptotic stability amounts to the
existence of ˇ 2KL such that jx(t; x0; u)j � ˇ (jx0j; t)
holds for all t � 0. A very special case is that of ex-
ponential stability, in which an estimate of the type
jx(t; x0; u)j � Me��t jx0j holds. For linear systems (see
below), asymptotic stability and exponential stability coin-
cide. It is a puzzling fact that for general systems, one can
find continuous coordinate changes that make asymptoti-
cally stable systems exponentially stable [8,13] (a fact of lit-
tle practical utility, since finding such coordinate changes
is as hard as establishing stability to being with).

Feedback Stabilization A map k : Rn ! U is a feed-
back stabilizer for the system with inputs (1) if k is locally
bounded (that is, k is bounded on each bounded subset of
R), k(0) D 0, and the closed-loop system

ẋ D f (x; k(x)) (3)

is GAS, i. e. there is some ˇ 2KL so that jx(t)j �
ˇ (jx(0)j ; t) for all solutions and all t � 0. (A technical dif-
ficulty with this definition lies the possible lack of solutions
of (1) when k is not regular enough. We ignore this for
now, but will most definitely return to this issue later.)

For example, if (1) is a model of an undamped
spring/mass system, where u represents the net effect of
external forces, one obvious way to asymptotically stabi-
lize the system is to introduce damping. In control-the-
oretic terms, this means that we choose u(t) D k(x(t)) to
be a negative linear function of the velocity. Physically, one
may implement a feedback controller by means of an ana-
log device. In the example of the spring/mass system, one
could achieve this by adding friction or connecting a dash-
pot. Alternatively, in modern control technology, one uses
a digital computer to measure the state x and compute
the appropriate control action to be applied. (There are
many implementation issues which arise in digital control
and are ignored in our theoretical formulation “u D k(x)”,
among them the effect of delays in the actual computation
of the control u(t) to be applied at time t, and the effect of
quantization due to the finite precision of measuring de-
vices and the digital nature of the computer. These issues



Stability and Feedback Stabilization S 8619

are addressed in the literature, although a comprehensive
theoretical framework is still lacking.)

Observe that, obviously, if there exists a feedback
stabilizer for (1), then (1) is also AC (we just use
u(t) :D k(x(t; x0)) as ux0 ). Thus, it is very natural to ask
whether the converse holds: is every asymptotically control-
lable system also feedback stabilizable?

Linear Systems

A linear system is a system (1) for which the map f is lin-
ear. In other words, there are two linear transformations
A : Rn ! Rn and B : Rm ! Rn so that the equations take
the form

ẋ D Ax C Bu : (4)

Such a system is completely specified once that we are
givenA and B, which we identify by abuse of notation with
their respective matrices A 2 Rn�n and B 2 Rn�m with
respect to the canonical bases in Rn and Rm . We also say
“the system (A, B)” when referring to (4).

It is natural to look specifically for linear feedbacks
k : Rn ! Rm which stabilize a linear system (just as a lin-
ear term, inversely proportional to velocity, stabilizes an
undamped harmonic oscillator). (In fact, this is no loss
of generality, since it can be easily proved for linear sys-
tems [25] that if a feedback stabilizer u D k(x) exists, then
there also exists a linear feedback stabilizer.) We write
u D Fx, when expressing k(x) D Fx in matrix terms with
respect to the canonical bases. Substituting this control law
into (4) results in the equation ẋ D (AC BF)x. Thus, the
mathematical problem reduces to:

given A 2 Rn�n and B 2 Rn�m , find F 2 Rm�n

such that AC BF is Hurwitz.

(Recall that a Hurwitz matrix is one all whose eigenvalues
have negative real parts, and that the origin of the system
ẋ D Hx is globally asymptotically stable if and only if H
is a Hurwitz matrix.) The fundamental stabilization result
for linear systems is as follows [25]:

Theorem 1 A linear system is asymptotically controllable
if and only if it admits a linear feedback stabilizer.

A Remark on Linearization

If the dynamics map f in (1) is continuously differentiable,
we may expand to first order f (x; u) D AxCBuCo(x; u).
Let us suppose that the linearized system (A, B) is AC, and
pick a linear feedback stabilizer u D Fx, whose existence

is guaranteed by Theorem 1. Then, the same feedback law
k(x) D Fx, when fed back into the original system (1),
results in ẋ D f (x; Fx)D (AC BF)x C o(x). Thus, k lo-
cally stabilizes the origin for the nonlinear system. Of
course, the assumption that the linearization is AC is not
always satisfied. Systems in which inputs enter multiplica-
tively, such as those controlling reaction rates in chemi-
cal problems, lead to degenerate linearizations. In addi-
tion, even if the linearized system (A,B) is AC, in gen-
eral a linear stabilizer u D Fx will not work as a global
stabilizer. For example, the system ẋ D x C x2 C u can
be locally stabilized with u :D �2x, but any linear feed-
back u D � f x ( f > 1) results in an additional equilibrium
away from the origin (at x D f � 1). Nonlinear feedback
must be used (obviously, in this, example, u D �2x � x2

works for global stabilization).
Returning to linear systems, let us note that Theo-

rem 1 is of great interest because (1) there is a simple alge-
braic test to check the AC property, and (2) there are sev-
eral practically useful algorithms for obtaining a stabiliz-
ing F, including pole placement and optimization, which
we sketch next.

Pole Placement

The first technique for stabilization is purely algebraic. In
order to simplify this exposition, we will suppose that the
system (4) is not just AC but is in fact controllable, mean-
ing that every state can be steered, in finite time, to ev-
ery other state. (Any AC system (4) can be decomposed
into two components, of which one is already GAS and
the other one is controllable, cf. [25], so this represents no
loss of generality.) Controllability is characterized by the
property – generically satisfied for pairs (A,B) – that

rank
h
B
ˇ̌
ˇAB

ˇ̌
ˇA2B

ˇ̌
ˇ : : :

ˇ̌
ˇAn�1B

i
D n

(note that the composite matrix shown has n rows and nm
columns).

Two pairs (A, B) and (eA;eB) are said to be feedback
equivalent if there exist T 2 GL(n;R), F0 2 Rm�n , and
V 2 GL(m;R) so that

(AC BF0)T D TeA and BV D TeB : (5)

Feedback equivalence corresponds to changes of basis
in the state and control-value spaces (invertible matri-
ces T and V , respectively) and feedback transformations
u D F0x C u0, where u0 is a new control. (An equiva-
lent way to describe feedback equivalence is by the re-
quirement that two pairs should be in the same orbit un-
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der the action of a “feedback group” which is obtained
as a suitable semidirect product of GL(n;R), (Rm�n ;C),
and GL(m;R).) Controllability is preserved under feed-
back equivalence. Moreover, if (5) holds and if one finds
a matrixeF so thateACeBeF is Hurwitz, then

AC BF D T(eACeBeF)T�1

is also Hurwitz, where F :D F0 C VeFT�1. Thus, the task
of finding a stabilizing feedback F can be reduced to the
same problem for any pair (eA;eB) which is feedback equiv-
alent to the given pair (A,B).

One then proceeds to show that there always ex-
ists an equivalent pair (eA;eB) which has a form simple
enough that the existence of eF is trivial to establish. In
order to find such a pair, it is useful to study the classi-
fication of controllable pairs under feedback equivalence.
This classification is closely related to Kronecker’s the-
ory of “matrix pencils” applied to polynomial matrices
[I � A; B] D [I; 0]C [�A; B] modulo matrix equiva-
lence, cf. [25]. The orbits under feedback equivalence are
in one-to-one correspondence with the possible partitions
of n D �1 C : : :C �r into the sum of r positive integers,
r � m, and in each orbit one can find a pair (eA;eB) which
is in “controller canonical form”, for which F can be triv-
ially found. For simplicity, let is just discuss here the very
special case of single-input systems (m D 1). For this case,
the action of the feedback group is transitive, and each
controllable system is feedback equivalent to the following
special system:

A :D

0

B
BBB
B
@

0 1 0 : : : 0
0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1
0 0 0 : : : 0

1

C
CCC
C
A

B :D

0

B
BBB
B
@

0
0
:::

0
1

1

C
CCC
C
A
:

For this system, a stabilizing feedback is trivial to obtain.
Indeed, take the polynomial p() D ( C 1)n D n �

˛n
n�1 � : : : � ˛2 � ˛1. With F D (˛1; ˛2; ˛3; : : : ; ˛n),

AC BF :D

0

BB
BBB
@

0 1 0 : : : 0
0 0 1 : : : 0

‘
:::

:::
:::

: : :
:::

0 0 0 : : : 1
˛1 ˛2 ˛3 : : : ˛n

1

CC
CCC
A

has characteristic polynomial (C 1)n , and hence is
a Hurwitz matrix, as required for stabilization.

Observe that, instead of the particular p() which we
used, we could have picked any polynomial all whose roots

have negative real parts, and the same argument applies.
The conclusion is that, not only can wemakeAC BF Hur-
witz, but we can assign to it any desired set of n eigenvalues
(as long as they form a set closed under conjugation). This
is the reason that the technique is called eigenvalue place-
ment (or “pole placement” because the eigenvalues ofA are
the poles of the resolvent (I � A)�1). See Chap. 5 in [25]
for a detailed treatment of the pole placement problem.

Variational Approach

A second technique for stabilization is based on optimal
control techniques. We first pick any two symmetric pos-
itive definite matrices R 2 Rm�m and Q 2 Rn�n (for in-
stance the identity matrices of the respective sizes). Next,
we consider the problem of minimizing, for each initial
state x0 at time t D 0, the infinite-horizon cost

Jx0 (u) :D
Z 1

0

˚
u(t)0Ru(t)C x(t)0Qx(t)

�
dt

over all controls u : [0;1) ! Rm which make Jx0 (u) <
1, where x(t) D x(t; x0; u) and prime indicates trans-
pose. The main result from linear-quadratic optimal con-
trol (cf. Sect. 8.4 in [25]) implies that, for AC systems,
there is a unique solution u to this problem, which is
given in the following form: there is a matrix F 2 Rm�n

such that solving ẋ D (AC BF)x with x(0) D x0 gives
that u(t) :D Fx(t) minimizes Jx0 (�). Moreover, this F sta-
bilizes the system (which is intuitively to be expected, since
Jx0 (u) <1 implies that solutions x(t) must be in L2),
and F can be computed by the formula

F :D �R�1B0P ; (6)

where P is a symmetric and positive definite solution of the
Matrix Algebraic Riccati Equation

PBR�1B0P � PA� A0P � Q D 0 : (7)

A Sufficient Nonlinear Condition

Although of limited applicability, it is worth remarking
that there is a partial extension to nonlinear systems of the
stabilization method which was just described. For sim-
plicity, we specialize our discussion to control-affine sys-
tems, i. e., those for which the input appears only in an
affine form. This class is sufficient for the study of most
forced mechanical systems. The Eq. (1) becomes:

ẋ D g0(x)C
mX

iD1

ui gi (x) D g0(x)C G(x)u :
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(See Sect. 8.5 in [25] for general f , and for proofs). We
now pick two continuous functions Q : Rn ! R�0 and
R : Rn ! Rn�n , so that R(x) is a symmetric positive defi-
nite matrix for each x.

In general, we say that a continuous function

V : Rn ! R�0

is positive definite if V(x) D 0 only if x D 0, and it is
proper (or “weakly coercive”) if for each a � 0 the set
fxjV(x) � ag is compact, or, equivalently, V(x)!1
as jxj ! 1 (radial unboundedness). Given any such V
which is also differentiable, we denote the vector function
whose components are the directional derivatives of V in
the directions of the various control vector fields gi, i � 1
by:

LGV(x) :D rV(x)G(x) D
�
Lg1V(x); : : : ; LgmV(x)


;

and also write Lg0V (x) :D rV(x)g0(x).
We consider the following PDE on such functions V :

8x Q(x)CLg0V(x)�
1
4
LGV(x)R(x)�1 (LGV(x))0 D 0:

(8)

This reduces to the Algebraic Riccati Eq. (7) in the spe-
cial case of linear systems, quadratic V(x) D x0Px and
Q(x) D x0Qx, and constant matrices R(x) � R. We also
take the following generalization of the feedback law (6):

k(x) :D �
1
2
R(x)�1 (LGV (x))0 : (9)

Finally, we assume that Q is a positive definite function.
One then has [25]:

Theorem 2 Suppose that V is a twice continuously dif-
ferentiable, positive definite, and proper solution of the
PDE (8). Then, k defined by (9) stabilizes the system.

This theorem arises from the following optimization prob-
lem: for each state x0 2 Rn , minimize the cost

Jx0 (u) :D
Z 1

0
u(t)0R(x(t))u(t)C Q(x(t))dt ;

where x(t) D x(t; x0; u), over all those controls u : [0;1)
! U for which the solution x(t; x0; u) of (1) is defined
for all t � 0 and satisfies limt!1 x(t) D 0. Under the
above assumptions, and as for linear systems, one also con-
cludes that for each state x0 the solution of ẋ D f (x; k(x))
with initial state x(0) D x0 exists for all t � 0, the control
u(t) D k(x(t)) is optimal, and V (x0) is the optimal cost
from initial state x0. Moreover, the formula for k arises

from the Hamilton–Jacobi–Bellman equation of optimal
control theory, because

k(x) D argmin
u

˚
rV(x) � f (x; u)C u0R(x)u C Q(x)

�

when f (x; u) D g0(x)C G(x)u.
There are applications where this method has proven

useful. Unfortunately, however, and in contrast to the lin-
ear case, in general there exists no positive definite, proper,
and C2 solution V of the above PDE. On the other hand,
the formula (9) does appear, with variations, in other
contexts, including generalizations of the idea of adding
damping to systems, cf. Sect. 5.9 in [25], and, more gener-
ally, the use of auxiliary positive definite and proper func-
tions V , in similar roles, will be central to the control-
Lyapunov ideas discussed later.

Nonlinear Systems: Continuous Feedback

One of the central topics which we will address here con-
cerns possibly discontinuous feedback laws k. Before turn-
ing to that subject, however, we study continuous feed-
back. When dealing with linear systems, linear feedback
is natural, and indeed sufficient from a theoretical stand-
point, as shown by the results just reviewed. However, for
our general study, major technical questions arise in even
deciding on just what degree of regularity should be im-
posed on the feedback maps k.

It turns out that the precise requirements away from 0,
say asking whether k is merely continuous or smooth, are
not very critical; it is often the case that one can “smooth
out” a continuous feedback (or, even,make it real-analytic,
via Grauert’s Theorem) away from the origin. So, in order
to avoid unnecessary complications in exposition due to
nonuniqueness, let us call a feedback k regular if it is locally
Lipschitz onRn n f0g. For such k, solutions of initial value
problems ẋ D f (x; k(x)), x(0) D x0, are well defined (at
least for small time intervals [0; ")) and, provided k is a sta-
bilizing feedback, are unique (cf. Exercise 5.9.9 in [25]).

On the other hand, behavior at the origin cannot be
“smoothed out” and, at zero, the precise degree of smooth-
ness plays a central role in the theory [12]. For instance,
consider the system

ẋ D x C u3 :

The continuous (and, in fact, smooth away from zero)
feedback u D k(x) :D � 3p2x globally stabilizes the sys-
tem (the closed-loop system becomes ẋ D �x). However,
there is no possible stabilizing feedback which is differen-
tiable at the origin, since u D k(x) D O(x) implies that

ẋ D x C O
�
x3
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about x D 0, which means that the solution starting at any
positive and small point moves to the right, instead of to-
wards the origin. (A general result, assuming thatA has no
purely imaginary eigenvalues, cf. [25], Section 5.8, is that
if – and only if – ẋ D Ax C BuC o(x; u) can be locally
asymptotically stabilized using a feedback which is differ-
entiable at the origin, the linearization ẋ D Ax C Bumust
be AC itself. In the example that we gave, this linearization
is just ẋ D x, which is not AC.)

We now turn to the question of existence of regular
feedback stabilizers. We first study a comparatively trivial
case, namely systemswith one state variable and one input.
After that, we turn to multidimensional systems.

The Special Case n D m D 1

There are algebraic obstructions to the stabilization of
ẋ D f (x; u) if the input u appears nonlinearly in f . Ignor-
ing the requirement that there be a � 2N so that controls
can be picked with kuk � �(jx0j), asymptotic controllabil-
ity is, for n D m D 1, equivalent to:

(8x 6D 0)(9u) x f (x; u) < 0 (10)

(this is proved in [28]; it is fairly obvious, but some care
must be taken to deal with the fact that one is allowing
arbitrary measurable controls; the argument proceeds by
first approximating such controls by piecewise constant
ones). Let us introduce the following set:

O :D f(x; u)jx f (x; u) < 0g ;

and let � : (x; u) 7! x be the projection into the first coor-
dinate inR. Then, (10) is equivalent to:

�O D R n f0g :

(One can easily include the requirement “kuk � �(jx0j)”
by asking that for each interval [�K;K] � R there must
be some compact set CK � R2 so that [�K;K] � �(CK ).
For simplicity, we ignore this technicality.) In these
terms, a stabilizing feedback is nothing else than a locally
bounded map k : R! R such that k(0) D 0 and so that k
is a section of � onR n f0g:

(x; k(x)) 2 O 8x 6D 0 :

For a regular feedback, we ask that k be locally Lipschitz
onR n f0g.

Clearly, there is no reason for Lipschitz, or for that
matter, just continuous, sections of � to exist. As an il-
lustration, take the system

ẋ D x
�
(u � 1)2 � (x � 1)

� �
(u C 1)2 C (x � 2)

�
:

Let

O1 D
˚
(u C 1)2 < (2 � x)

�
andO2 D f(u�1)2 < (x�1)g

(these are the interiors of two disjoint parabolas). Here,
O has three connected components, namely O2, O1 inter-
sectedwith x < 0, andO1 intersectedwith x < 0. It is clear
that, even though �O D R, there is no continuous curve
(graph of u D k(x)) which is always in O and projects
onto R n f0g. On the other hand, there exist many possi-
ble feedback stabilizers provided that we allow one discon-
tinuity. It is also possible to provide examples, even with
f (x, u) smooth, for which an infinite number of switches
are needed in any possible stabilizing feedback law. Finally,
it may even be possible to stabilize semiglobally with a reg-
ular feedback, meaning that for each compact subset K of
the state-space there is a regular, even smooth, feedback
law u D kK(x) such that all states in K get driven asymp-
totically to the origin, but yet it may be impossible to find
a single u D k(x) which works globally. See [26] for de-
tails.

When feedback laws are required to be continuous at
the origin, new obstructions arise. The case of systemswith
n D m D 1 is also a good way to introduce this subject.
The first observation is that stabilization about the origin
(even if just local) means that we must have, near zero:

f (x; k(x))

8
<

:

> 0 if x < 0
< 0 if x > 0
D 0 if x D 0

:

In fact, all that we need is that f (x1; k(x1)) < 0 for some
x1 > 0 and f (x2; k(x2)) > 0 for some x2 < 0. This guar-
antees, via the intermediate-value theorem that, if k is con-
tinuous, the projection

(�"; ")! R ; x 7! f (x; k(x))

is onto a neighborhood of zero, for each " > 0. It follows,
in particular, that the image of

(�"; ") � (�"; ")! R ; (x; u) 7! f (x; u)

also contains a neighborhood of zero, for any " > 0 (that
is, the map (x; u) 7! f (x; u) is open at zero). This last
property is intrinsic, being stated in terms of the origi-
nal data f (x, u) and not depending upon the feedback k.
Brockett’s condition, to be described next, is a far-reaching
generalization of this argument; in its proof, degree theory
replaces the use of the intermediate value theorem.

Obstructions and Necessary Degree Conditions

If there are “obstacles” in the state-space, or more pre-
cisely if the state-space is a proper subset of Rn , discon-
tinuities in feedback laws cannot in general be avoided,
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Stability and Feedback Stabilization, Figure 1
Shopping cart

since the domain of attraction of an asymptotically stable
vector field must be diffeomorphic to Euclidean space. But
even if states evolve in Euclidean spaces, similar obstruc-
tions may arise. These are due not to the topology of the
state space, but to “virtual obstacles” implicit in the form
of the system equations. These obstacles occur when it is
impossible to move instantaneously in certain directions,
even if it is possible to move eventually in every direction,
the phenomenon of “nonholonomy”. As an illustration, let
us consider amodel for the “shopping cart” shown in Fig. 1
(“knife-edge” or “unicycle” are other names for this ex-
ample). The state is given by the orientation � , together
with the coordinates x1; x2 of the midpoint between the
back wheels. The front wheel is a castor, free to rotate.
There is a non-slipping constraint on movement: the ve-
locity (ẋ1; ẋ2)0 must be parallel to the vector (cos �; sin �)0.
This leads to the following equations:

ẋ1 D u1 cos �
ẋ2 D u1 sin �

�̇ D u2

where we may view u1 as a “drive” command and u2
as a steering control. (In practice, one would implement
these controls by means of differential forces on the two
back corners of the cart.) The feedback transformation
z1 :D � , z2 :D x1 cos � C x2 sin � , z3 :D x1 sin � �
x2 cos � , v1 :D u2, and v2 :D u1 � u2z3 brings the system
into the systemwith equations ż1 D v1, ż2 D v2, ż3 D z2v1
known as “Brockett’s example” or “nonholonomic inte-
grator” (yet another change can bring the third equation
into the form ż3 D z1v2 � z2v1). We view the system as
having state space R3. Although a physically more accu-
rate state space would be the manifoldR2 � S1, the neces-
sary condition to be given is of a local nature, so the global
structure is unimportant.

This system is (obviously) completely controllable
(formally, controllability can be checked using the Lie al-

gebra rank condition, as in e. g. [25], Exercise 4.3.16), and
in particular is AC. However, we may expect that discon-
tinuities are unavoidable due to the non-slip constraint,
which does not allow moving from, for example the posi-
tion x1 D 0, � D 0, x2 D 1 in a straight line towards the
origin. Indeed, one then has [3]:

Theorem 3 If there is a stabilizing feedback which is regu-
lar and continuous at zero, then the map (x; u) 7! f (x; u)
is open at zero.

The test fails here, since no points of the form (0; ";) be-
long to the image of the map

R5 ! R3 : (x1; x2; �; u1; u2)0 7! f (x; u)
D (u1 cos �; u1 sin �; u2)0

for � 2 (��/2; �/2), unless " D 0.
More generally, it is impossible to continuously stabi-

lize any system without drift

ẋ D u1g1(x)C : : :C umgm(x) D G(x)u

if m < n and rank[g1(0); : : : ; gm (0)] D m (this includes
all totally nonholonomicmechanical systems). Indeed, un-
der these conditions, themap (x; u) 7! G(x)u cannot con-
tain a neighborhood of zero in its image, when restricted
to a small enough neighborhood of zero. Indeed, let us first
rearrange the rows of G:

G(x) Ý
�

G1(x)
G2(x)

�

so that G1(x) is of size m � m and is nonsingular for all
states x that belong to some neighborhood N of the origin.
Then,
�

0
a

�
2 Im

�
N �Rm !Rn : (x; u) 7! G(x)u

�
) aD 0

(since G1(x)u D 0) u D 0) G2(x)u D 0 too).
If the condition rank[g1(0); : : : ; gm(0)] D m is vio-

lated, we cannot conclude a negative result. For instance,
the system ẋ1 D x1u, ẋ2 D x2u has m D 1 < 2 D n but
it can be stabilized by means of the feedback law u D
�(x21 C x22).

Observe that for linear systems, Brockett’s condition
says that

rank[A; B] D n

which is the Hautus controllability condition (see e. g. [25],
Lemma 3.3.7) at the zero mode.



8624 S Stability and Feedback Stabilization

Idea of the Proof One may prove Brockett’s condition
in several ways. A proof based on degree theory is proba-
bly easiest, and proceeds as follows (for details see for in-
stance [25], Sect 5.9). The basic fact, due to Krasnosel’ski,
is that if the system ẋ D F(x) D f (x; k(x)) has the origin
as an asymptotically stable point and F is regular (since k
is), then the degree (index) of F with respect to zero is
(�1)n , where n is the system dimension. In particular, the
degree is also nonzero with respect to points p in a neigh-
borhood of 0, whichmeans that the equation F(x) D p can
be solved for small p, and hence f (x; u) D p can be solved
as well. The proof that the degree is (�1)n follows by ex-
hibiting a homotopy, namely

Ft(x0) D
1
t

�
x
�

t
1 � t

; x0

�
� x0

�
;

between F0 D F and F1(x) D �x, and noting that the
degree of the latter is obviously (�1)n . An alternative
proof uses Lyapunov functions. Asymptotic stability im-
plies the existence of a smooth Lyapunov function V for
ẋ D F(x) D f (x; k(x)), so, on the boundary @B of a sub-
level set B D fxjV(x) � cg we have that F points to-
wards the interior of B. Thus, for p small, F(x)� p still
points to the interior, which means that B is invariant
with respect to the perturbed vector field ẋ D F(x)� p.
Provided that a fixed-point theorem applies to continu-
ous maps B! B, this implies that F(x)� p must vanish
somewhere in B, that is, the equation F(x) D p can be
solved. (Because, for each small h > 0, the time-h flow �
of F � p has a fixed point xh 2 B, i. e. �(h; xh) D xh ,
so picking a convergent subsequence xh ! x̄ gives that
0 D (�(h; xh) � xh)/(h)! F(x̄) � p.) A fixed point the-
orem can indeed be applied, because B is a retract of Rn

(use the flow itself); note that this argument gives a weaker
conclusion than the degree condition.

Control-Lyapunov Functions

The method of control-Lyapunov functions (“clf’s”) pro-
vides a powerful tool for studying stabilization prob-
lems, both as a basis of theoretical developments and as
a method for actual feedback design.

Before discussing clf’s, let us quickly review the clas-
sical concept of Lyapunov functions, through a simple
example. Consider first a damped spring-mass system
ÿ C ẏ C y D 0, or, in state-space form with x1 D y and
x2 D ẏ, ẋ1 D x2, ẋ2 D �x1 � x2. One way to verify global
asymptotic stability of the equilibrium x D 0 is to pick the
(Lyapunov) function V (x1; x2) :D 3

2 x
2
1 C x1x2 C x22 , and

observe that rV(x): f (x) D � jxj2 < 0 if x 6D 0, which

means that

dV(x(t))
dt

D �
ˇ
ˇx(t)2

ˇ
ˇ < 0

along all nonzero solutions, and thus the energy-like func-
tion V decreases along all trajectories, which, since V
is a nondegenerate quadratic form, implies that x(t) de-
creases, and in fact x(t)! 0. Of course, in this case one
could compute solutions explicitly, or simply note that
the characteristic equation has all roots with negative real
part, but Lyapunov functions are a general technique.
(In fact, the classical converse theorems of Massera and
Kurzweil [17,19] show that, whenever a system is GAS,
there always exists a smooth Lyapunov function V .)

Now let us modify this example to deal with a con-
trol system, and consider a forced (but undamped) har-
monic oscillator ẍ C x D u, i. e. ẋ1 D x2, ẋ2 D �x1 C u.
The damping feedback u D �x2 stabilizes the system, but
let us pretend that we do not know that. If we take the
same V as before, now the derivatives along trajectories
are, using “V̇ (x; u)” to denoterV(x): f (x; u) and omitting
arguments t in x(t) and u(t):

V̇(x; u) D �x21 C x1x2 C x22 � (x1 C 2x2)u :

This expression is affine in u. Thus, if x is a state such that
x1 C 2x2 6D 0, then we may pick a control value u (which
depends on this current state x) such that V̇ < 0. On the
other hand, if x1 C 2x2 D 0, then the expression reduces
to V̇ D �5x22 (for any u), which is negative unless x2 (and
hence also x1 D �2x2) vanishes.

In conclusion, for each x 6D 0 there is some u so
that V̇(x; u) < 0. This is, except for some technicalities
to be discussed, the characterizing property of control-
Lyapunov functions. For any given compact subset B in
Rn , we now pick some compact subset U0 � U so that

8x 2 B; x 6D 0 ; 9u 2 U0 such that V̇(x; u) < 0 :
(11)

In principle, then, we could then stabilize the system, for
states in B, by using the steepest descent feedback law:

k(x) :D argmin
u2U0

rV(x) � f (x; u) (12)

(“argmin” means “pick any u at which themin is attained”;
we restricted U to be assured that V̇ (x; u) attains a min-
imum). Note that the stabilization problem becomes, in
these terms, a set of static nonlinear programming prob-
lems: minimize a function of u, for each x. Global stabiliza-
tion is also possible, by appropriately picking U0 as a func-
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tion of the norm of x; later we discuss a precise formula-
tion.

Control–Lyapunov functions, if understood non-tech-
nically as the basic paradigm “look for a function V(x)
with the properties that V(x) � 0 if and only if x � 0,
and so that for each x 6D 0 it is possible to decrease V(x)
by some control action,” constitute a very general ap-
proach to control (sometimes expressed in a dual fashion,
as maximization of some measure of success). They ap-
pear in such disparate areas as A.I. game-playing programs
(position evaluations), energy arguments for dissipative
systems, program termination (Floyd/Dijkstra “variant”),
and learning control (“critics” implemented by neural-
networks). More relevantly to this paper, the idea under-
lies much of modern feedback control design, as illustrated
for instance by the books [7,11,15,16,25].

Differentiable clf’s: Precise Definition A differentiable
control-Lyapunov function (clf) is a differentiable function
V : Rn ! R�0 which is proper, positive definite, and in-
finitesimally decreasing, meaning that there exists a pos-
itive definite continuous function W : Rn ! R�0, and
there is some � 2N , so that

sup
x2Rn

min
juj�
(jxj)

rV(x) � f (x; u)CW(x) � 0 : (13)

This is basically the same as condition (11), with U0 D the
ball of radius �(jxj) picked as a function of x. The main
difference is that, instead of saying “rV (x) � f (x; u) < 0
for x 6D 0” we write rV(x) � f (x; u) � �W(x), where W
is negativewhen x 6D 0. The two definitions are equivalent,
but the “Hamiltonian” version used here is the correct one
for the generalizations to be given, to nonsmooth V .

The basic result is due to Artstein [2]:

Theorem 4 A control-affine system ẋD g0(x)C
P

ui gi(x)
admits a differentiable clf if and only if it admits a regular
stabilizing feedback.

The proof of sufficiency is easy: if there is such a k, then the
converse Lyapunov theorem, applied to the closed-loop
system F(x) D f (x; k(x)), provides a smooth V such that

LFV(x) D rV(x)F(x) < 0 8x 6D 0 :

This gives that for all nonzero x there is some u (bounded
on bounded sets, because k is locally bounded by definition
of feedback) so that V̇(x; u) < 0; and one can put this in
the form (13).

The necessity is more interesting. The original proof
in [2] proceeds by a nonconstructive argument involving
partitions of unity, but it is also possible [24,25] to exhibit

explicitly a feedback, written as a function:

k
�
rV(x) � g0(x); : : : ;rV (x) � gm(x)



of the directional derivatives of V along the vector fields
defining the system (universal formulas for stabilization).
Taking for simplicity m D 1, one such formula is:

k(x) :D �
a(x)C

p
a(x)2 C b(x)4

b(x)
(0 if b D 0)

where a(x) :D rV(x) � g0(x) and b(x) :D rV(x) � g1(x).
The expression for k is analytic in a,b when x 6D 0, be-
cause the clf property means that a(x) < 0 whenever
b(x) D 0 [24,25].

Thus, the question of existence of regular feedback,
for control-affine systems, reduces to the search for differ-
entiable clf’s, and this gives rise to a vast literature deal-
ing with the construction of such V ’s, see [7,15,16,25]
and references therein. Many other theoretical issues are
also answered by Artstein’s theorem. For example, via
Kurzweil’s converse theorem one has that the existence
of k merely continuous on Rn n f0g suffices for the ex-
istence of smooth (infinitely differentiable) V , and from
here one may in turn find a k which is smooth on
Rn n f0g. In addition, one may easily characterize the ex-
istence of k continuous at zero as well as regular: this is
equivalent to the small control property: for each " > 0
there is some ı > 0 so that 0 < jxj < ı implies that
minjuj�" rV(x) � f (x; u) < 0 (if this property holds, the
universal formula automatically provides such a k). We
should note that Artstein provided a result valid for gen-
eral, not necessarily control-affine systems ẋ D f (x; u);
however, the obtained “feedback” has values in sets of re-
laxed controls, and is not a feedback law in the classical
sense. Later, we discuss a different generalization.

Differentiable clf’s will in general not exist, because of
obstructions to regular feedback stabilization. This leads
us naturally into the twin subjects of discontinuous feed-
backs and non-differentiable clf’s.

Discontinuous Feedback

The previous results and examples show that, in order
to develop a satisfactory general theory of stabilization,
one in which one proves the implication “asymptotic
controllability implies feedback stabilizability,” we must
allow discontinuous feedback laws u D k(x). But then,
a major technical difficulty arises: solutions of the ini-
tial-value problem ẋ D f (x; k(x)), x(0) D x0, interpreted
in the classical sense of differentiable functions or even
as (absolutely) continuous solutions of the integral equa-
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tion x(t) D x0 C
R t
0 f (x(s); k(x(s)))ds, do not exist in gen-

eral. The only general theorems apply to systems ẋ D F(x)
with continuous F. For example, there is no solution to
ẋ D � sign x, x(0) D 0, where sign x D �1 for x < 0 and
sign x D 1 for x � 0. So one cannot even pose the stabi-
lization problem in a mathematically consistent sense.

There is, of course, an extensive literature addressing
the question of discontinuous feedback laws for control
systems and, more generally, differential equations with
discontinuous right-hand sides. One of the best-known
candidates for the concept of solution of (3) is that of a Fil-
ippov solution [6,9], which is defined as the solution of
a certain differential inclusion with a multivalued right-
hand side which is built from f (x; k(x)). Unfortunately,
there is no hope of obtaining the implication “asymptotic
controllability implies feedback stabilizability” if one in-
terprets solutions of (3) as Filippov solutions. This is a con-
sequence of results in [5,22], which established that the ex-
istence of a discontinuous stabilizing feedback in the Filip-
pov sense implies the Brockett necessary conditions, and,
moreover, for systems affine in controls it also implies the
existence of regular feedback (which we know is in general
impossible).

A different concept of solution originates with the
theory of discontinuous positional control developed by
Krasovskii and Subbotin in the context of differential
games in [14], and it is the basis of the new approach to
discontinuous stabilization proposed in [4], to which we
now turn.

Limits of High-Frequency Sampling

By a sampling schedule or partition � D ftigi�0 of 0;C1
we mean an infinite sequence

0 D t0 < t1 < t2 < : : :

with limi!1 ti D 1. We call

d(�) :D sup
i�0

(tiC1 � ti )

the diameter of � . Suppose that k is a given feedback
law for system (1). For each � , the �-trajectory start-
ing from x0 of system (3) is defined recursively on the
intervals [ti ; tiC1), i D 0; 1; : : :, as follows. On each in-
terval ti ; tiC1), the initial state is measured, the control
value ui D k(x(ti )) is computed, and the constant control
u � ui is applied until time tiC1; the process is then iter-
ated. That is, we start with x(t0) D x0 and solve recursively

ẋ(t) D f (x(t); k(x(ti ))) ; t 2 ti ; tiC1) ; i D 0; 1; 2; : : :

using as initial value x(ti) the endpoint of the solution on
the preceding interval. The ensuing�-trajectory, which we
denote as x	(�; x0), is defined on some maximal nontrivial
interval; it may fail to exist on the entire interval [0;C1)
due to a blow-up on one of the subintervals ti ; tiC1). We
say that it is well defined if x	 (t; x0) is defined on all of
[0;C1).

Definition The feedback k : Rn ! U stabilizes the sys-
tem (1) if there exists a function ˇ 2KL so that the fol-
lowing property holds: For each

0 < " < K

there exists a ı D ı(";K) > 0 such that, for every sampling
schedule� with d(�) < ı, and for each initial state x0 with
jx0j � K, the corresponding �-trajectory of (3) is well-de-
fined and satisfies

ˇ̌
x	(t; x0)

ˇ̌
� max fˇ (K; t) ; "g 8t � 0 : (14)

In particular, we have
ˇ
ˇx	(t; x0)

ˇ
ˇ � max

˚
ˇ
�ˇˇx0

ˇ
ˇ ; t

; "
�
8t � 0 (15)

whenever 0 < " < jx0j and d(�) < ı("; jx0j) (just take
K :D jx0j).

Observe that the role of ı is to specify a lower bound
on intersampling times. Roughly, one is requiring that

tiC1 � ti C � (jx(ti)j)

for each i, where � is an appropriate positive function.
Our definition of stabilization is physically meaning-

ful, and is very natural in the context of sampled-data
(computer control) systems. It says in essence that a feed-
back k stabilizes the system if it drives all states asymptot-
ically to the origin and with small overshoot when using
any fast enough sampling schedule. A high enough sam-
pling frequency is generally required when close to the ori-
gin, in order to guarantee small displacements, and also at
infinity, so as to preclude large excursions or even blow-
ups in finite time. This is the reason for making ı depend
on " and K .

This concept of stabilization can be reinterpreted in
various ways. One is as follows. Pick any initial state
x0, and consider any sequence of sampling schedules
�` whose diameters d(�`) converge to zero as `!1
(for instance, constant sampling rates with ti D i/`,
i D 0; 1; 2; : : :). Note that the functions x` :D x	`(�; x

0)
remain in a bounded set, namely the ball of radius
ˇ(jx0j ; 0) (at least for ` large enough, for instance, any ` so
that d(�`)ı(jx0j /2; jx0j)). Because f (x; k(x)) is bounded
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on this ball, these functions are equicontinuous, and
(Arzela–Ascoli’s Theorem) we may take a subsequence,
which we denote again as fx`g, so that x` ! x as `!1
(uniformly on compact time intervals) for some absolutely
continuous (even Lipschitz) function x : [0;1)! Rn .
We may think of any limit function x(�) that arises in this
fashion as a generalized solution of the closed-loop Eq. (3).
That is, generalized solutions are the limits of trajectories
arising from arbitrarily high-frequency sampling when us-
ing the feedback law u D k(x). Generalized solutions, for
a given initial state x0, may not be unique – just as may
happen with continuous but non-Lipschitz feedback – but
there is always existence, and, moreover, for any general-
ized solution, jx(t)j � ˇ(jx0j ; t) for all t � 0. This is pre-
cisely the defining estimate for the GAS property. More-
over, if k happens to be regular, then the unique solution of
ẋ D f (x; k(x)) in the classical sense is also the unique gen-
eralized solution, so we have a reasonable extension of the
concept of solution. (This type of interpretation is some-
what analogous, at least in spirit, to the way in which “re-
laxed” controls are interpreted in optimal trajectory calcu-
lations, namely through high-frequency switching of ap-
proximating regular controls.) The definition of stabiliza-
tion was given in [4] in a slightly different form; see [26]
for a discussion of the equivalence.

Stabilizing Feedbacks Exist

The main result is [4]:

Theorem 5 The system (1) admits a stabilizing feedback if
and only if it is asymptotically controllable.

Necessity is clear. The sufficiency statement is proved by
construction of k, and is based on the following ingredi-
ents:

� Existence of a nonsmooth control-Lyapunov func-
tion V .

� Regularization on shells of V .
� Pointwise minimization of a Hamiltonian for the regu-

larized V .

In order to sketch this construction, we start by quickly
reviewing a basic concept from nonsmooth analysis.

Proximal Subgradients Let V be any continuous func-
tion Rn ! R (or even, just lower semicontinuous and
with extended real values). A proximal subgradient of V at
the point x 2 Rn is any vector � 2 Rn such that, for some
� > 0 and some neighborhood O of x,

V(y) � V (x)C � � (y � x) � �2
ˇ̌
y � x2

ˇ̌
8y 2 O :

In other words, proximal subgradients are the possible
gradients of supporting quadratics at the point x. The set
of all proximal subgradients at x is denoted @pV(x).

Nonsmooth Control–Lyapunov Functions A continu-
ous (but not necessarily differentiable) V : Rn ! R�0 is
a control-Lyapunov function (clf) if it is proper, positive
definite, and infinitesimally decreasing in the following
generalized sense: there exist a positive definite continu-
ousW : Rn ! R�0 and a � 2N so that

sup
x2Rn

max
�2@pV (x)

min
juj�
(jxj)

� � f (x; u)CW(x) � 0 : (16)

This is the obvious generalization of the differentiable case
in (13); we are still asking that one should be able to make
rV(x) � f (x; u) < 0 by an appropriate choice of u D ux ,
for each x 6D 0, except that now we replace rV(x) by the
proximal subgradient set @pV (x). An equivalent property
is to ask that V be a viscosity supersolution of the corre-
sponding Hamilton–Jacobi–Bellman equation.

For nonsmooth clf’s, the main basic result is [23,26]:

Theorem 6 The system (1) is asymptotically controllable if
and only if it admits a continuous clf.

The proof is based on first constructing an appropriateW,
and then letting V be the optimal cost (Bellman function)
for the problem min

R1
0 W(x(s))ds. However, some care

has to be taken to insure that V is continuous, and the
cost has to be adjusted in order to deal with possibly un-
boundedminimizers. An important and very useful refine-
ment of this result is the fact that a locally Lipschitz clf can
also be shown to exist [21].

Regularization Once V is known to exist, the next step
in the construction of a stabilizing feedback is to ob-
tain Lipschitz approximations of V . For this purpose, one
considers the Iosida–Moreau inf-convolution of V with
a quadratic function:

V˛(x) :D inf
y2Rn

�
V(y)C

1
2˛2
jy � xj2

�

where the number˛ > 0 is picked constant on appropriate
regions. One has that V˛(x)% V(x), uniformly on com-
pacts. SinceV˛ is locally Lipschitz, Rademacher’s Theorem
insures that V˛ is differentiable almost everywhere. The
feedback k is thenmade equal to a pointwise minimizer k˛
of the Hamiltonian, at the points of differentiability (com-
pare with (12) for the case of differentiable V):

k˛(x) :D argmin
u2U0

rV˛(x) � f (x; u) ;
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where ˛ and the compactU0 D U0(˛) are chosen constant
on certain compacts and this choice is made in between
level curves. The critical fact is that V˛ is itself a clf for
the original system, at least when restricted to the region
where it is needed. More precisely, on each shell of the
form

C D fx 2 Rn jr � jxj � Rg ;

there are positive numbersm and ˛0 and a compact subset
U0 such that, for each 0 < ˛ � ˛0, each x 2 C, and every
� 2 @pV˛(x),

min
u2U0

� � f (x; u)C m � 0 :

See [26]. (Actually, this description is oversimplified, and
the proof is a bit more delicate. One must define, on ap-
propriate compact sets

k(x) :D argmin
u2U0

�˛(x) � f (x; u) ;

where �˛(x) is carefully chosen. At points x of nondif-
ferentiability, �˛(x) is not a proximal subgradient of V˛ ,
since @pV˛(x) may well be empty. One uses, instead, the
fact that �˛(x) happens to be in @pV(x0) for some x0 � x.
See [4] for details.)

Sensitivity to Small Measurement Errors

We have seen that every asymptotically controllable sys-
tem admits a feedback stabilizer k, generally discontinu-
ous, which renders the closed-loop system ẋ D f (x; k(x))
GAS. On the other hand, one of the main motivations for
the use of feedback is in order to deal with uncertainty,
and one possible source of uncertainty are measurement
errors in state estimation. The use of discontinuous feed-
back means that undesirable behavior – chattering – may
arise. In fact, one of the main reasons for the focus on
continuous feedback is precisely in order to avoid such
behaviors. Thus, we turn now to an analysis of the effect
of measurement errors. Suppose first that k is a contin-
uous function of x. Then, if the error e is small, using
the control u0 D k(x C e) instead of u D k(x) results in
behavior which remains close to the intended one, since
k(x C e) � k(x); moreover, if e 
 x then stability is pre-
served. This property of robustness to small errors when k
is continuous can be rigorously established by means of
a Lyapunov proof, based on the observation that, if V is
a Lyapunov function for the closed-loop system, then con-
tinuity of f (x; k(x C e)) on emeans that

rV(x) � f (x; k(x C e)) � rV(x) � f (x; k(x)) < 0 :

Unfortunately, when k is not continuous, this argument
breaks down. However, it can be modified so as to avoid
invoking continuity of k. Assuming thatV is continuously
differentiable, one can argue that

rV(x) � f (x; k(xC e))� rV(xC e) � f (x; k(xC e))< 0

(using the Lyapunov property at the point x C e instead of
at x). This observation leads to a theorem, formulated be-
low, which says that a discontinuous feedback stabilizer,
robust with respect to small observation errors, can be
found provided that there is a C1 clf. In general, as there
are no C1, but only continuous, clf’s, one may not be able
to find any feedback law that is robust in this sense.

There are many well-known techniques for avoiding
chattering, and a very common one is the introduction of
deadzones where no action is taken. The feedback con-
structed in [4], with no modifications needed, can always
be used in a manner robust with respect to small obser-
vation errors, using such an approach. Roughly speaking,
the general idea is as follows. Suppose that the true current
state, let us say at time t D ti , is x, but that the controller
uses u D k(x̃), where x̃ D x C e, and e is small. Call x0

the state that results at the next sampling time, t D tiC1.
By continuity of solutions on initial conditions, jx0 � x̃0j
is also small, where x̃0 is the state that would have re-
sulted from applying the control u if the true state had
been x̃. By continuity, it follows that V˛(x) � V˛(x̃) and
also V˛(x0) � V˛(x̃0). On the other hand, the construc-
tion in [4] provides that V˛(x̃0) < V˛(x̃) � d(tiC1 � ti ),
where d is some positive constant (this is valid while we are
far from the origin). Hence, if e is sufficiently small com-
pared to the intersample time tiC1 � ti , it will necessarily
be the case that V˛(x0) must also be smaller than V˛(x).
This discussionmay be formalized in several ways; see [26]
for a precise statement.

If we insist upon fast sampling, a necessary condition
arises, as was proved in the recent paper [18] (which, in
turn, represented an extension of the work by Hermes [10]
for classical solutions under observation error). We next
discuss the main result from that paper. We consider sys-
tems

ẋ(t) D f (x(t); k(x(t)C e(t))C d(t)) (17)

in which there are observation errors as well as, now, pos-
sible actuator errors d(�). Actuator errors d(�) : [0;1) !
U are Lebesgue measurable and locally essentially
bounded, and observation errors e(�) : [0;1)! Rn are
locally bounded.We define solutions of (17), for each sam-
pling schedule � , in the usual manner, i. e., solving recur-
sively on the intervals ti ; tiC1), i D 0; 1; : : :, the differen-
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tial equation

ẋ(t) D f
�
x(t); k(x(ti )C e(ti ))C d(t)


(18)

with x(0) D x0. We write x(t) D x	 (t; x0; d; e) for the so-
lution, and say it is well-defined if it is defined for all t � 0.

Definition The feedback k : Rn ! U stabilizes the sys-
tem (17) if there exists a function ˇ 2KL so that the fol-
lowing property holds: For each

0 < " < K

there exist ı D ı(";K) > 0 and � D �(";K) such that, for
every sampling schedule� with d(�) < ı, each initial state
x0 with jx0j � K, and each e; d such that je(t)j � � for all
t � 0 and jd(t)j � � for almost all t � 0, the correspond-
ing �-trajectory of (17) is well-defined and satisfies

ˇ̌
x	 (t; x0; d; e)

ˇ̌
� max fˇ (K; t) ; "g 8t � 0 : (19)

In particular, taking K :D jx0j, one has that

ˇ
ˇx	 (t; x0; d; e)

ˇ
ˇ � max

˚
ˇ
�ˇˇx0

ˇ
ˇ ; t

; "
�
8t � 0

whenever 0 < " < jx0j, d(�) < ı("; jx0j), and for all t,
je(t)j � �("; jx0j), and jd(t)j � �("; jx0j).

The main result in [18] is as follows.

Theorem 7 There is a feedback which stabilizes the sys-
tem (17) if and only if there is a C1 clf for the unperturbed
system (1).

It is interesting to note that, as a corollary of Artstein’s
Theorem, for control-affine systems ẋ D g0(x) C

P
ui

gi (x) we may conclude that if there is a discontinuous
feedback stabilizer that is robust with respect to small
noise, then there is also a regular one, and even one that is
smooth onRn n f0g. For non control-affine systems, how-
ever, there may exist a discontinuous feedback stabilizer
that is robust with respect to small noise, yet there is no
regular feedback.

Briefly, the sufficiency part of Theorem 7 proceeds by
taking a pointwise minimization of the Hamiltonian, for
a givenC1 clf, i. e. k(x) is defined as any uwith juj � �(jxj)
which minimizes rV(x) � f (x; u). The necessity part is
based on the following technical fact: if the perturbed sys-
tem can be stabilized, then the differential inclusion

ẋ 2 F(x) :D
\

">0

co f (x; k(x C "B))

(where B denotes the unit ball in Rn) is strongly asymp-

totically stable. One may then apply converse Lyapunov
theorems for upper semicontinuous compact convex dif-
ferential inclusions to deduce the existence of V .

We now summarize exactly which implications hold,
writing “robust” to mean stabilization of the system sub-
ject to observation and actuator noise:

C1V () 9 robust k
+ +

C0V () 9k () AC :

Future Directions

There are several alternative approaches to feedback sta-
bilization, notably the very appealing approach to discon-
tinuous stabilization throgh patchy feedbacks [1], as well as
other related “hybrid” approaches [20]. It is also extremely
important to understand the effect of “large” disturbances
on the behavior of feedback systems. This study leads one
to the very active area of input to state stability (ISS) and
related notions (output to state stability as a model of de-
tectability, input to output stability for the study of regula-
tion problems, and so forth), see [27].
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Freeman R, Kokotović PV (1996) Robust nonlinear control design.

Birkhäuser, Boston
Isidori A (1995) Nonlinear control systems, 3rd edn. Springer, Lon-

don
Isidori A (1999) Nonlinear control systems II. Springer, London
Khalil HK (1996) Nonlinear systems, 2nd edn. Prentice-Hall, Upper

Saddle River
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Glossary

Ordinary differential equation An equation for an un-
known vector of functions of a single variable that in-
volves derivatives of the unknown functions. The or-
der of a differential equation is the highest order of
the derivatives that appear. The most important class
of differential equations are first-order systems of or-
dinary differential equations that can be written in the
form u̇ D f (u; t), where f is a given smooth function
f : U � J ! Rn , U is an open subset of Rn , and J is
an open subset of R. The unknown functions are the
components of u, and the vector of their first-order
derivatives with respect to the independent variable t
is denoted by u̇. A solution of this differential equation
is a function u : K ! Rn , where K is an open subset
of J such that du

dt (t) D f (u(t); t) for all t 2 K.
Dynamical system A set and a law of evolution for

its elements. The first-order differential equation
u̇ D f (u; t), where f : U � J ! Rn , is the law of evo-
lution for the set U � J; it defines a continuous (time)
dynamical system: Given (v; s) 2 U � J, the solution
t 7!  (t; s; v) such that �(s; s; v) D v determines the
evolution of the state v: the state v at time s evolves
to the state  (t; s; v) at time t. Similarly, a continu-
ous function f : X ! X on a metric space X defines
a discrete dynamical system. The state x 2 X evolves
to f k(x) (which denotes the value of f composed with
itself k times and evaluated at x) after k time-steps. The
images of t 7! �(t; s; v) and k 7! f k(x) are called the
orbits of the corresponding states v and x.
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Stability theory The mathematical analysis of the behav-
ior of the distances between an orbit (or set of orbits)
of a dynamical system and all other nearby orbits.

Definition of the Subject

An orbit or set of orbits of a dynamical system is stable
if all solutions starting nearby remain nearby for all fu-
ture times. This concept is of fundamental importance in
applied mathematics: the stable solutions of mathematical
models of physical processes correspond to motions that
are observed in nature.

Introduction

Stability theory began with a basic question about the nat-
ural world: Is the solar system stable?Will the present con-
figuration of the planets and the sun remain forever; or,
might some planets collide, radically change their orbits,
or escape from the solar system?

With the advent of Isaac Newton’s second law of mo-
tion and the law of universal gravitation, the motions of
the planets in the solar system were understood to cor-
respond to the solutions of the Newtonian system of or-
dinary differential equations that modeled the positions
and velocities of the planets and the sun according to their
mutual gravitational attractions. Short-term approximate
predictions (up to a few years in the future) verified this
theory; but, due to the complexity of the differential equa-
tions of motion, the problem of long-term prediction was
not solved; it still occupies a central place in mathematical
research.

Does the Newtonian model predict the stability of the
solar system?

During the 18th Century, Pierre Simon Laplace [52,
53] asserted a proof of the stability of the solar system. He
considered the changes in the semi-major axes and eccen-
tricities of the elliptical motions of the planets around the
sun. Using (reasonable) approximations of the Newtonian
equations of motion, he showed that for his approximate
model these orbital elements do not change over long peri-
ods of time due to the disturbances caused by the gravita-
tional attractions of the other bodies in the solar system. If
true for the full Newtonian equations of motion, these as-
sertions would imply the stability of the Newtonian solar
system. In fact, no proof of the stability of the solar system
is known (see [69]). Laplace’s results merely provide evi-
dence in favor of stability of the solar system; on the other
hand, this work was a primary stimulus for the later devel-
opment of a general theory of stability.

One of the first rigorous results in stability theory was
stated by Joseph-Louis Lagrange [49] and proved by Leje-

une Dirichlet [23,24]; it states that an isolatedminimum of
the potential energy of a conservativemechanical system is
the position of a stable equilibrium point.

Joseph Liouville [56,57,58,59] discussed the problem
of the stability of rotating fluid bodies. The further de-
velopment of this theory was suggested to Aleksandr
Mikhailovich Lyapunov as a thesis topic by his advisor
Pafnuty Chebyshev. This led to the fundamental and foun-
dational work of Lyapunov on stability theory [63].

Henri Poincaré’s introduction of the qualitative the-
ory of differential equations [71] influenced Lyapunov’s
treatment of stability theory and laid much of the foun-
dation for the modern theory of nonlinear dynamical sys-
tems. In addition, Poincaré’s work on celestial mechan-
ics [72,73,74,75,76] discusses stability theory.

Mathematical Formulation of the Stability Concept
and Basic Results

Consider the first-order ordinary differential equation

u̇ D f (u; t) ; (1)

where the dependent variable u is an n-dimensional real
vector, u̇ denotes the derivative of u with respect to the
independent variable t, and f (a mapping, from the cross
product of an open subset U of n-dimensional space
Rn and an open subset J of the real line R, into Rn)
is at least class C1. The existence and uniqueness the-
orem for differential equations (see, for example, [19])
states that if (v; s) 2 U � J, then there is a unique solu-
tion t 7!  (t; s; v) of the differential equation such that
 (s; s; v) D v. Moreover, the function  is as smooth as
the function f .

Definition 1 For v 2 Rn , the notation jvj denotes the
length of v.
A solution t 7!  (t; s; v) of the differential Eq. (1) is called

stable if it is defined for all time t � s and for ev-
ery positive number � there is a positive number ı
such that j�(t; s;w)� �(t; s; v)j < � whenever t � s
and jw � vj < ı (see Fig. 1).

A stable solution t 7!  (t; s; v) is called orbitally asymp-
totically stable if there is a choice of ı such that
the distance between the point  (t; s;w) and the set
f (t; s; v) : t � sg—called the forward orbit of the so-
lution—converges to zero as t!1.

A stable solution t 7!  (t; s; v) is called asymptotically
stable if there is a choice of ı such that the distance
j�(t; s;w)� �(t; s; v)j converges to zero as t !1
whenever jw � vj < ı (see Fig. 2).

A solution is called unstable if it is not stable.
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Stability Theory of Ordinary Differential Equations, Figure 1
The figure depicts a stable rest point v. The orbit starting at w,
an arbitrary point whose distance from v is less than ı, remains
within distance � for all positive time

Stability Theory of Ordinary Differential Equations, Figure 2
The figure depicts an orbitally asymptotically stable elliptical pe-
riodic orbit together with two additional orbits that approach
the periodic orbit, one from the outside and one from the inside
of the region bounded by the periodic orbit

While the definitions just given are widely accepted, the
words “asymptotic stability” are often used tomean orbital
asymptotic stability. For most situations orbital asymp-
totic stability is the desired concept. It is clear from the
definitions that the concept of asymptotic stability is much
stronger than the concept of orbital asymptotic stability
for stable solutions whose orbits consist of more than one
point. The position of the evolving state along an asymp-
totically stable orbit is approached by an open set of evolv-
ing states. On the other hand, for a solution to be orbitally
asymptotically stable only the distances between the ele-

ments of this open set of evolving states and the point
set consisting of the forward orbit of the stable solution
is required to approach zero. There is no requirement that
the open set of evolving states all converge to the evolving
state on the stable orbit in unison as time increases with-
out bound. An important concept introduced by Poincaré,
the return map, is useful in the study of orbital asymptotic
stability; it will be discussed below.

To illustrate the concept of stability, let us consider the
(dimensionless) harmonic oscillator

ẍ C x D 0 : (2)

This second-order differential equation is recast as the
first-order system

ẋ D y ; ẏ D �x (3)

by introducing the velocity y :D ẋ as a new variable. It
is a classical mechanical system with kinetic energy 1

2 ẋ
2

and potential energy 1
2x

2. According to the principle of
Lagrange, the equilibrium solution (x; y) D (0; 0) (which
corresponds to an isolated minimum of the potential en-
ergy) is stable. This result is easily verified by inspection of
the general solution of system (3) that is given by

�(t; �; �) D
�

cos t sin t
� sin t cos t

��
�

�

�
; (4)

where (�; �) is an arbitrary point in R2. All non-equilib-
rium solutions are periodic. In fact, the orbit of the so-
lution starting at (�; �) is a circle with radius

p
�2 C �2.

Given an open subset containing the origin, the disk
bounded by one of these circles defines an open subset. Ev-
ery orbit with initial value inside this disk remains inside
the disk (and hence the given open set) for all t � 0. On
the other hand, the origin is not orbitally asymptotically
stable; indeed, the periodic solutions do not approach the
origin in positive time.

The origin is also an equilibrium of the damped har-
monic oscillator

ẍ C �ẋ C x D 0 ; (5)

where � > 0. Again, inspection of the general solution
shows that the origin is asymptotically stable and therefore
orbitally asymptotically stable. In effect, all terms in the
formula for the general solution contain the factor e��t/2,
which converges to zero as t !1.

For a nonautonomous example (that is, a differential
Eq. (1) such that the partial derivative of f with respect
to t is not zero), consider the first-order scalar differential
equation

ẋ D �x C sin t (6)
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Stability Theory of Ordinary Differential Equations, Figure 3
A graph of the asymptotically stable solution (7) of the scalar
first-order differential Eq. (6) is depicted together with the
graphs of three additional solutions given by t 7! �(t; s; v) for
(s; v) equal to (1:5;�0:75), (3:0;0:75), and (2:0;0:5)

whose solutions are given by

�(t; s; v) D
�
v �

1
2
(sin s C cos s)

�
es�tC

1
2
(sin tCcos t) :

The solution starting at the state 1/2 at time zero,

�

�
t; 0;

1
2

�
D

1
2
(sin t C cos t) ; (7)

is asymptotically stable. This result is true due to the pres-
ence of the exponential factor in the general solution; it
decreases to zero for each fixed s as t !1 (cf. Fig. 3).

The origin is an unstable equilibrium for the scalar
first-order differential equation ẋ D x2, whose solutions
are given by

�(t; s; v) D
v

1 � (t � s)v
:

Indeed, for every ı > 0 (no matter how small) there is
a some v 2 R such that jvj < ı and v > 0. The corre-
sponding solution converges to infinity as t ! (1C sv)/v.

Because explicit solutions of differential equations are
rare, the main subject of stability theory is the determina-
tion of criteria for stability that do not require knowledge
of the general solution of the differential equation.

While the theory of stability is mature with many
branches of development, the main results (originally ob-
tained by Poincaré and Lyapunov) follow from two funda-
mental ideas: linearization and Lyapunov functions.

The Principle of Linearized Stability

A linear first-order differential equation is a differential
equation of the form

u̇ D A(t)u ; (8)

whereA(t) denotes an n � nmatrix-valued function of the
independent variable t.

Most of the analysis of autonomous linear differential
equations can be reduced to linear algebra. Indeed, a func-
tion of the form e�tv, where  is a complex number and
v ¤ 0 is a complex vector with n components, is a com-
plex solution of the differential equation

u̇ D Au ; (9)

if and only if Av D v; that is,  is an eigenvalue of the ma-
trix A and v is a corresponding eigenvector. The real and
imaginary parts of a complex solution are automatically
real solutions of the real differential Eq. (9). Also, linear
combinations of solutions of linear equations are again so-
lutions. Thus, in case there is a basis of eigenvectors, all so-
lutions of the linear system can be expressed as linear com-
binations (superpositions) of the special exponential so-
lutions. The general solution, for an arbitrary system ma-
trix A, can always be obtained from linear combinations of
solutions of the form p(t)e�tv, where p(t) is a polynomial
of degree at most n � 1 and Av D v. In fact, there is al-
ways a linear change of variables w D Bu, given by some
invertible matrix B, such that the new system

ẇ D Jw ;

where the transformed system matrix J :D BAB�1 is in
Jordan canonical form (see, for example, [78]). This block
diagonal system can be solved by linear combinations of
solutions of the form p(t)e�tv, and the solution of the orig-
inal system (9) is obtained by the inverse change of vari-
ables. Alternatively, it is not difficult to prove that the gen-
eral solution of the system (9) is given by

�(t; s; v) D e(t�s)Av ; (10)

where

etA :D I C
1X

kD1

(tA)k (11)

and v is an arbitrary point inRn .
Solutions of the form t 7! p(t)e�tv converge to zero as

t !1 whenever the real part of the eigenvalue  is less
than zero. This observation leads to a basic result:

Theorem 2 If all eigenvalues of the matrix A have neg-
ative real parts, then the zero solution of the autonomous
system (9) is asymptotically stable.

To examine the stability of a solution  of the (perhaps
nonlinear) differential Eq. (1), consider a second solu-
tion � , define the deviation ı D � �  , and note that

ı̇ D f (�; t)� f ( ; t) D f (ı C  ; t) � f ( ; t)
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Definition 3 The linearized equation along the solu-
tion  of the differential Eq. (1) is

ẇ D fu( (t); t)w ; (12)

where the subscript denotes the partial derivative with re-
spect to u.

The linearized equation may be viewed as an approxima-
tion of the differential equation for the deviation ı because
the linearized equation is also obtained by Taylor expand-
ing the function

ı 7! f (ı C  ; t)� f ( ; t)

to first-order at ı D 0 and ignoring the remainder term.
The principle of linearized stability states that the original
solution  is stable whenever the zero solution of the lin-
earized equation is stable.

The principle of linearized stability is not a theorem;
rather, it serves as the underlying idea for the theory of
stability by linearization. A basic result of this theory is the
following theorem (see [63]).

Theorem 4 Let

u̇ D Au C B(t)u C g(u; t) ; u(t0) D u0 ; u 2 Rn

be a smooth initial value problem with solution t 7!  (t).
If

(1) A is a constant matrix and all its eigenvalues have neg-
ative real parts,

(2) B is an n � n matrix valued function, continuously de-
pendent on t, such that the matrix norm kB(t)k con-
verges to zero as t !1,

(3) g is smooth and there are constants a > 0 and k > 0
such that jg(v; t)j � kjvj2 for all t � 0 and jvj > a,

then there are constants C > 1, ˇ > 0, and  > 0 such that

j (t)j � Cju0je��(t�t0) ; t � t0

whenever ju0j � ˇ/C. In particular, the zero solution is
asymptotically stable.

Theorem 4 is used for the stability analysis of rest
points of autonomous first-order differential equations.
If f : Rn ! Rn and f (�) D 0, for some � 2 Rn , then
the constant function �(t; �) D � is a solution of the au-
tonomous differential equation

u̇ D f (u) : (13)

In this case, � is called a rest point for the differential
equation. By Taylor expansion at the rest point—this time

keeping the remainder term, the differential equation is re-
cast in the form

�̇ D D f (�)� C R(�; � ) ;

where Df denotes the derivative of f and � :D � � � for
an arbitrary solution � . If f is class C2, we have that

jR(�; v)j � kjvj2 :

Thus, under the hypothesis that all eigenvalues of the con-
stant system matrix D f (�) have negative real parts, Theo-
rem 4 implies that the rest point � is asymptotically stable.
The hypothesis that f is class C2 can be relaxed (see, for
example, [19]):

Theorem 5 If f : Rn ! Rn is class C1, � 2 Rn, f (�) D 0,
and all eigenvalues of the matrix D f (�) have negative real
parts, then the rest point � is asymptotically stable. If the
matrix D f (�) has an eigenvaluewith positive real part, then
the rest point � is unstable.

The damped harmonic oscillator (5) is equivalent to the
first-order system of (linear) differential equations

u̇ D Au ; (14)

where the system matrix is

A :D
�

0 1
�1 ��

�
: (15)

If � > 0, the system matrix has eigenvalues 1
2 (�� ˙p

�2 � 4) whose real parts are always negative. Thus, the
rest point at the origin is asymptotically stable in agree-
ment with physical intuition.

The power of the linearization method is demon-
strated by its applications to systems whose general solu-
tions are not known explicitly; for example, the nonlinear
oscillator

ẍ C �x C x C g(x) D 0 ; (16)

where g is an arbitrary (smooth) function such that
g(0) D Dg(0) D 0. In this case, the origin is a rest point of
the equivalent first-order system and the system matrix of
the linearized system at the origin is again the matrix (15);
therefore, by Theorem 5, the origin is asymptotically sta-
ble. This result applies to the rest point (�; �̇) D (0; 0) of
the damped pendulum

�̈ C ��̇ C sin � D 0 : (17)
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Stability Theory of Ordinary Differential Equations, Figure 4
The figure depicts portions of six orbits in the phase portrait of
the dampedpendulum (17)with �D 0:2: the rest points at (�; �̇)
equal to (��; 0), (0;0), and (�; 0); and, the orbits starting at
(��; 0:001), (� � 1:25;1:3), and (� � 1:243;1:4). The last two
orbits pass close to the (saddle type) unstable rest point at (�; 0)

The differential Eq. (17) also has a rest point at
(�; �̇) D (�; 0) where the system matrix of the linearized
differential equation is

�
0 1
1 ��

�
: (18)

If � > 0, this matrix has an eigenvalue with positive real
part; therefore, this rest point—which corresponds to the
upward vertical equilibrium of the physical pendulum—is
unstable (cf. Fig. 4).

Definition 6 An n � nmatrix is called infinitesimally hy-
perbolic if all of its eigenvalues have non-zero real parts.
A rest point of an autonomous system is called hyperbolic
if the system matrix of the linearized equation at this rest
point is infinitesimally hyperbolic. The rest point is called
nondegenerate if the system matrix is invertible.

An important result on the principle of linearized sta-
bility for rest points is the Grobman–Hartman theorem
(see [30,31,34,35] and [19,22]):

Theorem 7 If v is a hyperbolic rest point for the au-
tonomous differential equation u̇ D f (u), then there is an
open set V containing v and a homeomorphism H with do-
main V such that the orbits of this differential equation
in V are mapped by H to orbits of the linearized system
ẇ D D f (v)w.

In other words, the qualitative behavior of an autonomous
differential equation in a sufficiently small neighborhood
of a hyperbolic rest point is the same as the behavior of its
linearization at this rest point.

The related problem of the existence of a change of
variables (a diffeomorphism) taking a given system to its
linearization in a neighborhood of a rest point is more dif-
ficult to resolve. Fundamental work in this area is due to
Poincaré [74], Carl Siegel [88], Henri Dulac [25], Shlomo
Sternberg [90,91] and A.D. Brjuno [16] (see also [9,89]).
The non-existence of certain relationships (resonances)
among the eigenvalues of the system matrix of the lin-
earization plays an important role in the theory.

Definition 8 The vector of eigenvalues  D (1; 2; : : : ;
n) of the n � n-matrix A is called resonant if there is
an n-vector of nonnegative integers M D (m1;m2; : : : ;

mn) such that
Pn

kD1 jmk j � 2 and at least one of the
eigenvalues k is given by

k D hM; i ;

where the angle brackets denote the usual inner product.
The eigenvalues are nonresonant if no such relationship
occurs.

The first theorem of the subject was proved by Poincaré:

Theorem 9 If the eigenvalues of the linearization of a vec-
tor field given by a formal power series are nonresonant,
then there is a change of variables in the form of a formal
power series that transforms the vector field to its lineariza-
tion.

In case the linearization is resonant, there is a formal
change of variables that removes all of the terms in the for-
mal series that defines the vector field except those that are
resonant (that is, the corresponding monomials are given
by products of variables whose powers form vectors with
the properties ofM in the definition of resonance).

Definition 10 The vector of eigenvalues  D (1;
2; : : : ; n) of the n � n-matrix A belongs to the Poincaré
domain if the convex hull of its components in the com-
plex plane does not contain the origin; otherwise, the vec-
tor belongs to the Siegel domain. The vector  is called
type (C; �) for C > 0 and � > 0, if the inequality

jk � hM; ij �
C

(
P

k jmk j)�

is satisfied for each component k of  and all vectors M
as in Definition 8.

Theorem 11 If the eigenvalues of the linearization of an
analytic vector field are nonresonant and in the Poincaré
domain, then there is an analytic change of coordinates that
transforms the vector field to its linearization. If the eigen-
values of the linearization of an analytic vector field are of
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type (C; �), then there is an analytic change of coordinates
that transforms the vector field to its linearization.

For modern proofs of Poincaré’s and Siegel’s theorems
see [71] or [87]. Sternberg proved Siegel’s result for vector
fields in the Siegel domain for sufficiently smooth vector
fields (see [90,91]).

To successfully apply linearized stability for rest points
of autonomous systems, the fundamental problem is to de-
termine the real parts of the eigenvalues of a squarematrix;
especially, it is important to determine conditions that en-
sure all eigenvalues have negative real parts. The most im-
portant result in this direction is the Routh-Hurwitz crite-
rion (see [40,84]):

Theorem 12 Suppose that the characteristic polynomial of
the real matrix A is written in the form

n C a1n�1 C � � � C an�1C an ;

let am D 0 for m > n, and define the determinants �k for
k D 1; 2; : : : ; n by

�k :D det

0

B
BBB
B
@

a1 1 0 0 0 0 � � � 0
a3 a2 a1 1 0 0 � � � 0
a5 a4 a3 a2 a1 1 � � � 0
:::

:::
:::

:::
:::

:::
:::
:::

a2k�1 a2k�2 a2k�3 a2k�4 a2k�5 a2k�6 � � � ak

1

C
CCC
C
A
:

If�k > 0 for k D 1; 2; : : : n, then all roots of the character-
istic polynomial have negative real parts.

The principle of linearized stability is not valid in gen-
eral. In particular, the stability of the linearized equation
at a rest point of an autonomous differential equation does
not always determine the stability of the rest point. For ex-
ample, consider the scalar differential equation u̇ D �um ,
wherem > 1 is a positive integer. The origin u D 0 is a rest
point for this differential equation and the corresponding
linearized system is ẇ D 0. The origin (and every other
point on the real line) is a stable rest point of this linear
differential equation. On the other hand, by solving the
original equation, it is easy to see that the origin is asymp-
totically stable in case m is odd and unstable in case m is
even. Thus, the stability of the linearization does not de-
termine the stability of the rest point.

There is no theorem known that can be used to deter-
mine the stability of a general nonautonomous first-order
linear differential Eq. (8). In particular, there is no obvi-
ous relation between the (time-dependent) eigenvalues of
a time-dependent matrix and the stability of the zero so-
lution of the corresponding first-order linear differential

equation. Consider, as an example, the �-periodic system
u̇ D A(t)u, where

A(t) D
�
�1C 3

2 cos
2 t 1 � 3

2 sin t cos t
�1 � 3

2 sin t cos t �1C 3
2 sin

2 t

�
; (19)

which was constructed by Lawrence Marcus and Hide-
hiko Yamabe [66]. The real parts of the eigenvalues ofA(t)
(given by 1

4 (�1˙
p
7 i)) are negative; but,

u(t) D et/2
�
� cos t
sin t

�

is a solution that grows without bound.
While a general theory of linearized stability for non-

constant solutions of differential equations remains an
area of research, much is known in case the non-constant
solution is periodic.

Suppose that t 7!  (t) is a periodic solution with pe-
riod T of the differential Eq. (1) defined onRn . Lineariza-
tion leads to the differential equation

�̇ D fu( (t); t)� ; (20)

where the matrix (valued function) A(t) :D fu( (t); t) is
periodic with period T. Thus, the theory of linearized sta-
bility for periodic solutions starts with the stability theory
for the periodic linear differential Eq. (8). The most ba-
sic results in this setting are due to Gaston Floquet [27].
To state them, let us first recall that a linear differential
equation admits matrix solutions; that is, matrices whose
columns are vector solutions. A fundamental matrix solu-
tion is an n � n-matrix solution with linearly independent
columns; or, equivalently, a matrix solution whose values
are all invertible as n � n-matrices.

Floquet’s main results are stated in the following theo-
rem (see [19] and recall the definition of the matrix expo-
nential in display (11)).

Theorem 13 If ˚(t) is a fundamental matrix solution of
the T-periodic system (8), then

˚(t C T) D ˚(t)˚�1(0)˚(T)

for all t 2 R. In addition, there is a matrix B (which may be
complex) such that

eTB D ˚�1(0)˚(T)

and a T-periodic matrix function t 7! P(t) (which may be
complex valued) such that ˚(t) D P(t)etB for all t 2 R.
Also, there is a real matrix R and a real 2T-periodic matrix
function t! Q(t) such that ˚(t) D Q(t)etR for all t 2 R.
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The stability of the zero solution of the periodic lin-
ear differential equation is intimately connected with the
eigenvalues of the matrix R in Floquet’s theorem. Indeed,
the time-dependent (real) change of variables u D Q(t)v
transforms the T-periodic differential Eq. (8) to the au-
tonomous linear system

v̇ D Rv :

Definition 14 The representation ˚(t) D P(t)etB of the
fundamental matrix solution ˚ in Floquet’s theorem is
called a Floquet normal form. The eigenvalues of the ma-
trix etB are called the characteristic (or Floquet) multipli-
ers of the corresponding linear system. A complex num-
ber � is called a characteristic (or Floquet) exponent if
there is a characteristic multiplier � such that e�T D �.

Theorem 15

(1) The characteristic multipliers and the characteristic ex-
ponents do not depend on the choice of the fundamental
matrix solution of the T-periodic differential Eq. (8).

(2) If the characteristic multipliers of the periodic sys-
tem (8) all have modulus less than one; equivalently,
if all characteristic exponents have negative real parts,
then the zero solution is asymptotically stable.

(3) If the characteristic multipliers of the periodic sys-
tem (8) all have modulus less than or equal to one;
equivalently, if all characteristic exponents have non-
positive real parts, and if the algebraic multiplicity
equals the geometric multiplicity of each characteristic
multiplier with modulus one; equivalently, if the alge-
braic multiplicity equals the geometric multiplicity of
each characteristic exponent with real part zero, then
the zero solution is stable.

(4) If at least one characteristic multiplier of the periodic
system (8) has modulus greater than one; equivalently,
if a characteristic exponent has positive real part, then
the zero solution is unstable.

While Theorem 15 gives a complete description of the sta-
bility of the zero solution, no general method is known
to determine the characteristic multipliers (cf. [98]). The
power of the theorem is an immediate corollary: A finite
set of numbers (namely, the characteristic multipliers) de-
termine the stability of the zero solution, at least in the case
where none of them have modulus one. The characteristic
multipliers can be approximated by numerical integration.
And, in special cases, their moduli can be determined by
mathematical analysis.

One of the most important applications for Floquet
theory and the method of linearization, is the analysis of

Hill’s equation

ẍ C a(t)x D 0 ; (21)

or, equivalently, the first-order linear system

ẋ D y ; ẏ D �a(t)x ; (22)

where x is a scalar and a is a T-periodic function (see [19,
64]). This equation arose from George Hill’s study of lunar
motion. It is ubiquitous in stability theory.

The stability of the zero solution of Hill’s system (22)
can be reduced to the identification of a single number;
namely, the magnitude of the trace of the principal funda-
mental matrix solution ˚(t) at t D T (that is, the funda-
mental matrix solution ˚(t) such that ˚(0) D I, where I
is the n � n identity matrix).

Theorem 16 Suppose that˚(t) is the principal fundamen-
tal matrix solution of system (22). If jtrace˚(T)j < 2, then
the zero solution is stable. If jtrace˚(T)j > 2, then the zero
solution is unstable.

This result, of course, requires knowledge of the solutions
of the system. On the other hand, a beautiful theorem of
Lyapunov [55] gives a stability criterion using only prop-
erties of the function a:

Theorem 17 If a : R! R is a positive T-periodic func-
tion such that

T
Z T

0
a(t) dt � 4 ;

then all solutions of the Hill’s equation ẍ C a(t)x D 0 are
bounded. In particular, the trivial solution is stable.

The principle of linearized stability for periodic solutions
of nonlinear systems motivates a theory similar to the sta-
bility theory for rest points. There is, however, one essen-
tial difference that will be explained for a T-periodic solu-
tion � of the autonomous first-order differential equation

u̇ D f (u): (23)

The linearized equation at � is ẇ D D f (� (t))w. Let
�(t) D f (� (t)) and note that

�̇(t) D D f (� (t)) f (� (t)) D D f (� (t))�(t) ;

that is, t 7! f (� (t)) is a solution of the linearized equation.
This solution is given by

f (� (t)) D ˚(t) f (� (0)) ;

where ˚(t) is the principal fundamental matrix solution
of the linearized equation. If follows that ˚(T) f (� (0)) D
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f (� (0)); therefore, the number 1 is a characteristic multi-
plier. It corresponds to motion in the direction of the pe-
riodic solution and does not contribute to the stability or
instability of the periodic solution. This characteristicmul-
tiplier must be treated separately in the stability theory.

Theorem 18 If the number 1 occurs with algebraic multi-
plicity one in the set of characteristic multipliers of the lin-
earized differential equation at a periodic solution and all
other characteristic multipliers have modulus less than one,
then the periodic solution is orbitally asymptotically stable.
If at least one characteristic multiplier has modulus larger
than one, then the periodic solution is unstable.

Poincaré introduced a geometric approach to stability for
periodic solutions. His idea is simple and useful: Consider
a periodic solution � and some point, say � (0), on the or-
bit of this solution in Rn . Construct a hypersurface S in
Rn that contains � (0) and is transverse to the orbit of �
at this point. By the implicit function theorem, there is an
open neighborhood ˙ of � (0) in S such that the solution
of the differential equation starting at every point in˙ re-
turns to S. This defines a local diffeomorphismP : ˙ ! S,
called the Poincaré (or return) map, which assigns p to its
point of first return on S (cf. Fig. 5).

The eigenvalues of the derivative of P at � (0) are ex-
actly the characteristic multipliers associated with � . Thus,
if all eigenvalues of this derivative have modulus less than
one, then � is orbitally asymptotically stable. The deriva-
tive of the Poincaré map can be computed using the lin-
earized equations of the corresponding differential equa-
tion along its the periodic orbit. While explicit formu-
las for the desired derivative are only available for special
cases, the Poincaré map provides an indispensable tool for

Stability Theory of Ordinary Differential Equations, Figure 5
A schematic diagramof a Poincaré mapP defined on a Poincaré
section˙ near a periodic orbit containing the point �(0)

organizing the study of stability for periodic orbits in gen-
eral.

It should be clear that the discrete dynamical system
defined by P codes all the information about the qualita-
tive behavior of the solutions of the differential equation
that start near the orbit of � . The existence of the Poincaré
map is thus the main connection between discrete and
continuous dynamical systems.

Often, but not always, the dynamical properties of dif-
feomorphisms (or maps) are simpler to analyze than the
corresponding properties of differential equations. Thus,
theorems are often proved first for maps and later for dif-
ferential equations. For instance, the Grobman–Hartman
theorem was first proved for diffeomorphisms. This re-
sult can be applied to the Poincaré map of a periodic or-
bit to prove the existence of a homeomorphism that maps
nearby orbits to the orbits of a corresponding lineariza-
tion.

For the special case of periodic solutions of au-
tonomous first-order differential equations on the plane,
there is exactly one important Floquet multiplier; it is
identified in the following fundamental result.

Theorem 19 If � is a periodic solution with period T of the
differential Eq. (23) defined onR2, then the number

� D

Z T

0
div f (� (t)) dt

(where div denotes the divergence) is (up to a positive scalar
multiple) a characteristic exponent of � . If � is negative,
then � is orbitally asymptotically stable. If � is positive,
then � is unstable.

The system of differential equations

ẋ D x � y � (x2 C y2)x ; ẏ D x C y � (x2 C y2)y

has the periodic solution t ! (cos t; sin t) (depicted with
a non-unit aspect ratio in Fig. 2). Also, the divergence of
the vector field is 2 � 4(x2 C y2); it has value -2 along the
corresponding periodic orbit � D f(x; y) : x2 C y2 D 1g.
By Theorem 19, � is orbitally asymptotically stable. This
is an example of a limit cycle; that is, an isolated periodic
orbit. By changing to polar coordinates (r; �), the trans-
formed system

ṙ D r(1 � r2) ; �̇ D 1

decouples, and its flow is given by

�t(r; �) D

0

@
�

r2e2t

1 � r2 C r2e2t

� 1
2

; � C t

1

A : (24)
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The positive x-axis is a Poincaré section with correspond-
ing Poincaré map P given by

P(x) D
�

x2e4	

1 � x2 C x2e4	

� 1
2

:

The periodic orbit � intersects the Poincaré section at
x D 1 where we have P(1) D 1 and P0(1) D e�4	 < 1.

A periodic solution of an autonomous system cannot
be asymptotically stable. This fact depends on a special
property of the solutions of autonomous systems: if the
differential Eq. (1) is autonomous, then the function  
giving the solutions, t 7!  (t; s; v), is a function of t � s.
Hence, by replacing t � s by t, each solution can be ex-
pressed in the form t 7! �(t; v) where �(0; v) D v and
�(t; �(s; v)) D �(t C s; v) whenever both sides are de-
fined. The family of functions v 7! �(t; v), parametrized
by t is called the flow of the differential Eq. (1).

Suppose that t 7! �(t; v) is an asymptotically stable
periodic solution with period T. Let ı > 0 be as in Defini-
tion 1. If jw � vj < ı, then limt!1 j�(t;w)��(t; v)j D 0.
For all sufficiently small s, we have that j�(s;w)� vj < ı.
Hence, limt!1 j�(t; �(s;w))� �(t; v)j D 0. By the trian-
gle law,

j�(t C s; v) � �(t; v)j
� j�(t C s; v) � �(t C s;w)j C j�(t C s;w) � �(t; v)j
� j�(s; �(t; v)) � �(s; �(t;w)j C j�(t C s;w) � �(t; v)j:

Since � 7! �(s; �) is smooth and a periodic orbit is com-
pact, the law of the mean implies that there is a constant
C > 0 such that

j�(tC s; v) � �(t; v)j
� Cj�(t; v) � �(t;w)j C j�(tC s;w) � �(t; v)j :

Both summands on the right-hand side of the last inequal-
ity converge to zero as t !1. Hence, we have that

lim
k!1

j�(kT C s; v) � �(kT; v)j D 0 ;

where k denotes an integer variable. It follows that �(s;
v) D v for all s in some open set. The point vmust be a rest
point on a periodic orbit, in contradiction to the unique-
ness of solutions.

While a periodic solution of an autonomous sys-
tem cannot be asymptotically stable, we can ask that
an orbitally asymptotically stable periodic orbit satisfy
a stronger type of stability.

Definition 20 Let � denote the flow of the autonomous
differential Eq. (23) and suppose that � is a periodic or-
bit corresponding to the solution t 7! �(t; p). We say that

q 2 Rn has asymptotic phase p with respect to � if the so-
lution t 7! �(t; q) is such that

lim
t!1

j�(t; q) � �(t; p)j D 0 :

We say that � is isochronous if there exists an open neigh-
borhood of its orbit such that every point in this neigh-
borhood has asymptotic phase with respect to the period
solution.

Theorem 21 If all eigenvalues of the derivative of
a Poincaré map at the periodic solution t 7! �(t; p) of (23)
lie strictly inside the unit circle in the complex plane (equiv-
alently, the corresponding periodic orbit is hyperbolic), then
every point q in some open neighborhood of this periodic
orbit has asymptotic phase.

A theory of asymptotic phase that includes orbitally stable
periodic orbits such that some eigenvalues of the deriva-
tive of an associated Poincaré map have modulus one was
recently completed (see [21,26]).

Lyapunov Functions

In case the linearized differential equation along a solution
is stable but not orbitally asymptotically stable, the princi-
ple of linearized stability usually cannot be justified. One
of the great contributions of Lyapunov is the introduction
of a method that can be used to determine the stability of
such solutions.

The fundamental ideas of Lyapunov are most clear for
the stability analysis of rest points of autonomous sys-
tems (see [63]); but, the theory goes far beyond this case
(see [51]).

Definition 22 Let u0 be a rest point of the autonomous
differential Eq. (23). A continuous function L : U ! R,
where U � Rn is an open set with u0 2 U , is called a Lya-
punov function at u0 if

(1) L(u0) D 0,
(2) L(x) > 0 for x 2 U n fu0g,
(3) the function L is continuously differentiable on the set

U n fu0g, and, on this set, L̇(x) :D grad L(x)� f (x) � 0.

The function L is called a strict Lyapunov function if, in
addition,

(4) L̇(x) < 0 for x 2 U n fu0g.

Property (3) states that L does not increase along solutions.

Theorem 23 If there is a Lyapunov function defined on an
open neighborhood of a rest point of an autonomous first-
order differential equation, then the rest point is stable. If, in
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addition, the Lyapunov function is a strict Lyapunov func-
tion, then the rest point is asymptotically stable.

Lyapunov’s theorem was motivated by Lagrange’s prin-
ciple: a rest point of a mechanical system corresponding
to an isolated minimum of the potential energy is stable.
To obtain this result, recall that the equation of motion
of a (conservative) mechanical system for the motion of
a particle is

mẍ D �gradG(x)

where m is the mass of the particle and x 2 Rn is its po-
sition. The kinetic energy of the particle is defined to be
K D m

2 hẋ; ẋi (where the angle brackets denote the usual
inner product) and the potential energy is G, a quantity
defined up to an additive constant.

Consider the corresponding equivalent first-order sys-
tem

ẋ D y ; ẏ D �
1
m
gradG(x) ;

and suppose that x0 be an isolated minimum of G. The
state (x; y) D (x0; 0) is a rest point of the mechanical sys-
tem. By inspection, the total energy

L(x; y) :D
m
2
hy; yi C G(x) � G(x0)

(with an appropriate translation of the potential energy) is
a Lyapunov function at the rest point. Thus, the rest point
is stable.

The proof of the first part of Lyapunov’s theorem is
simple: Choose an open ball B with center at the rest point
and radius sufficiently small so that its closure is in the do-
main of the Lyapunov function L. The continuous positive
function L on the closed and bounded spherical boundary
of B has a non-zero minimum value b. Because the contin-
uous function L vanishes at the rest point, there is a second
ball A that is concentric with B, has strictly smaller radius,
and is such that the maximum value of L on all of A is
smaller than b. A solution of the differential equation start-
ing inA cannot reach the boundary of B because L does not
increase along solutions. Thus, the rest point is stable.

Lyapunov’s method extends to nonautonomous sys-
tems with an appropriate modification of the notion of
a Lyapunov function. Suppose that the first-order differ-
ential Eq. (1) has a rest point in the sense that for some
T 2 R, f (u0; t) D 0 for all t � T . A Lyapunov function
is a class C1 function defined in a neighborhood of u0
for all t � T such that L(u0; t) D 0 for t � T , there is
a continuous nonnegative functionM defined on the same
neighborhood of u0 such that L(u; t) � M(u) for all t � T

and L̇ D Lt C Lu � u̇ � 0 for all t � T . If such a Lyapunov
function exists, then the rest point is stable. If, in addition,
there is a positive function N with the same domain as M
such that L̇(u; t) � �N(u) for all t � T , then the rest point
is asymptotically stable.

Lyapunov’s direct method can be used to prove the
principle of linearized stability for rest points of au-
tonomous systems. To see how this might be done, con-
sider the differential equation

u̇ D Au C g(u) ; u 2 Rn ;

where A is a real n � n matrix and g : Rn ! Rn is
a smooth function. Suppose that every eigenvalue of A has
negative real part, and that for some a > 0, there is a con-
stant k > 0 such that, using the usual norm onRn ,

jg(x)j � kjxj2

whenever jxj < a. Let h�; �i denote the usual inner product
on Rn , and let A� denote the transpose of the real ma-
trix A. Suppose that there is a real symmetric positive def-
inite n � n matrix that also satisfies Lyapunov’s equation

A�BC BAD �I

and define L : Rn ! R by

L(x) D hx; Bxi :

Using Schwarz’s inequality, it can be proved that the re-
striction of L to a sufficiently small neighborhood of the
origin is a strict Lyapunov function. The proof is com-
pleted by showing that there is a symmetric positive-defi-
nite solution of Lyapunov’s equation. In fact,

B :D
Z 1

0
etA
�

etA dt

is a symmetric positive definite n � n matrix that satisfies
Lyapunov’s equation. Alternatively, it is possible to prove
the existence of a solution to Lyapunov’s equation using
purely algebraic methods (see, for example, [97]).

The instability of solutions can also be detected by Lya-
punov’s methods. A simple result in this direction is the
content of the following theorem.

Theorem 24 Suppose that L is a smooth function defined
on an open neighborhood U of the rest point u0 of the
autonomous differential Eq. (23) such that L(u0) D 0 and
V̇ (u) > 0 on U n fu0g. If L has a positive value somewhere
in each open set containing u0, then u0 is unstable.

One indication of the subtlety of the determination of sta-
bility is the insolvability of the center-focus problem [41].



Stability Theory of Ordinary Differential Equations S 8641

Consider a planar system of first-order differential equa-
tions in the form

ẋ D y C P(x; y) ; ẏ D �x C Q(x; y) ;

where P and Q are analytic at the origin with leading-or-
der terms at least quadratic in x and y. Is the origin a fo-
cus (that is, asymptotically stable or asymptotically unsta-
ble) or a center (that is, all orbits in some neighborhood
of the origin are periodic)? There is no algorithm that can
be used to solve this problem for all such systems in a fi-
nite number of steps. On the other hand, the center-focus
problem is solved, by using Lyapunov’s stability theorem,
if a certain sequence of numbers called Lyapunov quanti-
ties (which can be computed iteratively and algebraically)
has a non-zero element. One problem is that the algorithm
for computing the Lyapunov quantities may not terminate
in a finite number of steps (see, for example, [19,89]).

The center-focus problem is solved for some special
cases. The most important theorem in this area of research
is due to Nikolai Bautin (see [14] and [99,100] for a mod-
ern proof); he found (among other results) a complete so-
lution of the center-focus problem for quadratic systems
(that is, where P and Q are homogeneous quadratic poly-
nomials). While the center-focus problem for quadratics
had been solved by Dulac [25] and others [28,43,44,45]
before his paper appeared; Bautin introduced a method,
which involves the use of polynomial ideals, that has had
far reaching consequences.

Stability in Conservative Systems
and the KAM Theorem

Stability theory for conservative systems leads to many
delicate problems, some of which—for example La-
grange’s problem—can be resolved by the method of Lya-
punov functions. While the total energy, the total angular
momentum, or other first integrals all have the property
that their derivatives vanish along trajectories, these inte-
grals do not always serve as Lyapunov functions because
they often fail to be positive definite in punctured neigh-
borhoods of rest points or periodic orbits. Thus, other
methods are required.

As in the quest to determine the stability of the solar
system, a basic problem in mechanics is to determine the
stability of periodic motions (or rest points) of conserva-
tive differential equations with respect to small perturba-
tions. While no general solution is known, great progress
has been made culminating in the Kolmogorov–Arnold–
Moser (KAM) theorem (see [5,46,47,68,87,89,92]).

A mechanical system with N degrees-of-freedom (that
is, the positions are determined byN-coordinates) is called

completely integrable if it has N independent first inte-
grals whose Poisson brackets are in involution (see p. 271
in [8]). In this case, the system can be transformed to
a first-order system of differential equations in the simple
form

İ D 0; �̇ D ˝(I) ; (25)

where I is an N-dimensional variable (of actions), � is
an N-dimensional variable (of angles), and˝ is a smooth
function. The new coordinates are called action-angle
variables (see, for generalizations, [39,42]). This system
is in Hamiltonian form (İ D @H/@� , �̇ D �@H/@I) with
Hamiltonian H(I; �) :D �!(I), where! is an anti-deriva-
tive of ˝ ; and, of course, the Hamiltonian is constant
along solutions of the system.

The corresponding perturbed system is taken to have
the form

İ D �
@F
@�

(I; �); �̇ D ˝(I)� �
@F
@I

(I; �) (26)

(or, more generally, a similar form with additional terms
that are higher-order in �), where F is a smooth function
that is 2�-periodic in � . This system is in Hamiltonian
form with Hamiltonian

H (I; �; �) :D �!(I)C �F(I; �) :

The unperturbed integrable system can be solved explicitly
as

I(t) D I0 ; �(t) D ˝(I0)t C �0;

hence, by inspection, all orbits are periodic or quasi-
periodic (when the angular variables are defined mod-
ulo 2�) according to whether or not the vector of fre-
quencies ˝(I0) satisfies a resonance relation, that is,
hM;˝(I0)i D 0 for some N-vector M with integer com-
ponents.

Every orbit of the unperturbed system with one
degree-of-freedom is periodic; but, for example for two
degrees-of-freedom, orbits are periodic with period T only
if there are integersm1 andm2 such that

T˝1(I0) D 2�m1; T˝2(I0) D 2�m2

or m1˝2(I0) � m2˝1(I0) D 0.
Geometrically, a choice of actions fixes an energy level

and the angles correspond to an N-dimensional invariant
torus. The flow on this torus is either periodic or quasi-pe-
riodic according to the existence of a corresponding reso-
nance relation. For this reason, the tori with periodic flows
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are called resonant; the others are called nonresonant. The
KAM theorem states that most of the nonresonant tori in
the unperturbed system (25) survive after small perturba-
tions as invariant tori of the perturbed system (26).

Theorem 25 If (in the Hamiltonian system (26))H is suf-
ficiently smooth, D˝(I) is invertible, and � is sufficiently
small, then almost all (in the sense of Lebesgue measure)
nonresonant unperturbed invariant tori persist.

There are similar theorems for time-dependent perturba-
tions of integrable systems and for area-preserving maps
(see [8]).

For a mechanical system with N degrees-of-freedom,
the perturbed invariant tori are N-dimensional manifolds
embedded in the 2N-dimensional phase space. After re-
striction to a regular energy surface (that is, a level set ofH
corresponding to one of its regular values), these N-di-
mensional tori are embedded in a (2N � 1)-dimensional
manifold. For N � 2, the invariant tori that exist by the
KAM theorem separate the energy hypersurface into two
components, one inside and one outside of each invari-
ant torus. A motion starting in a bounded region whose
boundary is one of these invariant tori cannot escape to
the corresponding unbounded component. Since the in-
variant tori are dense, such motions are stable (cf. Fig. 6).
More generally, each perturbed invariant torus is stable
as an invariant set. This result can be used, for example,
to prove the stability of certain periodic orbits in the re-
stricted three-body problem (see [54]). On the other hand,

Stability Theory of Ordinary Differential Equations, Figure 6
The figure depicts portions of seven orbits of the (stroboscopic)
Poincaré map � 2 R2 7! �(2�; �) for the forced oscillator
ẋ D y, ẏ D x � x3 C 0:05 sin t: three fixed points at (x; y) equal
to (�1;0), (0;0), and (1;0); an orbit starting at (x; y) D (1:0;0:4)
at time t D 0, which is close to a (3 : 1) resonance; an orbit start-
ing at (1:0;0:5), which is on an invariant torus that surrounds
the resonant orbit; an orbit starting at (1:0;0:6), which appears
to be “chaotic”; and an orbit starting at (1;1), which is on a large
invariant torus. The (3 : 1) resonant orbit is stable

for N > 2, the invariant tori no longer separate energy sur-
faces into bounded and unbounded components. Thus,
it is possible for orbits to migrate outside nearby tori in
a conjectured process called Arnold diffusion (see [6]).
The validity of Arnold diffusion for the general Hamilto-
nian system (26) is an area of current research (see, for
a review, [60]).

Averaging and the Stability
of Perturbed PeriodicOrbits

As we have seen, systems of the form

İ D �P(I; �) ; �̇ D ˝(I)C �Q(I; �) ; (27)

where P and Q are 2�-periodic, often arise in mechanics.
Here, the properties of system (27) are considered for gen-
eral perturbations, which are not necessarily conservative.

Note that, in case � is small, the vector of actions (com-
ponents of I) in the differential Eq. (27) evolves slowly rel-
ative to the evolution of the vector of angles � . The aver-
aging principle states that the evolution of the actions for
such a system is well-approximated by the corresponding
averaged equation given by

İ D �P̄(I) ; (28)

where

P̄(I) :D 1
(2�)N

Z

TN
P(I; �) d�

and TN denotes the N-dimensional torus of angles.
Exactly what is meant by “well-approximated” is clar-

ified by the averaging theorem, which requires a se-
vere restriction: the vector of angles is one-dimensional
(cf. [61,86]).

Theorem 26 If � is a scalar variable and ˝ is bounded
away from zero, then there is a near-identity change of vari-
ables of the form I D I C �k(I; �) that is 2�-periodic in �
which transforms system (27) into the form

İ D �P̄(I)C �2P1(I; �; �) ; �̇ D ˝(I)C �Q1(I; �; �) :

where P1 and P2 are 2�-periodic in � . Moreover, if the evo-
lution of I starting at I0 is given by I(t) and the evolution
(according to the differential Eq. (28)) of the averaged ac-
tion I starting at I0 is given by I(t), then there are constants
C > 0 and T(I0) > 0 such that

jI(t)� I(t)j � C�

on the time interval 0 � �t < T(I0).
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The existence and stability of perturbed period solutions is
the content of the following theorem.

Theorem 27 Consider the system

İ D �F(I; �)C �2F2(I; �; �) ; �̇ D ˝(I)C �G(I; �; �) ;
(29)

where I 2 RM, � is a scalar, F, F2, and G are 2�-periodic
functions of � , and there is some number c such that
˝(I) � c > 0. If the averaged system has a nondegenerate
rest point (see Definition 6) and � is sufficiently small, then
system (29) has a periodic orbit. If in addition � > 0 and the
rest point is hyperbolic, then the periodic orbit has the same
stability type as the hyperbolic rest point; that is, the dimen-
sions of the corresponding stable and unstablemanifolds are
the same (see Definition 29).

For a typical application of Theorem 27, consider the sys-
tem of differential equations

İ D �(a C b sin k�) sin C �2P(I;  ; �);

 ̇ D �cI C �2Q(I;  ; �);

�̇ D 1;

(30)

where a, b, and c are non-zero constants, k is a positive in-
teger, and both P andQ are 2�-periodic in � . The averaged
system of differential equations

İ D �a sin ;  ̇ D �cI

has hyperbolic rest points at (I;  ) D (0; 0) and (I;  ) D
(0; �). According to Theorem 27, if � is sufficiently small,
the system of differential Eq. (30) has corresponding hy-
perbolic periodic solutions. In case ac > 0, the solution
of the perturbed system corresponding to  D 0 is stable,
and the solution corresponding to  D � is unstable (in
fact, it is a hyperbolic saddle). If ac < 0, the stability types
are switched.

Structural Stability

An important aspect of the global theory of dynamical sys-
tems is the stability of the orbit structure as a whole. The
motivation for the corresponding theory comes from ap-
plied mathematics. Mathematical models always contain
simplifying assumptions. Dominant features are modeled;
supposed small disturbing forces are ignored. Thus, it is
natural to ask if the qualitative structure of the set of so-
lutions—the phase portrait—of a model would remain the
same if small perturbations were included in the model.
The corresponding mathematical theory is called struc-
tural stability.

The correct mathematical formulation of the defini-
tion of structural stability requires the introduction of
a topology on the space of dynamical systems under con-
sideration. The natural setting for the theory is the space
of class C1 vector fields on a smooth compact manifold.

There is a one-to-one correspondence between vec-
tor fields and differential equations: the right-hand side
of a first-order autonomous differential equation defines
a vector field on Rn . The local representatives, with re-
spect to coordinate charts, of a vector field on an n-dimen-
sional manifold M are vector fields on Rn . The set of all
smooth vector fields X(M) onM has the structure of a Ba-
nach space after the introduction of a Riemannian metric.
Thus, two vector fields are close if the distance between
them in this Banach space is small.

Definition 28 A vector fieldX on a smoothmanifoldM is
called structurally stable, if there is some neighborhood U
of X in X(M) such that for each Y 2 U there is a homeo-
morphism of M that maps orbits of Y to orbits of X and
preserves the orientation of orbits according to the direc-
tion of time. Such a homeomorphism is called a topologi-
cal equivalence.

In other words, all perturbations of a structurally stable
vector field have the same qualitative orbit structures.

At first impression, it might seem that the homeo-
morphism in the definition of structural stability should
be a diffeomorphism. But, this requirement is too strong.
To see why, consider a hyperbolic rest point u0 of the
first-order autonomous differential Eq. (23) in Rn . Let
u̇ D g(u) be a differential equation on Rn , and con-
sider the perturbation of the differential Eq. (23) given
by u̇ D f (u)C �g(u). We have that f (u0) D 0. Thus,
F(u; �) :D f (u)C �g(u) is such that F(u0; 0) D 0 and
DF(u0; 0) D D f (u0). Because of the hyperbolicity, the lin-
ear transformation D f (u0) is invertible. By an applica-
tion of the implicit function theorem, there is a smooth
function ˇ : J ! Rn , where J is an open interval in R
containing the origin, such that F(ˇ(�); �)) D 0 for all �
in J. In other words, every small perturbation of (the vec-
tor field) f has a rest point near u0. Moreover, for suf-
ficiently small � (and in view of the continuity of eigen-
values with respect to the components of the correspond-
ing matrix), the perturbed rest point ˇ(�) is hyperbolic
with the same number of eigenvalues (counting multiplic-
ities) with positive and negative real parts as the eigenval-
ues of D f (u0). But, of course, the perturbed eigenvalues
are in general not the same as the eigenvalues of D f (u0).
The hyperbolic rest point u0 is structurally stable in the
sense that the local phase portraits at the corresponding
rest points of sufficiently small perturbations of f are qual-
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itatively the same as the phase portrait of the differential
Eq. (23). This fact can be proved using the Grobman–
Hartman theorem together with an argument to show that
the phase portraits of hyperbolic linear first-order systems
are topologically equivalent if their system matrices have
the same numbers of eigenvalues (counting multiplicities)
with positive and negative real parts. Suppose there were
a diffeomorphism h taking orbits to orbits. It would cor-
respond to a change of variables v D h(u) (a smooth con-
jugacy) taking the differential Eq. (23) to the differential
equation v̇ D F(v), where the parameter � is suppressed
for simplicity. By differentiation of the equation v D h(u)
with respect to the independent variable t, it follows that
F(h(u)) D Dh(u) f (u). By linearization at the rest point
u0, we have

DF(h(u0))Dh(u0) D Dh(u0)D f (u0) :

In particular the system matrix D f (h(u0)) for the lin-
earized system at the perturbed rest point is similar, via the
invertible matrix Dh(u0), to the system matrix D f (u0) for
the linearized system at the unperturbed rest point. Thus,
the two rest points would have to have exactly the same
eigenvalues, contrary to the general situation for which
the eigenvalues of the perturbed linearization are different
from the eigenvalues of the unperturbed linearization.

The notion of hyperbolicity is an essential hypothesis
in structural stability theory; indeed, hyperbolic rest points
are structurally stable. Likewise hyperbolic periodic orbits,
defined to be those periodic orbits such that there is an as-
sociated hyperbolic Poincaré map are structurally stable.
This notion can be extended to general invariant sets. The
essential requirement is that all of the solutions of the lin-
earized differential equations along the solutions in the in-
variant set, which are not initially in the direction of the
invariant set, either grow or decay exponentially with uni-
form exponential growth rates over the entire invariant
set.

The global theory of structural stability requires
a global hypothesis to ensure that the rest points and pe-
riod orbits are connected with orbits in general position.

Definition 29 LetA be an invariant set (a union of orbits)
of an autonomous first-order differential equation, vector
field, or discrete dynamical system. The stable manifold
of A, denoted Ws(A) is the set of all solutions that con-
verge to A as t !1. The unstable manifoldWu(A) is the
set of all solutions that converge to A as t ! �1.

The stable manifold theorem asserts that the stable and
unstable manifolds for rest points and periodic orbits of
smooth vector fields are indeed (immersed) smooth man-
ifolds (see, for example, [37,38]).

Two immersed manifolds are called transversal if they
do not intersect; or, if the sum of their tangent spaces at
each point of their intersection is the tangent space of the
ambient manifold.

While periodicity is the most familiar form of recur-
rence for dynamical systems, a more subtle notion of re-
currence is required for structural stability theorems.

Definition 30 The point u is called a nonwandering point
for an autonomous differential equation if, for each neigh-
borhood U of u and each time t0 > 0, there is some time
t > t0 such that at least one solution starting in U at time
zero returns to U at time t. Likewise for a discrete dynam-
ical system defined by a diffeomorphism h, the point u is
nonwandering if for each neighborhood U of u there is
some integer k > 0 such that hk(U) \ U is not empty. The
set of all nonwandering points is called the nonwandering
set.

For vector fields on compact orientable two-dimensional
manifolds, the classical structural stability theorem is due
to M. Peixoto [70] and is a generalization of earlier work
for vector fields in the plane by L. Pointryagin and A. An-
dronov [2,3].

Theorem 31 A class C1 vector field on a compact ori-
entable two-dimensional manifold M is structurally stable
if and only if

(1) all rest points are hyperbolic,
(2) all periodic solutions are hyperbolic,
(3) stable and unstable manifolds of all pairs of saddle

points (rest points whose linearizations have one pos-
itive and one negative eigenvalue) are disjoint,

(4) the nonwandering set consists of only rest points and
periodic solutions.

Moreover, the structurally stable vector fields form an open
and dense set in X(M).

The notion of transversality in Peixoto’s theorem is em-
bodied in the property (3). The generalization of this prop-
erty is an essential ingredient of the theory.

Definition 32 A dynamical system satisfies the strong
transversality property if for every pair of points fu; vg in
its nonwandering set, the corresponding invariant mani-
folds Ws(u) andWu(y) intersect transversally (at all their
points of intersection).

Definition 33 A dynamical system satisfies Axiom A if its
nonwandering set is hyperbolic and the periodic orbits are
dense in this set.

The most important result of the theory is the structural
stability theorem:



Stability Theory of Ordinary Differential Equations S 8645

Theorem 34 A class C1 diffeomorphism is structurally
stable if and only if it satisfies Axiom A and the strong
transversality property.

Joel Robbin [77] proved that a C2 diffeomorphism is C1

structurally stable if it satisfies Axiom A and the strong
transversality property. This result was improved by Clark
Robinson [81] by relaxing the C2 requirement to C1; he
also proved the analogous result for differential equa-
tions [79,80]. Ricardo Mañé [65] proved the converse.

A simple example of a structurally stable diffeomor-
phism is the north-pole south-pole map of the Riemann
sphere; it is given by z 7! 2z for the complex variable z.
There are two hyperbolic rest points, an unstable fixed
point at z D 0 and a stable fixed point at z D 1. All other
points are attracted to1 under forward iteration and to
zero under backward (inverse) iteration.

A more exotic example is provided by the hyperbolic
toral automorphisms. To define these maps, note that
a 2 � 2-integer matrix with determinant one determines
a diffeomorphism of the plane that preserves the integer
lattice. Thus, it projects to amap of the torus formed by the
quotient spaceR2/Z2. In case the matrix is hyperbolic, the
corresponding diffeomorphism on the torus has a dense
set of periodic orbits and thus its nonwandering set is the
entire torus. It can be proved that the linear hyperbolic
structure of the transformation of the plane (that is, one
stable and one unstable eigenspace) projects to a uniform
hyperbolic structure on the entire torus; and, moreover,
the strong transversality condition is satisfied. Thus, small
perturbations of such amap have the same properties. This
example was generalized by Dmitri Anosov and others to
include a class of diffeomorphisms and vector fields in the
continuous case now called Anosov dynamical systems.
The most important example of a continuous flow with
this property is the geodesic flow in the unit tangent bun-
dle of a compact Riemannian manifold with negative sec-
tional curvatures (see [4]).

Attractors

A natural outgrowth of the theory of stability for rest
points and periodic solutions is its generalization to invari-
ant sets. The fundamental objects of study are the attrac-
tors. Unfortunately, the definition of this concept is not
universally accepted; different authors use different defini-
tions. The following definition is perhaps the most popu-
lar:

Definition 35 A closed invariant set A for a dynamical
system is called an attracting set if it is contained in an
open neighborhood U of the ambient space such that the

intersection of the sequence of all forward motions of U
under the action of the dynamical system is equal to A. An
attracting set is called an attractor if, in addition, there is
no closed invariant attracting subset of A.

The existence of attractors is part of the stability theory of
dynamical systems; the structure of attractors is the sub-
ject of another rich theory. For most of the history of dif-
ferential equations the only known attractors (the classi-
cal attractors) were rest points, periodic orbits, and tori,
which are all manifolds. The existence of attractors with
fractal dimensions, called strange attractors, was noticed
and proved only recently [62,82,85,95].

For differential equations in Rn , the existence of an
attractor for autonomous systems is usually proved by
demonstrating the existence of an (n � 1)-dimensional
sphere (or other separating hypersurface) such that the
vector field corresponding to the differential equation
points into the bounded region of space bounded by the
sphere (more precisely, the inner product of the vector
field and the inner normal is positive at all points on the
sphere).

As an example, consider the Lorenz equations onR3

ẋ D �(y � x);
ẏ D rx � y � xz;
ż D xy � bz;

where � , r, and b are positive constants. The origin is a rest
point for the Lorenz system and, if r < 1, then

L(x; y; z) :D
1
�
x2 C y2 C z2

is a Lyapunov function. In this case, the origin is glob-
ally asymptotically stable. More generally (that is, with
no restriction on the size of r), there is a constant c > 0
such that the vector field points into the bounded region
of space bounded by the ellipsoid rx2 C � y2 C �(z �
2r)2 D c. Thus, the Lorenz equations have an attractor.
For some parameter values, for example � D 10, b D 8/3,
and r D 28, the attractor is a fractal, called the Lorenz at-
tractor (see [29,62,93,95]).

For the special case of two-dimensional first-order au-
tonomous systems, the existence and nature of attrac-
tors can be more precisely specified. The main result
is the Poincaré-Bendixson theorem (see [15] and, for
a proof, [1]):

Theorem 36 An attractor of the class C1 differential
Eq. (23) on the plane that contains no rest points is a pe-
riodic orbit.
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Corollary 37 If the differential Eq. (23) on the plane is an-
alytic and has a positively invariant annulus containing no
rest points, then the annulus contains an orbitally asymp-
totically stable periodic solution (a stable limit cycle).

As an example, consider the model of a damped pendulum
with torque given by the first-order planar system

�̇ D v ; v̇ D � sin � C � � v ; (31)

where  and � are positive constants. By viewing the
variable � as an angular variable modulo 2� , the phase
space is the cylinder rather than the plane. Nonetheless,
the Poincaré-Bendixson theory is valid on the cylinder be-
cause a bounded region of the cylinder can be flattened by
a change of variables to a region of the plane. If j�j > 1,
then the system of differential Eq. (31) has a globally at-
tracting periodic orbit. Three main observations can be
used to construct a proof: there are no rest points, the
quantity � sin � C � � v is negative for sufficiently large
values of v > 0, and it is positive for negative values of v
with sufficiently large absolute values. These facts imply
the existence of an invariant annulus containing no rest
points. The remainder of the proof uses Theorem 19 and
the analyticity of solutions (see p. 98 in [19]).

Generalizations and Future Directions

The concepts of stability theory have been successfully
generalized to infinite-dimensional dynamical systems
(which arise from the analysis of partial differential equa-
tions) defined on Banach spaces and to abstract dynamical
systems on metric spaces [13,32,33,36,83,94]. Research in
this direction has produced some results on stability and
the existence of attractors.

No general theorem akin to Lyapunov’s Theorem 4
is known for infinite-dimensional dynamical systems.
A main difficulty is that, for an unbounded operator A,
the non-zero elements in the spectrum of eA may not all
be given by the exponentials of elements in the spectrum
of A (see, for a discussion, Chap. 2 in [20]). Thus, to de-
termine the stability of a rest point by linearization, this
spectral mapping property must be checked separately for
most cases of interest.

Part of the motivation for the determination of attrac-
tors in infinite-dimensional dynamical systems is the pos-
sibility of reducing the long-term dynamical properties to
the analysis of a finite-dimensional dynamical system on
the attractor. The fundamental organizing concept in this
direction is the “inertial manifold”.

Definition 38 An inertial manifold is a finite-dimen-
sional Lipschitz manifold that is invariant under forward

motions of the dynamical system and attracts all solutions
of the dynamical system at an exponential rate.

Inertial manifolds have been proved to exist for many dy-
namical systems defined by evolution-type partial differ-
ential equations, for example, reaction-diffusion equations
with appropriate boundary conditions. Much current re-
search is devoted to determining conditions that imply the
existence of inertial manifolds (or their generalizations)
for the equations of fluid dynamics.

The conceptual framework and basic abstract theory of
stability is mature and well-understood for finite-dimen-
sional dynamical systems. This theory is currently being
extended to an abstract theory for infinite-dimensional dy-
namical systems. The most important direction for further
development is the application of this theory to specific
differential equations (including partial differential equa-
tions) that arise as mathematical models in applied math-
ematics. Even the problem that originally motivated sta-
bility theory (that is, the stability of periodic and quasi-
periodic motions of the N-body problem of classical me-
chanics) remains open to future research.
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99. Żołądek H (1994) Quadratic systems with center and their
perturbations. J Diff Eq 109(2):223–273
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Glossary
Player A participant in a game.
Action set The set of actions that a player may choose.
Action profile A list of actions, one for each player.
Payoff The utility a player obtains from a given action

profile.

Definition of the Subject
Game theory concerns the interaction of decision makers.
This interaction is modeled by means of games. There are

various approaches to constructing games. One approach
is to focus on the possible outcomes of the decision-mak-
ers’ interaction by abstracting from the actions or deci-
sions that may lead to these outcomes. The main tool used
to implement this approach is the cooperative game. An-
other approach is to focus on the actions that the deci-
sion-makers can take, the main tool being the non-coop-
erative game. Within this approach, strategic interactions
are modeled in two ways. One is by means of dynamic, or
extensive form games, and the other is by means of static,
or strategic games. Dynamic games stress the sequentiality
of the various decisions that agents can make. An essential
component of a dynamic game is the description of who
moves first, who moves second, etc. Static games, on the
other hand, abstract from the sequentiality of the possible
moves, and model interactions as simultaneous decisions,
where the decisions may well be complicated plans of ac-
tions that dictate different moves for different situations
that may arise. All extensive form games can be modeled
as static games, and all strategic form games can be mod-
eled as extensive form games. But some situations may be
more conveniently modeled as one or the other kind of
game.

This chapter reviews the main ideas and results related
to static games, as well as some interesting relationships
that connect equilibrium concepts with the idea of ratio-
nality. The objective is to introduce the reader to the area
of static games and to stimulate his interest for further
knowledge of game theory in general. For a comprehen-
sive exposition of some results not covered in this chap-
ter, the reader is referred to the many excellent textbooks
available on game theory. Binmore [6], Fudenberg and Ti-
role [9], Osborne [20], Osborne and Rubinstein [21] con-
stitute only a partial list.

Although the definition of a static game is a very simple
one, static games are a very flexible model which allows us
to analyze many different situations. In particular, one can
use them to analyze strategic interactions that involve ei-
ther common interests or diametrically opposed interests.
Similarly, one can also use static games to model situations
where players have either symmetric or asymmetric infor-
mation. The range of applications of static games is very
wide and covers many disciplines, such as economics, po-
litical science, biology, philosophy, and computer science
among others.

Introduction

In this section we introduce some examples that will be
used later to motivate different concepts. We also intro-
duce the definition of a static game.
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The prisoner’s dilemma involves a donor who is inter-
ested in donating some amount of money to two uni-
versities. The donor decides that the amount each uni-
versity will receive depends on the content of the mes-
sages the presidents of the respective universities will
send to him. Each university will send simultaneously
one of two messages. One possible message is “Give
him 2” and the other is “Give me 1”. The donor will
do exactly as told. For instance, if University I sends
the message “Give me 1” and University II sends “Give
him 2”, the donor will donate $3 to University I and $0
to University II. This game can be described by means
of the following matrix, where the entries represent the
payoffs for University I and University II, respectively,
that result from the corresponding action choices.

University II
Give him 2 Give me 1

University I Give him 2 2; 2 0; 3

Give me 1 3; 0 1; 1

The battle of the sexes consists of two friends, She and
He, who want to go out together, but have no means of
communication. They have to decide, each one sepa-
rately but both simultaneously, whether to go to a box-
ing match or to a ballet show. For both of them, the
worst possible outcome would be to choose different
events and not meet. But if they meet, he would rather
meet her at the boxing match, while she would rather
meet him at the ballet. The battle of the sexes can be
described by the following matrix.

She
Box Ballet

He Box 2; 1 0; 0
Ballet 0; 0 1; 2

Again, the entries of this matrix represent the payoffs
that he and she get, as a result of their corresponding
choices.

Chicken models two drivers who approach each other on
a narrow street. If none of them slows down they’ll
have an accident and their corresponding payoffs will
be 0. But if at least one of them slows down, the ac-
cident is prevented. The problem is that both of them
would like the other to slow down. If only one driver
slows down, this driver gets a payoff of 2 and the other
driver gets a payoff of 7. If both drivers slow down,
then both drivers get a payoff of 6. This situation can

be described by the following matrix.

Driver 2
Slow Down Speed up

Driver 1 Slow Down 6; 6 2; 7
Speed up 7; 2 0; 0

Matching Pennies involves two friends, each of whom
places a coin on a table. If both coins are placed heads
up or tails up, then friend 1 gets one dollar from friend
2. If one coin is placed heads up and the other tails
up, then friend 1 pays one dollar to friend 2. Match-
ing pennies can be described by the following matrix,
where the entries are the amounts of money that the
friends get from each other.

Friend 2
Heads Tails

Friend 1 Heads 1;�1 �1; 1
Tails �1; 1 1;�1

The above examples of strategic interactions can be
modeled as static games. A static game is a formalization
of a strategic situation according to which players choose
their actions separately and simultaneously, and as a result
obtain certain payoffs. The interaction that a static game
models need not require that players take their actions si-
multaneously. But the interaction is modeled by defining
actions in such a way that lets us think of the players as
acting simultaneously.

All of the above examples involve a set of players, and
for each player there is a set of available actions and a func-
tion that associates a payoff level to each of the profiles of
actions that may result from the players’ choices. These are
the three essential components of a static game, as formal-
ized in the following definition.

Definition 1 A static game is a triple hN; (Ai )i2N ;
(ui )i2Ni where N is a finite set of players, and for each
player i 2 N;Ai is i’s set of actions, and ui : �k2NAk ! R
is player i’s utility function.

In the prisoner’s dilemma the set of players is N D

fUniversity I;University IIg; the sets of actions are AI D

AII D fGive me 1;Give him 2g; the utility function of
University I is uI(Give me 1;Give me 1) D 1, uI(Give
me 1;Give him 2) D 3, uI(Give him 2;Give me 1) D 0,
uI(Give him 2;Give him 2) D 2; and the utility func-
tion of University II is uII(Give me 1;Give me 1) D 1,
uII(Give me 1;Give him 2) D 0, uII(Give him 2;Give
me 1) D 3, uI(Give him 1;Give him 1) D 1.

In this chapter we sometimes refer to static games sim-
ply as games. For any game hN; (Ai )i2N ; (ui )i2Ni, the set
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of action profiles �k2NAk is denoted by A, and a typical
action profile is denoted by a D (ai )i2N 2 A. If A is a fi-
nite set, then we say that the game is finite. Player i’s utility
function represents his preferences over the set of action
profiles. For instance, for any two action profiles a and
a0 in A, ui (a) � ui

�
a0

means that player i prefers action

profile a to action profile a0. Clearly, although player i has
preferences over action profiles, he can only affect his own
component, ai, of the profile.

Nash Equilibrium

One objective of game theory is to select, for each game,
a set of action profiles that are interesting in some way.
These action profiles may be interpreted as predictions of
the theory, or prescriptions for the players to follow, or
simply as equilibrium outcomes in the sense that if they
occur, the players do not wish that they had acted differ-
ently. These action profiles are formally given by solution
concepts, which are functions that associate each strate-
gic game with the selected set of action profiles. The cen-
tral solution concept in game theory is known as Nash
equilibrium. The hypothesis behind this solution concept
is that each player chooses his actions so as to maxi-
mize his utility, given the profile of actions chosen by
the other players. To give a formal definition of the Nash
equilibrium concept, we first introduce some useful no-
tation. For each player i 2 N, let A�i D �k2NnfigAk be
the set of the other players’ profiles of actions. Then we
can write AD Ai � A�i , and each action profile can be
written as a D (ai ; a�i ) 2 Ai � A�i , thereby distinguish-
ing player i’s action from the other players’ profile of ac-
tions.

Definition 2 The action profile a� D (a�i )i2N 2 A in
a game hN; (Ai )i2N ; (ui )i2Ni is a Nash equilibrium if for
each player, i 2 N , and every action ai 2 Ai of player i, a�

is at least as good for player i as the action profile (ai ; a��i).
That is, if

ui (a�) � ui (ai ; a��i ) for all ai 2 Ai and for all i 2 N :

It is a strict Nash equilibrium if the above inequality is strict
for all alternative actions ai 2 Ai n fa�i g.

Analysis of Some Finite Games

Prisoner’s Dilemma Recall that the prisoner’s dilemma
can be described by the following matrix.

University II
Give him 2 Give me 1

University I Give him2 2; 2 0; 3

Give me1 3; 0 1; 1

The action profile (Give me 1, Give me 1) is a Nash
equilibrium. Indeed,

uI(Give me 1, Give me 1) D 1
� uI(Give him 2; Give me 1) D 0

and

uII(Give me 1; Give me 1) D 1
� uII(Give me 1; Give him 2) D 0 :

On the other hand, the action profile (Give him 2, Give
him 2) is not a Nash equilibrium, since University I
prefers action “Give me 1” if University II chooses ac-
tion “Give him 2”:

2 D uI(Give him 2; Give him 2)
< uI(Give me 1; Give him 2) D 3 :

Battle of the Sexes Recall that the battle of the sexes can
be described by the following matrix.

She
Box Ballet

He Box 2; 1 0; 0
Ballet 0; 0 1; 2

One can check that (Box, Box) is a Nash equilibrium
and (Ballet, Ballet) is a Nash equilibrium as well. It can
also be checked that these are the only two action pro-
files that constitute a Nash equilibrium.

Matching Pennies The reader can check that Matching
Pennies has no Nash equilibrium.

Before we analyze the next example, we introduce a tech-
nical tool that allows us to reformulate the definition of
Nash equilibrium more conveniently. More importantly,
this alternative definition is the key to the standard proof
of the existence of Nash equilibrium.

Definition 3 Let G D hN; (Ai )i2N ; (ui )i2Ni be a strate-
gic game and let i 2 N be a player. Consider a list of ac-
tions a�i D (a; : : : ; ai�1; aiC1; : : : ; an) 2 �k2NnfigAk of
all the players other than i. The set of player i’s best re-
sponses to a�i is

Bi(a�i ) D fai 2 Ai : ui (ai ; a�i ) � ui (bi ; a�i )
for all bi 2 Aig :

The correspondence Bi : � j¤i A j � Ai that assigns to
each (n � 1)-tuple of actions in A�i the set of best re-
sponses to it is called the best response correspondence of
player i.
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The definition of a Nash equilibrium may be stated
in terms of the players’ best response correspondences, as
stated in the following proposition.

Proposition 1 The action profile a� 2 A is a Nash equi-
librium if and only if every player’s action is a best response
to the other players’ actions. That is, if

a�i 2 Bi(a��i ) for all i 2 N :

Until now, all the examples involved games where the
action sets contained two actions. The next example is
a game where the players’ action sets are infinite. We will
use the player’s best response correspondences to find all
its Nash equilibria.

TheWar of Attrition Two animals, 1 and 2, are fighting
over a prey. Each animal chooses a time at which it
intends to give up. Once one animal has given up,
the other obtains the prey; if both animals give up at
the same time then they split the prey equally. For
each i D 1; 2, animal i’s willingness to fight for the
prey is given by vi > 0. The value vi is the maximum
amount of time that animal i is willing to spend to
obtain the prey. Since fighting is costly, each animal
prefers as short a fight as possible. If animal i ob-
tains the prey after a fight of length t, his utility will
be vi � t. We can model the situation as the game
G D hf1; 2g; (A1;A2); (u1; u2)i where

� A1 D [0;1] D A2 (an element t 2 Ai represents
a time at which player i plans to give up)

�

u1(t1; t2) D

8
<̂

:̂

�t1 if t1 < t2
1
2v1 � t2 if t1 D t2
v1 � t2 if t1 > t2

�

u2(t1; t2) D

8
<̂

:̂

�t2 if t2 < t1
1
2v2 � t1 if t1 D t2
v2 � t1 if t2 > t1 :

We are interested in the best response correspon-
dences. First, we calculate player 1’s best response cor-
respondence,B1(t2). There are three cases to consider.

Case 1: t2 < v1 In this case, v1 � t2 > 1
2v1 � t2 and

v1 � t2 > �t1. Consequently, given that player 2’s
action is t2, player 1’s utility function has a max-
imum value of v1 � t2, which is attained at any
t1 > t2. Therefore, B1(t2) D (t2;1).

Static Games, Figure 1
Player 1’s best response correspondence

Case 2: t2 D v1 In this case, 0 D v1 � t2 > 1
2v1 � t2.

Therefore, player’s 1 utility function u1(�; t2) has
a maximum value of 0, which is attained at t1 D 0
and at t1 > t2. Therefore, B1(t2) D f0g [ (t2;1).

Case 3: t2 > v1 In this case 1
2v1 � t2 < v1 � t2 < 0.

As a result, player 1’s utility function u1(�; t2) has
a maximum value of 0, which is attained at t1 D 0.
Therefore, B1(t2) D f0g.

Summarizing, player 1’s best response correspondence
is:

B1(t2) D

8
<̂

:̂

(t2;1) if t2 < v1
f0g [ (t2;1) if t2 D v1
f0g if t2 > v1

which is depicted in Fig. 1.
Similarly, player 2’s best response correspondence is:

B2(t1) D

8
<̂

:̂

(t1;1) if t1 < v2
f0g [ (t1;1) if t1 D v2
f0g if t1 > v2 :

Combining the two best response correspondences we
get that (t�1 ; t

�
2 ) is a Nash equilibrium if and only if ei-

ther t�1 D 0 and t�2 � v1 or t�2 D 0 and t�1 � v2. Fig-
ure 2 depicts the set of all the Nash equilibria as the
intersection of the two best response correspondences.
Two things are worth noting. First, it is not necessarily
the case that the player who values the prey most wins
the war. That is, there are Nash equilibria of the war
of attrition where the player with the highest willing-
ness to fight for the prey gives in first, and as a result
the object goes to the other player. Second, in none of
the Nash equilibria is there a physical fight. All Nash
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Static Games, Figure 2
The equilibria

equilibria involve one player giving in immediately to
the other. This second feature seems rather unrealis-
tic, since fights in “war of attrition”-like situations are
commonly observed. If one wants to obtain a fight of
positive length in the war of attrition one needs to ei-
ther drop the Nash equilibrium concept and adopt an
alternative one, or model the war of attrition differ-
ently. We will adopt this second course of action later.

Existence

As the matching pennies example shows, not all games
have a Nash equilibrium. The following theorem, which
dates back to Nash [18] and Glicksberg [11], states suffi-
cient conditions on a game for it to have a Nash equilib-
rium. An earlier version of this theorem for the smaller
but prominent class of zero-sum games can be found in
vonNeumann [23] (translated in vonNeumann [24]). The
standard proofs use Kakutani’s fixed point theorem. We
present here an alternative proof, due to Geanakoplos [10],
which uses Brouwer’s fixed point theorem instead.

Theorem 1 The game hN; (Ai)i2N ; (ui )i2N i has a Nash
equilibrium if for all i 2 N

� the set Ai of actions of player i is a nonempty compact
convex subset of an Euclidean space,

� the utility function ui is continuous,
� the utility function ui is concave in Ai.

Proof (Geanakoplos) Define the correspondence 'i :
A � Ai by

'i(ā) D arg max
ai2Ai
fUi(ai ; ā�i) � kai � āik2g ;

where, k � k denotes a norm in the relevant Euclidean
space. Note first that 'i is a nonempty valued correspon-

dence because the maximand is a continuous function and
Ai is compact. Second, note that the function kai � āik is
convex:

k(ai C (1 � )bi ) � āik
D k(ai � āi )C ((1 � )bi � (1 � )āi )k
� k(ai � āi )k C k((1 � )bi � (1 � )āi )k
� jjkai � āik C j1 � jkbi � āik :

Since the quadratic function is strictly convex, then the
maximand is a strictly concave function. Therefore, the
correspondence 'i is in fact a function. Furthermore, since
the maximand is continuous in the parameter ā, 'i is also
continuous. To see this, let ān ! ā be a convergent se-
quence of action profiles and let ai n D 'i (ān). This means
that U(ai n ; (ān)�i ) � U(bi ; (ān)�i ) for all bi 2 Ai . Since
Ai is a compact set, ai n has a convergent subsequence. De-
noting by ai the limit of this subsequence and applying
limits to the above inequality, we obtain that

U(ai ; ā�i) � U(bi ; ā�a) for all bi 2 Ai ;

namely ai D 'i (ā). Since this is true for every convergent
subsequence of ai n , we have that 'i (ān) D ai n ! ai D
'i (ā), which means that ' is continuous.

Now define ' : A! A by ' D ('1; : : : ; 'N ). Clearly,
' is a continuous function mapping a compact set to itself.
Therefore, by Brouwer’s fixed point theorem, it has a fixed
point: '(ā) D ā. We now show that ā is a Nash equilib-
rium of the game. Assume not. Then, there is some i 2 N
with ai 2 Ai such that Ui (ai ; ā�i ) � Ui(ā) D E > 0.
Then, by concavity of Ui, for all 0 < � < 1,

Ui (�ai C (1 � �)āi ; ā�i ) � Ui (ā)
� �Ui (ai ; ā�i )C (1 � �)Ui (ā) � Ui (ā)
� �E > 0;

while k�ai C (1 � �)āi � āik2 D �2kai � āik2 < �E, for
small enough �. Therefore, for such small �, the action
�ai C (1 � �)āi satisfies

Ui (�aiC(1��)āi ; ā�i )�k�aiC(1��)āi� āik2 > Ui (ā)

which contradicts the fact that 'i (ā) D āi . �

Mixed Strategies

So far, we have formally defined a game, and have in-
troduced the solution concept of Nash equilibrium which
is arguably the central solution concept of game theory.
However, there seem to be two problems with this concept.
One is that although Nash equilibria exist in a wide class
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of games, there are many simple games that do not have
a Nash equilibrium. Themost troubling example isMatch-
ing Pennies. If game theory cannot provide a prediction
for this simple game then one must wonder if there is any
value to the theory. The second problem is that the con-
cept of Nash equilibrium predicts a very unrealistic out-
come in the war of attrition. One would expect that game
theory would not only provide nonempty predictions, but
also ones that look reasonable and help explain what we
see around us.

One way to approach these problems is not to abandon
the theory or the concept of Nash equilibrium altogether,
but to modify the way we model the problematic situa-
tions. The idea behind mixed strategies is to first modify
the game by extending the set of actions available to the
players, and then to apply the concept of Nash equilibrium
to this extended game. In this way one may obtain addi-
tional Nash equilibria, some of which may provide reason-
able predictions to the game.

Let G D hN; (Ai )i2N ; (ui )i2Ni be a finite game. For
any Ai, a probability distribution on Ai is a function

xi : Ai ! RC

such that
X

ai2Ai

xi(ai ) D 1 :

The set of all probability distributions on Ai is denoted
by �(Ai ). A mixed strategy on Ai is a random choice
over elements of Ai, namely an element of �(Ai ). If xi
is a mixed strategy on Ai, xi (ai) denotes the probabil-
ity that action ai 2 Ai is selected when xi is adopted.
Since elements of �(Ai ) can have an alternative inter-
pretation, such as beliefs about the choice of player i,
we denote the set of mixed strategies by Xi to distin-
guish it from the more abstract set of probability distri-
butions on Ai. Also, we denote the set of mixed strategy
profiles as X D �i2NXi . Denoting for each player i 2 N,
X�i D �k2NnfigXk , a typical mixed strategy profile can
be written as (xk)k2N D (xi ; x�i) 2 Xi � X�i . Themixed
extension of the strategic game G is the strategic game
hN; (Xi)i2N ; (Ui )i2Ni where the set of actions of player i
is the set of mixed strategies, Xi, and the payoff function
Ui : �i2N Xi ! R of player i is defined by

Ui ((xk)k2N) D
X

aD(ak )k2N2A

ui (a)˘k2Nxk(ak) :

Remark 1 Since each mixed strategy of player i, xi, can
be identified with a vector xi D (xi(ai))ai2Ai 2 RjAi j, the

function Ui is multinomial in the coordinates of its vari-
ables, and, as a result, it is continuous as a function of the
players’ mixed strategies.

Definition 4 An equilibrium in mixed strategies of the
game hN; (Ai )i2N ; (ui )i2Ni is a Nash equilibrium of the
mixed extension of the game. In other words, it is a list
of mixed strategies

�
x�k

k2N 2 X such that for all players

i 2 N and for all his mixed strategies xi,

Ui
��
x�k

k2N


� Ui

��
xi ; x��i


:

Alternatively,
�
x�k

k2N 2 X is a mixed strategy equilib-

rium if

x�i 2 Bi
�
x��i


for all i 2 N :

Note that for every finite gameG D hN; (Ai )i2N ; (ui )i2Ni,
its mixed extension is a strategic game that satisfies the
conditions of Theorem 1. As a result, every finite game has
a mixed strategy equilibrium.

Example 1 Consider again Matching Pennies. Its mixed
extension is the game hN; (Xi)i2N ; (Ui )i2Ni where the
set of players is N D f1; 2g, the sets of mixed strate-
gies are X1 D f(pH ; pT ) � (0; 0) : pH C pT D 1g, and
X2 D f(qH ; qT ) � (0; 0) : qH C qT D 1g, and the utility
functions are given by U1((pH ; pT ); (qH ; qT )) D pHqH C
pTqT � pHqT � pTqH and U2((pH ; pT ); (qH ; qT )) D
pHqT C pTqH � pHqH � pTqT . It can be checked
that the only Nash equilibrium of this mixed exten-
sion is ((1/2; 1/2); (1/2; 1/2)). Indeed, since U1((pH ; pT );
(1/2; 1/2)) is identically 0, it attains its maximum at,
among other strategies, (1/2; 1/2). The same is true for
U2((1/2; 1/2); (qH ; qT )). To see that there is no other equi-
librium, note that for (qH ; qT ) with qH > qT , player 1’s
best response is (1; 0). But player 2’s best response to (1; 0),
is (0; 1). Since 0 � 1, (qH ; qT ) with qH > qT cannot
be part of an equilibrium. Similarly, for any (qH ; qT ) with
qH < qT , player 1’s best response is (0; 1). But player 2’s
best response to (0; 1) is (1; 0). Since 1 � 0, (qH ; qT ) with
qH < qT cannot be part of an equilibrium.

We next present a characterization of the mixed strategy
equilibria of a game that will sometimes allow us to com-
pute them in an easy way. Further, this characterization
serves as the basis of an interesting interpretation of the
mixed strategy equilibrium concept that we will discuss
later. For this purpose, we identify the action ai 2 Ai of
player i with the mixed strategy of player i that assigns
probability 1 to action ai, and 0 to all other actions. There-
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fore, given a player i, one of his actions ai 2 Ai , and a pro-
file x D (xk)k2N of the players’ mixed strategies, (ai ; x�i)
denotes the mixed strategy profile obtained from x by
replacing i’s mixed strategy xi by the mixed strategy of
player i that assigns probability 1 to action ai . With this
notation we can state the following identity:

Ui((xk)k2N) D
X

ai2Ai

xi(ai)Ui ((ai ; x�i )) : (1)

Indeed,

Ui ((xk)k2N) D
X

aD(ak)k2N2A

ui (a)˘k2Nxk(ak)

D
X

ai2Ai

X

a�i2A�i

ui (a)˘k2Nxk(ak)

D
X

ai2Ai

xi (ai)
X

a�i2A�i

ui (a)˘k2Nnfigxk(ak)

D
X

ai2Ai

xi (ai)Ui ((ai ; x�i )) :

Identity (1) is useful to prove the following characteriza-
tion of the mixed strategy Nash equilibria.

Lemma 1 The strategy profile x� D
�
x�k

k2N is an equi-

librium of the mixed extension of hN; (Ai )i2N ; (ui )i2Ni if
and only if for all players i 2 N and for all ai 2 Ai ,

If x�i (ai ) > 0 then Ui (
�
ai ; x��i


) D Ui (x�) (2)

If x�i (ai ) D 0 then Ui (
�
ai ; x��i


) � Ui (x�) : (3)

Proof Assume that x� D
�
x�k

k2N satisfies conditions (2)

and (3). Let i 2 N , and let xi be a mixed strategy of player i.
Then, by (1)

Ui (xi ; x��i ) D
X

ai2Ai

xi(ai )Ui (
�
ai ; x��i


)

�
X

ai2Ai

xi(ai)Ui (x�) D Ui (x�)

and therefore x� is an equilibrium.
Assume now that x� D

�
x�k

k2N is an equilibrium. Let

i 2 N. Then

Ui(x�) � Ui (
�
ai ; x��i


) 8ai 2 Ai (4)

and, in particular, condition (3) holds for all ai 2 Ai such
that xi(ai) D 0: Also, using (1) we can write

X

ai2Ai

x�i (ai )Ui (x�) D
X

ai2Ai

x�i (ai )Ui
�
ai ; x��i


: (5)

If there is ai 2 Ai such that x�i (ai) > 0 and Ui (x�) >
Ui
�
ai ; x��i


then, using (4),

X

ai2Ai

x�i (ai )Ui (x�) >
X

ai2Ai

x�i (ai)Ui (
�
ai ; x��i


)

in contradiction to (5). �

Corollary 1 The strategy profile x� D
�
x�k

k2N is an equi-

librium of the mixed extension of hN; (Ai)i2N ; (ui )i2N i if
and only if for all players i 2 N and for all ai 2 Ai ,

x�i (ai) > 0 implies ai 2 Bi(x��i ) :

According to the standard interpretation, a player’s mixed
strategy in a game G is an action, but in a different game,
namely in the mixed extension of G. According to this
interpretation, a mixed strategy is a deliberate choice of
a player to use a random device. A mixed strategy equi-
librium then is a profile of independent random devices,
each of which is a best response to the others. Corollary 1
provides an alternative interpretation of a mixed strategy
equilibrium. According to this interpretation, a player’s
mixed strategy represents the uncertainty in the minds of
the other players concerning the player’s action. In other
words, a player’s mixed strategy is interpreted not as a de-
liberate choice of the player but the belief, shared by all the
other players, about the player’s choice. That is, if (xk)k2N
is a profile of mixed strategies, then xi is the conjecture,
shared by all the players other than i, about i ’s ultimate
choice of action. Consequently, x�i are the conjectures en-
tertained by player i about his opponents’ actions. Accord-
ing to this interpretation, Corollary 1 says that a mixed
strategy equilibrium

�
x�k

k2N is a profile of beliefs about

each player’s actions (entertained by the other players) ac-
cording to which each player chooses an action that is
a best response to his own beliefs.

TheWar of Attrition (cont.)

We have seen in Sect. “Analysis of Some Finite Games”
that all the Nash equilibria of the war of attrition predict
no real fight for the prey. We will now see that there is
a mixed strategy equilibrium of the war of attrition that
predicts a positive-length fight with probability one.

The players’ action sets in the war of attrition are in-
tervals of real numbers. A mixed strategy for player i in
that game can be represented by a cumulative distribution
function Fi : [0;1]! [0; 1]. For each t 2 (0;1], Fi(t) is
the probability that player i gives up at or before t. We will
look for a Nash equilibrium (F1; F2) that consists of two
strictly increasing, differentiable cumulative distribution



8656 S Static Games

functions. The density of Fi is denoted by f i. We will try
to find an equilibrium at which each player is indifferent
between all pure actions.

Consider player i. Given that his opponent is using
mixed strategy Fj, j ¤ i, if he chooses to give in at time t,
then he will face a lottery according to which,

� With probability 1� Fj(t), player i does not obtain the
prey and gets a payoff of �t,

� With probability Fj(t), player i obtains the prey at
time tj, where tj is a random variable whose cumula-
tive distribution function is Fj(t j)/Fj(t) (the distribu-
tion player j’s surrender time, conditional on his having
given in before t).

Therefore, the corresponding expected utility of choosing
time t is

Ui (t; Fj) D (1 � Fj(t))(�t)C Fj(t)
Z t

0
(vi � t j)d

Fj(t j)
Fj(t)

D (1 � Fj(t))(�t)C
Z t

0
(vi � t j)dFj(t j) :

Since in the equilibrium we are looking for, player i is
indifferent among all his actions, the above expression is
independent of t. Namely, Ui (t; Fj) � c. As a result, the
derivative of the above utility with respect to t equals 0.
Formally,

@Ui (t; Fj)
@t

D t f j(t) � (1 � Fj(t))C (vi � t) f j(t)

D (1 � Fj(t))C vi f j(t) D 0:

This is a differential equation whose general solution is

Fj(t) D 1 � Ke�
t
v i :

If we want it to satisfy Fj(0) D 0, we obtain that K D 1. As
a result, the distribution function is given by

Fj(t) D 1 � e�
t
v i :

Consequently, the equilibrium we are looking for is

(F1(t); F2(t)) D


1 � e�

t
v2 ; 1 � e�

t
v1

�
:

According to this equilibrium, for any t, the probabil-
ity that there is a fight that lasts at least t is (1 � F1(t))(1 �
F2(t)) > 0. Consequently, there is a fight with probability
one. The introduction of mixed strategies allowed the con-
cept of Nash equilibrium to be consistent with fights that
last a positive length of time. However, the mixed strat-
egy equilibrium has the following unfortunate property. If

v1 < v2, then for all t > 0, F1(t) < F2(t). In other words,
it is more likely that the player with the highest willingness
to fight for the prey gives up earlier than any given t, than
that the player with the lowest willingness to fight gives
in earlier than the same t. Therefore, in equilibrium it is
more likely that the player with the lower willingness to
fight wins the war than the other way around. In partic-
ular, the probability that player 1 gets the object is given
by
Z 1

0
F2(t)dF1(t)

which can be checked to be equal to v2
v1Cv2 > 1/2. In order

to obtain the more intuitive result that the higher the will-
ingness to fight for the prey, the higher is the probability
to obtain it, we will need to model the war of attrition in
yet a different way. We’ll return to this when we introduce
asymmetric information to the games.

Equilibrium in Beliefs

The mixed extension of the game hN; (Ai)i2N ; (ui )i2N i is
constructed in two steps. First, we enlarge the set of actions
available to each player by allowing him to choose any
mixed strategy on his original action set. Second, since the
action choices are now probability distributions over ac-
tions, we extend the players’ original preferences to prefer-
ences over profiles of mixed strategies. We do so by evalu-
ating eachmixed strategy profile according to the expected
value of the original utilities with respect to the probabil-
ity distribution over action profiles induced by the mixed
strategy.

The first step seems uncontroversial since it is certainly
possible for players to use random devices. But the sec-
ond step is somewhat problematic because, by evaluating
mixed strategies according to the expected utility of the re-
sulting lotteries, one is implicitly imposing on the players
a certain kind of risk preferences. One may wonder what
the implications would be if instead of extending the pref-
erences by assuming that players are expected utility max-
imizers, we assume that players have more general pref-
erences over profiles of mixed strategies. In particular, we
would like to know if there is a suitable generalization of
Corollary 1.

Let G D hN; (Ai)i2N ; (ui )i2N i be a finite game. We
define the mixed extension of G as the strategic game
hN; (Xi)i2N ; (Ui )i2N i where, as in Sect. “Mixed Strate-
gies”, Xi is the set of probability distributions over the ac-
tions in Ai, for i 2 N, but unlike there, the utility function
Ui : X ! RN is not necessarily a multilinear function of
the probabilities, but a general continuous function of the
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mixed strategies. The only requirement onUi is that for all
profiles of degenerate mixed strategies (ak)k2N , we have
Ui
�
(ak)k2N


D ui

�
(ak)k2N


. As before, a mixed strategy

Nash equilibrium of hN; (Ai )i2N ; (ui )i2Ni is a Nash equi-
librium of its mixed extension hN; (Xi)i2N ; (Ui )i2Ni. In
other words, it is a list of mixed strategies

�
x�k

k2N such

that for all players i 2 N and for all of his mixed strategies
xi,

Ui(
�
x�k

k2N ) � Ui (

�
xi ; x��i


) :

Alternatively,
�
x�k

k2N is a mixed strategy equilibrium if

x�i 2 Bi(x��i ) for all i 2 N :

Observation 1 It is important to note that two different
actions of a player may be best responses to a given mixed
strategy profile of the other players, and yet no probabil-
ity mixture of the two actions will be a best response to
the given mixed strategy profile. This will typically be the
case when the function Ui is strictly convex in Xi, since
strictly convex functions attain their maximum at bound-
ary points.

Theorem 1 shows that Nash equilibria exist when the ex-
tended utility function Ui is concave in Xi. However, Ob-
servation 1 indicates that a Nash equilibrium may fail
to exist when Ui is strictly convex in Xi. Indeed, take
a game G D hN; (Ai)i2N ; (ui )i2N i with no pure strategy
Nash equilibrium, like Matching Pennies, and consider its
mixed extension � D hN; (Xi)i2N ; (Ui )i2Ni where for all
players, their extended utility function is strictly convex.
Then, for any player i 2 N and for any profile of mixed
strategies x�i of the other players, the set of i’s best re-
sponses Bi (x�i) consists of only degenerate mixed strate-
gies. Since G has no pure strategy Nash equilibrium, we
conclude that � does not have a Nash equilibrium.

Observation 2 It is also important to note that, unlike in
the standard expected utility case, a player’s mixed strategy
x�i may very well be a best response to some profile x��i of
the other players’ mixed strategies and at the same time
may assign positive probability to an action that (when
regarded as a degenerate mixed strategy) is not a best re-
sponse to x��i . Formally, it may very well be the case that

Ui(
�
x�k

k2N ) � Ui (

�
xi ; x��i


) for all xi 2 Xi

and yet

Ui(
�
ai ; x��i


) < Ui (

�
x�k

k2N )

for some ai such x�i (ai) > 0 :

This will typically occur when the function Ui is strictly
concave in Xi.

The definition of mixed strategy equilibrium requires from
each strategy in the equilibrium profile that it be a best re-
sponse to the other strategies. Corollary 1 stated that when
preferences have the expected utility form, each mixed
strategy in a mixed strategy equilibrium is also a proba-
bility mixture over best responses to the other strategies
in the profile. This result allowed us to interpret a mixed
strategy Nash equilibrium as a profile of beliefs, rather
than as a profile of probability mixtures. As explained
in Observation 2, however, when preferences over mixed
strategies are not expected utility preferences, a mixture
over best responses is not necessarily a best response.
Therefore, Corollary 1 does not extend to the mixed ex-
tension where preferences are not of the expected utility
form.

In this setup, however, one can still interpret a player’s
mixed strategy as a belief entertained by the other players
about the actions chosen by that player. And a profile of
such beliefs will be in equilibrium if the probability distri-
bution over the player’s actions that represents i’s beliefs
is obtained as a mixture of best responses of this player to
his beliefs about the other players’ actions. With this idea
in mind, Crawford [8] defined the notion of an equilib-
rium in beliefs. Before we formally present his definition
we need to introduce some notation.

Since when the extended utility functions Ui are con-
cave in i’s own strategy a best response to a given pro-
file of the other players’ strategies may be a non-degen-
erate mixed strategy, a mixture of best responses will typ-
ically be a mixture over non-degenerate mixed strategies.
This mixture induces a probability distribution over ac-
tions in a natural way by reducing the compound mix-
ture to a simple mixture. This induced probability dis-
tribution can be interpreted as a belief over the actions
ultimately chosen. For example, in Matching Pennies, if
player 1 believes that there is a probability of 1/2 that
player 2 will choose the mixed strategy (1/3; 2/3) and
a probability of 1/2 that player 2 will choose the mixed
strategy (2/3; 1/3), then player 1 believes that player 2 will
choose each one of his two actions with equal probabil-
ity. More generally, if player i assigns probability pk to
the event that player j will choose mixed strategy xk 2 Xj ,
for k D 1; : : : ;K, then player i’s beliefs about player j’s
actions are given by

PK
kD1 pkx

k 2 Xj . That is, for each
action a j 2 Aj of player j, player i believes that player j
will choose aj with probability

PK
kD1 pkx

k(a j). For each
set T � Xi of mixed strategies, let D[T] � Xi denote the
set of probability distributions over i’s actions that are in-
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duced by mixtures over elements of T. With this notation
in hand, we can define the concept of equilibrium in be-
liefs.

Definition 5 Let G D hN; (Ai)i2N ; (ui )i2N i be a game.
For each i 2 N , let Bi : X ! Xi be the best response cor-
respondence in the mixed extension of G. The profile of
beliefs (x�k )k2N 2 �k2N�(Ak ) is an equilibrium in beliefs
if

x�i 2 D
�
Bi(x��i )

�
for all i 2 N :

An equilibrium in beliefs is a profile of beliefs
�
x�k

k2N .

For each i 2 N , x�i is the common belief of the players
other than i about player i’s choice of actions. In order for
this profile of beliefs to be in equilibrium, we require that
for each player i 2 N all the other players believe that i
chooses a mixed strategy that is a best response to his be-
liefs, which are given by

�
x�k

k2Nnfig, about the other play-

ers’ choices of actions. In other words, x�i must be a convex
combination of best responses of i to

�
x�k

k2Nnfig.

Example 2 Consider again the mixed extension ofMatch-
ing Pennies hN; (Xi)i2N ; (Ui )i2Ni where the set of play-
ers is N D f1; 2g, the sets of mixed strategies are X1 D

f(pH ; pT ) � (0; 0) : pH C pT D 1g and X2 D f(qH ; qT ) �
(0; 0) : qH C qT D 1g, and the utility functions are now
given by U1((pH ; pT ); (qH ; qT )) D (pHqH)2 C (pTqT )2 �
pHqT � pTqH and U2((pH ; pT ); (qH ; qT )) D (pHqT )2 C
(pTqH)2 � pHqH � pTqT . Since the utility functions are
strictly convex in the players’s own mixed strategies, the
best response to any strategy of the opponent is a pure
strategy. In particular, one can verify that

B1(qH ; qT ) D

8
<̂

:̂

(1; 0) if qH > qT
f(1; 0) ; (0; 1)g if qH D qT
(0; 1) if qH < qT

and

B2(pH ; pT ) D

8
<̂

:̂

(0; 1) if pH > pT
f(1; 0) ; (0; 1)g if pH D pT
(1; 0) if pH < pT :

It can also be verified that ((p�H ; p
�
T ); (q

�
H ; q
�
T )) D

((1/2; 1/2); (1/2; 1/2)) is an equilibrium in beliefs. Indeed,
for both i D 1; 2, (1/2; 1/2) 2 Xi is a convex combination
of (1; 0) and (0; 1), which are both in B j (1/2; 1/2), j ¤ i.
In this equilibrium,

1. Player 1 believes that player 2 will choose (1; 0) with
probability 1/2, and (0; 1) with probability 1/2.

2. Therefore player 1 believes that player 2 will ultimately
choose H and T, each with probability 1/2.

3. Given these beliefs, player 1’s only best replies are (1; 0)
and (0; 1), and

4. Player 2 believes that player 1 will choose each one with
probability 1/2. As a result,

5. Player 2 believes that player 1 will ultimately choose H
and T each with probability 1/2.

6. Given these beliefs, player 2’s only best replies are (1; 0)
and (0; 1), and

1. Player 1 believes that player 2 will choose (1; 0) with
probability 1/2, and (0; 1) with probability 1/2.

The following result is a direct implication of the definition
of an equilibrium in beliefs.

Proposition 2 (Crawford [8]) Let G D hN; (Ai )i2N ;
(ui )i2Ni be a strategic game, and � D hN; (Xi)i2N ;
(Ui )i2Ni be the mixed extension of G, where Ui is continu-
ous but not necessarily multilinear.

1. Every mixed strategy Nash equilibrium of G is an equi-
librium in beliefs.

2. If for all i 2 N, Ui is quasiconcave in Xi, then every equi-
librium in beliefs is a mixed strategy Nash equilibrium
of G.

Proof

1. Since Bi (x��i) � D
�
Bi(x��i)

�
for all i 2 N, every Nash

equilibrium is an equilibrium in beliefs.
2. When the utility function Ui is quasiconcave in i’s

mixed strategy, the set of best responses Bi(x��i ) is
a convex set. Therefore, D

�
Bi(x��i )

�
D Bi(x��i ), and

any equilibrium in beliefs is a Nash equilibrium. �

Crawford [8] shows that although some games have no
Nash equilibrium, every game has an equilibrium in be-
liefs.

Correlated Equilibrium

In the mixed extension of a game, players do not choose
their actions directly, but rather choose probability distri-
butions over their action sets according to which the ac-
tions are ultimately selected. The important feature about
these probability distributions is that they represent inde-
pendent random variables. The realization of one player’s
random variable does not give any information about the
realization of the other players’ random variables. There is
nothing in the bare notion of equilibrium, however, that
requires players’ behavior to be independent. The basic
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feature of an equilibrium is that each player is best re-
sponding to the behavior of others, and that each player
is free to choose any action in his action set. But one thing
is that players can, if they so wish, change their behavior
without the consent of others, and another different thing
is to expect players’ choices to be independent. Therefore,
one could ask what would happen if the random devices
players use to ultimately choose their actions were corre-
lated. In that case, knowledge of the realization of one’s
random device would provide some partial information
about the realization of the other players’ random devices,
and therefore of their choices. In equilibrium, a player
should take this information into account. To illustrate
this point, consider the game of Chicken.

Driver 2
Slow Down Speed up

Driver 1 Slow Down 6; 6 2; 7
Speed up 7; 2 0; 0

This game has two pure-action Nash equilibria, and
one equilibrium in mixed strategies. According to the
mixed strategy Nash equilibrium, each player chooses
Slow Down with probability 2/3 and Speed Up with prob-
ability 1/3. This mixed strategy equilibrium can be im-
plemented by the following random device. Consider two
random variables S1 and S2, whose joint distribution is
given by the following table:

Driver 1 chooses his action as a function of the real-
ization of S1 and Driver 2 chooses his action as a function
of the realization of S2. (Neither player is informed of the
realization of the other player’s random variable.) In par-
ticular, Driver 1 chooses Slow Down if S1 D 1 and Speed
Up otherwise. Similarly, Driver 2 chooses Slow Down if
S2 D 1, and Speed Up otherwise. Note that according to
this pattern of behavior, each player chooses to slow down
with probability 2/3. Butmore importantly, since S1 and S2
are independent random variables, knowledge of the real-
ization of one random variable does not give any informa-
tion about the realization of the other one. Therefore, after
Driver 1 learns the realization of S1, he still believes that
Driver 2 will choose Slow Down with probability 2/3 and
consequently any choice is optimal, in particular the one

Static Games, Table 1
A randomdevice

S2
1 2

S1
1 4/9 2/9
2 2/9 1/9

described above. Similarly, after Driver 2 learns the real-
ization of S2, he still believes that Driver 1 will choose to
slow down with probability 2/3, and his planned behavior
continues to be optimal.

But what would happen if the joint distribution of S1
and S2, was not as presented in Table 1, but rather as fol-
lows?

S2
1 2

S1
1 1/3 1/3
2 1/3 0

To answer this question, assume that both players still
choose their actions according to the previous pattern
of behavior: Driver 1 chooses Slow Down if S1 D 1, and
Speed Up otherwise. The same holds for Driver 2. As a re-
sult, it is still true that each player chooses Slow Downwith
probability 2/3 and Speed Up with probability 1/3. How-
ever, since this time the conditioning random variables S1
and S2 are not independent, knowledge of the realization
of S1 affects the beliefs of Driver 1 about the probability
with which Driver 2 chooses his actions. In particular, if
S1 D 1, Driver 1 updates his beliefs and assigns probability
1/2 to Driver 2 choosing either action, and consequently,
Driver 1’s only optimal action is Slow Down, which is pre-
cisely the choice dictated by the above pattern of behav-
ior. Similarly, if S1 D 2, Driver 1 should update his beliefs
and assign probability one that Driver 2 will choose Slow
Down. Consequently, Driver 1’s best reply is to follow the
above pattern of behavior and choose Speed Up. One can
see that, given that the players know that the random vari-
ables S1 and S2 are correlated and they use this informa-
tion accordingly, there is no incentive for either of them to
deviate from the proposed pattern of behavior. Therefore,
we can say that this pattern of behavior is an equilibrium.
This notion of a correlated equilibrium was introduced in
Aumann [2]. Before we give a formal definition we intro-
duce the concept of a correlated strategy profile, which will
play a central role not only in this section, but in the next
one as well.

Definition 6 Let G D hN; (Ai)i2N ; (ui )i2N i be a game.
A correlated strategy profile in G consists of

� A finite probability space (˝;�)
� For each player i 2 N , a partition Pi of ˝ into events

of positive probability
� For each player i 2 N, a function �i : ˝ ! Ai which is

measurable with respect to Pi .

A correlated strategy profile is a description of what play-
ers do and know while playing the game G. The collec-
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tion h(˝;�); (Pi)i2Ni represents the random devices used
by the players to ultimately choose their actions. The un-
derlying probability space that governs the players’ ran-
dom devices is (˝;�). ˝ is the set of states, and for each
state !, �(!) is the probability that ! occurs. For each
i 2 N , the partition Pi represents player i’s information.
Each element of the partition represents a different realiza-
tion of the random device used by i to choose his action.
Two states that belong to the same element of the parti-
tion Pi cannot be distinguished by i, while two states that
belong to different partition cells can be distinguished by
him. For each player i, �i : ˝ ! Ai is the random variable
that describes players i’s choice of action, �i (!) being the
action chosen by him at state !. The measurability of � i
with respect to Pi formalizes the requirement that the ac-
tions chosen by player i depend only on his information
about the state of the world. Therefore, for any two states
that belong to the same element of his partition, the ac-
tions chosen by i at those states must be the same. That is,
for any !;! 0 2 P 2 Pi we have �i (!) D �i (! 0).

For example, the correlated strategy profile described
earlier for the game of chicken can be formalized as
h(˝;�); (Pi)i2N ; (�i )i2Ni, where N D fI; IIg, and

� ˝ D f(1; 1); (1; 2); (2; 1))g
� �(!) D 1/3 for all ! 2 ˝
� PI D ff(1; 1); (1; 2)g; f(2; 1)gg and PII D ff(1; 1); (2;

1)gg; f(1; 2)g

� �I(!) D

(
Slow Down if ! 2 f(1; 1); (1; 2)g
Speed up if ! 2 f(2; 1)g

� �II(!) D

(
Slow Down if ! 2 f(1; 1); (2; 1)g
Speed up if ! 2 f(1; 2)g :

According to this correlated strategy profile, there are
three equally likely states, and the players can distinguish
only one component of the state, namely the realization of
their random variable. The players’ actions are described
by the functions � I and � II which depend only on the re-
spective player’s information.

In what follows we denote by � : ˝ ! A the function
that associates with each ! 2 ˝ the action profile induced
by the strategies �k, for k 2 N . That is, � D (�k)k2N . Also,
for any i 2 N , ��i D (�k)k2Nnfig so that � D (��i ; �i ).
We are interested in correlated strategy profiles in which
no player benefits by altering his behavior. These special
profiles are introduced in the following definition.

Definition 7 Let G D hN; (Ai )i2N ; (ui )i2Ni be a strate-
gic game. A correlated equilibrium ofG is a correlated
strategy h(˝;�); (Pi )i2N ; (�i)i2N i such that for every
i 2 N and every function �i : ˝ ! Ai that is measurable

with respect to Pi ,

X

!2˝

�(!)ui (��i (!); �i (!))

�
X

!2˝

�(!)ui (��i (!); �i (!)) : (6)

The value vi D
P
!2˝ �(!)ui (��i (!); �i (!)) is player i’s

correlated equilibrium payoff.

In a correlated strategy profile each player plans to condi-
tion his choice of action on the realization of a random
variable, and the players’ random variables may be cor-
related. A correlated strategy profile is a correlated equi-
librium if no player can find an alternative way to condi-
tion his choice on the same random device, so that his ex-
pected utility is increased. Note that the player presumably
chooses his strategy (his way to condition his actions on
the outcomes of the random device) before he learns the
realization of the device. Nonetheless, he evaluates the out-
comes generated by the players’ strategies by taking into
account the precise correlation of the random devices on
which outcomes players are conditioning their behavior.

Although strictly speaking mixed strategy Nash equi-
libria are not correlated equilibria, they do induce a corre-
lated equilibrium distribution over action profiles. In or-
der to state this claim, we need the following definition.

Definition 8 Let h(˝;�); (Pi ; �i )i2Ni be a correlated
strategy profile for G. Its induced probability distribution
over action profiles is given by the function p : A! [0; 1]
defined by

p(a) D �(f! 2 ˝ : �(!) D ag)

D
X

f!2˝ : 
(!)Dag

�(!) for all a 2 A :

Proposition 3 Let G D hN; (Ai)i2N ; (ui )i2N i be a strate-
gic game, and let x D (x1; � � � ; xn) be a mixed strategy
Nash equilibrium of G. Then, there is a correlated equilib-
rium h(˝;�); (Pi)i2N ; (�i )i2Ni whose induced probabil-
ity distribution over action profiles is the same as x’s distri-
bution.

Proof Let h(˝;�); (Pi )i2N ; (�i)i2Ni be defined as fol-
lows:

� ˝ D A
� �(a) D

Q

i2N
xi(ai )

� Pi (a) D fb 2 A : bi D aig
� �i (a) D ai .
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We claim that h(˝;�); (Pi )i2N ; (�i)i2Ni is a corre-
lated equilibrium whose probability distribution is the
same as x’s distribution. Let i 2 N. Since x is a mixed strat-
egy Nash equilibrium, we know by Lemma 1 that for all
ai 2 Ai

if xi(ai) > 0 then Ui (x) D Ui (ai ; x�i)
if xi(ai ) D 0 then Ui (x) � Ui (ai ; x�i ) :

Consequently, for all ai 2 Ai

xi(ai )Ui (ai ; x�i ) � xi (ai)Ui (bi ; x�i) for all bi 2 Ai :

(7)

Now let �i : A! Ai be a function that is measurable with
respect to Pi . Let a�i 2 A�i be a fixed profile of actions
for players other than i. Letting bi D �i (ai ; a�i), Eq. (7)
implies that

xi(ai)Ui (ai ; x�i) � xi(ai )Ui (�i (ai ; a�i ); x�i )
for all ai 2 Ai :

Adding over all ai 2 Ai ,

X

ai2Ai

xi(ai )Ui (ai ; x�i )

�
X

ai2Ai

xi(ai )Ui (�i (ai ; a�i ); x�i ) :

Taking into account the definition of Ui (ai ; x�i ) and
Ui (�i (a); x�i), and using the measurability of � i with re-
spect to Pi , we get

X

ai2Ai

xi(ai)
X

a�i2A�i

0

@
Y

j2Nnfig

x j(a j)

1

A ui (ai ; a�i )

�
X

ai2Ai

xi(ai)
X

a�i2A�i

0

@
Y

j2Nnfig

x j(a j)

1

A ui (�i (a); a�i )

X

a2A

0

@
Y

j2N

x j(a j)

1

A ui (ai ; a�i)

�
X

a2A

0

@
Y

j2N

x j(a j)

1

A ui (�i (a); a�i )

X

a2A

�(a)ui (ai ; a�i) �
X

a2A

�(a)ui (�i (a); a�i)

X

a2A

�(a)ui (�i (a); ��i (a)) �
X

a2A

�(a)ui (��i (a); ��i (a)):

This shows that h(˝;�); (Pi )i2N ; (�i)i2N i is a correlated
equilibrium of G. Its induced probability distribution over
action profiles is

p(a) D�(fb 2 A : �(b) D ag)
D�(fb 2 A : b D ag)
D�(a)

D
Y

i2N

xi (ai) :

�

Although a correlated strategy profile consists of a ran-
domizing device used by the players, it turns out that
the only feature of the device that determines whether or
not the correlated strategy profile constitutes a correlated
equilibrium is its induced probability distribution over the
action profiles. This is shown by the next proposition.

Proposition 4 Let G D hN; (Ai )i2N ; (ui )i2Ni be a fi-
nite strategic game. Every correlated equilibrium probabil-
ity distribution over action profiles can be obtained in a cor-
related equilibrium of G in which

� ˝ D A
� Pi(a) D fb 2 A : bi D aig.

Proof Let
˝
(˝ 0; � 0); (P0i ; � 0i )i2N

˛
be a correlated equi-

librium of G. Consider the correlated strategy profile
h(˝;�); (Pi ; �i )i2N i defined by

� ˝ D A
� �(a) D � 0(f! 2 ˝ : � 0(!) D ag) for each a 2 A
� Pi(a) D fb 2 A : bi D aig for each i 2 N and for each

a 2 A
� �i(a) D ai for each i 2 N.

It is clear that this correlated strategy profile induces
the required distribution over action profiles. Indeed,

p(a) D�(f! 2 ˝ : �(!) D ag)
D�(fa0 2 A : a0 D ag)
D�(a)
D� 0(f! 2 ˝ 0 : � 0(!) D ag) :

It remains to show that this profile is a correlated equi-
librium. Take a function �i : A ! Ai that is measurable
with respect to Pi . Define � 0i : ˝

0 ! Ai by � 0i (!) D
�i (� 0(!)) D �i (� 0�i (!); �

0
i (!)). The function � 0i is mea-

surable with respect to P0i . Indeed, if ! 0 2 P0i(!), then
� 0i (!

0) D � 0i (!) by measurability of � 0i with respect to P0i .
Therefore, by definition of Pi , Pi(� 0(! 0)) D Pi (� 0(!)),
and both � 0i (!

0) and � 0i (!) belong to the same element of
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Pi . Since � i is measurable with respect to Pi , we conclude
that � 0i (!

0) D �i (� 0i (!
0)) D �i (� 0i (!)) D �

0
i (!).

Also,
X

!2˝

�(!)ui (��i (!); �i (!))

D
X

a2A

�(a)ui(a�i ; �i (a))

D
X

a2A

X

f!2˝0 : 
 0(!)Dag

� 0(!)ui (� 0�i (!); �i (�
0(!)))

D
X

a2A

X

f!2˝0 : 
 0(!)Dag

� 0(!)ui (� 0�i (!); �
0
i (!))

D
X

!2˝0

� 0(!)ui (� 0�i (!); �
0
i (!)) :

In particular, for �i D �i ,

X

!2˝

�(!)ui(��i (!); �i(!))

D
X

!2˝0

� 0(!)ui (� 0�i (!); �
0
i (!)) :

Since
˝
(˝ 0; � 0); (P0i ; � 0i )i2N

˛
is a correlated equilib-

rium,

X

!2˝0

� 0(!)ui (� 0�i (!); �
0
i (!))

�
X

!2˝0

� 0(!)ui (� 0�i (!); �
0
i (!))

and therefore

X

!2˝

�(!)ui(��i (!); �i(!))

�
X

!2˝

�(!)ui (��i (!); �i (!)) :

�

Rationality, Correlated Equilibrium
and Equilibrium in Beliefs

As mentioned earlier, Nash equilibrium and correlated
equilibrium are two examples of what is known as solution
concepts. Solution concepts assign to each game a pattern
of behavior for the players in the game. The interpretation
of these patterns of behavior is not always explicit, but it
is fair to say that they are usually interpreted either as de-
scriptions of what rational people do, or as prescriptions of
what rational people should do. There is a growing litera-
ture that tries to connect various game theoretic solution

concepts to the idea of rationality. Rationality is generally
understood as the characteristic of a player who chooses
an action that maximizes his preferences, given his infor-
mation about the environment in which he acts. Part of
the information a player has is represented by his beliefs
about the behavior of other players, their beliefs about the
behavior of other players, and so on. So when one speaks
of the rationality of players, one needs to take into account
their epistemic state. There is a formal framework which is
appropriate for discussing the actions, knowledge, beliefs
and rationality of players. Namely, the framework of a cor-
related strategy profile. As defined in Sect. “Correlated
Equilibrium”, a correlated strategy profile in a game G
consists of

� A finite probability space (˝;�)
� For each player i 2 N a partitionPi of˝ into events of

positive probability
� For each player i 2 N a function �i : ˝ ! Ai which is

measurable with respect to Pi .

For the present discussion we interpret a correlated strat-
egy profile h(˝;�); (Pi)i2N ; (�i )i2Ni as a description of
the players’ behavior and beliefs, as observed by an out-
side observer. The set ˝ is the set of possible states of the
world and � is the prior probability on˝ shared by all the
players. For each player i 2 N, Pi is a partition of ˝ that
represents i ’s information. At state ! 2 ˝ , player i is in-
formed not of the state that actually occurred, but of the el-
ement Pi(!) of his partition that contains !. Player i then
uses this information and his prior � to update his be-
liefs about the true state of the world. Finally, the function
� i represents the actions taken by player i at each state.
In particular, �i (!) is the action chosen by i at state !.
Although a correlated equilibrium can be interpreted as
a correlated strategy profile prescribed by a given solution
concept (that of a correlated equilibrium), here we want
to interpret a correlated strategy profile as a description
of what players actually do and believe. Although players
cannot freely choose their beliefs (in the same way as they
cannot choose their preferences), they can choose their ac-
tions. Furthermore, they have no obligation to behave ac-
cording to the specified correlated strategy profile. How-
ever, ultimately players do behave in a certain way and
that behavior is what is represented by the given correlated
strategy profile.

Once we fix a correlated strategy profile we can address
the rationality of the players. Formally,

Definition 9 Player i 2 N is Bayes rational at ! 2 ˝ if
his expected payoff at!, E(ui (�)jPi)(!), is at least as large
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as the amount E(ui (��i ; ai)jPi )(!) that he would have
got had he chosen action ai 2 Ai instead of �i (!).

In other words, player i is rational at a given state of the
world if the action �i (!) he chooses at that state max-
imizes his expected utility given his information, Pi (!),
and, in particular, given his beliefs about the actions of the
other players.

As before, for any finite set T, let �(T) be the set of
all probability distributions on T. The beliefs of player i
about the actions of the other players are represented by
his conjectures. A conjecture of i is a probability distri-
bution  i 2 � (A�i ) over the elements of A�i . For any
j ¤ i, the marginal of  i on Aj is the conjecture of i
about j induced by  i. Given a correlated strategy profile
h(˝;�); (Pi)i2N ; (�i )i2Ni, one can determine the conjec-
tures that each player is entertaining at each state of the
world about the actions of the other players. These conjec-
tures are given by the following definition.

Definition 10 Given a correlated strategy profile
h(˝;�); (Pi ; �i )i2Ni, the conjectures of i 2 N about the
other players’ actions are given by the function �i : ˝ !
�(A�i ) defined by

�i(!)(a�i) D
�
�
f! 0 2 Pi (!) : ��i (! 0) D a�ig

�

�
�
Pi (!)

� :

For each !, �i(!) 2 �(A�i ) is the conjecture of i at !.
For j ¤ i, the marginal of �i (!) on Aj is the conjecture
of i at ! about j’s actions.

Given a correlated strategy profile, we can speak about
what each player knows. The object of knowledge are
called events, which are the subsets of the set of states of
the world ˝ . We say that player i knows event E � ˝ at
state !, if Pi (!) � E. That is, i knows E at ! if whatever
state he deems possible at ! is in E.

The next result, proved by Aumann and Branden-
burger [5], shows a remarkable relationship between the
rationality of players and the concept of equilibrium in be-
liefs.

Theorem 2 Fix a two-person game, G D hN; (Ai)i2N ;
(ui )i2N i, and let h(˝;�); (Pi)i2N ; (�i )i2Ni be a cor-
related strategy profile for G. Let  1 2 �(A1) and
 2 2 �(A2) be two conjectures, one about player 1’s ac-
tions and the other about player 2’s actions. Assume that
at some state ! 2 ˝ each player knows that the other is ra-
tional and that their conjectures at ! are (�1(!); �2(!)) D
( 2;  1). Then, ( 1;  2) is an equilibrium in beliefs.

Proof The fact that player i knows at ! that j’s conjecture
is  i means that

Pi(!) � f! 0 2 ˝ : � j(! 0)(ai ) D  i(ai)
for all ai 2 Aig :

Therefore

� j(!)(ai ) D  i(ai) for all ai 2 Ai : (8)

Given Proposition 2 and Corollary 1, we need to show that
if  i(a�i ) > 0, a�i is a best response to  j, for i; j D 1; 2,
i ¤ j. For this purpose, assume that  i(a�i ) > 0 for some
a�i 2 Ai . Then, by definition of � j and (8), � j(!)(a�i ) D
�
�˚
! 0 2 P j(!) : �i (! 0) D a�i

��
> 0. Consequently, there

is ! 0 2 P j(!) such that �i(! 0) D a�i . Since player j knows
at ! that player i is rational,

! 0 2 P j(!) �
˚
! 00 2 ˝ : E

�
ui (�)jPi

�
(! 00)

� E
�
ui (��i ; ai)jPi

�
(! 00) for all ai 2 Ai

�
:

Therefore,

E
�
ui (�)jPi

�
(! 0) � E

�
ui (��i ; ai)jPi

�
(! 0)

for all ai 2 Ai

and since �i : ˝ ! Ai is measurable with respect to Pi ,
�i (! 0) D a�i is the action that player i chooses at all states
in Pi (! 0). Then we can write

E
�
ui (��i ; a�i )jPi

�
(! 0) � E

�
ui (��i ; ai )jPi

�
(! 0)

for all ai 2 Ai :

That is, for all ai 2 Ai

X

!002Pi (!0)

�(! 00)
�(Pi (! 0))

ui (��i (! 00); a�i )

�
X

!002Pi (!0)

�(! 00)
�(Pi (! 0))

ui (��i (! 00); ai )

X

a j2A j

X

!002Pi (!0)

 j(!00)Da j

�(! 00)
�(Pi (! 0))

ui (a j; a�i )

�
X

a j2A j

X

!002Pi (!0)

 j(!00)Da j

�(! 00)
�(Pi (! 0))

ui (a j; ai )
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X

a j2A j

�
�˚
! 00 2 Pi (! 0) : � j(! 00) D a j

��

�(Pi (! 0))
ui (a j; a�i )

�
X

a j2A j

�
�˚
! 00 2 Pi (! 0) : � j(! 00) D a j

��

�(Pi (! 0))
ui (a j; ai)

X

a j2A j

�i(! 0)(a j)ui (a j; a�i )

�
X

a j2A j

�i(! 0)(a j)ui (a j; ai) : (9)

Since ! 0 2 P j(!) and player j knows at ! that i’s conjec-
ture is  j, then

! 0 2 P j(!) �
˚
! 00 2 ˝ : �i(! 00)(a j) D  j(a j)

for all a j 2 Aj
�
:

Therefore �i(! 0)(a j) D  j(a j) for all a j 2 Aj , or
�i(! 0) D  j . That is, i’s conjecture at ! 0 about j’s actions
is  j. Consequently, substituting in (9),

X

a j2A j

 j(a j)ui (a j; a�i ) �
X

a j2A j

 j(a j)ui (a j; ai )

8ai 2 Ai :

That is, a�i is a best response to player i’s beliefs about j ’s
actions. �

The only assumptions required by Theorem 2 is that play-
ers know they are rational, and that they know each other’s
conjectures. In a correlated strategy profile for a two-
player game, there is only one player entertaining a conjec-
ture about the actions of player 1, namely, player 2. Simi-
larly, player 1 is the only one who entertains a conjecture
about the actions of player 2. In an n-person game, with
n > 2, for each player, there is more than one player en-
tertaining a conjecture about his actions. Therefore, since
an equilibrium in beliefs consists of a profile of beliefs,
each of which is shared by n � 1 players, a generaliza-
tion of Theorem 2 would require the players’ beliefs about
player i’s actions, for i 2 N, to be identical. In order to
obtain these common beliefs it is not sufficient to assume
that players know each other’s conjectures. One need to
strengthen this assumption. Also, in an equilibrium in be-
liefs, the common belief about player i’s actions assigns
positive probability only to best responses to i’s conjec-
tures about the choices of the other players. Furthermore,
i’s conjectures about the other players’ choices is the prod-
uct of his beliefs about each of the other players. In other
words, an equilibrium in beliefs implicitly assumes that
players believe that the other players’ choices are indepen-
dent. Aumann and Brandenburger [5] show that one way

to obtain common conjectures and, simultaneously, that
players believe that the other players act independently, is
to assume that players’ conjectures are commonly known.
This surprising and deep result is stated in the next theo-
rem.

Theorem 3 Let G D hN; (Ai )i2N ; (ui )i2Ni be a strategic
game, and let h(˝;�); (Pi)i2N ; (�i )i2Ni be a correlated
strategy profile for G. Also let ( i)i2N 2 �i2N�(A�i ) be
a profile of conjectures, one for each player. Assume that at
some state ! 2 ˝ each player knows that the others are ra-
tional. Further, assume that at ! their conjectures are com-
monly known to be ( i)i2N. Then, for each j, all the con-
jectures  i of players i other than j, induce the same belief
' j 2 �(Aj) about j’s actions, and the resulting profile of be-
liefs, ('i )i2N, is an equilibrium in beliefs.

Rationality and Correlated Equilibrium

The previous result shows a surprising relationship be-
tween the players’ rationality and the concept of equilib-
rium in beliefs. If at some state of the world players know
that everybody is rational, and if their conjectures are com-
monly known at that state, then their beliefs about each
player’s actions are in equilibrium. It is not that their ac-
tions constitute an equilibrium, but that their beliefs do.
The question that naturally arises is: are there any epis-
temic conditions on the players that would induce them to
play according to equilibrium? To answer this we turn to
Aumann [3], where it is stated that if players are rational
at every state, then their behavior constitutes a correlated
equilibrium. Therefore, in order to obtain an equilibrium
behavior, a sufficient condition is not that players be ratio-
nal, or that they know that they are rational at some partic-
ular state, but that their rationality be common knowledge.
And if it is common knowledge that all players are rational,
then their behavior is not necessarily a Nash equilibrium,
but a correlated equilibrium.

Theorem 4 Let G be a strategic game, and let
˝
(˝;�);

(Pi)i2N ; (�i )i2N
˛
be a correlated strategy profile for G.

If each player is rational at each state of the world, then
h(˝;�); (Pi )i2N ; (�i)i2Ni is a correlated equilibrium.

Proof Let �i : ˝ ! Ai be a function that is measurable
with respect to Pi . Since i is Bayes rational at !

E(ui (�)jPi )(!) � E(ui (��i ; ai)jPi)(!) 8ai 2 Ai :
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That is,

X

!02Pi (!)

�(! 0)
�(Pi(!))

ui (��i (! 0); �i (! 0))

�
X

!02Pi (!)

�(! 0)
�(Pi(!))

ui (��i (! 0); ai) 8ai 2 Ai :

In particular, for ai D �(!) D �(! 0) for all ! 0 2 Pi (!),

X

!02Pi (!)

�(! 0)
�(Pi(!))

ui (��i (! 0); �i (! 0))

�
X

!02Pi (!)

�(! 0)
�(Pi(!))

ui (��i (! 0); �(! 0)) :

Multiplying both sides by �(!) and adding over all the
elements of Pi we get

X

!2˝

�(!)ui (��i (!); �i (!))

�
X

!2˝

�(!)ui (��i (!); �(!)) :

�

Bayesian Games

Thus far, we have considered static games, which are ob-
jects of the form hN; (Ai )i2N ; (ui )i2Ni. Although these
games have many applications, they are not readily suit-
able for the analysis of situations involving asymmetric in-
formation. Indeed, an implicit assumption behind the def-
inition of a static game is that all players have the same
information about the relevant aspects of the situation. In
particular, all players have the same information about the
sets of actions and preferences of all players. A static game
seems suitable to model strategic interactions like the pris-
oner’s dilemma, rock scissors paper, and even chess. At
the time they choose their actions, all the players have ex-
actly the same information. There might be what is called
strategic uncertainty, namely, uncertainty about what the
players will do, but there is no uncertainty about the rules
of the game and about the preferences of the players. But
how would one translate a game of cards like bridge or
poker into a static game? In a game of cards, at the time of
choosing his actions, each player knows the cards he holds
in his hand, but does not know the cards of his opponents.
He only has a belief about the cards held by his opponents.
In order to make a sound choice, a player will try to pre-
dict the actions of his opponents, but for this it is crucial to
use his beliefs about the cards they hold. For the same rea-
son, his opponents should use their beliefs about their own

opponents’ cards in order to make a sound choice. Thus,
the beliefs about the cards held by each player should be
part of a description of a game with asymmetric informa-
tion. Further, in order to predict his opponents’ actions,
a player also needs to assess his opponents’ beliefs about
his own cards. This seems to induce an intractable infinite
regress of beliefs, and beliefs about beliefs. Harsanyi [12]
provided the basic structure to describe and analyze strate-
gic situations where players are asymmetrically informed.
This structure is called a Bayesian game.

Definition 11 A Bayesian Game is a system hN; (˝;�);
(Ai ;Pi ; ui )i2N i where

� N is the set of players
� ˝ is the set of states of nature
� � is the players’ common prior belief (a probability

measure over the set of states)
� Ai is player i’s set of actions
� Pi is player i’s information partition (a partition of ˝

into sets of positive measure). Each element of the par-
tition is referred to as a player’s type.

� ui : �i2N Ai �˝ is player i’s Bernoulli utility function
(a function over pairs (a; !) where a 2 A and ! 2 ˝ ,
the expected value of which represents the player’s
preferences among lotteries over the set of such pairs).

The interpretation of a Bayesian game is as follows. The
basic uncertainty is represented by the probability space
(˝;�) of all states of nature and the prior probability over
them. Each state represents a realization of all the para-
metric uncertainty of the model. For instance, in a game of
cards, each state represents each of the possible card deals.
The information of player i 2 N is represented by his in-
formation partition Pi . While states in the same element
of the partition cannot be distinguished by the player, he
can distinguish between states that belong to different par-
tition cells. In a game of cards, for instance, each partition
cell represents a particular set of cards dealt to the player.
The probability measure � represents the players’ prior
belief about the state of nature. This prior belief will be
used along with the information obtained by each player
to form beliefs about the other players’ information. The
set of actions of player i is Ai. Note that there is no loss
of generality in assuming that this set does not depend on
the state of nature. One can always add unavailable actions
and assign them intolerable disutility. Finally, ui is the pay-
off function that associates to each state of nature and ac-
tion profile a utility level. Note that since the state of the
world is unknown to the player at the time of making his
choice, a player faces a lottery for any given action pro-
file. The assumption is that the player evaluates this lottery
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according to the expected value of ui with respect to that
lottery.

Let hN; (˝;�); (Ai ;Pi ; ui )i2Ni be a Bayesian game.
A strategy for player i 2 N is a function �i : ˝ !

Ai that is measurable with respect to Pi . We denote
the set of strategies for player i by Bi . That is, Bi D

f�i : ˝ ! Ai : �i is measurable w.r.t. Pig. The interpre-
tation of a strategy in a Bayesian game is the usual one.
For each state of nature ! 2 ˝ , �i (!) is the action chosen
by player i at !. The measurability requirement imposes
that player i’s actions depend only on his information. If
player i cannot distinguish between two states of nature,
then hemust choose the same action at both states. Player i
evaluates a profile � : ˝ ! Aof strategies according to the
expected value of ui with respect to �.

In order to define an equilibrium notion for Bayesian
games we follow the same idea used for the definition of
a mixed strategy equilibrium. Namely, we translate the
Bayesian game into a standard game, and then define an
equilibrium of the Bayesian game as the Nash equilibirum
of the induced game.

Definition 12 A Bayesian equilibrium of a Bayesian
game hN; (˝;�); (Ai ;Pi ; ui )i2N i is a Nash equilibrium of
the strategic game: hN; (Bi)i2N ; (Ui )i2Ni where for each
profile � : ˝ ! A of strategies,Ui (�) D E�[ui (�(!); !)]
is i’s expected utility with respect to �.

A Bayesian equilibrium of a Bayesian game is a Nash equi-
librium of a properly defined static game. As such, con-
ditions for its existence can be derived from Theorem 1.
However, in many situations one is interested in particular
kinds of equilibria. Specifically, in the analysis of auctions
or of the war of attrition, one is often interested in efficient
outcomes. In a single object auction, efficient outcomes are
characterized by the fact that in equilibrium the object is
allocated to the buyer who values it most. According to
many standard auction rules, the object goes to the high-
est bidder. Therefore, in such auctions, to guarantee an ef-
ficient outcome, one would need a monotone equilibrium,
namely, one in which bidders bids are higher the higher
their valuations for the object are. Athey [1] shows con-
ditions under which a Bayesian equilibrium exists where
strategies are non-decreasing. The crucial conditions are
that the players’ types can be represented by a one-dimen-
sional variable, and that, fixing a nondecreasing strategy
for each of a player’s opponents, this player’s expected pay-
offs satisfies a single-crossing property. This single-cross-
ing property roughly says that if a high action is preferred
to a low action for a given type t, then the same must be
true for all types higher than t. McAdams [16] extended

Athey’s result to the case where types and actions are mul-
tidimensional and partially ordered.

The Asymmetric Information Version
of the War of Attrition

We have seen that, when applied to the war of attrition,
as modeled by a standard strategic game or by its mixed
extension, the notion of Nash equilibrium does not yield
a satisfactory prediction.1 In the former case all the equi-
libria involve no fight, and in the latter case the equilib-
rium dictates a more aggressive behavior to the player who
values the contested object less. In what follows, we ana-
lyze the war of attrition as a Bayesian game. That is, we as-
sume that the players are ex-ante symmetric but they have
private information about their value for the contested ob-
ject.

A Bayesian game that represents the war of attrition is
given by hN;˝; (Ai ; �i ;Pi ; ui )i2Ni where

� N D f1; 2g
� ˝ D [0;1)2 D f(v1; v2) : 0 � vi <1; i D 1; 2g
� Ai D [0;1) for i D 1; 2
� Pi (v̂1; v̂2) D f(v1; v2) 2 ˝ : vi D v̂ig for i D 1; 2
� �((v1; v2) � (v̂1; v̂2)) D F(v̂1) � F(v̂2)

� ui ((a1; a2); (v1; v2)) D

(
�ai if ai � a j

vi � a j if ai > a j :

Here the set of types of player i, for i D 1; 2, is represented
by the player’s willingness to fight, vi. The players’ will-
ingness to fight are drawn independently from the same
distribution F. A state of the world is, therefore, a realiza-
tion (v1; v2) of the players’ types, and at that state, each
player is informed only of his type. Finally, the utility of
a player is his valuation for the prey, if he obtains it, net of
the time spent fighting for it. We are interested in a sym-
metric equilibrium in which both players use a symmet-
ric, strictly increasing strategy ˇ : [0;1)! [0;1), where
ˇ(v) is the time at which a player with willingness to fight v
is dictated by the equilibrium to give up. Such an equilib-
rium would imply that types who value the prey more, are
willing to fight more. Further, the probability of observ-
ing a fight in equilibrium would not be 0 (in fact, it would
be 1.)

It turns out that a symmetric equilibrium strategy is
given by

ˇ(v) D
Z v

0

x f (x)
1 � F(x)

dx;

1The war of attrition was analyzed in Maynard Smith [14]. For an
analysis of the asymmetric information version of the war of attrition,
see Krishna and Morgan [13].
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where f denotes the derivative of F. To see this, assume
that player j behaves according to ˇ and that player i
chooses to give up at t. Letting z be the type such ˇ(z) D t,
the expected utility of player i from choosing t is

U(vi ; z) D
Z z

0
(vi � ˇ(y)) f (y)dy � ˇ(z)(1 � F(z)) :

Taking derivatives with respect to z, and using the fact that
ˇ0(z) D z f (z)/[1 � F(z)] we obtain

@U
@z

(vi ; z) D vi f (z) � ˇ0(z)(1 � F(z))

D (vi � z) f (z);

which is positive for z < vi , and negative for z > vi . As
a result, the expected utility of player i with willingness to
pay vi is maximized at z D vi , which implies that the opti-
mal choice is ˇ(vi).

Thus, modeling the war of attrition as an asymmetric
game has allowed us to find an equilibrium in which play-
ers with higher willingness to fight fight more, and there is
a non-negligible probability of observing a fight.

Evolutionary Stable Strategies

The notion of the Nash equilibrium concept involves play-
ers choosing actions that maximize their payoffs given the
choices of the other players. The usual interpretation of
a Nash equilibrium is as a pattern of behavior that rational
players should adopt. However, Nash equilibria are some-
times interpreted more descriptively as patterns of behav-
ior that rational players do adopt. Certainly, rationality of
players is neither a necessary condition nor a sufficient one
for players to play a Nash equilibrium. The relationship
between rationality and the various solution concepts is
not apparent and has been the focus of an extensive lit-
erature (see, for example, [3,4,5,7]). Nonetheless, the no-
tion of a Nash equilibrium evokes the idea of players con-
sciously making choices with the deliberate objective of
maximizing their payoffs. It is therefore quite remarkable
that a concept almost identical to that of Nash equilibrium
has emerged from the biology literature. This concept de-
scribes a population equilibrium where unconscious or-
ganisms are programmed to choose actions with no de-
liberate aim. In this equilibrium, members of the popula-
tion meet at random over and over again to interact. At
each interaction, these players act in a pre-programmed
way and the result of their actions is a gain in biological fit-
ness. Fitness is a concept related to the reproductive value
or survival capacity of an organism. In a temporary equi-
librium, the fitness gains are such that the proportions of

individuals that choose each one of the possible actions re-
main constant. However, this temporary equilibrium may
be disturbed by the appearance of a mutation, which is
a new kind of behavior. This mutation may upset the tem-
porary equilibrium if its fitness gains are such that the new
behavior spreads over the population. Alternatively, if the
fitness gains of the original population outweigh those of
the mutation, then the new behavior will fail to propagate
and will eventually disappear. In a population equilibrium,
the interaction of any mutant with the whole population
awards the mutant insufficient fitness gains, and as a result
the mutants disappear. The notion of a population equi-
librium is formalized by means of the concept of an evolu-
tionary stable strategy, introduced by Maynard Smith and
Price [15].

In what follows we restrict our attention to symmetric
two-player games. So let G D hf1; 2g ; fA1;A2g ; fu1; u2gi
be a game such that A1 D A2 D A, and such that for all
a; b 2 A, u1(a; b) D u2(b; a). An evolutionary stable strat-
egy is an action in A such that if all members of the popula-
tion were to choose that action, no sufficiently small pro-
portion of mutants choosing an alternative action would
succeed in invading the population. Alternatively, an evo-
lutionary stable strategy is an action in A such that if all
the members of the population were to choose that action,
the population would reject all sufficiently smallmutations
involving a different action.

More specifically, suppose that all members of the pop-
ulation are programmed to choose a 2 A, and then a pro-
portion " of the population mutates and adopts action
b 2 A. In that case, the probability that a given member
of the population meets a mutant is ", while the probabil-
ity of meeting a member that plays a is 1 � ". Therefore,
the mutation will not propagate and will vanish if the ex-
pected payoff of a mutant is less than the expected payoff
of a member of the majority. Otherwise it will propagate.
This leads to the following definition.

Definition 13 An action a 2 A is an evolutionary sta-
ble strategy of G if there is an "̄ 2 (0; 1) such that for all
" 2 (0; "̄), and for all b 2 A

(1�")u1(a; a)C"u1(a; b) > (1�")u1(b; a)C"u1(b; b) :
(10)

The following result shows that the concept of an evolu-
tionary stable strategy is very close to the notion of a Nash
equilibrium.

Proposition 5 If a 2 A is an evolutionary stable strategy
of G, then (a; a) is a Nash equilibrium. And if (a; a) is
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a strict Nash equilibrium then a is an evolutionary stable
strategy.

Proof If u1 (a; a) > u1 (b; a) for all b 2 A n fbg, then
inequality (10) holds for all sufficiently small " > 0. If
u1 (b; a) > u1 (a; a) for some b 2 A, the reverse inequal-
ity holds for all sufficiently small ". �

Future Directions

Static games have been shown to be a useful framework for
analyzing and understanding many situations that involve
strategic interaction. At present, a large body of literature
is available that develops various solution concepts, some
of which are refinements of Nash equilibrium and some of
which are coarsenings of it. Nonetheless, several areas for
future research remain. One is the application of the the-
ory to particular games to better understand the situations
they model, for example auctions. In many markets trade
is conducted by auctions of one kind or another, including
markets for small domestic products as well as some cen-
tralized electricity markets where generators and distribu-
tors buy and sell electric power on a daily basis. Also, auc-
tions are used to allocate large amounts of valuable spec-
trum among telecommunication companies. It would be
interesting to calculate the equilibria of many real life auc-
tions. Simultaneously, future research should also focus on
the design of auctions whose equilibria have certain desir-
able properties.

Another future direction would be to empirically and
experimentally test the theory. The various equilibrium
concepts predict certain kinds of behavior in certain
games. Our confidence in the predictive and explanatory
power of the theory depends on its performance in the
field and in the laboratory. Moreover, the experimental
and empirical results should provide valuable feedback for
further development of the theory. Although some valu-
able experimental and empirical tests have already been
performed (see [17,19,22,25] to name a few), the empiri-
cal aspect of game theory in general, and of static games in
particular, remains underdeveloped.
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Glossary

Locally stationary process A stochastic process that
when sampled in time, its sampled points have joint
characteristics in a short time window that only de-
pend on the difference between the sampled time
points, and not the global time point of the samples
within the time window.

Multiresolution analysis The analysis of a phenomenon
of interest over different temporal or spatial scales and
locations.

Shrinkage A method of estimation where the initial esti-
mator is decreased by multiplication with a factor of
magnitude less than or equal to one. If the object being
estimated is small, then a reduced variance will arise,
that sets off the increased bias in estimation.

Sparsity Sparsity in a vector corresponds to the support
of the vector being limited. The sparsity can either be
strict, i. e. the vector is perfectly supported in a small
subset of all its entries, or the magnitudes of the entries
decay sufficiently rapidly, if ordered in magnitude.

Stationary process A stochastic process that when sam-
pled in time, its sampled points have joint character-
istics that only depend on the difference between the
sampled time points, and not the global time point of
the samples.

Thresholding A method of estimation where the initial
estimator is set to zero if it does not exceed a given
threshold. Thresholding is a special case of shrinkage.

Wavelet and scaling functions The functions that the
wavelet and scaling filters converge to in increasing
scale, when using discrete wavelet filters. These are not
for any finite scale equivalent to the wavelet and scaling
filters.

Wavelet and scaling filters The high and low pass digital
filters that are used to calculate the discrete wavelet
transform of a given sequence or vector. These are
a pair of quadrature mirror filters that satisfy the per-
fect reconstruction property.

Definition of the Subject

A wavelet is a function essentially supported over a small
time-window, that is oscillatory, with a local period that

ranges over a limited sets of values. A wavelet function
can be considered jointly local in time and frequency.
Wavelets have become an integral part of statistical anal-
ysis of structured phenomena. Their utility for inference
is based on several of their important properties, namely
compression, separation of multiscale features, and dif-
ferencing of a given set of moments. The statistical anal-
ysis of processes using wavelets presents a more faceted
view of the phenomenon of interest than traditional meth-
ods. The utility of this in many areas is unquestion-
able, and statistical applications of wavelets include areas
as disparate as climatology, econometrics, finance, geo-
physics, mathematics, as well as signal and image process-
ing.

Introduction

The field of wavelets in statistics can roughly be divided
into two areas, namely the usage of continuous wavelets,
and the usage of discrete wavelets. Continuous wavelets
are defined at a continuum of locations, whilst discrete
wavelet filters are sequences defined only at a countable
number of locations and scales. These sequences are not
strictly speaking wavelet functions, but converge in in-
creasing scale to such functions. Unfortunately in the
literature both functions and filters are referred to as
‘wavelets’.

Continuous wavelets are applied to the characteriza-
tion of random processes, but are not usually used for
actual signal estimation, as the transform does not pos-
sess an exact discretely implementable inverse. Continu-
ous wavelets do not necessarily satisfy the constraint of
compactness in time, and this permits more freedom in
their design. A third class of wavelets that often receive
separate treatment are complex-valued discrete wavelet
filters. These can be thought of as bridging the gap be-
tween continuous and discrete representations. Complex
wavelets are often chosen to be redundant, and have inter-
pretable magnitude and phase, see for example the review
of these in [48].

The statistical representation of structured phenom-
ena using decompositions was first introduced by [47]who
analyzed time series using Fourier decompositions. This
analysis method corresponds to decomposing a sample
into cosines and sines to determine the power associated
with each frequency or mode. The interpretation of the
observed weight attached to each frequency depends on
the model posited for the observed data. If the process is
assumed to be stationary, then the observed weight can
be shown to converge in expectation to the true weight,
namely the Fourier transform of the autocovariance of the
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time series. By calculating the full set of weights across fre-
quencies, wemay obtain a picture of the frequency content
of the process. Even for processes that are not stationary,
decomposing the set of observations into sinusoids allows
us to visualize the frequency content of the signal. As long
as the process is harmonizable, see [36], such decomposi-
tions are suitable.

Unfortunately whilst the decomposition of a time-
varying process into sines and cosines is interpretable in
a global sense, and can be shown to possess some suitable
properties, it is not as easily interpreted as might be the
case. Many processes are generated by mechanisms that
fundamentally alter over time. It is therefore suitable to use
decomposition functions that unlike sines are limited in
time, but still correspond to oscillatory functions. A popu-
lar choice of such functions is wavelets.

A wavelet is a time-limited oscillation, or a “little
wave”. The first family was constructed by Alfred Haar in
1910, see [26]. The subject lay dormant formany years, un-
til themid 1980swhen their usage in geophysics revitalized
interest in the set of decompositions, by Morlet, and one
of the groundbreaking new articles corresponds to [24].
A great theoretical leap forward was the construction of
discrete wavelet filters, see [10]. Most of the statistical us-
age of wavelets has focused around the usage of discrete
wavelets.

The development of statistical methods can really be
grouped into three main strands of development: i) the
usage of compression for non-parametric signal estima-
tion, following work by [15,16,17], ii) the characterization
of stochastic difference stationary processes, see [38,51],
and iii) the inference of locally stationary wavelet pro-
cesses, see [40]. Theoretical results have also been achieved
in terms of the characterization of stochastic processes,
see [3,4,8,34], but these results as of yet have had limited
practical implications.

After initial usage of the wavelet transform for sig-
nal estimation it became obvious that despite the wavelet
transform’s orthogonalizing effects, relationships between
coefficients must be used, to derive better representa-
tions, see [58] The development of data driven decompo-
sitions, and usage of the ‘lifting algorithm’, [12], followed
in the second strand of developments. Further steps for-
ward included the construction of two dimensional de-
compositions for image estimation, where notable contri-
butions include the ridgelet, curvelet and bandelet trans-
forms, see [9,33,52]. Outstanding problems remain in the
statistical usage of these transforms, and investigations
have mainly been limited to modeling the observed phe-
nomena as deterministic and immersed in some form of
noise.

Decomposition View of RandomProcesses

Wavelets are used to analyze observations whose generat-
ing mechanism can be characterized in terms of the loca-
tion the observation is made at. This could be time, space
or some other suitable indexing. We shall denote the lo-
cation of any observation by t 2 Rd , where d denotes the
dimension of the indexing, this could be d D 1, like a time
series, or d D 2, like an image. If fx(t)g is a random pro-
cess then its structure can be determined from its mo-
ments. The first order structure of x(t) is given by its mean,
defined by

�x (t) D E fx(t)g ; t 2 Rd ; (1)

and the second order structure of x(t) is given by its co-
variance, namely

�x (t1; t2) D cov fx(t1); x(t2)g ; t1; t2 2 Rd : (2)

E f�g denotes the expectation operator, and cov f�; �g the
covariance operator. If the process is assumed to be
a Gaussian process, i. e. if any sample of n observations
from fx(t)g is multivariate Gaussian, then f�x (t)g in com-
bination with f�x (t1; t2)g fully characterize the generation
of the process fx(t)g.

Often we only take n observations from the process
fx(t)g and still want to fully characterize the generating
mechanism, so that we can test hypotheses of interest re-
garding fx(t)g or just estimate some parameters of inter-
est. To be able to do this we must make some further as-
sumptions about x(t), and these could correspond to fully
parametric or non-parametric assumptions on f�x (t)g or
f�x (t1; t2)g. Typical examplesmight be�x (t) D ax C bx t,
which is a parametric specification of the mean, or �x (t)
possessing a certain degree of smoothness. If the latter ap-
proach is taken then it is convenient to represent �x (t) in
terms of some functions where the assumed smoothness
can be easily incorporated into the modeling. Furthermore
the covariance structure can be assumed to simplify if we
choose a suitable representation. If x(t) is represented in
terms of linear combinations of known basis functions,
such as wavelets, then Gaussian processes will be trans-
formed into Gaussian processes with a different mean and
covariance function. For certain classes of auto-covariance
functions the analysis is much simplified by considering
the transformed rather than the original Gaussian process.

Wavelets

A wavelet function, is a complex-valued square integrable
function satisfying the admissibility condition, see [27].
We denote a generic wavelet by  (t). The Continuous
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Wavelet Transform (CWT) of a signal x(t) with respect to
a wavelet  (t) is defined as a filtration of x(t):

w(x)(t; s) D
Z 1

�1

x(t0) t;s(t0) dt0 ;

 t;s(t0) D s
�1
2  

�
t0 � t
s

�
: (3)

The choice of normalization, here s�1/2 varies across ap-
plication fields. Sometimes 1/2 is replaced by 1 if more
convenient for analysis, see [54]. The former is referred to
as the energy normalization, and the latter as the compres-
sion normalization. The former normalization conserves
the variance of the transformed process.

If fx(t)g is a stochastic process satisfying some regu-
larity conditions, see [34], then

˚
w(x)(t; s)

�
is a doubly in-

dexed stochastic process with mean

E
n
w(x)(t; s)

o
D

Z 1

�1

�x (t0) t;s(t0) dt0 ;

 t;s(t0) D s
�1
2  

�
t0 � t
s

�
(4)

� w(�x )(t; s) : (5)

The form of this expression simplifies if x(t) takes the sim-
pler form of a time-varying oscillation, see [13], or a singu-
larity [28,55], or is a sufficiently regular function, see [56].
Under such circumstances very few of

˚
w(�x )(t; s)

�
are

non-zero and inferences can be made about the model
from the few non-zero coefficients. In the special case of
time-varying oscillations the theory ofwavelet ridge analy-
sishas been developed to characterize the local oscillations.
Applications of such methods include mechanical vibra-
tory signals, see [31,59], seismic signals [44,45], as well as
ocean eddy time series, see [6,35].

The usage of continuous wavelets does not extend
greatly beyond the aforementioned methods of signal in-
ference. The characterization of various stochastic pro-
cesses have been investigated using continuous wavelets,
i. e. [3,8,25,32,34], but this has been put to little practical
usage. Some interesting developments for the prediction
of continuous signals using wavelets have been developed
in [1,2].

The main focus of wavelet usage in statistics has in-
stead evolved around the usage of the Discrete Wavelet
Transform (DWT). The DWT is defined as a reversed
convolution between a discretely sampled signal and
the wavelet filter. We denote the jth level wavelet fil-
ter

˚
hj;l

�
, and the scaling filter

˚
g j;l
�
. For a complete

review of the properties of these objects see [11,37,46].

These are constructed from the j D 1 level filters fhl g
and fgl g, that satisfy the quadrature mirror relationship
of gl D (�1)lC1hL�1�l where L is the length of the two
filters. Given a sampled process xn D x(n
t) the wavelet
coefficients are defined by:

w(x)
j;l D

X

n
h j;l xn ; hj;l D

L�1X

kD0

hk g j�1;l�2 j�1k ; (6)

where the wavelet filters given
˚
g j�1;l

�
can now be deter-

mined iteratively. To complement the wavelet coefficients
of xn, additionally the scaling coefficients are computed, of

v(x)j;l D
X

n
g j;l xn ; g j;l D

L�1X

kD0

gk g j�1;l�2 j�1k ; (7)

this completing the iterative specification of the wavelet
and scaling filters. If we collect the wavelet and scaling
coefficients in a vector W(x) D [w(x)

1;0; : : : ;w
(x)
1;N/2�1;w

(x)
2;0;

; : : : ; v(x)J/2;0], then the DWT can be represented as:

W(x) DWX ; (8)

whereW is composed of
˚
hj;l

�
and

˚
gJ;l
�
, see [46]. Equa-

tion (8) is not the method to compute the DWT, popu-
larly the transform is implemented using Mallat’s pyramid
algorithm, see [37], but it enables the easy determination
of the stochastic properties of the wavelet transform. The
CWT and the DWT are not two disparate objects: if we
possess a sequence of coefficients

n
v(x)0;l

o
such that

x(t) D
1X

nD�1
v(x)0;l �0;k(t) (9)

then w(x)
j;l can be calculated from v(x)0;l , as can v(x)j;l , and cor-

respond to the CWT as well as scaling coefficients of the
continuous rather than the sampled process. In practise xn
is equated to v(x)0;n , even if this is formally inappropriate.

Signal Estimation or Denoising

The most popular statistical application of wavelets is
denoising, or function estimation. This proceeds from
a model of the observed signal of:

xn D �(n
t)C �n ; n D 0; : : : ;N � 1 ; (10)

where 
t is referred to as the sampling period of the sig-
nal, and the sample size is N. To fully specify the genera-
tion of the observations f�ngmust be modeled, and a pop-
ular model is to assume this sequence as zero-mean, un-
correlated (white) and Gaussian, with some constant vari-
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Statistical Applications of Wavelets, Figure 1
The clean Heavisine signal (top), the noisy Heavisine signal (middle) and the denoised Heavisine signal (bottom). The plots show
the typical features of a wavelet estimator, namely the adaptation to local smoothness, where the sinusoidal parts of the signal are
smoothed, and the discontinuities, are kept without over smoothing

ance �2, that needs to be determined to implement esti-
mation. To see a typical realization of such a signal, see
Fig. 1. This signal, ‘Heavisine’ is famous as one of the four
typical signals that were introduced by [16]. Heavisine has
been immersed in noise, see Fig. 1. This signal is not trivial
to smooth as it possesses varying degrees of smoothness
across the realization, compare for example the disconti-
nuities with the smooth portions of the signal.

One important inference problem in this setting is to
estimate f�(n
t)g with low expected square deviation,
i. e. to chose an estimatorb�(n
t) such that

MSE(b�;�) D
N�1X

nD0

E
n�
�(n
t) �b�(n
t)

2o
; (11)

is as small as possible. Common methods of estimating
�(n
t) include using many different adaptive linear es-
timation methods, such as kernel smoothers, smoothing
splines, truncated Fourier methods etc. Smoothing using

the DWT was introduced by [15,16], and has enjoyed an
incredible success. The simplest form of wavelet estima-
tion is based on the compression of the DWT of x(t) alone,
combined with the uniformity of the white process across
time.

The wavelet coefficients of �(�) are given as
n
w(�)

j;l

o
,

and together with the scaling coefficients,
n
v(�)j;l

o
, these are

sufficient to reconstruct�(n
t) via calculating the Inverse
DFT (IDFT) or:

0

@
�(0
t)
: : :

�((N � 1)
t)

1

A DW�1

0

BBB
BBB
BBB
BBB
B
@

w(�)
1;0
: : :

w(�)
1; N2 �1

w(�)
2;0
: : :

w(�)
2; N4 �1
: : :

vJ;0

1

CCC
CCC
CCC
CCC
C
A

: (12)



Statistical Applications of Wavelets S 8673

Statistical Applications of Wavelets, Figure 2
The wavelet coefficients of the Heavisine signal, used in the original paper by Donoho and Johnstone [15]. We show the first five
level wavelet coefficients, and the scaling coefficients of the signal in solid line. Added to the picture are the thresholded wavelet
and scaling coefficients of a noisy realization in dotted line

Thus a good estimator of
n
w(�)

j;l

o
can easily be converted

into a good estimator of�(n
t), using Eq. (12). To see the
motivation behind the most commonly adopted choice of
estimation for the wavelet coefficients, observe the wavelet
coefficients of the Heavisine signal, that we plotted in
Fig. 1, plotted in Fig. 3. Most of the wavelet coefficients
are quite small. If a given signal �(�) is sufficiently reg-
ular then it can be shown that

n
w(�)

j;l

o
must decrease in

magnitude. For this reason one may argue that most of
this set are zero, and the transform exhibits compression
or sparsity, see [56]. We are therefore trying to estimate
a sequence of variables of which most are zero, and only
a few are large. It is not optimal to equate the estimator
to the sample DWT, but instead shrinkage estimation is
suitable. Consider the generic setting of an estimator for w
denoted by bw which is unbiased, but potentially has large
variance. A shrinkage estimator of this quantity is given by
bw(s) D cbw for some 0 � c � 1. Clearly this estimator has
smaller variance as compared tobw (or possibly equal vari-
ance), but introduces some bias into the estimation. The
mean square error is in fact given by:

MSE(bw;w) D c2�2 C (1 � c)2w2 : (13)

Thus if the quantity we are trying to estimate is small com-
pared to the variance of the empirical estimatorbw then by

choosing jcj smaller than one, we reduce the mean square
error in estimation. Thus for jwj taking a range of values it
would be better to use the shrinkage estimator. This may
seem non-intuitive, but corresponds to a whole set of the-
ory derived due to [53]. If there was an oracle that could
for a given shrinkage rule inform the estimator how co-
efficients should be shrunk, then good estimators would
be obtained. Fortunately it is not necessary to have an or-
acle, for large sample sizes, to expect to get an estimator
with equivalent performance to using an oracle. Looking
at Fig. 2 and Fig. 3 we certainly see that replacing most of
the empirical wavelet coefficients by zero, should greatly
improve the estimation of these coefficients.

Two special shrinkage functions are commonly used,
namely the soft and hard threshold functions. The soft
threshold estimator modifies the empirical estimator bw
by

bw(st)
�
D

8
<̂

:̂

bw �  if bw � 
0 if jbwj < 
bw C  if bw � �

(14)

i. e. if the observed empirical estimate is sufficiently large
a set amount is removed from its magnitude, whilst if it
is not sufficiently large, the estimator is set to zero. Also
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Statistical Applications of Wavelets, Figure 3
The noisy wavelet coefficients of the Heavisine signal, used in the original paper by Donoho and Johnstone. The decomposition has
been stopped at level five, and then the scaling coefficients have been calculated to complete the representation

popular is the hard threshold estimator, defined by:

bw(ht)
�
D

8
<̂

:̂

bw if bw � 
0 if jbwj < 
bw if bw � �

: (15)

Most wavelet coefficients of sufficiently regular functions
(i. e. functions in a suitable Besov space) will be very small,
or even zero. One would greatly reduce the mean square
error of the estimated mean function if one estimated
those by zero, rather than their observed value. Thus we
define the “oracle risk” in estimation as the mean square
error which arises from using the best keep or kill proce-
dure on the empirical wavelet coefficients, denoted by RN :

RN D

N�1X

nD0

min
�
w2
n ; �

2 (16)

If instead the estimator bw(ht)

�N

for N D �
p
2 log(N) (the

universal threshold) is used, then Donoho and Johnstone
showed that the mean square error of this procedure is
close to the oracle risk, see [56]. Alternativemethods chose
a value of  that is permitted to vary with the value of j. �
is estimated using a robust scale estimator on the first level
wavelet coefficients, such as the median absolute deviation
estimator.

If there is only noise present, then using the universal
threshold with a hard thresholding procedure will ensure
that noise only signals are estimated as zero, see [56]. [18]
give a more flexible definition of a universal thresholding

procedure in terms of the probability of keeping the largest
noise coefficient.

The simplest wavelet estimation method, suitable for
regularly spaced, uncorrelated and Gaussian data has sub-
sequently been extended to deal with irregularly spaced
data, that is contaminated with correlated noise, and is
immersed in non-Gaussian perturbations. A whole class
of methods arise from transforming non-Gaussian obser-
vations, using say the Anscombe transform. Of particular
note is the Haar–Fisz transform, introduced by [21]. The
wavelet Haar–Fisz transform is defined by:

f kj D

(
0 if v jk D 0
w jk
pv jk

if v jk ¤ 0
; (17)

and the distribution of this variable is substantially more
Gaussian than the original wavelet coefficients. Fryzlewicz
and Nason have established the properties of using this
transform in signal estimation in a series of papers,
see [21,22,23]. The denoising of correlated data was
treated by [30].

Many different extensions also exist to the basic pro-
cedure for white Gaussian random variables: usually the
DWT coefficients exhibit some form of structured behav-
ior, and either clustering across time (l) or persistence
across scale (j) is observed in the magnitude of the coef-
ficients. Various methods have been proposed to use these
observed characteristics, such as treating whole blocks
of coefficients together, see [7], using Bayesian methods
where the dependence of the coefficients is modeled in the
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prior and other methods, such as wavelet footprints due
to [19], and ‘Analytic’ denoising proposed by Olhede and
Walden and later extended to two dimensions, see [43]
and [42]. To observe the clustered structure of wavelet co-
efficients, see Fig. 2. The discontinuity in the considered
signal causes wavelet coefficients to be non-zero near the
discontinuities in time across all scales, and across scales at
the given time location of the discontinuity. To represent
the discontinuities perfectly, and avoid wavelet Gibb’s ef-
fects, all of these coefficients should be kept, thus estimat-
ing a single discontinuity without artifacts. Similar state-
ments can be made for other features than perfect discon-
tinuities, and the above mentioned methods all address
this problem in a chosen manner.

A key characteristic of observed coefficients is the spar-
sity level, i. e. how many of the coefficients that are ap-
proximately zero in expectation. Choosing the threshold 
should be done in light of the sparsity of the data. Opti-
mally such sparsity is learned from the data. [29] proposed
the EBAYES procedure whereby at each scale the spar-
sity of the data is estimated and a threshold chosen using
marginal likelihood.

2-D Extensions ofWavelets

The development of statistical estimation methods for
1-D signals observed in noise is a mature field. Greater
challenges lie in higher dimensional objects such as spatial,
or spatiotemporal signals. In the early days when meth-
ods for extended into 2-D, the two spatial directions were
treated as if the observed phenomena were two different

Statistical Applications of Wavelets, Figure 4
A picture of a woman (left), and the absolute value of the separable 2-D wavelet coefficients of the picture (right). Observe that
the nose of the woman takes too many coefficients to record, despite the curve of the nose corresponding to a smooth curve. This
illustrates the lack of compression of the 2-D separablewavelet transform

phenomena. This caused a number of unpalatable effects
in the reconstruction of the estimated images, such as edge
effects and blocking, as well as using too many coefficients
to reproduce simple phenomena. To see an example of
this, observe Fig. 4. The woman is mainly a smooth pic-
ture, and should only correspond to a limited set of co-
efficients in a compressed representation. Using separa-
ble wavelets to represent the picture, because the curve of
the woman’s nose is misaligned with the decomposition,
causes too many coefficients to be used. This lack of com-
pression, leads to poor performance in the estimation.

The solution to these problems came by the de-
velopment of non-separable decompositions, this lead-
ing to fewer non-zero coefficients in the decompositions,
or by statistical processing of the separable decomposi-
tions, using the combined magnitude of the many coef-
ficients to improve estimation. The main methods of note
are ridgelets and curvelets proposed by [9,52], the dual-
tree complex wavelet transform, proposed by Kingsbury
(see [48]), and bandelets (see [33]). The implementation
of several of these transforms is slightly more complicated
than the 1-D wavelet transform, but all correspond to lin-
ear operations on the observed signal. This means that
the statistical properties of the transform coefficients can
be determined by direct (if sometimes numerical) calcu-
lations. Again, thresholding and inverse transformation
forms the basis for most estimation procedures, much in
the same manner as the 1-D estimation procedures.

Open areas of research in this general setting, is the de-
velopment of higher dimensional processing, and suitable
transformations for discrete analysis on the sphere.
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Covariance EstimationUsingWavelets

Wavelets have been used to estimate properties of zero-
mean stochastic processes, characterized by their depen-
dence structure alone. One of the fundamental aspects is
noting classes of stochastic processes for which the trans-
form provides a simplification of the description of the
signal. One set of developments has defined a set of lo-
cally stationary processes using wavelet filters as the build-
ing block, so called Locally Stationary Wavelet Processes,
see [41]. The estimation of the fundamental representa-
tion of this process, which is very much like a time varying
spectrum, was addressed by Nason and his coauthors, and
has subsequently been improved upon by Fryzlewicz and
Nason, see [23]. The model has been used to classify sleep
states of babies, and has been used in modeling financial
times series, see [5,20]. This corresponds to the most nat-
ural modification of existing theory for locally stationary
time series from local Fourier to wavelet bases.

The usage of wavelets for estimating time series that
when differenced are stationary has also seen substantial
investigation. By using wavelets the number of differenc-
ing steps needs often not be determined, which is a clear
advantage. Likelihood theory has been extended from the
Fourier domain to the wavelet domain for such time series,
see [39], and various procedures for estimating the decay
of long memory processes have been adapted for wavelet
coefficients, see [38]. Characterization of sets of time se-
ries that are jointly stationary when differenced, has also
been developed, see [49,50,51,57]. A fundamental method
of analysis is to characterize the covariances of the process
associated with different time-scales, this yielding a mul-
tiresolution analysis of the stochastic process, both con-
sidering the auto-covariance of a single process, and cross-
covariances between several processes.

Future Directions

The usage of the wavelet transform in 1-D is amature field.
Current developments are mainly in the application and
adaption of existing methods to novel applications. The
development of higher dimensional transforms has also
slowed down considerably. The modern thrust and drive
is instead found in using several concepts which the devel-
opment of analysis methods from the wavelet transform
were founded upon. The key two notions for these devel-
opments are sparsity and incoherence. For many signals of
interest, their wavelet coefficient representation was com-
pressed. This means the sparsity could be used to sub-
stantially improve the estimation procedure. The area of
‘compressed sensing’ is based on using the compression of
a signal in a known decomposition, to improve the estima-

tion of the signal, see [14]. Surprisingly the limitations of
Nyquist sampling has been circumvented, and near mirac-
ulous reconstruction performance obtained. As the data
deluge that faces modern signal processing will increase,
this stands as a very interesting area of future develop-
ment.
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Statistical and Non-linear Physics,
Introduction to
M. CRISTINA MARCHETTI
Physics Department, Syracuse University, Syracuse, USA

The field of Statistical and Nonlinear Physics combines the
venerable subject of statistical mechanics with the newer
area of nonlinear science to create a highly interdisci-
plinary and exciting area of research. It has its roots in
equilibrium statistical physics, but it has evolved to en-
compass and emphasize nonequilibrium and dynamical
phenomena. It is a field in rapid evolution, with a con-
stantly changing focus. It overlaps naturally with many
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other disciplines, including fluid dynamics, computational
physics, biological physics, condensed matter physics and
polymer physics.

Statistical physics aims to describe the large-scale col-
lective behavior of systems composed of a large number of
interacting units or degrees of freedom. Starting with ami-
croscopic model, one performs various types of “coarse-
graining” to describe phenomena that occur on length and
time scales large compared to microscopic ones, such as
the size of the particles or the characteristic interaction
times. At this large scale the system exhibits collective or
emergent behavior that is far richer than that of the indi-
vidual units. One of the hallmarks of collective behavior is
phase transitions. An everyday example is the change from
liquid to solid that occurs upon tuning a parameter such as
temperature or pressure. Another familiar example arises
in the study of the properties of magnetic materials and is
highlighted in the article � Complex Systems and Emer-
gent Phenomena, which is a good starting point for the
reader of this section.

When going from the deterministic Hamiltonian de-
scription of a system of many interacting units to the
large scale coarse-grained description of the same system
in terms of a continuum or hydrodynamic theory, an ele-
ment of randomness is naturally introduced into the prob-
lem as one looses the invariance under time reversal that
was present in the Hamiltonian description. At the same
time randomness on the other hand is an intrinsic prop-
erty of the dynamics of individual nonlinear systems that
are known to often exhibit sensitive dependence to initial
conditions and chaotic behavior. There is in fact a deep
connection between the randomness of chaotic systems
and the irreversible transport properties of extended sys-
tems (see � Chaotic Dynamics in Nonequilibrium Statis-
tical Mechanics). This connection highlights the unity of
the two areas of statistical and nonlinear science.

Rather than presenting an exhaustive review of the
field of statistical and nonlinear physics, the articles in this
section focus on nonequilibrium phenomena that are the
subject of current research. Even then, only a fraction of
the problems and physical systems that are studied using
the tools and ideas of statistical and nonlinear physics are
described here. Many of the others can be found in articles
throughout the rest of the Encyclopedia.

The topics highlighted in this section of the Encyclo-
pedia may at a first glance seem disparate, but are unified
by the ideas that are used to study them. Principal among
those are the notions of scaling and universality. The con-
cept of universality, which has been around for some time,
has its roots in the study of phase transitions and critical
phenomena. Near a phase transition, the system is univer-

sal in that its behavior at large scales does not depend on
the microscopic physics. The systems and physical prob-
lems described in this section of the Encyclopedia may be
different in the details, but generally involve the onset of
collective or emergent behavior with “universal” proper-
ties.

The ideas of scaling universality have had a crucial
impact in the study of long-standing problems in non-
linear physics, such as pattern formation and turbulence
(see � Non-linear Fluid Flow, Pattern Formation, Mix-
ing and Turbulence). The same tools and ideas have more
recently been applied to the study of the complex dy-
namics of neuronal systems (see � Neuronal Dynamics),
lasers (see � Noise and Stability in Modelocked Soliton
Lasers), and even the physics of economics (see � Econo-
physics, Statistical Mechanics Approach to). Rich chaotic
behavior has also been discovered in quantum systems
(see �Quantum Chaos).

Recently, a new field has emerged that uses many of
the ideas of statistical mechanics to explore problems in
“soft” condensed matter physics. Soft materials are liter-
ally materials that yield easily to mechanical deformations,
They encompass an extremely wide range of systems, from
complex fluids such as colloidal suspensions, liquid crys-
tals and polymers (see � Polymer Physics) to soft elastic
gels (see � Anisotropic Networks, Elastomers and Gels),
and granular matter in both its fluidized (see � Granular
Flows) and its jammed (see � Jamming of Granular Mat-
ter) states. The jamming or structural arrest of granular
matter when the density reaches a critical value bears strik-
ing similarities with the glass transition. Jammed granu-
lar matter and glassy systems share many of the intrigu-
ing dynamical properties discussed in � Glasses and Ag-
ing, A Statistical Mechanics Perspective on. Jamming also
provides an example of the nonequilibrium phase transi-
tions that are ubiquitous in the systems studied by mod-
ern statistical physics. Nonequilibrium phase transitions
do occur in “pure” systems, i. e., ones without any extrin-
sic disorder, as a result of the dynamical constraints arising
from interactions, but are even more common in systems
with quenched disorder, induced for instance by impuri-
ties and materials defects (see� Disordered Elastic Media
for a general perspective on such systems). Notable exam-
ples include the depinning transition that occurs in driven
extended systems such as vortex lattices in type-II super-
conductors under the action of a uniform external driving
force (see � Collective Transport and Depinning) and the
slip-stick motion that characterizes the physics of friction
and tectonic motion (see� JerkyMotion in Slowly Driven
Magnetic and Earthquake Fault Systems, Physics of). Liv-
ing matter, such as the cytoskeleton of eukaryotic cell or
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even the whole cell, has also been described as a novel
form of nonequilibrium soft matter (see � Cytoskeleton
and Cell Motility).

The complexity of the systems that are studied by sta-
tistical physicists has naturally led to the development of
sophisticated numerical methods. Principal among those
is the technique of Monte Carlo simulations (see�Monte
Carlo Simulations in Statistical Physics). More recently
physicists have also begun to adapt ideas and algorithms
from computer science (see�Optimization Problems and
Algorithms from Computer Science).

Novel experimental techniques have recently allowed
us to begin to study the properties of soft and living mat-
ter on length and time scales that require a qualitative
new way of thinking and a modification of the famil-
iar tools from statistical physics (see � Fluctuation The-
orems, Brownian Motors and Thermodynamics of Small
Systems). These range from optical techniques for study
of the properties of individual biomolecules (see � Pro-
tein Mechanics at the Single-Molecule Level) to microflu-
idics devices for the study of the rheological and mechani-
cal properties of complex materials and cells on novel time
and length scales (see�Microfluidics).

Yet another class of problems that has caught the at-
tention of statistical physicists lately is the study of net-
works (see � Networks: Structure and Dynamics). Exam-
ples of networks are as disparate as the world-wide web,
human societies, languages and their structure, and power
grids. An especially important class of networks occurs in
biology. It consists of the cell signaling networks that con-
trol many of the functions of living cells (see � Cell Biol-
ogy: Networks, Regulation and Pathways).

Finally, complex emergent behavior is also ubiquitous
in quantum matter, where the interactions and fluctua-
tions are controlled by quantum mechanics, as described
in the article � Ultracold Atomic Gases: Novel States of
Matter.
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Glossary

Fuzzy estimators Estimators of “parameters” of proba-
bility distributions, or other characteristics, of random
variables/fuzzy random variables (such as e. g. the ex-
pected value/the fuzzy expected value) when statistical
data are imprecise and are described by means of fuzzy
sets.

Fuzzy random variable Random element whose ob-
served values are described by fuzzy sets.

Fuzzy set Generalization of a classical notion of a set. In
contrast to the case of a classical set, each element x of
a fuzzy setmay belong to it to a degree described by the
so-called membership function �(x). Thus, the fuzzy
set may be defined as a set of ordered pairs (x; �(x)),
where x belongs to a set X called the universe of dis-
course or referential. Alternatively, the fuzzy set can be
identified with its membership function (in the same
way that a classical set can be identified with its indica-
tor function).

Fuzzy statistical tests Statistical tests used for the verifi-
cation of hypotheses about the values of “parameters”
of probability distributions, or other characteristics, of
random variables/fuzzy random variables when statis-
tical data are imprecise and are described by fuzzy sets.

Fuzzy statistics Generalization of traditional statistics
that allows to handle imprecise data described in terms
of fuzzy sets.

Imprecise data Data that cannot be described by either
real numbers or vectors with real-valued components.

Random sets Random elements whose observed values
are sets (e. g. intervals, subsets of a plane).

Definition of the Subject

Traditional statistics deals usually with precisely defined
data. The source of these data may be of different na-
ture. Usually the data are collected from observations of
random experiments, i. e. experiments whose performance
leads to an outcome which cannot be predicted in advance
with one hundred percent sureness. When the knowledge
about the nature of these random events is available we
can use the methods of mathematical statistics and draw
conclusions about the source of available data.Uncertainty
being intrinsic to random outcomes/events is properly de-
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scribed by using the formalism of the mathematical theory
of probability, and generally it is attributed to future ob-
servations of these outcomes/events.

Traditionally, statistical experimental data are de-
scribed by real numbers or by vectors whose components
are real numbers. These numbers are either observed di-
rectly as results of measurements (e. g. height and weight
of a person) or correspond to observed counts of certain
categories representing labeled events (e. g. a gender of
that person). However, in real life applications the results
of measurements are never precise. The precision of every
measurement is limited by the precision of a measuring
device. In the majority of practical applications this lack
of precision may be neglected, and for statistical analysis
of available data we can use traditional methods of statis-
tics. If the measurement error cannot be neglected statisti-
cal analysis of interval data is recommended by specialists
in metrology. However, when statistical data are presented
by human beings we need more sophisticated methods for
the description of their lack of precision. Therefore, there
is a practical need to generalize traditional statistical meth-
ods in order to make them applicable for handling impre-
cise data, e. g. the data described by statements expressed
by using a plain language (the so-called “linguistic data”).

Introduction

There is a common agreement that uncertainty charac-
terized by randomness shall be described by consider-
ing the theory of probability. Thus, mathematical statis-
tics is a proper tool for dealing with data generated by
random experiments and described by precisely defined
numbers. However, there also exist other types of uncer-
tainty which are related to vagueness, imprecision, exis-
tence of only partial information about experimental out-
comes/events of interest, etc. In contrast to randomness,
uncertainties of such types are attributed rather to current
perceptions/observations. It has to be noted that themath-
ematical modeling of all these types of uncertainty which
are different from simple randomness is still the subject
of controversies. A good overview of the related problems
can be found in the paper by P. Walley [36]. In this article
we confine ourselves to the case when randomness is ob-
served together with vagueness understood as the lack of
precision.

Specialists in measurement theory recognize differ-
ent types of uncertainty. For instance, in the ISO/IEC
Guide [18] it is recommended to distinguish between un-
certainty related to pure randomness and uncertainty of
other nature, such as a lack of precision. However, the lack
of precision of statistical data is usually omitted in the sta-

tistical analysis of measurements. Consider, for example,
the analysis of results of measurements coming from a dig-
ital meter. The results of measurements coming from such
a meter are always rounded in order to have their rep-
resentation by a certain number of digits. When we ob-
serve a displayed result of a measurement we never know
what is the actual value of the measured quantity. What is
more important, and often overlooked by statisticians, we
may not increase our knowledge about that value by av-
eraging the results of repeated measurements, as it is fre-
quently recommended by statisticians. Consider, for ex-
ample, a series of measurements showing exactly the same
result. Having such results we are in principle not able
to distinguish between two fundamentally different cases
when the measured quantity is constant and its value be-
longs to the range of rounding or when it is varying from
measurement to measurement with values belonging to
that range.

The situation described in the previous paragraph is
relatively simple as the range of possible actual values cor-
responding to the observed result of a measurement is
usually precisely defined. There exist, however, situations
when either this range is not precisely known or values
in the range are not equally compatible with the available
data/information/events. We face such cases when results
of measurements or classifications are evaluated by hu-
mans (e. g., by evaluating indications of an analog meter
or classifying individuals in accordance with their height,
and so on). The result of a measurement is even more im-
precise when it has been obtained without the usage of
any meter (e. g., when we visually evaluate the distance be-
tween two points); in such situations statistical data may
consist of imprecise statements like “around 5 meters”,
“more or less between 5 and 10 seconds”, etc. The classifi-
cation of a person in accordance with his/her height leads
often to imprecise assessments, like “very short”, “rather
tall”, etc. A similar situation occurs when we deal with ret-
rospective data recalled by human beings; for example, in
reliability analysis of field lifetime data we may face sit-
uations when failure times are reported imprecisely using
statements like ‘the failure occurred about onemonth ago’,
etc. In all these cases statistical data consist of imprecise
perceptions of actual real values.

In the previous paragraphs we considered situations
when actual values of measured quantities exist, but they
are imprecisely perceived. There exist, however, situations
when we have to analyze statistical data that represent im-
precisely defined concepts. Take for example the color of
human hair described using categories such as “blond” or
“dark blond”; it is obvious that the border between these
two categories is vague; one can try to establish a precise
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border between these two categories in terms of the re-
sults of precise measurements of the spectrum of reflected
light, but such attempts seem to be practically senseless.
We face a similar situation in classifying a client of a bank
office in accordance with his/her degree of aversion to in-
vestment which leads to imprecise assessments, like “very
low”, “moderate”, etc. In both these cases we could try to
collect precise statistical data, e. g., by either asking a re-
spondent to a questionnaire to indicate exactly one choice
or coding it numerically. However, it seems to be more
prudent, natural and informative to expect imprecise an-
swers to questions pertained to vague notions. If we do so,
we may face imprecise statistical data for further analysis.
In all these cases statistical data consist of imprecise actual
values themselves.

There also exists another source of imprecision while
dealing with statistical data. For example, in reliability life-
time tests we perform tests in more severe “over-stress”
conditions, and then we try to recalculate test results to
conditions which are considered “normal”. For this recal-
culation we can utilize some partial knowledge about pos-
sible values of stress-dependent recalculation coefficients.
In such a case we have originally precise lifetime data, but
after recalculation these data become imprecise.

In all considered cases the lack of precision can be ap-
propriately described by using fuzzy sets introduced by
Lotfi A Zadeh. In the second section of the article we re-
call some basic definitions related to fuzzy sets. We will
present the fuzzy sets methodology as a useful tool for the
description of imprecise data. When fuzzy lack of preci-
sion is mixed with randomness, either in the sense that
available fuzzy data are supposed to come from the percep-
tion of real- or vectorial-valued data generated by a ran-
dommechanism, or in the sense of they being directly gen-
erated by a random mechanism, a convenient tool to use
is that of the notion of a fuzzy random variable. This no-
tion is introduced in the third section of this article. The
interpretation of the fuzzy random variable depends upon
the type of observed fuzzy data and events. In the paper
we distinguish between the two types of data which have
been described in this section. We start with the descrip-
tion of statistical methods which are useful for the analysis
of fuzzy perceptions of existing precise values. Then, we
present statistical methods which are useful in the analysis
of intrinsically fuzzy-valued data.

MathematicalModeling of Imprecise Data

There exist competitive methods for the description of
vagueness. For example, some statisticians claim that the
theory of subjective probability is sufficient for the descrip-

tion of all types of uncertainty. However, many other re-
searchers have shown examples of situations when the ap-
plication of the classical theory of probability is not suffi-
cient for modeling these situations. Therefore, other for-
malisms have been proposed for the description of vague-
ness/imprecision. One of those formalisms, namely the
theory of fuzzy sets proposed by Lotfi A. Zadeh [37], has
been slowly but widely accepted as a good methodology
for the description of imprecise data, both from practical
and theoretical (see, e. g., the paper by Terán [33]) points
of view.

The basic concept of the theory of fuzzy sets is the uni-
verse of discourse or referential X which may be under-
stood as the set of all possible (feasible) elements that are
relevant for the description of a certain concept (quantity).
Mathematically speaking a fuzzy subset A of a set X ¤ ;
(or a fuzzy set, for short) is a map A : X! [0; 1], where
A(x) can be interpreted as the degree of compatibility of x
with the ill-defined property characterizing A, or degree of
truth of the assertion “x is A”, or degree of membership
of x to A. Equivalent, but more intuitive for some pur-
poses, a fuzzy set A of X can be defined as a set of or-
dered pairs f(x; �A)g, where x 2 X and �A : X! [0; 1]
is the so-calledmembership function of A. In other words,
a fuzzy set can be identified with its membership function,
in the same way that a classical set can be identified with
its indicator function. In what follows, we will consider in-
distinctly A or �A to denote and refer to a fuzzy subset.

Unfortunately, there is no one generally accepted
methodology for the construction of membership func-
tions. The majority of researchers assume that the mem-
bership function�A(x) is a purely subjective function pro-
vided by a person who describes his/her perception of
a certain phenomenon or quantity. Some authors provide
practical methods for the construction of the member-
ship function when it is interpreted in terms of the the-
ory of possibility as the possibility distribution (see [8]
for more information). Some other authors, e.g Bande-
mer and Näther [1] or Viertl [35], present methods which
may be used for the construction of membership functions
in a more objective way from measurements of physical
quantities. Anyway, our purpose is not entering a discus-
sion here about this point.

In the analysis of imprecise data we are usually inter-
ested in the description of interesting phenomena by num-
bers. For this purpose we can use the concept of a fuzzy
number defined as follows (see [5]):

Definition 1 The fuzzy subset A of the space of real num-
bersR, with the membership function �A : R! [0; 1], is
a fuzzy number if and only if
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(a) A is normal, i. e. there exists at least an element x0 2 R
such that �A(x0) D 1;

(b) A is fuzzy convex, i. e.,�A(x1C(1�)x2) � �A(x1)^
�A(x2), for all x1; x2 2 R, and  2 [0; 1];

(c) �A is upper semicontinuous;
(d) the support set, supp AD fx 2 R : �A(x) > 0g, is

bounded (that is, its closure cl (suppA) is compact).

It is easily seen that if A is a fuzzy number then its mem-
bership function can be expressed as follows:

�A(x) D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

0 for x < a1
rlA(x) for a1 � x < a2
1 for a2 � x � a3
ruA(x) for a3 < x � a4
0 for x > a4 ;

(1)

where a1; a2; a3; a4 2 R, a1 � a2 � a3 � a4, rlA : [a1; a2]
! [0; 1] is a nondecreasing upper semicontinuous func-
tion, and ruA : [a3; a4]! [0; 1] is a nonincreasing upper
semicontinuous function. Functions rlA and ruA are called
sometimes the left and the right “arms” (or “sides”) of the
fuzzy number, respectively.

A useful notion for dealing with a fuzzy number is
the so-called ˛-level set, also known as the ˛-cut. For
˛ 2 (0; 1] the ˛-level set of the fuzzy number A is the ordi-
nary (non-fuzzy) set defined as

A˛ D fx 2 R : �A(x) � ˛g (2)

and the 0-level set is usually intended to be given by
A0 D cl (supp A). The family fA˛ : ˛ 2 [0; 1]g is a set rep-
resentation of the fuzzy number A. According to the res-
olution identity proposed by Zadeh, we can represent the
membership function as:

�A(x) D supf˛ � 1A˛ (x) : ˛ 2 (0; 1]g ; (3)

where 1A˛ (x) denotes the indicator function of A˛ .
On the basis of the notion of ˛-level, a fuzzy number A

can be viewed as a fuzzy subset of R such that its ˛-level
sets are nonempty compact and convex sets of R, that is,
nonempty compact intervals. Hence, for each ˛ 2 [0; 1]
we have that A˛ D [AL(˛);AU (˛)], where

AL(˛) D inffx 2 R : �A(x) � ˛g ;
AU (˛) D supfx 2 R : �A(x) � ˛g :

(4)

If the sides of the fuzzy number A are strictly mono-
tonic functions, then from Eq. (1) one can see easily that
AL(˛) and AU (˛) are inverse functions of rlA and ruA ,
respectively.

In statistical analysis of random data we use functions
(and, in particular, operations) of the observed random
samples. These functions, called statistics, can be also de-
fined for fuzzy random data. Their membership functions
can be derived by using Zadeh’s extension principle. This
principle has the following formulation [38]:

Let X be a Cartesian product of universes X D X1 �

: : : �Xr , and A1; : : : ;Ar be r fuzzy subsets ofX1; : : : ;Xr ,
respectively. Let f be a mapping from X D X1 � : : : �Xr
to a universe Y such that y D f (x1; : : : ; xr). The exten-
sion principle allows us to induce from the r fuzzy sets Ai
a fuzzy set B on Y through f , B D f (A1; : : : ;Ar ) such that

�B(y) D

8
<̂

:̂

supx1;:::;xr jyD f (x1;:::;xr )

minf�A1 (x1); : : : ; �Ar (xr)g if f�1(y) ¤ ;
0 if f�1(y) D ;

(5)

In case of Ai ; i D 1; : : : ; n being fuzzy numbers, and f be-
ing either an injective or a continuous function, then for
each ˛ 2 [0; 1] the ˛-level of B D f (A1; : : : ;Ar) can be
shown to be equal to B˛ D

�
f (A1; : : : ;Ar)


˛
with

�
f (A1; : : : ;Ar )


L(˛)

D min
(x1;:::;xr)2(A1)˛�:::�(Ar )˛

f (x1; : : : ; xr) ;
�
f (A1; : : : ;Ar )


U (˛)

D max
(x1;:::;xr)2(A1)˛�:::�(Ar )˛

f (x1; : : : ; xr) :

(6)

Thus, the application of the extension principle for the
calculation of the membership function of y D f (x1;
: : : ; xr) is equivalent to the application of the interval
arithmetics on ˛-level sets of the arguments of this func-
tion (see [29] as a basis for the proof). For instance, if A
and B are fuzzy numbers, then,

(AC B)L(˛) D AL(˛)C BL(˛);
(AC B)U (˛) D AU (˛)C BU (˛) ;

( � A)L(˛) D

(
 � AL(˛) if  � 0
 � AU (˛) if  < 0

( � A)U (˛) D

(
 � AU (˛) if  � 0
 � AL(˛) if  < 0

for any  2 R, and ˛ 2 [0; 1].

Fuzzy RandomVariables

Uncertainty, understood as randomness, is well described
in Probability Theory. The concept of a random variable,



Statistics with Imprecise Data S 8683

which is basic in this theory, is well-known and its defini-
tion does not need to be recalled in this article.

However, when we observe random experimental data
which are imprecise, a useful tool to model either the
imprecise perception of values coming from real-valued
random variables or the random mechanisms generating
directly these imprecisa data is the one associated with
the so-called concept of fuzzy random variables. Actually,
we can consider two different approaches to the concept
of fuzzy random variable; the motivation for these ap-
proaches and the situations they apply to are different, but
the formalization of the second notion and the associated
statistical methodology can be applied to the first one.

Historically, the first widely accepted definition of
the fuzzy random variable was proposed by Kwaker-
naak [21,22]. Kruse [19] proposed an interpretation of this
notion, and according to this interpretation a fuzzy ran-
dom variable Z may be considered as a fuzzy perception
of an unknown true real-valued random variable Z0 asso-
ciated with a random experiment, and referred to as ‘the
original’ of Z. Below, we recall the version of this defini-
tion elaborated by Kruse and Meyer [20].

Definition 2 (Kruse and Meyer [20]) Let (˝;A; P) be
a probability space, where ˝ is the set of all possible out-
comes of a random experiment,A is a �-field of subsets
of ˝ (the set of all possible events of interest), and P is
a probability measure associated with (˝;A).

AmappingX : ˝ ! Fc(R), whereFc(R) is the space
of all fuzzy numbers, is called a fuzzy random variable if
it satisfies the following properties:

i) fX˛(!) : ˛ 2 [0; 1]g, whereX˛(!) D (X(!))˛ is a set
representation ofX(!) for all ! 2 ˝ ;

ii) for each ˛ 2 [0; 1] both XL
˛ : ˝ ! R and XU

˛ :
˝ ! R, with XL

˛(!) D infX˛(!) and XU
˛ (!) D

supX˛(!), are usual real-valued random variables as-
sociated with (˝;A; P).

Values of a fuzzy random variable in Definition 2 have
been conceived to model fuzzy perceptions of existing
real-valued values (the values of the original, see Fig. 1).
For instance, when we qualify the price of a given item in

Statistics with Imprecise Data, Figure 1
Fuzzy random variables in Kwakernaak/Kruse andMeyer’s sense

a specific store, we can perceive/label it as being ‘cheap’,
but there is an existing price (although assumed to be
unknown for the person receiving and processing data
information).

Puri and Ralescu [31] introduced the concept of the
also called fuzzy random variable as a generalization of
the concept of random set or set-valued random element
(and hence, as a generalization also of the concept of ran-
dom variable). According to this definition a fuzzy ran-
dom variable Z may be considered as a random element
associating with each experimental outcome a value which
is intrinsically fuzzy. Below, we recall Puri and Ralescu’s
definition

Definition 3 (Puri and Ralescu [31]) Given a probabil-
ity space (˝;A; P), a mapping X : ˝ ! Fc(R) is said
to be a fuzzy random variable (also referred to as ran-
dom fuzzy set) if for each ˛ 2 [0; 1] the set-valued map-
ping X˛ : ˝ !Kc (R), where Kc(R) is the class of the
nonempty compact intervals and X˛(!) D (X(!))˛ for all
! 2 ˝ , is a compact convex random sets (that is, a Borel-
measurable mapping with respect to the Borel �-field gen-
erated by the topology associated with the Haussdorf met-
ric onKc(R)).

Remark 1 The notion of fuzzy random variable has been
in fact introduced in a more general way by consider-
ing as the codomain the space of fuzzy sets of the p-di-
mensional Euclidean space, or even more general Banach
spaces, whose ˛-levels are nonempty compact subsets of
this space. In case one constrains to p D 1 and fuzzy sets
being convex, then one gets the last definition.

Remark 2 Although motivation to introduce fuzzy ran-
dom variables was different in the approaches by Kwaker-
naak/Kruse and Meyer and by Puri and Ralescu, one can
prove that the notion in Definition 3 implies the one in
Definition 2. As a consequence, probabilistic ideas and re-
sults for the notion in Definition 3 (or for the more general
one in Remark 1) apply to the notion in Definition 2, and
the same happens for statistical developments. However,
many probabilistic conclusions, and most of the statistical
procedures for Definition 2 are based on the assumption
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Statistics with Imprecise Data, Figure 2
Fuzzy random variables in Puri and Ralescu’s sense

of having an unknown but existing original, and consider-
ing Zadeh’s extension principle, so that these conclusions
and procedures are not usually applicable to deal with data
coming from fuzzy random variables in Definition 3.

Remark 3 The concept of fuzzy random variable in Defi-
nition 3 can be alternatively formalized as a Borel-measur-
able mapping with respect to the Borel �-field generated
by the topology associated with some metrics on the space
Fc(R), among them an operational one we will later refer
to. Borel-measurability allows us to guarantee that notions
like those of the induced distribution by a fuzzy random
variable, independence of fuzzy random variables, identi-
cally distributed fuzzy random variables, and so on, can be
immediately formalized in the probabilistic setting.

Values of a fuzzy random variable in Definition 3 have
been conceived to model existing fuzzy values (see Fig. 2).
For instance, when we classify a client of a bank in accor-
dance with the degree of aversion to investment as having
a ‘rather high’ degree, there is no underlying real-valued
degree, but the classification itself is essentially imprecise.

Statistical Analysis of Fuzzy Data Corresponding
to Fuzzy Perceptions of Existing Real–ValuedData

Fuzzy Estimation

When imprecise statistical data correspond to fuzzy per-
ceptions of unobserved/unknown precise (i. e. crisp) sta-
tistical data we can treat them as observed values of fuzzy
random variables in the sense of Kwakernaak/Kruse and
Meyer. In such a case we can analyze imprecise data
in terms of probability distributions of their unobserved
originals in a similar way as precise statistical data are ana-
lyzed using methods of traditional mathematical statistics.
The only difference stems from the fact that having impre-
cise input information in the form of fuzzy data we can-
not precisely evaluate the characteristics of the underlying
probability distribution. Therefore, instead of finding pre-
cise values of the estimators of the ‘parameters’ describ-
ing the underlying probability distribution (the one of the
original), it seems more coherent finding their imprecise
fuzzy perceptions.

Assume that we observe a fuzzy random sample
X1; : : : ;Xn which is viewed as a fuzzy perception of an

unobserved random sample X1; : : : ; Xn . Let F(x; �) be the
cumulative probability function of the original random
variable X characterized by a crisp parameter � 2 	. Sup-
pose now that an estimator of � which is given by a statis-
tic �̂ D �(X1; : : : ; Xn) is considered. By using Zadeh’s ex-
tension principle we can consider as a fuzzy estimator
of � based on X1; : : : ;Xn the one associating with each
fuzzy sample information (x̃1; : : : ; x̃n) the fuzzy estimate
�(x̃1; : : : ; x̃n) given by

��(x̃1 ;:::;x̃n)(t) D8
<̂

:̂

sup(x1;:::;xn) j tD�(x1;:::;xn ) minf�x̃1 (x1); : : : ; �x̃n (xn)g

if t 2 Im(�(X1; : : : ; Xn)
0 otherwise

(7)

Alternatively, �(ex1; : : : ;exn) can be viewed as a fuzzy es-
timate of the induced fuzzy parameter # D �(X) with
�(X)(t) D supX2E(˝;A;P) j �(X)Dt inf!2˝ �X(!)X(!) and
E(˝;A; P) being the class of all possible originals of X.
In many practical cases, when �(x1; : : : ; xn) has a simple
form, the calculation of (7) is straightforward. For exam-
ple, when �(x1; : : : ; xn) D sample mean D (x1 C : : : C
xn)/n the ˛-levels of the estimate of its expected value �
are expressed as

(�(x̃1; : : : ; x̃n))˛ D

"
1
n

nX

iD1

(x̃i)L(˛);
1
n

nX

iD1

(x̃i)U (˛)

#

(8)

Analogously, whenever the estimator of � is given by
a continuous function or an injective function, the ˛-lev-
els becomes also rather simple. In other cases, the limits
of the ˛-levels should often be found by solving nonlinear
mathematical programming problems defined by (7).

A similar approach may be applied when we try to
construct fuzzy versions of the confidence intervals of the
unknown parameter � . Let us assume that we are able to
find confidence intervals of � using precise (crisp) statisti-
cal data. For example, let

�
� l ;C1


, where � l D � l (X1;

: : : ; Xn ; ı), be the one-sided confidence interval for the
parameter � on the confidence level 1 � ı. Kruse and
Meyer [20] have shown that when we replace � l with the
lower limits of the ˛-cuts of its fuzzy version we obtain
a proper confidence interval for the fuzzy perception of � .
These lower limits can be found for different values of
˛ 2 (0; 1] from the formula [15]

˘ L
˛ D˘

L
˛ (X1; : : : ;Xn ; ı)

D inf
˚
t 2 R : 8i 2 f1; : : : ng 9xi 2 Xi;˛

such that � l (x1 ; : : : ; xn ; ı) � t
�

(9)
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where Xi;˛; i D 1; : : : ; n are respective ˛-cuts of the ob-
served fuzzy data.

In a similar way we can define a fuzzy equivalent of the
one-sided confidence interval (�1; �u]:

˘
U
˛ D˘

U
˛ (X1 ; : : : ;Xn ; ı)

D sup
˚
t 2 R : 8i 2 f1; : : : ng 9zi 2 Xi;˛

such that �u(z1 ; : : : ; zn ; ı) � t
�

(10)

where �u (z1; : : : ; zn ; ı) D � l (z1; : : : ; zn ; 1 � ı). More-
over, exactly the same approach can be applied when we
look for two-sided confidence intervals.

Summing up this section we can say that when im-
precise observations may be treated as fuzzy perceptions
of precise but unobserved realizations of ordinary ran-
dom variables the problem of point and interval estima-
tion of the unknown parameters of the underlying prob-
ability distribution can be reduced to finding fuzzy ver-
sions of the formulae known from traditional mathemati-
cal statistics.

Fuzzy Statistical Tests

Testing statistical hypotheses is the second main branch of
mathematical statistics. Tests of statistical hypotheses have
to be applied if we want to make decisions based on the
analysis of random data. When our decisions depend on
the values of the parameters of probability distributions
that describe observed statistical data we use parametric
statistical methods. In such a case we test statistical hy-
potheses about the values of the parameters of probability
distributions utilizing a well known equivalence between
the set of values of the considered probability distribution
parameter for which the null hypothesis is accepted and
a certain confidence interval for this parameter. Kruse and
Meyer [20] have shown that the same equivalence exists in
the case of statistical tests with fuzzy data.

Let X1; : : : ;Xn denote a fuzzy sample, i. e. a fuzzy
perception of the usual random sample X1; : : : ; Xn , from
the population with the distribution P� . Let ı be a given
number from the interval (0; 1). Grzegorzewski ([15]) pro-
posed the following definition of the fuzzy test for vague
data:

Definition 4 A function ' :
�
Fc(R)

n
! F(f0; 1g) is

called a fuzzy test for the hypothesis H, at the significance
level ı, if

sup
˛2[0;1]

P f! 2 ˝ : '˛(X1(!); : : : ;Xn(!)) � f1g jH g � ı;

(11)

where '˛ is the ˛-level set (˛-cut) of '(X1; : : : ;Xn).

The fuzzy test defined above can be regarded as a family of
classical tests f'˛ : ˛ 2 (0; 1]g for which the significance
level is given as the upper bound of type I error for the
whole family f'˛ : ˛ 2 (0; 1]g.

In order to give an example of a fuzzy statistical
test let us consider a following simple null hypothe-
sis: H : � D �0, against the composite two-sided alter-
native: K : � ¤ �0. Suppose we know a two-sided sym-
metrical confidence interval [�1; �2] for � , on a confi-
dence level 1 � ı, where �1 D �1(X1; : : : ; Xn ; ı/2) and
�2 D �2(X1; : : : ; Xn ; ı/2) are the limits of the ordi-
nary two-sided confidence interval. The fuzzy equivalent
of this confidence interval can be calculated using the ˛-
cuts ˘˛ D [˘ L

˛ ;˘
U
˛ ] for all ˛ 2 (0; 1], where the limits

of these ˛-cuts can be computed from Eq. (9)-(10) by re-
placing ı with ı/2. The fuzzy two-sided statistical test for
H : � D �0, against K : � ¤ �0, on the significance level ı,
has been defined by Grzegorzewski [15] as a function
' : (Fc(R))n ! F(f0; 1g) with following ˛-cuts

'˛(X1; : : : ; Xn) D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

f0g if �0 2 (˘˛ n (:˘ )˛) ;
f1g if �0 2 ((:˘ )˛ n˘˛) ;
f0; 1g if �0 2 (˘˛ \ (:˘ )˛) ;
; if �0 … (˘˛ [ (:˘ )˛) ;

(12)

Similarly we may obtain fuzzy tests for one-sided hypothe-
ses using the one-to-one correspondence between the ac-
ceptance regions of the tests designated for testing these
hypotheses on the significance level ı and one-sided confi-
dence intervals for the parameter � on the confidence level
1 � ı.

Grzegorzewski [15] has shown that the membership
function of the fuzzy test for the hypothesis H against K
is given by

�' (t) D �˘ (�0)If0g(t)C�:˘ (�0)If1g(t)
D �˘ (�0)If0g(t)C(1 � �˘ (�0))If1g(t) ; t 2 f0; 1g;

(13)

where ˘ is a fuzzy acceptance region depending on the
considered hypotheses. Thus, the fuzzy fuzzy test de-
fined by Eq. (12), contrary to the classical crisp test,
does not lead to the binary decision – to accept or
to reject the null hypothesis – but to a fuzzy decision.
One may get �'(0) D 1; �' (1) D 0 which indicates that
we should accept H, or �' (0) D 0; �'(1) D 1 which
means the rejection of H. However, one may also get
�' (0) D �0; �' (1) D 1 � �0, where �0 2 (0; 1), which
can be interpreted as a degree of conviction that we should
accept (�0) or reject (1 � �0) the hypothesis H. Thus, in
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situation when �0 is neither 0 nor 1, a user must decide
using other criteria whether to reject or to accept the con-
sidered hypothesis. There exist several approaches that are
suitable for solving this problem. One of these approaches
which is formulated in the language of the possibility the-
ory has been proposed by Hryniewicz [16] who used the
results of Dubois et al. [9] who proposed to use statisti-
cal confidence intervals of parameters of probability dis-
tributions for the construction of possibility distributions
of these parameters. According to their approach, the fam-
ily of two-sided confidence intervals

[�L (x1; : : : ; xn ; 1 � ı/2) ;
�U (x1; : : : ; xn ; 1 � ı/2)] ; ı 2 (0; 1) (14)

forms the possibility distribution #̃ of the estimated value
of the unknown parameter # . In a similar way it is pos-
sible to construct one-sided possibility distributions based
on one-sided nested confidence intervals. Hryniewicz [16]
proposed to compare this possibility distribution with
a hypothetical value of the tested parameter. For this pur-
pose he proposed to use the necessity of strict dominance
measure introduced by Dubois and Prade [7] for measur-
ing the necessity of the strict dominance relation Ã � B̃,
where Ã and B̃ are fuzzy sets. This measure, called the Ne-
cessity of Strict Dominance index (NSD), is defined as

NSD D Ness
�
Ã � B̃



D 1 � sup
x;y;x�y

min
˚
�A (x) ; �B

�
y
�
: (15)

Hryniewicz [16] has shown that in the classical case of
precise statistical data and precisely defined statistical hy-
potheses the value of the NSD index is equal to the p-value
of the test.

In case of fuzzy data the confidence intervals used for
the construction of the possibility distribution of the esti-
mated parameter � can be replaced by their fuzzy equiv-
alents presented in the previous sections of this article. In
his paper Hryniewicz [16] assumes that the value of the
significance level of the corresponding statistical test ı is
equal to the possibility degree ˛ that defines the respec-
tive ˛-cut of the possibility distribution of �̃ . He also as-
sumes that in the possibilistic analysis of statistical tests on
the significance level ı we should take into account only
those possible values of the fuzzy sample whose possibility
is not smaller than ı. Thus, the ˛-cuts of the membership
function �F (�) denoted by

h
�
(˛)
F;L ; �

(˛)
F;U

i
are equivalent to

the ˛-cuts of the respective fuzzy confidence intervals on
a confidence level 1 � ˛. Having the possibility distribu-
tion of the test statistic we can use Eq. (15) for the calcu-
lation of the degree on necessity that the considered sta-

tistical hypothesis has to be accepted. When we set a crit-
ical value for this characteristic we arrive at unequivocal
(crisp) decisions. It is worthy to note that this approach
has been generalized in [16] to the case of testing impre-
cisely defined hypothesis using fuzzy statistical data.

In the previous paragraphs we have presented fuzzy
statistical tests when the class the underlying probability
distribution belongs to is known. Verification of this as-
sumption when the available statistical data are imprecise
may be very difficult indeed. Therefore, it would be ad-
visable to use fuzzy equivalents of non-parametric (distri-
bution-free) statistical methods. Unfortunately, there ex-
ist only few papers devoted to such fuzzy tests. The most
interesting result has been obtained by Denœux et al. [4]
who proposed a general methodology for the construction
of fuzzy tests based on rank statistics.

Statistical analysis of fuzzy random data can be also
done in the Bayesian framework. First results present-
ing the Bayesian decision analysis for imprecise data
were given in papers by Casals et al. [3] and Gil [11].
Other approaches have been proposed by such authors as
Viertl [34], Frühwirth-Schnatter [10], and Taheri and Be-
hboodian [32]. Comprehensive Bayesian model compris-
ing fuzzy data, fuzzy hypotheses, and fuzzy utility function
has been proposed in the paper by Hryniewicz [17].

Statistical Analysis of Existing Fuzzy-Valued Data

When imprecise statistical data correspond to intrinsic
fuzzy-valued data we can treat them as observed values of
fuzzy random variables in the sense of Puri and Ralescu.
In the literature these data are often treated as categori-
cal/ordinal/interval-valued ones. It should be emphasized
that the model given by fuzzy random variables allows us
to describe and handle these data in a more expressive
scale and way (in contrast to just ranking or stating sim-
ply the interval support of the values). Thus, many statis-
tical developments for real-valued data are based on dis-
tances/deviations between values rather than on the diver-
sity of these values. The use of the fuzzy scale allows to con-
sider metrics with a meaning similar to that for the real-
valued case (i. e., distinguishing not only the ranks of vari-
able values w.r.t. a certain criterion, but a physical distance
between them).

The distance we will consider here is the one stated by
Bertoluzza et al. [2], so that if A; B 2 Fc(R)

D'W (A; B) D
sZ

[0;1]

h Z

[0;1]

�
fA(˛; ) � fB(˛; )

�2
dW()

i
d'(˛)

(16)
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with fA(˛; ) D  � AU (˛)C (1 � ) � AL(˛), where

� W and ' are normalized weighted measures on [0; 1]
formalized as probability measures on ([0; 1];B[0;1]),

� W is associated with a non-degenerate distribution,
� ' is associated with a strictly increasing distribution

function on [0; 1].

Remark It should be remarked on D'W that

� W and ' have no stochastic meaning.
� To consider W is equivalents to consider a measure

weighting points 0, 1 and a certain t0(W) 2 (0; 1); in
caseW is symmetric, then t0(W) D :5.

� For each ˛, the choice ofW allows us to weight
– the effect of the distance between the “widths” of

the ˛- levels (i. e., effect of the “shape” difference),
– in comparison with the effect of the distance be-

tween their t0(W)-points (i. e., effect of the “loca-
tion” difference).

� The choice of ' allows us to weight the influence of
each level (i. e., degree of “imprecision”, “consensus”,
“subjectivity”,...).

� D'W is a versatile and operational in statistical devel-
opments with fuzzy numbers, and it behaves especially
well when we consider least-squares approaches.

Since the concept of fuzzy random variable in Puri and
Ralescu’s sense has been properly stated in a probabilis-
tic context as a random element (i. e., as a Borel-mea-
surable function), concepts like independent and identi-
cally distributed fuzzy random variables make immediate
sense. Furthermore, all the main ideas, aims and concepts,
and several developments can be immediately considered
to deal with fuzzy data when coming from fuzzy-valued
Borel-measurable mappings. In this respect, notions like
either unbiasedness or consistency of a “point” (fuzzy- or
real- valued) estimator of a (fuzzy- or real- valued) ‘pa-
rameter’ associated with the distribution of the fuzzy ran-
dom variable, or the p-value and power of a test concern-
ing such a ‘parameter’, make the same sense as in the clas-
sical case.

Several developments have been made in connection
with both estimation and testing of fuzzy- and real-valued
parameters associated with the distribution of a fuzzy ran-
dom variable in Puri and Ralescu’s sense. We are now just
recalling a few results concerning the “point” fuzzy estima-
tion and testing of the population mean of a fuzzy random
variable, which is formalized as follows:

Definition 5 (Puri & Ralescu, [31]) Given a probability
space (˝;A; P) and an associated fuzzy random variable

X : ˝ ! Fc(R) such that max
˚
j infX0j; j supX0j

�
is in-

tegrable, then, the fuzzy expected value (or fuzzy mean)
of X is the fuzzy number Ẽ(XjP) 2 Fc(R) such that for
all ˛ 2 [0; 1]

�
Ẽ(XjP)


˛

D Aumann integral ofX˛
D
˚
E(XjP)

ˇ̌
X : ˝ ! R;

X 2 L1(˝;A; P); X 2 X˛ a.s. [P]
�

D
�
E(infX˛jP); E(supX˛jP)

�
:

Remark 5 The fuzzy mean satisfies that

� If X(˝) D fx̃1; : : : ; x̃m ; : : :g � Fc(R), then, it is co-
herent with fuzzy arithmetic, that is,

Ẽ(XjP) D P (f! 2 ˝ jX(!) D x̃1g) � x̃1 C : : :
C P (f! 2 ˝ jX(!) D x̃mg) � x̃m C : : :

� Strong Laws of Large Numbers are satisfied for differ-
ent metrics (like D'W , and stronger ones), which also
corroborates the suitability of the defined fuzzy mean
as the stochastic limit of the sample ones.

� Ẽ(XjP) is the “Fréchet expectation” of X w.r.t. D'W ,
i. e., for all A 2 Fc(R):

E

�
D'W (X; Ẽ(XjP))

�2 ˇ̌P
�
� E


�
D'W (X;A)

�2 ˇ̌P
�
:

The interpretation of the fuzzy mean becomes more clear
if we notice that for interval-valued random variables (i. e.,
random intervals) the expected value is given in a form of
an interval with the lower limit equal to the expected value
of the lower limits of observed random variables, and the
upper limit equal to the expected value of the upper lim-
its of observed random variables. Therefore, the expected
value of the fuzzy random variable can be given as a nested
set of such intervals represented by respective ˛-cuts, as it
is formally described in the definition.

The definition of other characteristics describing fuzzy
random variablesmay be much more complicated. For ex-
ample, the definition of the variance requires the introduc-
tion of the “Fréchet expectation” (defined above), as it was
proposed by Körner and Näther [24].

Fuzzy Estimation

Assume that we observe a fuzzy simple random sample
X1; : : : ;Xn which is viewed now as an n-tuple of n inde-
pendent fuzzy random variables which are identically dis-
tributed as X. The associated fuzzy sample mean is the
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statistic given by

Xn D
1
n
� [X1 C : : : CXn] :

Then, one can prove that (see Lubiano ([25])

Theorem 1 The fuzzy sample mean satisfies that

i) Xn[ � ] in an “unbiased fuzzy-valued estimator” of
Ẽ(XjP) (in the sense of the fuzzy expected value defined
by Puri & Ralescu). For most of the metrics we can con-
sider, it is also a ‘strongly consistent’ fuzzy-valued esti-
mator of Ẽ(XjP).

ii) One can quantify the mean squared-type error in the
fuzzy estimation by considering the real-valued expected
value E


�
D'W (Xn ; Ẽ(XjP))

�2�.

Actually, Lubiano et al. [26,27] proposed several develop-
ments in connection with the estimation and testing about
the D'W -mean squared error associated with the estima-
tion of the population fuzzy means by means of the sample
one.

Statistical Tests

One of the problems which has received a deep atten-
tion in connection with testing from fuzzy random vari-
ables in Puri and Ralescu’s sense is that concerning two-
sided tests about the mean of a fuzzy random vari-
able (one-sample case). In order to define this problem
one can decide which metrics could be used for mea-
suring the distance between the hypothetical and ob-
served fuzzy values of considered characteristics of the
fuzzy random variables. In the case of the metrics de-
fined by Eq. (16), the problem can be formalized as
follows:

Given n independent observations from X, X1; : : : ;

Xn , we wish to test the null hypothesis H0 : Ẽ(XjP) D
A 2 Fc(R), which can be equivalently expressed as
H0 : D

'
W
�
Ẽ(XjP);A


D 0.

Despite simple formulation of the testing problem the
construction of statistical tests for the verification of hy-
potheses related to fuzzy mean values is not that sim-
ple. For example, an exact test has been developed in
Montenegro et al. [28] for so called “normal” fuzzy ran-
dom variables (in Puri and Ralescu’s sense, [30]). Al-
though themethod is exact and easy-to-apply, the assump-
tion of X being fuzzy “normal” (X D V CN (0; 1), with
V 2 Fc(R)) is quite restrictive and often unrealistic, as it
means that all observed fuzzy values are described by the
samemembership function shape with maybe different lo-
cation.

In a more general case asymptotic tests based on Large
Sample Theory have been developed for the same pur-
pose. However, they are usually hardly applicable (except
for some simple special cases) in practice. For example,
the asymptotic distribution of the statistic proposed by
Körner [23] involves unknown parameters such as cor-
relations between random variables describing member-
ship functions of observed fuzzy variables. In the paper by
Montenegro et al. [28] devoted to the problem of testing
the equality of two fuzzy mean values, it is assumed thatX
takes on a finite number of values, and large sample sizes
would be required anyway in order to estimate unknown
parameters of the model.

Simulation studies have been considered to analyze the
extent and applicability of the asymptotic test byMontene-
gro et al. [28]. These studies have confirmed that in esti-
mating the unknown parameters (the eigenvalues of a cer-
tain correlation matrix) entails a substantial loss of pre-
cision w.r.t. the nominal significance level. Based on this
empirical conclusion, the use of D'W and the Generalized
Bootstrapped CLT (Giné and Zinn, [13]) allow us to con-
sider bootstrap techniques in this context.

The bootstrap technique consists in taking random
samples (i. e. re-sampling) from the original one and cal-
culating the value of the considered statistic. By repeating
this procedure many times we obtain the sample distribu-
tion of the test statistic which may be thus used for testing
purposes. In case of fuzzy random data we get the follow-
ing method proposed by González-Rodríguez et al. [14]:

Theorem 2 Given a fuzzy random variable X : ˝ !

Fc(R) associated with the probability space (˝;A; P) and
such that

� max
˚
(infX0)2; (supX0)2

�
is integrable ,

� X1; : : : ;Xn are i.i.d. asX ,
� X�1 ; : : : ;X�n is a bootstrap sample fromX1; : : : ;Xn ,

then, to test H0 at the nominal significance level ˛ 2 [0; 1],
H0 should be rejected whenever

h
D'W

�
Xn ;U

i2

bS2n
> z˛ ;

where z˛ is the 100(1 � ˛) fractile of the bootstrap distribu-
tion of

Tn D
h
D'W

�
X�n ;Xn

i2.bS� 2n

with

X�n D
nX

iD1

X�i /n; bS� 2n D

nX

iD1

�
D'W

�
X�i ;X�n

�2 /(n�1) :
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Other bootstrap tests about means of fuzzy random vari-
ables which have been recently developed are the following
ones:

� One-sided hypotheses tests in the one-sample case.
� Tests for the equality of means of two FRVs

– for two independent samples
– for two linked samples.

� Tests for the equality of means of J FRVs (ANOVA):
– for J independent samples.

From comparative extensive simulation studies that have
been performed recently at the University of Oviedo and
the European Center for Soft Computing we can draw the
following practical conclusions:

� For small/medium samples, the bootstrap method per-
forms and behaves much better than the asymptotic
one.

� For large sample sizes (over 300), the improvement is
not that remarkable, but the bootstrap approach still
provides the best approximation to the nominal signif-
icance level.

Taking into account that fuzzy statistical test for test-
ing hypotheses about other characteristics of fuzzy ran-
dom variables are even more complicated than the pro-
cedures designed for testing the hypotheses about mean
values we can claim that the bootstrap technique is prob-
ably the most promising for dealing with random fuzzy
observations.

Future Directions

Statistical analysis of imprecise data is still a developing
area of science. Future directions of its development are
tightly connected with the development of methods that
may be used for the description of uncertainties of dif-
ferent types. It has been pointed out by P. Walley (see,
e. g. [36] for a good overview) that traditional probabil-
ity is not sufficient for good description of different types
of uncertainty. Different mathematical models, such as
e. g. Dempster–Schafer belief functions, possibility distri-
butions, lower and upper probabilities, lower and upper
previsions, and many others, have been proposed for this
purpose. However, for the most general models describing
uncertainty appropriate statistical methods have not been
proposed yet. Therefore, statistical methods for handling
very general imprecise data have to be developed in the
future.

Another, but much more specific, future direction for
the development of statistical analysis of imprecise data is

related to the analysis of intrinsically fuzzy data. In con-
trast to the situation when fuzzy observations may be con-
sidered as fuzzy perceptions of real-valued observations,
many notions known from traditional statistics are still
waiting for their widely accepted definitions, and statistical
methods of analysis.

The most challenging future direction is related to
Zadeh’s paradigm of “computing with words”. First of all,
we need operational methods for the representation of lin-
guistic concepts which could be useful is statistical analy-
sis of imprecisely reported (with words!) statistical data.
Moreover, we also need methods for convincing presenta-
tion of the results of computations to users who have only
limited knowledge of mathematics and statistics.

Bibliography

Primary Literature
1. Bandemer H, Näther W (1992) Fuzzy Data Analysis. Kluwer,

Dordrecht
2. Bertoluzza C, Corral N, Salas A (1995) On a new class of dis-

tances between fuzzy numbers, Mathware and Soft Com-
puting, vol 2. Departament of Computer Science and Artifi-
cial Intellingence of the University of Granada and Secció de
Matemàtiques i Informàtica of the Universitat Politècnica de
Catalunya, Granada, Barcelona, pp 71–84. http://docto-si.ugr.
es/Mathware/ENG/mathware.html

3. Casals R, Gil MA, Gil P (1986) The fuzzy decision problem. In: An
approach to the problem of testing statistical hypotheses with
fuzzy information. Eu J Oper Res 27:371–382

4. Denœux T, Masson M-H, Hébert PA (2005) Nonparametric
rank-based statistics and significance tests for fuzzy data.
Fuzzy Sets Syst 153:1–28

5. Dubois D, Prade H (1978) Operations on Fuzzy Numbers. Int J
Syst Sci 9:613–626

6. Dubois D, Prade H (1980) Fuzzy Sets and Systems. In: Theory
and Applications. Academic Press, New York

7. Dubois D, Prade H (1983) Ranking fuzzy numbers in the setting
of possibility theory. Inf Sci 30:184–244

8. Dubois D, Prade H (1988) Possibility Theory. Plenum Press,
New York

9. Dubois D, Foulloy L, Mauris G, Prade H (2002) Probability-pos-
sibility transformations, triangular fuzzy-sets and probabilistic
inequalities, Proc of the Ninth International Conference IPMU,
Annecy, pp 1077–1083

10. Frühwirth-Schatter S (1993) Fuzzy Bayesian inference. Fuzzy
Sets Syst 60:41–58

11. Gil MÁ, Kacprzyk J, Fedrizzi M (eds) (1988) Probabilistic-Pos-
sibilistic approach to some Statistical Problems with Fuzzy
Experimental Observations. In: Combining Fuzzy Imprecision
with Probabilistic Uncertainty in Decision Making. Springer,
Berlin, pp 286–306

12. Gil MÁ, López-Díaz M, Ralescu DA (2006) Overview on the
development of fuzzy random variables. Fuzzy Sets Syst
157:2546–2557

13. Giné E, Zinn J (1990) Bootstrapping general empirical mea-
sures. Ann Prob 18:851–869

http://docto-si.ugr.es/Mathware/ENG/mathware.html
http://docto-si.ugr.es/Mathware/ENG/mathware.html


8690 S Stellar Dynamics, N-body Methods for

14. González-Rodríguez G, Montenegro M, Colubi A, Gil MA (2006)
Bootstrap techniques and fuzzy random variables. Synergy
in hypothesis testing with fuzzy data. Fuzzy Sets Syst 157:
2608–2613

15. Grzegorzewski P (2000) Testing statistical hypotheses with
vague data. Fuzzy Sets Syst 112:501–510

16. Hryniewicz O (2006) Possibilistic decisions and fuzzy statistical
tests. Fuzzy Sets Syst 157:2665–2673

17. Hryniewicz O, Grzegorzewski P, Gil MÁ (eds) (2002) Possibilistic
Approach to the Bayes Statistical Decisions. In: Soft Methods in
Probability, Statistics and Data Analysis. Physica, Heidelberg,
pp 207–218

18. ISO/IEC (1995) Guide to the expression of uncertainty in mea-
surement (GUM). ISO/IEC, Geneva

19. Kruse R (1982) The strong law of large numbers for fuzzy ran-
dom variables. Inf Sci 28:233–241

20. Kruse R, Meyer KD (1987) Statistics with Vague Data. D. Riedel
Publishing Company, Dordrecht

21. Kwakernaak H (1978) Fuzzy Random Variables. Definitions and
Theorems. Inf Sci 15:1–15

22. Kwakernaak H (1979) Fuzzy Random Variables. Algorithms and
Examples for the Discrete Case. Inf Sci 17:253–278

23. Körner R (2000) An asymptotic ˛-test for the expectation of
random fuzzy variables. J Stat Plann Inference 83:331–346

24. Körner R, Näther W (2002) On the variance of random fuzzy
variables. In: Bertoluzza C, Gil MÁ, Ralescu DA (eds) Statistical
Modeling, Analysis and Management of Fuzzy Data. Physica,
Heidelberg, pp 25–42

25. LubianoMA (1999) Medidas de variación de elementos aleato-
rios. Ph D Thesis, University of Oviedo

26. Lubiano MA, Gil MA (1999) Estimating the expected value of
fuzzy random variables in random samplings from finite pop-
ulations. Stat Pap 40:277–295

27. Lubiano MA, Gil MA, López-Díaz M, López-García MT (2000)

The
�!
� -mean squared dispersion associated with a fuzzy ran-

dom variable. Fuzzy Sets Syst 111:307–317
28. Montenegro M, Colubi A, Casals MR, Gil MA (2004) Asymptotic

and Bootstrap techniques for testing the expected value of
a fuzzy random variable. Metrika 59:31–49

29. Nguyen HT (1978) A note on the extension principle for fuzzy
sets. J Math Anal Appl 64:369–380

30. Puri ML, Ralescu DA (1985) The concept of normality for fuzzy
random variables. Ann Prob 13:1373–1379

31. Puri ML, Ralescu DA (1986) Fuzzy Random Variables. J Math
Anal Appl 114:409–422

32. Taheri SM, Behboodian J (2001) A Bayesian approach to fuzzy
hypotheses testing. Fuzzy Sets Syst 123:39–48

33. Terán P (2007) Probabilistic foundations for measurement
modelling with fuzzy random variables. Fuzzy Sets Syst
158:973–986

34. Viertl R (ed) (1987) Is it necessary to develop a fuzzy Bayesian
inference. In: Probability and Bayesian Statistics. Plenum, New
York, pp 471–475

35. Viertl R (1996) Statistical Methods for Non-Precise Data. CRC
Press, Boca-Raton

36. Walley P (1996) Measures of uncertainty in expert systems. Ar-
tif Intell 114:1–58

37. Zadeh LA (1956) Fuzzy sets. Inf Control 8:338–353

38. Zadeh LA (1975) The concept of a linguistic variable and its
application to approximate reasoning. Inf Sci 8(1):199–249;
8(2):301–353; 9(3):43–80

Books and Reviews
Bertoluzza C, Gil MÁ, Ralescu DA (eds) (2002) Statistical Modeling,

Analysis and Management of Fuzzy Data. Physica, Heidelberg
Dubois D, Lubiano MA, Prade H, Gil MÁ, Grzegorzewski P,

HryniewiczO (eds) (2008) Soft methods for handling variability
and imprecision. Springer, Berlin

Gil MÁ, López-Díaz M, Ralescu DA (2006) Overview on the de-
velopment of fuzzy random variables. Fuzzy Sets Syst 157:
2546–2557

Grzegorzewski P, Hryniewicz O, Gil MÁ (eds) (2002) Soft methods in
probability. In: Statistics and data analysis. Physica, Heidelberg

Kruse R, Gebhardt J, Gil MÁ (1999) Fuzzy Statistics. In: Webster JG
(ed) Encyclopedia of Electrical and Electronics Engineering.Wi-
ley, New York

Lawry J, Miranda E, Bugarin A, Li S, Gil MÁ, Grzegorzewski P,
Hryniewicz O (eds) (2006) Soft Methods for Integrated Uncer-
tainty Modeling. Springer, Berlin

López-Díaz M, Gil MÁ, Grzegorzewski P, Hryniewicz O, Lawry J (eds)
(2004) Soft Methodology and Random Information Systems.
Springer, Berlin

Taheri SM (2003) Trends in Fuzzy Statistics. Austrian J Stat 32:239–
257

Stellar Dynamics,
N-bodyMethods for
JUNICHIRO MAKINO
Center for Computational Astrophysics, National
Astronomical Observatory of Japan, Tokyo, Japan

Article Outline

Glossary
Definition of the Subject
Introduction
Statistical Description
Numerical Methods
Future Directions
Bibliography

Glossary

Binary Two stars which orbit around each other.
Distribution function A density function in the six-di-

mensional phase space which gives the distribution of
stars in a stellar system.

Fokker–Planck equation Partial differential equation for
the thermal evolution of the distribution function of
a stellar system, expressed in the form of the advection-
diffusion equation in the phase space.
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Monte-Carlo method The method to numerically follow
the thermal evolution of stellar systems using Monte-
Carlo integration of Fokker–Planck equation for the
distribution function.

Relaxation The process which leads the system to thermal
equilibrium. In the case of a stellar system, the main
mechanism of relaxation is the gravitational encounter
between stars.

Stellar systems A system composed of a large number
of stars, i. e., particles which interact through mutual
gravity.

Thermal stability Stability of the system against the re-
distribution of the thermal energy.

Definition of the Subject

Most of astronomical objects are in the first approxima-
tion the collection of point mass particles (stars or plan-
ets). We call such systems stellar systems, and stellar dy-
namics is the theoretical framework for the study of such
systems. Since the equation of motion for stellar systems
with N stars is analytically solvable only for the case of
N D 2, numerical integration of the orbit of stars has been
very important tool for the study of stellar systems.

Introduction

StellarDynamics deals with the evolution of systemswhich
consist of a large number of stars interacting with other
stars through mutual gravitational force. Examples of such
systems include star clusters, galaxies, clusters of galaxies.
Star clusters consist of up to around 10 million stars. They
are classified into two categories: open clusters and glob-
ular clusters. Open clusters are less massive and younger
than globular clusters. Globular clusters in our galaxy are
all very old (more than 10 Gyr) and fairly massive (more
than 105 solar mass). Both types of clusters are compact,
with the radius of the order of 10 parsec or less.

Galaxies are larger andmoremassive than star clusters.
The total mass of our Galaxy is around 1012 solar mass.
Around 80% of the total mass is in dark matter, the exis-
tence of which we only indirectly know through the mea-
surement of the motions of visible matter such as gas or
stars.

In the first approximation, stellar systems such as star
clusters and galaxies are just a collection of a large number
of point masses. Therefore, one might expect that a statis-
tical description is applicable. In other words, one might
expect that the behavior of the system is described by the
statistical mechanics. If that were the case, however, the
universe would look very different from its present form.
All galaxies would look similar, and rather boring, with-

out any structures such as spirals, bars, shells etc., which
make the diversity of galaxies. In this article, we first re-
view how the statistical description can be or cannot be
applied to stellar systems, and then present an overview of
our current understanding for the evolution of stellar sys-
tems. Then we discuss the numerical methods for N-body
simulations. For a more complete coverage of the subject
see textbooks [5,25].

Statistical Description

Thermal Stability and Gravothermal Catastrophe

There are two basic reasons why stellar systems cannot
be described by statistical mechanics. The first one is that
the thermal equilibrium state does not exist for stellar sys-
tems. An equilibrium state for a system of classical par-
ticles is given by the Maxwell-Boltzmann statistics. This
means that the local velocity distribution is Maxwellian
with a single temperature everywhere in the system. In
other words, the velocity distribution function is given by

f0(v) D
n f

(2��2)3/2
exp

�
�v2/2
�2

�
; (1)

where nf is the volume number density of particles and �
is the velocity dispersion.

However, with a stellar system, this Maxwellian distri-
bution cannot be realized, simply because the stars with
sufficiently high velocities will escape from the system. The
depth of the gravitational potential of a stellar system is fi-
nite. Thus, if a star gained kinetic energy higher than that
of the depth of the gravitational potential at its position, it
would escape from the system.

As a thought experiment, we can think of a stellar sys-
tem with a spherical adiabatic wall around it. The ther-
mal equilibrium state of the stellar system can be described
by that of an ideal gas, since the distribution function is
Maxwellian for both cases. Therefore, even though we can-
not apply the terms like pressure and temperature to stel-
lar systems in general, we can apply these concepts to stel-
lar systems in the thermal equilibrium, since the equilib-
rium distribution function is the same as that of an ideal
gas with self gravity.

In this case, since the stars do not escape, the equilib-
rium state does exist. In the limit of very high temperature
(large kinetic energy), the distribution of stars within the
wall is uniform, with the number density of stars same ev-
erywhere. However, as we lower the temperature, the cen-
tral density becomes higher due to the effect of self gravity.
There must be a pressure gradient to support the gravity,
and that means a density gradient should exist. However,
this increase of density gradient means an increase of the
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Energies as function of the ratio between the density at the cen-
ter and that at the place of the wall, D. Three curves indicate the
kinetic energy (top), total energy (middle) and gravitational en-
ergy (bottom), respectively

gravitational force, because more mass is concentrated to
the center. Thus, if the increase of the gravitational force
is larger than the increase of pressure, than the pressure
gradient cannot support the system and there is no equi-
librium state.

Figure 1 shows this phenomenon more clearly. Here,
we plot the thermal energy (Ek), gravitational energy(Eg)
and total energy (Et D Ek C Eg) as a function of the ratio
of the density at the center and that of just inside the wall.
Here, for simplicity, we use the system of units where the
radius of the wall R and mass of the gas M are both unity
and the gravitational constant G is also unity. The limit as
D! 1 corresponds to infinite temperature. In this limit,
the gravitational energy converges to�0.6, and the kinetic
energy and total energy diverge. As we increase D, the ki-
netic energy decreases, gravitational energy increases, and
the total energy decreases. However, at D D 709, the total
energy Et takes a minimum.

The fact that Et takes a minimum means that this sys-
tem has neutral stability against the perturbation which
conserves the total energy, since an infinitesimal change
ofD in either direction does not change the total energy. In
other words, for this system we can redistribute the ther-
mal energy in such a way that after that perturbation is ap-
plied the system is still isothermal. For D < 709, when we
change D the total energy also changes. In other words, if
we redistribute the energy in any way, as far as we keep the
total energy unchanged, the system cannot remain isother-
mal.

This change of behavior corresponds to a sign of
the (second-order) variation of total entropy ı2S. For
D < 709, for any thermal perturbation, ı2S < 0, and
the second law of thermodynamics guarantees that the
isothermal state is stable. However, for D D 709, there is
one form of perturbation for which ı2S D 0. For D > 709,
there are one or more perturbations for which ı2S > 0. In
other words, the isothermal state is unstable for D > 709.

The eigenfunction which corresponds to ı2S D 0 has
a single node, which means it either transfers the thermal
energy from central area to the outer area, or vise versa.
The system shows neutral stability against this heat trans-
fer. Thus, even though the thermal energy is moved, the
system remains isothermal.

In the case of D < 709, any perturbation in the distri-
bution of the thermal energy results in the heat flux which
cancels out the perturbation. In the case of D D 709, there
is one mode of perturbation for which there will be no heat
flux. Finally, in the case of D > 709, there is at least one
mode of perturbation, for which the resulting heat flows
in the direction that enhances perturbation. Thus, if we
remove some energy from the outer region and give it to
the central region, the central region becomes cooler than
the outer region, and therefore heat starts to flow inwards.
This inward heat flow results in more cooling.

The reason why the central region cools when it gets
more thermal energy is that it expands. As a result of the
expansion, the gravitational attraction becomes weaker,
and the central region can expand more. Through this
additional expansion the central region lowers its tem-
perature. In this case, however, the final state is another
isothermal state with the same Et but a smaller value of D.
Since the minimum value of Et corresponds to D D 709,
for any other value of D, there is one value of D with same
Et which is thermally stable.

If the initial perturbation removes the thermal energy
from the central region and deposits it to the outer region,
the central region becomes hotter, and the heat starts to
flow outwards. In this case, there is no stable final state,
and the central region continues to contract and becomes
hotter indefinitely. Exactly what happens depends on the
efficiency of the heat transport.

Roughly speaking, if the thermal timescale is shorter
in the center than in the outer region, as the central re-
gion contracts, the timescale becomes even shorter. In this
case, the central density can reach infinity in a finite time.
Of course, in this case, the mass of the region with infi-
nite density should become zero. On the other hand, if the
timescale is longer in the center, the timescale becomes
even longer as the contraction proceeds, and the over-
all system contracts slowly. In the case of an ideal gas,
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the timescale is determined by the mechanism of the heat
transfer.

In the case of stellar systems, heat transfer proceeds
through close encounters between two stars. Since the rate
of close encounters is directly proportional to the number
density of stars, the thermal relaxation timescale is shorter
for the central region, and becomes shorter as the central
density goes up. This phenomenon is called “gravothermal
catastrophe”.

This gravothermal catastrophe occurs in real stellar
systems without the adiabatic wall, since real stellar sys-
tems always have the temperature decreasing outward,
which naturally drives the outward heat flux. Of course,
the distribution function is not Maxwellian and one can-
not strictly define the temperature. Even so, comparisons
between numerical simulations with different approaches
have shown that this picture gives a very good description.

Hachisu et al. [9] performed a simulation of the evolu-
tion of the self-gravitating gas system with several differ-
ent forms of heat conductivity. They found that if the heat
conductivity is such that the central thermal timescale is
shorter than that of the outside region, the evolution of the
systemwould become self-similar. In other words, the cen-
tral region continues to shrink, leaving a power-law halo
behind it. The mass of the core decreases in time and the
central density reaches infinity within a finite time.

In the following, we give a simple explanation of this
power-law behavior, following the description by Lynden-
Bell and Eggleton [14]. Formally, a self-similar solution for
a physical quantity y as a function of radius r and time t is
expressed as

y(r; t) D y0(t)y�[r/r0(t)] : (2)

We can set y�(0) D 1 without loss of generality. We can
assume that in the limit of r !1 there is no evolution,
since the thermal timescale is longer at the outskirts. We
can further assume that functions r0 and y0 are powers of
the time t, since otherwise the self-similar solution cannot
be constructed. Thus, if we express

r0 D (t0 � t)ˇ ; (3)

and

y0 D (t0 � t)� ; (4)

we have

y0 D r� /ˇ0 : (5)

The ratio between the gravitational binding energy of
the core and the thermal energy of the core should be con-

stant. Therefore, we have

�2 /
GMc

rc
� �0r20 : (6)

If we express �0 as

�0 D r˛0 ; (7)

we have

r0 D (t0 � t)2/(6C˛) : (8)

Lynden-Bell and Eggleton [14] numerically obtained
the self-similar solution for the gaseous model with heat
conductivity which they believed would mimic the radial
energy transfer in an N-body system, and found that the
self-similar solution has the characteristic power law index
of

� D r�2:21 : (9)

Henon [11] demonstrated that the N-body system
would exhibit core collapse using Monte-Carlo calcula-
tion with 1000 shells. At that time, N-body simulation did
show some collapse-like behavior, but it was difficult to see
whether the collapse is really self-similar or not because of
the limitation in the number of particles. The most beauti-
ful demonstration of the self-similar nature of the collapse
is by Cohn [6], who is the first to use the direct integration
of the Fokker–Planck equation in the study of the ther-
mal evolution of the globular clusters. He found the power
index to be �2.23, which is strikingly close to the value
obtained by the gas model calculation of Lynden-Bell and
Eggleton [14].

In the study of the gravothermal catastrophe and self-
similar solution, N-body simulation did not play a ma-
jor role. This is partly because more approximate meth-
ods, such as the gaseous models and Fokker–Planck calcu-
lations, gave reasonable results, and partly because com-
puter power available was quite limited in the 1980s.

Binary Formation and Gravothermal Oscillation

In the continuous limit, the central density diverges in a fi-
nite time, and at that time the core mass becomes zero.
Since real stellar systems consist of stars with finite mass
and finite size, the central density cannot reach infinity.
One possibility is that stars start to physically collide, but
there is another possibility.

When the central density becomes very high, the cross-
section of the three-body close encounter, which causes
the formation of a bound binary, becomes non-negligible.
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The binding energy of the binary is transferred to the ki-
netic energy of the third particle and the center-of-mass
motion of the binary. This is essentially the same as the nu-
clear fusion reaction. The difference is that in this case the
interaction which makes the two stars bound is the same
gravitational force which makes the entire system bound,
and that means there is no ground state for a binary star.
Thus, in theory, the binding energy of a binary star can
become arbitrarily large. In practice, in real star clusters,
there is a practical limit for the binding energy of a bi-
nary star. When a binary star interacts with another star,
its center-of-mass motion acquires some energy, which is
typically a fraction of its binding energy. When the ki-
netic energy of the center-of-mass motion becomes large
enough, the binary would be ejected out the cluster. In
fact, this ejection of the binary itself and the other star is
the main channel which heats the central region of a star
cluster.

This energy production by binaries halts the collapse.
The collapse of the core is driven by the outward heat flux.
If a sufficient amount of energy is generated in the core,
the collapse is halted. In the case of a star, gravitational
contraction of the star is halted by the energy production
from the nuclear fusion reaction, and it becomes a main-
sequence star.

In the case of a star cluster, it is possible to con-
struct a steady-state solution quite similar to the main-se-
quence stage of a star [8,10]. However, it turned out that
this steady-state solution is again thermally unstable [26].
This instability drives what is now called “gravother-
mal oscillation”. This oscillation was first found in a gas
sphere model, but then confirmed with Fokker–Planck

Stellar Dynamics, N-body Methods for, Figure 2
The time variation of the central density of simulated star clus-
ters. (Reproduced from [16])

(FP) calculations [7], and later with direct N-body simu-
lations [16].

Figure 2 shows the time variation of the central density
for simulations with 2–32k particles. The time is scaled so
that the initial thermal relaxation time is the same for all
runs. The curves are shifted vertically.

From Fig. 2 we can see that the oscillation is not strictly
periodic. One reason is simply that the binary formation
and its interaction with other stars is a stochastic process.
The other reason is that, even in the continuous limit with
a smooth and deterministic heating term, this oscillation is
chaotic. Note that here what exhibits the chaotic behavior
is the central density of the whole N-body system, which
is a macroscopic variable of a system with large degrees of
freedom.

Numerical Methods

In this section, we discuss the numerical methods used
to obtain the solution of gravitational N-body problem.
The problem itself is rather simple.We integrate the equa-
tion of motion for stars, using some numerical methods
for the initial-value problem of ordinary differential equa-
tions. The calculation cost of the mutual gravitation inter-
action is O(N2) and dominate the calculation cost.

In practice, however, what is done is far more com-
plex for a variety of reasons. Here, let us overview the ap-
proaches used.

First of all, for some problems, it is not necessary to
calculate the interaction of all N2/2 pairs at each timestep.
There are several algorithms which reduce the calculation
cost from O(N2) to O(N log N) or even O(N). These al-
gorithms include particle-mesh schemes, Barnes-Hut tree
algorithm, and the Fast Multipole Method.

Secondly, it is not practical to apply the same timestep
to all stars.While two stars undergo close encounters, their
distance can become arbitrary small, depending on the im-
pact parameter and the relative velocity. They have to be
integrated with the adaptive timestep which can resolve
their relative orbit. Moreover, as we discussed in Sect. “Sta-
tistical Description”, many stellar systems tend to develop
high-density cores, in which the stars orbit on a timescale
much shorter than that of average stars. Also, in many stel-
lar systems, interactions between binary stars (two stars
orbiting around each other) and other stars play an impor-
tant role, and the evolution of the binary orbit due to the
interaction with other stars must be accurately integrated.
The orbital timescale of binaries can become as small as
a fraction of a second, while stars in globular clusters or
galaxies have the orbital timescale much longer than one
million years. Thus, it is clearly necessary to apply some
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algorithm with which we can change the timestep of indi-
vidual stars individually.

Finally, an important characteristic of a stellar system
is, from both the theoretical and practical point of views,
that it is a Hamiltonian system with various symmetry and
conservation laws. Numerical schemes which make use of
these characteristics play important roles.

In the following, we briefly overview these schemes.

Fast Interaction Calculations

The basic idea of the tree code [4] is to replace the force
from a group of distant particles with the force from their
center of mass or by a multipole expansion. To ensure
accuracy, we make groups for distant particles large and
groups for nearby particles small.

We use a tree structure to construct the appropriate
grouping for each particle. Before calculating the forces on
particles, we first organize particles into a tree structure.
Barnes and Hut [4] used an oct-tree based on the recur-
sive subdivision of a cube into eight subcubes. We stop the
recursive subdivision if the cube has only one particle (or
no particles). See [15] for details concerning an efficient
tree construction algorithm. Figure 3 shows the Barnes–
Hut tree in two dimensional space.

After the tree is constructed, for each node of the tree,
which corresponds to a cube of a certain size, we calculate
the coefficient of the multipole expansion of the gravita-

Stellar Dynamics, N-body Methods for, Figure 3
Barnes–Hut tree in two dimensions

Stellar Dynamics, N-body Methods for, Figure 4
Opening criterion for tree traversal

tional force exerted by particles in that cube. The fast algo-
rithm was described in [12].

The force calculation is expressed as a recursive proce-
dure. To calculate the force on a particle, we start from the
root node, which corresponds to the total system. We cal-
culate the distance between the node and the particle (d)
and compare it with the size of the node (l). If they satisfy
the convergence criterion

l
d
< � ; (10)

where � is the accuracy parameter, we calculate the force
from that node to the particle using the coefficients of the
multipole expansion. If criterion (10) is not satisfied, the
force is calculated as a summation of the forces from eight
sub-nodes.

Usually, we use the distance between the particle and
the center of mass of the node to determine whether the
force is accurate enough. When � is very large, this cri-
terion can cause unacceptably large error [21]. For most
calculations, however, such a pathological situation is not
realized.

The fast multipole algorithm (FMM) is in some sense
a natural extension of the tree algorithm. In the tree algo-
rithm, we use the multipole expansion to express the grav-
itational force for a group of stars with other stars suffi-
ciently far away (Fig. 5a). In FMM, the forces on another
group of stars are expressed in terms of one spherical har-
monics expansion, and the forces on these stars are ob-
tained by evaluating the expansion at the locations of stars.
The tree-based recursive approach is now applied to both
the path to calculate multipole expansions and the path
to calculate the spherical harmonics expansions (usually
called local expansions). This treatment removes the logN
term in the calculation cost of the tree algorithm, since the
cells of a given size do not directly interact with stars. They
interact only with the cells of the same or similar sizes.

After the invention of the tree algorithm and FMM
in the late 1980s, a large number of works followed on
various topics such as the theoretical analysis of the algo-
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Stellar Dynamics, N-body Methods for, Figure 5
Tree algorithm (a) and FMM (b)

rithms, efficient implementation, a fast method to translate
multipole and local expansions, parallel implementation,
etc. Some of these are covered in [19].

In many other fields of computational science, the
Poisson equation associated with the distribution of par-
ticles is numerically solved using FFT. If the number of
grid points one needs to resolve the potential field is of the
same order or less than the number of particles, it is highly
advantageous to use FFT, since the calculation cost of FFT
is O(M logM), whereM is the number of grid points, with
relatively small coefficient. However, FFT requires that the
grid is regular with equal spacing. Thus, FFT alone is not
very suitable for astronomical simulations, where small-
scale structures develop through gravitational instability.
Recently, the combination of the tree algorithm and FFT
potential solver has become the standard scheme for simu-
lations which requires periodic boundary conditions (see,
e. g., Yoshikawa and Fukushige [27]).

Individual Timestep Algorithms

The individual timestep scheme [1,2] has been the only al-
gorithm that can be used for simulations of gravitational
many-body systems, such as open clusters, globular clus-
ters and a system of planetesimals. In a simulation of these
systems, we are interested in the change of orbit of each
particle due to gravitational encounters with other parti-
cles, and the evolution of the total system driven by such
changes. In that sense, simulation of these systems is simi-
lar to the molecular dynamics simulation, in which we are
interested in the thermodynamical process.

In simulations of these collisional systems, we need to
follow the changes of the orbit of a star due to individual
encounters with a reasonable accuracy, since the encoun-
ters drive the evolution of the system. Therefore, we can-
not use the softening parameter to simulate the evolution
of these systems. In the study of the galaxies, for exam-
ple, we can modify the 1/r potential to 1/

p
r2 C �2, with

small constant �. This softened potential makes it possible
to use a constant and global timestep.When we use a strict
1/r potential, the force between two particles changes very
rapidly when two particles undergo a close encounter.

Therefore, during a close encounter, the timestep should
be sufficiently small to resolve this rapid change. Roughly
speaking, the timestep is determined by the distance to the
nearest neighbor. Therefore, if we integrate the system in
lockstep, the timestep is determined by the pair of particles
with minimum separation. Even in a nearly homogeneous
system, the minimum separation is proportional to N�2/3,
and the dependence on N is stronger when the system is
highly inhomogeneous [17].

To reduce the total calculation cost, Aarseth [1] de-
veloped an algorithm which assigns each particle its own
timestep. In this individual timestep algorithm, each par-
ticle adjusts its timestep so that it satisfies the required
accuracy. Thus, when two particles undergo a close en-
counter, although the timesteps of these particles shrink
as required, the timesteps of other particles remain long.
Makino and Hut [17] showed that the individual timestep
scheme is faster than a shared timestep scheme by a fac-
tor in the range of O(N1/3) and O(N), depending on the
distribution of particles.

In the individual timestep algorithm, each particle has
its own timestep, and therefore its own time. To calculate
the force on a particle due to other particles, wemust know
their positions at the time of the particle for which we cal-
culate the force. To calculate the position of a particle at
a time different from the time of the particle, Aarseth used
a third order polynomial extrapolation. This polynomial is
evaluated each time a pairwise force is calculated, therefore
the calculation cost of the polynomial evaluation is of the
same order as that of the force calculation itself. The basic
algorithm looks like the following in the case of Aarseth’s
program, which uses a predictor-corrector scheme:

(a) Select particle i with a minimum ti C�ti . Set the
global time (t) to be this minimum, ti C�ti .

(b) Predict the positions of all the particles at time t using
the extrapolation polynomial.

(c) Calculate the acceleration (ai) for particle i at time t,
using the predicted positions.

(d) Apply the corrector for the position and velocity of
particle i.

(e) Go back to step (a).
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Stellar Dynamics, N-body Methods for, Figure 6
Schematic description of the individual timestep algorithm

Figure 6 illustrates how the individual timestep scheme
works. When particle i is integrated from ti to ti C�ti ,
the positions of all other particles are predicted at that
time, and forces from those particles are calculated using
these predicted positions.

Not all time integration schemes can be used with this
individual timestep, since the predicted values of the posi-
tions of all other particles need to be calculated at the time
of the particle to be integrated. Most integration schemes
do not provide the solutions at arbitrary points in time. For
example, there is no simple way to obtain the approximate
solution at the intermediate time with the usual Runge–
Kutta schemes or extrapolation schemes.

For the treatment of binaries and small-N systems
which can formed in larger stellar systems, see Aarseth [3].

Special Numerical Methods

A stellar system is a Hamiltonian system, and therefore
the symplectic algorithms [22] can in principle be ap-
plied. These schemes show behavior much better than
that of traditional schemes, and can dramatically reduce
the integration error for long calculations. However, in
practice there are a number of difficulties. One is that
with symplectic schemes we cannot change timesteps [24].
There has been a number of works to make the symplec-
tic scheme effectively work as variable-timestep scheme.
Most of them rely on the partition of the potential energy
term of the Hamiltonian into multiple parts with different
timescales, and apply different timesteps to different parts
of the potential term [20,23]. A very different approach
is to use time-symmetric scheme instead of symplectic

schemes. Symmetric schemes offer most of the practical
advantages of symplectic schemes, and remain symmetric
if we change the timestep. Here, the timestep must be cal-
culated in such a way that does not destroy the time sym-
metry [13]. Recently, a way to combine this symmetric al-
gorithm and the individual timestep algorithm was pro-
posed [18].

Future Directions

In Sect. “Statistical Description” we over viewed the evo-
lution of a system of point-mass particles. When we try
to understand the evolution of real stellar systems such
as globular clusters, open clusters and galactic nuclei, we
need to take into account various effects which were ne-
glected in Sect. “Statistical Description”. For example, real
stars are not point masses but have finite radii, and can
physically collide with each other. In the case of normal
stars like our sun in a galaxy, the chance that it will col-
lide with its neighbors before the end of its lifetime is neg-
ligible. However, the number density of stars in the cen-
tral regions of globular clusters or other massive star clus-
ters can reach more than 106/pc3, or about a million times
that of the solar neighborhood. In such circumstances the
collision is not rare. Also, individual stars have different
masses. Even in the case of thermal equilibrium, stars with
different masses have different spacial distribution, since
the kinetic energy per unit mass is different. Thus, mas-
sive stars tend to lose their kinetic energy and segregate
to the central region of the cluster, resulting in strong en-
hancement of collision rates between most massive stars
in star clusters. To make things even more complex, each
star evolves from theMain Sequence to giant, and depend-
ing on their masses, goes through Type II supernova and
finally becomes a white dwarf, a neutron star, or a black
hole. These stellar evolutions and stellar collisions, cou-
pled with the stellar dynamics, makes stellar systems very
interesting and an important research subject.

The ultimate research direction is to model all of these
processes, stellar evolution, stellar collisions, stellar dy-
namics, and at some point the initial gas dynamics of star
cluster formation, in one single unified simulation. From
the viewpoint of the computational cost, such a simulation
is not impossible, since the calculation cost of stellar dy-
namics is high and others are relatively minor. However,
from the viewpoint of software engineering and physical
modeling, we do not really know how we can actually de-
velop and maintain a simulation program which can han-
dle gravitational interaction between stars, evolution of
individual stars, physical collisions and tidal interaction
between stars, and othermore complex things like the evo-
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lution of binary stars. MODEST (Modeling Dense Stellar
systems)1 is one of such efforts to develop a simulation
code, or a loosely coupled collection of codes, to handle
complex systems.
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Glossary

A stochastic game A repeated interaction between sev-
eral participants in which the underlying state of the
environment changes stochastically, and it depends on
the decisions of the participants.

A strategy A rule that dictates how a participant in an in-
teraction makes his decisions as a function of the ob-
served behavior of the other participants and of the
evolution of the environment.

Evaluation of stage payoffs The way that a participant in
a repeated interaction evaluates the stream of stage
payoffs that he receives (or stage costs that he pays)
along the interaction.

An equilibrium A collection of strategies, one for each
player, such that each player maximizes (or minimizes,
in case of stage costs) his evaluation of stage payoffs
given the strategies of the other players.

A correlated equilibrium An equilibrium in an extended
game in which at the outset of the game each player re-
ceives a private signal, and the vector of private signals
is chosen according to a known joint probability dis-
tribution. In the extended game, a strategy of a player
depends, in addition to past play, on the signal he re-
ceived.

Definition of the Subject

Stochastic games, first introduced by Shapley [60], model
dynamic interactions in which the environment changes
in response to the behavior of the players. Formally,
a stochastic game is a tupleG D hN; S; (Ai ;Ai ; ui )i2N ; q)
where

� N is a set of players.
� S is a state space. If S is uncountable, it is supplemented

with a �-algebra of measurable sets.
� For every player i 2 N, Ai is a set of actions for that

player, and Ai : S !Ai is a set-valued (measurable)
function that assigns to each state s 2 S the set of ac-
tions Ai (s) that are available to player i in state s. If
Ai is uncountable, it is supplemented with a �-algebra
of measurable sets. Denote SA D f(s; a) : s 2 S; a D

http://www.manybody.org/modest/


Stochastic Games S 8699

(ai)i2N ; ai 2 Ai (s) 8i 2 Ng. This is the set of all pos-
sible action profiles.

� For every player i 2 N, ui : SA! R is a (measurable)
stage payoff function for player i.

� q : SA ! �(S) is a (measurable) transition function,
where �(S) is the space of probability distributions
over S.

The game starts at an initial state s1, and is played as fol-
lows. At each stage t 2 N, each player i 2 N chooses an ac-
tion ati 2 Ai (st), receives the stage payoff ui (st; at), where
at D (ati )i2N , and the game moves to a new state stC1

that is chosen according to the probability distribution
q(� j st ; at).

A few comments are in order.

1. A stochastic game lasts infinitely many stages. How-
ever, the model also captures finite interactions (of
length t), by assuming the play moves, at stage t, to
an absorbing state with payoff 0 to all players.

2. In particular, by setting t D 1, we see that stochastic
games are a generalization of matrix games (games in
normal formgames in normal form), which are played
only once.

3. Stochastic games are also a generalization of repeated
games, in which the players play the samematrix game
over and over again. Indeed, a repeated game is equiv-
alent to a stochastic game with a single state.

4. Stopping games are also a special case of stochastic
games. In these games every player has two actions
in all states, continue and quit. as long as all players
choose continue the stage payoff is 0; once at least one
player chooses quit the game moves to an absorbing
state.

5. Markov decision problems (see, e. g., [49]) are sto-
chastic games with a single player.

6. The transition function q governs the evolution of the
game. It depends on the actions of all players and on
the current state, so that all the players influence the
evolution of the game.

7. The payoff function ui of player i depends on the cur-
rent state as well as on the actions chosen by all play-
ers. Thus, a player’s payoff depends not only on that
player’s choice, but also on the behavior of the other
players.

8. Though we refer to the functions (ui )i2N as “stage
payoffs”, with the implicit assumption that each player
tries to maximize his payoff, in some applications
these functions describe a stage cost, and then the im-
plicit assumption is that each player tries to minimize
his cost.

9. The action of a player at a given stage affects both
his stage payoff and the evolution of the state vari-
able, thereby affecting his future payoffs. These two,
sometimes contradicting effects make the optimiza-
tion problem of the players quite intricate, and the
analysis of the game challenging.

10. The players receive a stage payoff at each stage. So far
we did not mention how the players evaluate the infi-
nite stream of stage payoffs that they receive, nor did
we say what is their information at each stage: Do they
observe the current state? Do they observe the actions
of the other players? These issues will be discussed
later.

11. The actions that are available to the players at each
stage, the payoff functions, and the transition func-
tion, all depend on the current state, and not on past
play (that is, past states that the game visited, and
past actions that the players chose). This assumption is
without loss of generality. Indeed, suppose that the ac-
tions available to the players at each stage, the payoff
functions, and the transition function, all depend on
past play, as well as on the current state. For every t 2
N let Ht be the set of all possible histories of length t,
that is, all sequences of the form (s1; a1; s2; a2; : : : ; st),
where sk 2 S for every k D 2; 3; : : : ; t, ak D (aki )i2N
and aki is an available action to player i at stage k, for
every k D 1; 2; : : : ; t � 1. Then the game is equivalent
to a game with state space H :D

S
t2N Ht , in which

the state variable captures past play, and the state at
stage t lies inHt. In the new game, the sets of available
actions, the payoff function, and the transition func-
tion, depend on the current state rather than on all
past play.

The interested reader is referred to [20,42,72] for further
reading on stochastic games. We now provide a few appli-
cations.

Example 1 (Capital Accumulation ([7,18,19,34,45])) Two
(or more) agents jointly own a natural resource or a pro-
ductive asset; at every period they have to decide the
amount of the resource to consume. The amount that is
not consumed grows by a known (or an unknown) frac-
tion. Such a situation occurs, e. g., in fishery: Fishermen
from various countries fish in the same area, and each
country sets a quota for its fishermen. Here the state vari-
able is the current amount of resource, the action set is the
amount of resource to be exploited in the current period,
and the transition is influenced by the decisions of all the
players, as well as possibly by the random growth of the
resource.
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Example 2 (Taxation ([14,48])) A government sets a tax
rate at every period. Each citizen decides at every period
how much to work, and, from the total amount of money
he or she has, how much to consume; the rest is saved for
the next period, and grows by a known interest rate. Here
the state is the amount of savings each citizen has, the stage
payoff of a citizen depends on the amount of money that
he consumed, on the amount of free time he has, and on
the total amount of tax that the government collected. The
stage payoff of the government may be the average stage
payoff of the citizens, the amount of tax collected, or amix-
ture of the two.

Example 3 (Communication Network [58]) A single-cell
system with one receiver and multiple uplink transmit-
ters share a single, slotted, synchronous classical colli-
sion channel. Assume that all transmitted packets have the
same length, and require one time unit, which is equal to
one time slot, for transmission. Whenever a collision oc-
curs, the users attempt to retransmit their packets in sub-
sequent slots to resolve collision for reliable communica-
tion.

Here a state lists all relevant data for a given stage: e. g.,
the number of packets waiting at each transmitter, or the
length of time each has beenwaiting to be transmitted. The
players are the transmitters, and the action of each trans-
mitter is which packet to transmit, if any. The stage cost
may depend on the number of time slots that the trans-
mitted packet waited, on the number of packets that have
not been transmitted at that period, and possibly on ad-
ditional variables. The transition depends on the actions
chosen by the players, but it has a stochastic component,
which captures the number of new packets that arrive at
the various transmitters during every time slot.

Example 4 (Queues [1]) Individuals that require service
have to choose whether to be served by a private slow ser-
vice provider, or by a powerful public service provider.
This situation arises, e. g., when jobs can be executed on
either a slow personal computer or a fast mainframe. Here
a state lists the current load of the public and private ser-
vice providers, and the cost is the time to be served.

The importance of stochastic games stems from the wide
range of applications they encompass. Many repeated in-
teractions can be recast as stochastic games; the wide range
of theoretical results that have been obtained provide in-
sights that can help in analyzing specific situations and
suggesting proper behavior to the participants. In certain
classes of games algorithms that have been developedmay
be used to calculate such behavior.

Strategies, Evaluations and Equilibria

So far we have not described the information that the
players have at each stage. In most of the chapter we as-
sume that the players have complete information of past
play; that is, at each stage t, they know the sequence
s1; a1; s2; a2; : : : ; st of states that were visited in the past
(including the current state) and the actions that were cho-
sen by all players. This assumption is too strong for most
applications, and in the sequel we will mention the conse-
quences of its relaxation.

Since the players observe past play, a pure strat-
egy for player i is a (measurable) function � i that as-
signs to every finite history (s1; a1; s2; a2; : : : ; st) an action
�i (s1; a1; s2; a2; : : : ; st) 2 Ai(st), with the interpretation
that, at stage t, if the finite history (s1; a1; s2; a2; : : : ; st)
occurred, player i plays the action �i (s1; a1; s2; a2; : : : ; st).
If the player does not know the complete history, then
a strategy for player i is a function that assigns to every
possible information set, an action that is available to the
player when the player has this information. Amixed strat-
egy for player i is a probability distribution over the set of
his pure strategies. The space of mixed strategies of player i
is denoted by � i.

A simple class of strategies is the class of station-
ary strategies; a strategy � i for player i is stationary if
�i (s1; a1; s2; a2; : : : ; st) depends only on the current state
st , and not on past play s1; a1; s2; a2; : : : ; at�1. A station-
ary strategy of player i can be identified with an element
x D (xs)s2S 2 �s2S�(Ai (s)), with the interpretation that
player i plays the mixed action xs whenever the current
state is s. Denote by Xi D �s2S�(Ai (s)) the space of sta-
tionary strategies of player i.

There are three common ways to evaluate the infinite
stream of payoffs that the players receive in a stochastic
game: The finite-horizon evaluation, in which a player con-
siders the average payoff during the first T stages, the dis-
counted evaluation, in which a player considers the dis-
counted sum of his stage payoffs, and the limsup evalua-
tion, in which a player considers the limsup of his long-run
average payoffs.We now formally define these evaluations.

Every profile � D (�i )i2N of mixed strategies, together
with the initial state, induces a probability distribution
Ps1;
 over the space of infinite plays H1 :D SAN. We de-
note the corresponding expectation operator by Es1;
 .

Definition 5 Let � be a profile of mixed strategies. For
every finite horizon T 2 N, the T-stage payoff under � for
player i is

�Ti (s1; �) :D Es1;


"
1
T

TX

tD1

ui (st; at)

#

:
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For every discount factor  2 (0; 1], the -discounted pay-
off under � for player i is

��i (s1; �) :D Es1;


"



1X

tD1

(1 � )t�1ui (st ; at)

#

:

The limsup payoff under � for player i is

�1i (s1; �) :D Es1;


"

lim sup
T!1

1
T

TX

tD1

ui (st ; at)

#

:

The T-stage payoff captures the situation in which the in-
teraction lasts exactly T stages. The -discounted evalua-
tion captures the situation in which the game lasts “many”
stages, and the player discounts stage payoffs – it is bet-
ter to receive $1 today than tomorrow. The limsup payoff
also captures the situation in which the game lasts “many”
stages, but here the player does not discount his payoffs,
and the payoff at each given stage is insignificant as com-
pared to the payoff in all other stages. Equivalently, one
could consider the liminf payoff in which the player con-
siders the liminf of the long-run average payoffs.

As usual, an equilibrium is a vector of strategies such
that no player can profit by a unilateral deviation. For ev-
ery player i and every strategy profile � D (�i )i2N we de-
note the strategy profile of all other players, except player i,
by ��i D (� j) j¤i .

Definition 6 Let " � 0. A profile of strategies � is a T-
stage "-equilibrium if

�Ti (s1; �) � �
T
i (s1; �

0
i ; ��i ) � " ;
8s1 2 S;8i 2 N;8� 0i 2 ˙i :

It is a -discounted "-equilibrium if

��i (s1; �) � �
�
i (s1; �

0
i ; ��i ) � " ;
8s1 2 S;8i 2 N;8� 0i 2 ˙i :

It is a limsup "-equilibrium if

�1i (s1; �) � �1i (s1; � 0i ; ��i ) � " ;
8s1 2 S;8i 2 N;8� 0i 2 ˙i :

The payoff that corresponds to an "-equilibrium, that
is, either one of the quantities �T(s1; �), ��(s1; �) and
�1(s1; �), is called an "-equilibrium payoff at the initial
state s1.

As we will see below, when both state and action spaces are
finite, a T-stage and a -discounted 0-equilibrium exist.

However, when the state or action spaces are infinite such
a 0-equilibrium may fail to exist, yet "-equilibria may exist
for every " > 0.

As the length of the game T varies, or as the discount
factor  varies, the equilibrium strategy profile varies as
well. A strategy profile that is an "-equilibrium for every T
sufficiently large and for every  sufficiently small is called
a uniform "-equilibrium.

Definition 7 Let " > 0. A strategy profile � is a uni-
form "-equilibrium if there are T0 2 N and 0 2 (0; 1)
such that for every T � T0 the strategy profile � is
a T-stage "-equilibrium, and for every  2 (0; 0) it is
a -discounted "-equilibrium.

If for every " > 0 the game has a (T-stage, -discounted,
limsup or uniform) "-equilibrium with corresponding
payoff g", then any accumulation point of (g")">0 as " goes
to 0 is a (T-stage, -discounted, limsup or uniform) equi-
librium payoff.

Zero-SumGames

A two-player stochastic game is zero-sum if u1(s; a) C
u2(s; a) D 0 for every (s; a) 2 SA. As in matrix games, ev-
ery two-player zero-sum stochastic game admits at most
one equilibrium payoff at every initial state s1, which is
termed the value of the game at s1. Each player’s strat-
egy which is part of an "-equilibrium is termed "-optimal.
The definition of "-equilibrium implies that an "-optimal
strategy guarantees the value up to "; for example, in
the T-stage evaluation, if �1 is an "-optimal strategy of
player 1, then for every strategy of player 2 we have

�T1 (s1; �1; �2) � vT (s1) � " ;

where vT (s1) is the T-stage value at s1.
In his seminal work, Shapley [60] presented the model

of two-player zero-sum stochastic games with finite state
and actions spaces, and proved the following.

Theorem 8 [60] For every two-player zero-sum stochastic
game, the -discounted value at every initial state exists.
Moreover, both players have -discounted 0-optimal sta-
tionary strategies.

Proof Let V be the space of all functions v : S ! R. For
every v 2 V define a zero-sum matrix game G�s (v) as fol-
lows:

� The action spaces of the two players are A1(s) andA2(s)
respectively.

� The payoff function (that player 2 pays player 1) is

u1(s; a)C (1 � )
X

s02S

q(s0 j s; a)v(s0) :
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The game G�s (v) captures the situation in which, after
the first stage, the game terminates with a terminal pay-
off v(s0), where s0 is the state reached after stage 1. Define
an operator ' : V ! V as follows:

's (v) D val(G�s (v)) ;

where val(G�s (v)) is the value of the matrix game G�s (v).
Since the value operator is non-expansive, it follows that
the operator ' is contracting: k'(v) � '(w)k1 � (1 �
)kv�wk1, so that this operator has a unique fixed point
bv�. One can show that the fixed point is the value of the
stochastic game, and every strategy � i of player i in which
he plays, after each finite history (s1; a1; s2; a2; : : : ; st),
an optimal mixed action in the matrix game G�s t (bv

�), is
a -discounted 0-optimal strategy in the stochastic game.

�

Example 9 Consider the following two-player zero-sum
game with three states, s0, s1 and s2; each entry of the ma-
trix indicates the payoff that player 2 (the column player)
pays player 1 (the row player, the payoff is in the middle),
and the transitions (which are deterministic, and are de-
noted at the top-right corner).

T
B

L R
0 s2 1 s1

1 s1 0 s0

State s2

T
L

1 s1

State s1
T

L
0 s0

State s0
:

The states s0 and s1 are absorbing: Once the play
reaches one of these states it never leaves it. State s2 is
non-absorbing. Stochastic games with a single non-ab-
sorbing state are called absorbing games. For every v D
(v0; v1; v2) 2 V D R3 the game G�s2 (v) is the following
matrix game:

T
B

L R
(1 � )v2 C (1 � )v1
C (1 � )v1 (1 � )v0
The game G�s2

T

L
C (1 � )v1
The game G�s1

T

L
(1 � )v0

The game G�s0

:

The unique fixed point of the operator val(G�) must sat-
isfy

� bv0 D val(G�s0 (bv)), so thatbv
�
s0 Dbv0 D 0;

� bv1 D val(G�s1 (bv)), so thatbv
�
s1 Dbv1 D 1;

� bv2 D val(G�s1 (bv)). By Theorem 8 both players have
a stationary -discounted 0-optimal strategy. Denote
by x (resp. y) a mixed action for player 1 (resp. player 2)
that is part of a -discounted 0-optimal strategy at the
state s2. Since we know that in the fixed pointbv0 D 0
andbv1 D 1,bv2 must be the unique solution of

v2 D y(1 � )v2 C (1 � y) D y ;

so that bv�s2 Dbv2 D (1 �
p
)/(1 � ). The 0-optimal

strategy of player 2 at state s2 is y D bv2 D (1 �
p
)/

(1 � ), and the 0-optimal strategy of player 1, x D
bv2 D (1 �

p
)/(1 � ), can be found by finding his

0-optimal strategy in G�s2 (bv).

Bewley and Kohlberg [11] proved that when the state and
action spaces are finite, the function  7! v�s , that assigns
to every state s and every discount factor  the -dis-
counted value at the initial state s, is a Puiseux function,
that is, it has a representation v�s D

P1
kDK akk/M that

is valid for every  2 (0; 0) for some 0 > 0, where M
is a natural number, K is a non-negative integer, and
(ak)1kDK are real numbers. In particular, the function
 7! v�s is monotone in a neighborhood of 0, and its limit
as  goes to 0 exists. This result turned out to be crucial in
subsequent study on games with finitely many states and
actions.

Shapley’s work has been extended to general state and
action spaces; for a recent survey see [46]. The tools devel-
oped in [46], together with a dynamic programming ar-
gument, prove that under proper conditions on the payoff
function and on the transitions the two-player zero-sum
stochastic game has a T-stage value.

Maitra and Sudderth [35] proved that the limsup
value exists in a very general setup. Their proof follows
closely that of Martin [36] for the determinacy of Black-
well games.

The study of the uniform value emanated from an ex-
ample, called the “BigMatch”, due to Gillette [28], that was
solved by Blackwell and Ferguson [13].

Example 10 Consider the following stochastic game with
two absorbing states and one non-absorbing state.

T
B

L R
0 s2 1 s2

1 s1 0 s0

State s2

T
L

1 s1

State s1
T

L
0 s0

State s0

Suppose the initial state is s2. As long as player 1
plays T the play remains at s2; once he plays B the play
moves to either s0 or s1, and is effectively terminated. By
finding the fixed point of the operator ' one can show
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that the discounted value at the initial state s2 is 1
2 , and

a -discounted stationary 0-optimal strategy for player 2
is1 [ 12 (L);

1
2 (R)]. Indeed, if player 1 plays T then the ex-

pected stage payoff is 1
2 and play remains at s2, while if

player 1 plays B then the gamemoves to an absorbing state,
and the expected stage payoff from that stage onwards is 1

2 .
In particular, this strategy guarantees 1

2 for player 2 both
in the limsup evaluation and uniformly. A -discounted
0-optimal strategy for player 1 is [ 1

1C� (T);
�

1C� (B)].
What can player 1 guarantee in the limsup evalua-

tion and uniformly? If player 1 plays the stationary strat-
egy [x(T); (1 � x)(B)] that plays at each stage the action T
with probability x and the action B with probability 1� x,
then player 2 has a reply that ensures that the limsup pay-
off is 0: If x D 1 and player 2 always plays L, the payoff
is 0 at each stage; if x < 1 and player 2 always plays R,
the payoff is 1 until the play moves to s0, and then it is
0 forever. Since player 1 plays the action B with probabil-
ity 1 � x > 0 at each stage, the distribution of the stage in
which play moves to s0 is geometric. Therefore, the lim-
sup payoff is 0, and if  is sufficiently small, the discounted
payoff is close to 0.

One can verify that if player 1 uses a bounded-recall
strategy, that is, a strategy that uses only the last k actions
that were played, player 2 has a reply that guarantees that
the limsup payoff is 0, and the discounted payoff is close to
0, provided  is close to 0. Thus, in the limsup payoff and
uniformly finite memory cannot guarantee more than 0 in
this game (see also [27]).

Intuitively, player 1 would like to condition the prob-
ability of playing T on the past behavior of player 2: If in
the past player 2 played the action L more often than the
action R, he would have liked to play T with higher prob-
ability; if in the past player 2 played the action R more
often than the action L, he would have liked to play B
with higher probability. Blackwell and Ferguson [13] con-
structed a family of good strategies f�M

1 ;M 2 Ng for
player 1. The parameterM determines the amount that the
strategy guarantees: The strategy �M

1 guarantees a limsup
payoff and a discounted payoff of M

2MC1 , provided the dis-
count factor is sufficiently low. In other words, player 1
cannot guarantee 1

2 , but he may guarantee an amount as
close to 1

2 as he wishes by choosing M to be sufficiently
large. The strategy �M

1 is defined as follows: At stage t,
play B with probability 1

(MCl t�rt )2
, where lt is the num-

ber of stages up to stage t in which player 2 played L, and
rt is the number of stages up to stage t in which player 2
played R.

1That is, at each stage player 2 plays L with probability 1
2 and R

with probability 1
2 .

Since rt C lt D t � 1 one has rt � lt D 2rt � (t � 1).
The quantity rt is the total payoff that player 1 received in
the first t � 1 stages if player 1 played T in those stages
(and the game was not absorbed). Thus, this total payoff is
a linear function of the difference rt � lt . When presented
this way, the strategy �M

1 depends on that total payoff. Ob-
serve that as rt increases, rt � lt increases as well, and the
probability to play B decreases.

Mertens and Neyman [38] generalized the idea presented
at the end of Example 10 to stochastic games with finite
state and action spaces.2

Theorem 11 If the state and action spaces of a two-
player zero-sum stochastic game are finite, the game has
a uniform value v0s at every initial state s 2 S. Moreover,
v0s D lim�!0 v�s D limT!1 vTs .

In their proof, Mertens and Neyman describe a uniform "-
optimal strategy. In this strategy the player keeps a pa-
rameter, t , which is a fictitious discount factor to use at
stage t. This parameter changes at each stage as a func-
tion of the stage payoff; if the stage payoff at stage t is high
then tC1 < t , whereas if the stage payoff at stage t is
low then tC1 > t . The intuition is as follows. As men-
tioned before, in stochastic games there are two forces that
influence the player’s behavior: He tries to get high stage
payoffs, while keeping future prospects high (by playing in
such a way that the next stage that is reached is favorable).
When considering the -discounted payoff there is a clear
comparison between the importance of the two forces: The
weight of the stage payoff is  and the weight of future
prospects is 1 � ; the lower the discount factor, the more
weight is given to the future. When considering the uni-
form value (or the uniform equilibrium) the weight of the
stage payoff is 0. However, if the player never attempts to
receive a high stage payoff, the overall payoff in the game
will not be high. Therefore, the player has a fictitious dis-
count factor; if past payoffs are low and they do not meet
the expectation, player 1 increases the weight of the stage
payoff by increasing the fictitious discount factor; if past
payoffs are high, player 1 increases the weight of the future
by lowering this fictitious discount factor.

Multi-Player Games

Takahashi [75] and Fink [21] extended Shapley’s [60] re-
sult to discounted equilibria in non-zero-sum games.

2Mertens and Neyman’s [38] result actually holds in every
stochastic game that satisfies a proper condition, which is always sat-
isfied when the state and action spaces are finite.



8704 S Stochastic Games

Theorem 12 Every stochastic game with finite state and
action spaces has a -discounted equilibrium in stationary
strategies.

Proof The proof utilizes Kakutani’s fixed point the-
orem [31]. Let M D maxi;s;a jui (s; a)j be a bound
on the absolute values of the payoffs. Set X D

�i2N;s2S (�(Ai (s)) � [�M;M]). A point x D (xAi;s ;
xVi;s)i2N;s2S 2 X is a collection of one mixed action and
one payoff to each player at every state. For every v D
(vi )i2N 2 [�M;M]N�S and every s 2 S define a matrix
game G�s (v) as follows:

� The action spaces of each player i is Ai (s);
� The payoff to player i is

ui (s; a)C (1 � )
X

s02S

q(s0 j s; a)vi (s0) :

We define a set-valued function ' : X ! X as follows.

� For every i 2 N and every s 2 S, 'A
i;s is the set of

all best responses of player i to the strategy vector
x�i;s :D (x j;s ) j¤i in the game G�s (v). That is,

'A
i;s(x; v) :D

˚
argmaxyi;s2#(Ai (s)) ri (s; yi;s ; x�i;s)

C (1 � )
X

s02S

q(s0 j s; yi;s; x�i;s)vi;s0
�
:

� For every i 2 N and every s 2 S, 'Vi;s(x; v) is the max-
imal payoff for player i in the game G�s (v), when the
other players play x�i :

'Vs (x; v) :D max
yi;s2#(Ai (s))

 

r(s; yi;s ; x�i;s)C (1�)

�
X

s02S

q(s0 j s; yi;s; x�i;s)vi;s0

!

:

The set-valued function ' has convex and non-empty val-
ues and its graph is closed, so that by Kakutani’s fixed
point theorem it has a fixed point. It turns out that every
fixed point of ' defines a -discounted equilibrium in sta-
tionary strategies. �

This result has been extended to general state and action
spaces by various authors. These results assume a strong
continuity on either the payoff function or the transition
function, see, e. g., [39,44,62].

As in the case of zero-sum games, a dynamic pro-
gramming argument shows that under a strong continuity
assumption on the payoff function or on the transitions
a T-stage equilibrium exists.

Regarding the existence of the limsup equilibrium and
uniform equilibrium little is known. The most significant
result in this direction is Vieille [77,78], who proved that
every two-player stochastic game with finite state and ac-
tion spaces has a uniform "-equilibrium for every " > 0.
This result has been proved for other classes of stochas-
tic games, see, e. g., [6,24,25,61,63,65,76]. Several influen-
tial works in this area are [22,32,71,79]. Most of the pa-
pers mentioned above rely on the vanishing discount fac-
tor approach, which constructs a uniform "-equilibrium
by studying a sequence of -discounted equilibria as the
discount factor goes to 0.

For games with general state and action spaces, a lim-
sup equilibrium exists under an ergodicity assumption on
the transitions, see e. g. Nowak [44], Remark 4 and Jask-
iewicz and Nowak [30].

A game has perfect information if there are no simulta-
neousmoves, and both players observe past play. Existence
of equilibrium in this case was proven by Mertens [37] in
a very general setup.

Correlated Equilibrium

The notion of correlated equilibrium was introduced by
Aumann [8,9], see also Forges�Correlated Equilibria and
Communication in Games. A correlated equilibrium is an
equilibrium of an extended game, in which each player re-
ceives at the outset of the game a private signal such that
the vector of signals is chosen according to a known joint
probability distribution. In repeated interactions, such as
in stochastic games, there are two natural notions of cor-
related equilibria: (a) each player receives one signal at the
outset of the game (normal-form correlated equilibrium);
(b) each player receives a signal at each stage (extensive-
form correlated equilibrium). It follows from Forges [26]
that when the state and action sets are finite, the set of
all correlated T-stage equilibrium payoffs (either normal-
form or extensive-form) is a polytope.

Nowak and Raghavan [47] proved the existence of an
extensive-form correlated discounted equilibrium under
weak conditions on the state and action spaces. In their
construction, the strategies of the players are stationary,
and so is the distribution according to which the signals
are chosen after each history; both depend only on the
current state, rather than on the whole past play. Roughly,
their approach is to apply Kakutani’s fixed point theorem
to the set-valued function that assigns to each game G�s (v)
the set of all correlated equilibrium payoffs in this game,
which is convex and compact.

Solan and Vielle [66] proved the existence of an exten-
sive-form correlated uniform equilibrium payoff when the
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state and action spaces are finite. Their approach is to let
each player play his uniform optimal strategy in a zero-
sum game in which all other players try to minimize his
payoff. Existence of a normal-form correlated equilibrium
was proved for the class of absorbing games [68].

Solan [64] characterized the set of extensive-form cor-
related equilibrium payoffs for general state and action
spaces and a general evaluation on the stage payoffs, and
provided a sufficient condition that ensures that the set
of normal-form correlated equilibrium payoffs coincides
with the set of extensive-form correlated equilibrium pay-
offs.

Imperfect Monitoring

So far it has been assumed that at each stage the players
know the past play. There are cases in which this assump-
tion is too strong; in some cases players do not know the
complete description of the current state (Examples 3 and
4), and in others players do not fully observe the actions
of all other players (Examples 2, 3 and 4). For a most gen-
eral description of stochastic games seeMertens, see Chap-
ter IV in Sorin and Zamir [40] and Coulomb [17].

In the study of the discounted equilibrium, the T-stage
equilibrium or the limsup equilibrium, one may consider
the game as a one-shot game: The players simultaneously
choose strategies, and the payoff is either the discounted
payoff, the T-stage payoff or the limsup payoff. If the strat-
egy spaces of the players are compact (e. g., if the state and
action spaces are finite), and if the payoff is upper-semi-
continuous in each player’s strategy, keeping the strategies
of the other players fixed, then an equilibrium exists. This
approach can be used successfully for the discounted equi-
librium or the T-stage equilibrium under weak conditions
(see, e. g., [4]), andmay be used for the limsup equilibrium
under a proper ergodicity condition.

Whenever there exists an equilibrium in stationary
strategies (e. g., a discounted equilibrium in games with
finitely many states and actions) the only information that
players need in order to follow the equilibrium strategies is
the current state. In particular, they need not observe past
actions of the other players. As we now show, in the “Big
Match” (Example 10) the limsup value and the uniform
value may fail to exist when each player does not observe
the past actions of the other player.

Example 13 (Example 10: Continued.) Assume that no
player observes the actions of the other player, and assume
that the initial state is s2. Player 2 can still guarantee 1

2
in the limsup evaluation by playing the stationary strat-
egy [ 12 (L);

1
2 (R)]. One can show that for every strategy of

player 2, player 1 has a reply such that the limsup payoff is

at least 1
2 . In other words, inf
2 sup
1 �

1(s2; �1; �2) D 1
2 .

We now argue that sup
1 inf
2 �
1(s2; �1; �2) D 0. Indeed,

fix a strategy �1 for player 1, and " > 0. Let � be sufficiently
large such that the probability that under �1 player 1
plays B for the first time after stage t is at most ". Observe
that as t increases, the probability that player 1 plays B for
the first time after stage t decreases to 0, so that such a � ex-
ists. Consider the following strategy �2 of player 2: Play R
up to stage � , and play L from stage t C 1 and on. By the
definition of � , either player 1 plays B before or at stage � ,
and then the game moves to s0, and the payoff is 0 at each
stage thereafter, or player 1 plays T at each stage, and then
the stage payoff after stage � is 0, or, with probability less
than ", player 1 plays B for the first time after stage � , the
play moves to s1, and the payoff is 1 thereafter. Thus, the
limsup payoff is at most ". A similar analysis shows that

inf

2

sup

1

��(s2; �1; �2) D 1
2 ;

sup

1

inf

2

lim
�!0

��(s2; �1; �2) D 0 ;

so that the uniform value does not exist as well.

This example shows that in general the limsup value and
the uniform value need not exist when the players do not
observe past play. Though in general the value (and there-
fore also an equilibrium) need not exist, in many classes
of stochastic games the value and an equilibrium do exist,
even in the presence of imperfect monitoring.

Rosenberg et al. [55] and Renault [54] showed that the
uniform value exists in the one player setup (Markov De-
cision Problem), in which the player receives partial in-
formation regarding the current state. Thus, a single de-
cision maker who faces a dynamic situation and does not
fully observe the state of the environment can play in such
a way that guarantees high payoff, provided the interaction
is sufficiently long or the discount factor is sufficiently low.

Altman et al. [5,6] and Flesch et al. [24] studied
stochastic games in which each player has a “private” state,
which only he can observe, and the state of the world is
composed of the vector of private states. Altman et al. [5,6]
studied the situation in which players do not observe the
actions of the other players, and Flesch et al. [24] studied
the situation in which players do observe each others pay-
offs. Such games arise naturally in wireless communica-
tion (see [5]); take for example several mobiles who pe-
riodically send information to a base station. The private
state of a mobile may depend, e. g., on its exact physical
environment, and it determines the power attenuation be-
tween the mobile and the base station. The throughput
(the amount of bits per second) that a mobile can send
to the base station depends on the power attenuations of
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all the mobiles. Finally, the stage payoff is the stage power
consumption.

Rosenberg et al. [57] studied the extreme case of two
player zero-sum games in which the players observe nei-
ther the current state nor the action of the other player,
and proved that the uniform value does exist in two classes
of games, which capture the behavior of certain commu-
nication protocols. Classes of games in which the actions
are observed but the state is not observed were studied,
e. g., by Sorin [69,70], Sorin and Zamir [74], Krausz and
Rieder [33], Flesch et al. [23], Rosenberg et al. [56], Re-
nault [52,53]. For additional results, see [16,73].

Algorithms

There are two kinds of algorithms: Those that terminate in
a finite number of steps, and those that iterate and approx-
imate solutions. Both kinds of algorithms were devised to
calculate the value and optimal strategies (or equilibria) in
stochastic games.

It is well known that the value of a two-player zero-
sum matrix game and optimal strategies for the two play-
ers can be calculated efficiently using a linear program.
Equilibria in two-player non-zero-sum games can be cal-
culated by the Lemke–Howson algorithm, which is usu-
ally efficient, however, its worst running time is exponen-
tial in the number of pure strategies of the players [59].
Unfortunately, to date there are no efficient algorithms to
calculate either the value in zero-sum stochastic games,
or equilibria in non-zero-sum games. Moreover, in Ex-
ample 9 the discounted value may be irrational for ratio-
nal discount factors, even though the data of the game
(payoffs and transitions) are rational, so it is not clear
whether linear programming methods can be used to cal-
culate the value of a stochastic game. Nevertheless, lin-
ear programming methods were used to calculate the dis-
counted and uniform value of several classes of stochas-
tic games, see [20,50]. Other methods that were used to
calculate the value or equilibria in discounted stochastic
games include fictitious play [80], value iterates, policy im-
provement, and general methods to find the maximum of
a function (see [20,51]), a homotopy method [29], and al-
gorithms to solve sentences in formal logic [15,67].

Additional and Future Directions

The research on stochastic games extends to additional
directions than those mentioned in earlier sections. We
mention a few here. Approximation of games with infinite
state and action spaces by finite games was discussed by
Whitt [81], and further developed byNowak [43]. Stochas-
tic games in continuous time have also been studied, as

well as hybrid models that include both discrete and con-
tinuous aspects, see, e. g., [2,10].

Among the many directions of future research in this
area, we will mention here but a few. One challenging
question is the existence of a uniform equilibrium and
a limsup equilibrium in multi-player stochastic games
with finite state and action spaces. Another is the devel-
opment of efficient algorithms that calculate the value of
two-player zero-sum games. A third direction concerns
the identification of applications that can be recast in the
framework of stochastic games, and that can be success-
fully analyzed using the theoretical tools that the litera-
ture developed. Another problem that is of interest is the
characterization of approachable and excludable sets in
stochastic games with vector payoffs (see [12] for the pre-
sentation of matrix games with vector payoffs, and [41] for
partial results regarding this problem).

Acknowledgments

I thank Eitan Altman, János Flesch, Yuval Heller,
Jean-Jacques Herings, Ayala Mashiach-Yakovi, Andrzej
Nowak, Ronald Peeters, T.E.S. Raghavan, Jérôme Renault,
Nahum Shimkin, Robert Simon, Sylvain Sorin, William
Sudderth, and Frank Thuijmsman, for their comments on
an earlier version of the entry.

Bibliography

Primary Literature

1. Altman E (2005) Applications of dynamic games in queues. Adv
Dyn Games 7:309–342

2. Altman E, Gaitsgory VA (1995) A hybrid (differential-stochas-
tic) zero-sum game with fast stochastic part. Ann Int Soc Dyn
Games 3:47–59

4. Altman E, Solan E (2007) Games with constraints with network-
ing applications. Preprint

5. Altman E, Avrachenkov K, Marquez R, Miller G (2005) Zero-sum
constrained stochastic games with independent state pro-
cesses. Math Methods Oper Res 62:375–386

6. Altman E, Avrachenkov K, Bonneau N, Debbah M, El-Azouzi R,
Sadoc Menasche D (2008) Constrained cost-coupled stochas-
tic games with independent state processes. Oper Res Lett
36:160–164

7. Amir R (1996) Continuous stochastic games of capital accumu-
lation with convex transitions. Games Econ Behav 15:111–131

8. Aumann RJ (1974) Subjectivity and correlation in randomized
strategies. J Math Econ 1:67–96

9. Aumann RJ (1987) Correlated equilibrium as an expression of
bayesian rationality. Econometrica 55:1–18
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Glossary

Bessel process The Bessel process operates in d dimen-
sions and describes the radial distance r from the ori-
gin of a particle performing Brownian motion. The
random motion is governed by the Langevin equa-
tion dr/dt D �(d � 1)/2r C � , where h��i(t) D �ı(t).
For d � 2 the motion is recurrent, i. e., returns to the
origin; for d > 2 the motion goes off to infinity. In
SLE the Bessel process describes the transition between
simple curves and self-intersecting curves.

Brownian motion Brownian motion, Bt , is the scaling
limit of random walk. Brownian motion is plane-fill-
ing, has the fractal dimension D D 2, and is described
by the Langevin equation dBt/dt D �t ; h�t�si D

ı(t � s). Bt is characterized by i) the stationarity prop-
erty, BtCt0 � Bt and Bt0 identical in distribution and
ii) the independence property, B�t0 and B�t indepen-
dent for 
t ¤ 
t0. The correlations are given by
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hjBt � Bs j
2i D jt � sj and Bt is distributed accord-

ing to the Gaussian (normal) distribution P(B; t) D
(2� t)�1/2 exp(�B2/2t).

Chordal SLE In order to map the geometry of the grow-
ing hull to a real function bymeans of SLE one chooses
a reference domain. Chordal SLE refers to the case
where the SLE trace is grown between two boundary
points, usually the origin and the point at infinity in
the upper half complex plane.

Conformal invariance Conformal invariance or local
scale invariance is a larger symmetry than scale invari-
ance. Conformal invariance implies invariance under
both a local rotation, translation, and dilatation. Con-
formal invariance is particularly powerful in 2D where
a conformal transformation is implemented by an an-
alytic function.

Conformal transformation A conformal transformation
is a transformation which preserves angles but allows
for rotation, dilatation, and translation. In an elas-
tic medium picture a conformal transformation corre-
sponds to translation, rotation, and compression (di-
latation), but not shear. In 2D an analytic complex
function w D f (z) from the complex z plane to the
complex w plane generates a conformal transforma-
tion.

Continuum limit The limit where a lattice model ap-
proaches a continuum model; also called the scaling
limit. The resulting continuum field theories define the
universality classes of the lattice models.

Correlation length The correlation length measures the
size of correlations. At the critical point the correlation
length diverges signaling that the system becomes scale
invariant.

Critical curves Critical curves are domain walls or clus-
ter boundaries at the critical point. Critical curves are
scale invariant and characterized by a fractal dimen-
sion.

Exploration Domain walls at the critical point can math-
ematically be generated by an exploration process
where the domain wall is initiated at a boundary point
and constructed in steps across the domain. In the per-
colation case the local step is generated by ‘flipping
a coin’, in the Ising case by evaluating the magnetiza-
tion at the tip of the ‘growing’ domain wall. The con-
struction by an exploration process is essential in gen-
erating a critical curve by stochastic Loewner evolu-
tion.

Fortuin–Kasteleyn representation (FK) Based on a high
temperature expansion one can represent the configu-
rations in the Ising, O(n), and Potts models by means
of the Fortuin–Kasteleyn representation in terms of

random clusters. The FK transformation is essential in
identifying random curves for the lattice models which
then can be accessed by SLE in the scaling limit.

Fractal dimension Irregular objects can be characterized
by a fractal dimension. The fractal dimension D is
derived by covering the object with N(`) intervals,
disks, or spheres of linear dimension `. By letting
`! 0 this definition resolves the fine scale fractal
structure and the scaling relation N(`) / (`)�D , or
D D � lim`!0 ln(N(`)/ ln(`), yields the fractal dimen-
sion. Examples of deterministic fractals are for exam-
ple the Cantor set, the Koch curve, the Sierpinski gas-
ket, and plane-filling Hilbert and Peano curves. Ran-
dom walk and diffusion limited aggregation (DLA) are
examples of random physical fractals.

Hulls For a self-intersecting SLE trace the trace and en-
closed regions form a so-called hull. Points in the hull
cannot be connected to infinity without crossing the
trace. The growing hull of a self-intersecting SLE trace
eventually exhausts the half plane.

Ising model The Ising model originates from the theory
of magnetism and plays an important role in the the-
ory of phase transitions and in general in statistical
mechanics. The model is defined on a lattice where
each lattice sites is endowed with a local spin vari-
able assuming two distinct values. The spins interact
by a short range exchange interaction. Above 1D the
Ising model has a second order phase transition.

Locality In the percolation case the domain wall is con-
structed by an exploration process and a local rule for
assigning the next step. This locality property is spe-
cific to percolation which has a geometric phase tran-
sition. In the SLE context the locality property implies
� D 6, i. e., the percolation case.

Loewner equation The Loewner equation is the first or-
der nonlinear differential equation for the uniformiz-
ing map gt(z) which maps the complement of a grow-
ing hull or curve in the upper half plane back to the up-
per half plane. The geometrical properties of the hull is
encoded in the real function at . The Loewner equation
has the form dgt/dt D 2/(gt � at).

Loewner evolution Loewner evolution refers to the
parametrized map gt(z) which uniformizes the com-
plement of a curve or hull, say in the upper half plane.

Loop erased random walk (LERW) Loop erased random
walk is a variant of random walk where loops formed
are removed as the walk progresses. LERW has a con-
formally invariant scaling limit and can be generated
by SLE for � D 2.

Markov property The Markov property refers to
a stochastic process without memory. A typical ex-
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ample is random walk or in the scaling limit Brownian
motion. The Markov property is essential for the ap-
plication of SLE to domain walls in the scaling limit.

Measures For lattice systems one can define probabil-
ity distributions according to the rules of statistical
mechanics. In the scaling limit the distributions typ-
ically diverge and have to be replaced by the more
abstract mathematical concept of probability mea-
sures.

O(n) models The O(n) model is a generalization of the
Ising model. At each lattice site is associated an n-com-
ponent spin variable. For n D 1 we recover the Ising
model, n D 2 corresponds to the XYmodel, and n D 3
to the Heisenberg model.

Peano curve APeano curve is a non-crossing curve which
is dense in the plane, i. e., it gets arbitrarily close to ev-
ery point. The Peano curve has the fractal dimension
D D 2. In a SLE context a random Peano curve winds
around a UST and corresponds to � D 8.

Percolation Percolation on a lattice is constructed by fill-
ing lattice sites at random with a common probabil-
ity p. At a critical concentration a spanning cluster ex-
tends across the system.

Potts model The Potts model is a generalization of the
Ising model where the local lattice variable can as-
sume q different values and where sites only interact
when they are in the same Potts state. The Potts model
has a FK cluster representation. The Ising model cor-
responds to q D 2; q D 1 corresponds to percolation
and q D 0 to the UST.

Random walk Random walk is an ubiquitous phe-
nomenon in nature. In random walk on a square lat-
tice a particle jump from site to site with a given fixed
probability. Each step is independent of the past his-
tory, there is no memory, this is the so-called Markov
property. The random walk path or history is plane-
filling and has the fractal dimension D D 2. The mean
square displacement of random walk scales with the
number of steps.

Restriction The restriction property in a SLE context im-
plies that the measure on a curve in a domain D con-
ditioned not to hit a bulge L is the same as the measure
in the domain D n L. The restriction property holds
in the case of a uniform measure and applies to self-
avoiding random walk.

Riemann’s mapping theorem Riemann’s mapping theo-
rem states that an arbitrary simply connected do-
main D, i. e., without holes, can be mapped to another
simply connected domain D0 by means of a suitable
complex function g(z), i. e., g(D) D D0. Often the disk
or half plane are used as reference domains. The map-

ping theorem does not make assumptions about the
domain boundaries which can be fractal.

Scale invariance The scaling property refers to the case
where a phenomenon is devoid of a characteristic scale
or unit. Scale invariance is typically characterized by
a power law behavior and critical exponents.

Scaling limit The limit where the lattice parameter in
a lattice model approaches zero. The scaling limit is
equivalent to the continuum limit.

Self-avoiding random walk (SAW) A self-avoiding ran-
dom walk is a walk conditioned not to cross itself.
SAW has been used to model polymers. SAW has
a uniform probability measure and conforms in a SLE
context to the restriction condition.

Stochastic Loewner evolution (SLE) Stochastic Loewner
evolution is Loewner evolution driven by a real
stochastic function at with a distribution given
by 1D Brownian motion, i. e., at D

p
�Bt . SLE

is governed by the stochastic equation of motion
dgt/dt D 2/(gt � at).

Schramm’s theorem Schramm’s theorem refers to
Schramm’s derivation of SLE for LERW. Schramm
showed that the scaling limit of LERW is described by
SLE for � D 2. Schramm also conjectured that the ran-
dom Peano curve winding around an UST is described
by SLE for � D 8 and that percolation is described by
SLE for � D 6.

Uniformizing maps Conformal transformations which
map a domain D to a standard reference domain,
e. g., the half plane or the disk, are called uniformizing
maps.

Uniform spanning tree (UST) A spanning tree is a col-
lection of vertices and links forming a tree (no loops
or cycles). A USF is a random tree picked among all
spanning trees with equal probability.

Definition of the Subject

Stochastic Loewner evolution also called Schramm
Loewner evolution (abbreviated, SLE) is a rigorous tool
in mathematics and statistical physics for generating
and studying scale invariant or fractal random curves
in two dimensions (2D). The method is based on the
older deterministic Loewner evolution introduced by Karl
Löwner [64], who demonstrated that an arbitrary curve
not crossing itself can be generated by a real function
by means of a conformal transformation. A real func-
tion defined in one spatial dimension (1D) thus encodes
a curve in 2D, in itself an intriguing result. In 2000 Oded
Schramm [77] extended this method and demonstrated
that driving the Loewner evolution by a 1D Brownian mo-
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tion, the curves in the complex plane become scale invari-
ant; the fractal dimension turns out to be determined by
the strength of the Brownian motion.

The one parameter family of scale invariant curves
generated by SLE is conjectured and has in some cases
been proven to represent the continuum or scaling limit
of a variety of interfaces and cluster boundaries in lattice
models in statistical physics, ranging from self-avoiding
random walks to percolation cluster boundaries, and Ising
domain walls.

SLE operates in the 2D continuum where it gener-
ates extended scale invariant objects. SLE delimits scaling
universality classes by a single parameter �, the strength
of the 1D Brownian drive, yielding the fractal dimen-
sion D of the scale invariant shapes according to the re-
lation D D 1C �/8. Moreover, SLE provides the geomet-
rical aspects of conformal field theory (CFT). The cen-
tral charge c, delimiting scaling universality classes in
CFT, is thus related to � by means of the expression
c D (3� � 8)(6 � �)/2�.

Stochastic Loewner evolution derives its importance
from the fact that it addresses the issue of extended ran-
dom fractal shapes in 2D by direct analysis in the contin-
uum. It thus supplements and extends earlier lattice results
and also allows for the determination of new scaling ex-
ponents. From the point of view of conformal field the-
ory based on the concept of a local field, operator expan-
sions, and correlations, the geometrical approach afforded
by SLE, directly addressing conformally invariant random
shapes in the continuum, represents a novel point of view
of maybe far reaching consequences; so far only explored
in two dimensions.

Introduction

The field of SLE has mainly been driven by mathemati-
cians presenting their results in long and difficult pa-
pers. There are, however, presently several excellent re-
views of SLE both addressing the theoretical physics com-
munity [11,13,25,27,39,43] and the mathematical commu-
nity [56,85], see also a complete biography up to 2003 [39].
The purpose of this article is to present a heuristic and sim-
ple discussion of some of the key aspects of SLE, for details
and topics left out we refer the reader to the reviews men-
tioned above. However, in order to provide the necessary
background and set the stage for SLE we begin with some
general remarks on scaling in statistical physics.

General Remarks

In statistical physics we study macroscopic systems com-
posed of many interacting components. In the limit

of many degrees of freedom the macroscopic behavior
roughly falls in two categories. In the most common case
the macroscopic behavior is deterministic and governed
by phenomenological theories like for example thermody-
namics and hydrodynamics operating entirely on amacro-
scopic level. This behavior is basically a result of the law
of large numbers, permitting an effective coarse graining
and yielding for example a macroscopic density or veloc-
ity field [29]. In the other case, the macroscopic behavior
is dominated by fluctuations and shows a random behav-
ior [29,73]. Typical cases are randomwalk and equilibrium
systems tuned to the critical point of a second order phase
transition. Other random cases are for example self-orga-
nized critical systems purported to model earth quake dy-
namics, flicker noise and turbulence in fluids [5,40].

The distinction between the deterministic and ran-
dom cases of macroscopic behavior is illustrated by the
simple example of a biased random walk described by
the Langevin equation dx(t)/dt D v C �(t), h�(t)�(0)i /
ı(t). Here x(t) is a macroscopic variable sampling the
statistically independent microscopic steps �(t); the ve-
locity v is an imposed drift or bias. Averaging over the
steps we obtain for the deviation of x, R D [hx2i]1/2 D
[(vt)2 C t]1/2. For large t the deviation R � hxi D vt and
the mean value or deterministic part dominates the behav-
ior, the fluctuational or random part R � t1/2 being sub-
dominant. Fine tuning the random walk to vanishing bias
v D 0 we have hxi D 0 and R � t1/2, i. e., the random fluc-
tuations control the phenomenon.

The study of complexity encompasses a broader field
than statistical physics and is concerned with the emer-
gence of universal properties on a mesoscopic or macro-
scopic scale in large interacting systems. For example par-
ticle systems, networks in biology and sociology, cellular
automata, etc. The class of complex systems generally falls
in the category of random systems. The emergent proper-
ties are a result of many interacting agents or degrees of
freedom and can in general not be directly inferred from
the microscopic details. A major issue is thus the under-
standing of generic emerging properties of complex sys-
tems [45,70,83]. Here, however, the methods of statistical
physics is an indispensable tool in the study of complex-
ity.

The evolution of statistical physics, a branch of theo-
retical physics, has occurred in steps and is driven both by
the introduction of new concepts and the concurrent de-
velopment of new mathematical methods and techniques.
A well-known case is the long standing problem of sec-
ond order phase transitions or critical phenomena which
gave way to a deeper understanding in the sixties and sev-
enties and spun off the renormalization group techniques
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for the determination of critical exponents and universal-
ity classes [20,24,65,81,86].

Scaling Ideas

This brings us to the fundamental scaling ideas and tech-
niques developedparticularly in the context of critical phe-
nomena in equilibrium systems and which now pervade
a good part of theoretical physics and, moreover, play an
important role in the analysis of complex systems in phys-
ical sciences [20,24,29]. Scaling is synonymous with no
scale in the sense that a system exhibiting scale invariance
is characterized by the absence of any particular scale or
unit. Scaling occurs both in the space and/or time behavior
and is typically characterized by power law dependencies
controlled by scaling exponents.

A classical case is random walk discussed above, char-
acterized by the Langevin equation dx/dt D �(t), h��i �
ı(t) [73]. Here the mean square displacement scales like
hx2i(t) � t2H , where H is the Hurst scaling exponent;
for random walk H D 1/2 [32,68]. Correspondingly, the
power spectrum P(!) D jx!j2, x! D

R
dtx(t) exp(i! t),

scales like P(!) � !�1�2H , i. e., P(!) � !�2 for random
walk; we note that the underlying reason for the universal
scaling behavior of random walk is the central limit theo-
rem [37,73].

Scaling in Equilibrium

Scaling ideas and associated techniques first came to the
forefront in statistical physics in the context of second or-
der phase transitions or critical phenomena [20,24,29,65].
More specifically, consider the usual Ising model defined
on a lattice with a local spin degrees of freedom, �i D ˙1
at site i, subject to a short range interaction J favor-
ing spin alignment. The Ising Hamiltonian has the form
H D �J

P
hi ji �i� j , where hi ji indicates nearest neigh-

bor sites. The thermodynamic phases are characterized by
the order parameter m D h�i i. Above one dimension the
Ising model exhibits a second order phase transition at
a finite critical temperature Tc. Above Tc the model is in
a disordered paramagnetic state with m D 0 and only mi-
croscopic domain of ordered spins. Below Tc the model
favors a ferromagnetic state with long range order and
macroscopic domains of ordered spins, corresponding to
m ¤ 0; at T D 0 the model assumes the ferromagnetic
ground state configuration with totally aligned spins. Re-
garding the spatial organization, the size of the domains
of ordered spins is characterized by the correlation length
�(T). As we approach the critical point at Tc the order pa-
rameter vanishesm / jT � Tc jˇ with critical exponent ˇ,
butmore significantly, the correlation length �(T) diverges

like �(T) � jT � Tc j�� with scaling exponent �. This in-
dicates that the system is scale invariant at Tc. Regarding
the domains of ordered spins, the system is spatially self-
similar on scales from the microscopic lattice distance to
the system size; the system size diverging in the thermo-
dynamic limit. The scaling behavior at the critical point Tc
is an emergent property in the sense that the scaling expo-
nents ˇ and � do not depend on microscopic details like
the type of lattice, strength of interaction, etc., but only on
the dimension of the system and the symmetry of the order
parameter [72].

The diverging correlation length at the critical point
is the central observation which in the 60-ties and 70-ties
gave rise to a detailed understanding of critical phenom-
ena, beginning with the coarse graining block scheme pro-
posed by Kadanoff [41] and culminating with the devel-
opment and application of field theoretical renormaliza-
tion group techniques by Wilson and others [20,24,29,65,
72,86].

For a diverging correlation length much larger than
the lattice distance the local spin � i can be replaced
by a coarse-grained local field �(r) and the Ising
Hamiltonian H by the Ginzburg–Landau functional F DR
ddr[(r�)2 C R�2 C U�4], where the ‘mass’ term

R � jT � Tc j. Consequently, the universality class of
Ising-type models is described by a scalar field theory. The
renormalization group techniques basically quantify the
Kadanoff block construction in momentum space and ex-
tract scaling properties in an expansion about the upper
critical dimension d D 4. To leading order in 4� d one
obtains ˇ D 1/2� (4 � d)/6 and � D 1/2C (4 � d)/12.
Alternatively, keeping the correlation length � fixed and
letting the lattice distance approach zero, we obtain at Tc
the so-called scaling limit or continuum limit of the Ising
model. The Ising spin � i becomes a local field �(r) and the
weight of a configuration is determined by exp(�F). Note
that in order to implement the scaling limit we must be at
Tc. The two scenarios of a growing correlation length for
fixed lattice distance implementing the Kadanoff construc-
tion and a fixed correlation length for a vanishing lattice
distance yielding a continuum field theory are related by
an overall scale transformation [86].

It is generally assumed that the global or nonlocal
scale invariance at the critical point in the continuum
limit can be extended to a local scale invariance includ-
ing translation and rotation, that is an angle-preserving
conformal transformation. This follows heuristically from
an a local implementation of the Kadanoff coarse-grain-
ing block construction and applies to lattice models with
short range interactions and discrete translational and ro-
tational invariance [22,24]. The resulting continuum the-
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ories then fall in the category of conformal field theories
(CFT).

In 2D the group of conformal transformations is par-
ticularly rich since it corresponds to the class of analyti-
cal functions w D f (z), mapping the complex plane z to
the complex plane w. The infinite group structure imposes
sufficient constraints on the structure of conformal field
theories in 2D that the scaling form of correlations, e. g.,
h��i(r), and in particular the critical exponents can be de-
termined explicitly [23,24]. On finds ˇ D 1/8 and � D 1
for the order parameter and correlation length exponents,
respectively, in accordance with lattice theory results [14].
Here we alsomention the Coulomb gasmethod for the de-
termination of critical exponents [71].

It is a common feature of both renormalization group
calculations based on an expansion about a critical di-
mension and conformal field theory in 2D that the local
field �(r) and its correlations are the basic building blocks
and that the critical properties are encoded in their scal-
ing form, yielding critical exponents, scaling laws, scal-
ing functions, etc. Notwithstanding the fact that the sem-
inal Kadanoff construction [41] was based on a geometri-
cal picture corresponding to coarse-graining the degrees
of freedom over larger and larger scales, keeping track
of ordered domains on all scales, the actual geometry of
critical phenomena such as the scaling properties of crit-
ical clusters was not well-understood and seemed inac-
cessible in the continuum limit within the context of lo-
cal field theories. Whereas it is not difficult to generate
critical domain walls, interfaces, and clusters for lattice
models with appropriate boundary conditions by means
of standard Monte Carlo simulation techniques, the con-
tinuum or scaling limit of critical shapes appeared un-
til recently, with a few exceptions, beyond present tech-
niques.

Stochastic Loewner Evolution

Here stochastic Loewner evolution (SLE) represents a new
insight in 2D critical phenomena with respect to a deeper
understanding of scale invariant curves, clusters, and
shapes. Also, there appears to be deep connections be-
tween SLE and conformal field theory.

SLE is an ingenious way of generating critical curves
and shapes in the 2D continuum using conformal trans-
formations. Let us mention a characteristic example. Con-
sider an Ising model on a lattice in a chosen domain. Im-
posing spin up on a continuous part of the domain bound-
ary and spin down on the remaining part of the boundary,
it follows that a specific domain wall or interface will con-
nect the two points on the boundary where a bond is bro-

ken. At low temperature the bond energies dominate and
the free energy is lowest for a straight domainwall with few
kinks. As we approach the critical point entropy or fluctu-
ations come strongly into play and the domain wall me-
anders balancing energy and entropy. At the critical point
the system becomes scale invariant with a diverging corre-
lation length and likewise the domain wall becomes scale
invariant, i. e., it has kinks on all scales larger that the lat-
tice distance. In the continuum limit the Ising domain wall
becomes a random fractal curve with a particular fractal
dimension. Here SLE provides a direct analytical method
in the continuum to generate such a random curve and,
moreover, provides the fractal dimension in terms of the
strength of the 1D random walk driving the SLE evolu-
tion.

Outline

The outline of the present article is as follows. In
Sect. “Scaling” on scaling we introduce some of the basic
models and concepts necessary for a discussion of SLE: A)
Random walk, B) Percolation, C) Ising model, D) Criti-
cal curves and exploration, and E) Distributions, Markov
properties, andmeasures. In Sect. “Conformal Invariance”
we turn to the essential ingredient in SLE, namely, con-
formal invariance: A) Conformal maps and B) Measures
and conformal invariance. Section “Loewner Evolution”
is devoted to deterministic or classical Loewner evolution:
A) Growing stick, B) Loewner equation and C) Exact so-
lutions. In Sect. “Stochastic Loewner Evolution”, consti-
tuting the core part of this article, we discuss stochas-
tic Loewner evolution: A) Schramm’s theorem, B) SLE
properties, C) Curves, hulls, and the Bessel process and
D) Fractal dimension. Section “Results and Discussion”
is devoted to results and discussions: A) Phase transi-
tions, locality, restriction, and duality, B) Loop erased ran-
dom walk, C) Self-avoiding random walk, D) Percolation,
E) Ising model and O(n) models, F) SLE and conformal
field theory, G) Application to 2D turbulence, H) Appli-
cation to 2D spin glass and I) Further remarks. Finally,
in Sect. “Future Directions” we discuss future directions
of the field. The bibliography includes books, general re-
views, and more technical papers.

Scaling

Stochastic Loewner evolution, has been applied to a host
of lattice models proved or conjectured to possess scaling
limits. However, for the present purpose we will focus on
three lattice models: Random walk, Percolation, and the
Ising model.
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RandomWalk

Random walk is a simple and much studied random pro-
cess [4,32,73]. Consider an unbiased random walk in the
plane composed of N steps, where the ith step, E�i , is
random, isotropic and uncorrelated, i. e., hE�ii D 0 and
h�˛i �

ˇ
j i / ı˛ˇ ıi j . For the end-to-end distance we have

Ex D
PN

iD1 E�i and for the size R D [hEx2i]1/2 � N1/2. As-
suming one step pr unit time, N / t, we obtain R � t1/2,
characteristic of diffusive motion. Introducing the fractal
dimension D by the usual box counting procedure [32,68]

N(R) � RD ; (1)

where N is the number of boxes and R the size of the ob-
ject, and covering the randomwalk we readily infer D D 2,
i. e., the self-crossing random walk is plane-filling mod-
ulo the lattice distance. Introducing the scaling exponent �
according to R � N� we have for random walk � D 1/2;
note that D D 1/�.

The scaling limit of unbiased random walk is Brown-
ian motion (BM) [4] and is obtained by scaling the step
size � down and the number of steps N up in such a man-
ner that the size R � N1/2� stays constant. The resulting
BM path is a continuous non-differentiable random curve
with fractal dimension D D 2. The BM path is plane-fill-
ing and recurrent in 2D, i. e., it returns to a given point
with probability one. Focusing on one of the independent
cartesian components 1D BM, Bt, is also described by the
Langevin equation

dBt

dt
D �t ; h�t�si D ı(t � s) ; (2)

where �t is uncorrelated Gaussian white noise with a flat
power spectrum. Integrating Eq. (2) Bt samples the step
�t and we find, assuming B0 D 0, Bt D

R t
0 �t0dt

0 from
which we directly infer the fundamental properties of BM,
namely, independence and stationarity,

BTC�T � BT � B�T ; (stationarity) (3)

B�T ; B�T 0 indep. for 
T ¤ 
T 0 ; (independence) (4)

where � indicates identical distributions. Moreover, the
correlations are given by

hjBt � Bs j
2i D jt � sj (5)

and Bt is distributed according to the normal (Gaussian)
distribution P(B; t) D (2� t)�1/2 exp(�B2/2t).

Whereas 1D BM drives SLE, 2D BM is not itself gen-
erated by SLE since the path is self-crossing on all scales;
by construction SLE is limited to the generation of non-
crossing random curves. However, variations of BM have
played an important role in the development of SLE. We
mention here the scaling limit of loop erased randomwalk
(LERW) and self-avoiding random walk (SAW), to be dis-
cussed later.

Percolation

The phenomenon of percolation is relevant in the context
of clustering, diffusion, fractals, phase transitions and dis-
ordered systems. As a result, percolation theory provides
a theoretical and statistical background to many physical
and natural sciences [82].

Percolation is the simplest lattice model exhibiting
a geometrical phase transition. The site percolation model
is constructed by occupying sites on a lattice with a given
common probability p. Let an occupied site be denoted
‘plus’ and an ‘empty’ site denoted ‘minus’. For p close to
zero the sites are mainly unoccupied and the lattice is ‘mi-
nus’. For p close to one the sites are predominantly oc-
cupied and the lattice is ‘plus’. At a critical concentration
pc, the percolation threshold, an infinite cluster of ‘plus’
sites embedded in the ‘minus’ background extends across
the lattice. In the scaling limit of vanishing lattice distance
the critical cluster has a fractal boundary which can be ac-
cessed by SLE. Whereas the scaling properties of critical
percolation clusters define a universality class and is inde-
pendent of the lattice structure, the critical concentration
pc in general depends on the lattice. For site percolation
on a triangular lattice the percolation threshold is known
to be pc D 1/2.

In Fig. 1 we depict a realization of site percolation
on a triangular lattice in the upper half plane at the per-
colation threshold pc D 1/2. The occupied sites are de-
noted ‘plus’, the empty sites ‘minus’. By imposing appro-
priate boundary conditions we induce a meandering do-
main wall across the system from A to B. In the scaling
limit the domain wall becomes a fractal non-crossing crit-
ical curve.

Ising Model

The Ising model is probably the simplest interacting many
particle system in statistical physics [20,29,81]. The model
has its origin in magnetism but has become of paradig-
matic importance in the context of phase transitions. The
model is defined on a lattice where each lattice site i is oc-
cupied by a single degree of freedom, a spin variable � i,
assuming two values, �i D ˙1, i. e., spin up or spin down.
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Stochastic Loewner Evolution: Linking Universality, Criticality
and Conformal Invariance in Complex Systems, Figure 1
Wedepict sitepercolationona triangular lattice in theuppedhalf
plane at the percolation threshold. The critical concentration is
pc D 1/2. The occupied sites are denoted ‘plus’, the empty sites
‘minus’. The boundary conditions enforce ameandering domain
wall from A to B

In the ferromagnetic case considered here the spins inter-
act via a short range exchange interaction J favoring par-
allel spin alignment. The model is described by the Ising
Hamiltonian

H D �J
X

hi ji

�i� j ; (6)

where hi ji indicates nearest neighbor spin sites i and j. The
statistical weight or probability of a specific spin configu-
ration f�ig is determined by the Boltzmann factor

P(f�ig) D exp[�H/kT]/Z ; (7)

where T is the temperature and k Boltzmann’s constant.
The partition function Z has the form

Z D
X

f
ig

exp(�H/kT) ; (8)

yielding the thermodynamic free energy F according to
F D �kT log Z. The entropy is given by S D �dF/dT and
the energy follows from F D E � TS. The magnetization

or order parameter and correlations are given by

m D
X

f
ig

�i P(f�ig) and h�i� ji D
X

f
ig

�i� j P(f�ig) ;

(9)

respectively.
The Ising model possesses a phase transition at a criti-

cal temperature Tc from a disordered paramagnetic phase
above Tc with vanishing order parameter m D 0 to a fer-
romagnetic ordered phase below Tc with non-vanishing
order parameterm ¤ 0. At the critical temperature Tc the
order parameter vanishes like m � jT � Tc jˇ with critical
exponent ˇ. The correlation function h�i� ji monitoring
the spatial organization of ordered domains behaves like

h�i� ji �
exp[�ji � jj/�]
ji � jj�

; (10)

where ji � jj denotes the distance between position i and
position j. The algebraic behavior is characterized by the
critical exponent � and the correlation length � scales
like � � jT � Tc j�� with critical exponent �. At the crit-
ical point the correlation length � diverges and the Ising
model becomes scale invariant with an algebraically de-
caying correlation function h�i� ji � ji � jj�� . Assigning
‘plus’ to spin up and ‘minus’ to spin down, Fig. 1 also il-
lustrates a typical configuration of the 2D Ising model on
a triangular lattice at the critical temperature, including an
Ising domain wall from A to B.

Critical Curves – Exploration

In the percolation case at the percolation threshold a crit-
ical curve is induced by fixing the boundary conditions.
Occupying sites from A to B along the right hand side of
the boundary and assigning empty sites along the left hand
side of the boundary fromA to B a critical curve will mean-
der across the system from A to B. Imagining painting the
two sides of the curve, one side is painted with occupied
sites, the other side with empty sites. Typically the curve
meanders on all scales but by construction does not cross
itself. For later purposes the configuration is depicted in
Fig. 1.

In order to make contact with SLE we observe that
a critical interface in the percolation case also can be con-
structed by an exploration process. We initiate the curve
at the boundary point A and toss a coin. In the case of
‘head’ the site or hexagon in front is chosen to be occupied
and the path bends left; in the event of ‘tail’ the hexagon
in front is left unoccupied and the path bends right. In this
manner a critical meandering non-crossing curve is gener-
ated terminating eventually at B. The percolation growth
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Stochastic Loewner Evolution: Linking Universality, Criticality
and Conformal Invariance in Complex Systems, Figure 2
We depict the growth process in the percolation case. The per-
colation threshold is at pc D 1/2. The interface imposed by the
boundary conditions originates at theboundary pointA andpro-
gresses towards the boundary point B

process is depicted in Fig. 2, where we for clarity only have
indicated the sites involved in the growth process.We note
that since there is no interaction between the sites the path
depends entirely on the local properties.

In the case of the Ising model a critical interface or do-
main walls at the critical point is again fixed by assign-
ing appropriate boundary conditions with spin up along
the boundary from A to B and spin down from B to A.
The critical curve can be constructed in two ways: Glob-
ally or by an exploration process. In the global case we
generate a spin configuration by means of a Monte Carlo
simulation, i. e., perform a biased importance sampling
implementing the probability distribution in Eq. (7), and
identify a critical interface. Alternatively, we can gener-
ate an interface by an exploration process like in the per-
colation case, occupying a site i according to the weight
(1/2)(1C h�ii), where h�ii is evaluated in the domain with
the spins along the interface fixed, see again Fig. 2.

Distributions – Markov Properties – Measures

In the case of randomwalk the number of walks of length L
grows like �L, where � is a lattice dependent number,
i. e., at each step there are � lattice-dependent choices for

choosing a direction of the next step. Consequently, the
weight or probability of a particular walk of length L is
proportional to ��L ,

P(L) � ��L ; (11)

and all walks of a given length have the same weight. We
note here the important Markov property, characteristic
of random walk, which can be formulated in the follow-
ing manner. Assume that the first part � 0 of the walk has
taken place and thus conditions the remaining part � of
the walk. In a suggestive notation the conditional distri-
bution is given by P(� j� 0) D P(�� 0)/P(� 0). The Markov
property implies that the conditional probability is equal
to the probability of the walk � in a new domain where the
first part of the walk � 0 has been removed, i. e., the identity

P(� j� 0) D P0(� ) ; (Markov property) (12)

where the prime refers to the new domain. The Markov
property is self-evident for random walk and follows di-
rectly from Eq. (11), i. e., P(� j� 0) D P(�� 0)/P(� 0) D
��(LCL0)/��L0 D ��L D P0(� ), where L and L0 are the
lengths of segments � 0 and � , respectively.

In the scaling limit the lattice distance goes to zero
whereas the length of the walk diverges. Consequently, the
distribution diverges and must be replaced by an appro-
priate probability measure [4,13,43]. However, in order to
define the probability distribution or measure in the scal-
ing limit we shall assume that the Markov property con-
tinues to hold and interpret the P in Eq. (12) as probabil-
ity measures. The Markov property is essential in carry-
ing over the lattice probability distributions in the scaling
limit.

For the critical interfaces defined by an exploration
processes in the case of site percolation, the Markov prop-
erty follows by inspection since the propagation of the in-
terface is entirely determined by the local process of oc-
cupying the next site with probability 1/2. This locality
property is specific for percolation which has a geomet-
rical phase transition and does in the SLE context, to be
discussed later, determine the scaling universality class.

In the case of an interface in the Ising model the
Markov property also holds, but since the spins interact
a little calculation is required [13]. Consider an interface �
defined by an exploration process. According to the rules
of statistical mechanics the probability distribution for the
interface � is given by

P(� ) D
Z(� )
Z

: (13)
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Here Z is the full partition function defined in Eq. (8)
with appropriate boundary conditions imposed. Z(� ) is
the partial partition function with the spins associated
with the interface � fixed,

Z(� ) D
X

f
ig;�

exp[�H(� )/kT] : (14)

The Hamiltonian H(� ) inferred from Eq. (6) is the en-
ergy of a spin configuration with the spins determining �
fixed; f�ig; � indicate the configurations to be summed
over. Evidently, we have the identity Z D

P
� Z(� ), i. e.,P

� P(� ) D 1.
Whereas in the random walk case we only considered

an individual path and in the percolation case the inter-
face only feels the nearby sites, an Ising interface is imbed-
ded in the interacting spin systems and we have to define
the Markov property more precisely with respect to a do-
mainD. Consider an interface across the domainD fromA
to B and assume that the last part � is conditioned on the
determination of the first part � 0, i. e., given by the distri-
bution PD(� j� 0). Next imagine that we cut the domain D
along the interface � 0, i. e., break the interaction bonds be-
tween the spins determining � 0. The right and left face
of � 0 can then be considered part of the domain bound-
ary and the Markov property states that the distribution
of � in the cut domain D n � 0 (i. e., D minus � 0) equals
PD(� j� 0),

PD(� j� 0) D PDn� 0(� ) : (Markov property) (15)

In order to demonstrate Eq. (15) we use the definition
in Eq. (13). The conditional probability PD(� j� 0) D
PD(�� 0)/PD(� 0) D (ZD(�� 0)/ZD)/(ZD(� 0)/ZD) D

ZD(�� 0)/ZD(� 0). Correspondingly, the distribution in the
cut domain D n � 0 is PDn� 0(� ) D ZDn� 0(� )/ZDn� 0 . How-
ever, it follows from the structure of the partition func-
tion in Eqs. (6–8) that ZDn� 0 D exp[E(� 0)/kT]ZD(� 0) and
ZDn� 0(� ) D exp[E(� 0)/kT]ZD(�� 0), where E(� 0) is the
energy of the broken bonds. By insertion the interface
Boltzmann factors cancel out and we obtain Eq. (15) ex-
pressing the Markov property.

Conformal Invariance

In the complex plane analysis implies geometry. The rep-
resentation of a complex number z D x C iy directly as-
sociates complex function theory with 2D geometrical
shapes. This connection is of importance in mathematical
physics in for example 2D electrostatics and 2D hydrody-
namics. In the context of SLE Riemann’s mapping theo-
rem plays an essential role [1].

Conformal Maps

Briefly, Riemann’s mapping theorem [2] states that any
simply connected domain, i. e., topologically deformable
to a disk, in the complex plane z can be uniquely mapped
to a unit disk jwj < 1 in the complex w plane by mean
of a complex function w D g(z). By combining com-
plex functions we can map any simply connected do-
main to any other simply connected domain. For exam-
ple, if g1(z) and g2(z) map domains D1 and D2 to the unit
disk, respectively, then g�12 (g1(z)) maps D1 to D2; here
g�12 is the inverse function of g2, i. e., g�12 (g2(z)) D z. As
an example, the transformation g(z) D i(1C z)/(1 � z)
maps the the unit disk centered at the origin to the
upper half plane. Likewise, the Möbius transformation
g(z) D (azC b)/(cz C d) determined by four real param-
eters, ad � bc > 0, maps the upper half plane onto it-
self. Conformal transformations are angle-preserving and
basically correspond to a combination of a local ro-
tation, local translation, and local dilatation. In terms
of an elastic medium picture conformal transformations
are equivalent to deformations without shear [54]. Ex-
pressing g(z) in terms of its real and imaginary parts,
g(z) D u(x; y)C iv(x; y), the Cauchy–Riemann equa-
tions @u/@x D @v/@y and @u/@y D �@v/@x hold implying
that u and v are harmonic functions satisfying Laplace’s
equations r2u D 0 and r2v D 0, r2 D @2/@x2 C @2/@y2.
In Fig. 3 we have depicted a conformal angle-preserving
transformation effectuated by the complex function g(z)
from the complex z plane to the complex w plane.

Stochastic Loewner Evolution: Linking Universality, Criticality
and Conformal Invariance in Complex Systems, Figure 3
We depict a conformal transformation from the complex z plane
to the complexw plane. We note the angle-preserving property,
i. e., a shear-free transformation. The map in the figure is given
byw D z2
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Measures – Conformal Invariance

Whereas the Markov property discussed above holds for
lattice curves even away from criticality, we here want to
assume another property which only holds in the scaling
limit at the critical point, namely conformal invariance.
In the scaling limit we anticipate that the probability mea-
sure P(� ) for an interface � is invariant under a conformal
transformation. More precisely, consider a lattice model,
say the Ising or percolation model, and specify two do-
mains D and D0 on the lattice. Next, consider an interface,
cluster boundary or domain wall � from the boundary
points A and B across the domainD. In terms of the parti-
tion functions the probability distribution for � is given by
Eq. (13). We now perform the scaling or continuum limit
of the lattice model keeping the domains D and D0 fixed.
The continuous random interface approaches its scaling
form and is characterized by the measure PD(� ). At the
critical point we assume that the interface is scale invariant
under the larger symmetry of conformal transformations.
The next step is to consider a specific conformal transfor-
mation g(z) which according to Riemann’s theorem pre-
cisely maps domain D to domain D0, i. e., D0 D g(D) and
the interface to g(� ). The assumption of conformal invari-
ance then states that the probability measure P is invariant
under this transformation expressing the scale invariance,
i. e.,

PD(� ) D Pg(D)(g(� )) : (Conformal property) (16)

Both the Markov property and the conformal property are
sufficient in combination with Loewner evolution to de-
termine the measures in the scaling limit.

Loewner Evolution

The original motivation of Loewner’s work was to ex-
amine the so called Bieberbach conjecture which states
that jan j � n for the coefficients in the Taylor expansion
f (z) D

P
nD0 anz

z , where f (z) maps the unit disk to the

Stochastic Loewner Evolution: Linking Universality, Criticality and Conformal Invariance in Complex Systems, Figure 4
We depict the growing stick corresponding to the conformal transformation w Dpz2 C 4t. The vertical cut in the z plane extends
from the origin to the point (0;2it1/2). The right and left faces of the cut are mapped to the real axis from �2t1/2 to C2t1/2, the
endpoint to the origin, in the complexw plane

complex plane. The conjecture was proposed in 1916 and
finally proven in 1984 by de Branges [2,38,39]. For that
purpose Loewner [64] considered growing parametrized
conformal maps to a standard domain. In the present con-
text Loewner’s method allow us to access growing shapes
in 2D in an indirect manner by means of a ‘time depen-
dent’ conformal transformation gt(z).

Growing Stick

Before we address the derivation of the Loewner equation
let us consider the specific conformal transformation

gt(z) D
p
z2 C 4t : (17)

For t D 0 we have g0(z) D z, i. e., the identity map. Like-
wise, for z!1 we obtain

gt(z) � z C
2t
z
; (18)

showing that far away in the complex plane we again have
the identity map. The coefficient in the next leading term,
Ct /z, is called the capacity Ct ; here parametrized by the
‘time variable’, t D Ct/2. The map (17) has a branch point
at z D 2it1/2 and it follows by inspection that gt maps
the upper half plane minus a stick from the origin 0 to
2it1/2 back to the upper half plane. From the inverse map
ft(w) D g�1t (w),

ft(w) D
p
w2 � 4t ; (19)

we infer that the right face of the stick is mapped to the
real axis from 0 to 2t1/2, the tip to the origin, and the left
face to the interval�2t1/2 to 0. Under the map the growing
stick thus becomes part of the boundary in the w plane.
The growing stick is depicted in Fig. 4.

The stick shows up as an imaginary contribution along
the interval�2t1/2 to 2t�1/2. More precisely, since ft(w) is
analytic in the upper half plane, implementing the asymp-
totic behavior ft(w) � w for w !1, and using Cauchy’s
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theorem, we obtain the dispersion relation or spectral rep-
resentation

ft(w) D w �
Z

d!
�

At(!)
w � !

; (20)

with spectral weight At(!). In the case of the growing stick
we find At(!) D (4t � !2)1/2 for !2 < 4t and otherwise
At(!) D 0. Using 1/(! C i�) D P 1/! � i�ı(!) (P de-
notes principal value) we also have Im ft(!) D At(!) and
Re ft(!) D ! � P

R
(d! 0/�)At(! 0)/(! � ! 0). The time

dependent spectral weight At(!) thus characterizes the
growing stick. With the chosen parametrization we also
have the sum rule

Z
d!
�

At(!) D Ct D 2t : (21)

Finally, we note that the map gt satisfies the equation of
motion

dgt(z)
dt

D
2

gt(z)
; (22)

i. e., solving Eq. (22) with the initial condition g0(z) D z
and the boundary condition gt(z) � z for z!1 we ar-
rive at the map in Eq. (17).

Loewner Equation

The growing stick nicely illustrates the idea of accessing
a growing shape indirectly by the application of Riemann’s
theorem mapping the domain adjacent to the shape to
a standard reference domain, here the upper half plane.
This so-called uniformizing map effectively absorbs the
shape and encodes the information about the shape into
the spectral weight At(!) along the real axis.

Let us consider a general shape or hull Kt in the up-
per half plane H. Together with the real axis the shape
form part of the boundary of the domain D. In other
words, the domain in question is the upper half plane H
with the shape Kt subtracted, D D H n Kt. Applying Rie-
mann’s theorem we map the simply connected domain D

Stochastic Loewner Evolution: Linking Universality, Criticality and Conformal Invariance in Complex Systems, Figure 5
The combination of maps involved in the derivation of the Loewner equation. First the map gt eliminates the hull Kt . Subject to the
growth in the time interval ıt the incremental hull ıKt is subsequently absorbed by the infinitesimal map ıgt . Correspondingly, the
hull KtCıt is absorbed by the map gtCıt in one step

back to the upper half plane H by means of the confor-
mal transformation gt(z), i. e., gt absorbs the shape Kt.
Imagine that the shape grows a little bit further from Kt
to KtCı t D Kt C ıKt, where Kt is now part of KtCı t ; ıKt
is the shape increment. Correspondingly, the map gtCı t is
designed to absorb KtCı t , i. e., H n KtCı t ! H by means
of the map gtCı t . We now carry out the elimination in two
ways. Either we absorbKt bymeans of the map gt and sub-
sequently ıKt bymeans of themap ıgt or we absorbKtCı t
directly in one step by means of the map gtCı t . Conse-
quently, combining maps we have gtCı t(z) D ıgt(gt(z))
or gt(z) D ıg�1t (gtCı t(z)). Since ıg�1t (w) is analytic in H
we obtain the spectral representation

ıg�1t (w) D w �
Z

d!
�

ıAt(!)
w � !

; (23)

with infinitesimal spectral weight ıAt , or inserting
w D gtCı (z)

gt(z) D gtCı t(z) �
Z

d!
�

ıAt(!)
gtCı t � !

: (24)

The last step is to set ıAt(!) D �t(!)ıt, yielding a differ-
ential equation for the evolution of the map gt eliminating
the shape Kt,

dgt(z)
dt

D

Z
d!
�

�t(!)
gt(z) � !

: (25)

Specifying the weight or measure �t(!) along the real !-
axis this equation determines, through the uniformiz-
ing map gt , how the shape Kt grows. The spectral
weight encodes the 2D shape into the real function
�t(!). Note that since �t(!) is not specified and can
depend nonlinearly on the map, Eq. (25) still represent
a highly nonlinear problem. Invoking the asymptotic con-
dition gt(z) � z C Ct /z, where Ct is the time depen-
dent capacity we infer dCt/dt D

R
(d!/�)�t(!) or since

�t(!) D dAt(!)/dt the sum rule in Eq. (21). The confor-
mal mapping procedure is depicted in Fig. 5.
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In the special case where the growth takes place
at a point the equation simplifies considerably. Assum-
ing that the spectral weight is concentrated at the point
! D at , where at is a real function of t and setting �t(!) D
2�ı(! � at) we arrive at the Loewner equation

dgt(z)
dt

D
2

gt � at
: (26)

The Loewner equation describes the growth of a curve or
trace � t with endpoint zt, 0 < t <1, in the upper half
complex z-plane. The time-dependent conformal trans-
formation gt maps the simply connected domain H n �t ,
i. e., the half plane excluding the curve � t back to the w
half plane. At a given time instant t the tip of the curve
zt is determined by gt(zt) D at , i. e., the point where
Eq. (26) develops a singularity. The topological proper-
ties and shape of the curve are encoded in the real func-
tion at which lives on the real axis in the w-plane. As at
develops in time the tip of the curve zt determined by
zt D g�1t (at) traces out a curve. Since the domain H n �t
must be simply connected for the Riemann theorem to
apply the curve or trace cannot cross itself or cross the
real axis. Whenever the curve touches or intersect itself
or the real axis the enclosed part will be excluded from
the domain. In other, words, during the time progres-
sion the curve effectively absorbs part of the upper half
plane. It is a deep property of Loewner evolution that
the topological properties of a 2D non-crossing curve are
entirely encoded by the real function at. The encoding
works both ways: A given 2D non-crossing curve � t cor-
responds to a specific real function at, a given real func-
tion at yields a specific 2D non-crossing curve � t . A con-
tinuous at will yield a continuous curve � t. A discontin-
uous at in general gives rise to branching. Whether or
not the curve intersects or touches itself is determined by
the singularity structure of the drive at . In the case where
the Hölder condition lim�!0 j(atC� � a� )/�1/2j is greater
that 4 we have self-intersection. Note again that since the
curve is defined indirectly by the singularity structure in
Eq. (26) we cannot easily identify a curve parametriza-
tion and for example determine a tangent vector, etc. The
mechanism underlying the Loewner equation is shown in
Fig. 6.

Exact Solutions

In a series of simple cases one can solve the Loewner equa-
tion analytically [42,44]. For vanishing drive at D 0 we
obtain the growing vertical stick discussed above. Corre-
spondingly, a constant drive at D a yields a vertical stick
growing up from the point a on the real axis.

Stochastic Loewner Evolution: Linking Universality, Criticality
and Conformal Invariance in Complex Systems, Figure 6
The mechanism in the Loewner equation. The curve in the up-
per half complex z plane generated by the Loewner equation is
mapped onto a finite but growing segment of the real axis of the
complexw plane. The endpoint zT is mapped to the real number
aT . As at develops in time and makes excursions along the real
axis the endpoint zt of the curve grows into the upper half plane

In the case of a linear drive at D t the tip of the
curve zt is given by zt D 2 � 2�t cos �t C 2i�t, where
the phase � t is determined from the equations: 2 ln rt �
rt cos�t D 2 ln 2C t � 2 and rt D 2�t/ sin �t . By inspec-
tion �0 D 0 and �1 D � . The curve thus approaches
the asymptote 2� i for t ! 1. For small t analysis yields
zt � (2/3)t C 2i

p
t, i. e., the trace approaches the origin

with infinite slope. The square root drives at D 2
p
� t and

at D 2
p
�(1 � t), 0 < t < 1 with a finite-time singu-

larity can also be treated. In the first case, at D 2
p
� t,

the trace is a straight line zt D B exp(i�)
p
t forming

the angle � with respect to the real axis. The amplitude B
and phase � depend on the parameter �. The angle � D
(�/2)(1 � �1/2/(� C 4)1/2). For � D 0, � D �/2 and we
recover the perpendicular stick; for � ! 1, � ! 0 and
the angle of intersection decreases to zero. In the second
case, at D 2

p
�(1 � t), the behavior of the trace is more

complex. For 0 < � < 4 the trace forms a finite spiral in
the upper half plane; for � D 4 the trace has a glancing
intersection with the real axis. For 4 < � < 1 the trace
hits the real axis in accordance with the Hölder condition
discussed above.

Stochastic Loewner Evolution

After these preliminaries we are in position to address
stochastic Loewner evolution (SLE). The essential obser-
vation made by Oded Schramm [77] within the context of



Stochastic Loewner Evolution: Linking Universality, Criticality and Conformal Invariance in Complex Systems S 8721

loop erased randomwalk was that theMarkov and confor-
mal properties of the measures or probability distributions
for random curves generated by Loewner evolution imply
that the random drive at must be proportional to an unbi-
ased 1D Brownian motion.

Schramm’s Theorem

The Loewner Equation (26) generates a non-crossing
curve in the upper half plane H originating at the ori-
gin O, given a continuous function at with initial value
a0 D 0. As at develops in time the tip of the curve zt de-
termined by the condition gt(zt) D at traces out a curve
or trace. In the case where at is a continuous random
function the Loewner Equation (26) likewise becomes
a stochastic equation of motion yielding a stochastic map
gt(z). As a result the trace determined by gt(zt) D at or
zt D g�1t (at) is a random curve. The issue is to establish
a contact between the exploration processes defining in-
terfaces in the lattice models, the scaling limit of these
curves, and the curves generated by SLE. In the scaling
limit we thus invoke the two properties discussed above:
i) the Markov property in Eq. (12) and ii) the conformal
property in Eq. (16).

In order to demonstrate the surprising property that
the Markov and conformal properties in combination im-
ply that at must be a 1D Brownian motion we focus on
chordal SLE which applies to a random curve or trace con-
necting two boundary points. Since the probability dis-
tribution or measure P(� ) on the random curve � using
property ii) is assumed to be conformally invariant and
since we by Riemann’s theorem can map any simply con-
nected domain to the upper half plane by mean of a con-
formal transformation, we are free to consider curves in
the upper half plane from the origin O to1 parametrized
with a time coordinate 0 < t <1.

Imagine that we grow the curve from time t D 0 to
time T driven by the function at , 0 < t < T . The curve
or trace is generated by the Loewner Equation (26) with
boundary condition a0 D 0 and the trace zt by gt(zt) D at
or zt D g�1t (at).With the chosen time parametrization we
have gt(z) � z C 2t/z for z!1 in the upper half plane.
The map gt thus uniformizes the trace, i. e., the tip zt is
mapped to at on the real axis in thew-plane. In order to in-
voke the Markov property we let the curve grow the time
increment 
T corresponding to the curve segment 
� .
TheMarkov property then implies that the distribution on

� conditioned on the distribution on � is the same as the
distribution on 
� in the cut domain H n � , i. e., the do-
main with the curve � deleted; this stage is illustrated in
Fig. 7.

Stochastic Loewner Evolution: Linking Universality, Criticality
and Conformal Invariance in Complex Systems, Figure 7
The figure depicts the construction in the derivation of SLE.
The first step implements the Markov property by turning the
curve � into a cut. Subsequently, the conformal transformation
hT maps � back to the origin. Finally, the map h�T maps the
segment 	� to the origin. The complete process is also imple-
mented by hTC�T . The combination of theMarkov property and
conformal invariance implies that at performs a Brownian mo-
tion

Next, in order to implement the conformal property
we shift the image by aT in such a way that the curve seg-
ment 
� again starts at the origin O. This is achieved by
using the map hT D gT � aT which since gT (zT ) D aT
maps the tip zT back to the origin; this construction is
also depicted in Fig. 7. Moreover, the asymptotic behav-
ior of hT for large z is hT (z) � z � aT � 2T/z. Since the
measure by assumption is unchanged under the confor-
mal transformation hT we infer that
� growing the time

T from the origin has the same distribution as the seg-
ment
� grown from time T to time T C
T conditioned
on the segment � grown up to time T. Moreover, since the
segment � from O(AB) to C subject to the Markov prop-
erty has become part of the boundary, as shown in Fig. 7,
we also infer that the measure on
� is independent of the
measure on � . Finally, applying h�T we map the segment

� to the origin as a common reference point as indicated
in Fig. 7.

Since the random curves are determined by the ran-
dom maps gt and ht driven by the random function at the
issue is how to transfer the properties of the measure on
the curve determined by the Markov and conformal prop-
erties to the measure on the random driving function at.

In order to combine the Markov properties arising
from the analysis of the lattice models and the confor-
mal invariance pertaining to critical random curves, we
carry out the following steps. First we grow the curve �
from the origin O to the tip zT . Implying conformal in-
variance the curve is then uniformized back to the origin
by means of hT . The next step is to grow the curve segment

� in time
T . This segment is subsequently absorbed by
means of the map h�T . According to the Markov prop-
erty the distribution of 
� from O to z�T is the same as
the distribution of 
� grown from T to T C
T condi-
tioned on � grown from 0 to T. Since the curve � is deter-
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mined by the map ht the distribution is reflected in ht . In
particular, the stochastic properties of the curve is trans-
ferred to the random function at generating the curve by
the Loewner evolution. The last step is now to observe
that absorbing the segment 
� from O to z�T by means
of h�T is the same transformation as first applying the
inverse map h�1T followed by the map hTC�T ; in both
cases the end result is the absorption of the initial curve
� C
� , see Fig. 7. As regards the measure or distribu-
tion we have the equivalence h�T (z) � hTC�T (h�1T (z)).
Using the asymptotic form ht(z) � z � at � 2t/z we ob-
tain aTC�T � aT � a�T ; note that � indicates identical
distributions or measures.

In conclusion, the Markov property in combination
with conformal invariance implies that aTC�T � aT is
distributed like a�T (stationarity) and that a�T and a�T 0

are independently distributed for non-overlapping time
intervals 
T and 
T 0 (Markov property). Referring to
Sect. “Scaling”, A on Brownian motion as expressed in
Eqs. (3) and (4), i. e., stationarity and independence, we
infer that at is proportional to a Brownian motion of arbi-
trary strength �, i. e., at D

p
�Bt . Note that the reflection

symmetry x ! �x holding in the present context rules
out a bias or drift in the 1D Brownian motion [13,27].

This is the basic conclusion reached by Schramm in
the context of loop erased random walk. Driving Loewner
evolution by means of 1D Brownian motion with different
diffusion coefficient or strength � we generate a one-pa-
rameter family of conformally invariant or scale invariant
non-crossing random curves in the plane.

SLE Properties

Stochastic Loewner evolution is determined by the nonlin-
ear stochastic equation of motion

dgt
dt
D

2
gt � at

; at D
p
�Bt : (27)

In the course of time at performs a 1D Brownian motion
on the real axis starting at the origin a0 D 0. at is a ran-
dom continuous function of t and distributed according
to
p
�Bt . More precisely, at is given by the Gaussian dis-

tribution

P(a; t) D (2� t)�1/2 exp[�a2/2� t] ; (28)

with correlations
˝
(at � as)2

˛
D �jt � sj : (29)

First we notice that a constant shift of the drive at ,
at ! at C b, is readily absorbed by a corresponding

shift of the map, gt ! gt C b. Moreover, using the scal-
ing property of Brownian motion, B�2 t D Bt , follow-
ing from e. g. Eq. (5), we have a�2 t D at and we con-
clude from Eq. (27) that gt(z) has the same distribution as
(1/)g�2 t(z), i. e., g�2 t(�z) � � gt(z). Note that this di-
lation invariance is consistent since the origin z D 0 and
z D 1, the endpoints of curves, are preserved. Note also
that the strength of the drive � is an essential parameter
which cannot be scaled away.

Curves – Hulls – Bessel Process

For vanishing drive, � D 0, the SLE yields a non random
vertical line from z D 0, i. e., the growing stick discussed
in Subsect. “Growing Stick”. As we increase � the curve
becomes random with excursions to the right and to the
left in the upper half plane. Up to a critical value of � the
random curve is simple; i. e., non-touching or non self-
intersecting. At a critical value of � the Brownian drive
is so strong that the curve begins to intersect itself and
the real axis. These intersection take place on all scales
since the curve is self-similar or scale invariant. Denot-
ing the curve by � t we observe that since Riemann’s the-
orem uniformizing H n �t to H only applies to a simply
connected domain, the regions enclosed by the self-inter-
sections do not become uniformized but are effectively re-
moved from H. The curve � t together with the enclosed
parts is called the hull Kt and the mapping theorem ap-
plies toH n Kt.

In order to analyze the critical value of � we con-
sider the stochastic equation for ht(z) D gt(z) � at . From
Eq. (27) it follows that

dht
dt
D

2
ht
C �t ; (30)

where �t D �dat/dt is white noise with correlations
h�t�si D �ı(t � s).

The nonlinear complex Langevin Equation (30) maps
the tip of the curve zt back to the origin. Likewise H n �t
is mapped onto H. A point x on the real axis is mapped to
xt D ht(x) where xt satisfies

dxt
dt
D

2
xt
C �t : (31)

The Langevin Equation (31) is known as the Bessel equa-
tion and governs the radial distance R from the origin of
a Brownian particle in d dimensions.

Introducing R D (
Pd

iD1 B
2
i )
1/2 where Bi, i D 1; : : : d,

is a 1D Brownian motion with distribution P(B; t) D
(2�� t)�1/2 exp[�B2/2� t], we find P(R; t) / (2�� t)�d
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Stochastic Loewner Evolution: Linking Universality, Criticality
and Conformal Invariance in Complex Systems, Figure 8
The figures depict the phases of SLE. For � � 4 the SLE trace is
a simple non-intersecting scale invariant random curve from the
origin to infinity with a fractal dimension between 1 and 3/2. For
4 < � � 8 the SLE curve is self-intersecting on all scales and also
intersects the real axis on all scales. The curve together with the
enclosed regions, the hull, eventually exhausts the upper half
plane. The scale invariant hull has a fractal dimension ranging
between 3/2 and 2. For � � 8 the fractal dimension of the hull
locks onto 2 and the scale invariant hull is dense and plane-fill-
ing

Rd�1 exp[�R2/2� t] satisfying the Fokker–Planck equa-
tion @P/@t D (�/2)@2P/@R2 � (�(d � 1)/2)@(P/R)/@R,
corresponding to the Langevin equation

dR
dt
D �

d � 1
2R
C �t : (32)

For d � 2 Brownian motion is recurrent, i. e., the par-
ticle returns to the origin R D 0, for d > 2 the parti-
cle goes off to infinity. Referring to Eq. (31) and setting
�(d � 1)/2 D 2 we obtain � D 4/(d � 1), i. e., R!1 for
� < 4 and R! 0 for � > 4.

Since the tip of the curve zt is mapped to at , i. e.,
h(zt) D 0, the case xt !1 for � < 4 corresponds to
a curve never intersecting the real axis, i. e., the curve is
simple. For � > 4 we have xt ! 0 corresponding to the
case where the tip zt intersects the real axis forming a hull.
Since the curve is self-similar the intersections takes place
on all scales and eventually the whole upper half plane is
engulfed by the hull.

The marginal value � D 4 can also be inferred from
a simple heuristic argument [27]. For small � we can ig-
nore the noise in Eq. (31)and the particle is repelled ac-
cording to the solution x2t � 4t. For large noise we ignore
the nonlinear term and the noise can drive xt to zero; we
have x2t � � t. The balance is obtained for � D 4.

In conclusion, for � � 4 the curve is simple, for � > 4
the curve intersects itself and the real axis infinitely many
times on all scales, eventually the hull swallows the whole
plane. For large � the trace turns out to be plane-filling.
The two cases � � 4 and � > 4 are depicted in Fig. 8.

Fractal Dimension

The SLE random curves are fractal. An important issue is
thus the determination of the fractal dimensionD in terms
of the Brownian strength or SLE parameter �. It has been
shown that [15,16,74]

D D 1C
�

8
for 0 � � � 8 ; (33)

for � � 8 the fractal dimension locks onto 2 and the SLE
curve is plane-filling.

In order to illustrate a typical SLE calculation we follow
Cardy [27] in a heuristic derivation of Eq. (33). In order to
evaluate D and in accordance with its definition [32,68]
the standard procedure is to cover the object with disks of
size " and follow how the number of disks N(�) of size "
scales with " for small ", i. e., N(�) / ��D . However, since
the SLE curve is random the argument has to be rephrased.
Alternatively, we consider a disc of size " located at a fixed
position z and ask for the probability P(z; �) that the
SLE curve crosses the disk. The number of disks covering
an area A is NA D A/�2, i. e., P / ��D /NA, and we infer
P(z; �) / �2�D , where D is the fractal dimension. Incor-
porating the Markov property we subject the curve to an
infinitesimal conformal transformation, hı t D gı t � aı t ,
transforming the point z to w D gı t(z) � aı t ; more-
over, all lengths are scaled by jh0

ı t(z)j [1]. Setting
z D x C iy and w D x0 C iy0 we obtain expanding
Eq. (30) x0 C iy0 D 2ıt/(x C iy)�

p
�ıBt or x0 D x C

2xıt/(x2 C y2) �
p
�ıBt , y0 D y � 2yıt/(x2 C y2), �0 D

(1�jhı t(z)j)�, and jhı tj D 2(x2 � y2)/(x2 C y2)2. By con-
formal invariance the probability measure P(x; y; �) is un-
changed and we infer

P(x; y; �) D hP(x0; y0; �0)iıB ; (34)

where we have averaged over the Brownian motion refer-
ring to the initial part of the curve which has been elim-
inated by the map hı t . Expanding Eq. (34) to first order
in ıt and noting that h(ıBt)2i D ıt we arrive at a partial
differential equation for P(x; y; �)

�
2x

x2 C y2
@

@x
�

2y
x2 C y2

@

@y
C
�

2
@2

@x2

�
2(x2 � y2)
(x2 C y2)2

�
@

@�

�
P D 0 : (35)

Since P(x; y; �) / �2�D we have �@P/@� D (2 � D)P and
the determination of D is reduced to an eigenvalue prob-
lem. By inspection one finds

P / �1��/8 y(��8)
2/8�(x2 C y2)(��8)/2� ; (36)

and we identify the fractal dimension D D 1C �/8 for
� < 8; for � > 8 another solution yields D D 2.
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Results and Discussion

Stochastic Loewner evolution based on Eq. (27) generates
conformally invariant non-crossing random curves in the
upper half plane starting at the origin and going off to
infinity. This is the case of chordal SLE, where the ran-
dom curve connects two boundary points (the origin O
and infinity 1). Another case is radial SLE for random
curves connecting a boundary point and an interior point
in a simply connected domain [13,27,43]. Radial SLE is
governed by another stochastic equation and will not be
discussed here.

Phase Transitions – Locality – Restriction – Duality

Phase Transitions SLE exhibits two phase transitions;
for � D 4 and � D 8. For 0 < � � 4 the random curve is
non-intersecting, i. e., a simple random continuous curve
from O to 1. For 4 < � � 8 the curve is self-intersect-
ing on all scales. The curve together with the excluded
regions form a hull which in the course of time absorbs
the upper half plane. For � just above 4 the half plane is
eventually absorbed but the trace does not visit all regions,
i. e., the hull is not dense. As we approach � D 8 the trace
becomes more dense and the hull becomes plane-filling.
This is also reflected in the fractal dimensionD D 1C �/8.
For � > 8 the hull is plane-filling, i. e., D D 2. As we in-
crease the strength of the Brownian drive further the ex-
cursions of the trace to the right and left in the upper half
plane becomemore pronounced and the hull becomes ver-
tically compressed. These results have been obtained by
Rohde and Schramm [74] and Lawler et al. [57]. The vari-
ous phases of SLE are depicted in Fig. 8. In Fig. 9 we have
depicted numerical renderings of SLE traces for various
values of � (with permission from V. Beffara, http://www.
umpa.ens-lyon.fr/~vbeffara/simu.php).

Locality – Restriction In addition to the phase transi-
tions at � D 4 and � D 8, there are special values of �
where SLE shows a behavior characteristic of the scaling
limit of specific lattice models: The locality property for
� D 6 and the restriction property for � D 8/3. The issue
here is the influence of the boundary on the SLE trace.

To illustrate the locality property, consider for exam-
ple the SLE trace originating at the origin and purporting
to describe the scaling limit of a domain wall in the lat-
tice model. Due to the long range correlations at the crit-
ical point it is intuitively clear that a deformation of the
boundary, e. g., a bulge L on the real axis to the right of
the origin, will influence the trace and push it to the left.
A detailed analysis show that only for � D 6 is the trace

independent of a change of the boundary, i. e., the trace
does not feel the boundary until it encounters a boundary
point [59,63]. Returning to the lattice models the locality
property for � D 6 applies specifically to the percolation
case where the interface generated by the exploration pro-
cess is governed by a local rule and the model has a geo-
metric phase transition.

The restriction property is less obvious to visualize but
basically states that the distribution of traces conditioned
not to hit a bulge L on the real axis away from the ori-
gin is the same as the distribution of traces in the domain
where L is part of the boundary, i. e., in the domainH n L.
Analysis shows that the restriction property only applies
in the case for � D 8/3. Among the lattice models only the
scaling limit of self-avoiding random walk (SAW), where
the measure is uniform, conforms to the restriction prop-
erty and thus corresponds to � D 8/3 [63].

Duality For � > 4 the SLE generates a hull of fractal di-
mension D > 3/2. The boundary, external perimeter, or
frontier of the hull is again a simple conformally invariant
random curve characterized by the fractal dimension D̄.
Using methods from 2D quantum gravity Duplantier [31]
has proposed the relationship,

(D � 1)(D̄ � 1) D 1
4 ; (37)

between the fractal dimension of the hull and its frontier.
This result has been proved by Beffara for � D 6, i. e., the
percolation case [16]. Inserting in Eq. (33) we obtain for
the corresponding SLE parameter the duality relation

��̄ D 16 : (38)

Loop Erased RandomWalk (LERW)

Whereas the scaling limit of random walk, i. e., Brownian
motion, does not fall in the SLE category because of self-
crossings rendering Riemann’s mapping theorem inappli-
cable, variations of Brownianmotion are described by SLE.

Loop erased randomwalk (LERW) where loops are re-
moved along the way is by construction self-avoiding and
was introduced as a simple model of a self-avoiding ran-
dom walk. LERW was studied by Schramm in his pio-
neering work [77]. LERW has the Markov property and
has been proved to be conformally invariant in the scal-
ing limit and described by SLE for � D 2 [57]. According
to Eq. (33) LERW has the fractal dimension D D 5/4 [67].
Also, since � < 4 LERW is non-intersecting. A simulation
of LERW based on SLE is shown in Fig. 9a.

http://www.umpa.ens-lyon.fr/~vbeffara/simu.php
http://www.umpa.ens-lyon.fr/~vbeffara/simu.php
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Stochastic Loewner Evolution: Linking Universality, Criticality and Conformal Invariance in Complex Systems, Figure 9
Wedepict a numerical rendering of SLE for a variety of� values. In awe show loop erased randomwalk (LERW) for� D 2with fractal
dimension DD 5/4. In bwe illustrate the case of self-avoiding randomwalk (SAW) for � D 8/3 and fractal dimension D D 4/3; both
LERW and SAW have � > 4 and are simple scale invariant random curves. In c we depict site percolation for �D 6 with fractal
dimension DD 7/4. Since � > 4 the percolation case is self-intersecting and duality implies that the boundary or frontier of the hull
is described by a SLE curve for � D 16/6 D 8/3, i. e., the case of SAW. In d we show the Ising case for � D 3 and fractal dimension
D D 11/8. In e we depict the limiting case � D 8 and fractal dimension D D 2. The hull is dense and plane-filling. The frontier of
the hull corresponds to the SLE case � D 16/8 D 2, i. e., the case of LERW. The so-called uniform spanning tree (UST) has the same
properties as LERW and the SLE case for � D 8 can thus be thought of as a random plane filling Peano curve wrapping around the
UST. Finally, in f we show the SLE trace and hull for � D 20 and DD 2. Because of the large Brownian excursions the plane-filling
hull is vertically compressed (with permission from V. Beffara: http://www.umpa.ens-lyon.fr/~vbeffara/simu.php)

http://www.umpa.ens-lyon.fr/~vbeffara/simu.php
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Self-Avoiding RandomWalk (SAW)

Self-avoiding random walk (SAW) is a random walk con-
ditioned not to cross itself. SAW has been used to model
polymers in a dilute solution and has a uniform probabil-
ity measure. Since SAW satisfies the restriction property it
is conjectured in the scaling limit to fall in the SLE class
with � D 8/3 [46,47,48,61], yielding the fractal dimension
D D 4/3. We note that Flory’s mean field theory [30] for
the size R of a polymer composed of N links (monomers)
scales like R � N� , where � D 3/(2C d) for d � 4. By
a box covering we infer N � RD where D is the fractal di-
mension, i. e., D D (2C d)/3. In d D 2 we obtain D D 4/3
in accordance with the SLE result. SLE induced SAW in
the scaling limit is shown in Fig. 9b.

Percolation

The scaling limit of site percolation was conjectured by
Schramm [77] to fall in the SLE class for � D 6. Subse-
quently, the scaling limit of site percolation on a triangu-
lar lattice has been proved by Smirnov [78,80]. Percolation
exhibits a geometrical phase transition. In the exploration
process defining a critical interface the rule for propaga-
tion is entirely local. The lack of stiffness as for example in
the Ising case to be discussed below results in a strongly
meandering path winding back and in the scaling limit in-
tersecting earlier part of the path. Since � > 4 the path
together with the enclosed part, i. e., the hull, eliminates
the whole plane in the course of time. As discussed above
the locality property is specific to percolation and yields
� D 6. The fractal dimension of the percolation interface
is according to Eq. (33) D D 7/4. We note that D is close
to 2, i. e., the percolation interface nearly covers the plane
densely. A series of new results and a proof of Cardy’s
conjectured formula for the crossing probability have ap-
peared; we refer to [13,27,43] for details. Using the duality
relation (38) the frontier of the percolation hull is a simple
SLE curve for � D 8/3, corresponding to SAW. In Fig. 9c
we have depicted a SLE generated percolation interface.

Ising Model – O(n) Models

The Ising model in Eq. (6) is a special case of the O(n)
model defined by the Hamiltonian

H D �J
X

hi ji

E�i E� j ; (39)

where E�i D (�1; : : : �n) is an n-component unit vector as-
sociated with the site i. For n D 1 we recover the Ising
model, n D 2 is theXY-model [29], and n D 3 the Heisen-
berg model.

By means of the Fortuin–Kasteleyn (FK) transforma-
tion based on a high temperature expansion the config-
urations of the O(n) model can be described by clus-
ters or graphs on a dual lattice [35]. The crossing do-
main wall in Fig. 1 is thus a special case of a FK graph
if we interpret the representation as a triangular Ising
model. It has been conjectured that n is related to the SLE
parameter � by

n D �2 cos(4�/�) for 8/3 � � � 4 : (40)

In the Ising case n D 1 and we have � D 3 yielding the
fractal dimensionD D 11/8 for the Ising domainwall [84].
Since � < 4 the Ising domain wall is non-intersecting. Un-
like the percolation case, the Ising interface is stiffer due to
the interaction. We also note that the scaling limit of spin
cluster boundaries in the Ising model recently has been
proved to correspond to SLE for � D 3 [79]. The interface
is shown in Fig. 9d.

SLE – Conformal Field Theory

Whereas conformal field theory (CFT) is based on the con-
cept of a local field �(r) and its correlations and therefore
only accesses the underlying geometry indirectly through
field correlations, SLE directly produces conformally in-
variant geometrical objects. A major issue is therefore the
connection between CFT and SLE [6,7,26]. In CFT the
central charge c plays an important role in delimiting the
universality classes of the variety of lattice models yield-
ing conformal field theories in the scaling limit. Percola-
tion thus corresponds to the central charge c D 0, whereas
the Ising model is associated with the central charge
c D 1/2. It has been conjectured that the connection be-
tween the SLE parameter � and the central charge c is
given by

c D
(6 � �)(3� � 8)

2�
D 1 � 6

(� � 4)2

4�
: (41)

We note that c < 1 and,moreover, invariant under the du-
ality transformation � ! 16/�.

SLE – 2D Turbulence

There is an interesting application of SLE ideas in the con-
text of 2D turbulence. The issue here is to analyze confor-
mal invariance by comparing the statistical properties of
geometrical shapes like domain walls with SLE traces with
the view of determining the SLE parameter � and the cor-
responding universality class.
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In 3D turbulence is governed by the incompressible
Navies–Stokes equation for the velocity field. Since the
viscosity is only effective at small length scales 3D turbu-
lence is characterized by a cascade of kinetic energy (1/2)v2

from large scales (driving scale) to small scales (dissipation
scale). In the inertial regime the energy spectrum E(k) (k is
the wavenumber) is characterized by the celebrated Kol-
mogorov 5/3 law [46], E(k) / k�5/3, indicating an under-
lying scale invariance in turbulence.

In 2D the cascade picture is different. Since both ki-
netic energy and squared vorticity (enstrophy) are con-
served in the absence of dissipation and forcing, two cas-
cades coexist [52,53]. A direct cascade to small scales for
the squared vorticity !2 D (r � v)2 with scaling exponent
�3 and an inverse cascade to larger scales for the kinetic
energy (1/2)v2 with Kolmogoroff scaling exponent �5/3.
The system is thus characterized by a fine scale vortic-
ity structure together with a large scale velocity structure.
Moreover, we can assume that the vorticity structure is
equipartitioned, i.e, in equilibrium.

In order to investigate whether the scale invariance of
the small scale vorticity structure can be extended to con-
formal invariance Bernard et al. [17] have considered the
statistics of the boundaries of vorticity clusters. By com-
paring the zero-vorticity isolines with SLE traces they find
that cluster boundaries fall in the universality class corre-
sponding to � D 6, i. e., the case of percolation. Since 2D
turbulence is a driven nonequilibrium system, this obser-
vation is very intriguing in particular since the correlations
between vortices are long-ranged. A similar analysis [19]
of the isolines in the inverse cascade in surface quasi-
geostrophic turbulence corresponds to � D 4, i. e., from
Eq. (40) the domain walls in the equilibrium XY model
for n D 2. For comments on the application of SLE in tur-
bulence we refer to Cardy [28].

SLE – 2D Spin Glass

It is a standing issue whether conformal field theory can be
applied to disordered systems, in particular systems with
quenched disorder. In recent work Amoruso et al. [3] and
Bernard et al. [18] have considered zero temperature do-
main walls in the Ising spin glass [34]; see also [33]. The
Ising spin glass is an equilibrium system with quenched
disorder. The system is described by the Hamiltonian
H D �

P
hi ji Ji j�i� j , where the random exchange con-

stants Jij are picked from a Gaussian distribution with zero
mean. The glass transition is at T D 0 and the system has
a two-fold degenerate ground state. Inducing a scale in-
variant domain wall between the two ground states and
comparing with an SLE trace, it is found that both the

Markov and conformal properties are obeyed and that the
universality class corresponds to � � 2:3.

Further Remarks

In this discussion we have left out several topics which
have played an important role in the development and ap-
plications of SLE. We mention some of them below.

There is an interesting connection between LERW and
the so-called uniform spanning tree (UST) [13,43,57,77].
A spanning tree is a collection of vertices and edges which
form a tree, i. e., without loops or cycles. A uniform span-
ning tree is a random spanning tree picked among all pos-
sible spanning trees with equal probability. Consider the
unique path between two vertices on a UST. Since the path
lives on a tree it is by construction non-crossing and it
turns out that it has the same distribution as LERW. The
winding random curve enclosing the UST can be visual-
ized as a random plane-filling Peano curve. In the scaling
limit the Peano curve is described by SLE for � D 8 with
fractal dimension D D 2.

The q-state Potts model [87] constitutes a gener-
alization of the Ising model; here the lattice variable
takes q values. The model is defined by the Hamiltonian
H D �J

P
hi ji ı
i
 j , where �i D 1; : : : q; the Ising model

obtains for q D 2. Applying the high temperature FK rep-
resentation the configurations can be represented by loops
and domain walls. From considerations involving the frac-
tal dimension [76] it has been conjectured that domain
walls in the scaling limit of the Potts model fall in the SLE
category for q D 2C 2 cos(8�/�), where 4 � � � 8. For
q D 2 we recover the Ising case for � D 3. In the limit
q! 0, the graph representation is equivalent to the uni-
form spanning tree described by SLE for � D 8. For a nu-
merical study of the three-state Potts model and its rela-
tion to SLE consult [36].

Standard SLE is driven by 1D Brownian motion pro-
ducing a fractal curve. Ruskin et al. [75] have considered
the case of adding a stable Lévy process with shape param-
eter ˛ to the Brownian motion. Backing their analysis with
numerics they find that the SLE trace branches and exhibit
a ‘phase transitions’ related to self-intersections.

2D Brownian motion, the scaling limit of 2D random
walk, is an incredibly complex fractal coil owing to the
self-crossings on all scales. Although 2D Brownian mo-
tion because of self-crossing itself falls outside the SLE
scheme, the outer frontier or perimeter of 2D random
walk is a non-crossing and non-intersecting fractal curve
which can be accessed by SLE. Verifying an earlier con-
jecture by Mandelbrot [68] it has been proven using SLE
techniques [58] that the fractal dimension of the Brownian
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perimeter is D D 4/3, i.e, the same as the fractal dimension
of self-avoiding random walk and the external perimeter
of the percolation hull. Other characteristics of Brownian
motion such as intersection exponents have also been ob-
tained [59,60,62]; see also [66].

In recent work Zoia et al. [88] have considered the dis-
tribution of first passage times and distances along critical
curves generated by SLE for different values of �.

Future Directions

Stochastic Loewner evolution represents a major step in
our understanding of fractal shapes in the 2D contin-
uum limit. By combining the Markov property (station-
arity) with conformal invariance SLE provides a minimal
scheme for the generation of a one-parameter family of
fractal curves. The SLE scheme also provides calculational
tools which have led to a host of new results. SLE is a de-
veloping field and we can on the mathematical front an-
ticipate progress and proofs of some yet unproved scaling
limits, e. g., the scaling limit of the FK representation of the
Potts model and the scaling limit of SAW.

On the more physical front many issues also remain
open. First there is the fundamental issue of the connec-
tion between the hugely successful but non-rigorous CFT
and SLE. Here progress is already under way. In a series of
papers Bauer and Bernard [6,7,8,9,10,12] have shown how
SLE results can be derived using CFTmethods. Cardy [26]
have considered a multiple SLE process and the connec-
tion to Dyson’s Brownian process and randommatrix the-
ory. The analysis of the CFT–SLE connection still remains
to be investigated further.

An obvious limitation of SLE is that it only addresses
critical domain walls and not the full configuration of clus-
ters and loops in for example the FK representation of the
Potts model. In the case of critical percolation this problem
has been addressed by Camia and Newman [21]. Another
issue is how to provide SLE insight into spin correlations
in the Potts or O(n) models.

In the original formulation of SLE the Markov and
conformal properties essentially requires a Brownian
drive. It is clearly of interest to investigate the properties
of random curves generated by other random drives. Such
a program has been initiated by Ruskin et al. [75] who con-
sidered adding a Lévy drive to the Brownian drive; see also
work by Kennedy [49,50].

Since the SLE trace lives in the infinite upper half plane
the whole issue of finite size effects remain open. In ordi-
nary critical phenomena the concept of a Kadanoff block
construction and the diverging correlation length near the
transition lead to a theory of finite size scaling and cor-

rections to scaling which can be accessed numerically. It
is an open problem how to develop a similar scheme for
SLE.

In statistical physics it is customary and natural to as-
sociate a free energy to a domain wall and an interaction
energy associated with several domain walls. These free
energy considerations are entirely absent in the SLE frame-
work which is based on conformal transformations. Ama-
jor issue is thus: Where is the free energy in all this and
how do we reintroduce and make use of ordinary physical
considerations and estimates [69].
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Glossary

Brownian dynamics A level of detail in which each
molecule is represented by a point-like particle and
molecules move in response to diffusion and collisions

Chemical Fokker–Planck equation (CFPE) Master
equation for well-mixed systems that corresponds
to the chemical Langevin equation

Chemical master equation (CME) Master equation for
the probability that the system has specific integer copy
numbers for each type of chemical species; it is exact
for a well-mixed system

Chemical Langevin equation (CLE) Approximate sto-
chastic differential equation for well-mixed systems
which is based on continuous Gaussian statistics

Direct method An implementation of the Gillespie algo-
rithm

Extrinsic noise In genetic noise studies, expression fluc-
tuations of a gene that arise from upstream genes or
global fluctuations

First-reaction method An implementation of the Gille-
spie algorithm

Gillespie algorithm Exact algorithm for simulating indi-
vidual trajectories of the CME

Hybrid algorithms Algorithms that are designed to effi-
ciently simulate systems that have multiple timescales

Individual-based spatial models Models that track indi-
vidual molecules as they diffuse or react
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Intrinsic noise Expression fluctuations of a gene that
arise from that particular gene

Jump process A process in which the system abruptly
changes from one state to another

Optimized direct method A computationally efficient
implementation of the Gillespie algorithm

Population-based spatial models Models that track how
manymolecules of each chemical species are in various
spatial compartments

Reaction channel A possible reaction between specified
reactant and product chemical species (the terminol-
ogy distinguishes this meaning from an individual re-
action event between single molecules)

Reaction-diffusion equation Deterministic partial dif-
ferential equation that combines mass action reaction
kinetics and normal chemical diffusion

Reaction-diffusion master equation (RDME) Chemical
master equation that accounts for diffusion as well as
reactions

Reaction rate equation (RRE) Deterministic ordinary
differential equation for the net production rate of
each chemical species from chemical reactions

Spatial chemical Langevin equation Chemical Langevin
equation that accounts for diffusion as well as reactions

Stochastic simulation algorithm (SSA) Alternative term
for the Gillespie algorithm

Stoichiometric matrix (�) Matrix that gives the net pro-
duction of each chemical species, for each chemical re-
action

Tau-leaping method Approximate simulation method
for well-mixed systems in whichmolecule numbers are
updated using discrete Poisson statistics

Well-mixed hypothesis Assumption that mixing pro-
cesses occur faster than the relevant reaction processes

Definition of the Subject

Many processes in cell biology, such as those that carry
out metabolism, the cell cycle, and various types of sig-
naling, are comprised of biochemical reaction networks. It
has proven useful to study these networks using computer
simulations because they allow us to quantitatively inves-
tigate hypotheses about the networks. Deterministic sim-
ulations are sufficient to predict average behaviors at the
population level, but they cannot address questions about
noise, random switching between stable states of the sys-
tem, or the behaviors of systems with very few molecules
of key species. These topics are investigatedwith stochastic
simulations. In this article, we review the dominant types
of stochastic simulation methods that are used to investi-
gate biochemical reaction networks, as well as some of the

results that have been found with them. As new biological
experiments continue to reveal more detail about biolog-
ical systems, and as computers continue to become more
powerful, researchers will increasingly turn to simulation
methods that can address stochastic and spatial details.

Introduction

Random events are ubiquitous throughout biology. Diffu-
sion, chemical reactions, gene expression, homologous re-
combination, and most other fundamental biological pro-
cesses are governed to a large extent by the inherently dis-
crete and stochastic interactions of molecules [1]. In many
cases, the random events that occur on very small length
and time scales become averaged out when one focuses
on larger length or time scales. However, there also exist
many examples in which stochastic fluctuations at small
scales propagate up to and then influence the system be-
havior at large scales. Examples range from the swimming
trajectories of individual bacteria all the way up to the ge-
netic diversity on which evolution depends.

Research on stochasticity in biochemical systems has
received a great deal of attention lately, leading to many
recent reviews [2,3,4,5,6,7,8,9]. One reason for its popular-
ity is that the basic designs of many biochemical systems,
such as metabolism, cell division, and chemotaxis, are be-
coming reasonably well understood. Starting from this un-
derstanding, researchers are delving deeper to examine
the quantitative behaviors of these systems, including the
roles of stochastic influences. Also, there is an increasing
awareness of the importance of stochasticity in biologi-
cal systems. For example, it has become clear that noisy
gene expression is the rule rather than the exception [9];
this leads to important questions about non-genetic in-
dividuality and about biological robustness to gene ex-
pression noise. Thirdly, stochasticity is often investigated
using computationally demanding simulations. Cheaper
and faster computers, as well as improved simulation al-
gorithms, are making it feasible for researchers to inves-
tigate more complex biochemical systems, at increasingly
realistic levels of detail. Finally, and perhaps most impor-
tantly, the last ten years have witnessed incredible progress
in experimental biochemical methods, some of which al-
low direct measurements of stochasticity on microscopic
size scales. These methods include gene expression mea-
surements [10,11], flow cytometry [12,13,14,15,16], sin-
gle molecule detection methods [17,18,19,20], and appli-
cations of synthetic biology [21].

At the most fundamental level, the quantum mechan-
ics that describe the dynamics of all physical systems are
well-understood and completely deterministic [22]. It is
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Stochastic Models of Biological Processes, Figure 1
Simulation results for a simple chemical oscillator using different simulation methods. The Lotka–Volterra system is shown, which
shares key features with cellular oscillators such as circadian rhythms. Insets show the spatial distributions of molecules at the indi-
cated times. In the top panels, note that stochasticity allows the system to drift to large amplitude oscillations and that the Langevin
and Gillespie methods yield similar results. In the bottom panels, all of which were started with nearly homogeneous initial states,
differences arise from the approximations: the PDE simulation has predictable oscillations due to the minimal stochasticity (which is
only in the initial state); the Gillespie simulation has larger peaks than the Langevin one because it only allows integer numbers of
molecules in each bin; and the particle tracking simulation shows larger and fewer bursts than does the Gillespie simulation because
it accurately treats diffusion at all length scales (this difference was reduced with a spatial Gillespie simulation that used smaller
subvolumes). Parameters: rate constants are 10min�1, 8000nm3 molec�1 min�1, and 10min�1, for the respective reactions shown
in the top-right corner, systems start with 100 of each blue and red molecules, their diffusion coefficients are 100nm2 min�1, the
volume is 100nmhigh andwide by 10 nmdeep, and the first three spatial simulations divide this volume into cubic subvolumes that
are 10nm on a side. This figure is reproduced from [8]

only when systems are observed that there arises unavoid-
able randomness, although these aspects of quantum me-
chanics remain murky and as close to philosophy as sci-
ence. More importantly, essentially any system that is gov-
erned by nonlinear dynamics, including nearly all phys-
ical systems, rapidly becomes chaotic as the system size
is increased beyond a few molecules, and thus becomes
effectively unpredictable [23]. For all intents and pur-
poses, the diffusive trajectories of individual molecules,
and the probabilities of chemical reactions occurring be-
tween neighboring reactants at specific times, are funda-
mentally stochastic.

In the laboratory, partly by design, this stochastic-
ity usually averages out. For systems comprised of many
particles, diffusion is observed to be described well by
Fick’s law of diffusion and chemical reaction kinetics are
described well by the deterministic reaction rate equa-
tions [24]. The situation is often different within biolog-

ical cells for several reasons: (i) the program for cellular
behavior, the genome, is present at low copy number and
yet each gene governs the expression of possibly thousands
of proteins, (ii) the low copy numbers of many proteins
and mRNA transcripts within cells make random varia-
tion of their numbers a relatively large fraction of the to-
tal, (iii) stochasticity is often amplified during sequential
biochemical steps, of which an especially important case
is the sequence of DNA transcription followed by mRNA
translation, and (iv) because of spatial organization within
cells, it often takes very few proteins in specific locations
to achieve large effects on the entire cell dynamics.

This review provides a broad account of stochastic
modeling of biological processes. The emphasis is placed
on stochastic processes at the cellular level although much
of the work presented here also applies to other scales and
systems. Our goal is to briefly familiarize the reader with
the mathematical forms of the most important equations,
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the tools for analyzing and simulating them, and some ap-
plications for which they have been particularly success-
ful. As shown below, the mathematics, the software imple-
mentation, and even the applications of modeling meth-
ods are often closely linked.

There are several ways to categorize stochastic bio-
chemical modeling methods. A key designation is whether
a method is spatial or non-spatial: spatial models treat
spatial organization of proteins and membranes explic-
itly, whereas non-spatial models include an implicit as-
sumption that mixing processes occur faster than the rele-
vant reaction processes, which is called the well-mixed hy-
pothesis. No single modeling method can efficiently cap-
ture stochastic dynamics over wide ranges of time scales,
so separate methods have been developed that operate at
levels of temporal detail that range from nanoseconds to
hours. Hybrid simulators combinemethods that operate at
different timescales to allow the efficient simulation of sys-
tems that include both fast and slow processes. Whereas
many modeling methods are designed solely to address
the reactions in a biochemical reaction network, others
also consider system boundaries, mechanics, or the mul-
tiple states that proteins can be in. Here, we present non-
spatial modeling methods first, followed by spatial meth-
ods, with diversions along the way to touch on as many of
the other topics as possible. Simulation results from many
of the methods that are discussed are compared in Fig. 1,
where it is seen that the differences can be quite significant.

Non-Spatial StochasticModeling

Deterministic Modeling and Notation

Before focusing on stochastic modeling, it is helpful to in-
troduce the notation and some terminology by summa-
rizing a few aspects of deterministic modeling. As applied
to chemical reaction networks, deterministic modeling is
based upon ordinary differential equations (ODEs) for the
individual chemical reactions. Consider the generic ele-
mentary reversible reaction

AC B
kf
•
kr

C ; (1)

where kf and kr are the forward and reverse reaction rates,
respectively.We assume that the system is kept well-mixed
so that diffusion effects can be ignored. The reaction rate
equations for components A, B, and C are the ODEs

d[A]
dt
D

d[B]
dt
D �kf[A][B]C kr[C] ; (2a)

d[C]
dt
D kf[A][B] � kr[C] : (2b)

More complex reaction networks are expressed analo-
gously, with one equation for each chemical species and
with terms in the equations that represent chemical re-
actions. From these equations, the reactions can be sim-
ulated to show how the concentrations change over time.
Or, after setting the left sides of the equations to zero, they
can be solved to yield the steady-state chemical concentra-
tions. One can also investigate the dynamic or steady-state
behaviors as the reaction rate parameters (kf and kr), or
initial concentrations, are varied [25]; this can yield phase
diagrams for the reactions and additional insight.

It is helpful to generalize the rate equations given
above to make them more convenient for computational
or analytical work and to show their forms more clearly.
First, each chemical concentration is replaced by the vari-
able Zi(t), where i is an index for A, B, or C and the
time-dependence is written out explicitly. Next, the prod-
uct terms in the equations are replaced by the functions
ãf(Z(t)) and ãr(Z(t)) for the forward and reverse reac-
tions, respectively; the tildes indicate that molecule quan-
tities are given as concentrations rather than as molecule
numbers. These functions are called the reaction propen-
sities. Finally, the ‘+’ or ‘–’ signs show the reaction stoi-
chiometry. They are replaced by �fi and �ri for the for-
ward and reverse reactions, respectively, which are ele-
ments of the so-called stoichiometric matrix (throughout
this review, we follow Gillespie’s notation [6]). In this ex-
ample, one unit of each A and B are lost in a unit amount
of forward reaction (�fA D �fB D �1) as one unit of C is
formed (�fC D 1); the �ri values have the opposite signs.
With these substitutions, the rate equations become

dZi(t)
dt

D �fi ãf(Z(t))C �ri ãr(Z(t)) ; (3a)

ãf(Z(t)) D kfZAZB ; (3b)

ãr(Z(t)) D krZC : (3c)

These equations are trivially extended to arbitrarily
large reaction networks. Consider a system with N chemi-
cal species that can react viaM different reaction channels
(a “reaction channel” is simply unambiguous terminology
for a reaction between specific reactant and product chem-
ical species). The dynamics of this system are given with
the reaction rate equation (RRE):

dZi(t)
dt

D

MX

jD1

� ji ã j(Z(t)) : (4)

The reaction propensity equations are typically the prod-
ucts of reaction rate constants and the appropriate chem-
ical concentrations, as shown above (Eq. (3b) and (3c)),
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but they may also describe non-elementary processes such
as Michaelis–Menten kinetics. It is worth noting that the
state of the system, at any point in time, is fully expressed
with the vector Z(t). This means that the entire trajectory
of the system can be deterministically calculated from the
RRE and any single Z(t) snapshot.

The RRE is at the heart of many branches of quanti-
tative biochemistry and systems biology. A great deal of
metabolic theory is based on either the steady-state so-
lutions of the RRE, or the set of steady-state solutions
that are possible, given only knowledge of the stoichio-
metric matrix [26,27,28,29]. Studies of biochemical os-
cillations [25], including the cell cycle [30,31], circadian
rhythms [32,33], and certain spatial patterns [34,35] are
usually based on the dynamics of the deterministic RRE.
Research on biochemical switches, as are found in prion
diseases [36], developmental processes [37], and some
protein kinase cascades [38], often focuses on the multi-
ple steady-state solutions of the RRE [39]. Deterministic
modeling has been, and still is, the conventional modeling
method for most biological systems.

The Chemical Master Equation

Although the RRE is tremendously useful, it cannot ad-
dress the stochastic processes that are inherent to bio-
chemical systems. This is because the RRE arises from
a series of approximations to a more physically rigorous
stochastic model of chemical reactions [40,41].

As above, we assume that diffusive processes are much
faster than reactive ones [8], which allows us to ignore
spatial organization (this assumption is usually valid for
genetic and metabolic networks, but often invalid for
signaling networks). Nevertheless, the stochasticity of dif-
fusion plays an essential role because it makes the precise
timing of individual reactions effectively random. These
reactions occur in abrupt transitions, in which reactants
are converted effectively instantaneously into products,
making this a type of jump process. Also, random diffusion
causes the system to rapidly lose any memory of its prior
states, and thus of the sequence of reactions that led up to
the current state. This independence of the system dynam-
ics on its history, called the Markov property, implies that
the probability that a specific reaction occurs depends only
on the state of the system at that time [41].

Because of the random reaction timing, reactant con-
centrations do not follow the deterministic trajectory that
is predicted by the RRE. Instead, many concentration tra-
jectories are possible, of which a single effectively random
one actually occurs. There are two primary ways to inves-
tigate the possible trajectories with computational meth-

ods. One can simultaneously track the probability of every
possible outcome or one can simulate many independent
stochastic trajectories and then analyze them as one would
with several repetitions of an experiment. These methods
are described in this and subsequent sections, respectively.

To mathematically track the probability that the sys-
tem is in each possible state, it is helpful to first replace the
vector of chemical concentrations that was introduced ear-
lier, Z(t), with a vector of integer-valued molecule num-
bers, X(t). These are related to each other, within round-
off error, through the volume of the system, which is given
as˝ ,

X(t) ' ˝Z(t) : (5)

The state of the stochastic system is fully captured by X(t).
The probability that the system is in state x at time t,
given that it started in state x0 at time t0, is written as
P(x; t j x0; t0). This probability changes over time because
chemical reactions can transfer the system either into this
state from other ones, or out of this state and into others.
These possible transitions are combined to yield the chem-
ical master equation (CME) [6,42]:

@P(x; t j x0; t0)
@t

D

MX

jD1

h
a j(x � � j) P(x � � j; t j x0; t0)

�a j(x) P(x; t j x0; t0)
�
: (6)

The sum is over the reaction channels that can occur in
the system. The two terms within brackets give the rate
at which the probability of being in state x increases or
decreases over time because of reactions into or out of
state x, respectively. These are proportional to the reac-
tion propensities for the respective reactions. They are also
proportional to the probability that the system was in the
starting state, because the system can only leave a state if it
was there in the first place.

The reaction propensity a j(x), given here without
a tilde because it is for molecule numbers rather than con-
centrations, is a probability density: a j(x)dt is the proba-
bility that exactly one reaction of type j will occur in a sys-
tem in state x within the next dt amount of time. This
microscopic propensity function is as central to stochas-
tic chemical kinetics as its macroscopic analog is to the
reaction rate equation. However, the microscopic propen-
sity rests on a solid microphysical basis, and has in fact
been shown to have an exact solution for a well-stirred
thermally-equilibrated gas-phase system [43]. For such
a system, the propensity function is

a j D hj c j ; (7)
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where hj is the number of distinct combinations of indi-
vidual reactants for reaction j and cj is the probability den-
sity for one of those reactions to occur. That is, c j(t)dt is
the probability that a randomly selected set of reactants
for reaction j will collide and react in the next infinitesi-
mal time interval dt. For a variety of reaction mechanisms,
the cj values can be calculated quite accurately from only
the physical properties of the system [43].

The primary approximation made for the CME is
that the reactive system is well-mixed. This implies both
that there is no spatial organization and that there are
no significant correlations between successive reactions
(the Markov property). Examples of correlated reactions
include metabolite channeling, which is the transfer of
a metabolite from one enzyme to the next before it has
a chance to equilibrate into the cytoplasm [44], and gemi-
nate recombinations, which aremultiple bindings between
molecules that bind reversibly [45]. The well-mixed state-
ment also encompasses the assumption that the system is
isothermal, which is typically the case in biological sys-
tems.

Because the CME becomes computationally in-
tractable with any but the simplest systems, some recent
work has focused on efficient solution methods. An al-
gorithm called the finite state projection method accom-
plishes this by projecting a matrix form of the CME onto
a smaller space [46,47]. By choosing the size of the pro-
jection space, the accuracy can be adapted to any level
of precision. Less formal methods for state-space reduc-
tion of the CME have been proposed as well [48]. Another
method uses a sparse grid, which can work efficiently for
up to 10 proteins [49].Work has also gone into separations
of the CME into fast and slow components, as described in
the section on hybrid methods [42,50,51].

Applications of the Chemical Master Equation

The solution of the CME suffers from the so-called “curse
of dimensionality” as the size of the state space, and hence
the number of equations, increases exponentially with the
number of chemical species involved. Except for very small
and simple systems, it is extremely difficult to obtain solu-
tions of the CME, either analytically or numerically. How-
ever, a few papers do report quite interesting results from
direct simulations of the CME.

The master equation was used to investigate the
dynamics of transiently denatured segments of double
stranded DNA [52]. The authors derived the dynamics,
formation rates, and lifetimes of these “bubbles”, which
can be compared to fluorescence correlation microscopy
experiments of fluorescently tagged base pairs [53]. In

another use of the CME, studies on molecular mo-
tors [54,55] demonstrate how the load-velocity curve, in-
cluding rectified motion, arises from nucleotide triphos-
phate binding free energies. These works more fully inves-
tigate ideas on thermal ratchets that were presented pre-
viously [56]. A particularly intriguing study on the copy
number control system for bacterial plasmids [57] showed
that stochasticity in a regulatory portion of a system can
actually decrease the stochasticity elsewhere in the sys-
tem. This “stochastic-focusing” changes the behaviors of
gradual-response systems towards those of threshold sys-
tems [58,59] in a manner that is analogous to the oscil-
lation enhancement that stochastic resonance can create
in oscillating systems [60]. These results contradict the
widely held belief that an increase in stochasticity in one
portion of a system will necessarily increase the stochas-
ticity everywhere downstream of it. Studies of simple sig-
nal transductionmotifs have shown how the predictions of
the RRE can be qualitatively wrong compared to the CME
treatment in that the stochastic systems might be bistable
or oscillate when the deterministic system has one stable
state [40,61]. Many of these studies that used the CME
also used other theoretical techniques as well, which allow
fruitful comparisons between the methods.

The Gillespie Algorithm

Because of the challenges in working with the CME, it is
most often investigated using a Monte Carlo approach in
which individual sample trajectories are simulated. These
simulations can be exact or approximate. In this context,
“exact” means that if the simulation were run many times,
the distribution of simulated trajectories would agree ex-
actly with that which would be predicted by an analytical
solution, were it obtainable, of the chemical master equa-
tion. Exactness implies nothing about the validity of the
CME or about the limitations of the computational accu-
racy (such as round-off errors and imperfect pseudo-ran-
dom number generators), but only that no further approx-
imations are made beyond those that are assumed by the
CME.

In 1976, Gillespie introduced an exact algorithm for
simulating the CME [6,62,63] which is called the stochas-
tic simulation algorithm (SSA) in his papers, but is bet-
ter known as the Gillespie algorithm. This algorithm cycles
through three portions: (i) generate the time step until the
next reaction, (ii) determine which reaction that will be,
and (iii) execute the reaction by advancing the time and
molecule counts to reflect it. The Gillespie algorithm was
introduced with two varieties, called the direct method and
the first-reaction method. In the former, the time step to
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the next reaction, � , and the reaction number, j, are cho-
sen from the following probability distributions:

P(�) D ae�a� ; (8a)

P( j) D
a j(X)
a

: (8b)

The variable a represents the summed reaction propensity,

a �
X

j

a j(X) : (8c)

In the first-reaction method, a time step, � j , is generated
for each possible reaction channel. Again, these are expo-
nentially distributed random numbers,

� j D a j(X) e�a j(X)� : (9)

The smallest of these time steps is chosen as the next sim-
ulation time step, while its subscript dictates the reaction
channel that is executed at that time. The direct method is
usually preferred because it is a little easier to program and
runs slightly faster with a simple implementation. How-
ever, the latter has been favored as a basis for improve-
ments on computational efficiency.

The exactness of the Gillespie algorithm comes at the
cost of its being computationally demanding. Even if one
simulation can be performed reasonably quickly, such as
in a few minutes, this can still be too slow to investigate
the behaviors of hundreds of mutant cells or to explore
different regions of parameter space. Thus, much effort
has been devoted to improving the efficiency of the Gille-
spie algorithm, while still maintaining exactness. These
methods are all based upon either the direct method or
the first-reaction method, but are carefully designed, usu-
ally with priority queues or other indexing methods, so
that internal variables are recalculated as infrequently as
possible [6,64,65,66,67]. Of these, it appears that the op-
timized direct method is probably best for most practical
problems [66]. Because the faster methods are significantly
more difficult to program than the original ones, both sets
of methods are still commonly used.

The computational intensity of the Gillespie algo-
rithm, even with more efficient implementations, makes
it difficult to perform sensitivity analyzes. In these ana-
lyzes, one investigates the extent to which the results de-
pend upon input parameters, which can helpful for de-
termining which parameters need additional experimental
investigation or which are particularly important for sys-
tem control. An algorithm for stochastic sensitivity analy-
sis was recently developed and applied to biochemical re-
action networks [68]. It involves the addition of just two
steps to the basic loop of the Gillespie algorithm.

Another difficulty of the Gillespie algorithm, which
also applies to simulations of the RRE and other algo-
rithms presented below, is called combinatorial explo-
sion. Suppose a scaffold protein has several sites with
which it can bind other proteins, and suppose that each
of those proteins can bind to none, one, or two phos-
phate groups (this is the situation for the Ste5 protein in
the yeast pheromone response pathway [69]). There are
clearly a tremendous number of possible binding states
that the scaffold protein can be in, each of which has to
be treated as a separate chemical species. Just listing all of
these states is tedious, and simulating their reaction dy-
namics with the Gillespie algorithm is very slow. One so-
lution is to not list every possibility when the simulation
starts, but to create states when they are needed and to de-
stroy themwhen they are no longer required [65]. Another
option is to use an algorithm that is implemented in a pro-
gram called StochSim [70,71]. Unlike the Gillespie algo-
rithm, this one does not stochastically choose reactions to
execute, but it instead chooses reactant pairs from the pool
of existing molecules. A probabilistic scheme is used to de-
termine if these reactants should be made to react with
each other.

What if the system volume changes as a function of
time? This might seem like an unusual concern, but it oc-
curs during cell growth (and cell division) and it affects
the reaction propensities. The necessary modifications to
the Gillespie algorithm were recently derived, which are
likely to be particularly useful for relatively slow processes,
such as protein production from infrequently expressed
genes [72].

Applications of the Gillespie Algorithm

Models based on the Gillespie algorithm have provided
critical insights into the stochastic nature of gene expres-
sion [3,73,74]. In particular, fluctuations in the rates of
gene transcription are amplified at the translation stage
to yield highly erratic time patterns of protein produc-
tion [75]. When multiple regulatory proteins act together,
or compete with each other, this randomness is ampli-
fied further because of the random sequence of protein
bursts [75]. These effects were shown to stochastically
switch a model of phage- between the bistable lysis and
lysogeny states [76], with results that are consistent with
experimental ones. Stochastic gene expression is also used
by many pathogenic organisms to randomly switch their
surface features so they can evade host responses [77],
may be used by the HIV virus to stochastically delay vi-
ral expression long enough for transformation of its acti-
vated T-cell host to a memory cell and thereby trap HIV
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as a latent phage [16], can establish asymmetries that de-
termine cell differentiation [78], and can cause circadian
clocks to lose synchrony [21,79]. In fluctuating environ-
ments, stochastic gene expression can permit an isogenic
bacterial population to grow faster than it would if all in-
dividuals were phenotypically homogeneous [77,80,81].

From combined modeling and experimental ap-
proaches, the dominant noise sources in the stochastic ex-
pression of a specific gene are: (i) the expression fluctu-
ations of that particular gene, which is called the intrin-
sic noise, (ii) noise that is transmitted to it from upstream
genes, and (iii) global noise that affects all genes. The lat-
ter two sources are often combined and called extrinsic
noise, which is the total noise source that is extrinsic to
that specific gene [12,74,82,83,84]. Noise arises at both the
transcription and translation stages, for which the relative
importance depends on the strength of the promoter and
on whether prokaryotic or eukaryotic transcriptional ma-
chinery is used [14,15,75,85,86]. Direct measurements of
gene expression have generally confirmed the predictions
made by stochastic simulations [11,12,13,15,17,18,21,87].

Gene expression appears to be unavoidably stochastic,
and this randomness is usually amplified at each stage, so
how does biology function reliably amidst all the noise?
This is a central topic of many papers on biological robust-
ness [5,9,88,89,90,91], several of which use the Gillespie al-
gorithm or other types of stochastic modeling. One answer
is that many reaction network structures are inherently
less susceptible to noise than others. These include ones
in which the reaction rates do not depend on the num-
ber of mRNA transcripts [92], certain scale-free reaction
networks [93], and networks that are designed to function
near saturation [94] (analogous to binary logic). Secondly,
there are several mechanisms for biological robustness to
noise, including negative feedback, integral feedback [95],
checkpoints, and redundancy [9]. Because gene expression
noise is usually detrimental to biological function, it has
been suggested that there is active selection for robustness
mechanisms [96,97].

Approximate Stochastic Methods

Because every reaction is simulated individually in the
Gillespie algorithm, it is unavoidably computationally de-
manding, even with the algorithmic methods that have
been developed to speed it up. To address this, several ap-
proximate methods have been developed.

The most accurate of these approximate methods is
called the tau-leaping method [6,98,99,100]. In contrast to
the Gillespie algorithm, the �-leapingmethod uses a simu-
lation time step which is long enough thatmany individual

reactions are likely to occur during the time interval. The
reaction propensities ought to change slightly as each re-
action occurs to reflect the new chemical populations, al-
though this algorithm uses the assumption that changes
within a single time step are negligible. This is the sole
approximation made for the �-leaping method. Each re-
action is considered to be an independent event (a conse-
quence of both the well-mixed hypothesis and the constant
reaction propensities), so the number of reactions that oc-
cur during time step � for reaction channel j is a Pois-
son-distributed random variable; it is denoted kj and has
a mean value equal to the reaction propensity a j(X(t)).
The formula used by �-leaping that updates the system
state over one time step is

X(t C �) D X(t)C
MX

jD1

k j� j : (10)

The algorithm alternates steps in which the state of the sys-
tem is updated and those in which new reaction propensi-
ties are calculated.

As the time step is reduced to zero, the �-leaping sim-
ulationmethod approaches that of the Gillespie algorithm,
although with more computational overhead. In the other
direction, increasing the time step makes the simulation
becomes more and more approximate. It has been sug-
gested that � should be chosen by first predicting the
change in molecular populations over time using deter-
ministic methods; then, the time step is chosen so that no
molecular species is likely to change its population dur-
ing this time step by more than some pre-determined frac-
tion of its total population [98]. A difficulty that can occur
with �-leaping (which is also an issue with ODE integra-
tion), is that it is possible for a molecular species to be as-
signed a negative population. Several methods have been
proposed to avoid this problem, some of which are also
able to improve the performance of the algorithm in other
ways as well [101,102,103]. Despite several papers on the
development of �-leaping, this method has yet to be ap-
plied to novel biological problems.

Two additional approximations allow the application
of many more theoretical methods. First, the vector that
defines the state of the system, X(t), is allowed to take on
real values as well as integer values. As one would expect,
this is usually a reasonable assumption for large chemical
populations and a poor assumption for low copy num-
bers. In particular, it can a very poor approximation in
cases where there might become no copies of a chemical
species at all; an approximate value of, say, 0.01 protein
copies can lead a system to entirely different outcomes
than one would find with exactly 0 copies. The second
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approximation is to replace the Poisson-distributed ran-
dom variables that were used in the �-leaping algorithm
with Gaussian-distributed random variables [104]. The ef-
fect of this change again decreases as the copy numbers of
chemical species are increased. It also decreases as longer
time steps are used because that leads to more individual
chemical reactions per time step. These approximations
allow the updating equation of the �-leaping algorithm to
be replaced by a stochastic differential equation called the
chemical Langevin equation [105,106,107] (CLE),

dXi(t)
dt

D
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jD1

� ji a j(X(t))C
MX

jD1

� j(t) � ji
q
a j(X(t)): (11)

The first term is simply the reaction rate equation that
is given above (Eq. (4)), but for molecule counts rather
than concentrations. The second term addsGaussian noise
to the deterministic result, where � j(t) represents a tem-
porally uncorrelated, statistically independent Gaussian
white noise with mean 0 and variance 1. In other words,
the integral of � j(t) is a one-dimensional continuous
random walk. The chemical Langevin equation describes
a continuous Markov process which is an approximation
of the jump Markov process that underlies the chemi-
cal master equation. Simulations with the CLE, which are
based on an equation that is quite similar to Eq. (11) [106],
yield single stochastic trajectories of the system state,
much like simulations with the Gillespie algorithm or the
�-leaping method.

Alternatively, instead of following a single system as
it moves along one of its many possible stochastic trajec-
tories, it is possible to focus on a single portion of the
state space to see how likely it is that the system will be
in this region of state space as a function of time. This lat-
ter picture is described by chemical Fokker–Planck equa-
tion [41,105,107] (CFPE),
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The first term, often called the drift term, arises from
the deterministic behavior of the system. The latter two
terms, collectively called the diffusion term, represent the
stochastic deviations away from deterministic behavior.
Because the CFPE represents continuous processes, it is
significantly more analytically tractable than the chemical
master equation.

To compute the probabilities of possible system behav-
iors using the CFPE, state space is usually discretized into
a grid and then the CFPE is integrated using standard nu-
merical methods [108,109]. This analysismethod is similar
to that employed for the CME, but is usually less compu-
tationally demanding because the discretized state space
is typically significantly coarser. Nevertheless, the dimen-
sionality of state space still increases exponentially with
additional chemical species, so the CFPE still suffers from
the curse of dimensionality.

Applications of Approximate Stochastic Methods

Perhaps because stochastic simulations are still a rela-
tively new field of study, many studies with the CLE and
CFPE focus more on the mathematical techniques than on
the biological applications [109,110,111,112,113]. The ap-
proximate CLE and CFPE have been shown to yield re-
sults that are in good agreement with exact simulations
for a reversible isomerization reaction, even with very few
molecules [107].

The CLE was used to analytically investigate the role
of noise-induced phenomena in enzymatic futile cycles,
which is a motif that is common to many biochemical net-
works [61]. The analysis indicated that the presence of ex-
ternal noise is sufficient to induce switching bistability in
the system, a phenomenon that is often attributed to feed-
back loops [25]. In combination with experimental data,
the CLE was also used to show that translational efficiency
is the predominant source of intracellular noise for a sin-
gle-gene system [15]. The Fokker–Planck equation has
been used to model cell growth [111,112] and cell migra-
tion [113,114]. Of particular interest, the Fokker–Planck
equation has provided a convenient framework to describe
the behaviors of molecular motors [109]. A motor protein
is approximated as a diffusion particle in a periodic asym-
metric free-energy surface. Under the input of chemical
energy, the motor switches stochastically between differ-
ent potentials that describe distinct biochemical states of
the motor. The model has been used to explain key exper-
imental observations for molecular motors, most notably
for the F1F0-ATPase system [115] and a bacterial flagellar
motor [109,116].
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Hybrid Algorithms

Systems that involve multiple time scales provide major
simulation challenges. If the fast time scale is simulated
with high precision, then the simulation takes too long
for the dynamics of the slow one to be observed with any
reasonable efficiency. On the other hand, if the simula-
tion time steps are optimized for the slow timescale, then
they are too long for the fast reactions and numerical er-
rors become problematic. In the language of differential
equations, these are stiff systems which require special so-
lution techniques. For stochastic simulationswithmultiple
timescales, several methods have been developed recently.

One class of hybrid methods focuses on new math-
ematics to allow approximations of the Gillespie algo-
rithm, or related algorithms, to function with reasonable
accuracy over a wide range of timescales [42,50,51,117,
118,119,120,121]. The other class generally involves the
coupling of multiple simulators, usually including ODE,
Langevin, and/or Gillespie; the high-population molecu-
lar species are simulated with less stochastic detail and the
low-population species are simulated with more stochastic
detail [122,123].

Spatial StochasticModeling

Most biological systems are highly organized. For exam-
ple, Escherichia coli bacteria have helical cytoskeletons, po-
lar-localized proteins, centrally positioned chromosomes,
and elaborate flagellar motor complexes. Eukaryotes are
even more organized, with elaborate organelles, micro-
tubules and other complex cytoskeletal elements, motor
proteins that shuttle back and forth, and carefully con-
trolled cell shapes. Even phages display remarkable or-
der in the way the DNA is packed into the outer shell.
Where does this order come from? And how does this
order influence the biochemical reaction network? These
questions are being investigated with new imaging experi-
ments [124,212] and with new computer simulationmeth-
ods that can account for spatial heterogeneity. These spa-
tial simulation methods are the focus of this section.

Spatial simulations have been used to investigate
a wide variety of topics. These include: morphogen gradi-
ents acrossDrosophila andXenopus oocytes [125,126,127],
the Escherichia coli cell division plane localization sys-
tem [128,129,130,131,132,133,134] (see Sect. “Box 1: The
E. ColiMin System”), intracellular signaling [135,136,137,
138], and rebinding of ligands to receptor complexes [139,
140,141].

As described above, many successful biochemical
models do not account for spatial heterogeneity; in fact,
non-spatial models are in the vast majority. Typically,

non-spatial models get away with ignoring space because
theymodel dynamics that occur more slowly than the time
it takes for a molecule to diffuse across a cell, because they
investigate processes that are not intrinsically spatial, and
because they do not demand high quantitative accuracy.
As the tools are becoming available, including both fast
computers and new software algorithms [45,142,143,144],
the interest in including spatial detail is increasing. These
spatial models can be either deterministic or stochastic, of
which our primary focus is on the latter ones.

As with the non-spatial methods that are described
above, stochastic effects in spatial models arise from the
discreteness of molecules. This leads to fluctuations in
the numbers of molecules, which are typically on the or-
der of the square root of the number of molecules in
the appropriate characteristic volume (near steady-state
and equilibrium points, but frequently greater near critical
points). In spatial models, the characteristic length scale
is no longer the size of the entire system but is dictated
by the length scale of the spatial heterogeneity. With the
shorter length scale, the characteristic volume size is re-
duced, fewer molecules are in these volumes, and stochas-
tic effects increase. Thus, stochastic simulations can be re-
quired for spatial models, even if they were not needed for
the corresponding non-spatial model. There are also other
good reasons to model stochastic effects in spatial simula-
tions. Many spatial phenomena, such as noise that arises
from ligand rebinding [141], cannot be adequately treated
without considering the detailed molecular interactions.
Finally, a model is only as good as its weakest aspect. If
one increases the accuracy of a model in one way, such as
by accurately treating either space or stochastics, then the
benefits may not be realized until the other aspect is ad-
dressed as well.

Schemes for investigating a chemical system with spa-
tial and stochastic detail can be classified by whether they
consider molecules within populations or as individuals.
In the former case, space is divided it into small subvol-
umes, whereas in the latter, space is continuous. These
classes are described in detail below. Another approach
is lattice-based methods [145,146,147,148,149]. However,
we do not discuss them here because they are rarely used
for quantitative modeling. Furthermore, the underlying
lattice geometry usually affects the results, thus making
them less realistic.

Population-Based Spatial Models

In a top-down approach towards spatial modeling, one
starts with a simple, deterministic, macroscopic descrip-
tion and then adds successive layers of detail. In this case,
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the natural starting point is with the standard textbook de-
scriptions of chemical reactions and diffusion [24]. Reac-
tions are described with mass action reaction kinetics ex-
pressed with the reaction rate equation that was discussed
above (Eq. (4)). Diffusion is described with the diffusion
equation [24], also called Fick’s second law of diffusion,
which is
@Zi(r; t)
@t

D Dir
2Zi(r; t) : (13)

In an extension of the definition given before, Zi(r; t) is
the concentration of component i at the 3-dimensional po-
sition r and time t. Di is the diffusion coefficient for com-
ponent i.

Because reactions and diffusion occur simultaneously,
the respective equations are combined to express the si-
multaneous effects of both processes to yield the reaction-
diffusion equation,
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This partial differential equation (PDE) underlies a great
deal of theory on chemical and biological pattern forma-
tion [126,136,150,151]. The Virtual Cell computer pro-
gram [152] is general-purpose software that simulates
the reaction-diffusion equation. It has been used pri-
marily to explore spatial effects in intracellular signal-
ing [153,154,155].

The reaction-diffusion equation is deterministic, so it
captures neither the discreteness of reaction events nor
the Brownian motion processes that underlie diffusion.
It is possible to add this stochasticity directly into the
deterministic theory but that would create a set of cou-
pled stochastic scalar field equations, which would be ex-
traordinarily complicated. Neither the deterministic nor
the stochastic PDEs are tractable to work with analytically
for any but the very simplest systems except, perhaps, in
steady-state. Thus, most analysis is either computational
or approximate.

Inmost such analyses, the equations are first simplified
by dividing the system volume into an array of small cu-
bic subvolumes, each with width l. This spatial discretiza-
tion changes the diffusion portion of the reaction-diffu-
sion equation into a discrete form:

dZi;k(t)
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The index k denotes the subvolume number, much as r
represented the spatial location. The latter summation in
this discrete reaction-diffusion equation extends over all
nearest neighbors of subvolume k, denoted by k0. Because
the description of space was changed from continuous
states to discrete states, much like the discrete kinds of
molecules that are labeled by the index i, diffusion is now
formally identical to reactions. The “reaction rate con-
stant” for diffusion [156] between one subvolume and its
neighbor is Di /l2. Because of this mathematical equiva-
lence, much of the following discussion on the stochastic
simulation of the reaction-diffusion equation parallels the
discussion presented earlier on non-spatial stochastic sim-
ulations.

The first spatial stochastic equation that we present
is the one that accounts for the least detail. It is the spa-
tial chemical Langevin equation, which results from adding
white Gaussian noise to the discrete reaction-diffusion
equation. It is

dZi;k(t)
dt

D

MX

jD1

� ji

�
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In an extension to what was presented before, � j(t)
and �k0(t) represent temporally uncorrelated, statistically
independent Gaussian white noises [106]. This is a spe-
cific example of the more general multivariate Langevin
equation; it, and the multivariate Fokker–Planck equation,
have been explored in depth [41,105]. However, the more
specific spatial chemical Langevin equation has essentially
never been used, investigated mathematically, or simu-
lated. The sole exception that we are aware of was its sim-
ulation for a figure for a tutorial article [8] (those results
are reproduced in Fig. 1).

The spatial chemical Langevin equation captures
stochasticity reasonably accurately for systems in which
there are many molecules per subvolume but not for those
with few molecules per subvolume. Errors arise both be-
cause Gaussian white noise is the incorrect fluctuation dis-
tribution [100,104] and because it treatsmolecule amounts
as continuously variable quantities. These are addressed
by moving to the next level of detail in which the con-
tinuous molecular concentrations are replaced by dis-
crete numbers of molecules. This changes the temporally
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continuous reaction and diffusion processes to stochas-
tic jump processes. The reaction-diffusion master equa-
tion [156,157,158,159] (RDME) describes the time depen-
dence of the system at this level of description. It is
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P(x; t) is the probability that the system is in state X D x
at time t, Xi;k is the number of molecules of type i in sub-
volume k, X is the vector of all Xi;k values, and aj is the
propensity of reaction j.

The RDME expresses as much detail as is possible
through these successive improvements of the reaction-
diffusion equation. It is tempting to think of it as the fun-
damental equation for reactions and diffusion, and thus
the basis for a statistical theory of chemistry. In fact, it is
sufficiently accurate for most systems, but it nevertheless
involves approximations that can be important in some
situations. Firstly, neither of the starting equations, which
are mass action kinetics and Fickian diffusion, are com-
pletely accurate even for very large systems. Mass action
kinetics does not address the increased reaction rates that
occur on extremely short time scales, which arise from re-
duced spatial correlations [160,161]. Nor does it address
the geminate recombinations that can occur between the
products of a dissociation reaction [162,163]. The diffu-
sion equation is usually quite accurate for dilute solu-
tions but fails for highly crowded ones [164,165], includ-
ingmost biological systems [166]. Secondly, the discretiza-
tion of space into small subvolumes can also lead to in-
accuracies, or exacerbate the inaccuracies just mentioned.
The subvolume sizes must not be so small that they im-
pinge on the microscopic details of the reaction or dif-
fusion processes. This means that they need to be signif-
icantly larger than single molecules and larger than the
mean free path lengths of diffusion [156,167]. Conversely,
the subvolumes must not be so large that there would
be appreciable concentration gradients across them. This
means that the subvolume width needs to be less than the
reactant correlation length. The correlation length is hard
to predict but is at least as large as the average distance that
a reactant travels before it reacts, called the reactive mean
free path [156,167].

The RDME is even more intractable than the non-
spatial chemical master equation because of the addition
of spatial states and the many transitions that can oc-
cur between the spatial states. These additional states and
transitions also make stochastic simulations of the RDME
with Gillespie’s direct algorithm extremely slow [157].
Several faster algorithms have been developed to ad-
dress this problem. The “next reaction method” of Gibson
and Bruck [64] was adapted to spatial simulations [168],
and then further improved, to yield the “next subvol-
ume method” [132,142]. Also, a fast version of the di-
rect method [169] has been developed for spatial simu-
lations [167]. All of these methods yield exactly the same
results as Gillespie’s original methods [62,63] but use care-
fully optimized data structures to minimize the number of
computations.

A separate challenge with simulating the RDME con-
cerns the cubical subvolumes into which space was dis-
cretized. Biological systems rarely have square corners, so
the basic theory requires adaptation to account for realistic
boundaries. In one approach, the mathematics was devel-
oped for dividing boundary subvolumes into two separate
portions [170]. Using another approach, the theory was
developed for curved surfaces, which was implemented
in the MesoRD program [132,171]. Although it has not
been developed yet, it has been proposed that automatic
mesh refinement could simultaneously account for com-
plex boundaries and lead to significant computational effi-
ciencies [167].

Along with simulations of the E. coliMin system, pre-
sented in Sect. “Box 1: The E. Coli Min System”, popu-
lation-based spatial stochastic models have been used for
a variety of test systems. In the first implementation of
a spatial Gillespie algorithm, Stundzia and Lumsden used
a one-dimensional simulation to demonstrate stochas-
tic calcium wave propagation [157]. Elf and Ehrenberg
showed that spatial and stochastic effects can cause an
intrinsically bistable system to lose its global hysteresis
through the formation of spatial domains [142]. In a third
study, Isaacson and Peskin demonstrated their method for
simulating porous boundaries with a model that includes
transcription, translation, and nuclear membrane trans-
port [170].

Individual-Based Spatial Models

In a bottom-up approach to spatial modeling, one starts
with a very detailed consideration and then makes suc-
cessive approximations. A convenient place to start is by
considering every individual molecule in the system, along
with some of the molecular structures. The motions of
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these molecules are governed by physical forces including
steric repulsion, bond mechanics, and electrostatics. The
simulation of the motions that result from these forces is
called molecular dynamics [172]. Molecular dynamics can
yield very accurate results but is so computationally inten-
sive that it is rarely used for more than hundreds of cu-
bic nanometers of volume or more than tens of nanosec-
onds of time. These size and time scales are too confining
for studying biochemical reaction networks, so approxi-
mations are made.

At the Smoluchowski level of detail, all solvent
molecules are ignored, solute molecules are treated as
spheres, diffusion proceeds stochastically, and molecu-
lar rotation, molecular momentum, and long-range inter-
molecular forces are all ignored. This is a vast simplifi-
cation, but is often valid. It is usually reasonably accu-
rate for size scales that are larger than a few nanometers
and for timescales that are longer than a few nanoseconds,
constraints that are acceptable for an enormous range of
chemical and biological phenomena.

For diffusion at the Smoluchowski level of detail,
the effects of solvent-solute interactions on the so-
lute motion are approximated by assuming that solute
molecules diffuse with mathematically ideal Brownian
motion [173,174]. This is a key approximation that re-
places the deterministic molecular motions that result
from solvent collisions with stochastic trajectories. It is of-
ten the only source of stochasticity in the theory, or in sim-
ulations that derive from this individual-based approach.
More precisely, the position of molecule i at time t is given
with the probability density pi(r; t), which evolves over
time according to the master equation

@pi (r; t)
@t
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This equation is nearly identical to the diffusion equation,
given above (Eq. (13)), differing only in the definitions of
the variables and the interpretation. Now, it is not a pop-
ulation of molecules that diffuse, but the positional proba-
bility density for a single molecule.

Because it is so simple, the diffusion master equa-
tion is analytically tractable, in contrast to the other mas-
ter equations that were discussed. One result is an en-
tire body of analytical theory on diffusion-influenced reac-
tions [160,175]. Nevertheless, it too becomes unmanage-
able for systems that have several interacting molecules,
so it is simulated with a technique called Brownian dy-
namics [176,177,178,179,180]. In this method, molecules
have well-defined point-like positions which are updated
at each simulation time step using random displacements.
The displacements are chosen by solving the diffusion

master equation for molecule i, which is taken to be at the
well-defined position r0 at time t0. One simulation time
step later, at time t0 C
t, the probability density for the
molecule’s position is found to be a 3-dimensional Gaus-
sian density that is centered at r0,
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The standard deviation of this Gaussian, called the root
mean square step length, is
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Brownian dynamics simulations provide accuracy that is
below that of molecular dynamics, but still captures single
molecule behavior.

Brownian dynamics has been used extensively for ex-
amining the rates of diffusion-influenced chemical reac-
tions in solution [139,177,179,180,181,182] and for the
rates of binding between ligands and receptor arrays [139,
141,178,183,184]. In these studies, simulated molecules
diffuse in solution; at the moment that a reactant pair, or
a ligand and its cognate receptor, come into contact, they
undergo a chemical reaction. While diffusing, intermolec-
ular forces are often ignored, although some studies ac-
count for these interactions as well [185,186].

To achieve the necessary level of detail, Brownian dy-
namics simulations usually use very short simulation time
steps, often on the order of picoseconds [139]. Adaptive
time steps, such that time steps are long when reactants are
widely separated and short when they are close, can speed
simulations up by several orders of magnitude, but are easy
to implement only if there is just one diffusing particle
present in the simulation volume [141]. A more sophis-
ticated method that has the same general goal of computa-
tional efficiency is calledGreen’s function reaction dynam-
ics [143,187,188] (GFRD). In GFRD, which works with
any number of molecules, the system is inspected to see
how soon the next molecular collision or reaction could
occur. The system is then advanced to that time using
a single simulation time step, the event is executed if ap-
propriate, and the cycle repeats. Yet another method, used
in a program written by one of us (SSA) called Smoldyn,
achieves computational efficiency by modifying the effec-
tive radii of simulated molecules so that the same reaction
rate is achieved with long simulation time steps as with
short ones [45,189,190]. This method does not achieve the
same spatial or temporal precision as classical Brownian
dynamics or GFRD, but the level of detail is still more than
adequate for most biological applications and has been
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shown to be indistinguishable from more accurate simu-
lations in many cases [191].

Technically, all of these algorithms execute Brown-
ian dynamics. However, the term “Brownian dynamics” is
typically used to describe highly detailed studies in which
reaction rates, rebinding dynamics, or similar phenomena
are found from fundamental molecular properties such
as molecular radii and intermolecular forces. In contrast,
GFRD and the methods used in Smoldyn are more often
used to determine system-level behaviors from known or
estimated reaction rates. These are more often called par-
ticle-based stochastic simulation methods [192].

MCell is another program that performs particle-based
stochastic simulations [144]. Unlike the others, it can-
not simulate reactions that occur in free solution, but in-
stead only treats reactions at surfaces. Despite the decrease
of versatility, it is still useful for studying a wide vari-
ety of biological phenomena [193,194,195]; in particular,
it was developed to investigate the neuromuscular junc-
tion [196,197,198]. In MCell, surface-bound receptors are
not modeled as single molecules as they would be in Smol-
dyn or GFRDmethods, but as a uniform binding probabil-
ity that applies to an entire surface tile. This decreases the
spatial resolution some, but increases the computational
efficiency.

Future Directions

The classic advice of using the right tool for the job is
as true in biochemical modeling as it is elsewhere. Sev-
eral modeling tools have been presented here. Determinis-
tic ordinary differential equation models are simple, easy
to use, and can be analyzed with many powerful theo-
retical and analytical methods. They are the right tool
for systems that can be treated as being well-mixed and
that are both large enough and sufficiently far from criti-
cal points that stochastic effects are unimportant. In con-
trast, systems that include low copy numbers of impor-
tant components, and/or that can be triggered by ran-
dom events, require stochastic modeling methods for their
investigation. These include integration of the chemical
master equation and random sampling of the stochastic
trajectories using the Gillespie algorithm, both of which
are exact methods. Approximate methods include �-leap-
ing stochastic simulations, integration of the chemical
Fokker–Planck equation, and sampling with the chemi-
cal Langevin equation. Of these, the Gillespie algorithm
has proven to be the most popular. Finally, if the system
cannot be considered to be well-mixed, then yet differ-
ent tools are needed. These include spatial variants of the
same list of simulation methods, including partial differ-

ential equations for deterministic simulations and a spa-
tial Gillespie algorithm for stochastic simulations. Particle-
tracking simulation methods allow an even greater degree
of detail.

In general, more detailed simulation methods yield
more accurate results and are based more closely on
underlying processes and less on phenomenological de-
scriptions. However, they are also more computation-
ally intensive and require more model parameters. This
parametrization poses a significant problem for current
models because the necessary quantitative experimental
data are typically only marginally adequate or are com-
pletely non-existent. For an ODE model, it is sometimes
possible to address this problem by exploring model be-
haviors over wide ranges of parameter space, from which
one can draw phase diagrams that graphically depict how
the model behaves for different parameter choices. From
this, one can sometimes constrain parameters or gain
additional insight into the model; for example, Tyson
showed how two enzyme concentrations can be used to
regulate the cell cycle, bringing an oocyte from metaphase
arrest to autonomous oscillations, and on to growth-con-
trolled cell division [30]. Because of the computational
demands of spatial and stochastic models, as well as the
richer behavior possibilities, it is much more difficult to
explore parameter space with these more complex models.
Thus, much work is needed on this topic.

More generally, the mathematical infrastructure for
designing and interpreting stochastic models lags far be-
hind that for non-spatial deterministic models. This poses
some challenges for theorists. For example, what new the-
ories and graphical tools will help scientists gain intuition
into the dynamics of stochastic systems? and what are the
controlling elements of stochastic systems? The theory is
even more unexplored when spatial organization is con-
sidered as well. Nevertheless, spatial considerations are es-
sential because no biological life has been found that is
well-mixed; instead, a tremendous amount of biochemical
activity involves membranes, polymers, protein scaffolds,
large multimeric complexes, and other spatial structures.
Theories that address these topics will not be as elegant as
those that focus on the chemical master equation, but bi-
ology is not always elegant either.

Although research on stochastic modeling of biochem-
istry grew slowly from the 1950s to the 1990s, the pace has
accelerated dramatically during the last 10 to 15 years. This
acceleration will likely continue for many more years, in
response to the faster computers that become available ev-
ery year and to the ever-increasing complexity of biochem-
ical data. With this growth, stochastic modeling may open
up entire new ways to understand cell biology.
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Stochastic Models of Biological Processes, Figure 2
Diagram of the E. coli Min system, which is used to position the
cell division plane at the cell center. Dots represent cytoplasmic
proteins, while curved lines represent helical membrane-bound
protein polymers.Colors identify theproteins: light blue forMinD
bound to ADP, dark blue for MinD protein bound to ATP, and
red for MinE. The system dynamics are summarized in the text
of Sect. “Box 1: The E. Coli Min System”

Box 1: The E. ColiMin System

The E. coli Min system has served as a proving ground
for spatial stochastic simulation methods. The Min system
is used by E. coli, in conjunction with other systems, to
position the cell division plane accurately at the cell cen-
ter [131]. The system is comprised of the proteins MinC,
MinD andMinE, which oscillate back and forth across the
cell, from one pole to the other, with a period of about
40s (Fig. 2). Of these, only MinD and MinE are required
for the oscillation, making this a relatively simple system
that exhibits remarkably interesting dynamics. Cytoplas-
mic MinD proteins bind ATP, dimerize, and polymerize
on the inside of the cell membrane to form long helical
structures that extend outwards from one of the two cell
poles. When MinE binds to the cell-center end of a MinD
polymer, it activates ATP hydrolysis which depolymerizes
the terminal subunit. As MinE progressively disassembles
aMinD polymer at one end of the cell, it reassembles again
from the opposite pole to start the next oscillation cycle.
The oscillating Min proteins continually inhibit cell divi-
sion plane formation near the poles using MinC, which
colocalizes with MinD, thus only permitting cell division
at the cell center.

This system was explored for several years with deter-
ministic reaction-diffusion models [128,199,200]. One of
these models, by Howard, Rutenberg, and de Vet [199],
was also explored by the same group using a one-
dimensional population-based stochastic method [129]
(it uses discrete particle numbers and fixed time steps,
thus conceptually placing it between the spatial Langevin
and spatial Gillespie methods). The authors found that

stochastic effects were essential for generating oscillations
in some parameter regimes, in a spatial version of stochas-
tic resonance [60,201]. Thesemodels helped direct new ex-
periments [202,203,204,205] that clarified the processes of
the system.

Building on the prior models and the new experi-
mental data, Huang, Meir, and Wingreen [130] devel-
oped a new reaction-diffusion model that wasmore closely
connected with the biology than were previous models
and that accounted for several mutant phenotypes. This
model became the basis of several stochastic simulations.
The spatial Gillespie method was employed by Fange and
Elf [132] using their MesoRD program. They showed that
a stochastic model can account for a “spotty” phenotype
and for oscillations in spherical mutant cells, neither of
which can be explained by the deterministic model. The
MCell particle-tracking program was used by Kerr and
coworkers [133] to show that the Min system alone is in-
sufficient to center the cell division plane with high accu-
racy.

Yet unexplained with these simulations were convinc-
ing experimental results that MinD forms polymers on the
cell membrane [205,206,207]. These were explored with
another particle-tracking model [208], using a method
based on Smoluchowski dynamics [45]. Although this
group did simulate spontaneous polymer formation, they
observed many randomly oriented short filaments, in con-
trast to the few helical polymers that are observed exper-
imentally. This inherent difficulty with the reaction-diffu-
sion model [209], whether deterministic or stochastic, has
led to several studies that have focused specifically on the
polymer dynamics and shapes [134,210,211].

The E. coliMin system is already well on its way to be-
coming the prototypical system for studying spatial bio-
chemical dynamics, much as E. coli chemotaxis has be-
come the prototypical system for investigating bacterial
signaling.

Acknowledgments

This work was funded by the US Department of Energy.

Bibliography

1. McQuarrie DA (1967) Stochastic approach to chemical kinet-
ics. J Appl Probab 4:413–478

2. Turner TE, Schnell S, Burrage K (2004) Stochastic approaches
for modelling in vivo reactions. Comp Biol Chem 28:165–178

3. Raser JM, O’Shea EK (2005) Noise in gene expression: Origins,
consequences, and control. Science 309:2010–2013

4. Samoilov MS, Price G, Arkin AP (2006) From fluctuations to
phenotypes: The physiology of noise. Sci STKE 2006:re17



Stochastic Models of Biological Processes S 8745

5. Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation, and
tolerance of intracellular noise. Nature 420:231–237

6. GillespieDT (2007) Stochastic simulation of chemical kinetics.
Ann Rev Phys Chem 58:35–55

7. Wolf DM, Arkin AP (2003) Motifs, modules and games in bac-
teria. Curr Opin Microbiol 6:125–134

8. Andrews SS, Arkin AP (2006) Simulating cell biology. Curr Biol
16:R523–R527

9. McAdams HH, Arkin A (1999) It’s a noisy business! Genetic
regulation at the nanomolar scale. Trends Genet 15:65–69

10. Singer RH, Lawrence DS, Ovryn B, Condeelis J (2005) Imaging
of gene expression in living cells and tissues. Biomed J Optics
10:051406

11. Levsky JM, Shenoy SM, Pezo RC, Singer RH (2002) Single-cell
gene expression profiling. Science 297:836–840

12. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic
gene expression in a single cell. Science 297:1183–1186

13. Raser JM, O’Shea EK (2004) Control of stochasticity in eukary-
otic gene expression. Science 304:1811–1814

14. Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Noise in eu-
karyotic gene expression. Nature 422:633–637

15. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oude-
naarden A (2002) Regulation of noise in the expression of
a single gene. Nature Genet 31:69–73

16. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer
DV (2005) Stochastic gene expression in a lentiviral positive-
feedback loop: HIV-1 Tat fluctuations drive phenotypic diver-
sity. Cell 122:169–182

17. Cai L, Friedman N, Xie XS (2006) Stochastic protein expres-
sion in individual cells at the single molecule level. Nature
440:358–362

18. Yu J, Xiao J, Ren X, Lao K, Xie XS (2006) Probing gene ex-
pression in live cells, one protein molecule at a time. Science
311:1600–1603

19. Golding I, Cox EC (2006) Protein synthesis molecule by
molecule. Genome Biol 7:212

20. Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard J-M,
Singer RH, Bertrand E (2003) Single mRNAmolecules demon-
strate probabilisticmovement in livingmammalian cells. Curr
Biol 13:161–167

21. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of
transcriptional regulators. Nature 403:335–338

22. Sakurai JJ (1994) Modern Quantum Mechanics. Addison-
Wesley, Boston

23. Strogatz SH (1994) Nonlinear Dynamics and Chaos. Westview
Press, Cambridge

24. Atkins PW (1986) Physical Chemistry. Freeman, New York
25. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles,

and blinkers: dynamics of regulatory and signaling pathways
in the cell. Curr Opin Cell Biol 15:221–231

26. Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II,
Selkov E, Palsson BO (2001) Metabolic modeling of microbial
strains in silico. Trends Biochem Sci 26:179–186

27. Varma A, Palsson BO (1994) Metabolic flux balancing: Basic
concepts, scientific and practical use. Nature Biotech 12:994–
998

28. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux
balance analysis. Curr Opin Biotech 14:491–496

29. Fell D (1997) Understanding the Control of Metabolism. Port-
land Press, London

30. Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cy-
clin interactions. Proc Natl Acad Sci USA 88:7328–7332

31. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson
JJ (2004) Integrative analysis of cell cycle control in budding
yeast. Mol Biol Cell 15:3841–3862

32. Goldbeter A (2002) Computational approaches to cellular
rhythms. Nature 420:238–245

33. van Zon JS, Lubensky DK, Altena PRH, tenWolde PR (2007) An
allosteric model of circadian KaiC phosphorylation. Proc Natl
Acad Sci USA 104:7420–7425

34. Reinitz J, Mjolsness E, Sharp DH (1995) Model for cooperative
control of positional information in Drosophila by bicoid and
maternal hunchback. Exp J Zool 271:47–56

35. von Dassow G, Meir E, Munro EM, Odell GM (2000) The seg-
ment polarity network is a robust developmental module.
Nature 406:188–192

36. Kellershohn N, Laurent M (2001) Prion diseases: dynamics of
the infection and properties of the bistable transition. Bio-
phys J 81:2517–2529

37. Ferrell JEJ, Machleder EM (1998) The biochemical basis of
an all-or-none cell fate switch in Xenopus oocytes. Science
280:895–898

38. Huang C-YF, Ferrell JEJ (1996) Ultrasensitivity in the mito-
gen-activated protein kinase cascade. Proc Natl Acad Sci USA
93:10078–10083

39. LaurentM, Kellershohn N (1999) Multistability: amajor means
of differentiation and evolution in biochemical systems.
Trends Biochem Sci 24:418–422

40. Samoilov MS, Arkin AP (2006) Deviant effects inmolecular re-
action pathways. Nature Biotech 24:1235–1240

41. van Kampen NG (1992) Stochastic Processes in Physics and
Chemistry. Elsevier, Amsterdam

42. Haseltine EL, Rawlings JB (2005) On the origins of ap-
proximations for stochastic chemical kinetics. Chem J Phys
123:164115

43. GillespieDT (1992) A rigorous derivation of the chemicalmas-
ter equation. Physica A 188:404–425

44. Rohwer JM, Postma PW, Kholodenko BN, Westerhoff HV
(1998) Implications of macromolecular crowding for signal
transduction and metabolite channeling. Proc Natl Acad Sci
USA 95:10547–10552

45. Andrews SS, Bray D (2004) Stochastic simulation of chemical
reactions with spatial resolution and single molecule detail.
Phys Biol 1:137–151

46. Munsky B, Khammash M (2006) The finite state projection
algorithm for the solution of the chemical master equation.
Chem J Phys 124:044104

47. Peles S, Munsky B, Khammash M (2006) Reduction and solu-
tion of the chemical master equation using time scale sepa-
ration and finite state projection. Chem J Phys 125:204104

48. Kuwahara H, Myers CJ, Samoilov MS, Barker NA, Arkin AP
(2006) Automated abstraction methodology for genetic reg-
ulatory networks. Trans Comput Syst Biol 6:150–175

49. Hegland M, Burden C, Santoso L, MacNamara S, Booth H
(2007) A solver for the stochastic master equation applied to
gene regulatory networks. Comp J Appl Math 205:708–724

50. Nedea SV, Jansen APJ, Lukkien JJ, Hilbers PAJ (2003) Infinitely
fast diffusion in single-file systems. Phys Rev E 67:046707

51. Chatterjee A, Vlachos DG (2006) Multiscale spatial Monte
Carlo simulations: Multigriding, computational singular per-



8746 S Stochastic Models of Biological Processes

turbation, and hierarchical stochastic closures. Chem J Phys
124:064110

52. Ambjörnsson T, Banik SK, Lomholt MA, Metzler R (2007) Mas-
ter equation approach to DNA breathing in heteropolymer
DNA. Phys Rev E 75:021908

53. Altan-Bonnet G, Libchaber A, Krichevsky O (2003) Bubble dy-
namics in double-stranded DNA. Phys Rev Lett 90:138101

54. Lattanzi G, Maritan A (2001) Master equation approach to
molecular motors. Phys Rev E 64:061905

55. Wang H-Y, Elston T, Mogilner A, Oster G (1998) Force genera-
tion in RNA polymerase. Biophys J 74:1186–1202

56. Peskin CS, Odell GM, Oster GF (1993) Cellular motions
and thermal fluctuations: the Brownian ratchet. Biophys J
65:316–324

57. Paulsson J, Ehrenberg M (2000) Random signal fluctuations
can reduce random fluctuations in regulated component of
chemical regulatory networks. Phys Rev Lett 84:5447–5450

58. Paulsson J, Berg OG, Ehrenberg M (2000) Stochastic focus-
ing: fluctuation-enhanced sensitivity of intracellular regula-
tion. Proc Natl Acad Sci USA 97:7148–7153

59. Berg OG, Paulsson J, Ehrenberg M (2000) Fluctuations in re-
pressor control: thermodynamic constraints on stochastic fo-
cusing. Biophys J 79:2944–2953

60. Li H, Hou Z, Xin H (2005) Internal noise stochastic resonance
for intracellular calcium oscillations in a cell system. Phys Rev
E 71:061916

61. Samoilov M, Plyasunov S, Arkin AP (2005) Stochastic amplifi-
cation and signaling in enzymatic futile cycles through noise-
induced bistability with oscillations. Proc Natl Acad Sci USA
102:2310–2315

62. Gillespie DT (1976) A general method for numerically simu-
lating the stochastic time evolution of coupled chemical re-
actions. Comp J Phys 22:435–450

63. Gillespie DT (1977) Exact stochastic simulation of coupled
chemical reactions. Phys J Chem 81:2340–2361

64. Gibson MA, Bruck J (2000) Efficient exact stochastic simula-
tion of chemical systems with many species and many chan-
nels. Phys J Chem A 104:1876–1889

65. Lok L, Brent R (2005) Automatic generation of cellular
reaction networks with Molecularizer 1.0. Nature Biotech
23:131–136

66. Cao Y, Li H, Petzold L (2004) Efficient formulation of the
stochastic simulation algorithm for chemically reacting sys-
tems. Chem J Phys 121:4059–4067

67. McCollum JM, Peterson GD, Cox CD, Simpson ML, Samatova
NF (2006) The sorting directmethod for stochastic simulation
of biochemical systems with varying reaction execution be-
havior. Comp Biol Chem 30:39–49

68. Plyasunov S, Arkin AP (2007) Efficient stochastic sensi-
tivity analysis of discrete event systems. Comput J Phys
221:724–738

69. Bardwell L (2004) A walk-through of the yeast mating
pheromone response pathway. Peptides 25:1465–1476

70. Morton-Firth CJ, Bray D (1998) Predicting temporal fluctu-
ations in an intracellular signalling pathway. Theor J Biol
192:117–128

71. LeNovère N, Shimizu TS (2001) StochSim: modelling of
stochastic biomolecular processes. Bioinformatics
17:575–576

72. Lu T, Volfson D, Tsimring L, Hasty J (2004) Cellular growth and
division in the Gillespie algorithm. Syst Biol 1:121–128

73. McAdams H, Arkin A (1998) Simulation of prokaryotic genetic
circuits. Annu Rev Biophys Biomol Struct 27:199–224

74. Paulsson J (2004) Summing up the noise in gene networks.
Nature 427:415–418

75. McAdams HH, Arkin A (1997) Stochastic mechanisms in gene
expression. Proc Natl Acad Sci USA 94:814–819

76. Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analy-
sis of developmental pathway bifurcation in phage lambda-
infected Escherichia coli cells. Genetics 149:1633–1648

77. Wolf DM, Vazirani VV, Arkin AP (2005) Diversity in times of
adversity: probabilistic strategies inmicrobial survival games.
Theor J Biol 234:227–253

78. Fiering S, Whitelaw E, Martin DIK (2000) To be or not to be
active: the stochastic nature of enhancer action. BioEssays
22:381–387

79. Barkai N, Leibler S (2000) Biological rhythms: Circadian clocks
limited by noise. Nature 403:267–268

80. ThattaiM, vanOudenaardenA (2004) Stochastic gene expres-
sion in fluctuating environments. Genetics 167:523–530

81. Kussell E, Leibler S (2005) Phenotypic diversity, population
growth, and information in fluctuating environments. Sci-
ence 309:2075–2078

82. Pedraza JM, van Oudenaarden A (2005) Noise propagation in
gene networks. Science 307:1965–1969

83. Swain PS, Elowittz MB, Siggia ED (2002) Intrinsic and extrinsic
contributions to stochasticity in gene expression. Proc Natl
Acad Sci USA 99:12795–12800

84. Mettetal JT, Muzzey D, Pedraza JM, Ozbudak EM, van Oude-
naarden A (2006) Predicting stochastic gene expression dy-
namics in single cells. Proc Natl Acad Sci USA 103:7304–7309

85. Kierzek AM, Zaim J, Zielenkiewicz P (2001) The effect of
transcription and translation initiation frequencies on the
stochastic fluctuations in prokaryotic gene expression. Biol J
Chem 276:8165–8172

86. Peccoud J, Ycart B (1995) Markovian modeling of gene-prod-
uct synthesis. Theor Popul Biol 48:222–234

87. Rosenfeld N, Young JW, Alon U, Swain PS, Elowittz MB
(2005) Gene regulation at the single-cell level. Science
307:1962–1965

88. Kitano H (2004) Biological robustness. Nature Rev Genet
5:826–837

89. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in
bacterial chemotaxis. Nature 397:168–171

90. Barkai N, Leibler S (1997) Robustness in simple biochemical
networks. Nature 387:913–917

91. Stelling J, Sauer U, Szallasi Z, Doyle FJI, Doyle J (2004) Robust-
ness of cellular functions. Cell 118:675–685

92. Vilar JMG, Kueh HY, Barkai N, Leibler S (2002) Mechanisms of
noise-resistance in genetic oscillators. Proc Natl Acad Sci USA
99:5988–5992

93. Aldana M, Cluzel P (2003) A natural class of robust networks.
Proc Natl Acad Sci USA 100:8710–8714

94. Thattai M, van Oudenaarden A (2002) Attenuation of noise in
ultrasensitive signaling cascades. Biophys J 82:2943–2950

95. Yi T-M, Huang Y, Simon MI, Doyle J (2000) Robust perfect
adaptation in bacterial chemotaxis through integral feedback
control. Proc Natl Acad Sci USA 97:4649–4653

96. Fraser HB, Hirsh AE, Giaever G, Kumm J, EisenMB (2004) Noise
minimization in eukaryotic gene expression. PLoBiol S 2:1–5

97. Voigt CA, Wolf DM, Arkin AP (2005) The Bacillus subtilis sin
operon: an evolvable networkmotif. Genetics 169:1187–1202



Stochastic Models of Biological Processes S 8747

98. Cao Y, Gillespie DT, Petzold LR (2006) Efficient step size se-
lection for the tau-leaping simulation method. Chem J Phys
124:044109

99. Gillespie DT, Petzold LR (2003) Improved leap-size selec-
tion for accelerated stochastic simulation. Chem J Phys
119:8229–8234

100. Gillespie DT (2001) Approximate accelerated stochastic
simulation of chemically reacting systems. Chem J Phys
115:1716–1733

101. Cao Y, Gillespie DT, Petzold LR (2005) Avoiding negative
populations in explicit Poisson tau-leaping. Chem J Phys
123:054104

102. Chatterjee A, Mayawala K, Edwards JS, Vlachos DG (2005)
Time accelerated Monte Carlo simulations of biological net-
works using the binomial tau-leap method. Bioinformatics
21:2136–2137

103. Pettigrew MF, Resat H (2007) Multinomial tau-leaping
method for stochastic kinetic simulations. Chem J Phys
126:084101

104. Zwanzig R (2001) A chemical Langevin equation with non-
Gaussian noise. Phys J Chem B 105:6472–6473

105. Gillespie DT (1996) The multivariate Langevin and Fokker–
Planck equations. Am Phys J 64:1246–1257

106. Gillespie DT (2000) The chemical Langevin equation. Chem J
Phys 113:297–306

107. GillespieDT (2002) The chemical Langevin and Fokker–Planck
equations for the reversible isomerization reaction. Phys J
Chem A 106:5063–5071

108. Wang H, Peskin CS, Elston TC (2003) A robust numerical algo-
rithm for studying biomolecular transport processes. Theor J
Biol 221:491–511

109. Xing J, Wang H, Oster G (2005) From continuum Fokker–
Planck models to discrete kinetic models. Biophys J
89:1551–1563

110. Tao Y (2004) Intrinsic noise, gene regulation and steady-
state statistics in a two-gene network. Theor J Biol 231:563–
568

111. van der Mee CVM, Zweifel PF (1987) A Fokker–Planck equa-
tion for growing cell populations. Math J Biol 25:61–72

112. Sato K, Kaneko K (2006) On the distribution of state values of
reproducing cells. Phys Biol 3:74–82

113. Hill NA, Häder D-P (1997) A biased random walk model for
the trajectories of swimming micro-organisms. Theor J Biol
186:503–526

114. Schienbein M, Gruler H (1993) Langevin equation, Fokker–
Planck equation and cell migration. Bull Math Biol 55:585–608

115. Xing J, Liao J-C, Oster G (2005) Making ATP. Proc Natl Acad Sci
USA 102:16539–16546

116. Elston TC, Oster G (1997) Protein turbines I: the bacterial flag-
ellar motor. Biophys J 73:703–721

117. Allen RJ, Frenkel D, ten Wolde PR (2006) Simulating rare
events in equilibrium or nonequilibrium stochastic systems.
Chem J Phys 124:024102

118. RathinamM, Petzold LR, Cao Y, Gillespie DT (2003) Stiffness in
stochastic chemically reacting systems: The implicit tau-leap-
ing method. Chem J Phys 119:12784

119. Cao Y, Gillespie DT, Petzold LR (2005) The slow-scale stochas-
tic simulation algorithm. Chem J Phys 122:014116

120. Cao Y, Gillespie DT, Petzold LR (2005) Accelerated stochas-
tic simulation of the stiff enzyme-substrate reaction. Chem J
Phys 123:144917

121. Rao CV, Arkin AP (2003) Stochastic chemical kinetics and the
quasi-steady-state assumption: Application to the Gillespie
algorithm. Chem J Phys 118:4999–5010

122. Adalsteinsson D, McMillen D, Elston TC (2004) Biochemical
network stochastic simulator (BioNetS): software for stochas-
tic modeling of biochemical networks. Bioinformatics BMC
5:24

123. Vasudeva K, Bhalla US (2004) Adaptive stochastic-determinis-
tic chemical kinetic simulations. Bioinformatics 20:78–84

124. Baumeister W (2002) Electron tomography: towards visualiz-
ing the molecular organization of the cytoplasm. Curr Opin
Struct Biol 12:679–684

125. Gierer A, Meinhardt H (1972) A theory of biological pattern
formation. Biol Cyber 12:30–39

126. Maini PK, Painter KJ, Chau HNP (1997) Spatial pattern forma-
tion in chemical and biological systems. Chem J Soc Faraday
Trans 93:3601–3610

127. Gurdon JB, Bourillot P-Y (2001) Morphogen gradient interpre-
tation. Nature 413:797–803

128. Meinhardt H, de Boer PAJ (2001) Pattern formation in Es-
cherichia coli: A model for the pole-to-pole oscillations of Min
proteins and the localization of the division site. Proc Natl
Acad Sci USA 98:14202–14207

129. Howard M, Rutenberg AD (2003) Pattern formation inside
bacteria: fluctuations due to the low copy number of pro-
teins. Phys Rev Lett 90:128102

130. Huang KC, Meir Y, Wingreen NS (2003) Dynamic structures
in Escherichia coli: spontaneous formation of MinE rings
and MinD polar zones. Proc Natl Acad Sci USA 100:12724–
12728

131. Lutkenhaus J (2007) Assembly and dynamics of the bacterial
MinCDE system and spatial regulation of the Z ring. Ann Rev
Biochem 76:14.11–14.24

132. Fange D, Elf J (2006) Noise-induced Min phenotypes in E coli.
PLoComp S Biol 2:637–648

133. Kerr RA, Levine H, Sejnowski TJ, RappelW-J (2006) Division ac-
curacy in a stochastic model of Min oscillations in Escherichia
coli. Proc Natl Acad Sci USA 103:347–352

134. CytrynbaumE,Marshall BDL (2007) Amulti-stranded polymer
model explainsMinDE dynamics in E coli cell division. Biophys
J 93:1134–1150

135. Bray D (1998) Signaling complexes: biophysical constraints
on intracellular communication. Annu Rev Biophys Biomol
Struct 27:59–75

136. Slepchenko BM, Schaff JC, Carson JH, Loew LM (2002) Com-
putational cell biology: Spatiotemporal simulation of cellular
events. Annu Rev Biophys Biomol Struct 31:423–441

137. Meyers J, Craig J, Odde DJ (2006) Potential for control
of signaling pathways via cell size and shape. Curr Biol
16:1685–1693

138. Rao CV, Kirby JR, Arkin AP (2005) Phosphatase localization
in bacterial chemotaxis: divergent mechanisms, convergent
principles. Phys Biol 2:148–158

139. Agmon N, Edelstein AL (1997) Collective binding properties
of receptor arrays. Biophys J 72:1582–1594

140. Lagerholm BC, Thompson NL (1998) Theory for ligand rebind-
ing at cell membrane surfaces. Biophys J 74:1215–1228

141. Andrews SS (2005) Serial rebinding of ligands to clustered
receptors as exemplified by bacterial chemotaxis. Phys Biol
2:111–122



8748 S Stochastic Models of Biological Processes

142. Elf J, EhrenbergM (2004) Spontaneous separation of bi-stable
biochemical systems into spatial domains of opposite phases.
Syst Biol 1:230–236

143. van Zon JS, tenWolde PR (2005) Green’s function reaction dy-
namics: A particle-based approach for simulating biochemi-
cal networks in time and space. Chem J Phys 123:234910

144. Stiles JR, Bartol TM (2001) Monte Carlo methods for simu-
lating realistic synaptic microphysiology using MCell. In: De
Schutter E (ed) Computational Neuroscience: Realistic Mod-
eling for Experimentalists. Press CRC, Boca Raton

145. Dab D, Boon J-P, Li Y-X (1991) Lattice-gas automata for cou-
pled reaction-diffusion equation. Phys Rev Lett 66:2535–2539

146. Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata
approaches to biological modeling. Theor J Biol 160:97–133

147. Duke TAJ, LeNovère N, Bray D (2001) Conformational spread
in a ring of proteins: a stochastic approach to allostery. Mol J
Biol 308:541–553

148. Goldman J, Andrews SS, Bray D (2004) Size and composition
of membrane protein clusters predicted byMonte Carlo anal-
ysis. Eur Biophys J 33:506–512

149. Grima R, Schnell S (2006) A systematic investigation of the
rate laws valid in intracellular environments. Biophys Chem
124:1–10

150. Turing AM (1990) The chemical basis of morphogenesis. Bull
Math Biol 52:153–197

151. Cross MC, Hohenberg PC (1993) Pattern formation outside of
equilibrium. Rev Mod Phys 65:851–1123

152. Slepchenko B, Schaff J, Macara I, Loew LM (2003) Quantitative
cell biology with the Virtual Cell. Cell TRENDS Biol 13:570–576

153. Fink CC, Slepchenko B, Moraru II, Watras J, Schaff JC, Loew LM
(2000) An image-based model of calciumwaves in differenti-
ated neuroblastoma cells. Biophys J 79:163–183

154. Fink CC, Slepchenko B, Moraru II, Schaff J, Watras J, Loew LM
(1999) Morphological control of inositol-1,4,5-triphosphate-
dependent signals. Cell J Biol 147:929–935

155. Hernjak N, Slepchenko B, Fernald K, Fink CC, Fortin D, Moraru
II, Watras J, Loew LM (2005) Modeling and analysis of calcium
signaling events leading to long-term depression in cerebel-
lar Purkinje cells. Biophys J 89:3790–3806

156. Baras F, Malek-Mansour M (1996) Reaction-diffusion master
equation: A comparison with microscopic simulations. Phys
Rev E 54:6139–6148

157. Stundzia AB, Lumsden CJ (1996) Stochastic simulation
of coupled reaction-diffusion processes. Comput J Phys
127:196–207

158. Nicolis G, Malek-Mansour M (1980) Systematic analysis of the
multivariate master equation for a reaction-diffusion system.
Stat J Phys 22:495–512

159. Kruse K, Elf J (2006) Kinetics in spatially extended systems. In:
Szallasi Z, Stelling J, Periwal V (eds) System Modeling in Cell
Biology From Concepts to Nuts and Bolts. Press MIT, Cam-
bridge, pp 177–198

160. Hynes JT (1985) The theory of reactions in solution. In: Baer M
(ed) Theory of Chemical Reaction Dynamics. Press CRC, Boca
Raton, pp 171–234

161. Cohen B, Huppert D, Agmon N (2000) Non-exponential
Smoluchowski dynamics in fast acid-base reaction. Am J
Chem Soc 122:9838–9839

162. Noyes RM (1955) Kinetics of competitive processes when
reactive fragments are produced in pairs. Am J Chem Soc
77:2042–2045

163. Pines E, Huppert D (1988) Geminate recombination in ex-
cited-state proton transfer reactions: Numerical solution
of the Debye–Smoluchowski equation with backreaction
and comparison with experimental results. Chem J Phys
88:5620–5630

164. Verkman AS (2002) Solute and macromolecule diffusion
in cellular aqueous compartments. Trends Biochem Sci
27:27–33

165. Schnell S, Turner TE (2004) Reaction kinetics in intracellular
environments with macromolecular crowding: simulations
and rate laws. Prog Biophys Mol Biol 85:235–260

166. Fulton AB (1982) How crowded is the cytoplasm? Cell
30:345–347

167. Bernstein D (2005) Simulating mesoscopic reaction-diffusion
systems using the Gillespie algorithm. Phys Rev E 71:041103

168. Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J,
Foglierini M, Kaplan A, Lemerle C, Tomás-Oliveira I, Serrano
L (2004) SmartCell, a framework to simulate cellular pro-
cesses that combines stochastic approximation with diffu-
sion and localisation: analysis of simple networks. Syst Biol 1:
129–138

169. Fricke T, Schnakenberg J (1990) Monte-Carlo simulation of an
inhomogeneous reaction-diffusion system in the biophysics
of receptor cells. Z Phys B 83:277–284

170. Isaacson SA, Peskin CS (2006) Incorporating diffusion in com-
plex geometries into stochastic chemical kinetics simulations.
Sci SIAMJ Comput 28:47–74

171. Hattne J, Fange D, Elf J (2005) Stochastic reaction-diffusion
simulation with MesoRD. Bioinformatics 21:2923–2924

172. Frenkel D, Smit B (2002) Understandingmolecular simulation:
from algorithms to applications. Academic, San Diego

173. Berg HC (1993) Random Walks in Biology. Princeton Univ
Press, Princeton

174. GillespieDT (1996) Themathematics of Brownianmotion and
Johnson noise. Am Phys J 64:225–240

175. Rice SA (1985) Diffusion Limited Reactions. Elsevier,
Amsterdam

176. Ermak DL, McCammon JA (1978) Brownian dynamics with hy-
drodynamic interactions. Chem J Phys 69:1352–1360

177. Northrup SH, Allison SA, McCammon JA (1984) Brownian dy-
namics simulation of diffusion-influenced bimolecular reac-
tions. Chem J Phys 80:1517–1524

178. Northrup SH (1988) Diffusion-controlled ligand binding to
multiple competing cell-bound receptors. Phys J Chem
92:5847–5850

179. Northrup SH, Erickson HP (1992) Kinetics of protein-protein
association explained by Brownian dynamics computer sim-
ulation. Proc Natl Acad Sci USA 89:3338–3342

180. Edelstein AL, Agmon N (1993) Brownian dynamics simula-
tions of reversible reactions in one dimension. Chem J Phys
99:5396–5404

181. Oh C, Kim H, Shin KJ (2002) Excited-state diffusion-influ-
enced reversible association-dissociation reaction: Brown-
ian dynamics simulation in three dimensions. Chem J Phys
117:3269–3277

182. Kim H, Yang M, Shin KJ (1999) Dynamic correlation effect in
reversible diffusion-influenced reactions: Brownian dynam-
ics simulation in three dimensions. Chem J Phys 111:1068–
1075

183. AgmonN, Edelstein A (1995) Geometric andmany-particle as-
pects of transmitter binding. Biophys J 68:815–825



Stochastic Noises, Observation, Identification and Realization with S 8749

184. Edelstein AL, Agmon N (1997) Brownian simulation of many-
particle binding to a reversible receptor array. Comput J Phys
132:260–275

185. Agmon N, Szabo A (1990) Theory of reversible diffusion-influ-
enced reactions. Chem J Phys 92:5270–5284

186. Kim H, Shin KJ (1999) Exact solution of the reversible diffu-
sion-influenced reaction for an isolated pair in three dimen-
sions. Phys Rev Lett 82:1578–1581

187. van Zon JS, ten Wolde PR (2005) Simulating biochemical net-
works at the particle level in time and space: Green’s function
reaction dynamics. Phys Rev Lett 94:128103

188. van Zon JS, Morelli MJ, Tanase-Nicola S, ten Wolde PR (2006)
Diffusion of transcription factors can drastically enhance the
noise in gene expression. Biophys J 91:4350–4367

189. Lipkow K (2006) Changing cellular location of CheZ predicted
by molecular simulations. Comp PLOS Biol 2:301–310

190. Lipkow K, Andrews SS, Bray D (2004) Simulated diffusion of
CheYp through the cytoplasm of E coli. J Bact 187:45–53

191. Tournier AL, Fitzjohn PW, Bates PA (2006) Probability-
based model of protein-protein interactions on biological
timescales. AlgorithmsMolec Biol 1:25

192. Tolle DP, Le Novère N (2006) Particle-based stochastic simu-
lation in systems biology. Curr Bioinformatics 1:1–6

193. Franks KM, Bartol TM, Sejnowski TJ (2002) A Monte Carlo
model reveals independent signaling at central glutameter-
gic synapses. Biophys J 83:2333–2348

194. Coggan JS, Bartol TM, Esquenazi E, Stiles JR, Lamont S, Mar-
tone ME, Berg DK, EllismanMH, Sejnowski TJ (2005) Evidence
for ectopic neurotransmission at a neuronal synapse. Science
309:446–451

195. Koh X, Srinivasan B, Ching HS, Levchenko A (2006) A 3D
Monte Carlo analysis of the role of dyadic space geometry in
spark generation. Biophys J 90:1999–2014

196. Stiles JR, van Helden D, Thomas J, Bartol M, Salpeter EE,
Salpeter MM (1996) Miniature endplate current rise times
< 100 microseconds from improved dual recordings can be
modeled with passive acetylcholine diffusion from a synaptic
vesicle. Proc Natl Acad Sci USA 93:5747–5752

197. Stiles JR, Kovyazina IV, Salpeter EE, Salpeter MM (1999) The
temperature sensitivity of miniature endplate currents is
mostly governed by channel gating: Evidence from opti-
mized recordings and Monte Carlo simulations. Biophys J
77:1177–1187

198. Bartol TMJ, Land BR, Salpeter EE, Salpeter MM (1991) Monte
Carlo simulation of miniature endplate current genera-
tion in the vertebrate neuromuscular junction. Biophys J
59:1290–1307

199. Howard M, Rutenberg AD, de Vet S (2001) Dynamic compart-
mentalization of bacteria: accurate division in E coli. Phys Rev
Lett 87:278102

200. Kruse K (2002) A dynamic model for determining the middle
of Escherichia coli. Biophys J 82:618–627

201. Wio HS (1996) Stochastic resonance in a spatially extended
system. Phys Rev E 54:R3075–R3078

202. Hu Z, Gogol EP, Lutkenhaus J (2002) Dynamic assembly of
MinD on phospholipid vesicles regulated by ATP and MinE.
Proc Natl Acad Sci USA 99:6761–6766

203. Hu Z, Saez C, Lutkenhaus J (2003) Recruitment of MinC, an in-
hibitor of Z-ring formation, to the membrane in Escherichia
coli: role of MinD and MinE. J Bact 185:196–203

204. Shih Y-L, Fu X, King GF, Le T, Rothfield L (2002) Division site
placement in E coli: mutations that prevent formation of the
MinE ring lead to loss of the normal midcell arrest of growth
of polar MinDmembrane domains. EMBOJ 21:3347–3357

205. Shih Y-L, Le T, Rothfield L (2003) Division site selection in Es-
cherichia coli involves dynamic redistribution of Min proteins
within coiled structures that extend between the two cell
poles. Proc Natl Acad Sci USA 100:7865–7870

206. Shih Y-L, Kawagishi I, Rothfield L (2005) The MreB and Min cy-
toskeletal-like systems play independent roles in prokaryotic
polar differentiation. Mol Microbiol 58:917–928

207. Suefuji K, Valluzzi R, RayChaudhuri D (2002) Dynamic assem-
bly of MinD into filament bundles modulated by ATP, phos-
pholipids, and MinE. Proc Natl Acad Sci USA 99:16776–16781

208. Pavin N, Paljetak C, Krstic V (2006) Min-protein oscillations in
Escherichia coli with spontaneous formation of two-stranded
filaments in a three-dimensional stochastic reaction-diffusion
model. Phys Rev E 73:021904

209. Adelman JL, Andrews SS (2004) Intracellular pattern forma-
tion: A spatial stochastic model of bacterial division site selec-
tion proteinsMinProc CDE. Complex Systems Summer School
Final Project Papers, Santa Fe Institute, Santa Fe

210. Drew DA, Osborn MJ, Rothfield LI (2005) A polymerization-
depolymerization model that accurately generates the self-
sustained oscillatory system involved in bacterial division site
placement. Proc Natl Acad Sci USA 102:6114–6118

211. Andrews SS, Arkin AP (2007) Amechanical explanation for cy-
toskeletal rings and helices in bacteria. Biophys J 93:1872–
1884

212. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying
protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–
456

Stochastic Noises, Observation,
Identification and Realizationwith
GIORGIO PICCI
Department of Information Engineering,
University of Padua, Padua, Italy

Article Outline

Glossary
Introduction
Stochastic Realization
Wide-Sense Stochastic Realization
Geometric Stochastic Realization
Dynamical System Identification
Future Directions
Bibliography

Glossary

Wiener process A Wiener process is a continuous time
stochastic process w D fw(t) ; t 2 Rg with continu-
ous sample paths and stationary independent incre-
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ments of zero mean and finite variance. The variance
of the incrementsw(t) � w(s)must then have the form
�2(t � s) and w(t) � w(s) must have a Gaussian dis-
tribution with mean zero (Levy’s theorem [30]). The
Wiener process is normalized (or standard) if �2 D 1.
A p-dimensional Wiener process is a vector stochas-
tic process having p components, wk ; k D 1; : : : ; p,
which are independentWiener processes. Awide-sense
p-dimensional normalized Wiener process is a con-
tinuous time stochastic process w D fw(t) ; t 2 Rg
which is continuous in mean square and has station-
ary orthogonal increments; i. e.,

Ef[w(t1) � w(s1)][w(t2) � w(s2)]0g D
Ipj[s1; t1] \ [s2; t2] j

where E denotes expectation, Ip is the p � p identity
matrix, the prime denotes transpose and j � j denotes
length (Lebesgue measure). This is a weaker concept
than that of a Wiener process.
A Wiener process with w(0) D 0 is sometimes called
a Brownian motion process. Usually a Brownian mo-
tion is only defined on the half lineRC.
Wiener processes and stochastic integrals with respect
to aWiener process, introduced byWiener and Itô, are
the basic building blocks of stochastic calculus [14,25].
Since stochastic integrals only depend on the incre-
ments of w, it is immaterial whether an arbitrary ran-
dom vector is added to w. The equivalence class of
(wide sense) Wiener processes differing from each
other by the addition of an arbitrary (constant) ran-
dom vector of finite variance (e. g. w(0)), will still be
called aWiener process and denoted by the symbol dw.

White noise Continuous time white noise is the formal
time derivative of a Wiener process. This derivative
must be understood in a suitable distributional sense
since it fails to exist as a limit in any of the standard
senses of probability theory.
Much more standard is the notion of discrete-time
(strict or wide-sense) normalized white noise pro-
cess. It is a sequence of independent equally dis-
tributed (respectively orthogonal) random vectors
w D fw(t) ; t 2 Zg with unit variance; i. e.,

Efw(t)w(s)0g D Iıts :D

(
I if s D t
0 if s ¤ t :

This last condition alone characterizes wide-sense
white noise. We shall always require that w should
have zero mean.

Stochastic differential and difference equations
Stochastic differential equations are equations that

define pathwise a continuous time stochastic process x
by “local” evolution laws of the type

dx(t) D f (x)dt C G(x)dw(t) ;

where dw is a vector Wiener process. The equation
should in reality be interpreted as an integral equa-
tion, the last term being a stochastic integral in the
sense of Itô, see [14,25]. Under certain growth condi-
tions on the coefficients the equation can be shown to
have a unique solution which, in case f and G depend
pointwise on x(t), is a continuous Markov process, in
fact a diffusion process.
In discrete time (t 2 Z) a stochastic difference equation
is an object of the type

x(t C 1) D f (x(t))dt C G(x(t))w(t)

where now w is white noise. The solution of an equa-
tion of this type is a (discrete-time) Markov process.

Stochastic dynamical systems In continuous time, a (fi-
nite-dimensional) stochastic system is a pair (x; y) of
vector, say n and m dimensional, stochastic processes
satisfying equations of the type

dx(t) D f (x(t))dt C G(x(t))dw(t)
dy(t) D h(x(t))dt C J(x(t))dw(t) :

The process x, which is Markov, is called the state of
the system while y is the output process. The differ-
ential notation in the second equation is merely to al-
low a possible additive white noise component in the
output process so y is actually the integral of the vari-
able which would physically be called the output of the
system. If there is no additive white noise component
(J � 0) this trick is unnecessary and the output vari-
able is simply expressed as a memoryless function of
the state, dy/dt D h(x(t)). A similar definition, with
the obvious modifications, serves to introduce the con-
cept of discrete-time stochastic systems.
The probabilistic essence of the concept of stochastic
system is more generally captured in terms of condi-
tional independence of the sigma-algebras induced by
the underlying processes. From this it can be clearly
seen that the state process at time t plays the role of dy-
namic memory of the system: the future and the past
of the output and of the state sigma-algebras are con-
ditionally independent given the present state x(t). For
a formal definition the reader is for example referred
to p. 219 in [51]. We shall introduce these concepts in
a wide-sense context later on.
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Introduction

In this article we discuss some general ideas which mo-
tivate the use of stochastic dynamical models in applied
sciences. We discuss the inherent mathematical problem
of stochastic model building, called stochastic realization
and the statistical problem of (dynamic) system identifi-
cation, i. e. procedures for estimating dynamic stochastic
models starting from observed data. We shall in particular
discuss linear stochastic state-space models with random
inputs, their construction and the relevant identification
techniques. We shall assume that the reader has some gen-
eral background on stationary stochastic processes, statis-
tics [12] and linear system theory as for example exposed
in the textbook [24].

There are no physical laws telling us how to obtain
stochastic descriptions of nature. The laws of mechan-
ics, electromagnetism, fluid dynamics etc. are, by nature,
essentially deterministic. A fundamental empirical obser-
vation is that stochastic models generally come about as
aggregate descriptions of complicated large deterministic
systems. Think for example of describing mathematically
the outcome of a dice-throwing experiment. Doing this by
the laws of physics involves an enormous number of com-
plicated factors such as the mechanics of a cubic-shaped
rigid body flying in the air after an initial impulse applied
on a specific region of one of its six faces. To describe the
trajectory (i. e. the motion of the barycenter, the body ori-
entation and the angular momenta) one should take into
account, besides gravity, lift phenomena due to portance,
drag, added-mass effects etc., describing the interaction
with the surrounding fluid. Then one should describe the
discontinuous mechanics of the dice landing on an elas-
tic surface etc. Modeling all of this by the known laws of
physics is perhaps possible and wemay in principle be able
to set up a set of algebraic-differential equations allowing
us to predict exactly (or “almost exactly”) which upper
face of the dice will eventually show. This however, pro-
vided we knew an enormous number of geometrical and
physical parameters of the system such as, for example,
the dimensions of the dice, its initial position and orienta-
tion, its mass and moments of inertia, the location, direc-
tion and strength of the initial impulse, the density of the
air surrounding the trajectory (depending on the temper-
ature, humidity etc.), the possible air convection phenom-
ena, the mechanical structure and geometry of the land-
ing medium, etc. Indeed, this predictive model based on
the (deterministic) laws of physics would require a very
large number of equations and involve an unimaginable
detailed prior knowledge of the parameters of the experi-
ment. Trivially, the rudimentary stochastic model consist-

ing of a probability distribution on the six possible out-
comes f1; 2; : : : ; 6g, although not allowing an “exact”, i. e.
“deterministic” prediction of the outcome, is incompara-
bly simpler. One could venture to say that most stochastic
models used in science and engineering come about, for
the same reason, as simple aggregate descriptions of com-
plicated deterministic systems. Thermodynamics, to name
just one of the most conspicuous instances of this phe-
nomenon, can be seen as stochastic aggregation of large
ensembles of microscopic particles evolving in time ac-
cording to the deterministic laws of mechanics [28,43].

Simplification is payed in terms of uncertainty and the
predictions based on stochastic aggregate models are by
nature uncertain. The modeling process hence requires us
to quantify the uncertainty of aggregate modes. In a more
precise sense, we should investigate their mathematical
structure and describe how to construct them. This will be
one of the main concerns of this article.

A Brownian Particle in a Heat Bath

The process of constructing aggregate models can be
elucidated by a famous example, the Ford–Kac–Mazur
model [20] which is probably the simplest explicitly solv-
able example of a problem of this nature.

Consider the problem of describing the dynamics of
a particle, called the Brownian particle, coupled to a “heat
bath” consisting of a very large number of identical parti-
cles obeying the laws of classical Hamiltonian mechanics
and moving under the influence of a quadratic potential.
Mathematically, the ensemble can be described as a large
number of coupled harmonic oscillators. The Brownian
particle is the only particle of the ensemble which is as-
sumed to be accessible to external observation. One as-
sumes that the macroscopic observables of the system are
the relative position q(t) and/or the momentum p(t) of the
Brownian particle, at each instant of time.

It is shown in [20] that in the limit when the num-
ber of particles in the heat bath tends to infinity, the mo-
tion of the Brownian particle is governed (exactly!) by the
stochastic differential equations,

q̇(t) D p(t) (1)

dp(t) D �ap(t)dt C kdw(t) ; a > 0 (2)

the second of which is the ubiquitous Langevin equation
of statistical physics. This equation contains a dynamical
friction term, (�ap(t)), and a forcing function term w(t)
which is described mathematically as a Wiener process.
Physically, these terms can be interpreted as the influence
of the surrounding medium on the observed particle, the
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friction accounting for the energy transferred from the
particle to the heat bath and the forcing term w(t) repre-
senting the sum of infinitesimal “random shocks” inflicted
to the particle by the surrounding medium.

The stochastic process describing the temporal evolu-
tion of the observables q(t) and p(t) is a Markov diffusion
process (in fact, both p(t) and the two-dimensional vec-
tor process [q(t) p(t)] are Markov). The evolution of the
macroscopic observables is hence dissipative, because of
the friction term, and irreversible, since diffusion processes
evolve in time by the action of a semigroup which cannot
be inverted to become a group. This is in accordance with
the basic postulates of (macroscopic) thermodynamics.

The Ford–Kac–Mazur example can be general-
ized [48,49,50,52]. Assume a microscopic system de-
scribed by a Hamiltonian H on the phase space ˝ ,
a smooth manifold of very large dimension 2N. The so-
lution of the Hamilton equations determines the phase
of the system, say configurations and momenta z(t) :D
[q(t) p(t)]0 at each time t, uniquely in terms of the ini-
tial value z(0) 2 ˝. The correspondence defines a flow
z(t) D ˚(t)z(0) on the phase space which leaves invari-
ant the total energy, H(z(t)), of the system. The micro-
scopic evolution is in this sense, reversible and conserva-
tive. However, microscopic phenomena are complex in the
sense that they involve an enormous number of interact-
ing components and it is impossible to keep track of the
dynamics of such a complex system. One must then resort
to a statistical description.

A probability distribution on ˝ which is invariant
for the Hamiltonian flow U(t) defines “thermal equilib-
rium”. It is known that in a finite-dimensional space any
absolutely continuous U(t)-invariant probability measure
admits a one parameter family of densities �(z) of the
Maxwell–Boltzmann type, equal to a normalization con-
stant times exp[� 1

2ˇ H(z)], ˇ > 0, being interpreted as
the “absolute temperature”. For a quadratic Hamiltonian
in a linear phase space these distributions are Gaussian.
The choice of an initial phase z(0) of a system in thermal
equilibrium can then be interpreted as a random choice
of an elementary event in the elementary outcome space
f˝; �g.

It follows that in thermal equilibrium any observable;
i. e. any measurable function h : ˝ ! R on the phase
space can be regarded as a random variable. In fact,
once combined with the (measure-preserving) Hamilto-
nian flow z(t) D U(t)z(0), any measurable observable de-
fines a stationary stochastic process. In general, the time
evolution of any finite, say m-dimensional, family of ob-
servables fh1; : : : ; hmg can be identified with a vector-val-
ued m-dimensional stationary process fy(t)g on ˝ , with

components

yk(t; z(0)) :D hk(U(t)z(0)) (3)

where z(0) 2 ˝ is the elementary event andU(t) the mea-
sure preserving group of transformations on the underly-
ing probability space.

The main point of this story is that the “randomiza-
tion” of the phase space may, under certain conditions,
lead to a description of certain observable processes fy(t)g
of (3) by a stochastic dynamical model of a much simpler
structure than the microscopic deterministic Hamiltonian
description. These could for example be representations of
fy(t)g of the type y(t) D h(x(t)) where fx(t)g a finite di-
mensional, say Rn-valued Markov process and h is a suit-
able function h : Rn ! Rm . This description, in case the
Markovian representation has a smaller complexity (di-
mension) than that of the microscopic description, would
precisely meet both the general physical plausibility for
a thermodynamic description and the mathematical re-
quirement of reduction of complexity.

Remark 1 This view generalizes the way of conceiv-
ing stochastic aggregation in the physical literature,
e.g [31,32], where it is generally required that the observ-
ables themselves should be Markov and satisfy a Langevin
equation.

In general the requirement that the observables should
themselves be Markov processes is seldom a reasonable
one. For example, in the Brownian particle example the
macroscopic observable q(t) by itself need not satisfy
any stochastic differential equation. Formally, q(t) is just
a memoryless function of a two-dimensional Markov pro-
cess x(t) :D [q(t) p(t)]0 and it is instead the “thermody-
namic state” x(t) which satisfies a stochastic differential
equation.

Stochastic Realization

Stochastic realization is the abstract version of the aggre-
gation problem mentioned above. One studies the prob-
lem of representing an m-dimensional stationary process
fy(t)g as a memoryless function of a Markov process. In
this setting the physical phase space and the Hamilto-
nian group fUtg are generalized to an abstract probability
space and to a measure preserving one-parameter group
of transformations mapping˝ onto itself (the shift group
of the process). In this article we shall assume that fy(t)g is
smooth with continuous values but the problem area also
concerns stationary finite state-processes, see [5,19,46,66],
which have important applications in communications
and biology. In the present context, the question is when
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does a given stationary,m-dimensional, stochastic process
fy(t)g admit representations of the type y(t) D h(x(t))
where fx(t)g is a Markov diffusion process taking values
on a finite-dimensional state space X and h is say a contin-
uous function from X toRm .

Since a smoothMarkov diffusion process fx(t)g is a so-
lution of a stochastic differential equation (Chap. VI, Par. 3
in [14]), any such process must admit representations as
the output of a stochastic dynamical system of the type

dx(t) D f (x(t))dt C G(x(t))dw(t) (4)

y(t) D h(x(t)) (5)

where fw(t)g is a vector mWiener process. This stochastic
dynamical system generalizes the Langevin equation rep-
resentation. For a Gaussian mean square continuous sta-
tionary process, the representation simplifies to a linear
model of the form

dx(t) D Ax(t)dt C Bdw(t) (6)

y(t) D Cx(t) (7)

where A; B;C are constant matrices of appropriate dimen-
sions. There may be a need for introducing an additive
noise term also in the second (output) equation when the
process y has stationary increments, a situation more gen-
eral than stationarity, see [37].

Representations as the output of a stochastic dynam-
ical system are called stochastic realizations or state-space
realizations of the process y and the Markov process x(t)
is accordingly called the state process of y, or of the realiza-
tion.

Signal descriptions by a finite dimensional stochastic
realization can be transformed into other equivalent forms
such as ARMA models etc., which are also widely used in
the engineering and econometric literature. It should be
stressed that, irrespective of which particular equivalent
form of the stochastic model, virtually all sequential signal
processing, prediction and control algorithms (Kalman fil-
tering to name just the most popular) require availability
of a finite-dimensional realization of one form or another.
Hence signal representation by a stochastic system is in-
deed a crucial prerequisite for system analysis and design
in engineering and applied sciences.

A substantial amount of literature on the stochastic re-
alization problem has appeared in the last four decades.
The stationary (and stationary increments) Gaussian case
is now covered by a rather complete linear theory, and is
surveyed e. g. in [35,37]. For a more up to date account,
see the forthcoming book [41]. The nonlinear realization
problem is still underdeveloped, see [45,51,62].

Wide-Sense Stochastic Realization

We shall discuss only the wide-sense version of the real-
ization problem, where random variables and processes
are described in terms of first- and second-order mo-
ments. Since first- and second-order moments individ-
uate a Gaussian distribution uniquely, the theory will
in particular cover the Gaussian case. Hereafter, wide-
sense stationarity will be simply referred to as stationarity.
Also, a “wide-sense Markov process” will simply be called
a “Markov process”.

The wide-sense realization problem may look like
a very particular modeling problem to deal with, but it is
completely solvable and is general enough to reveal quite
explicitly some of the important features of the solution
set of stochastic realizations, some of which are quite un-
expected. It is also motivated by its wide applicability since
most times in practice the only reasonable way to describe
a priori random phenomena is by second-order moments,
say by covariances or spectra.

We advise the reader that in many applied fields one
maywant to construct dynamical systemmodels involving
also exogenous input (or decision) variables. The stochas-
tic realization problem of constructing linear state-space
representations of a stationary process with inputs has
been studied in [11,53,54,55]. In the last two references
one may find also material related to the germane prob-
lem of identification with inputs.

For reasons of space limitations we shall not touch
upon this subject. A pointer to the relevant identification
literature will be given in the final section of the article.

We shall discuss in some detail only stochastic realiza-
tion of discrete-time random processes. An analogous (and
in fact somewhat simpler) treatment can be given for con-
tinuous time processes [35] but we choose discrete-time
since this theory makes contact with system identification
which we shall discuss later in the section entitled “Dy-
namical System Identification”.

Given a vector (say m-dimensional) wide-sense sta-
tionary purely nondeterministic (purely nondeterministic
will be abbreviated to p.n.d. in the following; this prop-
erty is called linear regularity in the Russian literature,
see [57]) process y D fy(t)g with t 2 Z (the integers), one
wants to find representations of y in terms of a finite di-
mensional Markov process. In other words one wants to
find linear representations of the stationary process y, of
the form

x(t C 1) D Ax(t)C Bw(t) (8a)

y(t) D Cx(t)C Dw(t) (8b)
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and procedures for constructing them. Here fw(t)g is
a vector, p-dimensional normalized white noise process,
i. e. Efw(t)w(s)0g D Iı(t � s) ;Efw(t)g D 0, ı being the
Kronecker delta function. Note that a white noise w could
be seen as a (degenerate) kind of Markov process. The rea-
son for having the term Dw(t) in (8b) is to avoid the pres-
ence of such degenerate components in the dynamic equa-
tion for the state process xwhich would artificially increase
its dimension. With this convention, in the extreme cir-
cumstance where y D w, the state dimension (of a mini-
mal realization) is zero.

The linear representation (8a) involves auxiliary vari-
ables, i. e. random quantities which are not given as a part
of the original data, especially the n-dimensional state pro-
cess x (a stationary Markov process) and the generating
white noise w. The peculiar properties of these processes
actually embody the desired system structure (8a). Con-
structing these auxiliary processes is an essential part of
the realization problem.

We shall restrict ourselves to representations (8a) for
which

� (A,B,C) is a minimal triplet; i. e. (A; B) is a reachable
pair and (A;C) is an observable pair, see e. g. [24] for
these notions;

�

�
B
D

�
has independent columns.

These are classical conditions of nonredundancy of the
model [24] and entail no loss of generality. From standard
spectral representation theory, see e. g., Chap. 1 in [57], it
follows that Eq. (8a) admits stationary solutions if and only
if the rows of the n � p matrix (ei� I � A)�1B are square
integrable functions of � 2 [��; �]. This is equivalent to
the absence of poles of the function z ! (zI � A)�1B on
the unit circle. Equivalently, the eigenvalues of A of mod-
ulus one, if any, must be “unreachable” for the pair (A; B).

When eigenvalues on the unit circle are present, to
guarantee stationarity they must be simple roots of the
minimal polynomial of A. These eigenvalues, necessar-
ily in even number say 2k, give then rise to a sum
of k uncorrelated sinusoidal oscillations with random
amplitude, the so-called purely deterministic component
of the process. This purely deterministic component of
the stationary Markov process x obeys a fixed undriven
(i. e. deterministic) linear difference equation of the type
x(t C 1) D Aox(t), which is the restriction of (8a) to the
modulus one eigenspace of A. The initial conditions are
random variables independent of the driving noise w.
Since there is no stochastic forcing term in this restricted
state equation, it follows that the presence of a purely de-
terministic component in the Markov process necessar-

ily implies that the pair (A; B) must be nonreachable. The
first of the two conditions of nonredundancy listed above
hence excludes the presence of a purely deterministic com-
ponent in the state, and therefore also in the output pro-
cess y.

From this discussion it is immediately seen that there
are stationary solutions x of the difference Eq. (8a) which
are p.n.d. Markov processes if and only if A does not have
eigenvalues of modulus one; i. e.

j(A)j ¤ 1 : (9)

When j(A)j < 1, the representation (8a) is called for-
ward or causal. When j(A)j > 1 the representation is
called backward or anticausal. Traditionally the causality
of a representation, i. e. the condition j(A)j < 1 has been
regarded as being equivalent to stationarity. In fact, sta-
tionarity permits a whole family of representations (8a) of
the (same) process x, where the matrices A can have very
different spectra. Formulas for computing a backward rep-
resentation starting from a forward one or vice versa are
given in [34,36]. The two representations (in particular the
relativeAmatrices) are related by a particular family of lin-
ear state feedback transformations [47].

The covariance function of a zero-mean wide sense sta-
tionary process y is the m � m matrix function k 7! �k ,
defined by

�k :D Efy(t C k)y(t)0g D Efy(k)y(0)0g k 2 Z :

Thismatrix function will be the initial data of our problem.
Since y is p.n.d. the function� admits a Fourier transform
called the spectral densitymatrix of y, given by

˚(z) D
1X

tD�1
�t z�t

where z D ei� ; � 2 [��; �]. It is easy to see that the spec-
tral density matrix of a process admitting a state-space re-
alization (8a) must be a rational function of z. This fact fol-
lows easily by eliminating the variable x in (8a) and thereby
expressing y as the output of a linear filter as in Fig. 1 below
whose transfer function W(z) D C(zI � A)�1BC D is
a rational function of z, and then using the classical Kint-
chine and Wiener formula for the spectrum of a filtered

Stochastic Noises, Observation, Identification and Realization
with, Figure 1
Shaping filter representation of a stochastic process
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stationary process [28,69] so that,

˚(z) D W(z)W(1/z)0 : (10)

Hence we have

Proposition 1 The transfer function W(z) D C(zI �
A)�1B C D of any state space representation (8a) of the
stationary process y, is a spectral factor of ˚ , in the sense
that it satisfies the spectral factorization equation (10).

It is easy and instructive to check this directly. Supposing
that one has a causal realization (8a), one can compute for
k � 0,

�k D E[CAk x(t)

C

k�1X

sD0

CAk�1�s Bw(t C s)C Dw(t C k) ]

[Cx(t)C Dw(t)]0 (11)

D CAk�1C̄0 C
1
2
�0ı(t) ; (12)

where C̄0 D Ex(t C 1)y(t)0 and �0 D Ey(t)y(t)0. By
identifying terms, these matrices can be expressed directly
in terms of the realization parameters A; B;C;D, by

P D APA0 C BB0 (13a)

C̄0 D APC0 C BD0 (13b)

�0 D CPC0 C DD0 (13c)

the matrix P D Ex(t)x(t)0 being the covariance matrix of
the state process. Note that P obeys Eq. (13a) since by
causality (j(A)j < 1) x(t) is a function of the infinite past
fw(s); s < tg and hence is uncorrelated with w(t) so that
the two terms in the right hand side of (8a) are also uncor-
related and their variances add. In fact, by reachability of
the model, P is actually (symmetric and) positive definite.

Now, introduce the decomposition

˚(z) D ˚C(z)C˚C(1/z)0 (14)

where ˚C(z) D 1
2�0 C�1z�1 C�2z�2 C � � � is analytic

outside of the unit circle. Clearly ˚C(z) must be the
Fourier transform of the “causal” tract of the covariance
function �, computed in (12). Hence

˚C(z) D C(zI � A)�1C̄0 C
1
2
�0 : (15)

This shows that the spectrum of a process y described by
a state-space model (8a), besides being a rational function

of z, is directly expressible in parametric form in terms of
the parameters of a causal realization. This explicit com-
putation of the spectrum seems to be due to R.E. Kalman
and B.D.O. Anderson [4,21].

“Classical” stochastic realization theory, developed in
the late 1960s [3,4,17], deals with the inverse problem of
computing the parameters A; B;C;D of a state space real-
ization starting from the spectrum (or, equivalently, of the
covariance function) of a stationary process y. Of course
one assumes here that y is p.n.d. and has a spectral den-
sity ˚ which is a rational function of z D e j� .

This inverse problem is just a parametric version of the
spectral factorization problem: Given a rational spectrum
˚(z) one looks for rational spectral factors parametrized
asW(z) D C(zI � A)�1BC D, solutions of (10). Since ra-
tional factors of a given spectral density matrix are in gen-
eral infinitely many, one must preliminarily single out the
interesting solutions by imposing certain restrictions. One
very reasonable restriction which is imposed on the solu-
tions of (10) is that the spectral factors should be of min-
imal degree. The degree of a proper rational matrix func-
tion is by definition the dimension n of the state of a mini-
mal realization. Minimal degree (for short,minimal) spec-
tral factors must have a degree which is exactly one half of
the degree of the spectral density matrix˚(z).

The solution of the inverse problem is described in the
following proposition.

Proposition 2 Assume the spectrum is given in the para-
metric form (15) where j(A)j < 1 and (A;C; C̄0) is a min-
imal triplet of dimension n. Then the minimal degree spec-
tral factors of ˚(z), analytic infjzj > 1g, are in one-to-one
correspondence with the symmetric n � n matrices P solv-
ing the Linear Matrix Inequality (LMI)

M(P) :D
�

P � APA0 C̄0 � APC0

C̄ � CPA0 �0 � CPC0

�
� 0 (16)

where the symbol�means positive semidefinite. The corre-
spondence is to be understood in the following sense:

Corresponding to each solution P D P0 of (16), consider

the full column rank matrix factor
�

B
D

�
of M(P),

M(P) D
�

B
D

�
[B0D0] (17)

(this factor is uniquemodulo right multiplication by orthog-
onal matrices) and form the rational matrix

W(z) :D C(zI � A)�1BC D : (18)

Then (18) is a minimal realization of a minimal analytic
spectral factor of ˚(z) and all minimal analytic factors can
be obtained in this way.
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Note that any matrix P solving the LMI satisfies the sys-
tem (12) and hence can be interpreted as the state covari-
ance of a causal realization of y. It follows that any P solv-
ing the LMI is necessarily positive definite.

In fact it has been shown [17] that the set of symmetric
solutions to the LMI (16)

P :D fP D P0 ; M(P) � 0g

is a closed, bounded and convex set with maximal and
minimal elements P�; PC 2 P which satisfy

P� � P � PC for all P 2 P

where P1 � P2 means that P2 � P1 � 0 (is positive semi-
definite).

The existence of solutions to the LMI is equivalent to
the property of ˚C(z) defined in (14) of being a positive-
real matrix function, namely that˚C should be analytic in
fjzj > 1g and that<e˚C(e j� ) � 0. The second condition
is automatically satisfied when ˚ admits spectral factors
since

2<e˚C(e j� ) D W(e j� )W(e j� )� � 0

(the star meaning complex conjugate transpose). This
property can be characterized in general, for not neces-
sarily stable representations, by the so-called positive-real
lemma discovered in the 1960s by Kalman, Yakubovich,
and Popov [22,56,71] in the context of dissipative systems
and stability theory. The first application of the Kalman–
Yakubovich–Popov theory to factorization of spectral
density functions and to stochastic realization (called sta-
tionary covariance generation) is due to B.D.O. Ander-
son [3,4]. Far reaching generalizations to not necessarily
stable systems have been pursued by J.C. Willems in his
widely quoted paper [70]. The terminology “positive real”
derives from network synthesis.

Under certain conditions on the zeros of the spectrum,
discussed e. g. in [18], the matrix �(P) :D �0 � CPC0 is
nonsingular (and hence positive definite) for all P 2 P.
In this case (16) is equivalent to the nonnegativity of the
Schur complement of�(P) in the matrixM(P), which can
be written

P�APA0� (C̄0�APC0)�(P)�1(C̄0�APC0)0 � 0 : (19)

This is the Algebraic Riccati Inequality (ARI) of spectral
factorization, first analyzed in the work of [3,17]. The so-
lutions of the ARI with equality sign; i. e. the solutions of
the Algebraic Riccati Equation (ARE)

P� APA0 � (C̄0 � APC0)�(P)�1(C̄0 � APC0)0 D 0 (20)

make M(P) of minimal rank m D dim y and hence cor-
respond to square spectral factors (18). These spectral fac-
tors all have the same denominator matrix A and hence
only differ by the location of their zeros. In particular one
may show that P�; PC solve the ARE and the two spec-
tral factors W� and WC corresponding to P�; PC (are
square and) have all of their zeros inside and respectively
outside of the unit circle. In other words, W� is the min-
imum phase and WC the maximum phase spectral fac-
tor. These spectral factors are essentially unique. All other
square spectral factors are obtained (in rough terms) by
“flipping” some of the zeros ofW� to their reciprocals out-
side of the unit circle. The maximum phase factor, WC,
is obtained by flipping all of the zeros of W� to their re-
ciprocals. More information on the zero structure of the
minimal spectral factors can be found in [39].

In the next section we shall analyze in more detail
the correspondence between spectral factors and stochas-
tic realizations. As we shall see, for square spectral factors
this correspondence is one-to-one and hence this partic-
ular class of stochastic realizations, for which dimw D
dim y D m can be classified according to their zero lo-
cation.

The LMI plays an important role in many areas of sys-
tem theory such as stability theory, dissipative systems and
is central inH1 control and estimation theory. It seems to
be much less appreciated in the scientific community that
it plays a very basic role in modeling of stationary random
signals as well. As we shall see in the next section certain
solutions of the LMI (or of the ARI) have special proba-
bilistic properties and are related to Kalman-filter or “in-
novations-type” realizations.

Geometric Stochastic Realization

The classical stationary covariance realization theory of
the previous section is purely distributional as it says noth-
ing about representation of random quantities in a truly
probabilistic sense (i. e. how to generate the random vari-
ables or the sample paths of a given process, not just
its covariance function). This was implicitly pointed out
by Kalman already in [23]. In the last decades a geomet-
ric coordinate-free approach to stochastic modeling has
been put forward in a series of papers by Lindquist, Picci,
Ruckebusch et al. [33,34,35,58,59,60] which aims at the
representation of random processes in this more specific
sense. This motivation is also present in the early papers
by Akaike [1,2].

A main point of the geometric approach is to provide
procedures for the construction of the random quantities
defining a stochastic state-space realization. In particular
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the state space of a realization is defined in terms of the
conditional independence relation between past and fu-
ture of the signals involved. This relation is intrinsically
coordinate-free and in the present setting involves only lin-
ear subspaces of a given ambient Hilbert space of random
variables, typically made of linear functionals of the vari-
ables of the process y to bemodeled (but in some situations
other random data may be used to construct the model).

Constructing the State Space of a Stationary Process

The theme of this section will be a review of geometric re-
alization theory for the stochastic process y. The geomet-
ric theory centers on the idea of Markovian Splitting Sub-
space for the process y. This concept is the probabilistic
analog of the deterministic notion of state space of a dy-
namical system and captures at an abstract level the prop-
erty of “dynamic memory” that the state variables have in
deterministic dynamical system theory. Once a stochastic
state space is given the construction of the auxiliary ran-
dom quantities which enter in a state space model and in
particular the state process is fairly obvious. The state vec-
tor x(t) of a particular realization can be regarded just as
a particular basis for the state space, hence once a state-
space is constructed, finding state equations is just a matter
of choosing a basis and computing coordinates.

Notation 1 In what follows the symbols _, C and ˚ will
denote vector sum, direct vector sum and orthogonal vec-
tor sum of subspaces, the symbol x? will denote the or-
thogonal complement of a (closed) subspace X of a Hilbert
space with respect to some predefined ambient space. Given
a collection fX˛ j ˛ 2 Ag of subsets of a Hilbert spaceH we
shall denote by spanfX˛ j ˛ 2 Ag the closure in H of the
linear (real) vector space generated by the collection. The
orthogonal projection onto the subspace X will be denoted
by the symbol E(� j X) or by the shorthand EX. The no-
tation E(z j X) will be used also when z is vector-valued.
The symbol will then denote the vector with components
E(zk j X); k D 1; : : :. For vector quantities, jvj will denote
Euclidean length (or absolute value in the scalar case).

Let y be a zero mean stationary vector process with finite
second-order moments defined on some underlying prob-
ability space f˝;A; �g and let L2f˝;A; �g denote the
Hilbert space of second-order random variables defined
on˝ , endowed with the inner product< �; � >D E f��g.
Let H(y) be the (closed) linear subspace of L2f˝;A; �g,
linearly generated by the variables of the process; i. e.

H(y) :D spanfyk(t) ; k D 1; 2; : : : ;m; t 2 Zg :

If y is generated by a linear model of the type (8a) this
Hilbert space will in general be a proper subspace of the

space H(w), generated by the input white noise of the
model (8a). All random variables of the stochastic sys-
tem (8a) belong to H(w) and for this reason H(w) is
called the ambient space of the model. By stationarity of
w, H(w) comes naturally equipped with a unitary opera-
tor U, called the shift of w, such that Uwi(t) D wi (t C 1)
for i D 1; 2; : : : ; p and all t 2 Z (stationarity). Note that
the family

˚
Ut ; t 2 Z

�
forms a one parameter group of

unitary operators on the ambient space; in particular,
U�t D (U�)t . The pair (H(w);U) is also called a station-
ary Hilbert space. Clearly the processes x and y will also be
stationary with respect to U.

The past and future subspaces (at time zero) of a sta-
tionary process are

H�(y) :D spanfyk(t) ; k D 1; 2; : : : ;m; t < 0g

HC(y) :D spanfyk(t) ; k D 1; 2; : : : ;m; t � 0g :

Because of stationarity everything propagates in time by
the action of the unitary group, e. g. the past and fu-
ture at time t are obtained as H�t (y) D UtH�(y) and
HCt (y) D UtHC(y). For this reason the geometric defi-
nitions and constructions to follow, although valid for an
arbitrary time instant will usually be referred to the time
instant t D 0.

Let X be a subspace of some large stationary Hilbert
space H of wide-sense random variables containing H(y).
Define

Xt :D UtX; X�t :D _s�tXs ; XCt :D _s�tXs :

Definition 1 A Markovian Splitting Subspace X for the
process y is a subspace of H making the vector sums
H(y)� _ X� and H(y)C _ XC conditionally orthogonal
(i. e. conditionally uncorrelated) given X, denoted,

H(y)� _ X� ? H(y)C _ XC j X: (21)

The conditional orthogonality condition (21) can be equi-
valently written as

E[H(y)C _ XC j H(y)� _ X�] D

E[H(y)C _ XC j X] (22)

E[H(y)� _ X� j H(y)C _ XC] D
E[H(y)� _ X� j X] (23)

which formalize the intuitive meaning of the splitting sub-
space X as a dynamic memory of the past (future) for the
purpose of predicting the joint future (past). It follows in
particular that X is Markovian (i. e. X� ? XC j X) and
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any basis vector x :D [x1; x2; : : : ; xn]0 in a (finite-dimen-
sional) Markovian splitting subspace X generates a sta-
tionary Markov process x(t) :D Utx; t 2 Z which, as we
shall see in a moment, serves as a state for the process y.

The subspace X is called proper, or p.n.d. if

\tY�t _ X�t D f0g; and \t H(y)Ct _ XCt D f0g :

Obviously for the existence of proper splitting subspaces y
must also be purely nondeterministic [57]. Properness is,
by theWold decomposition theorem, equivalent to the ex-
istence of two vector white noise processes w and w̄ such
that,

H(y)� _ X� D H�(w) ; H(y)C _ XC D HC(w̄) :

If X is proper, everyMarkov process x(t) :D Utx is purely
nondeterministic.

The subspaces

S :D H(y)� _ X� and S :D YC _ XC (24)

associated to a Markovian Splitting subspace X, play an
important role in the geometric theory of stochastic sys-
tems. They are called the scattering pair of X as they can
be seen to form an incoming–outgoing pair in the sense of
Lax–Phillips Scattering Theory [29].

Definition 2 Given a stationary Hilbert space (H;U)
containingH(y), a scattering pair for the process y is a pair
of subspaces (S; S) satisfying the following conditions for
a stationary process,

1. U�S � S and US � S, i. e. S and S are invariant for the
left and right shift semigroups (this means that St is in-
creasing and St is decreasing with time).

2. S _ S D H
3. S � H(y)� and S � H(y)C

4. S? � S or, equivalently, S? � S

The following representation Theorem provides the link
between Markovian splitting subspaces and scattering
pairs.

Theorem 1 ([35]) The intersection

X D S \ S (25)

of any scattering pair of subspaces ofH is aMarkovian split-
ting subspace. Conversely every Markovian splitting sub-
space can be represented as the intersection of a scatter-
ing pair. The correspondence X$ (S; S) is one-to-one, the
scattering pair corresponding to X being given by

S D H(y)� _ X� S D H(y)C _ XC: (26)

The process of forming scattering pairs associated to X
should be thought of as an “extension” of the past and
future spaces of y. The rationale for this extension is that
scattering pairs have an extremely simple splitting geome-
try due to the fact that

S ? S j S \ S (27)

equivalent to

S _ S D S? ˚ (S \ S) ˚ S? (28)

which is called perpendicular intersection. It is easy to show
that Property (4) in the definition of a scattering pair
is actually equivalent to perpendicular intersection. This
property of conditional orthogonality given the intersec-
tion can also be seen as a natural generalization of the
Markov property. Indeed for a Markovian family of sub-
spacesX D X� \ XC and S D X�; S D XC intersect per-
pendicularly with intersection X.

Note that A ? B j X) A \ B � X but the inclusion
of the intersection in the splitting subspaceX is only proper
in general. For perpendicularly intersecting subspaces, the
intersection is actually the unique minimal subspace mak-
ing them conditionally orthogonal.

Theorem 1 is the fundamental device for the construc-
tion and classification of Markovian splitting subspaces.

Denote byWt ; W̄t the (wandering) subspaces spanned
by the components, at time t, of the generating noises w(t)
and w̄(t), of the scattering pair of X. Since

StC1 D St ˚Wt ; (29)

we can write,

XtC1 D StC1\StC1 � (St \StC1)˚ (Wt \StC1) (30)

Since St is decreasing in time, we have St \ StC1 � Xt and
by projecting the shifted basisUx(t) :D x(t C 1), onto the
last orthogonal direct sum above, the time evolution of any
basis vector x(t) :D [x1(t); x2(t); : : : ; xn(t)]0 in Xt , is de-
scribed by a linear equation of the type

x(t C 1) D Ax(t)C Bw(t) :

It is also easy to see that, by the p.n.d. property, A must
have all its eigenvalues strictly inside of the unit circle. Nat-
urally, by decomposing instead St�1 D St ˚Wt one could
have obtained a backward difference equation model for
the Markov process x, driven by the backward generating
noise w̄.

To complete the representation, note that by definition
of the past space, y(t) 2 (StC1 \ St). Inserting the decom-
position (29) and projecting y(t), leads to a state-output
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equation of the form

y(t) D Cx(t)C Dw(t) :

Here one could also obtain a state-output equation driven
by the backward noise w̄, the same noise driving the back-
ward state model obtained before.

As we have just seen, any basis in a Markovian split-
ting subspaces produces a stochastic realization of y. It is
easy to reverse the implication. In fact the following fun-
damental characterization holds.

Theorem 2 ([33,37]) The state space X D spanfx1(0);
x2(0); : : : ; xn(0)g of any stochastic realization (8a) is
a Markovian splitting subspace for the process y.

Conversely, given a finite-dimensionalMarkovian split-
ting subspaceX, to any choice of basis x(0) D [ x1(0); x2(0);
: : : ; xn(0) ]0 in X there corresponds a stochastic realization
of y of the type (8a).

Once a basis in X is available, there are obvious formulas
to compute the parameters (A;C; C̄) of the corresponding
stochastic realization, namely

AD Ex(t C 1)x(t)0 P�1 (31)

C D Ey(t)x(t)0 P�1 (32)

C̄ D Ey(t � 1)x(t)0 (33)

where P D Ex(t)x(t)0 is the state covariance matrix (i. e.
the Gramian matrix of the basis). The matrices B and
D, however, are related to the (unobservable) generating
white noise w and require the solution of the LMI. This
abstract procedure which permits us to compute the pa-
rameters of a stochastic realization once the state has been
constructed, can be rendered quite concrete and forms the
conceptual basis of subspace identification.

Stochastic realizations are called internal when
H D H(y), i. e. the state space is built from the Hilbert
space made just of the linear statistics of the process y.
For identification the only realizations of interest are the
internal ones.

A central problem of geometric realization theory is to
construct and to classify all minimal state spaces, i. e. the
minimal Markovian splitting subspaces for the process y.

The obvious ordering of subspaces of H by inclusion,
induces an ordering on the family of Markovian splitting
subspaces. The notion of minimality is most naturally de-
fined with respect to this ordering. Note that this defini-
tion is independent of assumptions of finite-dimension-
ality and applies also to infinite-dimensional Markovian
splitting subspaces, i. e. to situations where comparing di-
mension would not make much sense.

Definition 3 A Markovian splitting subspace is minimal
if it does not contain (properly) other Markovian splitting
subspaces.

The study of minimality forms an elegant chapter of
stochastic system theory. There are several known geomet-
ric and algebraic characterizations of minimality of split-
ting subspaces and of the corresponding stochastic state-
space realizations. Since, however, the discussion of this
topic would take us too far from the main theme of the
paper we shall refer the reader to the literature [35,37].

Contrary to the deterministic situation minimal
Markovian splitting subspaces are nonunique. Two very
important examples are the forward and backward predic-
tor spaces (at time zero):

X� :D EH
�

HC XC :D EH
C

H� (34)

for which we have the following characterization [35].

Proposition 3 The subspaces X� and XC are minimal
Markovian splitting subspaces contained in the past H�,
and, respectively, in the futureHC, of the process y.

A basis in the forward predictor space X� originates a sta-
tionary state-space model in which the state variables are
linear functionals of the past history of the process y, i. e.
x(t) 2 H�t (y). In other words the state coincides with its
best estimate (the orthogonal projection), E[x(t) j H�t (y)]
given the past of y. It follows that the dynamical equa-
tions (8a) describe in this case a steady-state Kalman pre-
dictor and the input white noisew D w� is the steady state
innovation process of y.

Before closing this section we should remark that
a scattering picture emerges also in some of the early pa-
pers on the “unitary dilation” approach to statistical me-
chanics, e. g. [31,32]. It is remarkable that the abstract scat-
tering picture described in this section makes contact with
this literature. The dilation approach, however, deals (in
our language) with the reverse problem of describing the
stationary shift group starting from (Markov) processes
which are described by a Langevin-type equation. This is
a curious and (in our view) somewhat unnatural point of
view which apparently does not lead to capture the phe-
nomenon of nonuniqueness of the macroscopic description
of the observables.Whether this has any physical relevance
is however not clear to us.

Dynamical System Identification

System identification is the problem of describing an ob-
served time series (e. g. a sequence of real numbers rep-
resenting stock prices, temperatures in a room, sampled
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audio or video signals, etc.) by a linear dynamic model,
in particular by a state-space model of the type (8a). It
is a widely accepted viewpoint that system identification
should be regarded as a statistical problem [40,42]. This
is so because the experimental data which one wants to
model very often come from complicated, often unknown,
nonlinear physical phenomena subject to unknown inter-
actions with the environment, and it would in general be
impossible to attempt a “physical” modelization from first
principles. Consequently the models describing the data
should be stochastic. The general goal is to get accurate
models which are as simple as possible. The problem can
then be approached from (at least) two conceptually dif-
ferent viewpoints.

Identification by Parametric Optimization

This is the mainstream “optimization” approach, based on
the principle of minimizing a suitable measure of discrep-
ancy between the observed data and the data predicted
by a probability law underlying a certain chosen model
class. Well-known examples of distance functions are the
likelihood function, or the average squared prediction-er-
ror of the observed data corresponding to a particular
model. Except for rather trivial model classes, these dis-
tance functions depend nonlinearly on the model param-
eters and the minimization can only be done numerically.
Hence the optimization approach leads to iterative algo-
rithms in the parameter space, say in the space of minimal
(A; B;C;D) matrix quadruples which parametrize a cho-
sen model class. In spite of the fact that this has been al-
most the only accepted paradigm in system identification
for many decades, [42,61], this approach has several draw-
backs, including the need of unique parametrization of
multivariable models, the fact that the cost function gener-
ally has complicated local minima which, for moderate or
large dimension of the model are very difficult to detect,
and the inherent insensitivity of the cost to variations of
some parameters and the corresponding ill-posedness of
the estimation problem.

It seems that these limitations are a consequence of the
intrinsically “blind” philosophy which underlies setting
the problem as a parameter optimization problem. Almost
all problems of controller and/or estimator design could
in principle be formulated just as parametric optimization
after choosing a certain family of parametric structures for
the controller or the estimator. Pushing this philosophy to
the extreme, in principle one would not need the maxi-
mum principle, Kalman filtering, H1 theory, etc. (in fact
one would not need system and control theory altogether),
since everything could be reduced to a nonlinear program-

ming problem in a suitable space of controller or estima-
tor parameters. It is dubious however, whether any real
progress in the field of control and estimation could have
occurred by following this type of paradigm.

Identification by Stochastic Realization

This is commonly referred to as “subspace methods” iden-
tification or “subspace identification” tout-court. Subspace
identification is essentially a sample version of stochastic
realization. Under a reasonable assumption of second-or-
der ergodicity of the process y which has produced the
observed data, one can set up a “sample” counterpart of
the abstract Hilbert space operations of stochastic real-
ization theory. In this setting the geometric operations of
stochastic realization can be translated into statistical op-
erations on the observed data. One obtains a statistical the-
ory of model building which is in a sense perfectly iso-
morphic to the abstract probabilistic realization theory.
The main point is the idea of constructing first a (sample)
state space for the process y, starting from certain vector
spaces, called the future and past spaces associated with
the observations. According to the recipe of (34) the state
space is constructed by orthogonal projection of the fu-
ture onto the past, as seen in the previous section. Succes-
sively, a well conditioned basis is chosen in the state space
e. g. by principal components (canonical correlation) anal-
ysis. Once a “robust” basis; i. e. a state vector, is chosen,
the parameters A;C; C̄ of the model are computed by for-
mulas analogous to (31),(32),(33). The final step of find-
ing the B and D matrices requires solving a Riccati equa-
tion.

By similarity with realization theory, one recognizes
that the inherent nonlinearity of model identification has
to dowith the quadratic nature of the spectral factorization
problem. As we have seen, spectral factorization for state-
space models involves the solution of a Riccati equation
(or more generally of a linearmatrix inequality), a problem
which has been the object of intensive theoretical and nu-
merical studies in the past three decades. The nonlinearity
of the stochastic system identification problem is hence of
a well-known and well-understood kind and is much bet-
ter dealt with by the explicit methods of Riccati solution
developed in system theory rather than by nonspecific op-
timization algorithms. This has allowed a systematic intro-
duction of very reliable and efficient numerical linear alge-
bra tools to solve the problem. The “subspace” approach
has been suggested more or less implicitly by several au-
thors in the past [6,13,15,44] but is first clearly presented
in [63]. Various extensions to cover identification of sys-
tems with inputs have appeared since this paper and there
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is now a large literature on the subject. For references we
refer the reader to the recently published book [27].

Since the optimization approach is well covered in the
literature, we shall just analyze subspace identification be-
low.

The Hilbert Space of a Time Series

The crucial conceptual step in subspace identification is
a proper identification of the Hilbert space of random data
in which modeling takes place. We shall briefly illustrate
this point, following [38].

We shall initially consider an idealized situation in
which the observed data (time series)

fy0; y1; : : : ; yt ; : : :g yt 2 Rm (35)

is infinitely long.
We shall assume that the limit for N !1 and for any

� � 0, of the time averages

1
N C 1

NX

tD0

ytC� y0t (36)

exists. It can be shown that this limit is a function � ! ��
of positive type. In the continuous-time setting, functions
admitting an “ergodic” limit of the sample correlation
function (36), have been studied in depth by Wiener in
his famous work on Generalized Harmonic Analysis. Al-
though a systematic translation of the continuous-time re-
sults of Wiener into discrete-time seems not to be avail-
able in the literature, it is quite evident that a totally
analogous set of results holds also for discrete-time sig-
nals. In particular it is rather easy to show, by adapt-
ing Wiener’s proof for continuous time, that the limits of
the time averages (36) form a matrix function � of pos-
itive type, in other words a bona-fide stationary covari-
ance matrix, see [67,68] which can then be identified with
the “true” covariance function of an underlying stochastic
process.

The assumption actually implies that

1
N C 1

NCt0X

tDt0

ytC� y0t ! �� (37)

for arbitrary t0, which can be read as a kind of “statistical
regularity” of the (future) data. The ergodicity (36) is of
course unverifiable in practice as it says something about
data which have not been observed yet. Some assumption
of this sort about the mechanism generating future data
seems however to be necessary to even formulate the iden-

tification problem. We shall call � the true covariance of
the time series fytg.

Now, for each t 2 ZC define the m �1matrices

y(t) :D [yt ; ytC1; ytC2; : : :] (38)

and consider the sequence y :D fy(t) j t 2 ZCg. We shall
make this sequence of semi-infinite matrices into an object
isomorphic to the stationary processes y.

Define the vector space Y of scalar semi-infinite real
sequences obtained as finite linear combinations of the
rows of y,

Y :D
nX

a0ky(tk); ak 2 Rm ; tk 2 ZC
o

(39)

This space can be naturally made into an inner product
space in the following way.

First, define the bilinear form h�; �i on the generators
by letting

ha0y(k); b0y( j)i :D lim
N!1

1
N C 1

NX

tD0

a0ytCk y0tC jb

D a0�k� jb; (40)

for a; b 2 Rm , and then extend it by linearity to all ele-
ments of Y .

Let a :D fak ; k 2 ZCg be a sequence of vectors
ak 2 Rm , with compact support inZC, and let a0 :D fa0kg.
A generic element � of the vector space Y can be repre-
sented as

� D
X

k

a0ky(k) D a0y

Let us assume that the infinite block-symmetric Toeplitz
matrix

T D

2

666
66
4

�0 �1 : : : �k : : :

�01 �0 �1 : : : : : :
:::

: : :
:::

�0k �0
: : :

3

777
77
5

(41)

constructed from the “true” covariance sequence f�0;

�1; : : : ; �k ; : : :g of the data, is positive definite. Since
the bilinear form (40) on Y can be represented by the
quadratic form

h�; �i D ha0y ; b0yi D
X

k j

a0k�k� jb j D a0T b

it can be seen that the bilinear form is nondegenerate (un-
less� D 0 identically) and defines a bona-fide inner prod-
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uct. As usual one identifies elements whose difference has
norm zero (this means h�; �i D 0 , � D 0).

By closing the vector space Y with respect to the norm
induced by the inner product (40), one obtains a real
Hilbert space of semi-infinite sequences which hereafter
we shall still denote Y . This is the basic data space on
which our models will be defined.

The shift operator U operates on the family of semi-
infinite matrices (38), by the rule

Ua0y(t) D a0y(t C 1) t 2 Z ; a 2 Rm

It is easy to see thatU is a linearmapwhich is isometric
with respect to the inner product (40) and can be extended
by linearity to all of Y . This Hilbert space framework for
time series was introduced in [38]. It is shown in this refer-
ence that the “stationary Hilbert space” (Y ;U) is isomor-
phic to the standard stochastic Hilbert space setup in the
L2 theory of second-order stationary random processes.
By virtue of this isomorphism one can formally think of
the observed time series (35) as an ergodic sample path of
some Gaussian stationary stochastic process y defined on
a true probability space, having covariance matrices equal
to the limit� of the sum (36) as N !1.

Linear functions and operators on the “tail sequences”
y(t) correspond to the same linear functions and operators
on the random variables of the process y. In particular the
second-order moments of y can be computed in terms of
the tail sequences y , by substituting expectations with er-
godic limits of the type (40). Since second-order properties
are all whatmatters in our setting, onemay even regard the
tail sequence y of (38) as being the same object as the un-
derlying stochastic process y. The usual probabilistic lan-
guage can be adopted in the present setting provided one
identifies real random variables as semi-infinite strings of
numbers having the “ergodic property” described at the
beginning of this section. The inner product of two semi-
infinite strings � and � in Y corresponds in particular to
the expectation Ef��g; i. e.

h�; �i D Ef��g: (42)

This unification of language permits us to carry over in
its entirety the geometric theory of stochastic realization
derived in the abstract L2 setting to the time series frame-
work. In particular, the past and future subspaces of the
“processes” y at time t are defined as the closure of the
linear vector spaces spanned by the relative past or fu-
ture “random variables” y(t), in the metric of the Hilbert
space Y . The only difference to keep in mind here is

the different interpretation that representation formulas
like (8a) have in this context. The equalities involved in
the representation

(
x(t C 1) D Ax(t)C Bw(t)
y(t) D Cx(t)C Dw(t)

(43)

are now to be understood in the sense of equalities of el-
ements of Y , i. e. as asymptotic equality of sequences in
the sense of Cesàro limits. In particular the equality signs
in the model (43) do not necessarily imply that the same
relations hold for the sample values yt ; xt ; wt at a par-
ticular instant of time t. This is in a certain sense similar
to the “with probability one” interpretation of the equality
sign to be given to the model (43) in case the variables are
bona-fide random variables in a probability space.

Consider the orthogonal projection E[ � j X] of
a (row) random variable � onto a subspace X of the
space Y . In the probabilistic L2 setting this has the well-
known interpretation of wide-sense conditional expecta-
tion given the random variables in X (a true conditional
expectation, in the case of Gaussian distributions). In this
setting the projection operator has an immediate and use-
ful statisticalmeaning.

Assume for simplicity that X is given as the rows-
pace of some matrix of generators X, then the projec-
tion E[ � j X] has exactly the familiar aspect of the least
squares formula expressing the best approximation of the
vector � as a linear combination of the rows ofX. For, writ-
ing E[ � j X ] to denote the projection expressed (perhaps
nonuniquely) in terms of the rows of X, the classical linear
“conditional expectation” formula leads to

E[ � j X ] D �X 0[XX 0]]X ; (44)

which is the universally known “least squares” formula of
statistics. The pseudoinverse ] can be substituted by a true
inverse in case the rows of X are linearly independent.

The Question of Statistical Efficiency

There are questions about the statistical significance (what
are the uncertainty bounds on the parameters and on the
estimated transfer functions etc.) which are easily and nat-
urally addressed in the optimization framework but harder
to be addressed in the subspace/realization approach to
identification. The main difference with the mainstream
statistical approach is that the estimation of (A;C; C̄) is
not done directly by optimizing a likelihood or other dis-
tance functions but by just matching second-order mo-
ments, i. e. by solving the Eqs. (46).
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This way of proceeding can be seen as an instance of
estimation by the method of moments described in the sta-
tistical textbooks e. g. p. 497 in [12], a very old idea used
extensively by K. Pearson in the beginning of the last cen-
tury. The underlying estimation principle is that the pa-
rameter estimates should match exactly the sample sec-
ond-order moments and is close in spirit to the wide-sense
setting that we are working in. It does not involve optimal-
ity or minimal distance criteria between the “true” and the
model distributions. For this reason it is generally claimed
in the literature that one should expect better results (in
the sense of smaller asymptotic variance of the estimates)
by optimization methods. However, a proof that subspace
methods can be efficient (under certain conditions which
will be too long to report here) has appeared recently [8].

Usable expressions for the asymptotic covariance of
the parameter estimates are given in [9]. The arguments
in the derivations are, however, far from trivial.

Subspace Algorithms

Most standard algorithms for subspace identification can
be shown to be essentially equivalent to the following
three-step procedure (see e. g. [6,38]),

1. The first step is the estimation of a finite sequence of
sample covariance matrices

f�̂0; �̂1; : : : ; �̂�g (45)

from the observed data. Since the data are necessarily
finite, � must be also finite (and in general small com-
pared to the data length).

2. The second step is identification of a rational model
for the covariance sequence. This is a minimal partial
realization (also called “rational extension”) problem.
Given a finite set of experimental covariance data one is
asked to find a minimal value of n and aminimal triplet
of matrices (A;C; C̄), of dimensions n � n, m � n and
m � n respectively, such that

�̂k D CAk�1C̄0 k D 1; : : : ; �: (46)

Recall that (A;C; C̄0) is aminimal triplet, in the sense of
deterministic linear system theory, if the pairs of matri-
ces (A;C) and (A; C̄0) are an observable and, respec-
tively, a reachable pair, see e. g. [24]. There are well-
known algorithms for computing minimal partial real-
izations (see e. g. [72] for an efficient algorithm) thereby
producing “estimates” of the parameters (A;C; C̄) of
a minimal realization of a rational spectral density ma-
trix of the process.

3. The third step is to compute, starting from the real-
ization of the rational spectrum estimated in step two,
a stationary state-space model. Typically one is inter-
ested in the innovation model. This is accomplished by
computing the minimal solution P� of the Linear Ma-
trix Inequality (16), or, equivalently, the minimal solu-
tion of the associated algebraic Riccati equation.

A warning is in order concerning the practical use of these
algorithms in that some nontrivial mathematical ques-
tions related to positivity of the estimated spectrum are of-
ten overlooked in the implementation. This issue is thor-
oughly discussed in [38] and here we shall just give a short
summary.

In determining a minimal triplet (A;C; C̄) interpolat-
ing the partial sequence (45) so thatCAk�1C̄0 D �̂k k D
1; 2; : : : ; �, we also completely determine the infinite se-
quence

f�̂0; �̂1; �̂2; �̂3; : : :g (47)

by setting �̂k D CAk�1C̄0 for k D � C 1; � C 2; : : :. This
sequence is called aminimal rational extension of the finite
sequence (45). The attribute “rational” is due to the fact
that

ˆ̊
C(z) :D

1
2
�̂0 C �̂1z�1 C �̂2z�2 C : : :

D
1
2
�̂0 C C(zI � A)�1C̄0 (48)

is a rational function. In order for (47) to be a bona fide
covariance sequence, however, it is necessary that the infi-
nite block-Toeplitz matrix obtained by extending the finite
matrix

T� D

2

6
66
4

�̂0 �̂1 �̂2 � � � �̂�
�̂01 �̂0 �̂1 � � � �̂�1
:::

:::
:::

: : :
:::

�̂0� �̂0��1 �̂��2 : : : �̂0

3

7
77
5

(49)

using the rational extension sequence (47), should be non-
negative definite. Equivalently, the spectral density func-
tion corresponding to (47)

ˆ̊ (z) D �̂0C

1X

kD1

�̂k(zkCz�k) D ˆ̊
C(z)C ˆ̊

C(z�1)0 (50)

should be nonnegative definite on the unit circle. This is
equivalent to the function ˆ̊

C(z) being positive real. Con-
sequently, the partial realization needs to be done subject
to the extra constraint of positivity.



8764 S Stochastic Noises, Observation, Identification and Realization with

The constraint of positivity is a rather tricky one and
in some of the methods described in the literature it is dis-
regarded. For this reason some subspace algorithms may
fail to provide a positive extension and hence may lead to
data (A;C; C̄) for which there are no solutions of the LMI
and hence to totally inconsistent results.

It is important to appreciate the fact that the problem
of positivity of the extension has little to do with the noise
or sample variability of the covariance data and is present
equally well for any finite covariance sequence extracted
from a true (infinitely long) rational covariance sequence.
For there is no guarantee that, even in this idealized situa-
tion, the order of a minimal rational extension (47) of the
finite covariance subsequence would be sufficiently large
to equal the order of the infinite sequence and hence to
generate a positive extension. A minimal partial realiza-
tion may well fail to be positive because its order is too low
to guarantee positivity. It is shown in [38] that there are
relatively “large” sets of data (45) for which this happens
and the matrix Amay even fail to be stable [7].

Future Directions

Because of the pervasive presence of fast digital comput-
ers in modern society, we are witnessing a sharp change of
paradigms in the analysis, design, prediction and control
of both man made and natural (say biological, econom-
ical etc) systems. Because of the tremendous computing
capabilities at our disposal nowadays, stochastic model-
ing, realization and identification have become an essen-
tial ingredient of modern applied sciences. In particular
modeling and simulation of complex technological, bio-
logical, economic, and environmental systems is becom-
ing more and more essential for understanding the behav-
ior and for prediction and control of these systems. New
problems continually arise and much work remains to be
done.

We just mention here problems where there is a need
of modeling the effect of input or decision variables, pos-
sibly in the presence of feedback. Such Input–Output
models have important applications in many applied ar-
eas such as control of industrial processes, economet-
rics, etc. There is a large body of results concerning
stochastic realization and subspace identification of sys-
tems with inputs which we could not discuss in this arti-
cle, see [10,11,26,27,53,54,55,64,65]. The area is important
for applications and still needs research. Modeling and re-
alization of finite state processes and of certain classes of
highly non-Gaussian signals is needed in diverse applica-
tions such as source coding, image processing, and com-
puter vision.
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Glossary

Fokker–Planck equation A partial differential equation
of the second order for the time evolution of the proba-

bility density function of a stochastic process. It resem-
bles a diffusion equation, but has an extra term which
represents the deterministic aspects of the process.

Langevin equation A stochastic differential equation of
the simplest kind: linear and with an additive Gaus-
sian white noise. Introduced by Langevin [30] in 1908
to describe Brownian motion; many stochastic differ-
ential equations in physics go by this name.

Markov process A stochastic process in which the cur-
rent state of the system is only determined from its
state in the immediate past, and not by its entire his-
tory.

Markov chain A Markov process where both the states
and the time are discrete and where the process is sta-
tionary.

Master equation The equation describing a continuous-
time Markov chain.

Stochastic process A sequence of stochastic variables.
This sequence is usually a time-sequence, but could
also be spatial.

Stochastic variable A random variable. This is a function
which maps outcomes to numbers (real or integer).

Definition of the Subject

The most common type of stochastic process comprises
of a set of random variables fx(t)g, where t represents
the time which may be real or integer valued. Other types
of stochastic process are possible, for instance when the
stochastic variable depends on the spatial position r, as
well as, or instead of, t. Since in the study of complex
systems we will predominantly be interested in applica-
tions relating to stochastic dynamics, we will suppose that
it depends only on t. One of the earliest investigations of
a stochastic process was carried out by Bachelier [2], who
used the idea of a random walk to analyze stock market
fluctuations. The problem of a random walk was more
generally discussed by Pearson [42], and applied to the in-
vestigation of Brownian motion by Einstein [8,9], Smolu-
chowski [54] and Langevin [30]. The example of a random
walk illustrates the fact that in addition to time being dis-
crete or continuous, the stochastic variable itself can be
discrete (for instance, the walkermoves with fixed step size
in one dimension) or continuous (for instance, the veloc-
ity of a Brownian particle). The modeling of the process
may lead to an equation for the stochastic variable, such
as a stochastic differential equation, or for an equation
which predicts how the probability density function (pdf)
for the stochastic variable changes in time. Stochastic pro-
cesses are ubiquitous in the physical, biological and social
sciences; they may come about through the perception of



Stochastic Processes S 8767

very complicated processes being essentially random (the
toss of a coin, roll of a die, birth or death of individuals in
populations), the inclusion of diverse and poorly charac-
terized effects external to the system under consideration,
or thermal fluctuations, among others.

Introduction

Deterministic dynamical processes are typically formu-
lated as a set of rules which allow for the state of the sys-
tem at time t C 1 (or t C ıt) to be found from the state
of the system at time t. By contrast, for stochastic systems,
we can only specify the probability of finding the system
in a given state. If this only depends on the state of the sys-
tem at the previous time step, but not those before this,
the stochastic process is said to be Markov. Fortunately
many stochastic processes are Markovian to a very good
approximation, since the theory of non-Markov processes
is considerably more complicated than Markov processes
and much less well developed. In this article we will deal
almost exclusively with Markov processes.

The mathematical definition of a Markov pro-
cess follows from the definition of the hierarchy of
pdfs for a given process. This involves the joint pdfs
P(x1; t1; x2; t2; : : : ; xn; tn), which are the probability that
the system is in state x1 at time t1, state x2 at time
t2,. . . , and state xn at time tn, and also the conditional
pdfs P(x1; t1; : : : ; xm ; tm jxmC1; tmC1; : : : ; xn ; tn), which
are the probability that the system is in state x1 at
time t1; : : : ; xm at time tm, given that it was in state
xmC1 at time tmC1; : : : ; xn at time tn. These pdfs are
all non-negative and normalizable, and relations exist
between them due to symmetry and reduction (inte-
gration over some of the state variables). Nevertheless,
for a general non-Markov process, a whole family of
these pdfs will be required to specify the process. On
the other hand, for a Markov process the history of
the system, apart from the immediate past, is forgotten,
and so P(x1; t1; : : : ; xm; tm jxmC1; tmC1; : : : ; xn ; tn) D
P(x1; t1; : : : ; xm ; tm jxmC1; tmC1). A direct consequence of
this is that the whole hierarchy of pdfs can be determined
from only two of them: P(x; t) and P(x; tjx0; t0). The hi-
erarchy of defining equations then collapses to only two:

P(x2; t2) D
Z

dx1P(x2; t2jx1; t1)P(x1; t1) (1)

and

P(x3; t3jx1; t1) D
Z

dx2P(x3; t3jx2; t2)P(x2; t2jx1; t1) ;

t1 < t2 < t3 : (2)

The pdf P(x; tjx0; t0) is referred to as the transition proba-
bility and Eq. (2) as the Chapman–Kolmogorov equation.
While the pdfs for a Markov process must obey Eqs. (1)
and (2), the converse also holds: any two non-negative
functions P(x; t) and P(x; tjx0; t0) which satisfy Eqs. (1)
and (2), uniquely define a Markov process.

We will begin our discussion in Sect. “Markov Chains”
with what is probably the simplest class of Markov pro-
cesses: the case when both the state space and time are dis-
crete. These are called Markov chains and were first in-
vestigated, for a finite number of states, by Markov [32]
in 1906. The extension to an infinite number of states was
carried out by Kolmogorov [27] in 1936. If time is continu-
ous, an analogous formalismmay be developed, which will
be discussed in Sect. “The Master Equation”. In physics
the equation describing the time evolution of the pdf in
this case is called the master equation and was introduced
by Pauli [41] in 1928, in connection with the approach
to equilibrium for quantum systems, and also by Nord-
sieck, Lamb and Uhlenbeck [39] in 1940, in connection
with fluctuations in cosmic ray physics. The term “mas-
ter equation” refers to that fact that many of the quantities
of interest can be derived from this equation. The connec-
tion with previous work onMarkov processes was clarified
by Siegert [49] in 1949.

In many instances when the master equation can-
not be solved exactly, it is useful to approximate it by
a rather coarser description of the system, known as
the Fokker–Planck equation. This approach will be dis-
cussed in Sect. “The Fokker–Planck Equation”. This equa-
tion was used in its linear form by Rayleigh [44], Ein-
stein [8,9], Smoluchowski [54,55], and Fokker [14], but it
was Planck [43] who derived the general nonlinear form
from a master equation in 1917, and Kolmogorov who
made the procedure rigorous in 1931. All the descriptions
which we have mentioned so far have been based on the
time evolution of the pdfs. An alternative specification is
to give the time evolution of the stochastic variables them-
selves. This will necessarily involve random variables ap-
pearing in the equations describing this evolution, and
they will therefore be stochastic differential equations. The
classic example is the Langevin equation [30] used to de-
scribe Brownian motion. This equation is linear and can
therefore be solved exactly. The Langevin approach, and
its relation to the Fokker–Planck equation is described in
Sect. “Stochastic Differential Equations”.

A good summary of the understanding of stochas-
tic processes that had been gained by the mid-1950s is
given in the book edited by Wax. This covers the basics
of the subject, and what is discussed in the first six sec-
tions of this article. The article by Chandrasekhar [4], first
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published in 1943, and reprinted in Wax, gives an exten-
sive bibliography of stochastic problems in physics be-
fore 1943. Since then the applications of the subject have
grown enormously, and the equations modeling these sys-
tems have correspondingly become more complex. We il-
lustrate some of the procedures which have been devel-
oped to deal with these equations in the next two sections.
In Sect. “Path Integrals” we discuss how the path-inte-
gral formalism may be applied to stochastic processes and
in Sect. “System Size Expansion” we describe how mas-
ter equations can be analyzed when the size of the sys-
tem is large. We end with a look forward to the future in
Sect. “Future Directions”.

Markov Chains

The simplest version of the Markov process is when both
the states and the time are discrete, and when the stochas-
tic process is stationary. When the states are discrete we
will denote them by n or m, rather than x, which we re-
serve for continuous state variables. In this notation the
two Eqs. (1) and (2) governing Markov processes read

P(n2; t2) D
X

n1

P(n2; t2jn1; t1)P(n1; t1) (3)

P(n3; t3jn1; t1) D
X

n2

P(n3; t3jn2; t2)P(n2; t2jn1; t1) ;

t1 < t2 < t3 : (4)

A stationary process is one in which the conditional
pdf P(n; tjn0; t0) only depends on the time difference
(t � t0). For such processes, when time is discrete so that
t D t0 C 1; t0 C 2; : : :, we may write P(n; t0 C kjn0; t0)
as p(k)n n0 . The most elementary form of the Chapman–
Kolmogorov equation (4) may then be expressed as

p(2)n m D
X

n0
p(1)n n0 p

(1)
n0 m : (5)

This corresponds to the matrix multiplication of p(1) with
itself, and therefore p(2) is simply (p(1))2. In the same way
p(k) D (p(1))k , and from now on we drop the superscript
on p(1) and denote the matrix by P. The entries of P are
non-negative, with the sum of entries in each column be-
ing equal to unity, since

X

n
pn n0 D

X

n
P(n; t C 1jn0; t) D 1 : (6)

Suchmatrices are called stochastic matrices. From Eq. (5) it
is clear thatP2 is also a stochastic matrix, and by induction
it follows that Pk is a stochastic matrix if P is.

The other defining relation for a Markov process,
Eq. (3), now becomes

P(n; t C 1) D
X

n0
pn n0P(n0; t) : (7)

This relation defines a Markov chain. It has two ingredi-
ents: the probability that the system is in state n at time t,
P(n; t) – which is usually what we are trying to determine,
and the stochastic matrix with entries pn n0 which gives the
probabilities of transitions from the state n0 to the state n.
The transition probabilities are typically given; they define
the model. Note that in many texts the probability of mak-
ing a transition from n0 to n is written as pn0 n , not pn n0 . If
we write P(n; t) as a vector P(t), then we may write Eq. (7)
as P(t C 1) D PP(t). Therefore,

P(t) D PP(t � 1) D PPP(t � 2) D � � � D P tP(0) ; (8)

and so if the initial state of the system P(0) is given, then
we can find the state of the system at time t (P(t)) bymatrix
multiplication by the tth power of the transition matrix.

Examples of Markov Chains

1. A one-dimensional random walk. The most widely
known example of a Markov chain is a random walk
on the real axis, where the walker takes single steps
between integers on the line. The simplest version is
where the walker has to move during every time inter-
val:

pn n0 D

8
<̂

:̂

p ; if n D n0 C 1
q ; if n D n0 � 1
0 ; otherwise ;

(9)

where pC q D 1. There are many variants. For in-
stance, the walker could have a non-zero proba-
bility of staying put, in which case pn n D r, with
pC qC r D 1. The walk could be heterogeneous, in
which case p and q (and r), could depend on n0. If
there are boundaries, the boundary conditions have to
be given. The most common two are absorbing bound-
aries defined by

pnC1 n D p ; pn�1 n D q ; (n D 2; : : : ;N � 1)
p11 D 1 ; pNN D 1 ;

pn n0 D 0 ; otherwise ;
(10)
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and reflecting boundaries defined by

pnC1 n D p ; pn�1 n D q ; (n D 2; : : : ;N � 1)
p21 D p ; pN�1N D q ;
p11 D q ; pNN D p ;

pn n0 D 0 ; otherwise :

(11)

With absorbing boundaries (10), if we reach the state
1 or N , we can never leave it, since we stay there with
probability 1. When the boundary is reflecting, we can
never move beyond it; the only options are to move
back towards the other boundary, or stay put. Well
known examples of absorbing boundaries include the
gambler’s ruin problem, where a gambler bets a given
amount against the house at each time step and can win
with a probability p. Here the absorbing boundary is
situated at n D 0. Eventually he will arrive at the state
n D 0, where is has no money left, and so cannot re-
enter the game. Birth/death processes will also have ab-
sorbing states at n D 0: if n is the number of individu-
als at a given time, and p is the probability of a birth and
q of a death, then if there are no individuals left (n D 0),
none can be born. This condition will be automatically
applied if the transition probabilities are proportional
to the number of individuals in the population.

2. The Ehrenfest urn This Markov chain was introduced
by the Ehrenfests [7] in 1907, to illustrate the approach
to equilibrium in a gas. Two containers, A and B, con-
tain molecules of the same gas, the sum of the number
of molecules in A and B being fixed to be N. At time t
a molecule is removed at random from the containers
and put into the other. If n0 is the number of molecules
in container A at a certain time, then at the next time
step the transition probabilities will be:

pn n0 D

8
<̂

:̂

n0
N ; if n0 D nC 1
(1 � n0

N ) ; if n0 D n � 1
0 ; otherwise :

(12)

This is clearly a heterogeneous random walk of the
type (9), and another interpretation of this model is as
a random walk, but with a central force.

The most frequently asked question concerning Markov
chains is: what is their eventual fate; how does the system
behave at large time? Clearly if it tends towards a non-triv-
ial stationary state, Pst(n), then from Eq. (7):

Pst(n) D
X

n0
pn n0Pst(n0) ; (13)

and so Pst(n) is a right eigenvector of P with unit eigen-
value. It follows from the properties of a general stochastic

matrix that the eigenvalues of a stochastic matrix are such
that jj � 1 [15]. Furthermore every stochastic matrix has
an eigenvalue equal to 1, however it may not be simple –
there may be a multiplicity of unit eigenvalues. The classi-
fication of Markov chains can be used to decide which of
these possibilities is the case. For example, Markov chains
may be reducible or irreducible, and states recurrent or
transient. We shall not discuss this in detail; Feller [10]
gives a clear account of this classification and Cox and
Miller [5] explore the consequences for the nature of the
eigenvalues. Instead we will examine a specific example,
that of the Ehrenfest urn introduced above, and focus on
the explicit calculation of the eigenvalues and eigenvectors
in that case.

Suppose that � (k) and 	(k) are the right- and left-
eigenvectors of P, respectively, corresponding to the
eigenvalue(k), so that	(k).� (`) D ık `. Then, in general,
and for the Ehrenfest urn in particular,

P t
n n0 D

NX

kD0

 (k)
n



(k)

�t
�
(k)
n0 ; (14)

where  (k)
n is the nth component of the vector � (k) and

similarly for the left-eigenvector. The eigenvalues and
eigenvectors for the Ehrenfest urn can be found exactly
(Kac [23]; see also Krafft and Schaefer [28]). The eigen-
values are (k) D 1 � (2k/N), k D 0; : : : ;N . Thus in this
case there is a single eigenvalue  D 1. The corresponding
right-eigenvector, which gives the stationary state, is a bi-
nomial distribution:

Pst(n) D  (0)
n D

N!
n!(N � n)!

1
2N

: (15)

The left-eigenvector is � (0)n D 1 for all n. The other eigen-
vectors have the form �

(k)
n D akn and  (k)

n D aknPst(n),
where the akn are the Krawtchouk polynomials [1].
Clearly, a0n D 1, and the first non-trivial polynomial is
a1n D

p
N[1 � (2n/N)]. Therefore, for a suitable choice

of initial conditions and using Eq. (8), the large t behavior
of the Ehrenfest urn can be found from

P t
n n0 � Pst(n)

(

1C cn n0

�
1 �

2
N

�t
)

; (16)

where cn n0 D N[1 � (2n/N)][1 � (2n0/N)].

TheMaster Equation

The master equation is a Markov chain in the limit where
time is continuous. To derive it we will assume that the
states are discrete (the derivation is essentially identical
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if they are continuous) and write down the Chapman–
Kolmogorov equation (4) in the form:

P(n; tC
tjn0; t0) D
X

n0
P(n; tC
tjn0; t)P(n0; tjn0; t0):

(17)

We consider only stationary processes, so that wemay take
t0 D 0 without loss of generality and P(n; t C
tjn0; t) is
independent of t. We now assume that

P(n; tC
tjn0; t) D

(
1 � �(n)
t C o(
t) ; if n D n0

T(njn0)
t C o(
t) ; if n ¤ n0 ;

(18)

where o(
t) means that o(
t)/
t tends to zero as

t ! 0. This reasonable: after a very short times the
transition probability to stay put is unity minus a term
of order 
t and the transition probabilities to move to
any other state is of order 
t, but this is still an addi-
tional assumption on the process. The quantity T(njn0) is
the transition rate, and is only defined for n ¤ n0. SinceP

n P(n; t C
tjn0; t) D 1 for all n0, we have that

�(n0) D
X

n¤n0
T(njn0) : (19)

Substituting Eq. (18) into Eq. (17), and making use of
Eq. (19) we find that

P(n; t C
tjn0; 0) � P(n; tjn0; 0)

t

D
X

n0¤n

�
T(njn0)P(n0; tjn0; 0)

�

� P(n; tjn0; 0)
X

n0¤n

�
T(n0jn)

�
C

o(
t)

t

: (20)

Taking the limit
t ! 0 gives the master equation for how
the probability of finding the system in state n at time t
changes with time:

dP(n; t)
dt

D
X

n0¤n

T(njn0) P(n0; t)�
X

n0¤n

T(n0jn) P(n; t) :

(21)

We have dropped the initial conditions, assuming that
they are understood. It should be noticed that an analo-
gous analysis starting from Eq. (3), rather than Eq. (4),
may be carried out, leading to identical equations for

P(n; tjn0; 0) and P(n; t). If the state space is continuous
the master equation reads

@P(x; t)
@t

D

Z
dx0

�
T(xjx0) P(x0; t)� T(x0jx) P(x; t)

�
:

(22)

In most applications transitions only take place between
states whose label differs by one. That is, T(njn0) and
T(n0jn) are zero unless n0 D nC 1 and n0 D n � 1. These
are called one-step processes. For such processes the master
equation takes the simpler form

dP(n; t)
dt

D T(njn C 1)P(n C 1; t)

C T(njn � 1)P(n � 1; t)
�
�
T(n � 1jn)C T(nC 1jn)

�
P(n; t) : (23)

For simplicity let us write

gn D T(nC 1jn) and rn D T(n � 1jn) ; (24)

then the master equation may be written as

dP(n; t)
dt

D rnC1P(n C 1; t)C gn�1P(n � 1; t)

�
�
rn C gn

�
P(n; t) : (25)

Examples of Master Equations

1. The simple birth–death process. For a population of sim-
ple organisms, for example a colony of bacteria, it might
be reasonable to assume that the rate of birth of new
bacteria is proportional to the number present at that
time, and similarly for the rate of death. This is clearly
a Markov process with gn D bn and rn D dn, where
b and d are rate constants. A variant is to include “im-
migrants” coming into the population from the outside
at a constant rate c, so that gn D bn C c.
In this example gn and rn are linear in n. Such linear
one-step processes can be solved by the introduction of
the generating function F(z; t) D

P
n P(n; t)z

n . This
converts the master equation (which is a differential-
difference equation) into a partial differential equation
for F(z; t) which can be solved if the process is linear.
The simplest case of a pure death process (b D c D 0
in the above) can illustrate the general procedure. By
rescaling the time (t D � /d), we may write the master
equation in the very simple form

dP(n; �)
d�

D (n C 1) P(n C 1; �) � n P(n; �) :
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Multiplying this equation by zn and summing over all
n � 0 gives

@

@�

(
1X

nD0

znP(n; �)

)

D

1X

nD0

(n C 1)znP(nC 1; �) �
1X

nD1

nznP(n; �)

D

1X

mD1

mzm�1P(m; �) � z
1X

nD1

nzn�1P(n; �) ;

that is,

@F
@�
D (1 � z)

@F
@z
:

A change of variable to � D (1 � z)e�� and � D �

shows F to be a function of � only: F(z; �) D �([1 �
z]e�� ). The function � may be determined from the
initial condition. For instance, if P(n; 0) D ın N , then
F(z; 0) D zN and so �(�) D (1 � �)N . This gives the
solution for F to be

F(z; �) D
��
1 � e��


C ze��

�N
:

In this case F can easily be expanded as a power series
in z, and the P(n; �) read off, but even if this is difficult,
themoments of the distribution can be readily found by
differentiation with respect to z and then setting z D 1.
It should now be clear why F is called a generating func-
tion. In the general case the partial differential equation
for F may be solved by standard methods [50]. The so-
lution for a birth–death process without immigration
is given in the book by Reichl [45]. The solution with
immigration was first given by Kendall [25], who also
introduced the technique of the generating function as
a method of solution of the master equation.

2. The Moran model of genetic drift. Stochastic processes
occur extensively in population genetics. The simplest,
and most widely known, is a model of genetic drift
introduced by Fisher [13] and Wright [58], in which
a population of individuals in generation t mate ran-
domly to produce the new generation t C 1. We as-
sume, for simplicity, that each individual has only one
gene of a particular type, and that this may exist in one
of two forms (alleles) denoted by A and B. TheWright–
Fisher model is based on the sampling of the gene pool
at generation t, which consists of n genes of type A
and (N � n) genes of type B, to produce the next gen-
eration of N genes. Although this may be formulated

as a Markov chain, neither Fisher nor Wright did so;
this was first carried out by Malécot [31] in 1944. Here
we will describe a variant of the model introduced by
Moran [36,37], which is a one-step process and can be
formulated as a master equation.
The Moran model does not have non-overlapping gen-
erations, as in the Wright–Fisher model, and is more
akin to a birth–death process where birth and death are
coupled. At a given time, two individuals are sampled
with replacement: one is designated the parent which
is copied to create an offspring and the other is sac-
rificed to make way for the new offspring. Clearly if
a B (chosen with probability (N � n)/N) is sacrificed
and an A (chosen with probability n/N) is copied, this
gives a contribution to T(nC 1jn). If the choice is that
with A and B interchanged, this gives a contribution to
T(n � 1jn). The transition rates for the Moran model
are thus

T(nC 1jn) D ˇ


1 �

n
N

� 
 n
N

�
;

T(n � 1jn) D ˇ

 n
N

� 

1 �

n
N

�
;

(26)

where ˇ is a rate constant, which may be absorbed into
the time t.
This may be extended in various ways. For exam-
ple, mutations may be included: A

u
! B and B

v
! A.

With probability (1 � u � v) the offspring is taken to
be a copy of the parent without mutation, as previously
described. For the rest of the time (that is, with proba-
bility u C v), a mutation occurs. If the parent is an A,
the offspring becomes a B with probability u/(u C v),
and if the parent is a B, the offspring becomes anA with
probability v/(u C v). This leads to the transition rates

T(nC 1jn) D (1 � u � v)


1 �

n
N

� 
 n
N

�

C v


1 �

n
N

�
;

T(n�1jn) D (1�u�v)


1 �

n
N

� 
 n
N

�
Cu


 n
N

�
:

(27)

The master equation for the Moran model will be dis-
cussed again in the next section.

3. Competition in a single species model. The birth–death
process described in Example 1 can be generalized to
more complex ecological situations. As it stands it con-

sists of the two processes A
d
! E and A

b
! AC A rep-

resenting death and birth respectively. Here A repre-
sents an individual and E is a null state. To model
the finite resources available in a given patch, we
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put a limit on the number of allowed individuals:
n D 0; 1; : : : ;N . We can also only allow a birth if
enough space and/or other resources are available:

AC E
b
! AC A and include competition for these re-

sources: AC A
c
! AC E. Since the probability of ob-

taining an A when sampling the patch is n/N and of
obtaining an E is (N � n)/N , the birth term is now pro-
portional to n(N � n)/[N(N � 1)] and the competition
term proportional to n(n � 1)/[N(N � 1)]. This gives
the transition rates to be

T(n C 1jn) D
2bn(N � n)
N(N � 1)

;

T(n � 1jn) D
cn(n � 1)
N(N � 1)

C
dn
N
:

(28)

This approach can be extended to more than one
species, for instance competition between and within
two species [34] or predator-prey interactions [35].
In these cases the state space is multi-dimensional:
n D (n1; n2; : : : ). The master equation still has the
form (21), but with n replaced everywhere by the vec-
tor n.

Whether or not a stationary state of the master equation
exists depends on the nature of the boundary conditions.
There are many types of boundary conditions, but two
are particularly important. If the boundaries are reflecting,
then the probability current vanishes there. If they are ab-
sorbing, then the probability of being at the boundary is
zero. In the former case probability is conserved, in the
latter case it is not, and leaks out of the system.

So to find a non-zero pdf as t !1 (a stationary dis-
tribution) we therefore assume that the system lies within
two reflecting boundaries. For a one-step process, the net
flow of probability from the state n to the state nC 1, is
J(n; t) D gnP(n; t) � rnC1P(n C 1; t), where J(n; t) is the
probability current. The master Eq. (25) may be written as

dP(n; t)
dt

D J(n � 1; t) � J(n; t) :

For a stationary state, the left-hand side of this equa-
tion is zero, and the currents will be time-independent.
Therefore J(n � 1) D J(n) for all n, that is, all the cur-
rents are equal. Since the current vanishes at the bound-
aries, this constant must be zero. Therefore, for reflect-
ing boundary conditions, rnC1Pst(n C 1) D gnPst(n)
for all n. If we suppose that one boundary is at n D 0
and the other at n D N, then we have that Pst(1) D
(g0/r1)Pst(0), Pst(2) D (g1/r2)Pst(1); : : : , which implies
Pst(2) D (g1g0)/(r2r1)Pst(0); : : : Iterating, the stationary

state can be expressed as a simple product:

Pst(n) D
gn�1gn�2 : : : g0
rnrn�1 : : : r1

Pst(0) ; n D 1; : : : ;N : (29)

The constant Pst(0) is determined by normalization:

NX

nD0

Pst(n) D Pst(0)C
X

n>0

Pst(n) D 1

) (Pst(0))�1 D 1C
NX

nD1

gn�1gn�2 : : : g0
rnrn�1 : : : r1

: (30)

As an example, we return to the Ehrenfest urn (12), which
in the language of the master equation is defined by
gn D (N � n)/N and rn D n/N (any overall rate may be
absorbed into the time, and this is irrelevant as far as the
stationary state is concerned). Here n D 0; 1; : : : ;N and
the molecules never go outside this range, so the bound-
aries are reflecting. Applying Eqs. (29) and (30) shows that
the stationary state is the binomial distribution given by
Eq. (15).

The Fokker–Planck Equation

The Fokker–Planck equation describes stochastic pro-
cesses at a more coarse grained level than those that we
have discussed so far. It only involves continuous stochas-
tic variables; these could be for instance the fraction of
individuals or genes of a certain kind in a population,
whereas the master equation recognized the individu-
als or genes as discrete entities. To obtain the Fokker–
Planck equationwe first derive the Kramers–Moyal expan-
sion [29,38].

We begin by defining the jump moments for the sys-
tem:

M`(x; t; 
t) D
Z

d� (� � x)` P(�; t C
tjx; t) : (31)

We will assume that these are known, that is, they can be
obtained by some other means. They will, however, only
be required in the limit of small
t.

The starting point for the derivation is the Chapman–
Kolmogorov equation (4), with the choice of variables
analogous to that used in Eq. (17) for the discrete case:

P(x; t C
t) D
Z

dx0P(x; t C
tjx0; t) P(x0; t) ; (32)
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again dropping the dependence on the initial conditions.
The integrand may be written as

P(x; t C
tjx0; t) P(x0; t)
D P([x�
x]C
x; tC
tj[x�
x]; t)P([x�
x]; t)

D

1X

`D0

(�1)`

`!
(
x)`

�
@`

@x`
fP(x C
x; t C
tjx; t)P(x; t)g ; (33)

where
x D x � x0. Integrating over x0 gives for Eq. (32):

P(x; t C
t) D
1X

`D0

(�1)`

`!
@`

@x`
fM`(x; t; 
t)P(x; t)g :

(34)

Since P(�; tjx; t) D ı(� � x), it follows from Eq. (31), that
lim�t!0 M`(x; t; 
t) D 0 for ` � 1. Also M0(x; t; 
t) D
1. Bearing these results in mind, we will now assume that
the jump moments for ` � 1 take the form

M`(x; t; 
t) D D(`)(x; t)
t C o (
t) : (35)

Substituting this into Eq. (34), dividing by 
t and taking
the limit
t ! 0 gives

@P
@t
D

1X

`D1

(�1)`

`!
@`

@x`
n
D(`)(x; t)P(x; t)

o
: (36)

Equation (36) is the Kramers–Moyal expansion. So far
nothing has been assumed other than theMarkov property
and the existence of Taylor series expansions. However, in
many situations, examination of the jumpmoments reveal
that in a suitable approximation they may be neglected for
` > 2. In this case, we may truncate the Kramers–Moyal
expansion (36) at second order and obtain the Fokker–
Planck equation:

@P
@t
D �

@

@x
�
A(x; t)P(x; t)

�
C

1
2
@2

@x2
�
B(x; t)P(x; t)

�
;

(37)

where AD D(1) and B D D(2) are independent of t if the
process is stationary.

To calculate the jump moments (31), it is convenient
to write them in terms of the underlying stochastic process
x(t). We use the notation

hx(t)ix(t0)Dx0 D

Z
dx xP(x; tjx0; t0) ; (38)

for the mean of the stochastic variable at time t, condi-
tional on the value of x(t) being given to be x0 at time t0.
With this notation x(t) denotes the process and the an-
gle brackets are averages over realizations of this process.
More generally, we may define h f (x(t))i in a similar way,
and in particular the jump moments are given by

M`(x; t; 
t) D h(x(t C
t) � x)`ix(t)Dx : (39)

Examples of Fokker–Planck Equations

1. Simple diffusion. For the simple symmetric random
walk, gn D 1 and rn D 1 when expressed in the lan-
guage of the master equation (after a rescaling of the
time so that the rates may taken to be equal to unity).
From Eqs. (18) and (19) we find that for a one-step sta-
tionary process,

h(n(t C
t) � n)`in(t)Dn

D

( �
gn � rn



t C o (
t) ; if ` is odd

�
gn C rn



t C o (
t) ; if ` is even ;

(40)

and so for the symmetric random walk the odd mo-
ments all vanish, and the even moments are equal to
2
t C o(
t). We now make the approximation which
will yield the Fokker–Planck equation: we let x D nL,
where L is the step size, and let L! 0. Since, for `
even, h(x(t C
t) � x)`i D (2L`)
t, if we rescale the
time by introducing � D L2t, then all jump moments
higher than the second disappear in the limit L! 0,
and Eq. (36) becomes

@P
@t
D
@2P
@x2

: (41)

This is the familiar diffusion equation obtained from
a continuum approximation to the discrete random
walk.

2. The diffusion limit of the Moran model. For the Moran
model with no mutation, we have from Eqs. (26) and
(40) that the odd moments again vanish. If we describe
the process by x(t) D n(t)/N , the fraction of the genes
that are of type A at time t, then the even jump mo-
ments are given by

D
(x(t C
t) � x)`

E

x(t)Dx

D
1
N`

2x (1 � x)
t C o (
t) ;

and so introducing a rescaled time � D 2t/N2, and let-
ting N !1 we obtain the Fokker–Planck equation

@P
@t
D

1
2
@2

@x2
�
x(1 � x)P

�
: (42)
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The factor of 2 in the rescaling of the time is included so
that the diffusive form of the Moran model agrees with
that found in the Wright–Fisher model [6].
Now suppose mutations are included. The transi-
tion rates are given by Eq. (27) and lead to jump
moments h(x(t C
t) � x)`i � N�`. So the first and
second jump moments are not of the same order,
and the introduction of a rescaled time � D t/N,
and subsequently letting N !1, gives a Fokker–
Planck equation of the form (37), but with B D 0 and
A(x) D v � (u C v)x. This corresponds to a determin-
istic process with dx/dt D v � (u C v)x [22]. The fact
that the system tends to a macroscopic equation when
N !1 has to be taken into account when determin-
ing the nature of the fluctuations for large N. We will
discuss this further in Sect. “System Size Expansion”.
On the other hand, suppose that the mutation rates
scale with N according to u D 2ũ/N and v D 2ṽ/N ,
where ũ and ṽ have a finite limit as N !1, and where
the 2 has again been chosen to agree with the Wright–
Fisher model. Now both the first and second jump
moments are of order N�2, with the higher moments
falling off faster withN. Therefore once again introduc-
ing the rescaled time � D 2t/N2 and letting N !1,
we obtain the Fokker–Planck equation

@P
@t
D �

@

@x
�
fṽ � (ũ C ṽ) xg P

�
C

1
2
@2

@x2
�
x(1 � x)P

�
:

(43)

So depending on the precise scaling with N, the Moran
model gives different limits as N !1 [24]. In the
first case, the mutational effects are strong enough
that a macroscopic description exists, with fluctuations
about the macroscopic state, as discussed in Sect. “Sys-
tem Size Expansion”. In the second case, the mutational
effects are weaker, and there is no macroscopic equa-
tion describing the system; the large N limit is a non-
linear Fokker–Planck equation of the diffusive type.

The Fokker–Planck equation (37) for stationary processes,
where A and B are functions of x only, can be solved
by separation of variables, with solutions of the form
p(x)e��t , where  is a constant. The equation for p(x)
is then a second order differential equation which, when
boundary conditions are given, is of the Sturm–Liouville
type. To specify the boundary conditions we once again
introduce the probability current, this time through the
continuity equation,

@P(x; t)
@t

C
@J(x; t)
@x

D 0 ; (44)

where the probability current J(x; t) is given by

J(x; t) D A(x; t)P(x; t) �
1
2
@

@x
�
B(x; t)P(x; t)

�
: (45)

Let us suppose that the system is defined on the interval
[a; b]. Then if the boundaries are reflecting, there is no net
flow of probability across x D a and x D b. This implies
that J(a; t) D 0 and J(b; t) D 0. If we integrate the equa-
tion of continuity (44) from x D a to x D b, and apply
these boundary conditions, we see that

R b
a P(x; t)dx is in-

dependent of time. Therefore, if the pdf is initially nor-
malized, it remains normalized. This is in contrast with
the case of absorbing boundary conditions, defined by
P(a; t) D 0 and P(b; t) D 0. If the boundary conditions
are at infinity we require that limx!˙1 P(x; t) D 0, so
that if P is well-behaved it is normalizable, and also that
@P/@x is well-behaved in this limit: limx!˙1 @P/@x D 0.
If A or B do not diverge as x !˙1 this implies that
limx!˙1 J(x; t) D 0. Other types of boundary condi-
tions are possible, and we do not attempt a complete clas-
sification here [16,46].

IfA and B are independent of time, then from Eq. (44),
the stationary state of the system must be given by
dJ(x)/dx D 0, that is, J is a constant. For reflecting bound-
ary conditions this constant is zero, and so from Eq. (45)
the stationary pdf, Pst(x) must satisfy

0 D A(x)Pst(x)�
1
2
@

@x
�
B(x)Pst(x)

�
: (46)

This may be integrated to give

Pst(x) D
C

B(x)
exp

�
2
Z x

dx0
A(x0)
B(x0)

�
; (47)

where C is a constant which has to be chosen so that Pst(x)
is normalized.

The Fokker–Planck equation, with A independent of t
and B constant, can be transformed into the Schrödinger-
like problem

� B
@ 

@t
D �

B2

2
@2 

@x2
C U(x) ; (48)

by the transformation

P(x; t) D
�
Pst(x)

�1/2
 (x; t) ; (49)

where

U(x) D
1
2
�
A(x)

�2
C

B
2
dA
dx

: (50)

So a one-dimensional stationary stochastic process, un-
der certain conditions (such as constant second jump mo-
ment) is equivalent to quantum mechanics in imaginary
time, with B taking over the role of Planck’s constant.
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As an example we consider the Ornstein–Uhlenbeck
process defined by

@P
@t
D

@

@x
[axP]CD

@2P
@x2

; x 2 (�1;1); a > 0: (51)

In this case, the potential (50) is given by U(x) D [a2x2 �
2aD]/2, and so the problem is equivalent to the one-di-
mensional simple harmonic oscillator in quantum me-
chanics, but with an energy shift. As in that problem [47],
the eigenfunctions are Hermite polynomials. Specifically,
the right-eigenfunctions are

pm(x) D Pst(x)
1

[2mm!]1/2
Hm(˛x) ; (52)

where Hm are the Hermite polynomials [1] and ˛ D
(a/2D)1/2. The eigenvalue corresponding to the eigenfunc-
tion (52) is m D am, m D 0; 1; : : : and the left-eigen-
functions are qm(x) D [Pst(x)]�1 pm(x). From these ex-
plicit solutions we may calculate other quantities of inter-
est, such as correlation functions. We note that the eigen-
values are all non-negative and that the stationary state
corresponds to  D 0. The left-eigenfunction for the sta-
tionary state is equal to 1. These latter results hold true for
a wide-class of such problems.

Stochastic Differential Equations

So far we have described stochastic processes in terms of
equations which give the time evolution of pdfs. In this
section, we will describe equations for the stochastic vari-
ables themselves. The most well known instance of such
an equation is the Langevin equation for the velocity of
a Brownian particle, and so we begin with this particular
example.

Suppose that a small macroscopic particle of mass m
(such as a pollen grain) is immersed in a liquid at a temper-
ature T. In addition to any macroscopic motion that the
particle may have, its velocity fluctuates due to the random
collisions of the particle with the molecules of the liquid.
For simplicity, we confine ourselves to one-dimensional
motion – along the x-axis. Then the equation of motion
of the particle may be written in the form

m
d2x
dt2
D �˛

dx
dt
�

dV
dx
C F(t) : (53)

The first term on the right-hand side is due to the viscos-
ity of the fluid and ˛ is the friction constant. The second
term, where V(x) is a potential, represents the interaction
of the particle with any external forces, such as gravity. The
final term is the random force due to collisions with the

molecules of the liquid. Clearly to complete the specifi-
cation of the dynamics of the particle we need to give (i)
the initial position and velocity of the particle, and (ii) the
statistics of the random force F(t).

Tomake progress with these points, we imagine a large
number of realizations of the dynamics, in which the par-
ticle starts with the same initial position, x0, and veloc-
ity, v0, but where the initial positions and velocities of the
molecules in the liquid will be different. Taking the aver-
age over a large number of such realizations will give the
average position hx(t)i and velocity hv(t)i at time t, con-
ditional on x(0) D x0 and v(0) D v0. The statistics of the
fluctuating force F(t) are assumed to be such that

(a) hF(t)i D 0, since we do not expect one direction to be
favored over the other.

(b) hF(t)F(t0)i D 2Dı(t � t0), since we expect that after
a few molecular collisions the value that F takes on
will be independent of its former value. That is, the
force F becomes uncorrelated over times of the order
of a few collision times betweenmolecules. This is tiny
on observational time scales, and so taking the corre-
lation function to be a delta-function is an excellent
approximation. The weight of the delta-function is de-
noted by 2D, where at this stage D is undetermined.

(c) F(t) is taken to be Gaussianly distributed on grounds
of simplicity, but also because by the central limit the-
orem it is assumed that the net effect of the large num-
ber of molecules which collide with the pollen grain
will lead to a distribution which is Gaussian.

Since a Gaussian distribution is specified by its first two
moments, conditions (a), (b) and (c) completely define the
statistics of F(t).

Finally, Eq. (53) as it stands does not define a Markov
process. This is most easily seen if we write down a dis-
crete time version of the equation. The second derivative
means that x(t C ıt) not only depends on x(t), but also on
x(t � ıt). Therefore only first order derivatives should be
included in such equations if the process is to be Markov.
This is easily achieved by promoting v(t) to be a second
stochastic variable in addition to x(t). Then Eq. (53) may
be equivalent written as

dx
dt
D v ;

m
dv
dt
D �˛v �

dV
dx
C F(t) ;

(54)

which does define a Markov process. Although, as we re-
marked in the Introduction, we deal almost exclusively
with Markov processes in this article, the situation we
have just discussed is a good illustration of one way of
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dealing with processes which are presented as being non-
Markovian. The method simply consists of adding a suf-
ficient number of supplementary variables to the defini-
tion of the state variables of the process until it becomes
Markovian. There is no guarantee that this will be possi-
ble or require only a small number of additional variables
to be promoted in this way, but it is the most straight-
forward and direct way of rendering non-Markovian pro-
cesses tractable.

To begin the analysis of Eq. (54) we assume that there
are no external forces and so the term dV/dx is equal to
zero. Wemay then write Eq. (54) as the Langevin equation

dv
dt
D ��vC F(t) ; v(0) D v0 ; (55)

where � D ˛/m and F(t) D F(t)/m. This implies that

hF(t)i D 0 and hF(t)F(t0)i D
2D
m2 ı(t � t0) : (56)

Note that since F(t) is a random variable, solving the
Langevin equation will give v(t) as a random variable (hav-
ing a known distribution). It is therefore a stochastic dif-
ferential equation. The function F is frequently called “the
noise term” or simply “the noise”. It is white noise since
the Fourier transform of a delta-function is a constant –
all frequencies are present in equal amounts.

Multiplying the Langevin equation (55) by the inte-
grating factor e� t gives

d
dt
�
v(t)e� t

�
D F(t)e� t ) v(t)

D v0e�� t C e�� t
Z t

0
dt0 F(t0)e� t

0

: (57)

By taking the average of the expression for v(t) we find
hv(t)i D v0e�� t . More interestingly, if we square the ex-
pression for v(t) and take the average, then we find

hv2(t)i D v20e
�2� t C

D
˛m

�
1 � e�2� t

�
; (58)

which implies that

lim
t!1
hv2(t)i D

D
˛m

: (59)

On the other hand, as t !1, the Brownian particle will
be in thermal equilibrium:

lim
t!1
hv2(t)i D v2eq and

1
2
mv2eq D

1
2
kT ;

where T is the temperature of the liquid and k is Boltz-
mann’s constant. This implies that

1
2
m
�

D
˛m

�
D

1
2
kT ) D D ˛kT : (60)

The molecules of the liquid are acting as a heat bath for
the system – which in this case is a single Brownian parti-
cle. The equation D D ˛kT is a simple example of a fluc-
tuation-dissipation theorem, and determinesD in terms of
the friction constant, ˛, and of the temperature of the liq-
uid, T.

Although we have presented a somewhat heuristic ra-
tionale for Eq. (54), it may be derived in a more con-
trolled way. A particularly clear derivation has been given
by Zwanzig [60], where the starting point is a Hamilto-
nian which contains three terms: for the system, the heat
bath and the interaction between the system and the heat
bath. Taking the heat bath to be made up of coupled har-
monic oscillators and the interaction term between the
system and heat bath to be linear, it is possible to integrate
out the bath degrees of freedom exactly, and be left only
with the equations of motion of the system degrees of free-
dom plus the initial conditions of the bath degrees of free-
dom. Assuming that the bath is initially in thermal equilib-
rium, so that these initial values are distributed according
to a Boltzmann distribution, adds extra “noise” terms to
the equations of motion which, with a few more plausible
assumptions, make them of the Langevin type.

Examples of Langevin–like Equations

1. Overdamped Brownian motion. Frequently the viscous
damping force �˛v is much larger than the inertial
term md2x/dt2 in Eq. (53), and so to a good approxi-
mation the left-hand side of Eq. (53) can be neglected.
Scaling time by ˛, we arrive at the Langevin equation
for the motion of an overdamped Brownian particle:

dx
dt
D �V 0(x)CF(t) ; x(0) D x0 ; (61)

where 0 denotes differentiation with respect to x and
where, due to the rescaling of time by ˛,

hF(t)i D 0 ; hF(t)F(t0)i D 2D̃ı(t� t0) ; D̃ D
D
˛
:

(62)

A particularly well-known case is when the Brow-
nian particle is moving in the harmonic potential
V(x) D ax2/2. Then

dx
dt
D �ax CF(t) ; x(0) D x0 : (63)

Since Eq. (63) relating x(t) to F(t) is linear, and since
the distribution of F(t) is Gaussian, then x(t) is also
distributed according to a Gaussian distribution. Com-
paring with Eqs. (55) and (56), which also define a lin-
ear system, we find that hx(t)i D x0e�at and, from
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Eq. (58), hx2(t)i D x20e
�2at C (D̃/a)

�
1 � e�2at

�
. This

gives

P(x; tjx0; 0)

D

s
a

2� D̃
�
1 � e�2at

� exp

(

�
a
�
x � x0e�at

2

2D̃
�
1 � e�2at

�

)

:

(64)

It is straightforward to check that this conditional pdf
satisfies the Fokker–Planck equation (51) for the Orn-
stein–Uhlenbeck process. Belowwe will show this more
directly, by starting from the Langevin equation (61)
and deriving Eq. (51) if V(x) is quadratic.
Another case of interest is when V(x) is a double-
well potential, V(x) D �ax2/2C bx4/4. If the particle
is initially located near the bottom of one of the poten-
tial wells, it will take on average a time of the order of
e�V /D to hop over the barrier and into the well on the
other side. Here 
V is the height of the barrier that it
has to hop over [29].

2. Environmental noise in population biology. One of
the simplest models of two species with population
sizes N1 and N2 which are competing for a com-
mon resource, is the two coupled deterministic ordi-
nary differential equations Ṅi D ri Ni , i D 1; 2. The
growth rates, ri, depend on the population sizes in
such a way that as the population sizes increase, the
ri decrease to reflect the increased competition for re-
sources. This could be modeled, for instance, by tak-
ing ri D ai � bi i Ni � bi jN j with i; j D 1; 2 and i ¤ j.
In reality, external factors such as climate, terrain, the
presence of other species, and indeed any factor which
has an uncertain influence on these two species, will
also affect the growth rate. This can be modeled by
adding an external random term to the ri which rep-
resents this environmental stochasticity [33]. Then the
equations become

dN1

dt
D a1N1 � b11N2

1 � b12N1N2 C N1�1(t)

dN2

dt
D a2N2 � b22N2

2 � b21N2N1 C N2�2(t) :
(65)

Since the noise terms, �i (t) are designed to reflect the
large number of coupled variables omitted from the de-
scription of the model, it is natural, by virtue of the cen-
tral limit theorem, to assume that they are Gaussianly
distributed. It also seems reasonable to assume that any
temporal correlation between these external influences
is on scales very much shorter than those of interest to

us here, and that the noises have zero mean. We there-
fore assume that

h�i (t)i D 0 ; h�i(t)� j(t0)i D 2Diıi jı(t � t0) ; (66)

where the Di describe the strength of the stochastic
effects. The deterministic equations (that is, Eq. (65)
without the noise terms) have a fixed point at the ori-
gin, one on each of the N1 and N2 axes, and may have
another at non-zero N1 and N2. For some values of
the parameters this latter fixed point may be a sad-
dle, with those on the axes being stable and the ori-
gin unstable. In this situation the eventual fate of the
species depends significantly on the noise: if the combi-
nation of the nonlinear dynamics and the noise drives
the system to the vicinity of the fixed point on the
N1 axis, then species 2 will become extinct, and vice-
versa.

Langevin equations with Gaussian white noise are equiv-
alent to Fokker–Planck equations. This can be most eas-
ily seen by calculating the jump moments (39) from the
Langevin equation. For instance, if we begin from the
Langevin equation for an overdamped Brownian parti-
cle (61),


x(t) � x(t C
t) � x(t) D
Z tC�t

t
dt0 ẋ(t0)

D �

Z tC�t

t
dt0 V 0(x(t0))C �(t) ; (67)

where �(t) D
R tC�t
t dt0F(t0). From Eq. (62) it is straight-

forward to calculate the moments of �(t): h�(t)i D 0,

h�2(t)i D
Z tC�t

t
dt0

Z tC�t

t
dt00hF(t0)F(t00)i D 2D̃
t

(68)

and, since �(t) is Gaussian, h�n(t)i is zero if n is odd, and
at least of order (
t)2 for n � 4. This implies that

M1(x; 
t) D �V 0(x)
t CO (
t)2 ;

M2(x; 
t) D 2D̃
t CO (
t)2 ;
(69)

with all moments of order (
t)2 or higher for ` > 2. The
notation O (
t)2 means that the magnitude of this quan-
tity is less than a constant times (
t)2, for sufficiently small
nonzero (
t)2. This is a weaker, but more specific, state-
ment than saying it is o (
t). Using Eqs. (35) and (36),
the Fokker–Planck equation which is equivalent to the
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Langevin equation (61) is found to be

@P
@t
D

@

@x
�
V 0(x)P

�
C D̃

@2P
@x2

: (70)

From Eq. (47), the stationary pdf is Pst(x) D C expf
�V (x)/D̃g D C expf�V(x)/kTg, as expected.

Although in this article we have largely restricted our
attention to stochastic processes involving one variable,
the construction of a Fokker–Planck equation from the
Langevin equation goes through in a similar way for an
n-dimensional process x D (x1; : : : ; xn). In this case the
jump moments are

˝

xi1 (t)
xi2 (t) : : : 
xi`(t)

˛
x(t)Dx

D Di1:::i` (x; t)
t C o(
t) ; (71)

where 
xi˛ D xi˛ (t C
t) � xi˛ . The Kramers–Moyal
expansion is then

@P
@t
D

1X

`D1

(�1)`

`!
@`

@xi1 : : : @xi`

˚
Di1:::i`(x; t)P

�
: (72)

The Langevin equation for Brownian motion (54), with-
out going to the overdamped limit, serves as a sim-
ple illustration of this generalization. Here 
x(t) D v
t
and 
v(t) D ��v
t � m�1V 0(x)
t C m�1�(t). This
results in the Fokker–Planck equation

@P
@t
D �

@

@x
[vP]C

@

@v
�˚
�v C m�1V 0(x)

�
P
�
C
� kT
m

@2P
@v2

:

(73)

This is Kramer’s equation. It has a stationary pdf
Pst(x; v) D C expf�E/kTg, where E D mv2/2C V(x).

We end this section by finding the Fokker–Planck
equation which is equivalent to the general set of Langevin
equations of the form

ẋi D Ai (x; t)C
mX

˛D1

gi˛(x; t) �˛(t) ; i D 1; : : : ; n ; (74)

where �˛(t), ˛ D 1; : : : ;m, is a Gaussian white noise with
zero mean and with

h�˛(t)�ˇ (t0)i D ı˛ˇ ı(t � t0) : (75)

Proceeding as in Eq. (67), but noting the dependence of
the function gi˛ on the stochastic variable, yields

Mi(x; t; 
t)

D

2

4Ai (x; t)C �(0)
nX

jD1

mX

˛D1

g j˛(x; t)
@

@x j
gi˛(x; t)

3

5
t

C O (
t)2 ;

Mi j(x; t; 
t) D
mX

˛D1

�
gi˛(x; t)g j˛(x; t)

�

t CO (
t)2 ;

(76)

with all jump moments higher than the second being of
order (
t)2 or higher. The quantity �(0) is the value of
the Heaviside theta function, �(x), at x D 0 and is indeter-
minate. This indicates that the Langevin description does
not correspond to a unique Fokker–Planck equation. This
situation occurs whenever the white noise in a Langevin
equation is multiplied by a function which depends on the
state variable, as in Eq. (74). For systems such as this acted
upon by multiplicative noise the Langevin description has
to be supplemented by a rule which says whether the
state variable in the multiplying function (gi˛ in Eq. (74))
is that before or after the noise pulse acts [52]. If it is
taken to be the value immediately after the noise pulse
acts then �(0) D 0 (Itô rule), whereas if it is taken to be
the average of the values before and after, then �(0) D 1/2
(Stratonovich rule). The Fokker–Planck equation is now
found from Eq. (72) to be

@P
@t
D �

nX

iD1

@

@xi

�
Ai (x; t)P(x; t)

�

C
1
2

nX

i; jD1

mX

˛D1

@2

@xi@x j

�
gi˛(x; t)g j˛(x; t)P(x; t)

�
;

(77)

in the Itô case and

@P
@t
D �

nX

iD1

@

@xi

�
Ai (x; t)P(x; t)

�

C
1
2

nX

i; jD1

mX

˛D1

@

@xi

�
gi˛(x; t)

@

@x j

˚
g j˛(x; t)P(x; t)

��
;

(78)

in the Stratonovich case.

Path Integrals

While most early work on stochastic processes was
concerned with linear systems, naturally attention soon
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moved on to the many interesting systems which could be
modeled as nonlinear stochastic processes. These systems
are much more difficult to analyze. For example, a non-
linear Langevin equation cannot be solved directly, and so
the averaging procedure cannot be carried out in the same
explicit way as described in Sect. “Stochastic Differential
Equations”. There is however one method which is appli-
cable to many nonlinear stochastic differential equations
of interest: the solution of these equations can be formally
written down as a path-integral, and from this correlation
functions and other quantities of physical interest can be
obtained. This also has the advantage that all the formal-
ism and approximation schemes developed to study func-
tional integrals over the years can be called into play.

Path-integrals are intimately related to Brownian mo-
tion and the earliest work on the subject by Wiener [56,
57], emphasized this. If the problem of interest is for-
mulated as a set of Langevin equations, the derivation of
the path-integral representation is particularly straight-
forward, if rather heuristic. For clarity we begin with the
simplest case: an overdamped system with a single degree
of freedom, x, acted upon by white noise. The Langevin
equation is given by Eq. (61) and the noise is defined
by Eq. (62). Since the noise is assumed to be Gaussian,
Eq. (62) is a complete specification. An equivalent way of
giving it is through the pdf [12]:

P[F]DF / exp
�
�

1
4D̃

Z
dtF2(t)

�
DF ; (79)

where DF is the functional measure. The idea is now to
regard the Langevin equation (61) as defining a mapping
F 7! x. The pdf for the x variable is then given by

P[x] D P[F]jFDẋCV 0(x) J[x]

/ exp
�
�

1
4D̃

Z
dt [ẋ C V 0(x)]2

�
J[x] ;

(80)

where

J[x] D det
�
ıF
ıx

�
; (81)

is the Jacobian of the transformation. An explicit expres-
sion for the Jacobian may be obtained either by direct
calculation of a discretized form of the Langevin equa-
tion [21] or through use of the identity relating the de-
terminant of a matrix to the exponential of the trace of
the logarithm of that matrix [59]. One finds that J[x] /
expf�(0)

R
dt V 00(x)g. The quantity �(0) is once again the

indeterminate value of the Heaviside theta function �(x)
at x D 0. Its appearance is a reflection of the fact that,

due to the Brownian-like nature of the paths in the func-
tional integral, the nature of the discretization appears ex-
plicitly through this factor [48]. If we consistently use the
mid-point rule throughout, then we may take �(0) D 1/2,
which gives

P[x] / exp
�
�

1
4D̃

Z
dt [ẋ C V 0(x)]2 C

1
2

Z
dt V 00(x)

�

D exp
�
�S[x]/D̃


:

(82)

All quantities of interest can now be found from expres-
sion (82). For example, the conditional probability distri-
bution, P(x; tjx0; t0) is given by

hı(x�x(t))ix(t0)Dx0 D

Z

x(t0)Dx0
Dxı(x�x(t)) P[x]: (83)

The expression (82) has much in common with Feyn-
man’s formulation of quantum mechanics as a path-inte-
gral [11]. In fact another way to obtain the result is to ex-
ploit the transformation (49) to write the Fokker–Planck
equation (70) as a Schrödinger equation in imaginary time
� D it, with a potential U(x) D (1/2)[V 0(x)]2 � D̃V 00(x),
following Eq. (50). The action in the quantum-mechanical
path-integral is

i
„

Z
dt
�
1
2
ẋ2 � U(x)

�
�!

1
2D̃

Z
d�

�
�
1
2
ẋ2 �

1
2
�
V 0(x)

�2
C D̃V 00(x)

�
; (84)

which is Eq. (82) since
R t
t0 dt ẋV

0(x) D
R x
x0 dx V

0(x) D
V(x) � V (x0) does not depend on the path, only on the
end-points. The functional S[x] is analogous to the ac-
tion in classical mechanics, and is frequently referred to
as such. It is also sometimes referred to as the generalized
Onsager–Machlup functional, in recognition of the origi-
nal work carried out by Onsager and Machlup [40], in the
case of a linear Langevin equation, in 1953.

The above discussion can be generalized inmanyways.
For example, if the Langevin equation for an n-dimen-
sional process takes the form

ẋi D Ai (x)C�i (t) ; h�i(t)� j(t0)i D 2Di jı(t� t0) ; (85)

where �i (t) is a Gaussian noise with zero mean and Dij
is independent of x, then the general Onsager–Machlup
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functional is [21]

S[x] D
Z

dt

2

41
4

X

i; j

fẋi � Ai (x)gD�1i j
˚
ẋ j � Aj(x)

�

C
1
2

X

i

@Ai

@xi

#

; (86)

if the matrix Dij is non-singular. The generalization to the
situation where the noise is multiplicative is more compli-
cated, and is analogous to the path-integral formulation of
quantum mechanics in curved space [20].

System Size Expansion

In Example 2 of Sect. “The Fokker–Planck Equation” we
explicitly showed how the master equation may have dif-
ferent limits when the size of the system,N, becomes large.
In one case both the first and second jump moments were
of the same order (and much larger than the higher jump
moments) and so a nonlinear Fokker–Planck equation of
the diffusion type was obtained in the limit N !1. In an-
other case, the first jumpmoment scaled in a different way
to the secondmoment, and so the N !1 limit gave a de-
terministic macroscopic equation of the form ẋ D f (x),
with finite N effects presumably consisting of 1/

p
N fluc-

tuations about the macroscopic state, x(t). It is the second
scenario that we will explore in this section. It can be for-
malized by writing

n
N
D x(t)C

�
p
N
; (87)

and substituting this into the master equation, then equat-
ing terms of the same order in 1/

p
N. The leading or-

der equation obtained in this way will be the macroscopic
equation, and the function f (x) will emerge from the anal-
ysis. The next-to-leading order equation turns out to be
a linear Fokker–Planck equation in the variable � . Higher
order termsmay also be included. This formalism was first
developed by van Kampen [51] and is usually referred to
as van Kampen’s system-size expansion. We will describe
it in the specific case of a one-step process for a single
stochastic variable in order to bring out the essential fea-
tures of the method.

When using this formalism it is useful to rewrite the
master equation (23) using step operators which act on
an arbitrary function of n according to E f (n) D f (nC 1)
and E�1 f (n) D f (n � 1). This gives

dP(n; t)
dt

D (E � 1)
�
T(n � 1jn)P(n; t)

�

C
�
E�1 � 1

 �
T(nC 1jn)P(n; t)

�
: (88)

We begin by using Eq. (87) to write the pdf which appears
in the master Equation (88) as

P(Nx(t)C
p
N�; t) D ˘ (�; t)

) Ṗ D
@˘

@t
� N1/2 dx

dt
@˘

@�
: (89)

This gives an expression for the left-hand side of the mas-
ter equation, Ṗ. To get an expression for the right-hand
side,

(a) the step operators are expanded in powers of
1/
p
N [53]:

E˙1 D 1˙
1
p
N
@

@�
C

1
2!

1
N
@2

@�2
CO

�
1

N3/2

�
; (90)

(b) T(n ˙ 1jn) is expressed in terms of � and N,
(c) P(n; t) is replaced by˘ (�; t).

Steps (a), (b) and (c) gives the right-hand side of the mas-
ter equation as a power-series in 1/

p
N. Equating the left-

hand and right-hand sides order by order in 1/
p
N (this

may require a rescaling of the time, t, by a power of
p
N),

gives to leading order (the @˘ /@� cancels) an equation of
the form dx/dt D f (x). This may be solved subject to the
condition x(0) D x0 D n0/N, if we take the initial condi-
tion on the master equation to be P(n; 0) D ın;n0 . We de-
note the solution of this macroscopic equation by xM(t).

To next order in 1/
p
N, the Fokker–Planck equation

@˘

@t
D � f 0(x)

@

@�
[�˘ ]C

1
2
g(x)

@2˘

@�2
; (91)

describing a linear stochastic process is found. The func-
tions f 0(x) and g(x) are to be evaluated when x D xM(t),
and so are simply functions of time. If the macroscopic
system tends to a fixed point: xM(t)! x�, as t !1, then
f 0(x) and g(x) may be replaced by constants in order to
study the fluctuations about this stationary state.

To illustrate the method we use Example 3, Sect. “The
Master Equation”. Equating both sides of the master equa-
tion in this case one finds

� N1/2 dx
dt
@˘

@�
C
@˘

@t
D

1
p
N

�
f�(x)� fC(x)

� @˘
@�

C
1
2
1
N
�
f�(x)C fC(x)

� @2˘
@�2

C
1
N
�
f 0�(x) � f 0C(x)

� @
@�

[�P]C : : : ; (92)

where the functions f�(x) and fC(x) are given by:

f�(x) D cx2 C dx ; fC(x) D 2bx(1 � x) : (93)
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For the left- and right-hand sides to balance in Eq. (92),
a rescaled time � D t/N needs to be introduced. Then
to leading order one finds dx/d� D f (x), where f (x) D
fC(x) � f�(x). At next to leading order Eq. (91) is
found with g(x) D fC(x)C f�(x). The explicit form of
the macroscopic equation is

dx
d�
D x (r � ax) ; (94)

where r D 2b � d and a D 2bC c. Equation (94) is the lo-
gistic equation, which is the usual phenomenological way
to model intraspecies competition.

Since the Fokker–Planck equation (91) describes a lin-
ear process, its solution is a Gaussian. This means that
the probability distribution˘ (�; t) is completely specified
by the first two moments h�(t)i and h�2(t)i. Multiplying
Eq. (91) by � and �2 and integrating over all � one finds

d
dt
h�(t)i D f 0(xM(t))h�(t)i ;

d
dt
h�2(t)i D 2 f 0(xM(t))h�2(t)i C g(xM(t)) :

(95)

We have chosen the initial condition to be x0 D n0/N ,
which implies that �(0) D 0. The first equation in (95)
then implies that h�(t)i D 0 for all t. Multiplying the sec-
ond equation by f�2(xM(t)) one finds that

h�2(t)i D f 2(xM(t))
Z t

0
dt0

g(xM(t0))
f 2(xM(t0))

; (96)

and so the determination of h�2(t)i is reduced to quadra-
ture. The method can be applied to systems with more
than one stochastic variable and those which are not
one-step processes. Details are given in van Kampen’s
book [53].

Future Directions

This article has focused largely on classical topics in the
theory of stochastic processes, since these form the foun-
dations on which the subject is built. Much of the cur-
rent work, and one would expect future work, will be nu-
merical in character. Some of this will begin from a ba-
sic Markovian description in the form of reactions among
chemical species – even if the system is not chemical in
nature (Example 3 of Sect. “The Master Equation” is an
example). A straightforward algorithm developed byGille-
spie [17,18], and since then extended and improved [3,19],
provides an efficient way of simulating such systems. It
thus provides a valuable method of investigating systems

which may be formulated as complicated multivariable
master equations, which complements the methods we
have discussed here. However, many current studies do
not begin from a system which can be described in this
way, and there is every indication that this will be more
true in the future. For instance, in agent based models
the stochastic element may be due to mutations in char-
acteristics, traits or behavior, which may be difficult or
impossible to formulate mathematically. Such agent based
models are certainly individually based, but each individ-
ual may have different attributes and generally behave in
such a complex way that only numerical simulations can
be used to explore the behavior of the system as a whole.
Although these complex systems may be used to model
more realistic situations, the well-known problems asso-
ciated with the large number of parameters typically re-
quired to describe such systems, will mean that simplified
versions will need to be analyzed in order to understand
them at a deeper level. These simpler models are likely
to include those where the agents of a particular species
are essentially identical. In this article we have discussed
how the classical equations of the theory of stochastic pro-
cesses, such as the Fokker–Planck equation, can be ob-
tained from suchmodels. Theywill therefore form a bridge
between the agent-based approaches which are expected to
become more prevalent in the future, and the analytic ap-
proaches which lie at the heart of the theory of stochastic
processes.

Bibliography

Primary Literature

1. Abramowitz M, Stegun I (Eds) (1965) Handbook of mathemati-
cal functions. Dover, New York

2. Bachelier L (1900) Théorie de la spéculation. Annales Scien-
tifiques de L’Ecole Normale Supérieure III(17):21–86

3. Cao Y, Li H, Petzold L (2004) Efficient formulation of the
stochastic simulation algorithm for chemically reacting sys-
tems. J Chem Phys 121:4059–4067

4. Chandrasekhar S (1943) Stochastic problems in physics and as-
tronomy. Rev Mod Phys 15:1–89. Reprinted in Wax (1954)

5. Cox DR, Miller HD (1968) The theory of stochastic processes,
Chap 3. Chapman and Hall, London

6. Crow JF, Kimura M (1970) An introduction to population ge-
netics theory. Harper and Row, New York

7. Ehrenfest P, Ehrenfest T (1907) Über zwei bekannte Einwände
gegen das Boltzmannsche H-Theorem. Phys Z 8:311–314

8. Einstein A (1905) Über die von der molekularkinetischen The-
orie der Wärme geforderte Bewegung von in ruhenden Flüs-
sigkeiten suspendierten Teilchen. Ann Physik 17:549–560. For
a translation see: A. Einstein, “Investigations on the Theory of
the Brownian Movement” Fürth R (ed), Cowper AD (tr) (Dover,
New York, 1956). Chapter I



8782 S Stochastic Processes

9. Einstein A (1906) Zur Theorie der Brownschen Bewegung. Ann
Physik 19:371–381. For a translation see: A. Einstein, “Investiga-
tions on the Theory of the Brownian Movement” Fürth R (ed),
Cowper AD (tr) (Dover, New York, 1956). Chapter II

10. Feller W (1968) An introduction to probability theory and its
applications, Chap XV, 3rd edn. Wiley, New York

11. Feynman RP (1948) Space-time approach to non-relativistic
quantummechanics. Rev Mod Phys 20:367–387

12. Feynman RP, Hibbs AR (1965) Quantum mechanics and path
integrals, Chap 12. McGraw-Hill, New York

13. Fisher RA (1930) The genetical theory of natural selection.
Clarendon Press, Oxford

14. Fokker AD (1914) Die mittlere Energie rotierende elektrischer
Dipole im Strahlungsfeld. Ann Physik 43:810–820

15. Gantmacher FR (1959) The theory of matrices, Chap 13, Sect 6,
vol 2. Chelsea Publishing Co., New York

16. Gardiner CW (2004) Handbook of stochastic methods, 3rd edn.
Springer, Berlin

17. Gillespie DT (1976) A general method for numerically simulat-
ing the stochastic time evolution of coupled chemical reac-
tions. J Comput Phys 22:403–434

18. Gillespie DT (1977) Exact stochastic simulation of coupled
chemical reactions. J Phys Chem 81:2340–2361

19. Gillespie DT (2001) Approximate accelerated stochastic simu-
lation of chemically reacting systems. J Chem Phys 115:1716–
1733

20. Graham R (1977) Path integral formulation of general diffusion
processes. Z Physik B26:281–290

21. Graham R (1975) Macroscopic theory of fluctuations and in-
stabilities. In: Riste T (ed) Fluctuations, Instabilities, and Phase
Transitions. Plenum, New York, pp 215–293

22. Haken H (1983) Synergetics. Springer, Berlin. Sect 6.3
23. Kac M (1947) Random walk and the theory of Brownian mo-

tion. Amer Math Mon 54:369–391
24. Karlin S, McGregor J (1964) On some stochastic mod-

els in genetics. In: Gurland J (ed) Stochastic problems in
medicine and biology. University of Wisconsin Press, Madison,
pp 245–279

25. Kendall DG (1948) On somemodes of population growth lead-
ing to R. A. Fisher’s logarithmic series distribution. Biometrika
35:6–15

26. Kolmogorov AN (1931) Über die analytischenMethoden in der
Wahrscheinlichkeitsrechung. Math Ann 104:415–458

27. Kolmogorov AN (1936) Anfangsgründe der Theorie der
Markoffschen Ketten mit unendlich vielen möglichen Zustän-
den. Mat Sbornik (N.S.) 1:607–610

28. Krafft O, Schaefer M (1993) Mean passage times for tridiagonal
transition matrices and a two-parameter Ehrenfest urn model.
J Appl Prob 30:964–970

29. Kramers HA (1940) Brownian motion in a field of force and the
diffusion model of chemical reactions. Physica 7:284–304

30. Langevin P (1908) Sur la théorie du mouvement brownien. C R
Acad Sci Paris 146:530–533. For a translation see: D. S. Lemons
and A. Gythiel, Am. J. Phys. 65: 1079–1081 (1997)

31. Malécot G (1944) Sur un problème de probabilités en chaine
que pose la génétique. C R Acad Sci Paris 219:379–381

32. Markov AA (1906) Rasprostranenie zakona bol’shih chisel na
velichiny, zavisyaschie drug ot druga. Izv Fiz-Matem Obsch
Kazan Univ (Series 2) 15:135–156. See also: “Extension of the
limit theorems of probability theory to a sum of variables con-

nected in a chain”, in Appendix B of R. Howard “Dynamic Prob-
abilistic Systems, vol 1: Markov Chains” (John Wiley and Sons,
1971)

33. May RM (1973) Model ecosystems, Chap 5. Princeton Univer-
sity Press, Princeton

34. McKane AJ, Newman TJ (2004) Stochastic models in popu-
lation biology and their deterministic analogs. Phys Rev E
70:041902

35. McKane AJ, Newman TJ (2005) Predator-prey cycles from reso-
nant amplification of demographic stochasticity. Phys Rev Lett
94:218102

36. Moran PAP (1958) Random processes in genetics. Proc Cam-
bridge Philos Soc 54:60–72

37. Moran PAP (1962) The statistical processes of evolutionary the-
ory, Chap 4. Clarendon Press, Oxford

38. Moyal JE (1949) Stochastic processes and statistical physics.
J Roy Stat Soc (London) B 11:150–210

39. Nordsieck A, Lamb WE Jr, Uhlenbeck GE (1940) On the theory
of cosmic-ray showers. I. The Furry model and the fluctuation
problem. Physica 7:344–360

40. Onsager L, Machlup S (1953) Fluctuations and irreversible pro-
cesses. Phys Rev 91:1505–1512

41. PauliW (1928) Probleme dermodernen Physik. In: Debye P (ed)
Festschrift zum 60. Geburtstag A. Sommerfeld. Hirzel, Leipzig,
p 30

42. Pearson K (1905) The problem of the random walk. Nature
72:294,342

43. PlanckM (1917) Über einen Satz der statistischenDynamik und
seine Erweiterung in der Quantentheorie. Abh Preuss Akad
Wiss Berl 24:324–341

44. Rayleigh L (1891) Dynamical problems in illustrationof the the-
ory of gases. Phil Mag 32:424–445

45. Reichl LE (1998) A modern course in statistical physics, Chap 5,
2nd edn. Wiley, New York

46. Risken H (1989) The Fokker–Planck equation, 2nd edn.
Springer, Berlin

47. Schiff LI (1968) Quantummechanics, Chap 4, 3rd edn. McGraw-
Hill, Tokyo

48. Schulman LS (1981) Techniques and applications of path–
integration, Chap 5. Wiley, New York

49. Siegert AJF (1949) On the approach to statistical equilibrium.
Phys Rev 76:1708–1714

50. Sneddon IN (1957) Elements of partial differential equations,
Chap 2. McGraw-Hill, New York

51. van Kampen NG (1961) A power series expansion of themaster
equation. Can J Phys 39:551–567

52. van Kampen NG (1981) Itô versus Stratonovich. J Stat Phys
24:175–187

53. van Kampen NG (1992) Stochastic processes in physics and
chemistry, 2nd edn. North-Holland, Amsterdam

54. von SmoluchowskiM (1906) Zur kinetishen Theorie der Brown-
schenMolekularbewegung und der Suspensionen. Ann Physik
21:756–780

55. von Smoluchowski M (1916) Drei Vortage über Diffusion,
Brownsche Bewegung, und Koagulation von Kolloidteilchen.
Phys Z 17:571–599

56. Wiener N (1921) The average of an analytic functional. Proc
Natl Acad Sci USA 7:253–260

57. Wiener N (1921) The average of an analytic functional and the
Brownianmovement. Proc Natl Acad Sci USA 7:294–298



Stochastic Volatility S 8783

58. Wright S (1931) Evolution in Mendelian populations. Genetics
16:97–159

59. Zinn-Justin J (2002) Quantum field theory and critical phenom-
ena, 4th edn. Clarendon Press, Oxford. Sect 4.8.2

60. Zwanzig R (1973) Nonlinear generalized Langevin equations.
J Stat Phys 9:215–220

Books and Reviews
Wax N (1954) Selected papers on noise and stochastic processes.

Dover, New York

Stochastic Volatility
TORBEN G. ANDERSEN1,2,3 , LUCA BENZONI4
1 Kellogg School of Management, Northwestern
University, Evanston, USA

2 NBER, Cambridge, USA
3 CREATES, Aarhus, Denmark
4 Federal Reserve Bank of Chicago, Chicago, USA

Article Outline

Glossary
Definition of the Subject
Introduction
Model Specification
Realized Volatility
Applications
Estimation Methods
Future Directions
Acknowledgments
Bibliography

Glossary

Implied volatility The value of asset return volatility
which equates a model-implied derivative price to the
observed market price. Most notably, the term is used
to identify the volatility implied by the Black and Sc-
holes [63] option pricing formula.

Quadratic return variation The ex-post sample-path re-
turn variation over a fixed time interval.

Realized volatility The sum of finely sampled squared as-
set return realizations over a fixed time interval. It is
an estimate of the quadratic return variation over such
time interval.

Stochastic volatility A process in which the return vari-
ation dynamics include an unobservable shock which
cannot be predicted using current available informa-
tion.

Definition of the Subject

Given the importance of return volatility on a number
of practical financial management decisions, the efforts
to provide good real-time estimates and forecasts of cur-
rent and future volatility have been extensive. The main
framework used in this context involves stochastic volatil-
ity models. In a broad sense, this model class includes
GARCH, but we focus on a narrower set of specifica-
tions in which volatility follows its own random process,
as is common in models originating within financial eco-
nomics. The distinguishing feature of these specifications
is that volatility, being inherently unobservable and subject
to independent random shocks, is not measurable with re-
spect to observable information. In what follows, we refer
to these models as genuine stochastic volatility models.

Much modern asset pricing theory is built on continu-
ous-time models. The natural concept of volatility within
this setting is that of genuine stochastic volatility. For ex-
ample, stochastic volatility (jump-)diffusions have pro-
vided a useful tool for a wide range of applications, includ-
ing the pricing of options and other derivatives, themodel-
ing of the term structure of risk-free interest rates, and the
pricing of foreign currencies and defaultable bonds. The
increased use of intraday transaction data for construc-
tion of so-called realized volatilitymeasures provides addi-
tional impetus for considering genuine stochastic volatil-
ity models. As we demonstrate below, the realized volatil-
ity approach is closely associatedwith the continuous-time
stochastic volatility framework of financial economics.

There are some unique challenges in dealing with gen-
uine stochastic volatility models. For example, volatility is
truly latent and this feature complicates estimation and in-
ference. Further, the presence of an additional state vari-
able – volatility – renders the model less tractable from an
analytic perspective. We review how such challenges have
been addressed through development of new estimation
methods and imposition of model restrictions allowing for
closed-form solutions while remaining consistent with the
dominant empirical features of the data.

Introduction

The label Stochastic Volatility is applied in two distinct
ways in the literature. For one, it is used to signify that
the (absolute) size of the innovations of a time series dis-
plays random fluctuations over time. Descriptive models
of financial time series almost invariably embed this fea-
ture nowadays as asset return series tend to display al-
ternating quiet and turbulent periods of varying length
and intensity. To distinguish this feature from models
that operate with an a priori known or deterministic path
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for the volatility process, the random evolution of the
conditional return variance is termed stochastic volatil-
ity. The simplest case of deterministic volatility is the con-
stant variance assumption invoked in, e. g., the Black and
Scholes [63] framework. Another example is modeling the
variance purely as a given function of calendar time, allow-
ing only for effects such as time-of-year (seasonals), day-
of-week (institutional and announcement driven) or time-
of-day (diurnal effects due to, e. g., market microstructure
features). Any model not falling within this class is then
a stochastic volatility model. For example, in the one-fac-
tor continuous-time Cox, Ingersoll, and Ross [113] (CIR)
model the (stochastic) level of the short term interest rate
governs the dynamics of the (instantaneous) drift and dif-
fusion term of all zero-coupon yields. Likewise, in GARCH
models the past return innovations govern the one-period
ahead conditional mean and variance. In both models, the
volatility is known, or deterministic, at a given point in
time, but the random evolution of the processes renders
volatility stochastic for any horizon beyond the present pe-
riod.

The second notion of stochastic volatility, which we
adopt henceforth, refers to models in which the return
variation dynamics is subject to an unobserved random
shock so that the volatility is inherently latent. That is, the
current volatility state is not known for sure, conditional
on the true data generating process and the past history
of all available discretely sampled data. Since the CIR and
GARCH models described above render the current (con-
ditional) volatility known, they are not stochastic volatility
models in this sense. In order to make the distinction clear
cut, we follow Andersen [10] and label this second, more
restrictive, set genuine stochastic volatility (SV) models.

There are two main advantages to focusing on SV
models. First, much asset pricing theory is built on contin-
uous-time models. Within this class, SV models tend to fit
more naturally with a wide array of applications, includ-
ing the pricing of currencies, options, and other deriva-
tives, as well as the modeling of the term structure of in-
terest rates. Second, the increasing use of high-frequency
intraday data for construction of so-called realized volatil-
ity measures is also starting to push the GARCH models
out of the limelight as the realized volatility approach is
naturally linked to the continuous-time SV framework of
financial economics.

One drawback is that volatility is not measurable with
respect to observable (past) information in the SV setting.
As such, an estimate of the current volatility state must
be filtered out from a noisy environment and the esti-
mate will change as future observations become available.
Hence, in-sample estimation typically involves smoothing

techniques, not just filtering. In contrast, the conditional
variance in GARCH is observable given past information,
which renders (quasi-)maximum likelihood techniques
for inference quite straightforward while smoothing tech-
niques have no role. As such, GARCH models are easier
to estimate and practitioners often rely on them for time-
series forecasts of volatility. However, the development of
powerful method of simulated moments, Markov Chain
Monte Carlo (MCMC) and other simulation based pro-
cedures for estimation and forecasting of SV models may
well render them competitive with ARCH over time on
that dimension.

Direct indications of the relations between SV and
GARCH models are evident in the sequence of papers by
Dan Nelson and Dean Foster exploring the SV diffusion
limits of ARCH models as the case of continuous sam-
pling is approached, see, e. g., Nelson and Foster [219].
Moreover, as explained in further detail in the estima-
tion section below, it can be useful to summarize the dy-
namic features of asset returns by tractable pseudo-like-
lihood scores obtained from GARCH-style models when
performing simulation based inference for SV models. As
such, the SV and GARCH frameworks are closely related
and should be viewed as complements. Despite these con-
nections we focus, for the sake of brevity, almost exclu-
sively on SV models and refer the interested reader to the
GARCH chapter for further information.

The literature on SV models is vast and rapidly grow-
ing, and excellent surveys are available, e. g., Ghysels
et al. [158] and Shephard [239,240]. Consequently, we fo-
cus on providing an overview of the main approaches with
illustrations of the scope for applications of these models
to practical finance problems.

Model Specification

The original econometric studies of SV models were in-
variably cast in discrete time and they were quite simi-
lar in structure to ARCH models, although endowed with
a more explicit structural interpretation. Recent work in
the area has been mostly directly towards a continuous
time setting and motivated by the typical specifications in
financial economics. This section briefly reviews the two
alternative approaches to specification of SV models.

Discrete-Time SVModels
and the Mixture-of-Distributions Hypothesis

Asset pricing theory contends that financial asset prices re-
flect the discounted value of future expected cash flows,
implying that all news relevant for either discount rates or
cash flows should induce a shift in market prices. Since
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economic news items appear almost continuously in real
time, this perspective rationalizes the ever-changing na-
ture of prices observed in financial markets. The process
linking news arrivals to price changes may be complex,
but if it is stationary in the statistical sense it will nonethe-
less produce a robust theoretical association between news
arrivals, market activity and return volatility. In fact, if
the number of news arrival is very large, standard central
limit theory will tend to imply that asset returns are ap-
proximately normally distributed conditional on the news
count. More generally, variables such as the trading vol-
ume, the number of transactions or the number of price
quotes are also naturally related to the intensity of the in-
formation flow. This line of reasoning has motivated spec-
ifications such as

ytjst Ý N(�y st ; �2y st) ; (1)

where yt is an “activity” variable related to the information
flow, st is a positive intensity process reflecting the rate of
news arrivals, �y represents the mean response to an in-
formation event, and � y is a pure scaling parameter.

This is a normal mixture model, where the st process
governs or “mixes” the scale of the distribution across the
periods. If st is constant, this is simply an i.i.d. Gaussian
process for returns and possible other related variables.
However, this is clearly at oddswith the empirical evidence
for, e. g., return volatility and trading volume. Therefore,
st is typically stipulated to follow a separate stochastic pro-
cess with random innovations. Hence, each period the re-
turn series is subject to two separate shocks, namely the
usual idiosyncratic error term associated with the (nor-
mal) return distribution, but also a shock to the variance or
volatility process, st. This endows the return process with
genuine stochastic volatility, reflecting the random inten-
sity of news arrivals. Moreover, it is typically assumed that
only returns, transactions and quotes are observable, but
not the actual value of st itself, implying that � y cannot be
separately identified. Hence, we simply fix this parameter
at unity.

The time variation in the information flow series in-
duces a fat-tailed unconditional distribution, consistent
with stylized facts for financial return and, e. g., trading
volume series. Intuitively, days with a lot of news display
more rapid price fluctuations and trading activity than
days with a low news count. In addition, if the st process is
positively correlated, then shocks to the conditional mean
and variance processes for yt will be persistent. This is con-
sistent with the observed clustering in financial markets,
where return volatility and trading activity are contempo-
raneously correlated and each display pronounced positive
serial dependence.

The inherent randomness and unobserved nature of
the news arrival process, even during period t, renders
the true mean and variance series latent. This property
is the major difference with the GARCH model class, in
which the one-step-ahead conditional mean and variance
are a known function of observed variables at time t � 1.
As such, for genuine SV models, we must distinguish the
full, but infeasible, information set (st 2 Ft) and the ob-
servable information set (st … It). This basic latency of the
mixing variable (state vector) of the SV model complicates
inference and forecasting procedures as discussed below.

For short horizon returns, �y is nearly negligible and
can reasonably be ignored or simply fixed at a small con-
stant value, and the series can then be demeaned. This
simplification produces the following return (innovation)
model,

rt D
p
st zt ; (2)

where zt is an i.i.d. standard normal variable, implying
a simple normal-mixture representation,

rt jst Ý N(0; st) : (3)

Univariate return models of the form (3) as well as mul-
tivariate systems including a return variable along with
other related market activity variables, such as the trans-
actions count, the quote intensity or the aggregate trading
volume, stem from the Mixture-of-Distributions Hypoth-
esis (MDH).

Actual implementation of the MDH hinges on a par-
ticular representation of the information-arrival process
st . Clark [102] uses trading volume as a proxy for the ac-
tivity variable, a choice motivated by the high contem-
poraneous correlation between return volatility and vol-
ume. Tauchen and Pitts [247] follow a structural approach
to characterize the joint distribution of the daily return
and volume relation governed by the underlying latent
information flow st. However, both these models assume
temporal independence of the information flow, thus fail-
ing to capture the clustering in these series. Partly in re-
sponse, Gallant et al. [153] examine the joint conditional
return-volume distribution without imposing any struc-
tural MDH restrictions. Nonetheless, many of the origi-
nal discrete-time SV specifications are compatible with the
MDH framework, including Taylor [249]1, who proposes
an autoregressive parametrization of the latent log-volatil-
ity (or information flow) variable

log(stC1) D �0C �1 log(st)C ut ; ut Ý i.i.d(0; �2u) ; (4)

1Discrete-time SV models go father back in time, at least to the
easly paper by Rosenberg [232] recently reprinted in Shephard [240].
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where the error term, ut , may be correlated with the dis-
turbance term, zt , in the return Eq. (2) so that � D
corr(ut ; zt) ¤ 0. If � < 0, downward movements in asset
prices result in higher future volatility as also predicted by
the so-called ‘leverage effect’ in the exponential GARCH,
or EGARCH, form of Nelson [218] and the asymmetric
GARCH model of Glosten et al. [160].

Early tests of the MDH include Lamoureux and Las-
trapes [194] and Richardson and Smith [231]. Subse-
quently, Andersen [11] studies a modified version of the
MDH that provides a much improved fit to the data.
Further refinements of the MDH specification have been
pursued by, e. g., Liesenfeld [198,199] and Bollerslev and
Jubinsky [67]. Among the first empirical studies of the
related approach of stochastic time changes are Ané and
Geman [29], who focus on stock returns, and Conley
et al. [109], who focus on the short-term risk-free interest
rate.

Continuous-Time Stochastic Volatility Models

Asset returns typically contain a predictable component,
which compensates the investor for the risk of holding
the security, and an unobservable shock term, which can-
not be predicted using current available information. The
conditional asset return variance pertains to the variability
of the unobservable shock term. As such, over a non-in-
finitesimal horizon it is necessary to first specify the condi-
tional mean return (e. g., through an asset pricing model)
in order to identify the conditional return variation. In
contrast, over an infinitesimal time interval this is not nec-
essary because the requirement that market prices do not
admit arbitrage opportunities implies that return innova-
tions are an order of magnitude larger than the mean re-
turn. This result has important implications for the ap-
proach we use to model and measure volatility in continu-
ous time.

Consider an asset with log-price process fp(t) ; t 2
[0; T]g defined on a probability space (˝;F ; P). Follow-
ing Andersen et al. [19] we define the continuously com-
pounded asset return over a time interval from t � h to t,
0 � h � t � T , to be

r(t; h) D p(t) � p(t � h) : (5)

A special case of (5) is the cumulative return up to time t,
which we denote r(t) � r(t; t) D p(t) � p(0), 0 � t � T .
Assume the asset trades in a frictionless market void of
arbitrage opportunities and the number of potential dis-
continuities (jumps) in the price process per unit time is
finite. Then the log-price process p is a semi-martingale
(e. g., Back [33]) and therefore the cumulative return r(t)

admits the decomposition (e. g., Protter [229])

r(t) D �(t)C MC(t)C MJ(t) ; (6)

where �(t) is a predictable and finite variation process,
MC(t) a continuous-path infinite-variation martingale,
and MJ(t) is a compensated finite activity jump martin-
gale. Over a discrete time interval the decomposition (6)
becomes

r(t; h) D �(t; h)CMC(t; h)C MJ(t; h) ; (7)

where �(t; h) D �(t) � �(t � h);MC(t; h) D MC(t) �
MC(t � h), and MJ(t; h) D MJ(t) � MJ(t � h).

Denote now with [r; r] the quadratic variation of the
semi-martingale process r, where (Protter [229])

[r; r]t D r(t)2 � 2
Z

r(s�)dr(s) ; (8)

and r(t�) D lims"t r(s). If the finite variation process �
is continuous, then its quadratic variation is identically
zero and the predictable component � in decomposi-
tion (7) does not affect the quadratic variation of the re-
turn r. Thus, we obtain an expression for the quadratic
return variation over the time interval from t � h to t,
0 � h � t � T (e. g., Andersen et al. [21] and Barndorff-
Nielsen and Shephard [51,52]):

QV(t; h) D [r; r]t � [r; r]t�h
D [MC;MC]t � [MC;MC]t�h

C
X

t�h<s�t


M2(s)

D [MC;MC]t � [MC;MC]t�h

C
X

t�h<s�t


r2(s) : (9)

Most continuous-time models for asset returns can be cast
within the general setting of Eq. (7), and Eq. (9) provides
a framework to study the model-implied return variance.
For instance, the Black and Scholes [63] model is a special
case of the setting described by Eq. (7) in which the condi-
tional mean process � is constant, the continuous martin-
gale MC is a standard Brownian motion process, and the
jump martingaleMJ is identically zero:

dp(t) D �dt C �dW(t) : (10)

In this case, the quadratic return variation over the time
interval from t � h to t; 0 � h � t � T , simplifies to

QV(t; h) D
Z t

t�h
�2ds D �2h ; (11)



Stochastic Volatility S 8787

that is, return volatility is constant over any time interval
of length h.

A second notable example is the jump-diffusion model
of Merton [214],

dp(t) D (� � �)dt C �dW(t)C �(t)dqt ; (12)

where q is a Poisson process uncorrelated withW and gov-
erned by the constant jump intensity , i. e., Prob(dqt D
1) D dt. The scaling factor �(t) denotes the magnitude
of the jump in the return process if a jump occurs at time t.
It is assumed to be normally distributed,

�(t) Ý N(�; �2� ) : (13)

In this case, the quadratic return variation process over the
time interval from t � h to t, 0 � h � t � T becomes

QV(t; h) D
Z t

t�h
�2ds C

X

t�h�s�t

J(s)2

D �2hC
X

t�h�s�t

J(s)2 ; (14)

where J(t) � �(t)dq(t) is non-zero only if a jump actually
occurs.

Finally, a broad class of stochastic volatility models is
defined by

dp(t) D �(t)dt C �(t)dW(t)C �(t)dqt ; (15)

where q is a constant-intensity Poisson process with log-
normal jump amplitude (13). Equation (15) is also a spe-
cial case of (7) and the associated quadratic return varia-
tion over the time interval from t � h to t, 0 � h � t � T ,
is

QV(t; h) D
Z t

t�h
�(s)2dsC

X

t�h�s�t

J(s)2

� IV(t; h)C
X

t�h�s�t

J(s)2 : (16)

As in the general case of Eq. (9), Eq. (16) identifies the
contribution of diffusive volatility, termed ‘integrated vari-
ance’ (IV), and cumulative squared jumps to the total
quadratic variation.

Early applications typically ignored jumps and focused
exclusively on the integrated variance component. For in-
stance, IV plays a key role in Hull and White’s [174] SV
option pricing model, which we discuss in Sect. “Options”
below along with other option pricing applications. For il-
lustration, we focus here on the SV model specification by
Wiggins [256]:

dp(t) D �dt C �(t)dWp(t) (17)

d�(t) D f (�(t))dt C ��(t)dW
 (t) ; (18)

where the innovations to the return dp and volatility � ,
Wp andW
 , are standard Brownian motions. If we define
y D log(�) and apply Itô’s formula we obtain

dy(t) D d log(�(t))

D

�
�
1
2
�2 C

f (�(t))
�(t)

�
dt C �dW
 (t) : (19)

Wiggins approximates the drift term f (�(t)) � f˛ C
�[log(�) � log(�(t))]g�(t). Substitution in Eq. (19) yields

d log(�(t)) D [˛ � � log(�(t))]dt C �dW
 (t) ; (20)

where ˛ D ˛ C � log(�) � 1
2�

2. As such, the logarithmic
standard deviation process in Wiggins has diffusion dy-
namics similar in spirit to Taylor’s discrete time AR(1)
model for the logarithmic information process, Eq. (4).
As in Taylor’s model, negative correlation between return
and volatility innovations, � D corr(Wp ;W
 ) < 0, gener-
ates an asymmetric response of volatility to return shocks
similar to the leverage effect in discrete-time EGARCH
models.

More recently, several authors have imposed restric-
tions on the continuous-time SV jump-diffusion (15) that
render the model more tractable while remaining consis-
tent with the empirical features of the data. We return to
these models in Sect. “Options” below.

Realized Volatility

Model-free measures of return variation constructed only
from concurrent return realizations have been considered
at least since Merton [215]. French et al. [148] construct
monthly historical volatility estimates from daily return
observations. More recently, the increased availability of
transaction data has made it possible to refine early mea-
sures of historical volatility into the notion of ‘realized
volatility’, which is endowed with a formal theoretical jus-
tification as an estimator of the quadratic return variation
as first noted in Andersen and Bollerslev [18]. The realized
volatility of an asset return r over the time interval from
t � h to t is

RV(t; h; n) D
nX

iD1

r
�
t � hC

ih
n
;
h
n

�2
: (21)

Semi-martingale theory ensures that the realized volatility
measure RV converges to the return quadratic variation
QV, previously defined in Eq. (9), when the sampling fre-
quency n increases.We point the interested reader to, e. g.,
Andersen et al. [19] to find formal arguments in support of
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this claim. Here we convey intuition for this result by con-
sidering the special case in which the asset return follows
a continuous-time diffusion without jumps,

dp(t) D �(t)dt C �(t)dW(t) : (22)

As in Eq. (21), consider a partition of the [t � h; t] in-
terval with mesh h/n. A discretization of the diffusion
(22) over a sub-interval from (t � hC (i � 1)h/n) to
(t � hC ih/n) ; i D 1; : : : ; n, yields

r
�
t � hC

ih
n
;
h
n

�
� �

�
t � hC

(i � 1)h
n

�
h
n

C �

�
t � hC

(i � 1)h
n

�

W

�
t � hC

ih
n

�
; (23)

where 
W (t � hC ih/n) D W (t � hC ih/n) �W(t �
hC (i � 1)h/n).

Suppressing time indices, the squared return r2 over
the time interval of length h/n is therefore:

r2 D �2
�
h
n

�2
C 2��
W

�
h
n

�
C �2(
W)2 : (24)

As n!1 the first two terms vanish at a rate higher than
the last one. In particular, to a first order approximation
the squared return equals the squared return innovation
and therefore the squared return conditional mean and
variance are

E
�
r2jFt

�
� �2

h
n

(25)

Var
�
r2jFt

�
� 2�4

�
h
n

�2
: (26)

The no-arbitrage condition implies that return in-
novations are serially uncorrelated. Thus, summing over
i D 1; : : : ; n we obtain

E
�
RV(t; h; n)jFt

�

D

nX

iD1

E

"

r
�
t � hC

ih
n
;
h
n

�2
jFt

#

�

nX

iD1

�

�
t � hC

(i � 1)h
n

�2 h
n

�

Z t

t�h
�(s)2ds (27)
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RV(t; h; n)jFt
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�2

� 2
�
h
n

�Z t

t�h
�(s)4ds : (28)

Equation (27) illustrates that realized volatility is an un-
biased estimator of the return quadratic variation, while
Eq. (28) shows that the estimator is consistent as its vari-
ance shrinks to zero when we increase the sampling fre-
quency n and keep the time interval h fixed. Taken to-
gether, these results suggest that RV is a powerful and
model-free measure of the return quadratic variation. Ef-
fectively, RV gives practical empirical content to the latent
volatility state variable underlying the models previously
discussed in Sect. “Continuous-Time Stochastic Volatility
Models”.

Two issues complicate the practical application of the
convergence results illustrated in Eqs. (27) and (28). First,
a continuum of instantaneous return observations must
be used for the conditional variance in Eq. (28) to van-
ish. In practice, only a discrete price record is observed,
and thus an inevitable discretization error is present. Barn-
dorff-Nielsen and Shephard [52] develop an asymptotic
theory to assess the effect of this error on the RV esti-
mate (see also [209]). Second, market microstructure ef-
fects (e. g., price discreteness, bid-ask spread positioning
due to dealer inventory control, and bid-ask bounce) con-
taminate the return observations, especially at the ultra-
high frequency. These effects tend to generate spurious
correlations in the return series which can be partially
eliminated by filtering the data prior to forming the RV es-
timates. However, this strategy is not a panacea and much
current work studies the optimal sampling scheme and the
construction of improved realized volatility in the pres-
ence of microstructure noise. This growing literature is
surveyed by Hansen and Lunde [165], Bandi and Rus-
sell [46], McAleer and Medeiros [205], and Andersen and
Benzoni [14]. Recent notable contributions to this liter-
ature include Bandi and Russell [45], Barndorff-Nielsen
et al. [49], Diebold and Strasser [121], and Zhang, Myk-
land, and Aï t-Sahalia [262]. Related, there is the issue
of how to construct RV measures when the market is
rather illiquid. One approach is to use a lower sampling
frequency and focus on longer-horizon RV measure. Al-
ternatively the literature has explored volatility measures
that are more robust to situations in which the noise-to-
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signal ratio is high, e. g., Alizadeh et al. [8], Brandt and
Diebold [72], Brandt and Jones [73], Gallant et al. [151],
Garman and Klass [157], Parkinson [221], Schwert [237],
and Yang and Zhang [259] consider the high-low price
range measure. Dobrev [122] generalizes the range esti-
mator to high-frequency data and shows its link with RV
measures.

Equations (27) and (28) also underscore an important
difference between RV and other volatility measures. RV
is an ex-post model-free estimate of the quadratic varia-
tion process. This is in contrast to ex-ante measures which
attempt to forecast future quadratic variation using infor-
mation up to current time. The latter class includes para-
metric GARCH-type volatility forecasts as well as fore-
casts built from stochastic volatility models through, e. g.,
the Kalman filter (e. g., [167,168]), the particle filter (e. g.,
[186,187]) or the reprojection method (e. g., [152,155]).

More recently, other studies have pursued more direct
time-series modeling of volatility to obtain alternative ex-
ante forecasts. For instance, Andersen et al. [21] follow an
ARMA-style approach, extended to allow for long mem-
ory features, to model the logarithmic foreign exchange
rate realized volatility. They find the fit to dominate that
of traditional GARCH-type models estimated from daily
data. In a related development, Andersen, Bollerslev, and
Meddahi [24,25] exploit the general class of Eigenfunction
Stochastic Volatility (ESV) models introduced by Med-
dahi [208] to provide optimal analytic forecast formulas
for realized volatility as a function of past realized volatil-
ity. Other scholars have pursuedmore general model spec-
ifications to improve forecasting performance. Ghysels
et al. [159] consider Mixed Data Sampling (MIDAS) re-
gressions that use a combination of volatility measures es-
timates at different frequencies and horizons. Related, En-
gle and Gallo [137] exploit the information in different
volatility measures, captured by a multivariate extension
of the multiplicative error model suggested by Engle [136],
to predict multi-step volatility. Finally, Andersen et al. [20]
build on the Heterogeneous AutoRegressive (HAR) model
by Barndorff-Nielsen and Shephard [50] and Corsi [110]
and propose a HAR-RV component-based regression to
forecast the h-steps ahead quadratic variation:

RV(t C h; h) D ˇ0 C ˇDRV(t; 1)C ˇWRV(t; 5)
C ˇMRV(t; 21)C "(t C h) : (29)

Here the lagged volatility components RV(t; 1), RV(t; 5),
and RV(t; 21) combine to provide a parsimonious approx-
imation to the long-memory type behavior of the real-
ized volatility series, which has been documented in sev-
eral studies (e. g., Andersen et al. [19]). Simple OLS esti-

mation yields consistent estimates for the coefficients in
the regression (29), which can be used to forecast volatility
out of sample.

As mentioned previously, the convergence results il-
lustrated in Eqs. (27) and (28) stem from the the-
ory of semi-martingales under conditions more general
than those underlying the continuous-time diffusion in
Eq. (22). For instance, these results are robust to the pres-
ence of discontinuities in the return path as in the jump-
diffusion SV model (15). In this case the realized volatility
measure (21) still converges to the return quadratic vari-
ation, which is now the sum of the diffusive integrated
volatility IV and the cumulative squared jump component:

QV(t; h) D IV(t; h)C
X

t�h�s�t

J(s)2 : (30)

The decomposition in Eq. (30) motivates the quest for
separate estimates of the two quadratic variation compo-
nents, IV and squared jumps. This is a fruitful exercise
in forecasting applications, since separate estimation of
the two components increases predictive accuracy (e. g.,
[20]). Further, this decomposition is relevant for deriva-
tives pricing, e. g., options are highly sensitive to jumps as
well as large moves in volatility (e. g., [141,220]).

A consistent estimate of integrated volatility is the k-
skip bipower variation, BV (e. g., Barndorff-Nielsen and
Shephard [53]),

BV(t; h; k; n) D
�

2

nX

iDkC1

ˇ̌
ˇ̌
ˇ
r
�
t � hC

ih
n
;
h
n

� ˇ̌
ˇ̌
ˇ

�

ˇ̌
ˇ̌
ˇ
r
�
t � hC
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n

;
h
n

� ˇ̌
ˇ̌
ˇ
: (31)

Liu and Maheu [202] and Forsberg and Ghysels [147]
show that realized power variation, which is robust to
the presence of jumps, can improve volatility forecasts.
A well-known special case of (31) is the ‘realized bipower
variation’, which has k D 1 and is denoted BV(t; h; n) �
BV(t; h; 1; n). We can combine bipower variation with the
realized volatility RV to obtain a consistent estimate of the
squared jump component, i. e.,

RV(t; h; n) � BV(t; h; n) �!
n!1

QV(t; h) � IV(t; h)

D
X

t�h�s�t

J(s)2 : (32)

The result in Eq. (32) are useful to design tests for the
presence of jumps in volatility, e. g., Andersen et al. [20],
Barndorff-Nielsen and Shephard [53,54], Huang and
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Tauchen [172], and Mizrach [217]. More recently, alter-
native approaches to test for jumps have been developed
by Aït-Sahalia and Jacod [6], Andersen et al. [23], Lee and
Mykland [195], and Zhang [261].

Applications

The power of the continuous-time paradigm has been evi-
dent ever since the work byMerton [212] on intertemporal
portfolio choice, Black and Scholes [63] on option pricing,
and Vasicek [255] on bond valuation. However, the idea
of casting these problems in a continuous-time diffusion
context goes back all the way to the work in 1900 by Bache-
lier [32].

Merton [213] develops a continuous-time general-
equilibrium intertemporal asset pricing model which is
later extended by Cox et al. [112] to a production econ-
omy. Because of its flexibility and analytical tractability,
the Cox et al. [112] framework has become a key tool used
in several financial applications, including the valuation of
options and other derivative securities, themodeling of the
term structure of risk-free interest rates, the pricing of for-
eign currencies and defaultable bonds.

Volatility has played a central role in these applica-
tions. For instance, an option’s payoff is non-linear in the
price of the underlying asset and this feature renders the
option value highly sensitive to the volatility of underlying
returns. Further, derivatives markets have grown rapidly
in size and complexity and financial institutions have been
facing the challenge tomanage intricate portfolios exposed
to multiple risk sources. Risk management of these so-
phisticated positions hinges on volatility modeling. More
recently, the markets have responded to the increasing
hedging demands of investors by offering a menu of new
products including, e. g., volatility swaps and derivatives
on implied volatility indices like the VIX. These innova-
tions have spurred an even more pressing need to accu-
rately measure and forecast volatility in financial markets.

Research has responded to these market develop-
ments. We next provide a brief illustrative overview of
the recent literature dealing with option pricing and term
structure modeling, with an emphasis on the role that
volatility modeling has played in these two key applica-
tions.

Options

Rubinstein [233] and Bates [55], among others, note that
prior to the 1987 market crash the Black and Scholes [63]
(BS) formula priced option contracts quite accurately
whereas after the crash it has been systematically un-
derpricing out-of-the-money equity-index put contracts.

This feature is evident from Fig. 1, which is constructed
from options on the S&P 500 futures. It shows the im-
plied volatility function for near-maturity contracts traded
both before and after October 19, 1987 (‘Black Monday’).
The mild u-shaped pattern prevailing in the pre-crash
implied volatilities is labeled a ‘volatility smile,’ in con-
trast to the asymmetric post-1987 ‘volatility smirk’. Impor-
tantly, while the steepness and level of the implied volatil-
ity curve fluctuate day to day depending on market con-
ditions, the curve has been asymmetric and upward slop-
ing ever since 1987, so the smirk remains in place to the
current date, e. g., Benzoni et al. [60]. In contrast, before
the crash the implied volatility curve was invariably flat or
mildly u-shaped as documented in, e. g., [57]. Finally, we
note that the post-1987 asymmetric smirk for index op-
tions contrasts sharply with the pattern for individual eq-
uity options, which possess flat or mildly u-shaped implied
volatility curves (e. g., [37,65]).

Given the failures of the BS formula, much research
has gone into relaxing the underlying assumptions. A nat-
ural starting point is to allow volatility to evolve randomly,
inspiring numerous studies that examine the option pric-
ing implications of SV models. The list of early contribu-
tions includes [174,188,211,238,244,245,256]. Here we fo-
cus in particular on the Hull andWhite [174] model,

dp(t) D �pdt C
p
V(t)dWp(t) (33)

dV(t)
V(t)

D �Vdt C �VdWV (t) ; (34)

where Wp and WV are standard Brownian motions. In
general, shocks to returns and volatility may be (nega-
tively) correlated, however for tractability Hull and White
assume � D corr(dWp ; dWV ) D 0. Under this assumption
they show that, in a risk-neutral world, the premium CHW

on a European call option is the Black and Scholes price
CBS evaluated at the average integrated variance V ,

V D
1

T � t

Z T

t
V(s)ds ; (35)

integrated over the distribution h(V jV(t)) of V :

CHW(p(t);V (t)) D
Z

CBS(V)h(V jV(t))dV : (36)

The early efforts to identify a more realistic probabilis-
tic model for the underlying return were slowed by the
analytical and computational complexity of the option
pricing problem. Unlike the BS setting, the early SV spec-
ifications do not admit closed-form solutions. Thus, the
evaluation of the option price requires time-consuming
computations through, e. g., simulation methods or nu-
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Stochastic Volatility, Figure 1
Pre- and post-1987 crash implied volatilities. The plots depict Black-Scholes implied volatilities computed from near-maturity op-
tions on the S&P 500 futures on October 14, 1987 (the week before the 1987market crash) and a year later

merical solution of the pricing partial differential equation
by finite difference methods. Further, the presence of a la-
tent factor, volatility, and the lack of closed-form expres-
sions for the likelihood function complicate the estimation
problem.

Consequently, much effort has gone into developing
restrictions for the distribution of the underlying return
process that allow for (semi) closed-form solutions and
are consistent with the empirical properties of the data.
The ‘affine’ class of continuous-time models has proven
particularly useful in providing a flexible, yet analytically
tractable, setting. Roughly speaking, the defining feature
of affine jump-diffusions is that the drift term, the con-
ditional covariance term, and the jump intensity are all
a linear-plus-constant (affine) function of the state vec-

tor. The Vasicek [255] bond valuation model and the Cox
et al. [112] intertemporal asset pricing model provide pow-
erful examples of the advantages of the affine paradigm.

To illustrate the progress in option pricing applica-
tions built on affine models, consider the return dynamics

dp(t) D �dt C
p
V(t)dWp(t)C �p(t)dq(t) (37)

dV (t) D �(V � V(t))dt C �V
p
V(t)dWV (t)
C �V (t)dq(t) ; (38)

where Wp and WV are standard Brownian motions with
non-zero correlation � D corr(dWp; dWV ), q is a Poisson
process, uncorrelated with Wp andWV , with jump inten-
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sity

(t) D 0 C 1V (t) ; (39)

that is, Prob(dqt D 1) D (t)dt. The jump amplitudes
variables �p and �V have distributions

�V (t) Ý exp(�V ) (40)

�p(t)j�V (t) Ý N


� p C ���V (t); �

2
p

�
: (41)

Here volatility is not only stochastic but also subject to
jumps which occur simultaneously with jumps in the un-
derlying return process. The Black and Scholes model is
a special case of (37)–(41) for constant volatility, V (t) D
�2; 0 � t � T , and no jumps, (t) D 0; 0 � t � T .
The Merton [214] model arises from (37)–(41) if volatility
is constant but we allow for jumps in returns.

More recently, Heston [170] has considered a spe-
cial case of (37)–(41) with stochastic volatility but with-
out jumps. Using transform methods he derives a Euro-
pean option pricing formula which may be evaluated read-
ily through simple numerical integration. His SV model
has GARCH-type features, in that the variance is persis-
tent and mean reverts at a rate � to the long-run mean
V . Compared to Hull and White’s [174] setting, Heston’s
model allows for shocks to returns and volatility to be neg-
atively correlated, i. e., � < 0, which creates a leverage-type
effect and skews the return distribution. This feature is
consistent with the properties of equity index returns. Fur-
ther, a fatter left tail in the return distribution results in
a higher cost for crash insurance and therefore makes out-
of-the-money put options more expensive. This is quali-
tatively consistent with the patterns in implied volatilities
observed after the 1987 market crash and discussed above.

Bates [56] has subsequently extended Heston’s ap-
proach to allow for jumps in returns and using similar
transformmethods he has obtained a semi-closed form so-
lution for the option price. The addition of jumps provides
a more realistic description of equity returns and has im-
portant option pricing implications. With diffusive shocks
(e. g., stochastic volatility) alone a large drop in the value
of the underlying asset over a short time span is very un-
likely whereas a market crash is always possible as long as
large negative jumps can occur. This feature increases the
value of a short-dated put option, which offers downside
protection to a long position in the underlying asset.

Finally, Duffie et al. [130] have introduced a general
model with jumps to volatility which embeds the dynamics
(37)–(41). In model (37)–(41), the likelihood of a jump to
occur increases when volatility is high (1 > 0) and a jump
in returns is accompanied by an outburst of volatility. This

is consistent with what is typically observed during times
of market stress. As in the Heston case, variance is persis-
tent with a mean reversion coefficient � towards its diffu-
sive long-run mean V , while the total long-run variance
mean is the sum of the diffusive and jump components.
In the special case of constant jump intensity, i. e., 1 D 0,
the total long-run mean is V C �V0/�. The jump term
(�V (t)dq(t)) fattens the right tail of the variance distribu-
tion, which induces leptokurtosis in the return distribu-
tion. Two effects generate asymmetrically distributed re-
turns. The first channel is the diffusive leverage effect, i. e.,
� < 0, the second is the correlation between the volatil-
ity and the jump amplitude of returns generated through
the coefficient �� . Taken together, these effects increase
model-implied option prices and help produce a realistic
volatility smirk.

Several empirical studies rely on models of the form
(37)–(41) in option-pricing applications. For instance,
Bates [56] usesDeutscheMark options to estimate amodel
with stochastic volatility and constant-intensity jumps to
returns, while Bates [57] fits a jump-diffusion model with
two SV factors to options on S&P 500 futures. In the latter
case, the two SV factors combine to help capture features
of the long-run memory in volatility while retaining the
analytical tractability of the affine setting (see, e. g., [101]
for another model with similar features). Alternative ap-
proaches to model long memory in continuous-time SV
models rely on the fractional Brownian motion process,
e. g., Comte and Renault [108] and Comte et al. [107],
while Breidt et al. [76], Harvey [166] and Deo et al. [118]
consider discrete-time SV models (see [175] for a review).
Bakshi et al. [34,37] estimate a model similar to the one
introduced by Bates [56] using S&P 500 options.

Other scholars rely on underlying asset return data
alone for estimation. For instance, Andersen et al. [15] and
Chernov et al. [95] use equity-index returns to estimate
jump-diffusion SV models within and outside the affine
(37)–(41) class. Eraker et al. [142] extend this analysis and
fit a model that includes constant-intensity jumps to re-
turns and volatility.

Finally, another stream of work examines the empiri-
cal implications of SV jump-diffusions using a joint sam-
ple of S&P 500 options and index returns. For example,
Benzoni [59], Chernov and Ghysels [93], and Jones [190]
estimate different flavors of the SV model without jumps.
Pan [220] fits a model that has jumps in returns with time-
varying intensity, while Eraker [141] extends Pan’s work
by adding jumps in volatility.

Overall, this literature has established that the SV
jump-diffusion model dramatically improves the fit of un-
derlying index returns and options prices compared to the
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Black and Scholes model. Stochastic volatility alone has
a first-order effect and jumps further enhance model per-
formance by generating fatter tails in the return distribu-
tion and reducing the pricing error for short-dated op-
tions. The benefits of the SV setting are also significant in
hedging applications.

Another aspect related to the specification of SV mod-
els concerns the pricing of volatility and jump risks.
Stochastic volatility and jumps are sources of uncertainty.
It is an empirical issue to determine whether investors de-
mand to be compensated for bearing such risks and, if
so, what the magnitude of the risk premium is. To ex-
amine this issue it is useful to write model (37)–(41) in
so-called risk-neutral form. It is common to assume that
the volatility risk premium is proportional to the instan-
taneous variance, �(t) D �VV(t). Further, the adjustment
for jump risk is accomplished by assuming that the am-
plitude �̃p(t) of jumps to returns has mean �̃ p D � p C �p .
These specifications are consistent with an arbitrage-free
economy. More general specifications can also be sup-
ported in a general equilibrium setting, e. g., a risk adjust-
ment may apply to the jump intensity (t). However, the
coefficients associated to these risk adjustments are diffi-
cult to estimate and to facilitate identification they typi-
cally are fixed at zero. Incorporating such risk premia in
model (37)–(41) yields the following risk-neutral return
dynamics (e. g., Pan [220] and Eraker [141]):

dp(t) D (r���)dtC
p
V(t)deWp(t)C �̃p(t)dq(t) (42)

dV(t) D [�(V � V(t))C �VV(t)]dt

C �V
p
V (t)deWV (t)C �V (t)dq(t) ; (43)

where r is the risk-free rate,�� a jump compensator term,
eWp and eWV are standard Brownian motions under this
so-called Q measure, and the risk-adjusted jump ampli-
tude variable �̃p is assumed to follow the distribution,

�̃p(t)j�V (t) Ý N


�̃ p C ���V (t); �

2
p

�
: (44)

Several studies estimate the risk-adjustment coefficients
�V and �p for different specifications of model (37)–(44);
see, e. g., Benzoni [59], Broadie et al. [78], Chernov and
Ghysels [93], Eraker [141], Jones [190], and Pan [220]. It
is found that investors demand compensation for volatil-
ity and jump risks and these risk premia are important for
the pricing of index options. This evidence is reinforced
by other studies examining the pricing of volatility risk us-
ing less structured but equally compelling procedures. For
instance, Coval and Shumway [111] find that the returns

on zero-beta index option straddles (i. e., combinations of
calls and puts that have offsetting covariances with the in-
dex) are significantly lower than the risk-free return. This
evidence suggests that in addition to market risk at least
a second factor (likely, volatility) is priced in the index
option market. Similar conclusions are obtained by Bak-
shi and Kapadia [36], Buraschi and Jackwerth [79], and
Broadie et al. [78].

Risk-Free Bonds and Their Derivatives

The market for (essentially) risk-free Treasury bonds is
liquid across a wide maturity spectrum. No-arbitrage re-
strictions constrain the allowable dynamics in the cross-
section of bond yields. Much work has gone into the de-
velopment of tractable dynamic term structure models ca-
pable of capturing the salient time-series properties of in-
terest rates while respecting such cross-sectional no-arbi-
trage conditions. The class of so-called ‘affine’ dynamic
term structure models provides a flexible and arbitrage-
free, yet analytically tractable, setting for capturing the dy-
namics of the term structure of interest rates. Following
Duffie and Kan [129], Dai and Singleton [114,115], and
Piazzesi [226], the short term interest rate, y0(t), is an
affine (i. e., linear-plus-constant) function of a vector of
state variables, X(t) D fxi(t); i D 1; : : : ;Ng:

y0(t) D ı0 C
NX

iD1

ıi xi(t) D ı0 C ı0XX(t) ; (45)

where the state-vector X has risk-neutral dynamics

dX(t) D K̃(	̃ � X(t))dt C˙
p
S(t)deW(t) : (46)

In Eq. (46), eW is an N-dimensional Brownian motion un-
der the so-called Q-measure, K̃ and 	̃ are N � N matri-
ces, and S(t) is a diagonal matrix with the ith diagonal ele-
ment given by [S(t)]i i D ˛i C ˇ0i X(t). Within this setting,
the time-t price of a zero-coupon bond with time-to-ma-
turity � is given by

P(t; �) D eA(�)�B(�)
0X(t) ; (47)

where the functions A(�) and B(�) solve a system of or-
dinary differential equations (ODEs); see, e. g., Duffie and
Kan [129]. Semi-closed form solutions are also available
for bond derivatives, e. g., bond options as well as caps and
floors (e. g., Duffie et al. [130]).

In empirical applications it is important to also estab-
lish the evolution of the state vector X under the physical
probability measure P, which is linked to theQ-dynamics
(46) through a market price of risk, �(t). Following Dai
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and Singleton [114] the market price of risk is often given
by

�(t) D
p
S(t) ; (48)

where  is an N � 1 vector of constants. More recently,
Duffee [127] proposed a broader ‘essentially affine’ class,
which retains the tractability of standard models but, in
contrast to the specification in Eq. (48), allows compensa-
tion for interest rate risk to vary independently of interest
rate volatility. This additional flexibility proves useful in
forecasting future yields. Subsequent generalization are in
Duarte [124] and Cheridito et al. [92].

Litterman and Scheinkman [201] demonstrate that
virtually all variation in US Treasury rates is captured by
three factors, interpreted as changes in ‘level’, ‘steepness’,
and ‘curvature’. Consistent with this evidence,much of the
term-structure literature has focused on three-factor mod-
els. One problem with these models, however, is that the
factors are latent variables void of immediate economic in-
terpretation. As such, it is challenging to impose appropri-
ate identifying conditions for the model coefficients and
in particular to find the ideal representation for the ‘most
flexible’ model, i. e., the model with the highest number of
identifiable coefficients. Dai and Singleton [114] conduct
an extensive specification analysis of multi-factor affine
term structure models. They classify these models into
subfamilies according to the number of (independent lin-
ear combination of) state variables that determine the con-
ditional variance matrix of the state vector. Within each
subfamily, they proceed to identify the models that lead
to well-defined bond prices (a condition they label ‘ad-
missibility’) and among the admissible specifications they
identify a ‘maximal’ model that nests econometrically all
others in the subfamily. Joslin [191] builds on Dai and
Singleton’s [114] work by pursuing identification through
a normalization of the drift term in the state vector dy-
namics (instead of the diffusion term, as in Dai and Sin-
gleton [114]). Duffie and Kan [129] follow an alternative
approach to obtain an identifiable model by rotating from
a set of latent state variables to a set of observable zero-
coupon yields. Collin-Dufresne et al. [104] build on the
insights of both Dai and Singleton [114] and Duffie and
Kan [129]. They perform a rotation of the state vector into
a vector that contains the first few components in the Tay-
lor series expansion of the yield curve around amaturity of
zero and their quadratic variation. One advantage is that
the elements of the rotated state vector have an intuitive
and unique economic interpretation (such as level, slope,
and curvature of the yield curve) and therefore the model
coefficients in this representation are identifiable. Further,

it is easy to construct a model-independent proxy for the
rotated state vector, which facilitates model estimation as
well as interpretation of the estimated coefficients across
models and sample periods.

This discussion underscores an important feature of
affine term structure models. The dependence of the con-
ditional factor variance S(t) on one or more of the ele-
ments in X introduces stochastic volatility in the yields.
However, when a square-root factor is present paramet-
ric restrictions (admissibility conditions) need to be im-
posed so that the conditional variance S(t) is positive over
the range of X. These restrictions affect the correlations
among the factors which, in turn, tend to worsen the
cross-sectional fit of the model. Specifically, CIR models
in which S(t) depends on all the elements of X require
the conditional correlation among the factors to be zero,
while the admissibility conditions imposed on the matrix
K renders the unconditional correlations non-negative.
These restrictions are not supported by the data. In con-
trast, constant-volatility Gaussian models with no square-
root factors do not restrict the signs and magnitude of
the conditional and unconditional correlations among the
factors but they do, of course, not accommodate the pro-
nounced and persistent volatility fluctuations observed in
bond yields. The class of models introduced by Dai and
Singleton [114] falls between these two extremes. By in-
cluding both Gaussian and square-root factors they allow
for time-varying conditional volatilities of the state vari-
ables and yet they do not constrain the signs of some of
their correlations. This flexibility helps to address the trade
off between generating realistic correlations among the
factors while capturing the time-series properties of the
yields’ volatility.

A related aspect of (unconstrained) affine models con-
cerns the dual role that square-root factors play in driving
the time-series properties of yields’ volatility and the term
structure of yields. Specifically, the time-t yield y� (t) on
a zero-coupon bond with time-to-maturity � is given by

P(t; �) D e�� y� (t) : (49)

Thus, we have

y� (t) D �
A(�)
�
C

B(�)0

�
X(t) : (50)

It is typically assumed that the B matrix has full rank and
therefore Eq. (50) provides a direct link between the state-
vector X(t) and the term-structure of bond yields. Further,
Itô’s Lemma implies that the yield y� also follows a diffu-
sion process:

dy� (t) D �y� (X(t); t)dtC
B(�)0

�
˙
p
S(t)deW(t) : (51)
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Consequently, the (instantaneous) quadratic variation of
the yield given as the squared yield volatility coefficient for
y� is

Vy� (t) D
B(�)0

�
˙S(t)˙ 0

B(�)
�

: (52)

The elements of the S(t) matrix are affine in the state vector
X(t), i. e., [S(t)]i i D ˛i C ˇ0i X(t). Further, invoking the
full rank condition on B(�), Eq. (50) implies that each state
variable in the vector X(t) is an affine function of the bond
yields Y(t) D fy� j (t); j D 1; : : : ; Jg. Thus, for any � there
is a set of constants a�; j; j D 0; : : : ; J, so that

Vy� (t) D a�;0 C
JX

jD1

a�; j y� j (t) : (53)

Hence, the current quadratic yield variation for bonds at
any maturity is a linear combination of the term structure
of yields. As such, the market is complete, i. e., volatility is
perfectly spanned by a portfolio of bonds.

Collin-Dufresne and Goldstein [103] note that this
spanning condition is unnecessarily restrictive and pro-
pose conditions which ensures that volatility no longer
directly enters the main bond pricing Eq. (47). This re-
striction, which they term ‘unspanned stochastic volatil-
ity’ (USV), effectively breaks the link between the yields’
quadratic variation and the level of the term structure by
imposing a reduced rank condition on the B(�) matrix.
Further, since their model is a special (nested) case of the
affine class it retains the analytical tractability of the affine
model class. Recently Joslin [191] has derived more gen-
eral conditions for affine term structure models to exhibit
USV. His restrictions also produce a market incomplete-
ness (i. e., volatility cannot be hedged using a portfolio of
bonds) but do not constrain the degree of mean reversion
of the other state variables so that his specification allows
for more flexibility in capturing the persistence in interest
rate series. (See also the USV conditions in the work by
Trolle and Schwartz [253]).

There is conflicting evidence on the volatility spanning
condition in fixed income markets. Collin-Dufresne and
Goldstein [103] find that swap rates have limited explana-
tory power for returns on at-the-money ‘straddles’, i. e.,
portfolios mainly exposed to volatility risk. Similar find-
ings are in Heidari andWu [169], who show that the com-
mon factors in LIBOR and swap rates explain only a lim-
ited part of the variation in the swaption implied volatil-
ities. Moreover, Li and Zhao [197] conclude that some of
the most sophisticated multi-factor dynamic term struc-
ture models have serious difficulties in hedging caps and

cap straddles, even though they capture bond yields well.
In contrast, Fan et al. [143] argue that swaptions and even
swaption straddles can be well hedged with LIBOR bonds
alone, supporting the notion that bond markets are com-
plete.

More recently other studies have examined several ver-
sions of the USV restriction, again coming to different
conclusions. A direct comparison of these results, how-
ever, is complicated by differences in the model specifi-
cation, the estimation method, and the data and sample
period used in the estimation. Collin-Dufresne et al. [105]
consider swap rates data and fit themodel using a Bayesian
Markov ChainMonte Carlo method. They find that a stan-
dard three-factor model generates a time series for the
variance state variable that is essentially unrelated to
GARCH estimates of the quadratic variation of the spot
rate process or to implied variances from options, while
a four-factor USV model generates both realistic volatil-
ity estimates and a good cross-sectional fit. In contrast,
Jacobs and Karoui [178] consider a longer data set of US
Treasury yields and pursue quasi-maximum likelihood es-
timation. They find the correlation between model-im-
plied and GARCH volatility estimates to be high. How-
ever, when estimating the model with a shorter sample of
swap rates, they find such correlations to be small or neg-
ative. Thompson [250] explicitly tests the Collin-Dufresne
and Goldstein [103] USV restriction and rejects it using
swap rates data. Bikbov and Chernov [62], Han [164], Jar-
row et al. [183], Joslin [192], and Trolle and Schwartz [254]
rely on data sets of derivatives prices and underlying inter-
est rates to better identify the volatility dynamics.

Andersen and Benzoni [12] directly relate model-free
realized volatility measures (constructed from high-fre-
quency US Treasury data) to the cross-section of con-
temporaneous bond yields. They find that the explana-
tory power of such regressions is very limited, which indi-
cates that volatility is not spanned by a portfolio of bonds.
The evidence in Andersen and Benzoni [12] is consis-
tent with the USV models of Collin-Dufresne et al. [105]
and Joslin [191], as well as with a model that embeds
weak dependence between the yields and volatility as in
Joslin [192]. Moreover, Duarte [125] argues that the effects
of mortgage-backed security hedging activity affects both
the interest rate volatility implied by options and the actual
interest rate volatility. This evidence suggests that vari-
ables that are not in the span of the term structure of yields
and forward rates contribute to explain volatility in fixed
income markets. Also related,Wright and Zhou [258] find
that adding a measure of market jump volatility risk to
a regression of excess bond returns on the term structure
of forward rates nearly doubles the R2 of the regression.
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Taken together, these findings suggest more generally that
genuine SVmodels are critical for appropriately capturing
the dynamic evolution of the term structure.

EstimationMethods

There are a very large number of alternative approaches
to estimation and inference for parametric SV models and
we abstain from a thorough review. Instead, we point to
the basic challenges that exist for different types of specifi-
cations, how some of these were addressed in the early lit-
erature and finally provide examples of methods that have
been used extensively in recent years. Our exposition con-
tinues to focus on applications to equity returns, interest
rates, and associated derivatives.

Many of the original SV models were cast in discrete
time, inspired by the popular GARCH paradigm. In that
case, the distinct challenge for SV models is the pres-
ence of a strongly persistent latent state variable. However,
more theoretically oriented models, focusing on deriva-
tives applications, were often formulated in continuous
time. Hence, it is natural that the econometrically-oriented
literature has moved in this direction in recent years as
well. This development provides an added complication as
the continuous-time parameters must be estimated from
discrete return data and without direct observations on
volatility. For illustration, consider a fully parametric con-
tinuous-time SV model for the asset return r with condi-
tional variance V and coefficient vector � . Most methods
to estimate� rely on the conditional density f for the data
generating process,

f (r(t);V (t)jI(t � 1); � ) D frjV (r(t)jV (t); I(t � 1); � )
� fV (V (t)jI(t � 1); � ) ; (54)

where I(t � 1) is the available information set at time
t � 1. The main complications are readily identified. First,
analytic expressions for the discrete-time transition (con-
ditional) density, f , or the discrete-time moments implied
by the data generating process operating in continuous
time, are often unavailable. Second, volatility is latent in
SV models, so that even if a closed-form expression for f
is known, direct evaluation of the above expression is in-
feasible due to the absence of explicit volatility measures.
The marginal likelihood with respect to the observable re-
turn process alone is obtained by integrating over all pos-
sible paths for the volatility process, but this integral has
a dimension corresponding to sample size, rendering the
approach infeasible in general.

Similar issues are present when estimating continu-
ous-time dynamic term structure models. Following Pi-

azzesi [227], a change of variable gives the conditional den-
sity for a zero-coupon yield y on a bond with time to ma-
turity � :

f (y� (t)jI(t � 1); � ) D fX(g(y� (t); � )jI(t � 1); � )
� jry g(y� (t); � )j : (55)

Here the latent state vector X has conditional density
f X , the function g(�; � ) maps the observable yield y
into X, X(t) D g(y� (t); � ), and ry g(y� (t); � ) is the Ja-
cobian determinant of the transformation. Unfortunately,
analytic expressions for the conditional density f X are
known only in some special cases. Further, the mapping
X(t) D g(y� (t); � ) holds only if the model provides an
exact fit to the yields, while in practice different sources
of error (e. g., model mis-specification, microstructure ef-
fects, measurement errors) inject a considerable degree of
noise into this otherwise deterministic linkage (for cor-
rect model specification) between the state vector and the
yields. As such, a goodmeasure ofXmight not be available
to evaluate the conditional density (55).

Estimation via Discrete-Time Model Specification
or Approximation

The first empirical studies have estimated discrete-time
SV models via a (Generalized) Method of Moments pro-
cedure by matching a number of theoretical and sample
moments, e. g., Chan et al. [89], Ho et al. [171], Longstaff
and Schwartz [204], andMelino andTurnbull [211]. These
models were either explicitly cast in discrete time or were
seen as approximate versions of the continuous-time pro-
cess of interest. Similarly, several authors estimate diffu-
sive affine dynamic term structure models by approximat-
ing the continuous-time dynamics with a discrete-time
process. If the error terms are stipulated to be normally
distributed, the transition density of the discretized pro-
cess is multivariate normal and computation of uncon-
ditional moments then only requires knowledge of the
first two moments of the state vector. This result facili-
tates quasi-maximum likelihood estimation. In evaluating
the likelihood function, some studies suggest using closed-
form expressions for the first two moments of the con-
tinuous-time process instead of the moments of the dis-
cretized process (e. g., Fisher and Gilles [145] and Duf-
fee [127]), thus avoiding the associated discretization bias.
This approach typically requires some knowledge of the
state of the system which may be obtained, imperfectly,
through matching the system, given the estimated param-
eter vector, to a set of observed zero-coupon yields to infer
the state vector X. A modern alternative is to use the so-
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called particle filter as an efficient filtering procedure for
the unobserved state variables given the estimated param-
eter vector. We provide more detailed accounts of both of
these procedures later in this section.

Finally, a number of authors develop a simulatedmax-
imum likelihood method that exploit the specific structure
of the discrete-time SVmodel. Early examples are Daniels-
son and Richard [117] and Danielsson [116] who exploit
the Accelerated Gaussian Importance Sampler for efficient
Monte Carlo evaluation of the likelihood. Subsequent im-
provements were provided by Fridman and Harris [149]
and Liesenfeld andRichard [200], with the latter relying on
Efficient Importance Sampling (EIS). In a second step, EIS
can also be used for filtering the latent volatility state vec-
tor. In general, these inference techniques provide quite
impressive efficiency but the methodology is not always
easy to generalize beyond the structure of the basic dis-
crete-time SV asset return model. We discuss the gen-
eral inference problem for continuous-time SVmodels for
which the lack of a closed-form expression for the transi-
tion density is an additional complicating factor in a later
section.

Filtering the Latent State Variable
Directly During Estimation

Some early studies focused on direct ways to extract esti-
mates of the latent volatility state variable in discrete-time
SV asset return models. The initial approach was based on
quasi-maximum likelihood (QML)methods exploiting the
Kalman filter. This method requires a transformation of
the SV model to a linear state-space form. For instance,
Harvey and Shephard [168] consider a version of the Tay-
lor’s [249] discrete-time SV model,

p(t) D p(t � 1)C ˇ C
p
V(t)"(t) (56)

log(V(t)) D ˛ C � log(V (t � 1))C �(t) ; (57)

where p is the logarithmic price, " is a zero-mean error
term with unit variance, and � is an independently-dis-
tributed error term with zero mean and variance �2� .

Define y(t) D p(t) � p(t � 1) � ˇ, square the obser-
vations in Eq. (56), and take logarithms to obtain themea-
surement equation,

`(t) D ! C h(t)C �(t) ; (58)

where `(t) � log y(t)2; h(t) � log(V (t)). Further, � is
a zero-mean disturbance term given by �(t) D log("(t)2)�
E[log("(t)2)], ! D log(�2)CE[log("(t)2)], and � is a scale
constant which subsumes the effect of the drift term ˛

in Eq. (57). The autoregression (57) yields the transition
equation,

h(t) D �h(t � 1)C �(t) ; (59)

Taken together, Eqs. (58) and (59) are the linear state-
space transformation of the SV model (56)–(57). If the
joint distribution of " and � is symmetric, i. e., f ("; �) D
f (�";��), then the disturbance terms in the state-space
form are uncorrelated even if � and " are not. A pos-
sible dependence between " and � allows the model to
pick up some of the asymmetric behavior often observed
in stock returns. Projection of [h(t) � Et�1 h(t)] over
[ `(t) � Et�1 `(t) ] yields the Kalman filter estimate of the
latent (logarithmic) variance process:

Et h(t) D Et�1 h(t)

C
Ef[h(t) � Et�1 h(t)] � [`(t) � Et�1 `(t)]g

Ef[`(t) � Et�1 `(t)]2g
� [`(t) � Et�1 `(t)] ;

(60)

where the conditional expectations Et�1 `(t) and Et�1 h(t)
are given by:

Et�1 `(t) D ! C Et�1 h(t) (61)

Et�1 h(t) D � Et�1 h(t � 1) : (62)

To start the recursion (60)–(62), the initial value E0 h(0) is
fixed at the long-run mean log(V ).

Harvey and Shephard [168] estimate the model co-
efficients via quasi-maximum likelihood, i. e. by treating
the errors � and � as though they were normal and max-
imizing the prediction-error decomposition form of the
likelihood function obtained via the Kalman filter. Infer-
ence is valid as long as the standard errors are appropri-
ately adjusted. In their application they rely on daily re-
turns on the value-weighted US market index over 1967–
1987 and daily returns for 30 individual stocks over 1974–
1983. Harvey et al. [167] pursue a similar approach to
fit a multivariate SV model to a sample of four exchange
rate series from 1981 to 1985. One major drawback of
the Kalman filter approach is that the finite sample prop-
erties can be quite poor because the error term, � , is
highly non-Gaussian, see, e. g., Andersen, Chung, and
Sørensen [27]. The methodmay be extended to accommo-
date various generalizations including long memory per-
sistence in volatility as detailed in Ghysels, Harvey, and
Renault [158].
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A related literature, often exploited in multivariate set-
tings, specifies latent GARCH-style dynamics for a state
vector which governs the systematic evolution of a higher
dimensional set of asset returns. An early representative of
these specifications is in Diebold and Nerlove [120], who
exploit the Kalman filter for estimation, while Fiorentina
et al. [144] provide a likelihood-based estimation pro-
cedure using MCMC techniques. We later review the
MCMC approach and the associated filtering application,
e. g, the ‘particle filter’, in some detail.

The state-space form is also useful to characterize the
dynamics of interest rates. Following, e. g., Piazzesi [226],
for a discrete-time dynamic term structuremodel themea-
surement and transition equations are

y� (t) D �
A(�)
�
C

B(�)0

�
X(t)C �� (t) (63)

X(t) D �C˚X(t � 1)C˙
p
S(t) "(t) ; (64)

where S(t) is a matrix whose elements are affine func-
tions of the state vector X, and A and B solve a sys-
tem of difference equations. When all the yields are ob-
served with error (i. e., �� ¤ 08�; 0 � � � T), QML esti-
mation of the system (63)–(64) via the extended Kalman
filter method yields an estimate of the coefficient vector.
Applications of this approach for the US term structure
data include Campbell and Viceira [81], Gong and Re-
molona [161], and Pennacchi [225]. The extendedKalman
filter involves a linear approximation of the relation be-
tween the observed data and the state variables, and the
associated approximation error will produce biased esti-
mates. Christoffersen et al. [99] raise this concern and rec-
ommend the use of the so-called unscented Kalman filter
for estimation of systems in which the relation between
data and state variables is highly non-linear, e. g., options
data.

Methods Accommodating the Lack
of a Closed-Form Transition Density

We have so far mostly discussed estimation techniques for
models with either a known transition density or one that
is approximated by a discrete-time system. However, the
majority of empirically-relevant continuous-time models
do not possess explicit transition densities and alterna-
tive approaches are necessary. This problem leads us nat-
urally towards the large statistics and econometric litera-
ture on estimation of diffusions from discretely-observed
data. The vast majority of these studies assume that all rel-
evant variables are observed so the latent volatility or yield
curve state variables, integral to SV models, are not ac-

counted for. Nonetheless, it may be feasible to extract the
requisite estimates of the state variable by alternate means,
thus restoring the feasibility, albeit not efficiency, of the ba-
sic approach. Since the literature is large and not directly
geared towards genuine SV models, we focus on methods
that have seen use in applications involving latent state
variables.

A popular approach is to invert the map between the
state vector and a subset of the observables assuming that
the model prices specific securities exactly. In applica-
tions to equity markets this is done, e. g., by assuming that
one option contract is priced without error, which implies
a specific value (estimate) of the variance process given the
model parameters � . For instance, Pan [220] follows this
approach in her study of S&P 500 options and returns,
which we review in more detail in Sect. “Estimation from
Option Data”. In applications to fixed income markets it
is likewise stipulated that certain bonds are priced with-
out error, i. e., in Eq. (63) the error term ��i (t) is fixed at
zero for a set of maturities �1; : : : ; �N , where N matches
the dimension of the state vector X. This approach yields
an estimate for the latent variables through the inverse-
map X(t) D g(y� (t); � ).

One criticism of the state vector inversion procedure
is that it requires ad hoc assumptions regarding the choice
of the securities that are error-free (those used to com-
pute model-implied measures of the state vector) vis-a-vis
those observed with error (used either for estimation or
to assess model performance in an ‘out-of-sample’ cross-
sectional check). In fact, the extracted state vector can be
quite sensitive to the choice of derivatives (or yields) used.
Nevertheless, this approach has intuitive appeal. Model-
implied measures of the state vector, in combination with
a closed-form expression for the conditional density (55),
allow for efficient estimation of the coefficient vector� via
maximum likelihood. Analytic expressions for f X in Eq.
(55) exist in a limited number of cases. For instance, if X is
Gaussian then f X is multivariate normal, while if X follows
a square-root process then f X can be expressed in terms
of the modified Bessel function (e. g., [113]). Different fla-
vors of these continuous-time models are estimated in,
e. g., [91,106,132,182,223]. In more general cases, includ-
ing affine processes that combine Gaussian and square-
root state variables, closed-form expressions for f X are
no longer available. In the rest of this section we briefly
review different methods to overcome this problem. The
interested reader may consult, e. g., [226] for more de-
tails.

Lo [203] warns that the common approach of estimat-
ing parameters of an Itô process by applying maximum
likelihood to a discretization of the stochastic differen-
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tial equation yields inconsistent estimators. In contrast,
he characterizes the likelihood function as a solution to
a partial differential equation. The method is very general,
e. g., it applies not only to continuous-time diffusions but
also to jump processes. In practice, however, analytic solu-
tions to the partial differential equations (via, e. g., Fourier
transforms) are available only for a small class of models
so computationally-intensive methods (e. g., finite differ-
encing or simulations) are generally required to solve the
problem. This is a severe limitation in the case of multi-
variate systems like SV models.

For general Markov processes, where the above solu-
tion is infeasible, a variety of procedures have been advo-
cated in recent years. Three excellent surveys provide dif-
ferent perspectives on the issue. Aït-Sahalia, Hansen, and
Scheinkman [5] discuss operator methods and mention
the potential of applying a time deformation technique
to account for genuine SV features of the process, as in
Conley, Hansen, Luttmer, and Scheinkman [109]. In addi-
tion, the Aït-Sahalia [3,4] closed-form polynomial expan-
sions for discretely-sampled diffusions are reviewed along
with the Schaumburg [235] extension to a general class of
Markov processes with Lévy-type generators. Meanwhile,
Bibby, Jacobsen, and Sørensen [61] survey the extensive
statistics literature on estimating functions for diffusion-
type models and Bandi and Phillips [42] explicitly con-
sider dealing with nonstationary processes (see also the
work of Bandi [39], Bandi andNguyen [41], and Bandi and
Phillips [43,44]).

The characteristic function based inference technique
has been particularly widely adopted due to the natural fit
with the exponentially affine model class which provides
essentially closed-form solutions for many pricing appli-
cations. Consequently, we dedicate a separate section to
this approach.

Characteristic Functions Singleton [242] proposes to
exploit the information contained in the conditional char-
acteristic function of the state vector X,

�(iu; X(t); � ) D E
�
eiu
0X(tC1) ˇ̌X(t)

�
; (65)

to pursue maximum likelihood estimation of affine term
structure models. In Equation (65) we highlight the de-
pendence of the characteristic function on the unknown
parameter vector � . When X is an affine (jump-)diffusion
process, � has the exponential affine form,

�(iu; X(t); � ) D e˛t(u)Cˇt (u)
0X(t) ; (66)

where the functions ˛ and ˇ solve a system of ODEs.
As such, the transition density f X is known explicitly up
to an inverse-Fourier transformation of the characteristic
function (65),

fX(X(t C 1)
ˇ
ˇX(t);� )

D
1
�N

Z

RN
C

Re
�
e�iu

0X(tC1)�(iu; X(t); � )
�
du : (67)

Singleton shows that Gauss–Legendre quadrature with
a relatively small number of quadrature points allows to
accurately evaluate the integral in Eq. (67) when X is uni-
variate. As such, the method readily delivers efficient esti-
mates of the parameter vector, � , subject to an auxiliary
assumption, namely that the state vector may be extracted
by assuming that a pre-specified set of security prices is ob-
served without error while the remainder have non-trivial
error terms.

When X is multivariate the Fourier inversion in
Eq. (67) is computationally more demanding. Thus, when
estimating multi-dimensional systems Singleton suggests
focusing on the conditional density function of the indi-
vidual elements of X, but conditioned on the full state vec-
tor,

fX j(Xj(t C 1)jX(t);� )

D
1
2�

Z

R
e�i!I

0

j X(tC1)
�(i!I j; X(t); � )d! ; (68)

where the vector I j has 1 in the jth element and zero else-
where so that the jth element ofX is Xj(tC1) D I0jX(tC1).
Maximization of the likelihood function obtained from
fX j , for a fixed j, will often suffice to obtain a consistent es-
timate of � . Exploiting more than one of the conditional
densities (68) will result in more efficient � estimate. For
instance, the scores of multiple univariate log-likelihood
functions, stacked in a vector, yield moment conditions
that allow for generalizedmethod of moment (GMM) esti-
mation of the system. Alternatively, Joslin [192] proposes
a change-of-measure transformation which reduces the
oscillatory behavior of the integrand in Eq. (67). When us-
ing this transformation, Gauss-Hermite quadrature more
readily provides a solution to the integral in (67) even if the
state vector X is multi-dimensional, thus facilitating full
ML estimation of the system.

Related, several studies have pursuedGMM estimation
of affine processes using characteristic functions. Defini-
tion (65) yields the moment condition

E
�
(�(iu; X(t); � ) � eiu

0X(tC1))z(u; X(t))
�
D 0 ; (69)
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where X is an N-dimensional (jump-)diffusion, u 2 RN ,
and z is an instrument function. When X is affine, the
characteristic function takes the exponential form (66).
Different choices of u and z yield a set of moment condi-
tions that can be used for GMM estimation and inference.
Singleton [242] derives the optimal instrument in terms of
delivering efficient estimates. Carrasco et al. [86] approxi-
mate the optimal instrument with a set of basis functions
that do not require the knowledge of the conditional like-
lihood function, thus avoiding one of the assumptions
invoked by Singleton. Further, they build on Carrasco
and Florens [87] to implement estimation using a con-
tinuum of moment conditions, which yields maximum-
likelihood efficiency. Other applications of GMM-charac-
teristic function methods to affine (jump-) diffusions for
equity index returns are in Chacko and Viceira [88] and
Jiang and Knight [184].

In some cases the lack of closed-form expressions for
the moment condition in Eq. (69) can hinder GMM es-
timation. In these cases the expectation in Eq. (69) can
be evaluated by Monte Carlo integration. This is accom-
plished by simulating a long sample from the discretized
process for a given value of the coefficient vector � . The
parameter � is then estimated via the simulated method
of moments (SMM) of McFadden [206] and Duffie and
Singleton [131]. Singleton [242] proposes SMM character-
istic function estimators that exploit the special structure
of affine term structure models.

Efficient Estimation
of General Continuous-Time Processes

Anumber of recent approaches offer excellent flexibility in
terms of avoiding approximations to the continuous-time
model-implied transition density while still facilitating ef-
ficient estimation of the evolution of the latent state vector
for the system.

Maximum Likelihood with Characteristic Functions
Bates [58] develops a filtration-basedmaximum likelihood
estimation method for affine processes. His approach re-
lies on Bayes’ rule to recursively update the joint charac-
teristic function of latent variables and data conditional on
past data. He then obtains the transition density by Fourier
inversion of the updated characteristic function.

Denote with y(t) and X(t) the time-t values of the ob-
servable variable and the state vector, respectively, and
let Y(t) � fy(1); : : : ; y(t)g be the data observed up to
time t. Consider the case in which the characteristic
function of z(t C 1) � (y(t C 1); X(t C 1)) conditional
on z(t) � (y(t); X(t)), is an exponential affine function of

X(t):

�(is; iu; z(t); � ) D E
�
ei s
0 y(tC1)Ciu0X(tC1) ˇ̌z(t)

�

D e˛(i s;iu;y(t))Cˇ (i s;iu;y(t))
0X(t) : (70)

Next, determine the value of the characteristic function
conditional on the observed data Y(t):

�(is; iu;Y(t); � )

D E
h
E
h
ei s
0 y(tC1)Ciu0X(tC1) ˇ̌z(t)

i ˇˇ̌Y(t)
i

D E
h
e˛(i s;iu;y(t))Cˇ (i s;iu;y(t))

0X(t) ˇ̌Y(t)
i

D e˛(i s;iu;y(t)) (ˇ(is; iu; y(t));Y(t); � ) ; (71)

where  (iu;Y(t); � ) � E
h
eiu0X(t)

ˇ̌
Y(t)

i
denotes the

(marginal) characteristic function for the state vector
conditional on the observed data. Fourier inversion then
yields the conditional density for the observation y(t C 1)
conditional on Y(t):

fy(y(t C 1)jY(t);� )

D
1
2�

Z

R
e�i s

0 y(tC1)�(is; 0;Y(t); � )ds : (72)

The next step updates the characteristic function  

(Bartlett [48]):

 (iu;Y(t C 1); � ) D
1

2� fy(y(t C 1)jY(t);� )

�

Z

R
e�i s

0 y(tC1)�(is; iu;Y(t); � )ds : (73)

To start the recursion, Bates initializes  at the uncondi-
tional characteristic function of the latent variable X. The
log-likelihood function is then given by

logL(Y(T);� ) D log( fy(y(1);� )

C

TX

tD2

log( fy(y(t)jY(t � 1);� )) : (74)

A nice feature is that the method provides a natural solu-
tion to the filtering problem. The filtered estimate of the
latent state X and its variance are computed from the first
and second derivatives of the moment generating function
 (u;Y(t);� ) in Eq. (73), evaluated at u D 0:

E[X(t C 1)jY(t C 1);� ] D
1

2� fy(y(t C 1)jY(t);� )

�

Z

R
e�i s

0 y(tC1)�u(is; 0;Y(t);� )ds (75)
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Var[X(tC 1)jY(tC 1);� ] D
1

2� fy(y(t C 1)jY(t);� )

�

Z

R
e�i s

0 y(tC1)�uu(is; 0;Y(t);� )ds

� fE[X(t C 1)jY(t C 1)]g2 : (76)

A drawback is that at each step t of the iteration the
method requires storage of the entire characteristic func-
tion  (iu;Y(t);� ). To deal with this issue Bates recom-
mends to approximate the true  with the characteristic
function of a variable with a two-parameter distribution.
The choice of the distribution depends on the X-dynam-
ics while the two parameters of the distribution are deter-
mined by the conditional mean E[X(t C 1)jY(t C 1);� ]
and variance Var[X(t C 1)jY(t C 1);� ] given in Equa-
tions (75)–(76).

In his application Bates finds that the method is suc-
cessful in estimating different flavors of the SV jump-dif-
fusion for a univariate series of daily 1953–1996 S&P 500
returns. In particular, he shows that the method obtains
estimates that are equally, if not more, efficient compared
to the efficient method of moments and Markov Chain
Monte Carlo methods described below. Extensions of the
method to multivariate processes are theoretically possi-
ble, but they require numerical integration of multi-di-
mensional functions, which is computationally demand-
ing.

Simulated Maximum Likelihood In Sect. “Filtering the
Latent State Variable Directly During Estimation” we dis-
cussed methods for simulated ML estimation and in-
ference in discrete-time SV models. Pedersen [224] and
Santa-Clara [234] independently develop a simulated
maximum likelihood (SML) method to estimate contin-
uous-time diffusion models. They divide each interval in
between two consecutive data points XtC1 and Xt into M
sub-intervals of length� D 1/M and they discretize the X
process using the Euler scheme,

XtC(iC1)# D XtCi# C �(XtCi#)�

C˙(XtCi#)
p
�"tC(iC1)# ;

i D 0; : : : ;M � 1 ; (77)

where � and ˙ are the drift and diffusion terms of the X
process and " is multivariate normal with mean zero and
identity variance matrix. The transition density of the dis-
cretized process is multivariate normal with mean � and
variance matrix˙˙ 0. As� goes to zero, this density con-
verges to that of the continuous-time process X. As such,

the transition density from Xt to XtC1 is given by

fX(XtC1jXt ;� ) D
Z

fX(XtC1jXtC1�#;� )

� fX(XtC1�#jXt ;� )dXtC1�# :

(78)

For sufficiently small values of� the first term in the inte-
grand, fX(XtC1jXtC1�#;� ), is approximated by the tran-
sition density of the discretized process, while the second
term, fX(XtC1�#jXt ;� ), is a multi-step-ahead transition
density that can be computed from the recursion from
Xt to XtC1�#. Writing the right-hand side of Eq. (78) as
a conditional expectation yields

fX(XtC1jXt ;� ) D EXtC1�� jXt

�
fX(XtC1jXtC1�#;� )

�
:

(79)

The expectation in Eq. (79) can be computed by Monte
Carlo integration over a large number of paths for the pro-
cessX, simulated via the Euler scheme (77). As� vanishes,
the Euler scheme is consistent. Thus, when the size of the
simulated sample increases the sample average of the func-
tion f X , evaluated at the random draws of XtC1�#, con-
verges to the true transition density. Application of the
principles in Bladt and Sørensen [64] may well be useful
in enhancing the efficiency of the simulation scheme and
hence the actual efficiency of the inference procedure in
practice.

Brandt and Santa-Clara [75] apply the SML method to
estimate a continuous-time model of the joint dynamics
of interest rates in two countries and the exchange rate be-
tween the two currencies. Piazzesi [227] extends the SML
approach for jump-diffusion processes with time-varying
jump intensity. She considers a high-frequency policy rule
based on yield curve information and an arbitrage-free
bond market and estimates the model using 1994–1998
data on the Federal Reserve target rate, the six-month
LIBOR rate, and swap yields.

An important issue is how to initialize any unobserved
component of the state vector, X(t), such as the volatility
state at each observation to provide a starting point for the
next Monte Carlo integration step. This may be remedied
through application of the particle filter, as mentioned ear-
lier and discussed below in connection with MCMC esti-
mation. Another possibility is, as also indicated previously,
to extract the state variable through inversion from deriva-
tives prices or yields assumed observed without pricing er-
rors.

Indirect Inference There are also other method-of-mo-
ments strategies to estimate finitely-sampled continuous-
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time processes of a general type. One prominent approach
approximates the unknown transition density for the con-
tinuous-time process with the density of a semi-nonpara-
metric (SNP) auxiliary model. Then one can use the score
function of the auxiliary model to form moment condi-
tions for the parameter vector � of the continuous-time
model. This approach yields the efficient method of mo-
ments estimator (EMM) of Gallant and Tauchen [154],
Gallant et al. [150], and Gallant and Long [152], and the
indirect inference estimator of Gouriéroux et al. [162] and
Smith [243].

To fix ideas, suppose that the conditional density for
a continuous-time return process r (the ‘structural’ model)
is unknown.We intend to approximate the unknown den-
sity with a discrete-time model (the ‘auxiliary’ model)
that is tractable and yet sufficiently flexible to accom-
modate the systematic features of the actual data sam-
ple well. A parsimonious auxiliary density for r embeds
ARMA and EGARCH leading terms to capture the condi-
tional mean and variance dynamics. There may be resid-
ual excess skewness and kurtosis that elude the ARMA and
EGARCH forms. As such, the auxiliary density is rescaled
using a nonparametric polynomial expansion of order K ,
which yields

gK(r(t)jx(t); �) D

 

� C (1 � �)

�
[PK(z(t); x(t))]2R

R[PK(z(t); x(t))]2�(u)du

!
�(z(t))
p
h(t)

; (80)

where � is a small constant, �(:) is the standard normal
density, x(t) contains lagged return observations, and

z(t) D
r(t) � �(t)
p
h(t)

; (81)

�(t) D �0 C ch(t)C
sX

iD1

�i r(t � 1)

C

uX

iD1

ıi"(t � 1) ; (82)

log h(t) D ! C
pX

iD1

ˇi log h(t � 1)

C (1C ˛1LC � � � C ˛qLq)

�
h
�1z(t � 1)C �2(b(z(t � 1)) �

p
2/�)

i
;

(83)

PK (z; x) D
KzX

iD0

ai(x)zi D
KzX

iD0

0

@
KxX

j jjD0

ai jx j

1

A zi ;

a00 D 1 :

(84)

Here j is a multi-index vector, x j � (x j1
1 ; : : : ; x

jM
M ), and

j jj �
PM

mD1 jm . The term b(z) is a smooth (twice-differ-
entiable) function that closely approximates the absolute
value operator in the EGARCH variance equation.

In practice, the representation of PK is given by Her-
mite orthogonal polynomials. When the order K of the ex-
pansion increases, the auxiliary density will approximate
the data arbitrarily well. If the structural model is indeed
the true data generating process, then the auxiliary density
will converge to that of the structural model. For a givenK ,
the QML estimator �̂ for the auxiliary model coefficient
satisfies the score condition

1
T

TX

tD1

@ log gK (r(t)jx(t); �̂)
@�

D 0 : (85)

Suppose now that the structural model is correct and
� 0 is the true value of its coefficient vector. Consider a se-
ries fr(t;� ); x(t;� )g, t D 1; : : : ;T (T), simulated from
the structural model. Then we expect that the score condi-
tion (85) holds when evaluated by averaging over the sim-
ulated returns rather than over the actual data:

mT (T)(�0; �̂) D
1

T (T)

T (T)X

tD1

@ log gK (r(t; �0)jx(t; �0); �̂)
@�

� 0 :
(86)

When T and T (T) tend to infinity, condition (86) holds
exactly.

Gallant and Tauchen [154] propose the EMM estima-
tor �̂ defined via

�̂ D argmin
�

mT (T)(�; �̂)0 ŴTmT (T)(�; �̂) ; (87)

where the weighting matrix ŴT is a consistent estimate of
the inverse asymptotic covariance matrix of the auxiliary
score function, e. g., the inverse outer product of the SNP
gradient:

Ŵ�1T D
1
T

TX

tD1

"
@ log gK (r(t)jx(t); �̂)

@�

#

�

"
@ log gK(r(t)jx(t); �̂)

@�

#0
: (88)
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An important advantages of the technique is that EMM
estimates achieve the same degree of efficiency as the ML
procedure, when the score of the auxiliary model asymp-
totically spans the score of the true model. It also deliv-
ers powerful specification diagnostics that provide guid-
ance in the model selection. Gallant and Tauchen [154]
show that the EMM estimator is asymptotically normal.
Further, under the assumption that the structural model is
correctly specified, they derive a �2 statistic for the test of
over-identifying restrictions. Gallant et al. [150] normal-
ize the vector mT (T)(�̂ ; �̂) by its standard error to obtain
a vector of score t-ratios. The significance of the individ-
ual score elements is often informative of the source of
model mis-specification, with the usual caveat that failure
to capture one characteristic of the data may result in the
significance of a moment condition that pertains to a co-
efficient not directly related to that characteristic (due to
correlation in the moment conditions). Finally, EMM pro-
vides a straightforward solution to the problem of filtering
and forecasting the latent return variance process V , i. e.,
determining the conditional densities f (V(t)jx(t); � ) and
f (V(t C j)jx(t); � ); j � 0. This is accomplished through
the reprojection method discussed in, e. g., Gallant and
Long [152] and Gallant and Tauchen [155]. In applica-
tions to dynamic term structure models, the same method
yields filtered and forecasted values for the latent state
variables.

The reprojection method assumes that the coefficient
vector � is known. In practice, � is fixed at the EMM es-
timate �̂ . Then one simulates a sample of returns and la-
tent variables from the structural model and fits the aux-
iliary model on the simulated data. This is equivalent to
the first step of the EMM procedure except that, in the
reprojection step, we fit the auxiliary model assuming the
structural model is correct, rather than using actual data.
The conditional density of the auxiliary model, estimated
under the null, approximates the unknown density of the
structural model:

gK (r(tC j)jx(t); �̃) � f (r(tC j)jx(t); �̂ ); j � 0 ; (89)

where �̃ is the QML estimate of the auxiliary model coef-
ficients obtained by fitting the model on simulated data.
This approach yields filtered estimates and forecasts for
the conditional mean and variance of the return via

E
�
r(t C j)jx(t); �̂

�
D

Z
ygK (yjx(t); �̃)dy ; (90)

Var
�
r(tC j)jx(t); �̂

�
D

Z 

y � E

�
r(t C j)jx(t); �̂

��2

� gK(yjx(t); �̃)dy : (91)

An alternative approach consists in fitting an auxiliary
model for the latent variable (e. g., the return conditional
variance) as a function of current and lagged returns. It is
straightforward to estimate such model using data on the
latent variable and the associated returns simulated from
the structural model with the EMM coefficient �̂ . Also in
this case the auxiliary model density approximates the true
one, i. e.,

gVK (V (tC j)jx(t); �̃) � f V (V (tC j)jx(t);  ̂) ; j � 0: (92)

This approach yields a forecast for the conditional vari-
ance process,

E
�
V(t C j)jx(t); �̂

�
D

Z
vgVK (vjx(t); �̃)dv : (93)

In sum, reprojection is a simulation approach to imple-
ment a non-linear Kalman-filter-type technique, which
yields effective forecasts for the unobservable state vector.

The indirect inference estimator by Gouriéroux
et al. [162] and Smith [243] is closely related to the EMM
estimator. Indirect inference exploits that the following
two quantities should be close when the structural model
is correct and the data are simulated at the true parameter
� 0: (i) the QML estimator �̂ for the auxiliary model com-
puted from actual data; (ii) the QML estimator �̂(� ) for
the auxiliary model fitted on simulations from the struc-
tural model. Minimizing the distance between �̂ and �̂(� )
in an appropriate metric yields the indirect inference esti-
mator for � . Similar to EMM, asymptotic normality holds
and a �2 test for over-identifying restrictions is available.
However, the indirect inference approach is computation-
ally more demanding, because finding the value of � that
minimizes the distance function requires re-estimating the
auxiliary model on a different simulated sample for each
iteration of the optimization routine. EMM does not have
this drawback, since the EMM objective function is evalu-
ated at the same fitted score at each iteration. Nonetheless,
there may well be circumstances where particular auxil-
iary models are of primary economic interest and estima-
tion based on the corresponding moment conditions may
serve as a useful diagnostic tool for model performance in
such directions.

Several studies have used EMM to fit continuous-
time SV jump-diffusion models for equity index returns,
e. g., Andersen et al. [15], Benzoni [59], Chernov and
Ghysels [93], and Chernov et al. [94,95]. Andersen and
Lund [28] and Andersen et al. [16] use EMM to esti-
mate SV jump-diffusion models for the short-term inter-
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est rate. Ahn et al. [1,2], Brandt and Chapman [71], and
Dai and Singleton [114] fit different flavors of multi-factor
dynamic term structure models. Andersen et al. [27] doc-
ument the small-sample properties of the efficient method
of moments estimator for stationary processes, while Duf-
fee and Stanton [128] study its properties for near unit-
root processes. A. Ronald Gallant and George E. Tauchen
at Duke University have prepared well-documented gen-
eral-purpose EMM and SNP packages, available for down-
load at the web address ftp.econ.duke.edu in the directo-
ries pub/get/emm and pub/get/snp. In applications it is of-
ten useful to customize the SNP density to allow for amore
parsimonious fit of the data under investigation. For in-
stance, Andersen et al. [15,16], Andersen and Lund [28],
and Benzoni [59] rely on the SNP density (80)–(84).

Markov Chain Monte Carlo The MCMC method pro-
vides a Bayesian solution to the inference problem for
a dynamic asset pricing model. The approach treats the
model coefficient� as well as the vector of latent state vari-
ables X as random variables and computes the posterior
distribution f (�; XjY), conditional on certain observable
variables Y , predicted by the model. The setting is suffi-
ciently general to deal with a wide range of situations. For
instance, X and Y can be the (latent) volatility and (ob-
servable) return processes as is the case of an SVmodel for
asset returns. Or X and Y can be the latent state vector and
observable yields in a dynamic term structure model.

The posterior distribution f (�; XjY) is the main tool
to draw inference not only on the coefficient � but also on
the latent vector X. Since f (�; XjY) is unknown in closed-
form in relevant applications, MCMC relies on a sim-
ulation (a Markov Chain) from the conditional density
f (�; XjY) to compute mode, mean, and standard devia-
tions for the model coefficients and state variables via the
Monte Carlo method.

The posterior f (�; XjY) is analytically untractable
and extremely high-dimensional, so that simulation di-
rectly from f (�; XjY) is typically infeasible. The MCMC
approach hinges on the Clifford–Hammersley theorem,
which determines conditions under which the posterior
f (�; XjY) is uniquely determined by the marginal pos-
terior distributions f (� jX;Y) and f (Xj�;Y). In turn,
the posteriors f (� jX;Y) and f (Xj�;Y) are determined
by a set or univariate posterior distributions. Specifically,
denote with � (i) the ith element of the coefficient � ,
i D 1; : : : ;K, and with � (�i) the vector consisting of all
elements in � except for the ith one. Similarly denote
with X(t) the tth row of the state vector, t D 1; : : : ; T ,
and with X(�t) the rest of the vector. Then the Clifford–
Hammersley theorem allows to characterize the posterior

f (�; XjY) via K C T univariate posteriors,

f (� (i)j� (�i); X;Y) ; i D 1; : : : ;K (94)

f (X(t)jX(�t); �;Y) ; t D 1; : : : ; T : (95)

The construction of the Markov Chain relies on the so-
called Gibbs sampler. The first step of the algorithm con-
sists in choosing initial values for the coefficient and the
state, � 0 and X0. When (one of or both) the multi-dimen-
sional posteriors are tractable, the Gibbs sampler generates
values� 1 and X1 directly from f (� jX;Y) and f (Xj�;Y).
Alternatively, each element of � 1 and X1 is drawn from
the univariate posteriors (94)–(95). Some of these poste-
riors may also be analytically intractable or efficient al-
gorithms to draw from these posteriors may not exist. In
such cases theMetropolis-Hastings algorithm ensures that
the simulated sample is consistent with the posterior tar-
get distribution. Metropolis-Hastings sampling consists of
an accept-reject procedure of the draws from a ‘proposal’
or ‘candidate’ tractable density, which is used to approxi-
mate the unknown posterior (see, e. g., Johannes and Pol-
son [187]).

Subsequent iterations of Gibbs sampling, possibly
in combination with the Metropolis-Hastings sampling,
yield a series of ‘sweeps’ f�s ; Xsg; s D 1; : : : ; S, with limit-
ing distribution f (�; XjY). A long number of sweeps may
be necessary to ‘span’ the whole posterior distribution and
obtain convergence due to the serial dependence of subse-
quent draws of coefficients and state variables. When the
algorithm has converged, additional simulations provide
a sample from the joint posterior distribution.

The MCMC approach has several advantages. First,
the inference automatically accounts for parameter un-
certainty. Further, the Markov Chain provides a direct
and elegant solution to the smoothing problem, i. e., the
problem of determining the posterior distribution for the
state vector X conditional on the entire data sample,
f (X(t)jY(1); : : : ;Y(T); � ); t D 1; : : : ; T . The limitation
on the approach is largely that efficient sampling schemes
for the posterior distribution must be constructed for each
specific problem at hand which by nature is case specific
and potentially cumbersome or inefficient. Nonetheless,
following the development of more general simulation al-
gorithms, the method has proven flexible for efficient esti-
mation of a broad class of important models.

One drawback is that MCMC does not deliver an im-
mediate solution to the filtering problem, i. e., determining
f (X(t)jY(1); : : : ;Y(t); � ), and the forecasting problem,
i. e., determining f (X(tC j)jY(1); : : : ;Y(t); � ); j > 0.
However, recent research is overcoming this limitation

ftp://ftp.econ.duke.edu


Stochastic Volatility S 8805

through the use of the ‘particle filter’. Bayes rule implies

f (X(tC 1)jY(1); : : : ;Y(t C 1); � ) / f (Y(t C 1)j
X(t C 1); � ) f (X(t C 1)jY(1); : : : ;Y(t); � ) ; (96)

where the symbol / denotes ‘proportional to’. The first
density on the right-hand side of Eq. (96) is deter-
mined by the SV model and it is often known in closed
form. In contrast, the second density at the far-right
end of the equation is given by an integral that in-
volves the unknown filtering density at the prior period,
f (X(t)jY(1); : : : ;Y(t); � ):

f (X(tC1)jY(1); : : : ;Y(t); � ) D
Z

f (X(tC1)jX(t); � )

� f (X(t)jY(1); : : : ;Y(t); � )dX(t) : (97)

The particle method relies on simulations to construct a fi-
nite set of weights wi (t) and particles Xi(t), i D 1; : : : ;N ,
that approximate the unknown density with a finite sum,

f (X(t)jY(1); : : : ;Y(t); � ) �
NX

iD1

wi (t)ıXi (t) ; (98)

where the Dirac function ıXi (t) assigns mass one to the
particle Xi (t). Once the set of weights and particles are
determined, it is possible to re-sample from the dis-
cretized distribution. This step yields a simulated sample
fXs(t)gSsD1 which can be used to evaluate the density in
Eq. (97) via Monte Carlo integration:

f (X(tC 1)jY(1); : : : ;Y(t); � )

�
1
S

SX

sD1

f (X(t C 1)jXs(t); � ) : (99)

Equation (99) solves the forecasting problem while com-
bining formulas (96) and (99) solves the filtering problem.
The challenge in practical application of the particle filter
is to identify an accurate and efficient algorithm to con-
struct the set of particles and weights. We point the inter-
ested reader to Kim et al. [193], Pitt and Shephard [228]
and Johannes and Polson [187] for a discussion on how to
approach this problem.

The usefulness of the MCMC method to solve the in-
ference problem for SV models has been evident since
the early work by Jacquier et al. [180], who develop an
MCMC algorithm for the logarithmic SV model. Jacquier
et al. [181] provide extensions to correlated and non-nor-
mal error distributions. Kim et al. [193], Pitt and Shep-
hard [228] and Chib et al. [96] develop simulation-based

methods to solve the filtering problem, while Chib et
al. [97] use the MCMC approach to estimate a multi-
variate SV model. Elerian et al. [135] and Eraker [140]
discuss how to extend the MCMC inference method to
a continuous-time setting. Eraker [140] uses the MCMC
approach to estimate an SV diffusion process for inter-
est rates, while Jones [189] estimates a continuous-time
model for the spot rate with non-linear drift function. Er-
aker et al. [142] estimate an SV jump-diffusion process us-
ing data on S&P 500 return while Eraker [141] estimates
a similar model using joint data on options and under-
lying S&P 500 returns. Li et al. [196] allow for Lévy-type
jumps in their model. Collin-Dufresne et al. [104] use the
MCMC approach to estimate multi-factor affine dynamic
term structure model using swap rates data. Johannes and
Polson [186] give a comprehensive survey of the still on-
going research on the use of the MCMC approach in the
general nonlinear jump-diffusion SV setting.

Estimation from Option Data

Options’ payoffs are non-linear functions of the under-
lying security price. This feature renders options highly
sensitive to jumps in the underlying price and to return
volatility, which makes option data particularly useful to
identify return dynamics. As such, several studies have
taken advantage of the information contained in option
prices, possibly in combination with underlying return
data, to estimate SV models with or without discontinu-
ities in returns and volatility.

Applications to derivatives data typically require
a model for the pricing errors. A common approach is to
posit that the market price of an option, O�, normalized
by the underlying observed security price S�, is the sum
of the normalized model-implied option price, O/S� , and
a disturbance term " (e. g., Renault [230]):

O�

S�
D

O(S�;V ;K; �; � )
S�

C " ; (100)

where V is the latent volatility state, K is the option strike
price, � is time to maturity, and � is the vector with
the model coefficients. A pricing error " could arise for
several reasons, including measurement error (e. g., price
discreteness), asynchroneity between the derivatives and
underlying price observations, microstructure effects, and
perhaps most importantly specification error. The struc-
ture imposed on " depends on the choice of a specific ‘loss
function’ used for estimation (e. g., Christoffersen and Ja-
cobs [98]). Several studies have estimated the coefficient
vector � by minimizing the sum of the squared option
pricing errors normalized by the underlying price S�, as
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in Eq. (100). Others have focused on either squared dollar
pricing errors, or squared errors normalized by the options
market price (instead of S�). The latter approach has the
advantage that a $1 error on an expensive in-the-money
option carries less weight than the same error on a cheaper
out-of-the-money contract. The drawback is that giving
a lot of weight to the pricing errors on short-maturity
deep-out-of-the-money options could bias the estimation
results. Finally, the common practice of expressing op-
tion prices in terms of their Black-Scholes implied volatili-
ties has inspired other scholars to minimize the deviations
between Black-Scholes implied volatilities inferred from
model and market prices (e. g., Mizrach [216]). An alter-
native course is to form amoment-based loss function and
follow a GMM- or SMM-type approach to estimate � . To
this end moment conditions stem from distributional as-
sumptions on the pricing error " (e. g., E["] D 0) or from
the scores of a reduced-form model that approximates the
data.

In estimating the model, some researchers have opted
to use a panel of options consisting of contracts with mul-
tiple strikes and maturities across dates in the sample pe-
riod. This choice brings a wealth of information on the
cross-sectional and term-structure properties of the im-
plied volatility smirk into the analysis. Others rely on only
one option price observation per time period, which shifts
the focus to the time-series dimension of the data. Some
studies re-estimate the model on a daily basis rather than
seeking a single point estimate for the coefficient � across
the entire sample period. This ad hoc approach produces
smaller in-sample pricing errors, which can be useful to
practitioners, but at the cost of concealing specification
flaws by over-fitting the model, which tends to hurt out-
of-sample performance. The different approaches are in
part dictated by the intended use of the estimated sys-
tem as practitioners often are concerned withmarketmak-
ing and short-term hedging while academics tend to value
stable relations that may form the basis for consistent
modeling of the dominant features of the system over
time.

Early contributions focus on loss functions based on
the sum of squared option pricing errors and rely en-
tirely on option data for estimation. This approach typ-
ically yields an estimate of the model coefficient � that
embeds an adjustment for risk, i. e., return and volatility
dynamics are identified under the risk-neutral rather than
the physical probability measure. For instance, Bates [56]
considers an SV jump-diffusion model for Deutsche Mark
foreign currency options and estimates its coefficient vec-
tor � via nonlinear generalized least squares of the nor-
malized pricing errors with daily option data from Jan-

uary 1984 to June 1991. A similar approach is followed by
Bates [57] who fits an SV model with two latent volatility
factors and jumps using daily data on options on the S&P
500 futures from January 1988 to December 1993. Bakshi
et al. [34] focus on the pricing and hedging of daily S&P
500 index options from June 1988 to May 1991. In their
application they re-calibrate the model on a daily basis by
minimizing the sum of the squared dollar pricing errors
across options with differentmaturities and strikes. Huang
andWu [173] explore the pricing implications of the time-
changed Lévy process by Carr and Wu [84] for daily S&P
500 index options from April 1999 to May 2000. Their
Lévy return process allows for discontinuities that exhibit
higher jump frequencies compared to the finite-intensity
Poisson jump processes in Equations (37)–(41). Further,
their model allows for a random time change, i. e., a mono-
tonic transformation of the time variable which generates
SV in the diffusion and jump components of returns. In
contrast, Bakshi et al. [35] fit an SV jump-diffusion model
by SMM using daily data on long-maturity S&P 500 op-
tions (LEAPS).

More recent studies have relied on joint data on S&P
500 option prices and underlying index returns, spanning
different periods, to estimate the model. This approach
forces the same model to price securities in two differ-
ent markets and relies on information from the derivatives
and underlying securities to better pin down model co-
efficients and risk premia. For instance, Eraker [141] and
Jones [190] fit different flavors of the SV model (with and
without jumps, respectively) byMCMC. Pan [220] follows
a GMM approach to estimate an SV jump-diffusion model
using weekly data. She relies on a single at-the-money op-
tion price observation each week, which identifies the level
of the latent volatility state variable (i. e., at each date she
fixes the error term " at zero and solves Eq. (100) for V).
Aït-Sahalia andKimmel [7] apply Aït-Sahalia’s [4] method
to approximate the likelihood function for a joint sam-
ple of options and underlying prices. Chernov and Ghy-
sels [93] and Benzoni [59] obtainmoment conditions from
the scores of a SNP auxiliary model. Similarly, other recent
studies have found it useful to use joint derivatives and in-
terest rate data to fit dynamic term structure models, e. g.,
Almeida et al. [9], and Bikbov and Chernov [62].

Finally, a different literature has studied the option
pricing implications of a model in which asset return
volatility is a deterministic function of the asset price and
time, e. g., Derman and Kani [119], Dupire [134], Rubin-
stein [233], and Jackwerth and Rubinstein [177]. Since
volatility is not stochastic in this setting, we do not review
these models here and point the interested reader to, e. g.,
[133] for an empirical analysis of their performance.
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Future Directions

In spite of much progress in our understanding of volatil-
ity new challenges lie ahead. In recent years a wide ar-
ray of volatility-sensitive products has been introduced.
The market for these derivatives has rapidly grown in size
and complexity. Research faces the challenge to price and
hedge these new products. Moreover, the recent develop-
ments in model-free volatility modeling have effectively
given empirical content to the latent volatility variable,
which opens the way for a new class of estimation meth-
ods and specification tests for SV systems. Related, im-
proved volatility measures enable us to shed new light on
the properties and implications of the volatility risk pre-
mium. Finally, more work is needed to better understand
the linkage between fluctuations in economic fundamen-
tals and low- and high-frequency volatility movements.
We conclude this chapter by briefly reviewing some open
issues in these four areas of research.

Volatility and Financial Markets Innovation

Volatility is a fundamental input to any financial and real
investment decision. Markets have responded to investors’
needs by offering an array of volatility-linked instruments.
In 1993 the Chicago Board Option Exchange (CBOE) has
introduced the VIX index, which measures the market ex-
pectations of near-term volatility conveyed by equity-in-
dex options. The index was originally computed using the
Black-Scholes implied volatilities of eight different S&P
100 option (OEX) series so that, at any given time, it rep-
resented the implied volatility of a hypothetical at-the-
money OEX option with exactly 30 days to expiration
(see [257]). On September 22, 2003, the CBOE began dis-
seminating price level information using a revised ‘model-
free’ method for the VIX index. The new VIX is given by
the price of a portfolio of S&P 500 index options and in-
corporates information from the volatility smirk by using
a wider range of strike prices rather than just at-the-money
series (see [77]). On March 26, 2004, trading in futures
on the VIX Index started on the CBOE Futures Exchange
(CFE) while on February 24, 2006, options on the VIX
began trading on the Chicago Board Options Exchange.
These developments have opened the way for investors to
trade on option-impliedmeasures ofmarket volatility. The
popularity of the VIX prompted the CBOE to introduce
similar indices for other markets, e. g., the VXNNASDAQ
100 Volatility Index.

Along the way, a new over-the-counter market for
volatility derivatives has also rapidly grown in size and liq-
uidity. Volatility derivatives are contracts whose payments
are expressed as functions of realized variance. Popular ex-

amples are variance swaps, which at maturity pay the dif-
ference between realized variance and a fixed strike price.
According to estimates by BNP Paribas reported by the
Risk [176] magazine, the daily trading volume for vari-
ance swaps on indices reached $4–5 million in vega no-
tional (measured in dollars per volatility point) in 2006,
which corresponds to payments in excess of $1 billion per
percentage point of volatility on an annual basis (Carr and
Lee [82]). Using variance swaps hedge fund managers and
proprietary traders can easily place huge bets on market
volatility.

Finally, in recent years credit derivatives markets have
evolved in complexity and grown in size. Among the most
popular credit derivatives are the credit default swaps
(CDS), which provide insurance against the risk of default
by a particular company. The buyer of a single-name CDS
acquires the right to sell bonds issued by the company
at face value when a credit event occurs. Multiple-name
contracts can be purchased simultaneously through credit
indices. For instance, the CDX indices track the credit
spreads for different portfolios of North American compa-
nies while the iTraxx Europe indices track the spreads for
portfolios of European companies. At the end of 2006 the
notional amount of outstanding over-the-counter single-
and multi-name CDS contracts stood at $19 and $10 tril-
lion, respectively, according to the September 2007 Bank
for International Settlements Quarterly Review.

These market developments have raised new interest-
ing issues for research to tackle. The VIX computations
based on the new model-free definition of implied volatil-
ity used by the CBOE requires the use of options with
strike prices that cover the entire support of the return
distribution. In practice, liquid options satisfying this re-
quirement often do not exist and the CBOE implementa-
tion introduces random noise and systematic error into
the index (Jiang and Tian [185]). Related, the VIX im-
plementation entails a truncation, i. e., the CBOE discards
illiquid option prices with strikes lying in the tails of the
return distribution. As such, the notion of the VIX is more
directly linked to that of corridor volatility [26]. In sum,
robust implementation of a model free measure of implied
volatility is still an open area of research. Future devel-
opments in this direction will also have important reper-
cussions on the hedging practices for implied-volatility
derivatives.

Pricing and hedging of variance derivatives is another
active area of research. Variance swaps admit a simple
replication strategy via static positions in call and put op-
tions on the underlying asset, similar to model-free im-
plied volatility measures (e. g., [77,83]). In contrast, it is
still an open area of research to determine the replication
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strategy for derivatives whose payoffs are non-linear func-
tion of realized variance, e. g., volatility swaps, which pay
the square-root of realized variance, or call and put op-
tions on realized variance. [82] is an interesting paper in
this direction.

Limited liability gives shareholders the option to de-
fault on the firm’s debt obligation. As such, a debt claim
has features similar to a short position in a put option.
The pricing of corporate debt is therefore sensitive to the
volatility of the firms’ assets: higher volatility increases the
probability of default and therefore reduces the price of
debt and increases credit spreads. The insights and tech-
niques developed in the SV literature could prove useful in
credit risk modeling and applications (e. g., [179,248,260]).

The Use of Realized Volatility for Estimation
of SVModels

Another promising line of research aims at extracting the
information in RV measures for the estimation of dy-
namic asset pricing models. Early work along these lines
includes Barndorff-Nielson and Shephard [51], who de-
compose RV into actual volatility and realized volatility
error. They consider a state-space representation for the
decomposition and apply the Kalmann filter to estimate
different flavors of the SVmodel.Moreover, Bollerslev and
Zhou [68] and Garcia et al. [156], build on the insights of
Meddahi [210] to estimate SV diffusion models using con-
ditional moments of integrated volatility. More recently,
Todorov [252] generalizes the analysis for the presence of
jumps.

Related, recent studies have started to use RV mea-
sures to test the implications of models previously esti-
mated with lower-frequency data. Since RV gives empir-
ical content to the latent quadratic variation process, this
approach allows for a direct test of the model-implied re-
strictions on the latent volatility factor. Recent work along
these lines includes Andersen and Benzoni [12], who use
model-free RV measures to show that the volatility span-
ning condition embedded in some affine term structure
models is violated in the US Treasury market. Christof-
fersen et al. [100] note that the Heston square-root SV
model implies that the dynamics for the standard devia-
tion process are conditionally Gaussian. They reject this
condition by examining the distribution of the changes in
the square-root RV measure for S&P 500 returns.

Volatility Risk Premium

More work is needed to better understand the link be-
tween asset return volatility andmodel risk premia. Also in
this case, RV measures are a fruitful source of information

to shed new light on the issue. Among the recent studies
that pursue this venue is Bollerslev et al. [66], who exploit
the moments of RV and option-implied volatility to gauge
a measure of the volatility risk premium. Todorov [251]
explores the variance risk premium dynamics using high-
frequency S&P 500 index futures data and data on the VIX
index. He finds the variance risk premium to vary signif-
icantly over time and to increase during periods of high
volatility and immediately after big jumps in underlying
returns. Carr and Wu [85] provide a broader analysis of
the variance risk premium for five equity indices and 35
individual stocks. They find the premium to be large and
negative for the indices while it is much smaller for the
individual stocks. Further, they also find the premium to
increase (in absolute value) with the level of volatility. Ad-
ditional work on the volatility risk premium embedded in
individual stock options is in Bakshi and Kapadia [36],
Driessen et al. [123], and Duarte and Jones [126]. Other
studies have examined the linkage between volatility risk
premia and equity returns (e. g., [69]) and hedge-fund per-
formance (e. g., [70]). New research is also examining the
pricing of aggregate volatility risk in the cross-section of
stock returns. For instance, Ang et al. [30] find that average
returns are lower on stocks that have high sensitivities to
innovations in aggregate volatility and high idiosyncratic
volatility (see also the related work by Chen [90] Ang et
al. [32], Bandi et al, Guo et al. [42]). This evidence is con-
sistent with the findings of the empirical option pricing
literature, which suggests that there is a negative risk pre-
mium for volatility risk. Intuitively, periods of highmarket
volatility are associated to worsened investment opportu-
nities and tend to coincide with negative stock market re-
turns (the so-called leverage effect). As such, investors are
willing to pay higher prices (i. e., accept lower expected re-
turns) to hold stocks that do well in high-volatility condi-
tions.

Determinants of Volatility

Finally, an important area of future research concerns the
linkage between asset return volatility and economic un-
certainty. Recent studies have proposed general equilib-
rium models that produce low-frequency fluctuations in
conditional volatility, e. g., Campbell and Cochrane [80],
Bansal and Yaron [47], McQueen and Vorkink [207], and
Tauchen [246]. Related, Engle and Rangel [139] and En-
gle et al. [138] link macroeconomic variables and long-
run volatility movements. It is still an open issue, how-
ever, to determine the process through which news about
economic fundamentals are embedded into prices to gen-
erate high-frequency volatility fluctuations. Early research
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by Schwert [236] and Shiller [241] has concluded that the
amplitude of the fluctuations in aggregate stock volatility is
difficult to explain using simple models of stock valuation.
Further, Schwert [236] notes that while aggregate lever-
age is significantly correlated with volatility, it explains
a relatively small part of the movements in stock volatil-
ity. Moreover, he finds little evidence that macroeconomic
volatility (measured by inflation and industrial produc-
tion volatility) helps predict future asset return volatility.
Model-free realized volatility measures are a useful tool
to further investigate this issue. Recent work in this di-
rection includes Andersen et al. [22] and Andersen and
Bollerslev [17], who explore the linkage between news
arrivals and exchange rates volatility, and Andersen and
Benzoni [13], who investigate the determinants of bond
yields volatility in the US Treasury market. Related, Bal-
duzzi et al. [38] and Fleming and Remolona [146] study
the reaction of trading volume, bid-ask spread, and price
volatility to macroeconomic surprises in the US Treasury
market, while Brandt and Kavajecz [74] and Pasquariello
and Vega [222] focus instead on the price discovery pro-
cess and explore the implications of order flow imbalances
(excess buying or selling pressure) on day-to-day variation
in yields.
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Glossary

Adjacency matrix The adjacency matrix of a graph with
N sites is an N � N matrix [aij] with entries aij D 1 if
i and j are linked, and aij D 0 otherwise. The adjacency
matrix is symmetric (aij D a ji) if the links in the graph
are undirected.

Coupler link rules Coupler rules are local rules that act on
pairs of next-nearest sites of a graph at time t to decide
whether they should be linked at t C 1. The decision
rules fall into one of three basic classes – totalistic (T),
outer-totalistic (OT) or restricted-totalistic (RT) – but
can be as varied as those for conventional cellular au-
tomata.

Decoupler link rules Decoupler rules are local rules that
act on pairs of linked sites of a graph at time t to de-
cide whether they should be unlinked at t C 1. As for
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coupler rules, the decision rules fall into one of three
basic classes – totalistic (T), outer-totalistic (OT) or re-
stricted-totalistic (RT) – but can be as varied as those
for conventional cellular automata.

Degree The degree of a node (or site, i) of a graph is equal
to the number of distinct nodes to which i is linked,
and where the links are assumed to possess no direc-
tional information. In general graphs, the in-degree (=
number of incoming links towards i) is distinguished
from the out-degree (= number of outgoing links orig-
inating at i).

Effective dimension A quantity used to approximate the
dimensionality of a graph. It is defined as the ratio be-
tween the average number of next-nearest neighbors to
the average degree, both averaged over all nodes of the
graph. The effective dimension equals the Euclidean
dimension d, in cases where the graph is the familiar
d-dimensional hypercubic lattice.

Graph A graph is a finite, nonempty set of nodes (re-
ferred to as “sites” throughout this article), together
with (a possibly empty) set of edges (or links). The
links may be either directed (in which case the edge
from a site i, say, is directed away from i toward an-
other site j, and is considered distinct from another di-
rected edge originating at j and pointed toward i) or
undirected (in which case if a link exists between sites i
and j it carries no directional information).

Graph grammar Graph grammars (sometimes also re-
ferred to as graph rewriting systems) apply formal lan-
guage theory to networks. Each language specifies the
space of “valid structures”, and the production (or
“rewrite”) rules by which given graphs may be trans-
formed into other valid graphs.

Graph metric function The graphmetric function defines
the distance between any two nodes, i and j. It is equal
to the length of the shortest path between i and j. If no
path exists (such as when i and j are on two discon-
nected components of the same graph), the distance is
assumed to be equal to1.

Graph-rewriting automata Graph-rewriting automata
are generalized CA-like systems in which both (the
number of) nodes and links are allowed to change.

Next-nearest neighbor Two sites i and j are next-nearest
neighbors in a graph if (1) they are not directly linked
(so that aij D 0; see adjacency matrix), and (2) there
exists at least one other site k such that k … fi; jg, and i
and j are both lined to k.

Random dynamics approximation The long-term be-
havior of structurally dynamic cellular automata may
be approximated in certain cases (in which the struc-
ture and value configurations are both sufficiently ran-

dom and uncorrelated) by a random dynamics approx-
imation: values of sites are replaced by the probability
p
 of a site having value � (and is assumed to be equal
for all sites), and links between sites are replaced by the
probability p` of being linked (and also assumed to be
the same for all pairs of sites). The approximation of-
ten yields qualitatively correct predictions about how
the real system evolves under a specific set of rules; for
example, to predict whether one expects unbounded
growth or that the lattice will eventually settle onto
a low periodic state or simply decay.

Restricted totalistic rules Restricted totalistic rules are
a generalized class of link rules (operating on pairs of
sites, i and j), analogous to “outer totalistic” rules (that
operate on site values) used in conventional CA. The
local neighborhood around i and j is first partitioned
into three sets: (1) the two sites, i and j; (2) sites con-
nected to either i or j, but not both; and (3) sites con-
nected to both i and j. The restricted totalistic rule is
then completely defined by associating a specific action
with each possible 3-tuple of site-value sums (where
the individual components represent a unique sum in
each of the three neighborhoods).

Structurally dynamic cellular automata Structurally dy-
namic cellular automata are generalizations of conven-
tional cellular automata models in which the underly-
ing lattice structure is dynamically coupled to the local
site-value configurations.

SDCAmodel hierarchy The SDCA model hierarchy is
a set of eight related structurally dynamic cellular au-
tomata models, defined explicitly for studying their
formal computational capabilities. The hierarchy is
ordered (from lowest to highest level) according to
their relative computational strength. For example, the
SDCA model at the top of the hierarchy is capable of
simulating a conventional CA with a speedup factor of
two.

Definition of the Subject

Structurally dynamic cellular automata (abbreviated,
SDCA) are a generalized class of CA in which the topologi-
cal structure of the (usually quiescent) underlying lattice is
dynamically coupled to the local site value configuration.
The coupling is defined to treat geometry and value con-
figurations on an approximately equal footing: the lattice
structure is altered locally as a function of individual site
neighborhood value-states and geometries, while the un-
derlying local topology supports site-value evolution pre-
cisely as in conventional nearest-neighbor CA models de-
fined on random lattices.
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SDCA provide a dynamical framework for a CA-like
analysis of the generation, transmission and interaction of
topological disturbances in a lattice. Moreover, they pro-
vide a natural testbed for studying self organized geome-
try; by which we mean true structural evolution, and not
merely space-time patterns of value configurations that
may be interpreted geometrically (but are really just “bits”
of information overlayed on top of an otherwise static
background lattice).

Introduction

SDCA were formally introduced in 1986 as part of
a physics doctoral dissertation by Ilachinski [31], and
developed further by Ilachinski and Halpern [29,30],
Halpern [21,23], Halpern and Caltagirone [22], Majer-
cik [39], and Alonso-Sanz and Martín [6,7,8]; in their
original incarnation [28], and at least two subsequent pa-
pers [22,61], SDCA were called topological automata. Ped-
agogical discussions appear in Adamatzky [1] and Ilachin-
ski [32]. Extensions of the basic SDCA model (all dis-
cussed in this article) include the addition of probabilistic
rules, memory and reversibility.

Applications include the simulation of crystal
growth [36], the study of pattern formation of random
cellular structures [66], modeling synaptic plasticity in
neural network models [19], phase transitions in chemical
systems [62], chemical self-assembly [26], and gene-regu-
latory networks [22]. Majercik [39] has studied SDCA as
generalized models of computation, and describes a CA-
universal SDCA that can simulate any conventional CA of
the same dimension.

More recently, O’Sullivan [56] and Saidani [63,64]
have used graph-based CA models similar to SDCA to
study urban dynamics and emergent behaviors of self-re-
configurable robots, respectively. Tomita et al. [67,68,69,
70,71] have introduced graph-rewriting automata in which
both links and (the number of) nodes are allowed to
change; and show that these systems are capable of
both self-replication and Turing universality (among with
many other emergent behaviors). Since SDCA provide the
basic formalism for describing locally induced topologi-
cal changes within arbitrary graphs, they are a potentially
powerful general tool for studying complex adaptive net-
works, such as communication and social networks [6].
The concept behind SDCA has also been used as a foun-
dation for philosophical musings about computationally
emergent artificiality [49].

More ambitious applications of SDCA encroach on
fundamental physics. Because SDCA are inherently self-
modifying systems – in which physical events are not just

dynamically coupled to, but are an integral part of the spa-
tio-temporal arena on which their transformations are de-
fined – they are a potentially powerful methodological and
ontological tool for exploring discrete pre-geometric the-
ories of space-time [42]. Just as “value structure” solitons
are ubiquitous in conventional CA models [32,74], “link
structure” solitons might emerge in SDCA; physical par-
ticles would, in such a scheme, be viewed as geometro-
dynamic disturbances propagating within a dynamic lat-
tice. Three SDCA-like theories of pregeometry have re-
cently been proposed in which space-time is a self-orga-
nized emergent construct: Hillman [27], Nowotny and Re-
quardt [55] andWolfram [75].

Finally, we briefly comment on ostensible overlaps be-
tween SDCA and four other related fields of study: (1) Lin-
denmeyer (or L-) systems, (2) graph grammars, (3) ran-
dom graphs (abbreviated, RG), and (4) dynamic network
analysis (abbreviated, DNA). L-systems [57] are general-
ized CA systems in which the number of sites can grow
with time, and consist of recursive rules for rewriting
strings of symbols. If interpreted graphically, abstract sym-
bol strings can be used tomodel growth processes of plants
and evolving morphology of physical organisms. Graph
grammars [20,35] apply formal language theory to net-
works, and consist of production rules that define the set
of “valid structures” in a given graph language. The study
of RG [15] was introduced by Erdos and Renyi in the late
1950s [16], and is a mathematical framework for explor-
ing the general topological structures of computational
systems and the behavior of certain random dynamical
systems. Like SDCA, RG describes evolving graphs, but
the dynamics are global and random. DNA [41,50] is an
emerging field that fuses traditional social network theory
with statistical analysis and modeling; part of its charter
is to explore general properties of network generation and
evolution.

While, conceptually speaking, there is a prima facie re-
lationship between SDCA and all four fields of study, the
elucidation of a more precise nature of the relationship
between SDCA and these other systems awaits a future
study. (The relationship appears particularly strong be-
tween SDCA and a generalized L-system called the graph
development system (abbreviated, GDS), introduced by
Doi [14], but not developed further since its original con-
ception. Using incidence matrices to represent arbitrary
topologies, GDS is essentially a grammar by which sub-
matrices of the whole matrix are rewritten to describe
topological changes. SDCA also formally falls under the
broader rubrics of DNA and RG; however, there is no ex-
plicit reference to SDCA in the current literature of either
field.)
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The Basic Model

Conventional CA are defined on fixed, and typically
regular, lattices (one-dimensional lines, two-dimensional
Euclidean or hexagonal grids, etc.), the sites of which
are populated with discrete-valued dynamic elements
(� �i 2 f0; 1; : : : ; kg, where i labels a particular site on the
lattice) that evolve according to local transition functions,
f : �i ! � 0i . We emphasize that the dynamics of conven-
tional CA are confined to the temporal evolution of the
� is.

SDCA generalize conventional CA in two ways: (1)
they relax the assumption that the underlying lattice is uni-
form, allowing the local site $ site connectivity pattern
to vary throughout the lattice; and (2) they allow both the
set f�ig and the lattice to evolve according to local tran-
sition rules. The most obvious – also the most dramatic –
conceptual change this entails over the dynamics of con-
ventional CA, is that the meaning of “local” itself changes
as a function of how the SDCA system evolves: previously
far separated sites may become neighbors; and sites that
are local at time t may become far separated at some later
time, t0.

To properly define SDCA, we first generalize regular
lattices to mathematical graphs � G () possessing arbi-
trary topology. Assuming G has N lattice sites, and that
G is (for now) an undirected graph (meaning that none of
G’s links carry directional information), G is completely
defined by the N-by-N adjacencymatrix, `ij :

`ij D

(
1 if i and j are linked;
0 otherwise:

(1)

Using the graph metric function,

Dij D Minimum
Paths, Pij

�
#links, lrs j fr; sg 2 Pij

�
; (2)

we can write a general r-neighborhood CA value-
transition rule ‘f ’ (which will from now on refer generically
to as a �-rule) in the form

� tC1
i D f

h
f� t

j gj j 2 SGr (i)
i
; (3)

where SGr (i) D f jjDij � rg is the radius-r graph sphere
about the site i. In words, the value of � tC1

i is some func-
tion, f , of the values � t

j in radius r graph sphere around
the site i. With this distance measure,G becomes a discrete
metric space. If G is a one-dimensional line, and r D 1,
then SGr (i) D fi � 1; i; i C 1g; i. e., it is equal to the con-
ventional three site local neighborhood of elementary CA.

We now formally extend a conventional CA’s dy-
namic arena – limited to the values � t

i 2 f0; 1; : : : ; k � 1g,

i D 1; : : : ;N – to one that includes the components of the
underlying lattice’s adjacency matrix:

(
� tC1 D F
 [f� tg; f`tg]

`tC1 D F`[f� tg; f`tg]
; (4)

where F
 and F` are some functions (to be defined explic-
itly below) that explicitly couple the changing value states
and geometries. The complete system at time t is specified
by the state-vector

jGit D j�
t
1 ; : : : ; �

t
N ; f`

t
ijgi : (5)

The time-evolution of jGi proceeds according to
the following transition rules: (i) �-rules of the general
form given above and familiar from CA simulations and
(ii) `-rules, which are divided into site couplers, linking
previously unconnected vertices and site decouplers, which
disconnect linked points. Because the topology can be al-
tered only by either a deletion of existing links or an ad-
dition of links between pairs of vertices ‘i’ and ‘j’ with
Dij D 2, the dynamics is strictly local.

To be more precise, we first restrict the general �-rule
F1 to (maximally symmetric) totalistic (T) and outer-to-
talistic (OT) type. Since the underlying lattice is a fully
dynamic object, jGi will, in general, tend towards having
a complex local geometry with an unspecified local direc-
tionality. The most general rules which can therefore be
applied are those which are completely invariant under all
rotation and reflection symmetry transformations on lo-
cal neighborhoods. T (OT) �-rules are then specified by
listing particular sums f˛g (outer-sums f˛0g; f˛1g corre-
sponding to center site values ‘0’ and ‘1’ respectively) for
which the value of the center site becomes ‘1’. Formally,

� tC1
i D �f˛g

0

@
X

j

`tij�
t
j ; �

t
i

1

A ; (6)

where

�f˛g(x; a)

D

(P
˛ ı(x C a; ˛)  ! T

a
P
˛1
ı(x; ˛1)C (1 � a)

P
˛0
ı(x; ˛0)  ! OT ;

(7)

and ı(x; y) is theKronecker delta. Note that
P

j `
t
ij�

t
j sums

the values of all sites ‘j’ linked to ‘i’ at time ‘t’. The action
on the state jGi is represented by

b� i
f˛g
j�it

D
ˇ̌
ˇ� t

1 ; : : : ; �
tC1
i D �f˛g


X
`tij�

t
j ; �

t
i

�
; : : : ; � t

N

E
;

(8)
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where we distinguish the operator b� i acting on the global
value state from the actual local transition function �

which transforms each site value.

Link Rules

Local geometry altering rules are constructed by direct
analogy: for any two selected sites i and j we restrict atten-
tion to site values of vertices contained within a 1-sphere of
either site; that is, to all k 2 S1(i; j) D S1(i) [ S1( j). Link
operators, whose action on the state is represented by:

decouplers: b ij
fˇg

ˇ̌
ˇ`tij
E
D
ˇ̌
ˇ`t11; : : : ; `

tC1
ij D 

ij; : : : ; `tNN

E

couplers: b! ij
f"g

ˇ̌
ˇ`tij
E
D
ˇ̌
ˇ`t11; : : : ; `

tC1
ij D!

ij; : : : ; `tNN

E
;

(9)

either link or unlink two sites ‘i’ and ‘j’ depending on
whether the actual sum of values in S1(i; j) matches any
of those given in the fˇg or f"g lists, which completely de-
fine decouplers and couplers, respectively.

In order to construct classes of rules analogous to
the two types of �-rules defined above, we partition
the local neighborhood into 3 disjoint sets (see Fig. 1):
S1(i; j) DVij [ Aij [ Bij , where

8
<̂

:̂

_ij D fi; jg;
Aij D fkjk 2 C1(i)\ C1( j)g; where C1(i)DS1(i)�fig;
Bij D S1(i) [ S1( j) � _ij � Aij :

(10)

The action of link operators is then conveniently ex-
pressed as a function of the sums within the individ-

Structurally Dynamic Cellular Automata, Figure 1
Neighborhood partitioning. In the same way as outer sites can
be considered separately for� -transitions, wemay, for topology
transitions, distinguish between those sites belonging to both i
and j (2 Aij) and those belonging to one of the two sites but not
both (2 Bij). In this way we obtain the analogous totalistic (T),
outer-totalistic (OT), and an additional type called restricted to-
talistic (RT)

ual partitions. Defining �ij D �i C � j , aij D
P

k2Aij
�k ,

and bij D
P

k2Bij
�k , we get decouplers,  

ij
fˇg
D  

ij
fˇg

(�ij;
aij; bij), where

 
ij
fˇg

(x; y; z)

D

8
<̂

:̂

f1 �
P

k ı(x C y C z; ˇk)g`ij $ T
f1 �

P
k ı(x; ˇ1;k)ı(y C z; ˇ2;k)g`ij $ OT

f1 �
P

k ı(x; ˇ1;k)ı(y; ˇ2;k)ı(z; ˇ3;k )g`ij $ RT ;

(11)

and couplers, ! ij
f"g
D !

ij
f"g

(�ij; aij; bij), where

!
ij
f"g

(x; y; z)

D

8
<̂

:̂

ı(Dij; 2)
P

k ı(x C y C z; "k ) $ T
ı(Dij; 2)

P
k ı(x; "1;k)ı(y C z; "2;k) $ OT

ı(Dij; 2)
P

k ı(x; "1;k)ı(y; "2;k)ı(z; "3;k) $ RT :

(12)

In the above expressions, RT stands for restricted to-
talistic rules which maximally subdivide the local neigh-
borhood. The inclusion of an `ij in the expressions for  
assures that only those sites already linked can be decou-
pled and the ı(Dij; 2) in the equations defining ! are put
in to make sure that only sites separated by distance D 2
may be dynamically coupled.

The three type-specific sums appearing above are in-
dexed with the following conventions:

� T rules are defined by the ‘k’ overall sums of values in
S1(i; j) for which the particular action is to be taken.
For example, define ‘ ’ by unlinking ‘i’ and ‘j’ if the
total sum D 1 (D ˇ1), 3 (D ˇ2) or 5 (D ˇ3). Equa-
tion (11) then states that `nC1

ij D 0 if and only if `nij D 1
and �nij C anij C bnij 2 f1; 3; 5g.

� OT rules are specified by giving ‘k’ 2-tuples
(ˇ1;k ; ˇ2;k), and ("1;k ; "2;k), where f1; kg labels the
sum ‘�i C � j ’ and f2; kg labels the corresponding outer
sumD

P
s2S1(i; j)�fi; jg �s . For example, link ‘i’ and ‘j’

if �i C � j D 0 and outer sum D f3; 4g, so that ‘! ’ is
defined by listing the two 2-tuples ("1;10, "2;1 D 3) and
("1;2 D 0, "2;2 D 4).

� RT rules are completely specified by giving the ‘k’ 3-tu-
ples of values (x�i C � j , y D sum in A, z D sum in B),
for which the link operation between ‘i’ and ‘j’ is to
be performed. For example, define ‘ ’ by unlinking ‘i’
and ‘j’ for the following values of partitioned sums:
(0; 0; 1), (0; 0; 2), (0; 1; 1), (1; 1; 1); we then have that
(ˇ1;1 D 0; ˇ2;1 D 0; ˇ3;1 D 1), (ˇ1;2 D 0; ˇ2;2 D
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0; ˇ3;2 D 2), (ˇ1;3 D 0; ˇ2;3 D 1; ˇ3;3 D 1), and
(ˇ1;4 D 0; ˇ2;4 D 1; ˇ3;4 D 1).

Global transition operators are obtained by applying
individual �- and `- operators to all sites and site-pairs in
the graph G:

8
ˆ̂<

ˆ̂:

b̊
f˛g j�i D

Q
i
b� i
f˛g
j�i ;

b� fˇg j`i D
Q

nhi ji
b ij
fˇg
j`i ;

b̋
f"g j`i D

Q
nnhi jib!

ij
f"g
j`i ;

(13)

where the products forb� and b̋ need to be taken only over
nearest and next nearest pairs respectively. Given the full
value-topology transition rule � , defined by

jGitC1 D (b̋b� b̊)jGit D � jGit ; (14)

the fundamental problem is to understand the generic be-
havior of accessible graphs-G emerging from all possible
initial structures and value configurations. We emphasize
that the lattice fully participates in the dynamics and that,
in general, no embedding is implied – it is the abstract con-
nectivity itself whose evolution we are attempting to trace.

An Example

The application of the rather cumbersome expressions
defining transition rules is in practice extremely straight-
forward, as we demonstrate with the following example:
Consider a graph G defined as a (5 � 5) lattice with some
distribution of values � D 1 at time ‘t D 1’ (see Fig. 2).
We are interested in one global update of the system

Structurally Dynamic Cellular Automata, Figure 2
Sample dynamic update of a (5� 5) lattice from t D 1 to t D 2, obeying a T-type � -rule with � ! � 0 for local sumsD 1;3;5 (i. e.
˛ 2 f1;3;5g), andOT-type `-rules: (i) link for f"1;1 D 1; "2;1 D 3g and (ii) unlink for fˇ1;1 D 1;ˇ2;1 D 3g and fˇ1;2 D 1;ˇ2;2 D 4g.
Solid sites indicate that � D 1

jGitD1
�
!jGitD2 with rules specified by

(value)

(topology)

8
ˆ̂<

ˆ̂:

˚f˛g : f˛gT D f˛1D1; ˛2D3; ˛3D5g ;

�fˇg : fˇgOT D

� �
ˇ1;1D1; ˇ2;1D3


�
ˇ1;2D1; ˇ2;2D4


�
;

˝f"g : f"gOT D f"1;1 D 1; "2;1 D 3g :
(15)

We evolve the system by systematically sweeping
through all sites, linked pairs, and next-nearest neighbors:

1. All Sites: . . . setting �i D 1 only at those ‘i’ for which the
sum of the values at ‘i’ and its neighbors is equal to ‘2’
at t D 1. By “neighbors” of any point ‘i’ we will always
mean the set of vertices linked to ‘i’: (a; b), (h;m) and
(x; y), for example, are all neighbors at t D 1. Writing
out a few value-changing terms explicitly, we find that

� tD2
c D �

�
� tD1
b C � tD1

c C � tD1
d C � tD1

h


D �(3) D 1; and

� tD2
b D �



� tD1
a C � tD1

b C � tD1
c C � tD1

g

�

D �(2) D 0: (16)

2. All linked pairs of sites ‘i’ and ‘j’: . . . removing those
links only if the 2-tuple (˛; ˇ) 2 f(1; 3); (1; 4), where
˛ D �i C � j and ‘ˇ’ is the sum of values of the neigh-
bors of ‘i’ and ‘j’ at t D 1. For the points ‘c’ and ‘h’, for
example, we have (˛; ˇ) D (1; 3), so that the link `ch is
no longer present in jGitD2:

`tD2
ch D  



� tD1
c C � tD1

h ; � tD1
b C � tD1

d C � tD1
g

C � tD1
i C � tD1

m

�
`tD1
ch

D  (1; 3)(1) D 0 : (17)
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3. All next-nearest neighbors ‘i’ and ‘j’: . . . linking them
only if the 2-tuple (˛; ˇ) D f(1; 3)g. By “next-nearest
neighbor” we mean those pairs which are themselves
unlinked but which share at least one other linked
neighbor: (a; g), (h; r) and (w; y), for example, are all
next-nearest neighbors at t D 1. For ‘c’ and ‘g’ we find

`tD2
c g D !



� tD1
c C � tD1

g ; � tD1
b C � tD1

d C � tD1
f

C � tD1
h C � tD1

l

�
ı(Dcg ; 2)

D !(1; 3)(1) D 1 : (18)

Notice that although `tD1
dn D 0! `tD2

dn D 1, it is hid-
den by overlap with the remaining links `tD2

d i D 1 and
`tD2
in D 1. For this reason, not all link changes can always

be observed directly in the following figures.
Other sites and links are updated in precisely the same

manner. Had the link-rules been of T-type, only one sum
would have to be considered: the sum of the values of the
points in question along with their neighbors’ values. Had
they been, instead, of RT-type, three sums would have to
be considered: the sum of the values of the sites in ques-
tion, the sum of the values of their common neighbors
(neighborhood A in Fig. 1) and the sum of the values of the
points that are neighbors of one of the considered points,
but not of the other (neighborhood B in Fig. 1). The final
state jGitD2 emerges after the above process has been ap-
plied concurrently to all pairs, neighbors and next-nearest
neighbors in jGitD1.

Comments

We conclude this section by making a few important gen-
eral comments:

Comment 1. As defined above, � consists of three
operators acting simultaneously on the state jGi. More
generally, one may prescribe any of 10 possible time-or-
derings to the operators ˝;� and ˚ . That is, specify cer-
tain intermediate state dependencies, so that, for exam-
ple �1jGi � (˝� )(˚ jGi) would in general be expected
to yield results different from, say, �2jGi � ˝(˚(� jGi)).
While we will be solely concerned with the synchronous
time ordering defined above, we do not expect the qualita-
tive results to depend critically on this choice.

Comment 2. A given rule � is completely defined by
the set of sums f˛g; fˇg and f"g. Alternatively, we can con-
veniently summarize a chosen transition rule by its vector-
code EC D (c[�]; c[ ]; c[!])a;b , where

c[�] D

(P
˛ 2

˛ $ T
P
˛0

22˛0 C
P
˛1

2(2˛1C1) $ OT

c[ ] D

8
<̂

:̂

P
k 2
ˇk $ T

P
k 2

3ˇ2;kCˇ1;k $ OT
P

k 2
3(ˇ2;kCaˇ3;k )Cˇ1;k $ RT

c[!] D

8
<̂

:̂

P
k 2
"k $ T

P
k 2

3"2;kC"1;k $ OT
P

k 2
3("2;kCb"3;k )C"1;k $ RT

(19)

where a D maxfˇ2;kg C 1, b D maxf"2;kg C 1, and must
be specified only for RT-type topology rules. The � ap-
pearing in the above example, therefore, can be summa-
rized by c[�] D 42, c[ ] D 23(3)C1 D 1024 and c[!] D
23(4)C1 C 23(3)C1 D 9216. Note that ‘� ’ and ‘˝ ’ are cho-
sen always to be of the same type.

Comment 3. Computer simulations of these systems
require that some measures be taken to prevent possible
memory overflows, such as would happen in cases either
of pure coupling, where links are continually added and
none deleted, or in isolated regions of a graph where for
a few sites more neighbors are added than are allowed by
memory. We thus introduce working link transition rules

 ̃ ij �

(
 ij  ! d0i or d

0
j > ı � dmin

1  ! else ;
(20)

!̃ ij �

(
! ij  ! d0i or d

0
j < � � dmax

0  ! else ;
(21)

where di D degree (i) (i. e. number of neighbors of i). In
words: make a sweep of the lattice, temporarily storing the
candidates to add and delete for each point. If, for any
point i, the updated degree is greater than ı then proceed
with deleting the stored deletion-candidates, otherwise do
not delete; similarly, provided that the updated degree is
less than� proceed with addition. Thus, it is sufficient that
one of two points allow a dynamic link change between
them for that change to be enacted. In the following, the
complete constrained dynamics will be quoted as EC[ı;#]

(a;b) .
If constraints play no role in the actual evolution of spe-
cific examples, they will be left out of the definition.

Comment 4. Because each dynamic update involves
three separate types of processing, the number of pos-
sible rules is extraordinarily large (see Table 1). Unlike
pure �-transitions, however, the fraction of the total num-
ber which yield interesting behavior (i. e. neither immedi-
ately explosive, where the number of links increases with-
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Structurally Dynamic Cellular Automata, Table 1
Numbers of possible rules for each of the three types of transi-
tion rules. d D maximum allowable degree and a D maximum
sum to be used from partition Aij . Example: for d D 5, we have
N
 D 4096, N D 224 � 2� 107 and N! D 221 � 2� 106. We
thus haveNT D N
N N! � 1017 possible typeOT� s

Rule type �  !

T 2dC1 22d 22d�1

OT 22dC2 26(d�1) 23(2d�3)

RT — 23(aC1)(2d�1) 23(aC1)(2dC1)

out bound, nor immediately degenerative, where an initial
graph rapidly dwindles to a few isolated links) appears to
be manageably smaller.

Comment 5. Although it is the intrinsic geometrical
patterning whose generic behavioral properties we are try-
ing to deduce, one may approach SDCA from an alterna-
tive point of view: maintain the emphasis on unraveling
the value configurational behavior, and interpret the pres-
ence of [�;˝] as background operators inducing nonlocal
spatial connectivities. Whereas the systems defined above
are completely abstract entities, in that locality is strictly
defined by the link structure, the alternative scheme would
be to embed the discrete networks in some specifiedmani-
fold, and to study the effects of dynamically allocated non-
local communication channels.

Structurally Dynamic Cellular Automata, Figure 3
First five iterations of an SDCA system starting from a 4-neighbor Euclidean lattice seeded with a single non-zero site at the center.
The global transition rule � consists of T � -rule and RT `-rules: EC D (26;69648;32904)[3;3] (see text for rule definitions and code).
Solid sites have � D 1

Emerging Patterns and Behaviors

Consider patterns that emerge from simple value seeds
starting from ordered two dimensional Euclidean lattices.
A single non-zero site may represent a small local distur-
bance that then propagates outward, restructuring the lat-
tice. With appropriately chosen � s one can induce a rich
spectrum of different time evolutions only slightly per-
turbed by very few concurrent link changes to ones in
which the initial geometry becomes radically altered. (The
graphical representation of evolving one dimensional sys-
tems, in which link additions must be shown as arcs to
avoid overlap with existing links, is needlessly confusing
and is not considered.)

Figure 3 shows the first five iterations of a system start-
ing from a four neighbor lattice with a single non-zero site
at its center, the link structure is given explicitly and the
solid circles represent sites with � D 1. Notice how the
link additions follow the emerging corrugated boundary
surface of the value configuration. Remember that link ad-
ditions are more than passive markers indicating partic-
ular correlations between local value configurations and
structure; their presence directly influences all subsequent
value development in their immediate vicinity.

Figure 4 (in which site values are suppressed for clar-
ity) shows the continued development of this system.
Though boundary effects begin to appear by t D 25, the
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Structurally Dynamic Cellular Automata, Figure 4
Several further time frames in the structural evolution of the same system shown in the preceding figure. The values have been
suppressed for clarity. The boundaries of the original lattice do not extend beyond the region shown so that the development is
strictly confined to a 31� 31 graph

characteristic manner in which this particular � restruc-
tures the initial graph is clear:

� There is a high degree of geometrical organization (the
symmetry of the initial state is trivially preserved by the
totally symmetric � ).

� The lattice remains connected.
� The distribution of link changes made throughout the

lattice remains fairly uniform (i. e. there is an approx-
imate uniformity in the probability of appearance of
particular local value states which induce a structural
change.

� Link-lengths do not get arbitrarily large.

The last point implies that for a system embedded in
the plane, communication channels remain approximately

local. The global pattern emerges as a consequence of local
ordering. On the other hand,� s for which link-lengths get
arbitrarily large are also easy to find.

Some other varieties of behavior are shown in Figs. 5
and 6. Figures 5a and b are representative of the class of `-
rules that only mildly perturb the underlying lattice (and
for which � states do not differ much from their con-
ventional CA cousins). Other rules, of course, may have
a stronger effect on the lattice, giving rise to associated
� states bearing little or no resemblance to their conven-
tional CA counterparts.

Figure 5c shows an example of a link rule that accel-
erates the outward propagation of the value configuration.
Compare the diameter of this pattern to that in the earlier
figures, both shown at equal times. The outwardly oriented
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Structurally Dynamic Cellular Automata, Figure 5
Snapshot views of four typical developing states starting from a single non-zero site at the center of a 4-neighbor graph. � s are as
follows: a OT c[�] D 1022 and RT coupler c[!] D 16, bD 1; b T c[�] D 22 and RT coupler c[!] D 32, bD 2; c OT c[�] D 1022 and
RT coupler c[!] D 8, bD 1; d T � - andOT `-rules EC D (682;19634061312;133120)[2;8]

links that emerge from sites along the boundary surface
become conduits by which non-zero values rapidly propa-
gate. Had the underlying lattice topology been suppressed
in this figure, and attention focused exclusively on the de-
veloping � state, we could have interpreted the result as
showing an effective increase in information propagation
speed due to non-local connectivities (see comment 5 of
the previous section).

Figure 5d, on the other hand, gives an example in
which the link dynamics lags behind the � development.
The boundary proceeds outward essentially unaffected by
changes in geometry, which are themselves confined to the
interior parts of the lattice (at least at this early stage of this
system’s development).

Figure 6 shows snapshot views of a few system under-
going a slightly more complex evolution. Figure 6b, for

example, shows a rule in which the outward � propaga-
tion rapidly deletes most links from the original lattice but
leaves a complex (though structurally stable) geometry at
the origin of the initial disturbance. Figure 6c, on the other
hand, shows a typical state of a system whose global con-
nectivity becomes progressively more complicated.

A typical evolution starting from an initial state in
which all sites are randomly assigned � D 1 with prob-
ability p D 1/2 is shown in Fig. 7. Notice the rapid de-
velopment of complex local connectivity patterns, the ap-
pearance of which points to a geometrical self-organiza-
tion.

In general, structural behaviors emerging from ran-
dom �-states under typical � s can be grouped into four
basic classes (not to be confused with Wolfram’s classifi-
cation of elementary CA [74]):
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Structurally Dynamic Cellular Automata, Figure 6
Four more examples of states emerging from simple seeds. Figure a, b, c start from 4-neighbor graphs and d from an 8-neighbor
graph (	 4-neighbor with diagonals). � s are as follows: a T � - and RT `-rules EC D (42;69648;32904)[3;3]; b T � - and OT `-
rules EC D (42;589952;8192)[2;8]; c T � - and `-rules EC D (42;128;4)[0;10]; d T c[�] D 682 and RT `-rules defined explicitly by

(104);(114);(124);(103);(113);(123) and˝(111);(215)

� Class-1, in which initial graphs decay into structurally
much simpler final states: most links are destroyed, and
graphs `tij , for sufficiently large t, consist essentially of
a large number of small local subgraphs.

� Class-2, whose final states are characterized by peri-
odic but globally connected geometries. SDCA typically
arise in this class either because of a specific class-2
˚s remaining unchanged by the coupling to the lat-
tice or class-3 ˚s coupling with f�;˝g in such a way
as to induce a lattice structure that supports a periodic
state.

� Class-3, consisting of SDCA that tend to grow in
size and complexity, at least as measured by two ba-
sic metrics: the average degree, hdegi � (1/N) �

P
i
�
jS1 (i) j � 1

�
, and effective dimensionality,Deffec �

hNnni / hdegi, where hNnni is the average number of
next-nearest neighbors. The values of both hdegi and
Deffec increase without bound for class-3 SDCA (unless
an arbitrary upper constraint � is imposed on � ).
Because the �-density responds to the changing lo-
cal neighborhood structure, it is possible that what at
first appears to be an explosive growth in fact even-
tually leads to a more sedate, if not static, behavior at
some larger hdegi 	 �. ˚s that yield h�it � constant
over a range of hdegi (such as the sum modulo-2 rule;
see below), when coupled with link rules that them-
selves become progressively less active with increas-
ing hdegi, may induce evolutions leading to only mild
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changes within specific ranges of the local structural
parameters.

� Class-4, which is a provisional class (pending stronger
evidence) that denotes a set of rules that yield open-
ended �- and ` changes, but during which the value
of Deffec remains roughly constant. � s and˝s belong-
ing to this class effectively induce a structural equi-
librium: despite the fact that large numbers of link
changes continue to be made, so that the detailed struc-
ture of the evolving graph continually changes, the av-
erage ratio of the number of next-nearest to nearest
neighbors stays approximately constant over long pe-
riods of time. While there is evidence to suggest this
class is real, simulations have unfortunately been run
for too short a time and on graphs containing too

Structurally Dynamic Cellular Automata, Figure 7
Evolution of a 35� 35 lattice, with randomly seeded sites. The development proceeds according to T � - and OT `-rules defined by
code EC D (84;36864;2048). The constraints are [ı D 0;� D 10]. The appearance of localized substructures is evidence of a geo-
metrical self-organization

few sites to permit making any conclusive statements
regarding the veracity of this class. Nonetheless, it is
tempting to speculate that, for arbitrary values of D�,
there exists at least one set of SDCA rules for which
Deffec � D� (within a desired � > 0) as the size of the
graph N !1. (Pseudo class-4 behavior, of course, can
always be artificially induced either by imposing severe
[ı;� D ı] constraints, or, as must typically be done for
category-3 � s, by deliberately impeding growth with
some threshold�.)

Statistical Measures

As evidenced by Fig. 7, it is already nontrivial to meaning-
fully visualize the short-time evolution of (initially) regu-
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lar lattices that start with random initial value state. Visu-
alizing the long-term dynamics of systems that start from
a completely random state is evenmore difficult (although
graph visualization algorithms may help). However, even
in cases for which a direct visual inspection of the dynam-
ics reveals little, one can always indirectly keep abreast of
a given system’s properties by monitoring its core struc-
tural and behavioral measures (a more detailed account is
given in [31]).

Site value measures include the average density of sites
with value � D 1, h�it � (1/N)

PN
iD1 �

t
i ; the local value

correlation, Ct � h� t
i � �

t
j i � (�t)2, where h� t

i � �
t
j i is av-

eraged over all pairs i and j with `ij D 1; the fraction of
sites whose value changes during one step of the evolu-
tion, �t � (1/N)

PN
iD1 f�

t�1
i ˚2 �

t
i g, where˚2 is a sum

modulo-2.

Structurally Dynamic Cellular Automata, Figure 8
Time development of the effective dimensionality Deffec for each of the four categories of behavior (see text): a T type � defined by
EC D (42;128;4); b T � - and OT `-rules EC D (64;9216;1024); c T � - and OT `-rules EC D (682;512;512)[0;10]; d T � - and RT `-rules
defined explicitly by Ě 2 f(011); (110); (121); (233); (243)g and E� 2 f(120); (010); (021); (224)g

Geometry measures include the average degree, hdegi;
the average number of next-nearest neighbors, hNnnit �

(1/N)
P

i[jS2(i)j � jS1(i)j � 1]; and Deffec. A measure of
how the actual size of local neighborhoods changes with
time may be obtained by embedding graphs into the two-
dimensional plane and calculating the average pathlength
at time t. Of course, global features that describe all com-
plex networks – such as connectivity, density, clustering,
and path lengths (2,6), are applicable to SDCA as well.

Link changes may be monitored by keeping track
of (1) the total number of link changes (allowed under
prescribed constraint conditions), �(l )

t � (1/2)
PN

iD1 �PN
jD1fl

t
ij ˚2 l t�1ij g; (2) the constraint influence,

fl � �
(l )
t /N (l )

t , where N (l )
t is the total number of link

changes that would have occurred in the absence of
constraints ( fl D 1 indicates that the evolution is pure,
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meaning it is unaffected by constraints; fl � small sug-
gests that the imposed constraint window [ı;�] has re-
sulted in observed structures that are impure); (3) the
link creation- and link deletion-ratios, fC � NC /�(l )

t
and fD � ND/�(l )

t , where NC and ND are the num-
bers of link created and destroyed, respectively; (4)
the activity levels, � t

C � NC /Nt�1
nn and � t

D � ND/Nt�1
l

(where Nt�1
l is the number of links at time t � 1),

which give the number of dynamic alterations rela-
tive to the corresponding spaces from which the candi-
dates for alteration are selected; and (5) the link evolu-
tion index, � nL �

�
1/NtD0

l
P

i
P

jfl
tD0
ij ˚2 l nijg, which

gives the fraction of the initial lattice remaining after n
iterations.

Figure 8 shows time series plots of Deffec for rules in
each of the four behavioral classes defined above. The ini-
tial structure in each case is 35 � 35 4-neighbor Euclidean
lattice, so that DtD0

effec � 2. Figure 8a gives an example of
class-1 behavior, in which a short period of initial growth
is followed by a decay into mostly disconnected clusters.
The final state is characterized by hdegi < 1, and is stable.
Figure 8b shows a system that starts from the same initial
state as in Fig. 8a but whose � leads to a periodic geom-
etry. Just the right number of links have been deleted to
permit regions with isolated activity to emerge.

Figure 8c shows class-3 behavior in which Deffec
steadily increases. The apparent leveling off seen toward
the end of the run is due both to a decreased overall ac-
tivity level and the increasingly effect of the � D 10 con-
straint. The system in Fig. 8d exhibits class-4 behavior,
characterized by a ongoing structural development within
a relatively narrow interval of values of Deffec. Note that
the structural changes here are essentially pure, and are not
merely artifacts of any imposed constraints. Ilachinski (3)
explores a wide range of emergent behaviors across all four
classes, and examines the qualitative relationship between
emergent behavior and initial �- and `-seeding.

Phase Plots

While it is of obvious interest to systematically explore ev-
ery possible combination of ˇ’s and �’s that define `-rules,
Table 1 unfortunately suggests that the resulting rule space
is simply too large. Nonetheless, we can learn much even
by focusing our attention on a small subset of the com-
plete rule space, keeping ˚ , the initial �-seeding, and all
other factors constant. Specifically, consider the subset of
all possible `-rules that consists ofOT link rules consisting
of a single coupler,!, and a single decoupler, . Moreover,
let � � ˚2 (i. e., sum modulo-2 rule), demand that only
pairs of � D 0 sites be considered for a link change, and

consider `-rules belonging to the following set:

decouplers: fˇ1;1 D 0; ˇ2;1 D �g; 1 � � � 0;
couplers: f�1;1 D 0; �2;1 D �g; 1 � � � 0: (22)

Figure 9 summarizes the behavior of a four neighbor,
25 � 25 lattice with periodic boundary conditions, starting
from an initial �-seed consisting of a single nonzero site.
Four basic kinds of structural behaviors emerge:

1. Static state: this trivially occurs when the link rules are
unable to take effect; namely, when � � 7 and � � 8.

2. Rapid growth: for an entire range of � and �, the av-
erage number of neighbors for each site of the lattice
increases rapidly for 20–30 iterations.
This number would likely continue to increase, were it
not for the constraint conditions (� [0; 10]). The “final
state” is neither stable nor periodic. One sometimes also
sees delayed growth in this class of behavior, in which
case the link structure is initially relatively quiescent
(and the behavior of the system as a whole mimics that
of a conventional CA). As coupler rules are triggered by
specific � states, the average degree of the lattice rapidly
increases (at least until the constraint conditions take
effect).

3. Spontaneous decay: when decouplers are stronger than
couplers, the average degree typically decreases. If this
occurs too rapidly, the structure surrounding the sin-
gle nonzero valued site may become isolated from other
parts of the lattice. If a few non-zero values do not leak
out into the outlying regions, link changes remain con-
fined to the central subgraph, leading to either rapid
stability or periodicity.

4. Initial growth, followed by periodicity: this is the least
common behavior, and requires a delicate balance be-
tween coupler and decoupler rules.

It is interesting to compare these results with those
obtained from a random � seed. In this case, the sharp
divisions between characteristic behaviors disappear, and
there is a pronounced increase in the number of links for
all � and �. However, the inclusion of an additional de-
coupler, may induce decay and periodicity. For example,
consider the same initial lattice and ˚ as used in Fig. 9,
fix two OT `-rules �(0;5) and ˝(0;1), and add the decou-
pler �(0;�) : fˇ1;1 D 0; ˇ2;1 D �g, 1 � � � 9. Surveying
the emergent behaviors for this range of�’s, one now finds
decaying lattices for � � 2. In each case, the initial graph
succumbs to periodicity following a transient of between
50 and 100 iterations. The evolving lattice is also more
prone to break up into small disconnected subgraphs.
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Structurally Dynamic Cellular Automata, Figure 9
Phase plot that summarizes behavior of a four neighbor, 25� 25 lattice with periodic boundary conditions, starting from an ini-
tial � -seed consisting of a single nonzero site. � is defined by the sum modulo-2 � -rule and `-rules of the form: decouplers–
fˇ1;1 D 0;ˇ2;1 D �g, couplers–f�1;1 D 0; �2;1 D g. Grey areas in both plots denote periodic states. White areas denote growth in
the plot for link behavior, anda nonperiodic state for� -behavior. The black area that appears in the link-bevavior plot denotes decay.
Numbers that appear in individual boxes denote period lengths

Although, just as in conventional CA, small changes
to `-rules can lead to large differences in emergent behav-
ior, they generally appear to do so in a more predictable
and patterned manner. Of course, particular classes of �
may induce more complex phase plots; for example, iso-
lated pockets of anomalous (and rapidly shifting) behav-
ior may appear within larger surrounding regions under-
going otherwise mutually consistent and slowly changing
dynamics. A better sense of the space of possible emergent
behaviors, along with a deeper understanding of the rela-
tionship between˚ and `-rules, awaits a future study.

SDCA asModels of Computation

The basic SDCA model, as outlined above (which we will
denote as SDCA0 to avoid possible confusion with the hi-
erarchy of related SDCA models introduced in this sec-
tion), was modified and generalized by Majercik [39] into
a form more suitable for addressing its formal computa-
tional capabilities rather than as an exploratory toolkit for
describing physical processes (which is the primary reason
for which SDCA0 were first conceived).Motivated primar-
ily by finding models of human brain function (for which
one intuitively expects nonlocal neural connections to play
a fundamental role in the rewiring of neural tissue), Ma-
jercik shows that suitably generalized SDCA are not only
capable of universal computation, but actually represent
a more efficient class of computational models than con-
ventional CA. Majercik also reports an SDCA that can

solve the firing squad problem in O(log t) time (i. e., ex-
ponentially faster than the O(t) in conventional CA), and
a class of CA-universal SDCA models that can simulate
any conventional CA with a speedup factor of two. (The
firing squad problem [46] consists of finding a rule for
which all sites in a CA evolve into a special state after the
exactly the same number of steps.)

Majercik proceeds by first identifying five properties
of SDCA0 that, while reasonable from a physical modeling
standpoint, make it difficult to rigorously formulate and
prove theorems:

1. Finiteness: The requirement that SDCA0 be strictly fi-
nite, both in time and space, is obviously necessary for
computer experiments, but is unnecessarily restrictive
for general theorem proving. Likewise, the assumption
that the sets ˛, ˇ and � must be finite is questioned.

2. Bidirectionality: While SDCA0 are defined with sym-
metric links, an obvious generalization that makes the
basic model more readily applicable to neural dynamics
(among other kinds of physical and biological systems)
is to allow for unidirectional links.

3. Link-rule Asymmetry: While SDCA0’s link decoupler
function (Eq. (11)) contains the factor `ij to explic-
itly prevent the system from inadvertently linking two
unlinked sites, SDCA0 does not include an analogous
term for the coupler function (that is, a term to prevent
an evolving system from inadvertently unlinking two
linked sites).
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4. Inconsistency: While �-rules effectively ignore site po-
sitions, all three types of link rules assume that the var-
ious neighborhoods surroundings individual sites (Aij,
Bij, and Cij � fkjDik D 1˚ Djk D 1g, where ‘˚’ de-
notes exclusive or) are all recognized as such by the dy-
namics. That is, the link rules effectively “ know” the
positions of a site’s neighbors, while �-rules possess no
such information.

5. Small Rule Set: The class of �- and `-rules used by
SDCA0 may be generalized to include a far broader
class of transition functions.

On the basis of these observations, Majercik [39] in-
troduces a set of three core models to define a hierar-
chy of eight alternative SDCA computational systems,
fSDCA(1); SDCA(2); : : : ; SDCA(8)g. The three core models
are (1) the relative locationmodel (D MR), (2) the labeled
links model (D ML), and (3) the symmetric links model
(D MS). They differ only in the degree to which their �-
and `-transition functions depend on specific sites. For
example, MR’s transition functions depend on the state
and exact relative position of each neighbor (and therefore
“knows” the exact source of any state in a local neighbor-
hood). InML, links are labeled and the transition functions
know both neighbor states and the label of the links to
given neighbors, but the exact neighbor locations remain
unspecified. Finally, in MS, it is assumed that no informa-
tion about the source of the neighborhood states exists,
and transition functions only know the number of neigh-
bors in a particular state.

Each of the three core models may be defined in
two versions: an unbounded links (abbreviated, UL) ver-
sion, in which the number of neighbors a given site can
have is unbounded, and a bounded links (abbreviated, BL)
version, in which an explicit upper limit is imposed. In
addition, there is also one finite labels version of ML.
Majercik imposes certain mild conditions on the local
transition functions; for example, that local neighbor-
hoods always remain strictly finite, �-rules leave quiescent
neighborhoods alone, and that links between sites with
quiescent neighborhood remain unaltered.

Relative Location SDCAmodel In the Relative Location
model, the transition functions all have access to the ex-
act relative location and state of each neighbor site. Define
a neighbor of site i, ni 2 S � Zd , as a pair that specifies the
state (by a single label) and relative location of the neigh-
boring site (as a d-tuple of coordinates). Let W D S � Zd

be the set of all possible neighbors, and FW (called the
neighborhood function) be the set of all possible finite,
nonempty, partial functions that map Zd to W. The local

state transition function � : F ! W maps neighborhood
functions to the state set of SDCA. The local link transi-
tion function  : F �F � f0; 1; 2g ! f0; 1gmaps pairs of
neighborhood functions (that define the neighborhoods of
two sites, i and j and a number that specifies the status of
the link between i and j: value zero meaning that i and j
are neither direct neighbors nor next-nearest neighbors;
value one meaning that i and j are immediate neighbors;
and value twomeaning i and j are next-nearest neighbors)
to one of two link states: zero, meaning no link between i
and j, and one, meaning a link exists.

Labeled Links SDCA model The Labeled Links model
removes from MR’s transition functions any dependency
on the exact relative location of a site’s neighbors, but al-
lows the links to still be labeled so that the transitions func-
tions can distinguish one link from another. This ability to
“label” links paves the way for us to define SDCAwith uni-
directional links, since the labels can be used to distinguish
between the input and output links to a site. Consider, for
example, the UL-version of ML. Labeling the links by nat-
ural numbers,N , we define a neighbor of site i, as a pair
(q; n), where q 2 S labels the state of the neighboring site,
and n 2N labels the link between i and its neighbor.
Site i is defined as the direct neighbor linked via the 0th
link, and the set of all possible neighbors, W D S �N .
As for MR, FW is the set of neighborhood functions that
map Zd toW, the local state transition function � : F ! S
maps neighborhood functions to states in S, and the lo-
cal link transition function  : F �F � f0; 1; 2g ! f0; 1g
maps pairs of neighborhood functions and a number to
either the values zero (unlinked) or one (linked).

Symmetric Links SDCA model The Symmetric Links
model imposes the strictest constraint of all by doing away
with all means by which the local transition functions may
distinguish different neighborhood orientations. Consider
the unbounded link version of MS. Assume the SDCA has
a total of n states, and let S D f1; 2; : : : ; ng. Let Eni 2 Nn

be an n-dimensional vector such that (ni )k is equal to
the number of site i’s neighbors in state k. Then the lo-
cal state transition function � : Nn ! S maps vectors in
Nn to states in S, and the local link transition function
 : Nn � f0; 1; 2g ! f0; 1gmaps a vector in Nn and a link
status label to either the values zero (unlinked) or one
(linked). MS can also be modified slightly to allow the lo-
cal transition functions to retain knowledge of the state of
site i: simply let � : S � Nn ! S map the pair consisting
of the state of site i and a vector that defines the distri-
bution of states among i’s immediate neighbors (exclud-
ing i). The local link function likewise assumes a simi-
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lar form  : S2 � Nn � f0; 1; 2g ! f0; 1g, where the first
component of the 3-tuple input to lambda is a pair that
defines the states of the two sites to which the link func-
tion is being applied.

SDCA as CA Simulators

What does it mean to say that one dynamical system sim-
ulates another? Heuristically, it means that, for certain ini-
tial states, one system behaves just like another [32,74].
Suppose we have two CA systems – CA and CA0 – de-
fined by rules � and � 0, and initial states E� 2 ˙ and
E� 0 2 ˙ , respectively. Then, loosely speaking, T iterations
of CA are said to be “simulated” by nT (n � 1) iterations
of CA0, provided there exists some invertible function,
f : ˙ ! ˙ , by which E� 0 is replaced by f (E�). Simulation
is a transitive relationship: if system B simulates system A,
and another systemC simulates B, then C also simulates A.

For example, a single site with a particular value in CA
may be simulated by a fixed block of sites in CA0 . After n
steps, the blocks in CA0 evolve to exactly the same final
state as the single time-step evolution of individual sites
in CA. As a concrete example, consider the elementary
(one-dimensional, binary valued, conventional CA) rules
�18 and �90:

111 110 101 100 011 010 001 000
# # # # # # # #

�18: 0 0 0 1 0 0 1 0
�90: 0 1 0 1 1 0 1 0

Provided that two time steps under �18 are carried out
for every time step of rule �90, it is easy to show that under
the block transforms 0! f (0) D 00 and 1! f (1) D 10,
the evolution of arbitrary starting configurations under
�90 is reproduced – or simulated – by �18. For exam-
ple, the global state E� D ‘0011000’ – which evolves into
�90(E� ) D ‘0111100’ under �90 – yields the same state (af-
ter it is block-transformed) that results from two iter-
ations of �18 applied to �90’s block-transformed initial
state, f (E�) D ‘00001010000000’:

�18[�18[ f (E�)]] D 00101010100000 D f [�90(E� )]: (23)

Now consider the specific case of SDCA simulating
a conventional CA (we follow Majercik [39]). First, be-
cause SDCA cannot be expected to preserve the local
topology of a simulated CA, it is necessary to define
separate encoding (D e) and decoding (D d) functions –
e : ˙CA ! ˙SDCA transforms the initial configuration of
the CA systems to configurations in the SDCA system be-
ing used to simulate it (where ˙CA and ˙SDCA are the
configurations spaces of CA and SDCA, respectively); and

d : ˙SDCA ! ˙CA effectively performs the inverse trans-
formation. Encoding (and decoding) functions are called
structurally defined if they are recursive and use a finite
amount of information to encode (or decode) a given con-
figuration; and are otherwise expected to transform qui-
escent states to quiescent states. Majercik further assumes
that (1) e has access to the rule table of the conventional
CA system being simulated; (2) d does not have access to
the rule tables of either system; and (3) e and d must to-
gether satisfy the relation: e � d D Identity(˙CA).

Denoting the global transition functions of the CA
and SDCA systems by ˚CA and ˚SDCA, respectively,
˚SDCA is said to simulate ˚CA if there exist m � 1; n � 1
and structurally-defined functions e : ˙CA ! ˙SDCA and
d : ˙SDCA ! ˙CA, such that for any configuration
E� 2 ˙CA and any k � 1,

˚ kn
CA(E�) D d

h
˚ km
SDCA

�
e
�
E�
�i

: (24)

If m > n then ˚SDCA simulates ˚CA with a slowdown fac-
tor of m/n. If m < n then ˚SDCA simulates ˚CA with
a speedup factor of n/m.

SDCA Hierarchy of Models

Majercik [39] uses the three generalized models intro-
duced above (MR;ML; and MR) to define a hierarchy
of eight SDCA models of computation. At the top of
his hierarchy (arranged from top-to-bottom in roughly,
but not completely, decreasing order of computational
strength; see discussion that follows) are the UL and BL
versions of MR: SDCA(8) and SDCA(7), respectively; fol-
lowed by SDCA(6) DUL version of ML; SDCA(5) DBL
version of ML; SDCA(4) D a finite labels version of ML;
SDCA(3) DUL version of MS; SDCA(2) D BL version of
MS; and, sitting on the lowest level (computationally
speaking), is SDCA(1) D SDCA0.

A little thought suffices to establish certain relation-
ships among the various classes. Give two classes, C1 and
C2, let C1 �s C2 denote the fact that if, given any SDCA
S1 2 C1 there exists an SDCA S2 2 C2 that simulates S1.
Then, for example, since any BL SDCA can be simu-
lated by an unbounded links version of the same sys-
tem, and a finite links version of ML can be simulated
by a bounded links version, we know immediately that
SDCA(7) �s SDCA(8), SDCA(4) �s SDCA(5) �s SDCA(6),
and SDCA(2) �s SDCA(3). Similar reasoning [39] leads to
the general relationship:

(
SDCA(3) �s SDCA(8) �s SDCA(6) ; and
SDCA(2) �s SDCA(7) �s SDCA(5) :

(25)
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Finally, since the unbounded links version of MR has
all the information necessary to construct the neighbor-
hood partitions used by SDCA0, and since SDCA(8) �s
SDCA(6), we see that SDCA0 �s SDCA(6) and SDCA0 �s
SDCA(8).

Majercik’s two main results, which we state without
proof, are:

Majercik Theorem 1: Given an arbitrary 1-dimen-
sional conventional CA with radius r D 1, there ex-
ists an unbounded links version of MR (D SDCA(8)

of the SDCA hierarchy) that can simulate it with
a speedup factor of two.

Majercik Theorem 2: There exists a 1-dimensional
finite links version of ML (D SDCA(4)) that can
simulate an arbitrary k-state 1-dimensional conven-
tional CA with radius r D 1 with a slowdown factor
O
�
k2r
p
2r log k


.

Detailed proofs of these two theorems appear in [39]
(where they are called Theorems 4.4 and 4.5, respectively).
In chapter 5 of his thesis [39], Majercik presents an explicit
construction of a CA-universal SDCA(4) computational
model, and compares it to Albert and Culik’s [3] con-
struction of a 1-dimensional CA-universal conventional
CA that simulates any 1-dimensional, k-state, radius r CA
with an O

�
k8r

slowdown. Although Majercik’s CA-uni-

versal SDCA uses more states than Albert and Culik’s uni-
versal CA, it is also markedly faster.

The reason why the SDCA is faster is at least intuitively
clear. An SDCA’s dynamic links effectively endow an oth-
erwise conventional CA with a random access memory.
Since SDCA can establish links between any two sites a dis-
tance d apart in O(log d) time, any site potentially has ac-
cess to the state of any other site. While it may be argued
that sites in conventional CA can also access the states of
other cells, they cannot do so permanently. Once informa-
tion is accessed once and used, the connection is lost, and
must subsequently be re-established. Moreover, the links
in SDCA can potentially connect sites that are arbitrarily
far apart; so that, once a small number of links are dynam-
ically created, they continue to provide long-range com-
munication channels throughout the network. Since the
propagation of information in a conventional CA is nec-
essarily limited in being able to flow one site at a time, the
overall computational speed is obviously limited.

However, it is worth pointing out that while the
computational strength of Majercik’s CA-universal SDCA
model undoubtedly derives from its ability to forge
long-range communication links, the results as quoted

from [39] do not tap into what is potentially SDCA’s great-
est strength; namely, the ability to adaptively create links,
even as a given computation unfolds. In Majercik’s model,
the links are dynamically coupled to an actual computa-
tion only insofar as they are initially fixed as a function of
the initial state. While the local structure certainly evolves
(as it does in all SDCA systems, as the computation itself
unfolds), it does so purely as a consequence of the SDCA
rules, and not adaptively to the evolution.

Majercik concludes his thesis by speculating on how an
adaptive variant of his CA-universal SDCAmay be used to
explore certain aspects of evolutionary learning. (Working
from a different set of assumptions, Halpern [23,24] ap-
plies evolutionary programming techniques to SDCA0 to
explore what happens when the structure is allowed to play
an explicit dynamic role in the computation; see next sec-
tion.) The question of whether there exist SDCA-universal
SDCA models – that are able to simulate certain classes of
the SDCA hierarchy, for example – remains open.

SDCA & Genetic Algorithms

Genetic algorithms (abbreviated, GA) are a class of heuris-
tic search algorithms and computational models of adap-
tation and evolution based on natural selection. In na-
ture, the search for beneficial adaptations to a continually
changing environment (i. e., evolution) is fostered by the
cumulative evolutionary knowledge that each species pos-
sesses of its forebears. This knowledge, which is encoded
in the chromosomes of eachmember of a species, is passed
on from one generation to the next by a mating process in
which the chromosomes of “parents” produce “offspring”
chromosomes. A comprehensive review of GA is given by
Mitchell [45].

While GAs may be effectively used to search for “inter-
esting” topological structures (but for which the structures
themselves do not play any dynamic role; see, for example,
Lehmann [37]), Halpern [23] is the first to explore a novel
hybrid algorithm between GA and SDCA, in which SDCA
rules are used to evolve a GA. Weinert et al. [72] explore
a related “structurally dynamic” GA model, in which links
between adjacent individuals of a population are dynam-
ically chosen according to deterministic or probabilistic
rules. In this section, we follow Halpern [23,24].

Formally, GAs are defined by (1) an ensemble of “can-
didate solution” vectors, fEsig : Esi 2 MP � Rn , where M is
the set of all possible solutions to a given “problem” P
(the Esi are usually, but not always, defined as a string
of binary numbers [45]), and (2) a “fitness function”,
f (Es), that represents how well a given Es “solves” P. The
goal of the GA is to find the global optimal solution,



Structurally Dynamic Cellular Automata S 8833

Es� such that (from the point of view of maximizing fit-
ness, f (Es) � f (Es�) � f �;8Es 2 M. Optimization proceeds
through the combined processes of selection, breeding,
mutation, and crossover replacement [45]; to which – in
the hybrid SDCA$GA algorithm, Halpern adds the new
feature of self-selective neighborhood structure.

It should be immediately noted that this is not an ad-
hoc addition. Muhlenbein [47] points out that if each gen-
eration of a GA searches over the entire possible solution
space, the algorithm may – depending on the fitness func-
tion – converge prematurely to a sub-optimal solution.
To reduce the likelihood of this happening, Muhlenbein
introduces a spatial population structure; restricting fit-
ness and mating to neighborhoods called demes. Demes
are geographically separate subpopulations in which can-
didate solutions evolve along disparate trajectories; though
occasional mixing still occurs through the process of
migration.

In Halpern’s variant [23], an otherwise conventional
GA is placed within the structure of SDCA0 (i. e., the ba-
sic model defined by Eqs. (11)–(14)). Heuristically, this
allows each candidate solution to “choose a community”
with which to mate, during each generation. The choice
of neighborhoods thus becomes an integral component of
the GA, and is determined dynamically by the evolving
solutions.

Halpern’s algorithm proceeds as follows [24]: (Step 1)
an initially random lattice (defined by adjacency matrix
l (tD0)
ij ) is seeded with single-chromosome candidate solu-
tions of fixed length, one per site; (Step 2) a fitness func-
tion, fi D

PN
iD1 ıij , is defined to assign a numerical mea-

sure of “optimality” to each site (N is the number of sites,
and ıij is the value – equal to 0 or 1 – of the jth gene of
the ith chromosome; (Step 3) each site i ranks each of its
nearest and next-nearest neighbors according to f i; (Step
4) each site disconnects with a fraction, f D, of its least-fit
neighbors, and connects with a fraction, f C, of its fittest
next-nearest neighbors; (Step 5) each site randomly mates
with one of its nearest neighbors (i. e., the usual processes
of mutation and crossover operations are applied [45]);
(Step 6) the least fit members of the population are re-
placed by the offsprings from Step 5; and (Step 7) loop
through steps 5–7, until some suitable “optimality” thresh-
old (or some other convergence criterion) is satisfied.

Halpern [23,24] reports a wide range of resulting be-
haviors, collectively suggesting a clear relationship be-
tween the parameters defining the GA optimization and
lattice connectivity. Of particular interest are the dynamic
conditions for which the fitness-based creation and dele-
tion of links increases the rate of growth of overall fitness.
The fastest convergence occurs when lattice connectivity

first increases, then decreases, then eventually levels off.
In the first stage, the fittest possible communities are first
established; in the second stage, connections with poorer
candidate solution are deleted; finally, in the third stage,
the system essentially “fine-tunes” its optimal solutions.
Halpern [24] finds two different evolutionary paths toward
high connectivity: (1) monotonic growth over time (for
lowmutation rates, p�), and (2) a phase transition between
low and high degrees of connectivity (for some p��). Us-
ing SDCA$GA hybrid model parameters N D 100 and
fD D fC D 0:1, p�� � 0:05, for which Halpern [24] finds
a sharp increase in the number of links per site between
generations 350 and 450.

Despite the novelty of the approach, and the promis-
ing link between optimization rates and dynamic struc-
ture established in [23], concrete applications of the algo-
rithm – except for Weinert et al. [72] work on a related
hybrid GA algorithm – have yet to be developed. One sug-
gestion, from Halpern [24], is to use the SDCA$GA hy-
brid model for finding “optimal” connectivity patterns in
parallel computers. The search algorithm may be used to
directly model how component processors are connected,
and decide to keep or sever existing links, or establish new
ones, adaptively as a function of local fitness criteria.

Generalized SDCAModels

Despite SDCA being obviously more “complex” than con-
ventional CA (and certainly more complex to formally de-
fine, if only because one must specify both � and ` rules),
the SDCA model nonetheless has more in common with
elementary CA than with any of its brethren’s more “com-
plicated” variants. By “elementary” CA we mean the sim-
plest one-dimensional CA with � 2 f0; 1g and local neigh-
borhoods consisting only of left and right (i. e., nearest)
neighbors. Just as there are many generalizations of ele-
mentary CA – for example, increasing the state space to in-
clude � ’s that take on one of N values, larger-sized neigh-
borhoods, and memory, among many other possibilities –
so too there are natural extensions of basic SDCA. In this
section we discuss three generalizations: (1) rules that are
reversible in time, (2) rules that retain a memory of past
states, and (3) probabilistic rules.

Reversible SDCA

The first generalization of the basic SDCAmodel, explored
extensively by Alonso-Sanz [7], is to apply the Fredkin
reversible-rule construction to ` rules to render them re-
versible in time. Consider a conventional CA system that is
first-order in time, � tC1

i D �[� t
j 2Ni ], whereNi is the
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neighborhood around site i and, generally, �i 2 Zk . The
Fredkin construction converts this system into an explic-
itly invertible one that is second-order in time by subtract-
ing the value of the center site at time t � 1:

� tC1
i D �

h
� t
j 2Ni

i
�k �

t�1
i ; (26)

where ‘�k ’ is subtraction modulo-k. Since Eq. (26) can
be trivially solved for � t�1

i
�
D �[� t

j 2Ni ]�k �
tC1
i


, we

see that any pair of consecutive configurations uniquely
specifies the backwards trajectory of the system. Moreover,
this is true for arbitrary (and, in particular, irreversible)
functions � .

Now, exactly the same procedure may be applied to
link functions:

8
<

:

l tC1
ij D  



f� t

kg; fl
t
ijg
�
�2 l t�1ij ;

l tC1
ij D !



f� t

kg; fl
t
ijg
�
�2 l t�1ij ;

(27)

where �2 is subtraction modulo-2 (since links are obvi-
ously binary valued).

Following Alonso-Sanz [7,8], we consider these two
specific SDCA link rules (which will also be used in a later
example):

8
<

:

 


� t
i ; �

t
j ; l

t
ij

�
D 0 iff l tij D 1 and � t

i C �
t
j D 0 ;

!


� t
i ; �

t
j ; l

t
ij

�
D1 iff l tijD0; � t

i >0; � t
j >0; and DijD2:

(28)

Structurally Dynamic Cellular Automata, Figure 10
Comparison between first few time steps of a a memoryless SDCA, evolving according to link rules defined in Eq. (28), and b the
Fredkin reversibleversions of these rules (obtained by applying Eq. (27) to Eq. (28)). In both cases,� ’s evolve according to the beehive
rule defined in the text. (Reproducedwith permission from [7])

Figure 10 compares the evolution of the Fredkin re-
versible version of these rules to their memoryless coun-
terpart. Both evolutions start on a two dimensional hexag-
onal lattice, and values evolve according to the three-state
(i. e., � 2 f0; 1; 2g), next-nearest neighborhood T beehive
rule. The beehive rule is defined explicitly by assigning
one of three values (0; 1; or 2), to each possible 3-tuple,
(N0;N1;N2), that gives the number of local sites with
N0 0s, N1 1s, and N2 2s [7]: (0; 0; 6)! 0, (0; 1; 5)! 1,
(0; 2; 4)! 2, (0; 3; 3)! 1, (0; 4; 2)! 2, (0; 5; 1)! 0,
(0; 6; 0)! 0, (1; 0; 5)! 0, (1; 1; 4)! 2, (1; 2; 3)! 2,
(1; 3; 2)! 2, (1; 4; 1)! 1, (1; 5; 0)! 1, (2; 0; 4)! 0,
(2; 1; 3)! 0, (2; 2; 2)! 2, (2; 3; 1)! 2, (2; 4; 0)! 0,
(3; 0; 3)! 0, (3; 1; 2)! 2, (3; 2; 1)! 2, (3; 3; 0)! 0,
(4; 0; 2)! 0, (4; 1; 1)! 0, (4; 2; 0)! 2, (5; 0; 1)! 2,
(5; 1; 0)! 0, (6; 0; 0)! 0.

The top row of Fig. 10 shows the first four steps
(t D 1; 2; 3, and 4) in the memoryless evolution of the ini-
tial “ring” of sites that appears at t D 1. The link rules used
for this run are those defined in Eq. (28). Since the decou-
pler removes links between pairs of sites whose values are
equal to zero, most of the lattice disappears after a single
time step, and both value and link activity is confined to
a small region. After twomore steps of changes, the system
quickly attains a fixed point: f� t ; `tijg D f�

tD4; `tD4
ij g for

all t � 5. While the frequency of states is not constrained
to total six for a dynamic lattice, the beehive rule is un-
changed; if the sum of frequencies at a given site exceeds
six, the site value remains the same.
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The bottom row shows the evolution of the Fredkin re-
versible versions of the rules defined in Eq. (28) (to sim-
plify the visualization, links along the border sites are not
shown). In contrast to the basic SDCA version, the ini-
tial lattice in this case does not decay. Since, according
to Eq. (27) (which assumes that `tD0

ij D `
tD1
ij ), the initial

hexagonal lattice is subtracted from the evolved structure
at t D 1(modulo-2), the original graph is effectively re-
stored, and the outlying regions appear undisturbed.

SDCA with Memory

A second generalization to the basic SDCA model, intro-
duced and studied by Alonso-Sanz and Martín [6,7,8], is
to endow both �-rules and `-rules withmemory. The rules
for conventional memoryless CA and SDCA, depend only
on neighborhood configurations that appear on the imme-
diately preceding time step. Therefore, rules may be said
to possess a “memory” of depth m if they depend explic-
itly on values (in the case of CA), or on both values and
link states (in the case of SDCA), that existed on m previ-
ous time steps. We note, in passing, that since the Fredkin
construction couples states at times t C 1, t and t � 1, re-
versibility may be considered a specific form of memory
that extends backwards a single step.

Structurally Dynamic Cellular Automata, Figure 11
Sample runs of a SDCAwithmemory formemory weighting˛ D 0:6. The SDCA is initialized as a Euclidean four-neighbor lattice, and
evolves according to the parity T � -rule and the two ` rules defined in Eq. (28). The first row of evolving patterns applies memory
only to values; the second row applies memory only to links, and the third row shows the evolution whenmemory is applied to both.
(Reproduced by permission from [8])

Of course, there is no unique prescription for intro-
ducing a dependency on past values; and a variety of al-
ternative memory mechanisms have been proposed in the
literature (for example, see page 43 in [32] and page 118
in [74]). We focus our discussion on the approach pro-
posed by Alonso-Sanz (14), and for the moment confine
our attention to value rules, � : � ! � 0. Alonso-Sanz’s ap-
proach is to preserve the form of the transition rule, but
have it act on an effective site value that is a weighted func-
tion of itsm prior values.

This is done by introducing a memory-endowed value
rule, �m, that – in contrast to its memoryless version, � –
is not, in general, a function of a given site’s current value,
� i, alone, but is instead a function of the transformed
value, s DM� (� ;m; ˛), obtained from � i’s past m val-
ues: �m : s! � 0, where 0 � ˛ � 1 is a numerical mem-
ory factor. The value transforming memory function, M,
assumes the following specific form (to avoid confusion,
note that in Eqs. (29) and (30), � x

i means the value of � i at
time t D x, and ˛x means the numerical quantity ˛ raised
to the power x):

sti D M�

�
� t
i ;m; ˛


D

8
<̂

:̂

1 if
�
�̂ t
i

m > 1/2;

� t
i if

�
�̂ t
i

m D 1/2;

0 if
�
�̂ t
i

m < 1/2;

(29)
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Structurally Dynamic Cellular Automata, Figure 12
Sample runs of the same SDCA shown in Fig. 11, but with memory weighting˛ D 1:0. (Reproduced by permission from [8])

where

�
�̂ t
i

m D

� t
i C

Pm
�tD1 ˛

�t � � t��t
i

1C
Pm
�tD1 ˛

�t : (30)

At any given time, t, the depth m can never exceed
t � 1. Our discussion follows Alonso-Sanz [8], and sets
m(t) � t � 1 for all t; i. e., we assume that M�(� ;m; ˛)
yields a weighted mean value of all the previous values of
a given site. In practice, memory becomes active only after
a certain number of initialization steps, here taken to be
three; with seeded values s1i D �

1
i and s2i D �

2
i .

Memory can be added to link rules in a similar man-
ner. The form of the link rules ( and !) remains the
same, but rather than acting on a graph that is defined by
its adjacency matrix, `tij ,  and ! instead act on the mem-
ory-transformed values, L DM( ;!)(`;m; ˛):

Ltij D M( ;!)



l tij ;m; ˛

�
D

8
ˆ̂̂
<

ˆ̂̂
:

1 if


l̂ tij
�

m
> 1/2;

l tij if


l̂ tij
�

m
D 1/2;

0 if


l̂ tij
�

m
< 1/2;

(31)

where



l̂ tij
�

m
D

l tij C
Pm
�tD1 ˛

�t � l t��t
ij

1C
Pm
�tD1 ˛

�t : (32)

As for memory-endowed �-rules, the memory for link
rules is activated only on the third iteration step, and the
system is initialized by setting L1i D �

1
i and L2i D �

2
i .

Figures 11 and 12 show the effects of applying partial
memory weighting (˛ D 0:6) and full memory (˛ D 0:6),
respectively, to a SDCA that starts with a Euclidean four-
neighbor lattice, and evolves according to the parity T
�-rule (that assigns a value zero to a site if the sum of the
values in its neighborhood is even, and assigns the value
one if the sum is odd) and the ` rules defined above in
Eq. (28). The first row of evolving patterns (for each ˛)
applies memory only to values; the second applies mem-
ory only to links, and the third appliers memory to both.
Figure 13 shows the reversible beehive SDCA shown in
Fig. 10, but with full memory (˛ D 1:0).

Probabilistic SDCA

Another natural extension of the basic SDCA model is to
replace the set of explicit �- and/or `-rules with probabil-
ities. In this way one can study the evolution of a system
that undergoes random but �-dependent lattice changes.
For example, this may be useful for studying genetic net-
works in which new links are forged (with a given proba-
bility) only if both genes are active, and existing connec-
tions are broken if both sites are inactive.

Following Halpern and Caltagirone [22], consider the
parity T �-rule and the following probabilistic versions of
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Structurally Dynamic Cellular Automata, Figure 13
Sample runs of a reversible beehive SDCA with full memory (˛ D 1:0); compare to Fig. 10. (Reproduced by permission from [8])

decoupler ( p) and coupler rules (!p):

(decoupler) :

8
<

:

l tC1
ij D  p



l tij ; �

t
i ; �

t
j ; pD

�
;

 p � 1 � ı


� t
i C �

t
j ; 0
�
� ı
�
pD > r


;

(coupler) :

8
<

:

l tC1
ij D !p



l tij ; �

t
i ; �

t
j ; pD

�
;

!p � ı
�
Dij; 2


� ı


� t
i C�

t
j ; 2
�
� ı
�
pC > r


;

(33)

where PD and PC are the decoupler and coupler probabil-
ities, respectively, and r is a random number between 0
and 1.

Thus,  p unlinks two previously linked sites with
probability PD if and only if the sum of their site values
is zero; and !p links two previously unlinked sites with
probability PC if and only if they are next-nearest neigh-
bors and the sum of their site values is two.

Figure 14 shows time series plots of h�i as a function of
time for three different cases: (1) PD D 0 (no decoupling
at all), (2) PD D 1/2, and (3) PD D 1 (decoupler rule ap-
plied 100% of the time (consistent with non-probabilistic
SDCA rules). We see that changing PD induces qualita-
tively different � behavior, that ranges from small fluctu-

Structurally Dynamic Cellular Automata, Figure 14
Time series of average � value, h�it , for the Halpern-Calta-
girone rules (defined in Eq. (33)) and for three values of de-
coupler probability: PD D 0, PD D 1/2, and PD D 1. (Reproduced
with permission from [22])

ations around h�i � 0:5 (for PD D 0), to decay to small
static values (h�i D 0:05 for PD D 1/2, and h�i D 0:12 for
PD D 1).

Halpern and Caltagirone [22] have studied a wide
range of probabilistic SDCA, using random initial � con-
figurations, step-function, parity, and Conway’s life �-
rules, Cartesian and random initial lattice structures, and
various probabilities 0 � PD � 1 and 0 � PC � 1. Some
of their results are reproduced (with permission) in the
behavioral phase plots shown in Fig. 15. (The step-function
rule is defined by � tC1

i D 0 if and only if
P

j `
t
ij�

t
i > 2 and

� tC1
i D 1 if and only if

P
j `

t
ij�

t
i � 2; Conway’s life rule

assigns � tC1 D 1 to a site if and only if � (t) D 0 and the
sum of values in its neighborhood at time t is equal to 3 or
� t D 1 and the sum of values is equal to 2 or 3; otherwise
� tC1 D 0.)

Figure 15 shows a wide range of possible behaviors.
Consider, for example, the number of links per site for the
case where the lattice is updated with probabilistic `-rules
and the � ’s are all random (shown at the top left of the fig-
ure). Four distinct classes of behavior appear, with growth
dominant for most values of PD and PC.

Pure decoupling (or pure coupling) leads to complete
decay (or growth to a stable state); a mixed state of cou-
pling/decoupling generally yields slow growth. Periodic
behavior occurs only for PD � PC � 1. Compare this be-
havior with the cases where the �-rule is either the par-
ity value rule (shown in the middle of the top row of
Fig. 15) or the step-function rule (shown at left bottom of
the figure). While the parity rule also displays four similar
phases (growth to stability, decay to stability, incomplete
growth, and incomplete decay), decaying structures even-
tually reach a stable (not null) final state. The step-func-
tion rule shows an even greater variety of possible behav-
iors, and appears more sensitive to small changes in link
probabilities.

The probabilistic SDCA system discussed in this sec-
tion adds a stochastic element specifically to SDCA. Of
course, there are other ways of injecting stochasticity into
a CA with dynamic topology. For example, Makowiec [40]
combines the deterministic evolution of a conventional
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Structurally Dynamic Cellular Automata, Figure 15
Behavioral phase plots summarizing the long term evolution for several different � and `-rules defined in Eq. (33). The x and y axes
for each plot depict values (2 f0; :25; :5; :75;1g) of PC and PD, respectively. There are six classes of behavior: growth, decay, stability,
large and small fluctuations (around a stable lattice), and periodicity. The initial graph is a Cartesian four-neighbor lattice in each case
except for the top-right plot (labeled Random connections/links) for which the initial graph is random. (Reproduced with permission
from [22])

CA with an asynchronous stochastic evolution of its un-
derlying lattice (patterned after the Barabasi–Albert [9]
model of degree distributions in small-world networks),
to explore the influence of dynamic topology on the zero-
temperature limit of ferromagnetic transitions.

Random Dynamics Approximation

For cases in which the structure and value configurations
are both sufficiently random and uncorrelated, a random
dynamics approximation (abbreviated, RDA) may suffice
to qualitatively predict how the system will tend to evolve
under a specific rule set; for example, to predict whether
a given rule is more (or less) likely to yield unbounded
growth, to eventually settle into a low periodic state, or to
simply decay. The idea is to approximate the real SDCA as
a mean-field; that is, assume all local value and structural
correlations are close to zero (and can thus be ignored),
and replace all specific site values and local link geometries
with average, or effective, values.

More precisely, assuming that (1) the probability p(
i )n
of a site ‘i’ having value � D 1 at time t D n is the same
for all sites – so that p(
i )n D p(
)n for all i – and (2) that the
probability p(l ij)n of two sites ‘i’ and ‘j’ being linked at t D n
is the same for all pairs of sites – so that p(l ij)n D p(l )n for
all i and j – the RDA evolution equations may be written

formally as follows:
(
p(
)nC1 D FRDA[p(
)n ; p(l )n ;�SDCA];
p(l )nC1 D GRDA[p

(
)
n ; p(l )n ;�SDCA];

(34)

where SDCA’s rule�SDCA (defined in Eq. (14)) is included,
formally, to remind us that the functional forms assumed
by FRDA and GRDA will be different for different �SDCAs.

The first function, FRDA, is the easier of the two to cal-
culate. For any given site with degree d we simply count
the total number of ways to distribute the local �-values
among the d possible neighboring sites to obtain the de-
sired sums that define a given rule. In this way we find the
average expected � density at t D nC 1, assuming all sites
in the lattice have the same degree d at time t D n:

p(
)nC1(d; p
(
)
n )

D

8
ˆ̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
ˆ̂̂
:̂

P

f˛g

 
d C 1
˛

!h
p(
)n

i˛ 

1 � p(
)n

�dC1�˛
$ T

P

f˛0g

 
d
˛0

!h
p(
)n

i˛0C1 

1 � p(
)n

�d�˛0

C
P

f˛1g

 
dC1
˛1

!h
p(
)n

i˛1

1�p(
)n

�dC1�˛1
$ OT

(35)



Structurally Dynamic Cellular Automata S 8839

We then get FRDA ! p(
)nC1 D
P

d P(d; p
( l )
n ) � p(
)n (d; p(
)n )

as an average over all possible degrees, where P(d; p( l )n ) is
the probability that any site has exactly d neighbors. Since
this means that, out of a total of N � 1 possible neighbors,
a given site must have exactly d links, and not be con-
nected to any of the remaining (N � 1 � d) sites, we have
by inspection:

P


d; p( l )n

�
D

�
N � 1
d

�h
p(l )n
id 


1 � p(l )n
�N�1�d

: (36)

To calculate the second function in Eq. (34) (D GRDA),
we first define the local transition functions
8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

pan (d1; d2; )
D Prob

�
lD1! l 0D0 j diDd1; djDd2;

ˇ̌
Aij
ˇ̌
D


;

pbn (d1; d2; )
D Prob

�
DD2! l 0D1 j diDd1; djDd2;

ˇ̌
Aij
ˇ̌
D


;

(37)

which give the probabilities that any two sites – i and j –
will be disconnected (pan) or connected (pbn) if they have
prescribed degrees di D d1 and dj D d2, and are each
linked to the same  sites in the shared neighbor set, Aij
(see Fig. 1). In the case of type-T �- and `-rules, pan and pbn
are given explicitly by (OT versions of �- and `-rules, and
RT versions of `-rules are defined by similar, but slightly
more complicated, expressions):
8
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

pan (d1; d2; ) D
X

k

 
d1 C d2 � 

ˇk

!
h
p(
)n

iˇk

�


1 � p(
)n

�d1Cd2���ˇk
;

pbn (d1; d2; ) D
X

k

 
d1 C d2 C 2 � 

"k

!h
p(
)n

i"k

�


1 � p(
)n

�d1Cd2C2���"k
;

(38)

where ˇk and �k refer to the sums that appear in Eqs. (11)
and (12). The total probability that any two sites will be
disconnected (l D 1! l 0 D 0) or connected (D D 2 !
l 0 D 1) – Pa

n and Pb
n , respectively – may then be obtained

by summing over all possible local topologies:
8
ˆ̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂:

Pa
n �

˝
Prob

�
l D 1! l 0 D 0

˛

D
X

d1

X

d2

X

�

P1 (d1; d2; ) � pan (d1; d2; );

Pb
n �

˝
Prob

�
D D 2! l 0 D 1

˛

D
X

d1

X

d2

X

�

P2 (d1; d2; ) � pbn (d1; d2; );

(39)

where
8
ˆ̂̂
<̂

ˆ̂̂
:̂

P1 (d1; d2; ) D Prob(sites i; j j lij D 1 have di D d1;
dj D d2;

ˇ̌
Aij
ˇ̌
D );

P2 (d1; d2; ) D Prob(sites i; j j lij D 0 have di D d1;
dj D d2;

ˇ̌
Aij
ˇ̌
D ):
(40)

To find P1 we need to count, from among the remain-
ing N � 2 sites, the number of ways of selecting disjoint
sets S1, containing d1 � 1 �  sites linked only to i; S2,
consisting of d2 � 1 �  sites connected only to j; and S3,
with  sites linked to both i and j. But this is simply amulti-
nomial coefficient, so we can write:

P1 (d1; d2; ) D
(N � 2)d1Cd2���2

(d1 � 1 � )! (d2 � 1 � )!!

�
h
p(l )
id1Cd2�2 


1 � p(l )
�2(N�1)�d1�d2

;

(41)

where (n)k � n(n � 1) � � � (n � k C 1). Similarly, for P2,
we need to count the number of ways of choosing d1 � 
sites from i, d2 �  sites from j, and  sites from both:

P2 (d1; d2; ) D
(N � 3)d1Cd2���2

(d1 � )! (d2 � )!!

�
h
p(l )
id1Cd2 


1 � p(l )
�2(NC��3)�d1�d2

:

(42)

The second (link-update) function of the pair of func-
tions in Eq. (34) is thus given by

GRDA ! p(l )nC1 D p(l )n �
�
1 � Pa

n

C


1 � p(l )n

�
�PDD2 �Pa

n ;

(43)

where, assuming that two sites, i and j, are not them-
selves connected, PDD2 D probability that there exists at
least one site k, such that Dik D Djk D 1, which im-
plies that PDD2 D 1 � Prob (there is no such k) D 1 �
(1 � [p(l )n ]2)N�2; and P1 and P2 are defined in Eqs. (41)
and (42).

A structural equilibrium is established when p(l )nC1 �

p(l )n , which happens when the average number of new con-
nections is equal to the average number of link deletions:
Pb
n � hNnni D Pa

n � hdegi, where hdegi D p(l )n (N � 1) is
the average degree, and hNnni is the average number of
next-nearest neighbors. For SDCA rules that naturally tend
to produce graphs with minimal site value and structural
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Structurally Dynamic Cellular Automata, Figure 16
Density-plot of �c::d for an OT decoupler rule: f(0;0); (1;1);
(1;2); (2; 2)g; an OT coupler rule: f(1;1)g; 0:1 � p( )

n � 0:9;
and 0:1 � p(l)n � 0:9; the rectangular area highlighted in black
denotes the “equilibrium boundary” that separates regions of
growth and decay

correlations, the predicted ratio of RDA link creations to
deletions, �c : d � Pb

n � hNnni /Pa
n � hdegi, may be used to

predict qualitatively how the graphs will evolve. Since the
average number of pairs of sites a distance D D 2 apart
D
�N
2

� PDD2 D hNnni � N/2, we find that:

�c::d D
Pb
n

Pa
n
�



1 � p(l )n

�

p(l )n
�

(

1 �
�
1 �

h
p(l )n
i2�N�2

)

: (44)

�c::d is also implicitly a function of site-value density, since
p(
)n appears in both Pa

n and Pb
n , defined in Eq. (39).

Figure 16 shows a grayscale density-plot of �c::d for an
OT decoupler rule: f(0; 0); (1; 1); (1; 2); (2; 2)g; anOT cou-
pler rule: f(1; 1)g; 0:1 � p(
)n � 0:9; and 0:1 � p(l )n � 0:9.
Areas that are close to white represent combinations of
(p(
)n ; p(l )n ) for which �c::d 
 1, and which therefore pre-
dict “decay”; areas that are close to black represent com-
binations of (p(
)n ; p(l )n ) for which �c::d 	 1, and predict
“growth”; the rectangular area highlighted in black de-
notes the “equilibrium boundary” that separates regions
of growth and decay.

RelatedGraph Dynamical Systems

The original SDCA model [28] represents one (albeit not
entirely arbitrary) approach to dynamically coupling site
values (f�ig) and topology (flijg), of the normally quies-

cent lattice. Since this model was primarily introduced as
a general tool to explore self-organized emergent geome-
tries, � values are an integral dynamic component only
because SDCA’s original rules were conceived to gener-
alize conventional CA rules, not replace them. Moreover,
SDCA’s link rules are, by design, close analogs of their
conventional-CA brethren; this is the reason why SDCA’s
 and ! rules assume the familiar T and OT (and related
RT) forms, as defined in Sect. “The Basic Model”. Indeed,
while the preceding sections of this article have introduced
several generalizations – such as the addition of proba-
bilistic rules, reversibility and memory – in each case, the
basic form of the rules (as defined in Eqs. (11), (12), and
(13)) has remained essentially the same. However, just as
for conventional CA, an almost endless variety of differ-
ent kinds of rules can in principle be defined; including
rules that alter the geometry but are not functions of the �
states. In this section, we look at two illustrative examples
of SDCA-like dynamical systems: one that uses coupled �-
` rules, and another whose rules depend only on topology.

Graph Rewriting Automata

Tomita, Kurokawa, and Murata [67,68,69,70,71] have re-
cently introduced graph rewriting automata (abbreviated,
GRA), in which both links and (the number of) sites are
allowed to change. Motivated by CA models of self-re-
production, Tomita et al suggest that fixed, two-dimen-
sional lattices – used as static backdrops to most conven-
tional models – are unnecessarily restrictive for describ-
ing self-reproductive processes. They cite, as an example,
the inability of conventional CA to describe biological pro-
cesses (such as embryonic development) that must un-
fold in a finite closed space; once the underlying space of
the CA is defined at the start, however large (and some-
times deliberately assumed infinite), its size remains the
same throughout the development. This not only makes it
hard to model the typically growing need that developing
organisms have for space, but makes it impractical even
to provide some room for avoiding overlaps between the
original and daughter patterns [67].

Motivated by these, and other issues related to com-
putation, Tomita et al. [67,69] introduce GRA, which is
a form of graph grammar [20]. At first glance, GRA ap-
pear superficially similar to SDCA, at least in the sense
that they both dynamically couple site values with topol-
ogy. However, the transition rules are very different, and –
in GRA’s case – two properties hold that are not true for
SDCA systems: (1) all sites have exactly three neighbors
at all times (which is the minimum number of neighbors
that yield nontrivial graphs [67]), and (2) multiple links
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Structurally Dynamic Cellular Automata, Figure 17
Graphical representations of the actions of the GRA rules defined in Eq. (45). (Reproduced from [69] with permission)

are allowed to exist between any two sites. The authors
claim that the 3-neighbor restriction not only does not
constrain the space of emergent geometries (an observa-
tion that is echoed by Wolfram [75]; see Subsect. “Net-
work Automata” below) but has the added benefit of al-
lowing the rules to be expressed in a regular form: each
rule is defined by a rule name and, at most, six symbols for
its argument:

(� rules) :
n
transition (x; a; b; c) ! (u; a; b; c);

(site rules) :
(
division (x; a; b; c) ! (u; v;w; a; b; c);
fusion

�
x; y; z; a; b; c


! (u; a; b; c);

(link rules) :
(
commutation

�
x; y; a; b; c; d


! (x; y; a; b; c; d);

annihilation
�
x; y; a; b; c; d


! (a; b; c; d);

(45)

where x, y and z denote the � values of the center sites be-
fore undergoing a structural change; u, v and w denote the
� values of the center sites after the structural change; and
a, b, c, and d denote the states of the neighboring sites. The
ordering is unimportant, so long as a given string can be
obtained from another by cyclic permutation, otherwise
the strings are different; i. e., (a; b; c) is both topologically
and functionally equivalent to (b; c; a), but (c; b; a) is dif-
ferent. The action of � , value, and links is graphically illus-
trated in Figure 17.

By convention, the GRA algorithm is applied in two
steps: (1) site rules (transition, division and fusion) are
executed first, and at all subsequent even time steps, fol-
lowed by (2) link rules (commutation and annihilation),
executed at odd steps.

In the event that multiple rules are simultaneously ap-
plicable – such as might happen, for example, if the rules
include more than one division, or fusion, for the same
lefthandside argument in their expressions (in Eq. (45)) –
the order in which the rules are applied is determined by
an a priori priority ranking. Also, since applying either
commutation or annihilation rules to adjacent links yields
inconsistency, whenever a local context arises in which
this might happen, the application of these rules is tem-
porarily suppressed. (This is done by sweeping through the
link set twice: on the first pass, a temporary flag is set for
each link that satisfies a rule condition; on the second pass,
the link rule is applied if and only if the four neighboring
links did not raise flags during the first pass.)

Figure 18 shows the first few steps in applying one di-
vision and two commutation rules to a simple initial graph.
(Kohji Tomita provides several movies of GRA evolutions
on his website: http://staff.aist.go.jp/k.tomita/ga/)

Tomita, Kurokawa, and Murata [67,68,69,70,71] re-
port a variety of emergent behaviors, including (1) arbi-
trary resolution (because GRA rules effectively allow an ar-
bitrary number of sites to “grow” out of any initial struc-
ture, these systems define their own “boundary condi-
tions” and graphs with arbitrary resolution are possible);
(2) repetitive structures, in which some geometrical subset
of an initial graph is reproduced, indefinitely, and continu-

Structurally Dynamic Cellular Automata, Figure 18
Sample GRA evolution starting from the graph on the left. The
rules are (see Eq. (45)): (1) division(1;0;0; 2)! (1;1;1;0;0; 2),
(2) commutation(1;2)! (1;2), and (3) commutation(0;0) !
(0;0). (Reproduced from [69] with permission)

http://staff.aist.go.jp/k.tomita/ga/
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ously grafted onto the original structure; and (3) self-repli-
cation, in which both site-value and structure is replicated
after N steps. In [70], Tomita et al. describe how genetic
algorithms [45] may be used for automating the search for
self-replicating patterns.

In [67], Tomita et al. also present the design of a self-
reproducing Turing Machine. Turing machines are ab-
stract symbol manipulating devices that mimic the ba-
sic operations of a computer. Formally, they consist of
a “tape” (of indefinite length, to record data), a “head”
(that reads/writes symbols on the tape, and that can move
left or right), and “state transition rules” (that tell the head
which new symbols to write given the current state of the
tape). The tape is analogous to “memory” in a modern
computer; the head is analogous to the microprocessor.
A Turing machine is called “universal” if it can simulate
any other Turing machine.

Tomita et al.’s [67] Turingmachine is modeled as a lad-
der structure: the upper sites constitute the “tape” mech-
anism; the lower sites form the “tape head” that reads the
tape; both ends of the ladder are single sites that define
“end of tape”; and the two ends are joined to form a loop.
Although the tape is initially finite, the ladder can grow
to arbitrary length, as required, by using appropriate GRA
rules. Tomita et al. [67] self-replicating Turing GRA con-
sists of 20 states and 257 (2-symbol) rules. They also in-
troduce a design for a universal Turing machine [69] that
consists of 30 states and 955 rules for reproduction, and 23
states and 745 rules for computation.While self-reproduc-
ing universal Turingmachines can be described using con-
ventional CA, their expression using GRA rules are con-
siderably more compact.

Dynamic Graphs as Models
of Self-Reconfigurable Robots
In the context of looking for self-reconfiguration algo-
rithms that may be used to manufacture modular robots
for industry, Saidani [63,64] has recently introduced a dy-
namic graph calculus that includes rules similar to those
that define SDCA; but which depend only on the topol-
ogy of (but not the �-values living on) the lattice. Saidani
and Piel [65] have also introduced an interactive program-
ming environment for studying dynamic graph simula-
tions called Dynagraph, and implemented in Smalltalk.

There are two basic approaches to designing modular
robots: (1) to develop a set of elementary generic mod-
ules that can be rapidly assembled by humans to form
robots that solve a specific problem, and (2) to design
a set of (otherwise identical) primitive components that
can adaptively reconfigure themselves. Focusing on the
latter approach, Saidani [64] formally reinterprets modu-

lar “robots” to mean modular networks; and proceeds to
model adaptive robotic self-reconfigurations as a class of
recursive graph dynamical systems. In contrast to other
related dynamic graph models [18,25], the “modules” (or
subgraphs) of Saidani’s model use local knowledge of their
neighborhood topology to collectively evolve to some
goal configuration. Although the dynamics transforms the
global state, the evolution remains strictly decentralized,
and individual modules do not know the (desired) final
state.

Apart from restricting the dynamics to topology alone
(indeed, none of the sites harbor information states of any
kind), Saidani [63,64,65] further assumes that (1) connec-
tions between sites are directional (both to- and from-links
may coexist between the same two modular components);
(2) “active” sites reconfigure their local neighborhood by
accepting, keeping, or removing their adjacent links ac-
cording to rules that are functions of their current topol-
ogy (defined as a given sites’ current local neighborhood
and the current neighborhood of its neighbors: a site only
knows about its own in- and out-degree, which can obvi-
ously be computed from its local topology, and the in- and
out-degrees of its nearest neighbors); (3) a site controls its
outgoing links (and can connect or disconnect any outgo-
ing links), but cannot sever incoming connections; (4) sites
must maintain at least one link throughout an evolution
(so that the graph remains connected); and (5) all sites are
equipped with the same set of rules.

As in conventional CA and the basic SDCA model, the
“reconfiguration” proceeds synchronously throughout the
graph. The decision process includes an innate stochas-
tic element: in the event that there is a rule that specifies
that a site is to establish a link to a neighbor of one of its
neighbors, but all neighboring sites have the same degree
(which is the only dynamical discriminant), the neighbor
with which a new link will be forged is selected at random.

As a concrete example, Saidani [64] presents a tree-
to-chain algorithm that evolves an initial “tree” graph to
a linear chain of linked sites (see Fig. 19). While we do not
reproduce the full algorithm here, it is essentially a case-
driven list of rules of the form if condition C1 (and condi-
tion C2, . . . and condition Cn) then connect (or disconnect)
site i to (from) the nth neighbor of i’s neighbor, �. For ex-
ample, an explicit “rule” might be: if 1 � deg�(i) � 2 and
degC(i) D 1 and j�(i)j D 2 then link i to a neighboring site
j that has deg�( j) D 0, where deg�(i) and degC(i) are the
in- and out-degrees of site i, and �(i) is the total number
of sites to which i is currently linked (with either incoming
or outgoing links).

Conceptually, the details of Saidani’s rules are less im-
portant than what the unfolding process represents as
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Structurally Dynamic Cellular Automata, Figure 19
Schematic illustration of a tree topology reconfiguring itself into a linear chain using a set of case-based “if–then” topology rules
defined in [64]; see text for details

a whole. An initial graph – which we recall is to be viewed
as a distillation of a “modular robot” – is transformed, by
the individual sites (or parts of the robot), into another de-
sired structure; i. e., the graph is entirely self-reconfigured.
Though the broader reverse-engineering problem (which
includes asking such fundamental questions as “How can
a desired final state be mapped onto a specific cased-based
list of graphical rules?”) remains, as yet, unanswered, and
the Dynagraph work environment [65] is currently lim-
ited to experimenting only with graphs that have less than
30 sites, the basic model already represents a viable new
approach to using dynamic graphs to describe self-recon-
figurable robots; and is potentially more far-reaching as
a general model of topologically-reconfigurable dynamical
systems.

SDCA asModels of Fundamental Physics

Pregeometric Theories of Emergent Space-Time

Although SDCA are a natural formal extension of conven-
tional CA – and serve as general-purpose modeling tools –
their conception was originally motivated by fundamen-
tal physics; specifically, by a search for models of self-or-
ganized emergent discrete space-time [42]. “Space acts on
matter, telling it how to move; . . . matter reacts back on
space, telling it how to curve”, which is the central les-
son of Einstein’s geometrodynamics, as explained by Mis-
ner, Thorne and Wheeler in their classic text on Gravita-
tion [44]. Wheeler [73] has been a particularly eloquent
spokesman for the need to search for what he calls a pre-
geometry, or a set of basic elements out of which what we
normally think of geometry is built, but which are them-
selves devoid of a specific dimensionality: “Space-time . . .
often considered to be the ultimate continuum of physics,
evidences nowhere more clearly than at big bang and at col-

lapse that it cannot be a continuum. Obliterated in those
events is not only matter, but the space and time that enve-
lope that matter . . . we are led to ask out of what ‘pregeome-
try’ the geometry of space and spacetime are built”.Wheeler
has also proposed the idea that particles be viewed as geo-
metric disturbances of spacetime, called geometrodynamic
excitons.

A priori, SDCA appear tailor-made for describing pre-
geometric theories of space-time. Since in SDCA, lattice
and local �-values are explicitly coupled, and geometry
and value configurations are treated on an approximately
equal footing, SDCA is certainly at least formally consis-
tent with Einstein’s geometrodynamic credo. The struc-
ture is altered locally as a function of individual site neigh-
borhood value-states and geometries, while local site-
connectivity supports the site-value evolution in exactly
the same way as in conventional CA models defined on
random lattices. The microphysical view of physics that
emerges from this construction is one in which a funda-
mentally discrete pregeometry continually evolves in time
as an amorphous structure but with a globally well-defined
dimensionality. Particles are constructs of that amorphous
structure and can be viewed as locally persistent substruc-
tures – i. e. geometrical or topological solitons – with di-
mensions that differ from the surrounding value. Just as
“value structure” solitons are ubiquitous in conventional
CAmodels [32,74], “link structure” solitons might emerge
in SDCA; physical particles would, in such a scheme,
be viewed as geometrodynamic disturbances propagating
within a dynamic lattice.

Of course, speculation regarding the ultimate con-
stituents of matter and space-time date back at least as far
as 500 BC when the philosopher Democritus mused on the
idea that matter is made of indivisible units separated by
void. Since then there have been countless attempts, with
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varying degrees of success, to fashion an entirely discrete
theory of nature. We limit our discussion to a short survey
of some recent work that centers on ideas that are either
direct outgrowths of, or are otherwise conceptually related
to, SDCA models. (A short history of pregeometric theo-
ries appears in chapter twelve of Ilachinski [32]).

One of the earliest proponents of pregeometry is
Zuse [76], who speculated on what it would take for a CA-
like universe to sustain “digital particles” on a cellular lat-
tice. He focused on two main problems: (1) How does the
universe’s observed isotropy arise from a CA’s (Euclidean,
hexagonal, etc.) anisotropy?, and (2) What is the informa-
tion content of a physical particle? As an answer to the first
question, Zuse suggests . . .

“ . . . variable and growing automata. Irregularities of
the grid structure are a function ofmoving patterns, which is
represented by digital particles. Now, not only certain values
are assigned to the single crosspoints of the grid in the con-
cept of the cellular automaton which are interrelated and
sequencing each other, but also the irregularities of the grid
are itself functions of these values of the just existing inter-
linking network. One can imagine rather easily that in such
a way the interdependence of mass, energy, and curvature
of space may logically result from the behavior of the grid
structure.”

Jourjine [33] generalizes Euclidean lattice field theory
on a d-dimensional lattice to a cell complex. Using ho-
mology theory to replace points by cells of various dimen-
sions and fields by functions on cells, he develops a for-
malism that treats space-time as a dynamical variable and
describes the change in the dimension of space-time as
a phase transition.

Kaplunovsky and Weinstein [34] develop a field-theo-
retic formalism that treats the topology and dimension of
the spacetime continuum as dynamically generated vari-
ables. Dimensionality is introduced out of the characteris-
tic behavior of the energy spectrum of a system of a large
number of coupled oscillators.

Dadic and Pisk [13] introduce a self-generating dis-
crete-space model that is based on the local quantum-me-
chanics of graphs. Just as in SDCA, Dadic and Pisk’s spa-
tial structure is discrete but not static; it is fundamentally
amorphous and evolves in time. Though the metric is es-
sentially the same one used to define SDCA (i. e., Deffec), it
is generalized to unlabeled graphs by referring to the topo-
logical description of the node positions rather than their
arbitrary labels. Though their “graph dynamics” differs
from what is used by SDCA (and uses a symmetrized Fock
space that is local in terms of their graph metric, where
“Fock space” is a Hilbert space used to describe quantum
states with a variable, or unspecified, number of particles,

and is made from the direct sum of tensor products of sin-
gle-particle; or, in this case, single-graph, Hilbert spaces) it
shares two important properties with SDCA: (1) interac-
tions depend only on the local properties of the graph, and
(2) interactions induce only minimal changes to the local
metric function. An important consequence of their the-
ory is that the dimension of a graph is a scale dependent
quantity that is generated by the dynamics.

Combinatorial Space-Time Hillman [27] introduces
a combinatorial space-time, which he defines as a class
of dynamical systems in which finite pieces of spacetime
contain finite amounts of information. Spacetime is mod-
eled as a combinatorial object, constructed by dynamically
coupling copies of finitely many types of certain allowed
neighborhoods. There is no a priori metric, and no con-
cept of continuity, which is expected to emerge on the
macroscale.

The construction (and evolution) of spaces proceeds
in three steps: (1) define a set X of combinatorial n-di-
mensional spaces (examples are conventional CA graphs,
graphs with directional links, or some other kind of em-
bedded symmetry); (2) define a set of local, invertible
primitive maps T : X $ Y between pairs of space sets,
such that the maps do not all commute with one an-
other (for example, a simple renaming of the sites or links
gives an invertible, local map); (3) generate an arbitrary
set of local invertible graph transformations by compos-
ing primitive maps with one another. Since the primi-
tive maps are deliberately chosen so that they do not all
commute, the act of composition yields infinitely many
nontrivial transformations. The orbits fTz(x) j z 2 Zg (for
each space x in X) are (nC 1)-dimensional combinato-
rial spacetimes; which include reversible CA and SDCA-
like networks in which geometry evolves locally over time.
Formally, Hillman uses matrices of nonnegative integers,
directed graphs, and symmetric tensors to describe these
systems, so that local equivalences between space sets are
generated by simple matrix transformations. Concrete ex-
amples of dynamic combinatorial space-time graphs are
given in [27].

Structurally Dynamic Disordered Cellular Networks
As an explicit example of how dynamic graphs can be used
to model pregeometry, consider structurally dynamic dis-
ordered cellular networks (abbreviated, SDDCN), recently
introduced by Nowotny and Requardt [53,54,55,58,59,60].
SDDCN are a class of models closely related to SDCA but
developed explicitly to describe a discrete, dynamic space-
time fundamental physics. The main difference between
the two models is that whereas link connections in SDCA
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are strictly local, SDDCN are capable of generating both
local and translocal links.

In contrast to more mainstream high-energy theories
of fundamental physics (which are dominated by string
theory and/or loop quantum gravity, both of which as-
sume a certain level discretization at the Planck scale,
but assume that a discrete space-time emerges from an
underlying continuum physics), SDDCN takes a bottom-
up approach. SDDCN assumes that there is underlying
dynamic, discrete and highly erratic network substratum
that consists of (on a given scale) irreducible mutually in-
teracting agents exchanging information via primordial
channels (links). The known continuum structures are ex-
pected to emerge on a macroscopic (or, mesoscopic) scale,
via a sequence of coarse graining and/or renormalization
steps.

Like SDCA, SDDCN are defined on arbitrary graphs,
G, initially defined by a specified set of sites and links.
Both sites and links are allowed to take on values. Site
values, � i (which represent a primitive “charge”), are
taken from some discrete set, q � Z, where q is a discrete
quantum of information; link states assume the values
Jij 2 f�1; 0;C1g, and represent an elementary coupling.
The Jij are equivalent to SDCA’s lij, but take on three values
rather than two. Heuristically, Jij represent directed edges
pointing either from site i to j (if Jij D 1), or from j to i (if
Jij D �1); or, in the case of Jij D 0, the absence of a link.
At each time step (representing an elementary quantum of
time), an elementary quantum q is transported along each
existing directed link in the indicated direction. As for
SDCA, SDDCN dynamically couples site values to links.

Nowotny and Requardt [53] introduce two network
models: one in which connected sites that have very differ-
ent internal states typically lead to large local fluctuations
(D SDDCN1), and another in which sites with similar in-
ternal states are connected (D SDDCN2):
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where 
�ij D � t
i � �

t
j , and 2 � 1 � 0. Since SDDCN

is intended to model pregeometric dynamics, Nowotny
and Requardt [53] caution that the t parameter that ap-
pears in these equations must not to be confused with the
“true time” that (they expect) emerges on coarser scales.
In keeping with its physics-based motivation, SDDCN’s
dynamical laws depend only on the relative differences in
site values, not on their absolute values. Indeed, charge is
nowhere either created or destroyed, so that SDDCN con-
serves global “charge”:

P
i �

t
i D constant, where the arbi-

trary constant can be set to zero.
Both models start out initially on a simplex graph with

N � 200 nodes, so that the maximum number of pos-
sible links is N(N � 1)/2. The initial �-seed consists of
a uniform random distribution of values scattered over the
interval f�k;�k C 1; : : : ; k � 1; kg, where k � 100. The
initial values for link states, J tD0

ij , are selected from f�1; 1g
with equal probability; i. e., the initial state is a maximally
entangled nucleus of nodes and links. Nowotny and Re-
quardt [55] state that “. . . in a sense, this is a scenario
which tries to imitate the big bang scenario. The hope is,
that from this nucleus some large-scale patterns may ulti-
mately emerge for large clock-time”. For most properties
(other than the h�it and

P
i j�

tC1
i � � t

i j, which are both
equal to zero by construction), the average over the width
of the initial vertex state distribution, taken over1 and2,
specific realizations of initial conditions, and time, depend
linearly on network size.

We summarize Nowotny’s and Requardt’s [53,55]
findings, culled from extensive numerical experiments: (1)
the appearance of very short limit cycles in SDDCN1 (pe-
riod 6 and multiples of 6, with the longest having pe-
riod 36 on a network of size N D 800), (2) Much longer
limit cycles and transients in SDDCN2, both of which ap-
pear to grow approximately exponentially, (3) structurally,
SDDCN1 evolve from almost fully connected simplex net-
works to more sparse connectivities with increasing 1/2;
there is a regime in which few vertices with very high
degree coexist with many vertices with a low degree; for
large (around 1 � 60; for large 1/2, the graph eventu-
ally breaks apart and all nodes become isolated; (4) for
SDDCN2, nodes typically have zero degree small 1/2, and
links become increasingly dense as 1/2 increase; the de-
gree distribution is generally broad and remains so for
large 1/2 (the authors also note observing multiple local
maxima of the distributions in a wide range of 1/2 val-
ues); (5) for SDDCN1, there is an abrupt phase-transition
in the temporal fluctuations of vertex degrees (defined as
degi (t C 1) � degi (t)) from a state in which there are es-
sentially no fluctuations (“frozen network”) to one with
strong fluctuations (“liquid network”); (6) the distribu-
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tion of site values is strongly bimodal for 62 � 1 � 85 for
SDDCN1 (while SDDCN1 distributions are not bimodal,
the width of the site value distributions for different values
of 1 appears modulated.

From a fundamental physics perspective, the most in-
teresting class of behaviors of SDDCN involves emergent
dimensionality. Nowotny and Requardt [55] argue that
since the continuum is a self-organized dynamic struc-
ture that emerges in the limit of large N and t, the most
useful measure of “dimension” cannot be purely local (as
in the case of effective dimensionality, Deffec, used for de-
scribing SDCA systems). Rather, it must be an intrinsi-
cally global property; one that is independent of any arbi-
trary embedding dimension, and one that can take on rel-
atively stable values in the whole (to characterize effective
system-wide characteristics), while simultaneously being
relatively impervious to otherwise rapidly changing struc-
tural changing taking place on the microscale. Toward this
end, Nowotny and Requardt [53] define the upper (and
lower) scaling dimensions, DU

S (i) (and DL
S (i)), with re-

spect to site i:

DU
S (i) D lim sup

r!1

lnˇ (i; r)
ln r

;

DL
S (i) D lim inf

r!1

lnˇ (i; r)
ln r

;

(47)

and the upper (and lower) connectivity dimensions,
DU
C (i) (and DL

C (i)), with respect to site i:

DU
C (i) D lim sup

r!1

ln @̌ (i; r)
ln r

;

DL
C (i) D lim inf

r!1

ln @̌ (i; r)
ln r

;

(48)

where ˇ (i; r) D # sites j j Dij � r, and @̌ (i; r) is the
number of sites on the surface of the r-sphere. When the
upper and lower limits coincide, we have the scaling di-
mension (D DS) and the connectivity dimension (D DC ),
respectively. DS is related to well known dimensional con-
cepts in fractal geometry; DC is a more physical measure
that describes how the graph is connected, and thus how
sites may potentially influence one another [55]. Prelimi-
nary research [53] suggests that under certain conditions,
behavior resembling a structural phase transition to states
with stable internal (and/or connectivity) dimensions is
possible.

Network Automata

Stephen Wolfram devotes chapter nine of his Opus –
A new kind of science (abbreviated, NKS) [75] – to apply-
ing CA to fundamental physics; and speculates on ways in

which space may be described using a dynamic network.
The central, overarching theme of NKS is that “simple”
programs often suffice to capture complex behaviors.

The bold claim made in chapter nine of NKS is that,
on an even more fundamental level, what underlies all the
laws of physics, as we currently understand them, is a sim-
ple CA-like program, from which, ultimately, all the phe-
nomenologically observed complexity in the universe nat-
urally emerges. As for the specific forms such a “program”
may take,Wolfram’s intellectual point of departure echoes
that of other proponents of a discrete dynamic pregeomet-
ric theory:

“. . . cellular automata . . . cells are always arranged in
a rigid array in space. I strongly suspect that in the underly-
ing rule for our universe there will be no such built-in struc-
ture. Rather . . . my guess is that at the lowest level there
will just be certain patterns of connectivity that tend to ex-
ist, and that space as we know it will then emerge from these
patterns as a kind of large-scale limit”.

Wolfram introduces his network automata (abbrevi-
ated, NA) with these basic assumptions (see additional
notes in NKS [75] on the evolution of networks: pp. 1037–
1040): (1) features of our universe emerge solely from
properties of space, (2) the underlying model (and/or
“rules”) must contain only a minimal underlying geomet-
ric structure, (3) the individual sites of emergent graphs
must not be assigned any intrinsic position, (4) sites are
limited to possessing purely topological information (that
defines the set of sites to which a given site is connected),
(5) incoming and outgoing connections need not be dis-
tinguished, and (6) all sites have exactly the same total
number of links to other sites (which is assumed equal to
three). This last assumption – which is essentially the same
one made by Nowotny and Requardt [53] as the basis of
their SDDCN model; see Subsect. “Structurally Dynamic
Disordered Cellular Networks” above – does not lead to
any loss of generality. With two connections, only very
trivial graphs are possible; and it is easy to show that any
site with more than three links can always be redefined,
locally, as a collection of sites with exactly three links each
(see Fig. 20).

Structurally Dynamic Cellular Automata, Figure 20
Illustration of how sites that have more than three links can al-
ways be redefined as a set of sites with exactly three links each
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Structurally Dynamic Cellular Automata, Figure 21
Examples of planarity-preserving network substitution rules. (Reproduced from [75] with permission)

Wolfram [75] gives several concrete examples of evolv-
ing graphs (as models of pregeometry), the dynamics of
which are prescribed by a set of substitution rules rules;
i. e., explicit lists of the topological configurations (of sites
and links) that are used to replace (at time t C 1) specific
local configurations (as they appear at time t). However, in
contrast to SDCA rules, Wolfram’s substitution rules are
strictly topological; no site-value information is used. Also,
the number of sites in the graph can change as the graph
evolves; where, in SDCA, the number remains constant.

Figure 21 shows examples of rules in which specific
clusters of sites are replaced with other clusters of sites.
While the rules shown in the figure share the property that
they all preserve planarity, there is no particular reason
for imposing such a restriction; in fact, rules that gener-
ate non-planarity are just as easy to define. Wolfram spec-
ulates (pp. 526–530 in [75]) that “particle states” may be
defined as mobile non-planar subgraphs that persist on an
otherwise planar, but randomly fluctuating topology. Re-
versible versions of these rules may also be constructed,
by associating a “backward” version with each “forward”
transformation.

Some care must be taken while both defining and ap-
plying these rules consistently. For example, if a cluster of
sites contains a certain number of links at t, one is not
permitted to define a rule that replaces that cluster with
another one that has a different number of connections.
Another restriction is that rules must be independent of
orientation; that is, if a candidate rule requires identifying
the specific links (of, say, an otherwise topologically sym-
metric n-link local subgraph) before activating a desired
substitution, that rule is likewise forbidden. However, even
with these restrictions, a large number of rules are still pos-
sible. For example, 419 distinct rules may be defined for
clusters with no more than five sites.

In applying network rules, one cannot simply simulta-
neously replace all pertinent subgraphs with their replace-
ments, since, in general, two or more subgraphs with the
same topology may overlap somewhere within the net-

work. Since there is no priori, or universally consistent,
way of ordering the subgraphs, meta-rules must be im-
posed to eliminate any possible ambiguities. For exam-
ple, one method (m1) is to restrict replacements to a sin-
gle subgraph per time step, selecting the subgraph whose
replacement entails the minimal change to all recently
updated sites. Another method (m2) is to allow all pos-
sible nonoverlapping replacements, while ignoring those
that overlap. Wolfram reports that, although the second
method obviously produces larger graphs in fewer steps,
the two methods generally produce qualitatively similar
structures.

Figure 22 traces the first few steps in the evolution
of a simple graph under the action of a single substitu-
tion rule (defined at the center of the figure). Figures 22a
and 22b show the results of applying this rule using meth-
ods m1 and m2, respectively. In each case, the top row
shows the form of the network before the substitution
takes place at that step, and the bottom row shows the
network that results from the substitution. The subgraph
(or subgraphs, in Fig. 22a) involved in the replacement is
highlighted at both top and bottom.

Wolfram also suggests that analogs of mobile au-
tomata [43] can be defined for evolving networks. By tag-
ging a site i, say, with a “charge”, �i � 1, substitution
rules may be defined to replace clusters of sites around
the charged site. The effect is that the charge itself appears
to move, as its effective (relative) position within the net-
work changes as the geometric dynamics unfolds. (How-
ever, Wolfram also notes – on page 1040 in [75] – that
“despite looking at several hundred cases I have not been
able to find network mobile automata with especially com-
plicated behavior”).

Future Directions and Speculations

Although SDCA were first introduced over two decades
ago [28], much of their behavior remains unexplored. Of
course, this is due largely to the difficulty of studying dy-
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Structurally Dynamic Cellular Automata, Figure 22
Examples of network evolutions using the substitution rule shown at center. See text for explanation. (Reproduced from [75] with
permission)

namical systems that harbor an a priori vastly larger cou-
pled value-geometry space than the “merely” spatially-
confined behavioral space of conventional CA. Only rela-
tively recently have desktop computers become sufficiently
powerful, and visualization programs adept enough at ren-
dering multidimensional graphs [12], to make a serious
study of SDCA behaviors possible. For example, the gen-
eral-purpose math programs Mathematica (http://www.
wri.com) and Maple (http://www.maplesoft.com) both
provide powerful built-in graph-rendering algorithms to
help visualize complex graphs. Standalone public-domain
packages are also available; for example, AGNA [2], Net-
Draw [11], and Pajek [52]. In this final section, we list sev-
eral open questions and briefly speculate on possible fu-
ture directions.

Because of the relative paucity of studies dedicated
purely to exploring the space of emergent structures (such
asWolfram’s [74] pioneering studies of conventional CA),
many (even very fundamental) questions remain open:
What kinds of geometries can arise?, Which subspace of
the space of all possible graphs corresponds to those that
are actually attainable using SDCA (and SDCA-like) rules?,
What are the conditions for which certain geometries do,
and do not, form?, What combinations of �- and `-rules
give rise to specific kinds of graphs?

Other open problems include: (1) determining
whether the (provisionally defined) set of class-4 rules, for
which effective dimension appears to remain constant, is

genuine, rather than being either a long-term transient or
an unintentional artifact of imposed run-time constraints;
and, if this class is “real”, we obviously need to ask, How
large is it?, andUnder what conditions does it arise?; (2) de-
veloping SDCA as formal mathematical models, perhaps
as members of a broader class of graph grammars [20,35];
and (3) finding purely geometric analogs of the solitons
known to exist in conventional CA models [32,74].

This article has introduced several generalizations of
the basic SDCA model, including memory effects (Sub-
sect. “SDCA With Memory”), reversibility (Subsect. “Re-
versible SDCA”), probabilistic transitions (Subsect. “Prob-
abilistic SDCA”), and a class of SDCA-like dynami-
cal systems that evolve according to rules that depend
only on topology (Subsects. “Dynamic Graphs as Mod-
els of Self-Reconfigurable Robots” and “Network Au-
tomata”). However, other possibilities abound: (1) � site-
variables may take on a larger range of values, � 2

f0; 1; : : : ; k � 1g; (2) link variables, `ij , may similarly
take on a larger range of values, `ij 2 f0;˙1;˙2;
: : : ;˙mg (where, say, ˙ determines “directionality”, and
absolute value, j`ijj, represents either channel capacity
for information flow or some other innate property); and
(3) both sites and links may take on richer, and more ex-
plicitly “active”, roles of agent-actors [17].

Apart from these formal extensions, some obvious fu-
ture applications include modeling communication and
social network dynamics, studying the dynamics of plas-

http://www.wri.com
http://www.wri.com
http://www.maplesoft.com
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ticity in artificial neural networks, designing adaptive
self-reconfiguring parallel-computer networks (as well
as “amorphous” computer chips), studying behaviors of
gene-regulatory networks, and providing the conceptual
core for fundamental pregeometric physical theories of
discrete, emergent space-times.
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Glossary

Submarine landslide A gravitational mass failure feature
on the seafloor.

Slow earthquake A discrete slip event that produces mil-
limeter to meter-scale displacements identical to those
produced during earthquakes but without the associ-
ated seismic shaking.

GPS The Global Positioning System consists of a constel-
lation of at least 24 medium earth orbiting satellites
transmitting two or more microwave frequencies for
use in precise positioning.

Seafloor geodesy The application of geodetic methods
(studies of the change in the shape of the earth’s sur-
face) applied to a submarine environment.

Definition of the Subject

The term ‘submarine landslide’ encompasses a multitude
of gravitational mass failure features at areal scales from
square meters to thousands of square kilometers. Here, we
concentrate on the large end of that spectrum, namely the
submarine landslides that, when they move either in con-
tained slip events or catastrophically, can generate surface
displacements equivalent to > M6 earthquakes and/or
hazardous tsunami.

The term ‘slow earthquake’ describes a discrete slip
event that produces millimeter to meter-scale displace-
ments identical to those produced during earthquakes but
without the associated seismic shaking. Slow earthquakes,
primarily associated with tectonic fault zones, have been
recognized and studied with increasing frequency in the
past decade largely due to the decreasing cost and prolif-
eration of Global Positioning System (GPS) geodetic net-
works capable of detecting the ground motion [1,2,3]. Re-
cently, one such GPS network on the south flank of Ki-
lauea volcano, has recorded multiple slow earthquakes on
the subaerial portion of a large landslide system that oc-
curs primarily in the submarine environment [4,5,6]. Be-
cause the bathymetric charts surrounding the Hawaiian
islands are littered with the remnants of massive, catas-
trophically emplaced submarine landslides (Fig. 1) it is
natural to wonder if a slow-slipping submarine landslide

is a precursory stage of one that will ultimately fail catas-
trophically.

We see two principal reasons why monitoring subma-
rine landslides and slow earthquakes associated with them
is important. First, because catastrophic failure of subma-
rine landslides can cause tsunami they represent signifi-
cant hazards to coastal zones. Understanding and moni-
toring how slow slip may lead to accelerated slip and catas-
trophic failure is, therefore, very important in terms of
hazard mitigation. Second, submarine landslide systems
can be some of the most active as well as spatially confined
deforming areas on earth and so they represent excellent
targets of study for furthering our understanding of the
general fault failure process. For instance a pertinent ques-
tion for which we do not yet have an answer is: are fault
frictional properties homogeneous enough that the occur-
rence of slow earthquakes on a detachment fault plane
underlying a landslide could relieve stress on the fault or
do the slow earthquakes in one region load a neighboring
seismogenic patch bringing it closer to a large sudden fail-
ure (i. e. an earthquake)?

While installation and operation of GPS networks on
land is now relatively routine and somewhat inexpen-
sive, the in situ monitoring of submarine landslidemotion
represents a significant technical challenge with accord-
ingly higher costs. Submarine geodesy e. g. [7], however,
is a nascent and rapidly evolving field with relative and ab-
solute positioning techniques being intensely studied and
developed. The near future is sure to see many advances
in our monitoring and understanding of submarine land-
slides and slow earthquakes due to the application of sub-
marine geodetic techniques.

Introduction

Submarine Landslides

The last 30 years have seen a dramatic increase in
the recognition of submarine landslides world-wide, due
largely to the increased prevalence and capability of swath
and side-looking sonar mapping systems and systematic
submarine mapping programs. For instance, the side-scan
sonar mapping of the Hawaiian exclusive economic zone
in the 1980s resulted in the discovery that massive sub-
marine landslides are spatially distributed along the en-
tire Hawaiian Ridge [8] (Fig. 1). These features are some
of the largest landslides on the planet, with more than
70 attaining lengths greater than 20 km and some hav-
ing lengths greater than 200 km and total volumes ex-
ceeding 5000 km3. Since then, submarine landslides as-
sociated with other volcanic islands e. g. [9,10,11], mid-
ocean ridges [12], and continental margins [13] have also
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Submarine Landslides and Slow Earthquakes: Monitoring Motion with GPS and Seafloor Geodesy, Figure 1
Topographic and bathymetric map of the Hawaiian Islands (data from http://geopubs.wr.usgs.gov/i-map/i2809/). Studied subma-
rine landslides are indicated: HS, Hilina Slump; SK, South Kona; A1, Alika 1; A2, Alika 2; WL, Wailau; NU, Nu’uanu; WN, Wai’anae

been studied. Of these, the slopes flanking volcanic islands,
especially when they are in their steeper-sloped shield-
building stage [14,15], tend to be particularly susceptible
to landslide instability and so they have been the focus of
much recent research in the Canary Islands [16,17] and
especially in the Hawaiian Islands [18,19,20,21,22,23]. For
instance, most of the Hawaiian submarine landslides are
thought to be inactive, except for those on the flanks of the
Big Island e. g. [21].

The morphology of submarine landslide features is
similar to their subaerial counterparts. In map view they
generally exhibit lobate and hummocky bathymetry. In
cross-section, a wedge-shaped region of deformed mate-
rial thins down-slope and is underlain by a gently-slop-
ing planar dislocation surface (sometimes referred to as
a basal detachment or ‘decollement’) separating the de-
formed carapace from the underlying undeformed sub-
stratum (Fig. 2). An upslope extensional head-scarp region
transitions into a contractional fold belt towards the toe.
The normal faults in the upslope region typically intersect
the surface at high angles (> 45 degrees) and are mani-
fested as scalloped-shaped scarps at the head of the slide
that separate regions of differentially tilted fault blocks;
in the sub-surface they may continue at high angles un-

til they intersect the basal decollement, or they may sole
with depth either into the decollement or into another
sub-horizontal slip-surface [24]. The contractional regions
are characterized by folded and bulging layers, closed de-
pressions, and steep toes [20,21,25]. Moore et al. [8] sep-
arated the Hawaiian submarine landslides into two prin-
cipal types: ‘slumps’ and ‘debris avalanches’. The slumps
are wide (up to � 100 km), deep-seated (� 10 km thick),
and have surface inclinations of up to 3 degrees while the
debris avalanches are long (up to � 230 km), shallowly-
seated (50m–2 km thick), and have surface slopes gener-
ally less than 3 degrees.

Concomitant with the mapping of the landslide fea-
tures has been the increasing recognition that sudden
submarine landslide movement can cause tsunami with
destructive implications for coastal societies e. g. [26].
A particularly well-known example of this scenario is the
1929 Grand Banks failure [27]. Moreover, in the 1990s
alone workers have attributed at least 5 tsunami events
to catastrophic landslide failure sources: (1) 1992 Flo-
res Island, Indonesia [28]; (2) 1994 Mindoro, Phillipines
[29]; (3) 1998 Papua New Guinea e. g. [30]; (4) Kocaeli,
Turkey [31]; (5) 1999 Pentecost Island, Vanuatu [32]. In
Hawaii, the Mw7:7 1975 Kalapana earthquake, most likely

http://geopubs.wr.usgs.gov/i-map/i2809/
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Submarine Landslides and Slow Earthquakes: Monitoring Motion with GPS and Seafloor Geodesy, Figure 2
Schematic cross-section of a submarine landslide flanking an active ocean-island volcano (after [21])

Submarine Landslides and Slow Earthquakes: Monitoring Motion with GPS and Seafloor Geodesy, Figure 3
Map of geodetic networks on the Hilina Slump overlain on topographic/bathymetric map. Yellow circles on land are CGPS sites op-
erated jointly by the USGS Hawaiian Volcano Observatory, University of Hawaii, and Stanford University. Red squares offshore (open
and filled) are seafloor geodetic sites operated by Scripps Institution of Oceanography. Orange circles offshore are acoustic exten-
someter sites deployed by our group with locations of transponders (T2,T3) and transceiver (C1) indicated. Grey vectors are average
horizontal velocities from 1997–2005. Yellow vectors are horizontal motions from the January 2005 slow earthquake. Grey dots are
earthquakes from the HVO catalog for the period May 2004–2005

due to slip of the fault surface underlying an active sub-
marine landslide [33,34,35], caused local loss of life and
damage in Southern California.

From a hazards standpoint it is particularly important
to understand how tsunami are generated by submarine

landslides because the propagation time between tsunami
generation to runup is typically on the order of minutes.
For instance, a catastrophic failure of the west side of the
island of Hawaii would likely send tsunami waves around
the Hawaiian islands that would reach the densely popu-
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lated areas of Oahu’s Waikiki beaches in less than an hour
and more likely � 30min (G. Fryer, personal communi-
cation, 2007). Simulating waves generated by a sudden,
chaotic disturbance of the seafloor, as expected from a sub-
marine landslide, is quite complicated e. g. [36,37] and not
all workers agree on approaches or results. Murty [38],
however, stressed that parameters such as slide angle, wa-
ter depth, density, speed, duration of the slide are second
order, while instantaneously displaced volume is likely the
most important parameter controlling tsunami genera-
tion.

Despite the increasing awareness of their hazard, lit-
tle is known about how submarine landslides actually
move, largely because of the challenge of installing instru-
ments and retrieving data from the submarine environ-
ment. Moore et al. [8] recognized that while slumps more
likely move relatively slowly, debris avalanches could be
deposited very rapidly based on, for instance, uphill flow

Submarine Landslides and Slow Earthquakes: Monitoring Motion with GPS and Seafloor Geodesy, Figure 4
Time series of north component of motion for selected GPS stations. Offsets of 7 slow earthquakes are identified by yellow lines. Red
dashed lines aremagmatic diking events

of material in the distal portions of the landslide deposits.
In agreement with this, the estimated downhill velocities
from the 1929 Grand Banks event was 60–100 km/h [39]
whereas many studies have documented � 6–10 cm/yr
horizontal and vertical velocities associated with a sub-
marine landslide flanking the Island of Hawaii’s Kilauea
volcano, the Hilina Slump [4,5,6,40,41,42]. Recently, GPS
data from the Hilina Slump have elucidated that not only
does the slump move at the above-stated, fairly smooth,
background velocities, but also that the slump will oc-
casionally deform in discrete accelerated cm-scale mo-
tions equivalent to M6 earthquakes but without the shak-
ing [4,5,6]. These ‘slow earthquakes’ last hours and ac-
commodate cm’s of ground displacement (Fig. 3). It is not
currently known, however, how the occurrence of a slow-
earthquake in a submarine landslide system will affect its
future movement by either making it more or less proba-
ble of failing catastrophically.
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Slow Earthquakes

The term ‘slow earthquake’ has been used to describe
a variety of transient aseismic deformation phenom-
ena including slow precursor events preceding large
earthquakes [43,44,45,46,47,48], afterslip following earth-
quakes [49,50,51], variable fault creep rates [52,53,54,55],
certain subduction zone thrust events with unusually
long durations and large amplitude tsunamis for their
size [56], and discrete fault-slip events that do not pro-
duce detectable seismic shaking but are accompanied by
ground displacements very similar to those produced dur-
ing earthquakes [1,2,3,4,5,6,57]. Hereafter, when we use
‘slow earthquake’ we will refer to this latter description al-
though the term was first used in the modern literature to
describe a slow precursor to the great Chilean 1960 earth-
quake [43].

In contrast to slow precursor events whose ground
motions, like traditional earthquakes, are measured in sec-
onds or minutes, slow earthquake (SE) displacements usu-
ally accrue over time periods ranging from hours to days
and so they have been typically sensed with geodeticmeth-
ods. In the last decade, the proliferation of continuous
GPS (CGPS) networks has led to numerous SE observa-
tions and the discovery of some very rich behavior. In
certain regions SEs have occurred with very regular peri-
ods [2,4,58], they are often associated with non-volcanic
tremor [59,60] and, apparently, SEs follow very different
scaling laws (moment vs. duration) than traditional earth-
quakes [61]. Explanations for SE slip behavior has varied
to date. For subduction zones, the combination of deep
(> 35 km) SE sources and their association with tremor
(a phenomenon initially thought to be caused by forced
fluid flow [62] but more recently also explained in terms of
shear failure [63,64]) led to one current hypothesis that SE
mechanics are controlled by water released during meta-
morphic phase changes at the interface between a subduct-
ing and overriding plate [65,66]. Other explanations have
invoked rate- and state-variable frictional behavior to sug-
gest that SEs occur preferentially at transitions between
velocity strengthening and weakening regimes on a fault
plane [67,68,69] and that temporally varying climatic load
changes could help explain SE periodicity [58].

Due, in part, to their large magnitude deformation
signal and the high concentration of CGPS networks fo-
cused on them, subduction zones have dominantly been
the location of the most SEs to date [1,2,57,59,70,71,72].
Recently, the CGPS network on Kilauea volcano’s mobile
south flank has recorded multiple SEs [4,5,6] (Fig. 4) and
it is through the Kilauea events that SEs have come to be
associated with submarine landslides.

MonitoringMotion:
Subaerial and Submarine GeodeticMethods

Not surprisingly, much more is known about the motion
of subaerial than submarine landslides. Geodetic measure-
ments on land combined with contemporaneousmeasure-
ments of other properties (pore-water pressures, strength
of materials, etc.) have allowed, in some cases, a very thor-
ough understanding of how landslide motion is related to
driving forces such as gravitational stresses and rainfall.
For instance, Baum and Reid [73] instrumented a slow-
moving submarine landslide in Honolulu’s Manoa valley
with extensometers recording at 15 minute intervals and
rain gauges and found a direct correlation between rain fall
and deformation events. Similarly,Malet et al. [74] showed
that GPS-measured surface velocities increased to as high
as 20 cm/day following periods of higher rainfall during
May 1999 at the Super-Sauze earthflow in the French Alps.
At a slightly different scale, Hilley et al. [75] used InSAR
to simultaneously map deformation of multiple landslides
in California’s Berkely Hills at � monthly intervals and
found that landslide motion correlated with times of high
precipitation and that during the 1997–1998 El Nino event
displacement rates doubled from the background rate of
� 27–38mm/year, albeit with a � 3month time lag be-
tween the onset of motion and the high precipitation.

Much of the current knowledge that we have about the
motion of submarine landslides comes from their easier-
to-monitor subaerial portions, such as at Kilauea’s Hilina
slump (Fig. 3). In the case of the Hilina Slump, fully 3/4 of
the feature resides offshore at depths greater than 2000m
and the deformation monitoring network is necessarily
concentrated on the down-dropped blocks near the head-
wall scarp of the entire system. Recently, however, subma-
rine methods have started to provide geodetic information
from the ocean floor itself e. g. [7], e. g. [76,77,78,79]. As
thesemethods becomemore cost-effective and widespread
they will surely yield much insight into submarine land-
slide kinematics and, eventually, be employed in opera-
tional hazard monitoring/mitigation scenarios.

Whether a network is solely subaerial, submarine, or
some combination of the two, it is important to consider
that monitoring strategies can vary substantially depend-
ing on the time duration of the expected signal, the de-
sired threshold of detection, and the desired time latency
for individual solutions. For instance, simple detection
and warning of catastrophic landslide failure needs the
most rapid solution latency but coarse detection thresh-
olds (meter rather than millimeter level, for instance) are
appropriate. Conversely, if the goal is to detect small, po-
tentially precursory motions such as slow earthquakes,
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then detection threshold must be as sensitive as possible
along with solution latency being low.

Subaerial Geodesy: GPS

A multitude of geodetic techniques, from mechanically-
to electromagnetically-based, are currently employed on
landslides to measure motion caused by a range of defor-
mational phenomena spanning opening of small surface
cracks to the motion of kilometer sized blocks e. g. [74].
Data from Global Positioning System (GPS) networks has
increasingly contributed to the library of observations as-
sociated with landslide motion. In particular, for subma-
rine landslides that are large enough so that their motion
causes earthquakes or slow earthquakes [4,6,80], a tech-
nique which is suitable for inter-station distances mea-
sured in kilometers is most appropriate and so below, we
concentrate on the use of GPS with submarine landslides.

GPS GPS networks capable of sub-cm to mm-scale 3-di-
mensional ground motion detection are now deployed
in many of Earth’s most actively deforming zones (see
for example, http://sps.unavco.org/crustal_motion/dxdt/)
and readers are referred to thorough reviews of the gen-
eral technique and its application for geodynamic stud-
ies [81,82,83].

Crustal motion GPS networks are usually divided into
two types: those that record data continuously (CGPS)
and those whose individual monuments are occupied less
frequently in survey mode (SGPS). Depending on a va-
riety of factors including the modernity of the receiver,
the bandwidth of telemetry networks (should they exist),
and the storage capacity of the archival center, CGPS sam-
pling rate generally varies between once every 30 and 1 s
(though most modern receivers are capable of sampling
at frequencies higher than 1Hz). SGPS sampling is more
varied though it usually comprises re-occupation of sites
at intervals ranging from months to years with occupa-
tion times of hours to days and sampling rates similar
to CGPS. Accordingly, SGPS networks are more useful
for wider ranging spatial characterization of deformation
phenomena rather than for the rapid detection of mo-
tion or for tracking temporal evolution during transient
events.

High rates of sampling alone, however, do not guar-
antee that CGPS network positional solutions will achieve
their highest precision and/or accuracy. Assuming that
all sites within a CGPS network have stable monuments
and high-grade geodetic antennae and dual frequency re-
ceivers, the most important components of its error bud-
get for deformation monitoring are: (1) integer ambigu-

ity resolution; (2) orbital estimation; (3) atmospheric delay
estimation; (4) antenna multipath; (5) satellite constella-
tion geometry, and (6) intra-network baseline length. For
networks monitoring landslides with spatial scales on the
order of kms or tens of kms, however, the baselines are
short enough that errors scaling with baseline lengths are
small contributors to the error budget. In addition, as ab-
solute positioning in a global reference frame is not essen-
tial, precise orbital estimation is less important. For the
other error sources, freely available software packages such
as GAMIT, GIPSY, and BERNESE (http://facility.unavco.
org/software/processing/processing.html), and precise or-
bit processing centers such as the IGS (International GNSS
Service, http://igscb.jpl.nasa.gov/) or the Scripps Orbit and
PermanentArray Center (SOPAC, http://sopac.ucsd.edu/)
usually allow good enough mitigation of these errors so
that daily GPS solutions have resolution on the order of
2–5mm in the horizontal and � 2–3 times worse in the
vertical e. g. [83]. This resolution rule-of-thumb, however,
generally applies to post-processed data with occupation
times exceeding � 6–8 h, use of precise orbits, and the
best atmospheric estimation techniques e. g. [84]. Because
of the hours-to-days delay needed for estimating vari-
ous grades of precise orbits and the computational time
needed to estimate all the parameters for all sites with this
much data this standard rule-of-thumb cannot necessarily
be applied to a real-time or near real-time solution.

Real- and Near-Real Time GPS Processing There are
a variety of processing techniques that may be suitable
for real-time or near-real timemonitoring applications for
the subaerial counterparts to submarine landslides. For in-
stance, the well-known real time kinematic (RTK) posi-
tioning technique frequently employed by the surveying
community applies differential corrections sent via radio
link between stations to yield site position estimates with
cm-scale precision over baselines up to � 10 km in real-
time [85]. The technique works best for baseline distances
less than � 10 km typically, because the assumption of
correlated errors between stations is not necessarily valid
and differential corrections cannot be accurately applied
for larger baselines. Thus, RTK may be a suitable moni-
toring technique if a more spatially contained portion of
a landslide, such as a fault zone, is a particularly good in-
dicator of motion for the overall larger unit.

It is the number of measurement epochs required to
resolve the integer-cycle phase ambiguity inherent with
GPS data, however, that is the principal factor limiting
the temporal latency of high resolution GPS positioning
solutions. Kinematic techniques typically require minutes
worth of GPS data (when sampled at 1–30 s) in order to re-

http://sps.unavco.org/crustal_motion/dxdt/
http://facility.unavco.org/software/processing/processing.html
http://facility.unavco.org/software/processing/processing.html
http://igscb.jpl.nasa.gov/
http://sopac.ucsd.edu/
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solve integer ambiguities for initialization and reinitializa-
tion if a cycle slip or loss of phase lock occurs during mea-
surement, although progress is being made on mitigating
ionospheric effects and reducing time of integer ambigu-
ity resolution e. g. [86]. Regardless, if GPS station locations
are chosen with relatively good sky-view then loss of lock
due to poor satellite visibility should be minimal.

Recently, Bock et al. [87] developed a method of re-
solving integer ambiguities from a single epoch of dual fre-
quency GPS phase and pseudo range data that provides
independent epoch-by-epoch position estimates over
baselines as large as � 40 km. Their method allowed in-
stantaneous positioning resolution of 1.5 cm in the hor-
izontal and 7–8 times worse in the vertical coordinates.
Langbein and Bock [88] applied the technique to deter-
mine offsets in positional time series due to slip events
recorded by the Parkfield, California CGPS network which
has similar spatial scales to a typical large submarine land-
slide. They found that offset sensitivity was � 5mm for
a 2 s sampling window and this decreased to� 2mmwhen
a 60 s window was used [88]. To the best of our knowledge
this represents the current state-of-the art in terms of real-
time detection of motion over spatial and temporal scales
typical of submarine landslides.

At Kilauea, we have developed an automated near real-
time processing strategy for our monitoring efforts at the
Hilina Slump (Figs. 3 and 5) [89]. The CGPS data are
telemetered hourly by radio modem back to the USGS
Hawaii Volcano Observatory (HVO) where they are re-
trieved via FTP. We use a sliding window approach, col-
lecting all data available within the most current two-
hour period and performing a network solution using the
PAGES [90] processing software. We use the 30 s, iono-
sphere free phase combination as the observable and use
and hold fixed the IGS ultra-rapid orbits and apply the
NGS antenna phase calibration patterns for each site [91].
We also apply the IERS standard solid Earth tide [92] and
Schwiderski ocean tide loading corrections [93,94]. Every
half hour we estimate a piece-wise, linear neutral atmo-
sphere (troposphere) correction and one set of N–S and
E–W neutral atmospheric gradient corrections for each
site. We apply a ‘weak’ constraint of 10 cm to the atmo-
spheric corrections based on examination of previous ad-
justments.

Figure 5a shows an example of baseline change time
series from indicative stations derived from this approach
and re-run in a simulated near real-timemode for the time
period bracketing the slow earthquake from January 26–
28, 2005 at Kilauea. Generally, the hourly baseline change
noise levels are on the order of˙10mm, although because
of some particularly large outliers, the standard deviation

of the baseline changes (not including the time period of
the SE) is closer to 20mm (Fig. 5b). Some of the large ex-
cursions in the time series not associated with the SE are
due to the high amplitude, strongly spatially and tempo-
rally varying atmospheric water vapor gradients often as-
sociated with tropical islands such as Hawaii e. g. [95]. For
instance for the excursion in the MANE-PGF3 baseline in
the middle of day 18 (Fig. 5a), the time series takes a sharp
upward bend until the start of day 19 when it again begins
to oscillate about its mean value from present days. This
baseline change gradient is very similar to the onset of the
SE near the beginning of day 26. It is clear from the re-
mainder of the time series after day 27 that the � 25mm
offset is permanent, however, and so indicative of a real
deformation event.

In a real-time monitoring scenario, because of the 2 h
temporal latency and the atmospheric noise levels on the
order of 1/3 the maximum signal levels in the baseline
change plots, it would probably require on the order of
12–24 h before this event could be definitively classified
as a deformational event. This could certainly be useful
to hazard mitigators for being aware that a slow event
such as an SE was occurring, but not in the event of
a rapidly accelerating catastrophic collapse where the de-
tection and warning timemust be on the order of minutes.
For more rapid warning, more sophisticated filtering tech-
niques could be employed (such as monument motion,
and network-wide coherence assessment as described be-
low for the Network Inverse Filter [96]) although regions
of large atmospheric gradient will always be hampered by
low signal-to-noise ratios unless more sophisticated atmo-
spheric mitigation techniques such as tomographic map-
ping [97] are employed in a real-time manner. Accord-
ingly, the small detection threshold levels of the epoch-by-
epoch processing at Parkfield described above [88] must
be taken in the context of the relatively low atmospheric
delay environment present there.

Submarine Geodesy

Subaerial geodetic methods have, until now, provided es-
sentially the entirety of geodetic evidence for submarine
landslide-related deformation including slow earthquakes.
Our understanding of submarine landslide motion and
slow earthquakemechanics stands to increase dramatically
in the coming decade, however, owing to the rapidly ad-
vancing field of submarine geodesy which can now reli-
ably provide in situ measurements of seafloor deforma-
tion. The submarine environment is particularly challeng-
ing for geodesy techniques especially if they require the
propagation of energy across a medium (ocean water) that
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Submarine Landslides and Slow Earthquakes: Monitoring Motion with GPS and Seafloor Geodesy, Figure 5
a Baseline difference (position – median position) and 2� errors for near-real time processing of selected sites at the Hilina Slump
during early 2005. See text for description of processing.Grey shaded region indicates the time interval of the slow earthquake. Black
arrow indicates an example of an anomalous trend due to atmospheric delays discussed in text. b Histogram of baseline difference
values for all of the sites in a, excluding the time period of the slow earthquake

can exhibit highly spatially and temporally variable mate-
rial properties.

Direct Path and Indirect Acoustic Approach One of
the submarine geodesy techniques most frequently em-

ployed to date is direct path acoustic measurement of
baseline length changes using acoustic transponders. This
method has been used to make in situ observations of
tectonic motions on the seafloor at the Juan de Fuca
ridge where one study found cm-scale motion occurring
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over a period of a few days associated with an on-axis
eruption [77] and another found no detectable motion
over a period of a few years at a quiescent ridge seg-
ment [76]. By interrogating each other, pairs of instru-
ments use two-way travel time measurements to constrain
the inter-station distance. After correcting for variations
in sound speed that result from changes in water tem-
perature, salinity, pressure, and local tilt of the monu-
ment itself, these systems yield sub-cm precision for in-
dividual measurements. Operating frequencies typically
range from 7.5 to 108 kHz and in deeper isothermal wa-
ters, the upward refraction of sound waves prevents sig-
nals from one transponder being received by the other at
distances greater than � 1 km [79]. Travel-time is deter-
mined simply by correlating the transmitted and received
signals and picking the peak of the resultant correlogram.
In quiet operating environments this can usually be done
at the scale of � 5 μs, resulting in a � 4mm range er-
ror [7].

For the greater depth ranges, Sweeney et al. [79] de-
vised an approach that allowed ˙2 cm resolution mea-
surements for baselines up to 10 km at 2500–2600m
depths at a stable site on the Juan de Fuca plate. Sweeney
et al. [79] suspended an acoustic interrogator hundreds of
meters above the seafloor in a position acoustically visible
to an array of seafloor-mounted instruments. In a manner
similar to Spiess [98] they estimated the relative positions
of the stations by moving the interrogator and collecting
acoustic range data multiple locations.

The focus of these initial deployments of the direct and
indirect acoustic approach systems was on measuring an-
nual tectonic rates, and not necessarily on capturing tran-
sient events such as SEs that occur over hours or days.
Accordingly sampling rates in current seafloor geodesy
projects typically do not exceed a few times per day, largely
because providing adequate power to seafloor instru-
ments is still financially prohibitive. However with cabled
oceanographic observatories scheduled to come online in
2007–2010 (http://www.neptunecanada.ca/; http://www.
orionprogram.org/) the power delivery problem could be
solved at high priority seafloor sites.

From October, 2005 through June, 2006 we deployed
seven 10 kHz Linkquest transponders mounted � 3m
above steel tripods and spaced over a distance of � 3 km
on the Hilina Slump (Fig. 3). One of the goals of this pilot
project was to evaluate the performance of the transpon-
ders for use in submarine landslide monitoring at signif-
icant depth; each unit operated at a depth between 2640
and 2690m. Battery power restrictions for the � 8month
duration of the project meant that the instruments ranged
to one another 12 times per day.

In Fig. 6 we show range change time series from two
transponder-pair baselines (� 530 and 683m respectively)
for which data recovery was complete over the experi-
ment’s duration. For the other transponder pairs data re-
covery was not as complete because either: (1) the unit
was knocked over by local mass-wasting events or (2) the
baseline distance was too long and data dropouts occurred
when the transponders lost sync with one another. The
two way travel times were picked from the peak of the cor-
relation function between the outgoing and receivedwave-
forms at one end of the baseline. The black dots in Fig. 6a
and b show the raw measurements, while the red dots
show the distance measurements corrected for the varia-
tions in sound speed due to temperature changes, which
were measured by an external conductivity and tempera-
ture sensor mounted on the transponder frames. The raw
time series show significant long-term trends due to tem-
perature variations that are effectively removed using just
the temperature measurements at the transponders. We
did not correct for salinity variations because all of our
conductivity sensors provided contaminated data due to
clogging by the local mass wasting events.

For these baseline pairs which were oriented approx-
imately perpendicular to the maximum expected motion
of the Hilina Slump we expect essentially no motion for
such short baselines and during such a short measure-
ment period. At the 1� level individualmeasurementnoise
is � 4:1 and 5.7 cm respectively, though it is clear that
smaller, cm-scale changes would be detectable given a long
enough time period. For instance, daily estimates of base-
line length have approximately a 1 cm standard deviation.
For rapid event detection, baseline changes would need to
be on the order of 10 or more cm or measurement fre-
quency would need to be increased.

GPS-Acoustic Method The acoustic measurements de-
scribed above provide only relative measurements of base-
line length changes; however, for submarine landslide
monitoring efforts it may be desirable to place subma-
rine and subaerial measurements in a single regional or
global reference frame. Largely with the aim of furthering
seafloor active tectonics studies, a research group spear-
headed by the late Fred Spiess conceived of, and have be-
gun implementing integrated GPS and acoustic seafloor
geodesy (GPS-A) studies, described in great detail by
Spiess et al. [7] and references therein.

Briefly, GPS-A positions seafloor geodetic markers in
a global reference frame by combining kinematic GPS po-
sitioning of a sea-surface platform (ship or buoy), preci-
sion underwater sound travel time measurement over km-
scale path lengths, and a strategy for eliminating the large

http://www.neptunecanada.ca/
http://www.orionprogram.org/
http://www.orionprogram.org/
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Submarine Landslides and Slow Earthquakes: Monitoring Motion with GPS and Seafloor Geodesy, Figure 6
a,b Baseline difference (position – median position) for transponder-transceiver pairs (T2-C1, T3-C1 in Fig. 3) pairs from October
2005 – June 2006. See text for processing description. Black dots, raw baseline difference uncorrected for temperature. Red dots,
baseline differences corrected for temperature. c,d Histogram of baseline difference values from a and b, respectively

errors in travel time measurement arising from a spatially
and temporally varying sound speed structure in the near
surface portion of the water column. The error mitigation
strategy is based on the recognition that the location of
the sea surface midpoint above the center of a triangle of
seafloor transponders (themselves positioned via a near-
bottom acoustic survey) is the point at which the three sea
surface-to-seafloor travel times are identical and so, inde-
pendent of sound speed.

Spiess et al. [7] reported repeatabilities of˙0:8 cm and
˙3:9 cm in the north and east components, respectively,
of seafloor measurements on the Juan de Fuca plate from

1994–1995. More recently, Gagnon et al. [78] reported ve-
locities with � 5:5 cm magnitudes and 0.6–0.8 cm 1� er-
rors from surveys between 2001–2003 on the updip por-
tion of the Nazca-South America subduction zone in the
Peru trench.

Optical Path Length Zumberge [99] combined com-
mercial subaerial surveying technology (an EDM) with an
optical fiber strainmeter in order to devise a low-power,
cost-effective system for the harsh seafloor operating envi-
ronment. EDMs (electronic distance meters) typically can
measure distances with 1–2mm precision over several km
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by transmitting intensity modulated infra-red energy and
measuring travel time from far away reflective surfaces.
Zumberge [99] modified the EDM for seafloor geodesy by
focusing the transmitted beam into the fiber’s core and
gathering the reflected light from the fiber’s far-end into
the EDM receiver optics.

The composite instrument comprises an optical fiber
(enclosed in a hermetically sealed stainless steel casing)
that stretches between two anchors, one ‘active’ and one
‘passive’, separated by several hundred meters on the
seafloor. The active anchor houses the EDM and all sup-
porting electronics and the passive anchor’s purpose is to
fix the fiber to the seafloor. In a test of their instrument,
Zumberge et al. [100], report 1mm scatter of distancemea-
surements over a 500-m-long fiber during a 50 day long
period.

One of the obvious advantages of the optical path
length technique is the high precision, isolation from sea
water-borne errors, and the continuous nature of the mea-
surement. The disadvantage, however, is that the tech-
nique is limited to short baselines (<� 1 km) and so the
precise location of straining regions must be known a pri-
ori. Nonetheless, for monitoring purposes with very well-
defined targets such as the headwall portion of an active
landslide, the technique holds much promise.

Pressure Sensor Vertical Deformation Phillips et
al. [40] recently developed a new technique that used pres-
sure sensors in campaign-mode repeat surveys to mea-
sure vertical deformation rates of the seafloor at depths
exceeding 2000m at the offshore portion of the Hilina
Slump. Depth and pressure are related to one another in
a straightforward manner through the hydrostatic equa-
tion, though for measuring seafloor deformation rates
at the cm/yr level many other reductions must be per-
formed (Phillips et al. [40] – also her thesis). The pressure
sensor method is technologically challenging, requires
much ship time, and requires during each site visit both
a geodetic monument and a pressure sensor (lowered
from a ship) to be operating in close proximity to one
another at depth on the seafloor. Because, in each revisit
it was not practical to collocate the pressure sensor in
a repeatable fashion on the benchmark, Phillips et al. [40]
found it necessary to measure the vertical offset between
the pressure sensor and the benchmark via acoustic rang-
ing.

Important error sources for this technique are poor
knowledge of ˛ the specific volume of the water column
(the reciprocal of density) and the speed of sound in depth.
Due to changing tides, secular and seasonal barometric
changes it is also necessary to utilize a common, stable ref-

erence, such as mean sea level (MSL) which, in turn, re-
quires estimation of the geopotential anomaly.

Ultimately, Phillips et al. [40] conclude that their data
show significant vertical deformation (9˙ 2:4 cm/yr) in
the mid-section of the HS and negligible deformation to-
wards the outer bench (just inboard of the toe of the en-
tire landslide feature). These data are consistent with dis-
location models delimiting the potential amount (25.0–
28:1˙ 7:3 cm/yr), spatial extent (24.8–27:0˙ 0:5 km sea-
ward of Kilauea’s East rift zone), and depth (7 km) of
the principal slipping surface below the landslide. This is
a significant advance not only because it represents the
first data set that allows a glimpse of how strain is parti-
tioned in a massive submarine landslide such as the Hilina
Slump, but also because it represents an ongoing monitor-
ing project at a submarine landslide, albeit at temporally
sparse sampling rate.

Data Analysis and Inversion

In addition to the challenge of acquiring geodetic data
from submarine or even subaerial landslides is the added
challenge of inferring sub-surface fault geometry and/or
deformation processes, with attendant realistic error
bounds on estimated parameters, from a data set of earth
surface displacements. We identify two principal types of
analysis modes: (1) process-based and (2) hazards-based.
Process-based analysis focuses on deriving the most accu-
rate and, if possible, complete assessment of the factors in-
volved in the observed landslide motion. Hazards-based
analysis has two primary components: (a) rapid warn-
ing and (b) long-term hazards estimation. Rapid warn-
ing comprises, with the smallest temporal latency possi-
ble, providing information regarding the current state of
the landslide system and how it relates to current, short-
and long-term dangers to life and infrastructure. Long-
term estimation comprises making probabilistic state-
ments about the components and potential future behav-
ior of the system and so temporal latency is not a limiting
consideration.

For either of the two types of analysis modes, the first
objective is to usually try to relate the measured displace-
ments d, of monuments at the surface of the earth to the
source parameters, m, of the buried feature causing the
deformation (usually considered a fault) through G(m),
a model of the deformation process. For instance, one very
common model formalism, the dislocation in an elastic
half-space, is a non-linear problem whose model vectorm
contains 9 parameters describing the location, orientation,
and relative displacement of the dislocation approximat-
ing a faulting source [101,102].
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Determining the most likely components ofm and as-
sociated errors falls under the wide category of geophysi-
cal inversion for which there are a multitude of techniques
e. g. [103]. In addition to the computational power avail-
able and the total amount of time allotted to the inver-
sion, the choice of inversionmethod depends upon the na-
ture of the model (for instance, linear vs. non-linear), the
number of parameters in m, and the computational cost
associated with individual model realizations and misfit
assessments. Furthermore, it must be decided if the goal
of an inversion is to obtain a rapid solution (a solution
that satisfies some predetermined misfit level), an opti-
mal solution (i. e. one ‘best-fitting’ solution), or rather to
probe parameter space as thoroughly as possible with the
goal of estimating posterior probability densities for each
of the parameters for their value as indicators of resolu-
tion and uncertainty e. g. [104]. For instance, the most
robust inversion method possible is the direct or ‘grid’
search, where the misfit for every possible permutation
of m in parameter space is calculated. For more compli-
cated or non-linear G(m) however the computational cost
associated with each forward model run can make a grid-
search time prohibitive, even for a process-based analy-
sis. For these types of more difficult problems, inversion
based on Monte Carlo sampling. which collects pseudo-
random samples from multidimensional parameter space
as a proxy for the problem’s true posterior probability den-
sity, �(m), has been found to be quite successful [105,106].
Indeed, it is common practice in the tectonic geodesy com-
munity to use the Okada model combined with some type
of Monte-Carlo method to derive parameters of earth-
quakes and slow earthquakes from surface displacements
observed with GPS [80,104,107].

The recent evolution of the work on the SEs at Kilauea
demonstrates how important the inversion results are to
the overall analysis either from a process-based or long-
termhazards-based perspective. In their initial recognition
of the November 2000 SE, Cervelli et al. [5] used a simu-
lated annealing optimization routine [80] and the Okada
model to invert the GPS observations and conclude that
the most likely dislocation source for the SE occurred on
a gently landward-dipping thrust fault plane at 5–6 km
depth. Combined with the fact that the SE post-dated by
9 days a burst of local rainfall of nearly 1m and reason-
able estimates of local hydrologic parameters, Cervelli et
al. [5] suggested that the increased pore pressure due to
deeply percolating rainwater triggered SE motion by in-
ducing a � 2MPa pressure decrease of the effective nor-
mal stress on their preferred fault plane. Brooks et al. [4],
however, showed fromGibbs Sampling inversion [104] re-
sults of GPS data on three additional SEs that posterior dis-

tributions of estimated fault parameters allow a wide fam-
ily of equivalently plausible solutions, ranging from deeper
seated decollement solutions at� 8 km depth to the more
shallow fault plane favored by Cervelli et al. [5] (Fig. 7).
Moreover, they showed that the other SEs were not associ-
ated with anomalous rainfall. Segall et al. [6] then used the
same inversion method of Cervelli et al. [5] for the GPS
data of the additional SEs relocations of high-frequency
earthquakes triggered by the January 2005 SE, seismicity
rate theory [108], and Coulomb stress modeling [109] to
conclude that the SE (and other similar events) likely oc-
curred at a depth of � 8˙ 1 km on the main decollement
plane below the Hilina Slump.

In this case, the crucial addition to the source in-
version was the added constraint of the triggered mi-
croearthquakes which were relocated to depths near the
decollement [6]. In their earthquake relocations, however,
Segall et al. [6] did not use the full waveform data; rather,
they used a double-difference-derivedmapping with man-
ual picks, assuming a 1D velocity model, between trig-
gered events and previous high-precision relocations and
tomography from elsewhere at Kilauea [110]. Two other
studies, [111,112] performed high precision relocations
using waveform cross correlation data and found different
depths for the same cluster of events as Segall et al. [6]. Got
and Okubo [111] suggested that their relocated events (in-
cluding those triggered by the 1998 SE) do not illuminate
a sub-horizontal fault plane but rather a deeper, steeply
south-dipping reverse fault. Wolfe et al. [112] found that
the triggered seismicity from the four SEs identified by
Brooks et al. [4] consistently relocates on distinct map-
view clusters aligned in the direction of the SE displace-
ments themselves and in a subhorizontal band with depths
of � 5 km. This is a solution consistent with Morgan et
al. [21] who used seismic reflection data to identify mod-
erately landward-dipping fault planes at similar depths.
While the epicenters are well constrained in the Wolfe et
al. [112] study, however, they were concerned that poor
station geometry as well as near source velocity hetero-
geneity may bias the absolute depth of the relocations and
the analyses may not be capable of distinguishing between
shallow and deep fault zones. Thus, while the decollement
is certainly the prime candidate on which a SE would oc-
cur (in agreement with the Segall et al. [6] suggestion), the
analyses remain somewhat equivocal. This, in turn affects
our best understanding of the most important hazard is-
sue, the propensity of the decollement for a catastrophic
failure. In order to more definitively answer these ques-
tions the above-mentioned research groups in conjunction
with the Hawaiian Volcano Observatory of the USGeolog-
ical Survey (the group charged with hazards analysis and
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Submarine Landslides and Slow Earthquakes: Monitoring Motion with GPS and Seafloor Geodesy, Figure 7
North-south cross-section of the Hilina Slump after Got andOkubo [111]. K, Kilauea.HS, Hilina slump. Black linebelow K is the seismic
(solid) and aseismic (dashed) position of the decollement from Got and Okubo [111]. Two thicker black lineswith green shaded area,
are the family of geologically plausible dislocation solutions equivalently supported by inversion of GPS data. Yellow colored circles,
locations of microearthquakes from HVO catalog for˙5 days around each slow earthquake event

mitigation for the region) have teamed up in a joint seis-
mological and geodetic research project aimed at defini-
tively constraining the depths of triggered seismicity, and,
hopefully, the depth of SE sources in the region.

While the above example focuses mostly on pro-
cess and long-term hazards assessment, recent develop-
ments focused on deriving the time-dependent history of
slip during a deformation event could also potentially be
used for automated real-time inversion and event detec-
tion [96,113]. The Network Inverse Filter (NIF) [96] is
a recursive Kalman filter algorithm that operates on ei-
ther processed position estimates or raw phase data (rather
than derived displacement rates) from an entire network
of geodetic stations, includes a stochastic description of
local benchmark motion, and finds a non-parametric de-
scription of slip rate on a fault plane as a function of time.
In current implementations, the NIF employs Green’s
functions relating slip to surface displacement computed
from the analytical solutions for a dislocation in an elastic
half-space [101] although there is no reason other defor-
mation models could not be employed [113]. Application
of the NIF to the 1999 Cascadia SE allowed McGuire and
Segall [113], for instance, to determine that slip rate on the
slipping fault plane took up to � 20 days to reach its peak
and that the southern portion of the fault had finished slip-
ping before the northern portion began to slip. Cervelli et
al. [5] and Segall et al. [6] also applied the NIF to the Ki-
lauea SEs to derive source-time functions for the events.
One caveat, however, is that the fault plane is not solved
for by the NIF, rather, it must be known and held fixed
a priori. For subduction zones with greater spatial geodetic

coverage above the slipping portion of the fault this condi-
tion may be satisfiedmore satisfactorily than at submarine
landslides.

Discussion: Slow Earthquake
and Submarine Landslide Process

Largely because of CGPS subaerial measurements at Ki-
lauea there are now a suite of observations of slow earth-
quakes related to submarine landslide motion. As it seems
that SEs are a fairly general fault slip phenomenon, oc-
curring at a variety of subduction zone locales globally,
it stands to reason that SEs may be common to subma-
rine landslide-related deformation, at least on the flanks
of ocean island volcanoes. Clearly, as seafloor geodesy
projects become more common we will learn if this is the
case or not. It is also clear that the search for a theoreti-
cal understanding of the slow earthquake phenomena will
be coupled to further understanding the motion of subma-
rine landslides.

Currently, explanations for slow earthquake slip be-
havior focus on rock mechanic theory that follows an em-
pirically derived rate- and state-variable frictional con-
stitutive law based on laboratory experiments e. g. [114].
(The description below follows the summary and notation
in Scholz [114]). The Dieterich–Ruina or ‘slowness’ law is
expressed as:

� D [�0 C a ln(V/V0)C b ln(V0� /�)]� ;

where � is shear stress, �0 is the steady-state friction, � is
effective normal stress, V is slip velocity, V0 is a reference
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velocity, a and b are frictional material properties, � is the
critical slip distance and � is a state variable that evolves
according to:

d� /dt D 1 � �V/� :

The frictional stability of the system, then, depends on
(a � b), the velocity dependence of steady-state friction,
defined:

a � b D ı�/ı(ln(V )) :

In the context of a simple spring-slider model approximat-
ing a slipping fault, the boundary between the stable and
unstable frictional regimes will occur at a critical value of
effective normal stress, �c, given by:

�c D k�/� (a � b) ;

where k is the stiffness. When (a � b) > 0 the material is
said to follow ‘velocity strengthening’ behavior and the
system is stable – earthquakes cannot nucleate in this
regime and earthquakes propagating into such regions will
be abruptly terminated. When (a � b) < 0 the material is
said to follow ‘velocity weakening behavior and the system
is unstable for � > �c – earthquakes will nucleate in this
regime. When � 6 �c the system exhibits oscillatory be-
havior and is said to be ‘conditionally stable’, it is stable
under quasi-static loading but requires a discrete velocity
perturbation in order for earthquakes to nucleate. Others
interpret these relations slightly differently suggesting that
nucleation occurs when matrix stiffness (scale and stress-
rate dependent) drops to a critical value over a spatial scale
large enough to promote rupture [68,115].

It may be in the boundary of this stability transition
where slow earthquake slip behavior arises. For instance,
a common observation of most of the subduction zone
SEs is that they occur down-dip of the ‘locked’ zone or
near the base of the seismogenic zone where earthquakes
nucleate [1,57,58,69,71]. At these depths in subduction
zones temperatures are close to the 450°C temperature
at which feldspar starts to exhibit plastic behavior and
so conditionally stable behavior would be expected [114],
although it has recently been shown that transient os-
cillatory behavior may also arise naturally from system
dynamics alone [116]. Faults in the conditionally stable
regime, under steady-state loading, slip aseismically un-
less a perturbation to the system is large enough to push
the fault across the stability boundary triggering an earth-
quake [117]. If the perturbation, however, is not quite large
enough to push the fault across the stability regime then
a period of stable sliding at increased velocity will occur

(i. e. a slow earthquake) as the fault evolves back to steady-
state [117]. It is not yet clear, however, how the explana-
tions for subduction-zone related SEs may translate to the
submarine landslide environment. While many subduc-
tion zone SEs apparently occur down-dip of the ‘locked’
zone where earthquakes nucleate along the subduction in-
terface, at Kilauea, SEs apparently occur up-dip of the zone
where the majority of earthquakes occur [4,6].

Recent studies have more explicitly focused on helping
to explain SEs in terms of the rate- and state-variable for-
malism. For instance, Kato [67] used rate- and state fric-
tion to simulate the effect that ‘asperities’, velocity weak-
ening regions surrounded by velocity strengthening re-
gions, have on slip behavior and found that episodic SEs
occur when the velocity-weakening patch size is close to
the critical size of earthquake nucleation. Similarly, Liu
and Rice [68] found that when they applied along-strike
variations in the frictional (a � b) parameter in models
of subduction zone processes, that SE-type transient de-
formation events emerged spontaneously near the down-
dip end of the seismogenic zone. They suggested that the
downdip end of the seismogenic zone is likely to be in
the conditionally stable boundary between unstable- and
stable regimes and that this could allow the SE behavior.
More recently, Lowry [58] employed further theoretical
implications of rate- and state-variable friction under res-
onant loading conditions [115,118] to suggest that Earth’s
response to climatic redistribution of atmospheric, hydro-
spheric, and cryospheric loads could lead to resonant fault
slip behavior that could explain observed periodic slow
earthquakes on the Cocos-North America plate boundary
at Guerrero, Mexico.

Shibazaki and Shimamoto [119] recently proposed an
alternate model of slow earthquakes that was motivated
by laboratory experiments on the velocity dependence of
frictional stability. They introduced a cutoff velocity to the
rate-state formulation to mimic laboratory results where
fault surfaces transition from velocity weakening at low
sliding velocities to velocity strengthening at higher veloc-
ities. Implementing the laboratory values for these transi-
tions reproduced the slip (10�7 m/s) and rupture propa-
gation velocities (km/day) seen in subduction zone envi-
ronments. Their model predicts a linear relationship be-
tween these two velocities that can in principle be inferred
from high quality continuous geodetic measurements of
slow earthquakes. This relationship may be an important
way to relate observations of slow earthquakes to mechan-
ical models, particularly in regions such as Kilauea where
the fault planes are shallow enough (< 10 km) to allow
the details of the rupture to be resolved with high quality
instrumentation. We note additionally that other recent
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model parameterizations [116] yield recurrence intervals
and propagation velocities similar to observed events and
Lowry [58] also suggested means of relating geodetic ob-
servations and model parameters.

Two additional factors that may modulate the fric-
tional properties of faults in submarine landslide environ-
ments include local hydrologic and magmatic forces (in
regions of active volcanism) [23]. For instance, the Nov.
2000 SE at Kilauea post-dated by 9 days an intense rain
storm of nearly 1 m at the southeastern Big Island [5].
Cervelli et al. [5] estimated permeability using regionally
appropriate hydrologic parameters for porosity and fault
zone diffusivity and suggested that the 1m of rain could
have triggered SE motion by inducing a � 2MPa pres-
sure decrease of the effective normal stress on a gently
landward dipping fault at � 5 km depth. Brooks et al. [4],
however, showed that 3 other SEs at Kilauea were not
preceded by anomalous rainfall and that other periods of
anomalous rainfall were not accompanied by SEs. Addi-
tionally, prior to these events Iverson [23] was skeptical of
rainfall triggers as he found from a rigid wedge analysis
that, in order for ground water head gradients to be large
enough to destabilize the Hilina Slump, implausibly large
clay layers (� 200m thick) or very low hydraulic diffusiv-
ity (� 10�11 m2/s) needed to be present. Others, however,
have found that magmatic injection-induced mechanical
and thermal pressurization of fluids may help to explain
Canary and Cape Verdes Islands flank instabilities [120].
Excess shear stresses exerted on a basal decollement be-
cause of rift zonemagma injection have also been shown to
be of sufficient magnitude to potentially cause slip [22,23].
Although others have suggested from geodetic observa-
tions of discrete dike events at Kilauea’s rift zones that the
dikes are injected passively, as a response to decollement
slip, rather than as a trigger for it [121,122].

Future Directions: Slow Earthquakes
and Submarine Landslide Monitoring

It is clear that expanded seafloor geodetic monitoring of
submarine landslides would be extremely important in
bettering our understanding of both the slow earthquake
process and the hazards associated with submarine land-
slides. For instance, at the Hilina Slump, it is not even
known how much of submarine portion of the landslide
actually displaces the seafloor during a slow earthquake.
Given the logistical and financial challenges associated
with seafloor geodesy, however, it is reasonable to ask if
it is worth it to society to monitor submarine landslides.
In the Hawaiian Islands, for instance, one compilation
suggests that there have been at least 6 tsunami-generat-

ing landslide events in the past 300 000 years [123]. For
comparison, the average 50 000 year recurrence interval
for such events is 1 to 2 orders of magnitude larger than
typical earthquake recurrence intervals in Southern Cali-
fornia where substantial resources are focused on earth-
quake-cycle related monitoring (http://www.wgcep.org/).
As discussed above, however, landslide-generated tsunami
can be quite damaging both locally and regionally. One
study simulated � 30m wave heights reaching the Cali-
fornia coast within 6 h of a massive collapse of the Hilina
Slump at Kilauea [124]. Clearly minimizing the impact of
such an event would be of societal benefit.

Continuous submarine landslide deformation moni-
toring, although expensive, is not out of the realm of pos-
sibility, as costs for seafloor geodetic instrumentation are
decreasing. In the coming years, in order to make contin-
uous monitoring efforts more feasible, research will likely
focus on two major technical challenges: (1) instrument
power delivery and (2) data transmission. While cabling
a network via seafloor pathways is certainly one way of
satisfying both requirements, cabling may not be the best
long-term solution for a number of reasons. First, the costs
of large cable lengths and laying them on the seafloor is of-
ten measured in the millions of dollars. Second, especially
for submarine landslides, the seafloor across which the ca-
ble need be lain can be very rough and cable failure can be
a quite common occurrence. Third, if cable runs are long
then annual maintenance efforts and cost can also be quite
high. Accordingly, techniques such as acoustic data trans-
mission [125] and local power generation via a buoy, for
instance, will be critical.
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Glossary

Swarm Intelligence (Definition 1, Sect. “Definition of the
Subject”). The intuitive notion of “Swarm Intelligence”
is that of a “swarm” of agents (biological or artificial)
which, without central control, collectively (and only
collectively) carry out (unknowingly, and in a some-
what-random way) tasks normally requiring some form
of “intelligence”. (Definition 5, Sect. “Swarms of Intelli-
gent Units”). The capability of universal computation
carried out with natural asynchrony by a dynamic cel-
lular computing system, none of whose cells can pre-
dict the computation done by the swarm.

Swarm Robotics The technology of robotic systems capa-
ble of Swarm Intelligence.

Stigmergy Indirect communication through modifica-
tion of the environment.

Pheromone A chemical that triggers an innate behav-
ioral response in another member of the same animal
species

Elementary Swarm An ordered set of N units described
by theN components vi (i D 1; 2; : : : ;N) of a vector v;
any unit i may update the vector, at any time ti, using
a function f of Ki vector components.

8i 2 N : vi (t C 1) D f (vk2K(i)(t))

Cellular automaton A system, evolving in discrete time
steps, with four properties: a grid of cells, a set of pos-
sible states of the cells, a neighborhood, and a function
which assigns a new state to a cell given the state of the
cell and of its neighborhood.

von Neumann architecture Computer design that uses
one processing unit and one storage unit holding both
instructions and data.

Cellular-computing architecture Computer design that
uses cellular automata, and related machines, as pro-
cessors and as storage of instruction and data.

Intelligence (working definition for Swarm Intelligence)
Ability to carry out universal computation.

Natural asynchrony Asynchronous updating character-
ized by three properties: more than one unit may up-
date at each time step; any unit may update more than
once in each updating cycle; and the updating order
varies randomly for every updating cycle.

Optimization algorithms Algorithms to satisfy a set of
constraints and/or optimize (e. g., minimize) a func-
tion by systematically choosing the values of the vari-
ables from an allowed set.

Swarm optimization Ant colony optimization, Particle
swarm optimization, and related probabilistic opti-
mization algorithms.

Ant colony optimization Probabilistic optimization al-
gorithm where a colony of artificial ants cooperate in
finding solutions to optimization problems.

Particle swarm optimization Probabilistic optimization
algorithm where a swarm of potential solutions (par-
ticles) cooperate in finding solutions to discrete opti-
mization problems.

Game of Life A cellular automaton designed to simulate
life-like phenomena.

Dynamic cellular computing system Cellular comput-
ing system whose cells are mobile.

Unpredictable system A system such that complete
knowledge of its state and operation at any given time

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Data_%28computing%29
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is insufficient to compute the system’s future state be-
fore the system reaches it.

Definition of the Subject

The research area identified as “Swarm Intelligence” has
evolved rapidly. The term “Swarm Intelligence” first ap-
peared in 1989 [1,2]; by 2007 “Swarm Intelligence” was in
the title of four books [3,4,5,6], two series of conference
proceedings [7,8] and in a new technical journal [9], with-
out mentioning other areas in which the term swarm itself
has become popular. As the use of the term “Swarm Intelli-
gence” has increased, its meaning has broadened to a point
in which it is often understood to encompass almost any
type of collective behavior. And since the term “Swarm In-
telligence” has popular appeal, it is also sometimes used
in contexts which have limited scientific or technological
content. Other meanings, however, refer rigorously to pre-
cise concepts. The following treatment of Swarm Intelli-
gence is based only on concepts that can be clearly de-
fined and quantified. Hence it is more restricted than some
broader Swarm Intelligence presentations but, even so, it
describes an interrelated scientific/technical core which
forms a solid basis for a well-defined multidisciplinary re-
search area.

Definition 1 The intuitive notion of “Swarm Intelli-
gence” is that of a “swarm” of agents (biological or artifi-
cial) which, without central control, collectively (and only
collectively) carry out (unknowingly, and in a somewhat-
random way) tasks normally requiring some form of “in-
telligence”.

A more specific definition requires a detailed discussion
and so it is given at the end of the article. (Sects. “Charact-
eristics of Swarm Intelligence” and “Swarms of Intelligent
Units”).

Although this notion of Swarm Intelligence might
seem vague, we will see in the course of this article that
in fact it has many specific implications. Note that the no-
tion is broad, which partly explains its widespread use, but
not so broad as to include any type of collective action of
groups of simple entities, as will become clear later.

These characteristics of Swarm Intelligence are also
those of several biological systems, e. g., some insect so-
cieties or some components of the immune system, so that
Swarm Intelligence has become important for understand-
ing certain mechanisms in biology.

Technologically, the importance of ‘swarms’ is mainly
based on the potential advantages over centralized sys-
tems. The potential advantages are: (1) economy; the
swarm components (units) are simple, hence, (in princi-

ple) mass producible, modularizable, interchangeable, and
disposable; (2) reliability, due to the redundancy of the
components; destruction/death of some units has negligi-
ble effect on the accomplishment of the task, as the swarm
adapts to the loss of few units; (3) ability to perform tasks
beyond those of centralized systems, e. g., escaping enemy
detection.

From this initial perspective on potential advantages,
the actual application of Swarm Intelligence has extended
to many areas, described in the body of this article, and its
potential for future applications remains high, as discussed
in the concluding section.

Some current, proposed and/or potential applications
are in defense and space technologies, (e. g., control of
groups of unmanned vehicles in land, water, or air), flexi-
ble manufacturing systems, advanced computer technolo-
gies (biocomputing), medical technologies, and telecom-
munications.

Introduction

Swarm Intelligence (SI) investigations were initially moti-
vated by studies of groups of simple robotic units which of-
fered promise for technology. These ‘swarms’ are modeled
as collections of simple quasi-identical units with decen-
tralized control and independent clocks [10]. The number
of units is intermediate between those of typical systems
investigated in physics and other traditional science fields;
in fact, the swarm is of the order of 102 to 10s units, where
s
 23, i. e., the swarm is not composed of so many units
that statistical physics methods can be applied to it, nor of
such a few units that its dynamic can be solved exactly (or
numerically to high precision).

These features are typical also of many biological sys-
tems, such as insect societies. They are also the features of
robotic systems potentially economic, reliable and capable
of tasks beyond the capabilities of centralized systems.

There are various established fields of science and tech-
nology that deal to a certain extent with the intuitive no-
tion of SI: Artificial Life, Ethology, Robotics, Artificial In-
telligence, Computation, Self-Organization, Complexity,
Economics, and Sociology. In all these fields there is at
some level, or in some application, the need to under-
stand, model, and predict the operation of groups of units
which only by working together (in a not very structured
way, and ‘unaware’ of the evolution of the group) carry
out “intelligent” tasks. A simple illustration is provided by
classic economics. In a free market economy, people trade
with each other in an unstructured way: each makes in-
dependent decisions at unpredictable times and unaware
of the global results. But the outcome is the solution to
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a complex problem – the problem of correct pricing. Such
a ‘swarm’ solves a problem not (or poorly) solvable by cen-
tralized control economies, thus exhibiting, in a certain
sense, a high form of “intelligence”.

From this example it is clear that the intuitive notion
of SI is easy to grasp. But it is not so easy to make it less
vague and more precise and quantitative, i. e., to make it
a useful working concept for science and technology. That
the concept of SI is not easy to quantify follows from the
difficulty of defining several of the key components of the
intuitive notion of SI (Definition 1). First, “intelligence” is
a notoriously ambiguous concept. Second, “randomly” is
also not easily defined and quantified. Third, “only collec-
tively” must be specified in terms of the critical number of
agents required for the emergence of SI. In what sense is
a unit ‘simple’ or, ‘un-intelligent’, and the task carried out
‘complex’ or, ‘intelligent’? Fourth, “unknowingly” implies
that the global status and the goal of the swarm are, at least
to some extent, unknown to the single agents.Which algo-
rithms and communication schemes result in tasks carried
out ‘unknowingly’ by the agents?

Because of these difficulties, in this article we first
use the aforementioned (Definition 1) intuitive notion of
SI to describe the current main areas of studies consid-
ered to be SI. This will provide an overview of the cur-
rent status of the field; it will make it possible to quantify
the four vague concepts (‘intelligence’, ‘randomly’, ‘collec-
tively’, ‘unknowingly’) and to reach amore sharply defined
concept of SI. From this, we will be able to see more clearly
the limitations of SI, and so, its realistic potential for future
applications.

In this article, themain areas of SI studies are described
by making three very broad distinctions: (1) scientific
interest vs. technological interest (Sects. “Biological Sys-
tems”–“Definition of Swarm”); (2) standard mathematics
vs. cellular computational mathematics (Sects. “Standard-
Mathematics Methods”–“Cellular-Computing Methods”);
(3) synchronous operation vs. asynchronous operation
(Sects. “Randomness in Swarm Intelligence”– Swarms of
Intelligent Units”). These distinctions in turn will provide
a guide to clarifying the four vague concepts in the intu-
itive definition of SI (Definition 1) and, thus, a conceptual
orientation for future studies and applications; they will
also provide criteria for evaluating the promise of SI to
solve complex problems that traditional approaches can-
not.

Focusing on the first distinction (scientific vs. tech-
nological interest), the main scientific interest in SI orig-
inated with the work of biologists studying insect so-
cieties [3]. The main technological interest originated
with roboticists trying to design distributed robotic sys-

tems [1,2]. A valuable reference on the development of SI
is [3], dealing, in parallel, with these two interrelated inter-
ests.

Biological Systems

Probably the best known and seminal biology experiment
in SI is the ‘double bridge’ experiment by Goss et al. [11].
While studying the foraging of ants they observed that if
ants, starting from a point S, could reach food at a point
F via two paths of different lengths, the ants would at first
choose one of the two paths randomly; but after some ants
had returned from F to S, more ants would choose to go
from S to F via the shortest path; and eventually practically
all the ants would choose the shortest path (see Fig. 1).

The key insight was the realization that the ants were
finding the best path via stigmergy, that is, by communi-
cating through modification of the environment. Ants are
blind but they communicate chemically via pheromones.
By laying pheromones along the path when returning from
the food source F, the ants effectively marked the shortest
path by laying more pheromones on it. After that, the ants
that would start from S, would choose the path marked by
more pheromones, i. e., the shortest path.

Thus it was observed and understood a method of self-
organization and a method to solve a nontrivial problem
by a form of collective intelligence, with many of the ele-
ments of the intuitive definition of SI given above.

Later, Dorigo [12] realized that this method could be
abstracted and generalized to design algorithms that rely
on ‘artificial ants’ to solve much more complex problems
(see Sect. “Swarm Optimization”). Thus the close connec-
tion between biological studies of SI and its potential for
technological application was first clearly demonstrated.

Many other experiments in ants and other social in-
sects have confirmed the potential for developing bio-
inspired algorithms [3,13,14,15]. For actual insect soci-
eties, various ant algorithms have been applied to model

Swarm Intelligence, Figure 1
Illustration of the double bridgeexperiments. The ants following
the shorter path (the lower path) return to the source before the
ants which have taken the longer path. In this way the shorter
path has a higher density of pheromones; as a result, ants start-
ing at Swill now prefer the shorter path
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tasks such as: division of labor, cemetery organization,
brood care, carrying of large objects, constructing bridges,
foraging, patrolling, chaining, sorting eggs, nest building
and nest brooming. Social insects constitute 2% of insects,
half being ants. Besides ants, termites, bees, and wasps,
have been observed to exhibit some forms of SI behavior
as in the aforementioned tasks.

Apart from insects, many other biological groups ex-
hibit behavior with some of the features of SI, such as
flocks of birds and schools of fish. A seminal model of ar-
tificial flocks and schools of fish was proposed by Craig
Reynolds in 1987 [16].

It is a computational model for simulating the anima-
tion of a group of entities called “boids”, i. e., it is intended
to represent the group movement of flocks of birds and
fish schools. In this model, each boid makes its own de-
cisions on its movement according to a small number of
simple rules that react to the neighboring members in the
flock and the environment it can sense. The simple local
rules of each boid generate complex global behaviors of the
entire flock. In addition to being used to simulate group
motion in a number of movies and games, this flocking
behavior has been used, e. g., for time-varying data visual-
ization [17].

In studying these biological systems several concepts of
relevance to SI were recognized. They can be summarized
as:

(1) Multiple communication (of various types) among
units;

(2) Randomness (random fluctuations);
(3) Positive feedback, to reinforce random fluctuations;
(4) Negative feedback for stabilization.

Of the various types of communication, we have already
noted stigmergy, i. e., indirect communication by modifica-
tion of the environment. On the other hand, direct com-
munication may occur unit-to-unit, contact being a spe-
cial case, (e. g., via antennae or mandibles in insects) or by
broadcasting within a certain range (e. g., acoustically or
chemically). The type and specific mode of communica-
tion has been found to be critical to the task performed, as
e. g., in what types of patterns are formed [18].

Finally, the most basic lesson from biological studies
of SI is that biology has found solutions to hard compu-
tational problems, and that the design principles used in
doing this, can be imitated.

Robotic Systems

The actual realization of SI systems as collections of robots
is a very hard problem; in fact, it is quite difficult to make

even small groups of robots perform useful tasks [19,20].
Making even a single mobile, autonomous robot work
in a reliable way (even in simplified environments) is
a complex project. Often the technical problems with small
groups of robots are quite far from the goal of SI, so
there is not much reason to use the term ‘swarm’. Terms
such as “collective robotics”, “multi-robot systems”, and
“distributed autonomous robotic systems” are generally,
and more appropriately, used. But, whenever the tasks
carried out by these robotic systems become scalable to
large numbers, the term “swarm robotics” is appropriate
and, in fact, it has come into use. More typically, “swarm
robotics” simply describes the design of groups of robotic
units performing a collective task. Each robotic unit can-
not solve the task alone; and collectively the robotic units
try to accomplish a common task without centralized con-
trol.

As for any robotic system in general, each robotic unit,
and the group as a whole, require design of: mechanics,
control, and communications. The emphasis of current re-
search, in relation to swarm robotics, is primarily on the
latter two: (1) effective communication among the robot
units [21], and (2) effective control via decentralized algo-
rithms and robustness [22].

(1) Research in robotic communication has become im-
portant with the growth of wireless communication
networking and the lower cost of building robotic
units, thus opening a new range of applications for
multi-robot systems with networking capabilities, in-
cluding swarm robotics. In fact swarm robotics pro-
vides the common ground for convergence of infor-
mation processing, communication theory and con-
trol theory [21].

(2) Research in control of robotic swarms is particularly
important to guarantee the stability of the swarm
since the swarm does not have a centralized con-
trol. The stability of a swarm is a special case of the
general problem of distributed control. In fact, af-
ter swarm robotics algorithms for task implementa-
tion have been devised, the practical realization re-
quires stability, and robustness, i. e., proper control.
Swarm control presents new challenges to robotics
and control engineers: various types of controllers for
swarms are currently being investigated, e. g. neural
controllers [23].

The control theory example coming closest to the prob-
lem of swarm control is perhaps that of ‘formation’ con-
trol, e. g., the control of multi-robot teams or autonomous
aircrafts or land or water vehicles. These studies, when ex-
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tended to decentralized systems, lead to consider problems
of asynchronous stability of distributed robotic systems
and swarms. [24]

Although much progress has been made in swarm
robotics, the application of SI algorithms is still underde-
veloped; one reason is that often the SI behavior emerges
only above a critical number which is too large to make
the construction of a robotic swarm practical, because too
complex or expensive. Investigations of this type are thus
generally carried out by simulation [22,25].

These simulations are specialized methods of swarm
robotics. An example is ‘executablemodels’ [25] which can
run in simulation or on a mobile robotic unit and can ex-
ecute all aspects of a robotic unit behavior (sensing, in-
formation processing, actuation, motion), i. e., they fully
represent how perception is translated into action by each
robotic unit. They can be used to test either experimen-
tally or in simulation how a group of robotic units behaves.
Executable models are an evolution of early protocols
(so called ‘behavior-based’ protocols) designed around the
subsumption architecture [26]. Behavior-based protocols
have now been generalized into Markov-type methods,
i. e., protocols where the transitions between the possible
states of a robotic unit are specified by a probability tran-
sition matrix as in Markov processes [27].

Looking at applications, swarm robotics has by now
accumulated a collection of standard problems which re-
cur often in the literature. One group of problems is based
on pattern formation: aggregation, self-organization into
a lattice, deployment of distributed antennas or distributed
arrays of sensors, covering of areas, mapping of the envi-
ronment, deployment of maps, creation of gradients etc.
A second group of problems focuses on some specific en-
tity in the environment: finding the source of a chemical
plume, homing, goal searching, foraging, prey retrieval,
etc. And a third group of problems deals with more com-
plex group behavior: cooperative transport, mining (stick
picking), shepherding, flocking, containment of oil spills,
etc. This is not an exhaustive list: other generic robotic
tasks, such as obstacle avoidance and all terrain navigation,
are also swarm robotics tasks.

One envisioned application of swarm robotics which
has received media attention is the ANTS (autonomic
nanotechnology swarm) project by NASA [28,29]. This
project envisions nanobots (i. e., a swarm of microscopic
robots) operating autonomously to form structures for
space exploration. The idea is inspired by the example of
insect societies; it envisions a technology of self-similar,
reconfigurable, miniaturized robotic units with a soft-
ware strategy to endow the swarm with ‘intelligence’. This
ANTS ‘intelligence’ is at an intermediate level between tra-

ditional Artificial Intelligence (i. e., highly symbolic) and
reactive responses ‘intelligence’, i. e., intelligence without
internal representation [30]. Its basis is a software con-
struct called a ‘neural basis function’ to bridge the gap
between lower and higher level functions and to be ca-
pable of autonomous behavior. In one potential imple-
mentation, a Saturn autonomous ring array would launch
1,000 spacecraft with specialized instruments—organized
as 10 subswarms—to perform in situ exploration of Sat-
urn’s rings to understand their constitution and forma-
tion.

The European Union sponsored swarm robotics
project [31,32] was completed in 2005 after demonstrating
several critical tasks, such as: autonomous self-assembly,
cooperative obstacle avoidance, and group transport. For
this project a new type of robot, called an s-bot was devel-
oped. A swarm-bot is any device composed of more than
one s-bot, which is a mobile robot unit capable of connect-
ing or disconnecting from another s-bot. S-bots have rel-
atively simple sensors and motors and limited computa-
tional capabilities. Using their grippers, s-bots can assem-
ble into a swarm-bot that is able to solve problems too dif-
ficult for a single s-bot. For example, a swarm-bot could
transport an object too heavy for a single s-bot. [33]

Although swarm robotics could be defined as the
robotic implementation of SI (Definition 1), so far, as
noted, this implementation remains a distant goal. Mean-
while, concepts from SI can be usefully applied to collec-
tions of cooperating robots. Thus, referring to the intu-
itive notion of SI (Definition 1), the robotic swarm, can be
characterized by the type of algorithm and of (decentral-
ized) control, the number of units above which new behav-
ior emerges, the communication method (range, topology,
bandwidth), the processing andmemory capability of each
unit, and the heterogeneity of the group.

Swarm robotics, besides the implementation of SI al-
gorithms, includes the material (mechanical and elec-
tronic) realization of the units comprising the swarm. This
is, as noted, an arduous task which often becomes the em-
phasis of research in swarm robotics. But, as it was empha-
sized in the early years of SI, even if the material construc-
tion of the swarmwere accomplished, SI algorithms would
remain as the most difficult challenge for swarm robotics.
This can be easily seen from the fact that a ‘robot’ swarm
with very advanced hardware is already available for ex-
perimentation: it is a group of human beings. Each person
could be limited in a controlled way, e. g., by allowing each
person to handle only a specific device according to spe-
cific rules. Algorithms to make such a swarm doing intelli-
gent tasks are in the province of SI, but they are not simple
to devise, as common experience shows.
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Artificial Life Systems

The areas of Self-organization, Complexity and Artificial
Life (or A-life) are all older and broader fields than SI and
overlap with it to various extents.

A-life is conceptually placed somewhere between sci-
ence and technology, and between biology and robotics.
During the mid-1980s attempts at imitating living systems
with machines grew rapidly and resulted in the formation
of the research field of “Artificial Life” [34]. A-life investi-
gates phenomena characteristic of living systems primar-
ily through computational and (to a lesser extent) robotic
methods.

Its scope is wide, ranging from investigations of how
life-like properties develop from inorganic components to
how cognitive processes emerge in natural or artificial sys-
tems. It includes research on any man-made systems that
mimic the characteristics of natural living systems. By this
criterion it includes SI, but actual, current A-life research
is not much focused on SI; rather it focuses on origin
and synthesis of life; evolutionary robotics; morphogen-
esis, learning, etc.

The basic theories at the foundation of A-life, and of
relevance to SI, are the theories of self-organization and
complexity. A-life studies systems which are typically char-
acterized by many strongly coupled degrees of freedom.
Systems of this type are more generally investigated within
the science of complexity which began to be an active field
of research in the early ‘80s. It is multidisciplinary and
it investigates physical, biological, computational, and so-
cial science problems, including a vast range of topics [35]
from environmental sciences to economics as it is clear
from the content of this Encyclopedia. One basic feature
that these systems have in common is the emergence of
complex behavior from simple components, a notion we
also find in SI.

In regard to self-organization, we note that, as many
systems in nature, A-life systems may start disordered and
featureless, and then spontaneously organize themselves
to produce ordered structures, i. e., they self-organize. The
theory of self-organization, going back to the 1950’s [36],
grew out of a variety of disciplines, but mainly from ther-
modynamics, non-linear dynamics and control theory.
Self-organization can be defined as the spontaneous cre-
ation of a globally coherent (i. e., entropy lowering) pattern
out of local interactions – a concept also relevant to SI.

Because of its distributed character, self-organization
tends to be robust, resisting perturbations. The dynam-
ics of a self-organizing system is typically non-linear, be-
cause of feedback relations between the components. Pos-
itive feedback leads to fast growth, which ends when all

components have been absorbed into the new configura-
tion, leaving the system in a stable, negative feedback state.
Non-linear systems have in general several stable states,
and this number tends to increase (bifurcate) as an in-
creasing input of energy forces the system away from its
thermodynamic equilibrium. To adapt to a changing envi-
ronment, the system needs a variety of stable states that is
large enough to react to perturbations but not so large as
to make its evolution uncontrollably chaotic. Themost ad-
equate states are selected according to their fitness, either
directly by the environment, or by subsystems that have
adapted to the environment at an earlier stage.

Formally, the basicmechanism underlying self-organi-
zation is the (often driven by randomness) variation which
explores different regions in the system’s state space un-
til it enters an attractor. This precludes further variation
outside the attractor, and thus restricts the freedom of the
system’s components to behave independently. It is equiv-
alent to the decrease of statistical entropy that defines self-
organization.

It is useful to keep this brief sketch of self-organization
theory in mind as we proceed in describing SI, since the
concepts in the theory of SI are evolved from a combina-
tion of concepts of self-organization and computation.

Definition of Swarm

After having looked, in the previous three sections, at ac-
tual robotic, biological, and A-life systems and ideas of
complexity and self-organization related to SI, we can re-
turn to the intuitive definition of SI (Definition 1) and
make it more quantitative.

The intuitive notion consists of four elements: SI is “in-
telligence” achieved “collectively”, “randomly”, and “un-
knowingly”. An elementary swarm retaining these four el-
ements can be defined as

Definition 2 Elementary Swarm An ordered set of N
units described by the N components vi (i D 1; 2; : : : ;N)
of a vector v; any unit i may update the vector, at any
time ti, using a function f of Ki vector components.
8i 2 N : vi(t C 1) D f (vk2K(i)(t))

The Elementary Swarm describes an internally driven
“collective” action. External input may be added in f .
“Randomness” is built in the updating times. The evolu-
tion occurs “unknowingly” since the units have no pro-
cessing capability. The Elementary Swarm can be general-
ized so that randomness appears also in the parameters of
the function f . A further generalization is obtained by let-
ting each vector component to be not just one number but
a set of parameters.



Swarm Intelligence S 8875

Hereinafter we call ‘Swarm’ (capital S) any system ca-
pable of SI. It is worth noting that even in Swarms more
general than the Elementary Swarm, the modeling is as-
sumed restricted in such a way that no unit is capable of
computing the Swarm’s next global state, (see also Sect.
“Swarms of IntelligentUnits”). Finally, “intelligence” is ex-
pected to be achieved by running appropriate algorithms
via the updating function f. If and how this is going to be
possible requires a more mathematical discussion, which
is the subject of Sects. “Standard-Mathematics Methods”–
“Cellular-Computing Methods”.

Standard-MathematicsMethods

The science of biological swarms and the engineering of
robotic swarms, as well as research in A-life relevant to SI,
have progressed by using a broad range of mathematical
techniques. All these techniques can be classified in two
main groups: (1) ‘standard-mathematics’ methods and (2)
cellular-computational methods.

By standard-mathematics methods (SMm) we mean
any method that is based on the standard tools of applied
mathematics and computations based on standard (Von
Neumann) computer architectures. Examples are meth-
ods in differential equations, stochastic techniques, linear
systems, and optimization. By cellular-computing methods
(CCm) we mean highly parallel and local computational
methods, with simple cells as the basic units of computa-
tion, typically carried out on�Mathematical Basis of Cel-
lular Automata, Introduction to (CA) [37].

These two mathematical approaches reflect two dis-
tinct trends in the evolution of SI research, as described
below. We consider first (Sects. “Swarm Optimization”–
“Limitations of Standard-Mathematics Methods”) the ap-
proach to SI based on SMm, since the greatest number of
significant results in the area of SI has been obtained, so
far, by standard-mathematics methods; specifically in the
areas of optimization and non-linear dynamics. We con-
sider them in turn in the next two sections.

SwarmOptimization

Optimization is by far the largest research area associ-
ated with SI. This is due to two extremely successful op-
timization methods, whose origin is related to models
of SI. The two methods are the Ant Colony Optimiza-
tion (ACO) [12,13] and the Particle Swarm Optimization
(PSO) [4,38]. Both ACO and PSO, originated in the early
nineties and have resulted in hundreds of applications
based on variations of the original algorithms. So much
so that the field of “Swarm Optimization” could stand
alone, apart from its relation to SI with which it is some-

Swarm Intelligence, Figure 2
Simplified illustration of the typical problem encountered in op-
timization. Starting from the value represented by the open cir-
cle and varying the parameter continuously the algorithm will
find one of the nearest local minima (black circles) rather than
the global minimum (indicated by the arrow)

times even identified. A thorough and recent description
of swarm optimization techniques is in [6]. Here only the
key concepts of swarm optimization are reviewed, as they
relate to SI.

In PSO and ACO, as in any optimization methods,
a function must be optimized, e. g., minimized. To find
the minimum of the function, the variable is changed in
a systematic way – the optimization method. Generally,
the variable spans a multidimensional space. The search
for the global minimum is nontrivial since the function
may have many local minima, and the search could end
into one of them (see Fig. 2). Various techniques to avoid
this trapping have been developed by using some degree of
randomness in the search strategy. For example, simulated
annealing [39] was developed to overcome the limitations
of non-random methods, e. g., the gradient descent [40].
PSO and ACO belong to this class of optimization tech-
niques that make use of randomized searches.

Particle SwarmOptimization (PSO)

PSO was developed by Kennedy and Eberhart in 1995 [38]
inspired by the social behavior of bird flocking and fish
schooling [16].

In PSO, the position of each unit of the swarm is
a point in the variable space of the function to be mini-
mized. Every unit tries to reach the position correspond-
ing to the minimum of the function. Each unit is assumed
to know the global minimum value of the function, and to
detect the value of the function at its location as well as the
value of the function at the locations of a group of neigh-
bors. The size of the group of neighbors is a parameter and
could be the whole swarm.

The algorithm is, schematically, as follows. The units
are initially in random locations. Every unit moves in
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Swarm Intelligence, Figure 3
Illustration of the velocity update mechanism in PSO. A unit
(white circle) originally moving to the left, changes its velocity
by adding the two components in the direction of L1 (the unit’s
best location so far) and of L2 (the neighbors’ best location so
far). The magnitude of these components is determined by ran-
dom weights. The new velocity (heavy solid line) generally tends
to be in the direction of the global optimum

the variable space and remembers the location L1 where,
among the locations visited so far, the function had min-
imum value. It also remembers the location L2 where,
among the locations visited by all its neighbors, the func-
tion had minimum value.

At each time step, each unit calculates its distances
from L1 and from L2; forms a weighted average of L1 and
L2 using random weights; and changes its velocity in pro-
portion to this weighted average (see Fig. 3). As a result
every unit tends to move toward the location of the global
minimum by taking advantage of its and its neighbors’
knowledge. The process stops either when a unit is suffi-
ciently close (by a chosen tolerance) to the location of the
global minimum or when a chosen maximum number of
iterations has been run.

PSO belongs to the category of stochastic, population-
based algorithms, such as, e. g., genetic algorithms. The
PSO’s great merit is its simplicity. In many cases it out-
performs genetic algorithms. Similarly to all optimization
algorithms of this type, PSO convergence relies on the use
of heuristics; and convergence does not mean convergence
to the optimum. In fact, the basic PSO does not guaran-
tee convergence even to a local minimum. The basic PSO
is also inefficient in dynamic optimization problems, i. e.,
problems in which the optimum location changes. How-
ever, variations of the basic PSO have been proven to have
improved performance in dynamic problems and to be ca-
pable of convergence to local minima.

Many improvements of the PSO basic algorithm have
been developed and applied successfully to a wide range
of optimization problems: continuous and discrete, con-
strained and unconstrained, single and multi-objective,
static and dynamic. Specific applications cover just about

all areas of applied optimization. The main classes of ap-
plications have been in areas such as:

(1) Neural networks (training, supervised and unsuper-
vised learning, architecture selection, etc.);

(2) Game learning;
(3) Clustering;
(4) Design (aircraft wings, antennas, circuits);
(5) Scheduling & Planning (maintenance, traveling sales-

man, power transmission, etc.);
(6) Controllers (flight path, air temperature, power stabi-

lizers, etc.);
(7) Data mining. For more detail see, e. g., [6].

Ant Colony Optimization (ACO)

The key idea of ACO [12,13] is an abstraction and gener-
alization of the Goss et al. [11] two-path experiment with
ants. A first generalization of the two-path problem is find-
ing the shortest path between the starting point S and the
final point F when between S and F there are many possi-
ble paths.

The two-path problem can be represented by a graph
with 3 vertices (S;A; F) and three arcs (S ! A, A! F,
S ! F). The short path is S ! F and the long path is
S ! A! F .

If we add another vertex B, and make the graph com-
plete (i. e. we join with an arc each vertex to every other
vertex) we obtain five possible paths: S ! F , S ! A! F,
S ! B! F, S ! A! B! F , S ! B! A! F (see
Fig. 4). The idea is easily generalized to a complete graph
with more vertices. The number of paths increases expo-
nentially so checking the length of all the possible paths
becomes computationally unfeasible for a large enough
number of vertices.

A number N of ‘ants’ start at vertex S choosing ran-
domly which vertex to go next. At every new iteration,
each ant decides which arc to traverse next, with probabil-
ity proportional to the amount of pheromone on the arc
relative to the total amount of pheromone on the possible
arcs that the ants could choose.

Swarm Intelligence, Figure 4
The five possible paths from S to F: S ! F; S! A! F;
S! B! F; S! A! B! F; S! B! A! F
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After an ant, k, reaches the destination F, the length of
its path Lk is remembered (if an ant reaches the destination
via loops, Lk is calculated after removing the loops). The
ant retraces exactly the path (without loops) and deposits
pheromones on the arcs in proportion to 1/Lk .

In this way, the marking (with pheromones) of the
paths by all the ants modifies the graph so that the prob-
ability of any ant taking the shortest path at the next trip
from S to F increases. Eventually all the ants will follow the
same path, if the algorithm converges, and the path will be
the shortest if the convergence is to the global minimum.
As inmost optimizationmethods, this is never guaranteed.

The idea of the original ACO algorithm [12] adds to
the foregoing sketch of the basic model three more ele-
ments. First, each arc has an a priori propensity to be tra-
versed (regardless of pheromone content); second, each
ant keeps in memory a tabu list of arcs not to be traversed,
to avoid loops; and third, the pheromones evaporate at
a given rate.

ACO key insight is the application of the concept of
stigmergy to stochastic optimization. The ants communi-
cate by modifying the environments (graph) and act prob-
abilistically on the basis of the modified environment.

Many variations of the basic ACO algorithm have been
proposed and implemented. The many variations take ad-
vantage of specific knowledge about the specific problem,
i. e., they use heuristics, e. g., by setting the a priori propen-
sity of traversing an arc, or by setting the evaporation rate.

ACO eventually resulted in a meta-heuristic which is
a strategy for designing ACO heuristics. Various ACO-
based metaheuristics have been developed. Similarly to
PSO, ACO algorithms have been applied to all the basic
types of optimization problems: continuous and discrete,
constrained and unconstrained, single and multi-objec-
tive, static and dynamic. The first application of ACO was
to the Traveling Salesman Problem, which is an NP -hard
combinatorial optimization problem, and it is the most
frequently attacked problem using various ACO heuris-
tics. Themain classes of other applications are to problems
of

(1) Ordering (scheduling, routing);
(2) Assignment (Neural network training, image segmen-

tation, design);
(3) Subsets finding (maximum independent set);
(4) Grouping (clustering, bin packing).

Clearly “ swarm optimization” successfully uses concepts
from the general notion of SI, but optimization is not in it-
self a necessary characteristic of SI. In fact, many tasks ac-
tually or potentially carried out by swarms are not-optimal
in any sense.

Non-Linear Differential EquationsMethods

One fruitful approach to modeling swarms has been to
treat each individual as a discrete particle. These “individ-
ual-based” models have been employed in quite a few bio-
logical and mathematical studies. They are based on sim-
ple rules of motion for each individual, involving some
combination of self-propulsion, random movement, and
interaction with neighboring organisms. The models typi-
cally take the form of coupled non-linear difference or dif-
ferential equations, which may be stochastic or determin-
istic, depending on the particular features of each model.
Numerical simulations have revealed collective behavior.
But a main disadvantage of such models is that, for real-
istic numbers of individuals, analytical results for the col-
lective motion are difficult or impossible to obtain. It is
worth mentioning that some progress has been made in
obtaining analytical results for stationary groups. In [41],
a discrete model was formulated, and a Lyapunov func-
tional was used to successfully predict an equilibrium state
of equally spaced organisms. However, analytical (nonsta-
tistical) descriptions of nonequilibrium states in discrete
swarm models are few.

Other investigations of swarming have been carried
out in a continuum setting, in which relevant quantities
are described as scalar or vector fields. This approach goes
back to 1980; reviews are provided in [42]. Continuum
models may be constructed a priori or by coarse-graining
a particle model. In general, continuum models provide
a convenient setting in which to study large populations,
since one may apply machinery from the analysis of par-
tial differential equations. In the context of swarms, the fo-
cus has generally been on models in which the population
density satisfies a convection-diffusion equation ensuring
that the population density is conserved while individu-
als travel with a set average velocity. Recent models of this
type [43] can predict, e. g., whether a population aggre-
gates or disperses, the regions of aggregation, and length
scales of the density patterns.

Limitations of Standard-MathematicsMethods

In describing the SI investigations in the previous two sec-
tions, we have encountered the concepts of optimization
and non-linearity (and earlier, in Sect. “Artificial Life Sys-
tems”, complexity and self-organization arising from non-
linearity). To see more precisely the relation of these four
concepts to SI we refer back to the definition of Elemen-
tary Swarm (Definition 2). Note that, by this definition, the
Swarm is in principle capable of optimization, complexity
and self-organization. In fact, it is clear that a Swarm is
a self-organizing system, by definition, and that, depend-
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ing on the choice of the updating function f , the pat-
tern formed by the swarm components might, in principle,
achieve high complexity.

As for non-linearity, it is convenient to think of f as
a function of a function,

f D f (g(Ki)

where g represents the dependence from the neighbors.
While g maybe linear or non-linear, the function f , repre-
senting the mode of updating, will typically be non-linear
and/or probabilistic. In spite of this, the evolution of the
Swarm only in special cases can be modeled by standard
non-linear dynamics as studied via nonlinear differential
equations (as we have seen in the previous section).

In regard to optimization, the Elementary Swarm can
be easily designed to be an optimizer. In fact, if the up-
dating is sequential, and f and vi are chosen appropriately,
one obtains a simple PSO system.

Thus, the Elementary Swarm describes a simple but
powerful system capable, in principle, of self-organizing,
and to produce complex structures and optimal solutions.
On the other hand, even the Elementary Swarm is more
general than these properties; a Swarm is not restricted by
the notions of optimization or non-linear dynamics (and
self-organization or complexity tied to non-linear dynam-
ics). All these can be properties of the swarm but none
is a requirement for SI. To find out what SI can do that
is beyond what we have described so far, we must look
at the computational capabilities of swarms. And for this
we need to look at cellular-computing methods since stan-
dard-mathematicsmethods are ill suited to deal with com-
putation.

Cellular-ComputingMethods

Some of the first studies in SI were based on computational
models, and, more precisely, on distributed algorithms ap-
plied to robotic units [44,45,46].

In these computational models, the swarm was devel-
oped as an evolution from a distributed system of proces-
sors, as follows. In distributed computing the algorithms
are designed for a ‘static’ set of processing units, where,
‘static’ is meant literally as ‘not moving’. For illustration, if
a set of CPU’s, computing in a distributed way, via wire-
less communication, started moving around, this system
would look very much like a robotic swarm. In fact, refer-
ring to the intuitive notion of SI (Definition 1), all points
of the SI definition would be satisfied by such a dynamic,
distributed computing system provided the CPU’s had, in
some sense, limited capabilities.

The main point is that this distributed computing
swarm differs from the robotic, and non-robotic, swarms
described in the previous sections (Sects. “Standard-Math-
ematics Methods”–“Limitations of Standard-Mathematics
Methods”) in that the intelligent task of the swarm is now
seen as a ‘computation’. And this focus on computation
leads us now to consider the other broad set of techniques
used in SI research, i. e. techniques based not on standard-
mathematics but on cellular computing.

Cellular computing differs qualitatively from the stan-
dard Von Neumann computing architecture. The latter
is based on one complex processor that sequentially per-
forms, at each time step, a single complex task. In contrast,
in cellular computing, a very large number of simple pro-
cessors (cells) are the units of computation. They compute
(typically) in parallel with local connections between cells.
The qualification ‘simple’ can be made precise by requir-
ing, e. g., each cell to be a ‘finite state’ machine. Cellular au-
tomata are the most obvious examples of cellular comput-
ing systems but cellular computing applies to many other
systems as well [47].

By definition, then, cellular computing contains sev-
eral of the features of SI. The Elementary Swarm of Defi-
nition 2 can be regarded as performing a cellular computa-
tion. And in fact, cellular computing has been used exten-
sively in A-Life studies, including systemswith strong rela-
tion to SI [34]. Cellular computing systems offer SI some-
thing that the SI systems described in the ‘standard-math-
ematics’ Sects. “Standard-Mathematics Methods”–“Lim-
itations of Standard-Mathematics Methods”) lack, i. e.,
a clear characterization of intelligent task.

Intelligence as Universal Computation

Intelligence is an ambiguous concept, escaping a unique
definition [48]. By identifying ‘intelligence’ with ‘compu-
tation’, the concept is restricted, but, at the same time, it
can be made precise. In fact, in SI we define intelligence
unambiguously as the ‘ability to carry out universal com-
putation’.

Universal computation (or universality) is the prop-
erty of a computer system (or language) which, with ap-
propriate programming, can be made to perform exactly
the same set of tasks as any other computer system (or lan-
guage).

Universal computation (i. e., the ability to emulate
a universal computer), is essentially the limit of any model
of computation (Church–Turing thesis) [49]. It was first
proven by Turing in 1936 that no system can ever carry
out explicit computations more sophisticated than those
carried out by a Turing machine. Subsequently, universal-
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ity has been found to be a widespread property of many
cellular computing systems [50].

One of the first cellular computing systems shown to
be capable of universal computation, is Conway’s game
of life [51]. This CA is also the prototypical example of
A-life systems. And it is also an example of the strong
connection between universal cellular computing and bio-
inspired systems.

More recently, a large number of simple cellular com-
puting systems have been found to be capable of universal
computation [50]. Many of these systems are CA, or re-
lated systems, using very simple rules of evolution with lo-
cal interactions. And so they are useful starting points for
modeling SI.

In particular, cellular computing is the most appro-
priate to endow the swarm with the property of unpre-
dictability. The latter property was an original motivation
for SI [1,2] and it is crucial in the task of escaping detec-
tion by a predator; it is also of importance in engineering
swarms for strategic defense applications.

Unpredictability is almost a built-in property of cellu-
lar computing systems because, if one observes the rules of
evolution in their raw form, it is usually almost impossible
to tell much about the overall behavior they will produce.

Relations to Standard-Mathematics Methods

SMm cannot provide the swarm with the element of uni-
versal computation, which we have taken as the working
definition of ‘intelligence’. The only way would be to make
each unit a von Neumann (i. e. standard) computing sys-
tem. In a sense, this violates the notion of Swarm, since in
a Swarm, by definition each unit must be ‘simple’. (This
point will be further clarified in Sect. “Swarms of Intelli-
gent Units”). On the contrary, the main advantage of cel-
lular computing systems over standard mathematics sys-
tems is the possibility of universal computation by simple
units.

For this reason CCm are the natural paradigm for the
understanding and designing SI systems, in spite of the
fact that the approach to SI based on cellular comput-
ing has so far produced fewer so-called SI applications
than the approach based on SMm. Indeed, SMm have ba-
sic limitations for modeling SI. This is because the use
of SMm tends to restrict the range of tasks performable
by the Swarm. And this happens because SMm typically
solve problems by specifying constraints, i. e., conditions
to be satisfied by the solution, e. g., by specifying equations.
But most computational problems cannot be solved in this
way.

The optimization methods described in the previous
sections (PSO, ACO, etc.), illustrate the point. In these
iterative methods, the key issue is what kind of changes
should be made at each iteration step. Starting from a ran-
dom pattern, at each step a change is made to get the
pattern closer to satisfying the constraint(s). Since direct
methods (e. g., gradient descent) rarely work as the pat-
tern gets stuck into local minima, randomness in updat-
ing is added. In this way, larger portions of the solution
space are sampled. The larger the changes made, the faster
one can potentially approach a global minimum, but the
greater the chance of overshooting. The result is that no
iteration technique of this type can guarantee a solution to
general combinatorial optimization problems. As we have
seen, the swarm optimization methods (ACO, PSO) rely
on heuristics to adjust the search and obtain often (non-
optimal but) satisfactory solutions. But, in general, for
the greatmajority of combinatorial optimization problems
(e. g., the Traveling Salesman Problem [52]), no polyno-
mial upper bound on the time complexity has been found
so far. And this happens in many problems whose solu-
tion is sought by using randomness to satisfy the imposed
constraints. As an example, a set of identical balls cannot
be shaken into an ordered, closed-packed configuration.
With extremely high probability, they lock into some con-
figuration or another, not the optimal (close-packing) one.

This fact has important implications for SI.What it says
is that no matter how much randomness is added to the
system, it may never evolve to reach the solution speci-
fied by the constraints. Although, ultimately, constraints
can be set up as a way of specifying algorithms, and hence
computing, it is far simpler to specify algorithms via rules
of evolution, as it is done in cellular computing.

The conclusion is that methods based on constraints
and other SMm are not ideally suited for systems evolving
with great complexity, and in particular they are not suit-
able for universal computation. Thus, if SI is to be a frame-
work for (biological or engineered) swarms to carry out
‘intelligent tasks’ with the greatest generality, a methodol-
ogy that allows for the swarm to carry out universal com-
putation is necessary. To this aim, CCm are the most suit-
able.

Unfortunately, although CCm have many advantages
over SMm for modeling SI, they address only three of the
four key elements of the notion (Definition 1) of SI (‘intel-
ligence’, ‘collectively’, ‘randomly’, ‘unknowingly’), leaving
out the element of ‘randomness’. Generally, CCm operate
deterministically and do not include ‘randomness’, as, e. g.,
‘swarm optimization’ systems do. But this does not have
necessarily to be the case. The issue is addressed in the next
section.



8880 S Swarm Intelligence

Randomness in Swarm Intelligence

Randomness is a key element in the notion of SI (cfr. Def-
inition 1 and Definition 2). Examples from biology jus-
tify this requirement. Randomness is not easily quantified
precisely but, whatever the form and measure chosen, the
point is that for swarms some form of randomness is nec-
essary – otherwise they would fail to be models for ana-
lyzing a large class of biological systems. But what kind of
randomness is essential to model these biological systems?

Randomness in the number and type of agents is not
important – the agents could be strictly identical and re-
main in the same number. Randomness in the initial con-
ditions is not essential either. Many swarms evolve from
regular initial conditions into highly complex and random
patterns. Randomness of external input from the environ-
ment is not always present, and it is certainly not a require-
ment for biological swarm behavior.

What about the randomness artificially added to the
units, as in swarm optimization?

The randomness added to the units in PSO or ACO
algorithms is modeled as originating from the random be-
havior of each unit. This is a plausible assumption in re-
lation to biological systems. But the swarms in PSO and
ACO are updated in an orderly (non-random) way, typi-
cally sequentially (there are also some parallel implemen-
tations [13]) whereas, in biological systems, the units up-
date in a disordered, random fashion.

And it is this type of randomness that is both necessary
in any biologically relevantmodel of swarms and sufficient
to providemany (but not all) of the advantages of random-
ness in solving swarm engineering problems.

The conclusion is that the only randomness that is
truly essential for SI is randomness in the times of oper-
ation of the units. Each unit has its own clock, not syn-
chronized with other units’ clocks. Other types of random-
ness in the behavior of the units or the environment may
be required to solve specific problems, but randomness in
times or operation is necessary for any biologically realistic
model.

Interestingly though, many applications so far consid-
ered in the area of SI do not yet include this randomness in
the models. We have already mentioned that typical opti-
mizing swarms update sequentially; and CA systems oper-
ate largely in parallel, i. e. synchronously. Synchronous or
sequential operations are by far the most common updat-
ing modes in either SMm or CCm.

The Implicit Assumption of Asynchrony Irrelevance

As noted, it is a basic fact that biological agents, apart from
exceptional cases, do not operate synchronously (or se-

quentially) in groups. It is also a fact that people in social
groups do not operate synchronously, or sequentially. If SI
is supposed tomodel biological and social swarms, SI must
be based on models that do not operate synchronously or
sequentially [53].

And if biological swarms are capable of solving prob-
lems (including optimization) without synchrony (nor se-
quentially), as they do, then models that imitate those
swarms should operate asynchronously (not sequentially).

But, as noted, the main modeling paradigms for
bio-inspired algorithms, standard-mathematics and cel-
lular computing, are either essentially sequential or syn-
chronous.

An example from SMm is the solution of partial dif-
ferential equations: they operate synchronously on every
point (clearly seen in solving them numerically and itera-
tively). This unrealistic use of differential equations in bi-
ological processes has been pointed out, e. g., in the prob-
lem of morphogenesis [54]. The Turing diffusion-reaction
model [55], being based on differential equations, implies
synchronicity and central control, hence it is physically not
realistic for a scale of the order of 100 cells.

In fact, synchronicity leads to realistic models only
whenever the spatio-temporal resolution is high, as, e. g.,
for phenomena typically studied in physics. But when the
units studied are complex or few enough to have a less fine
spatio-temporal resolution, as in biology or human soci-
eties, synchronicity is not realistic, as it is obvious by ob-
servation.

Thus, in using synchronous methods for biological or
human societies, implicitly a strong assumption is being
made, i. e., that the synchronously (or sequentially) and
non-synchronously (and not sequentially) obtained solu-
tions would coincide.

But this assumption has no validity. In fact, it has
been shown, for example, that CA, when running in syn-
chronous and non-synchronous ways, normally produce
totally different results [56]. This has been noted already
in the nineties [57] in A-Life studies. In [57] two well-
known CA were compared: Conway’s “game of life” [52],
and the Immune Network model. The former is a 2-di-
mensional CA capable of universal computation when
run synchronously. But the behavior is totally different
when run without synchrony: the Game of Life stops
producing complex patterns and converges to a fixed
point.

The Immune Network model is asynchronous and the
Game of Life synchronous. The crucial factor in the dif-
ferent behavior of the two systems was identified as the
synchronous vs. asynchronous updating. In fact, it was
concluded that, in this case, asynchrony induces stability
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in CA. This agrees qualitatively with studies in standard-
mathematics [58].

In conclusion, the assumption that asynchrony makes
no difference has been found not to be valid. Hence, asyn-
chronous systems must be studied as such, not by using
synchronous models. Moreover, different types of asyn-
chrony yield different results, as discussed in Sect. “Asyn-
chronous Swarms”.

Asynchronous Swarms

Several cellular computing studies in the nineties [37,59]
led to a variety of results emphasizing the role that differ-
ent types of asynchrony play in the results. Studying asyn-
chronous systems is complicated because, among other
things, deviation from synchronicity, i. e., from the mode
of updating all units in parallel at each time step, may oc-
cur in several different ways. For example, sequential up-
dating and random updating are both asynchronous but
very different.

Types of Asynchrony

Unfortunately, there is no standard vocabulary for the var-
ious types of asynchrony. Thus we use the following clas-
sification to describe the possible types of asynchrony.

Consider an updating cycle (UC), i. e., the time inter-
val at the end of which all units have been updated at least
once. Eight types of UC can be identified by the presence
or absence of any of following three properties: (S) Syn-
chronicity: more than one unit may update at each time

Swarm Intelligence, Figure 5
a. Asynchrony of type (� S,� M,� R); b. Asynchrony of type (� S,� M, R); c. Asynchrony of type (� S,M,� R); d. Asynchrony of type
(� S, M, R); e. Asynchrony of type (S,� M,� R); f. Asynchrony of type (S,� M, R); g. Asynchrony of type (S, M, � R); h. Asynchrony
of type (S, M, R); Illustration of the 8 types of updating, according to Synchronicity, Multiplicity, and Randomness. Four units are
represented by rectangles with different patterns, from black (bottom) to white (top). The horizontal axis measures time steps in
units equal to the base of a rectangle. The vertical dashed line indicates the end of an updating cycle (i. e., all units have updated at
least once). The label below the horizontal axis specifies the type of updating (�means ‘not’). The standard ‘parallel’ and ‘sequential’
updating are, respectively, (S,�M,�R), Fig. 5e, and (� S,� M,� R), Fig. 5a

step; (M) Multiplicity: any unit may update more than
once in each UC; (R) Randomness: the updating order
varies randomly for every UC (see Fig. 5).

These eight basic types of asynchronous updating, can
be further specialized. For example, if all three proper-
ties are absent (� S, � M, � R), the updating is sequen-
tial. But the sequential updating order of the units can be
fixed in different ways. Studies of CA have proven that the
behavior differs markedly not only for the eight types of
asynchrony, but even among different sequential order-
ing [37,56].

In [56] the (S, M, � R) form of updating has been
applied to describe processes where each unit has inde-
pendent clocks but the clocks have a fixed, non random
frequency. This type of asynchrony is considered a good
model for forest ecosystems, fire spread, and other nat-
ural and artificial systems. The results are very different
when updating of the type (� S,M, R), (� S, � M, R), or
sequential (� S, � M, � R) are applied to the same sys-
tem.

In conclusion, the crucial point is that [56] the exact
manner of updating can have a profound effect on overall
system behavior. The implication of this is that when com-
paring models of natural systems or artificial multi-agent
systems it must be stated which updating scheme has been
used, otherwise meaningful comparison between different
studies may not be possible.

In particular, returning to swarm optimization, one
may ask whether in tasks such as finding the shortest
path, it is realistic to apply to natural systems (such as in-
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sect societies) swarm models which are sequential (such
as swarm optimization models) or synchronous (such
as models based on differential equations). While these
models work effectively as artificial swarms there is no
proof that they apply to natural systems, which are asyn-
chronous.

Modeling Asynchrony by Synchronous Swarms

Because of the widespread use of synchronous methods in
simulations of SI, one might wonder under what condi-
tions a synchronous but stochastic model could be equiv-
alent to an asynchronous one.

To answer this question, let us consider the two types
of stochastic models most commonly used to model ran-
domness in synchronously updated systems. The random-
ness may be included in (1) the possible outcomes of the
updating function or (2) in the choice of the function ap-
plied to the updating.

Referring to the definition of Elementary Swarm (Def-
inition 2) the two cases correspond to generalizing the up-
dating function as follows:

Case (1) 8i 2 N : vi (t C 1) D f (vk2K(i)(t) �)

where � is a random variable.

Case (2) 8i 2 N : vi (t C 1) D f(t)(vk2K(i)(t)) ;

where P[ f(t) D f� ] is the probability mass function of
choosing f(t) D f� out of a set of Nf possible functions
f f� ; � D 1; : : : ;Nf g.

Case (1) is typical of probabilistic CA, and it is also the
method used in PSO. In these systems the state vector, at
each time step, evolves according to a fixed rule which pro-
duce a new state vector from the previous one. The rule is
based on the state of the neighbors of each unit and does
not change from step to step but the outcome of the rule is
probabilistic.

Case (2) is what is done for example in probabilistic
Iterated Function Systems [23]. In probabilistic Iterated
Function Systems a vector evolves via a set of maps (a map
is a function whose domain and range coincide); at each
time step a map is chosen, probabilistically, from a set of
possible maps.

In either cases (1) or (2), the updating scheme fails
to model the actual time evolution of natural systems not
so much because the updating are applied synchronously
but because the randomness is applied collectively, i. e. to
all the units in the same way. On the other hand a syn-
chronous algorithm realistically simulating independent
random updating can be run as case (2) applied individ-

ually to each unit, as follows:

Case (3) 8i 2 N : vi (t C 1) D f(t)i(vk2K(i)(t))

where P[ f(t)1 D f�1; f(t)2 D f�2; : : : ; f(t)N D f�N] with
f(t)i 2 f f� ; � D 1; : : : ;Nf g is the joint probability mass
function of each unit i updating, at time t, according to
the function f(t)i .

In the simplest embodiment of case (3), the set of pos-
sible updating functions consists only of the identity and
of another function f , with probabilities p and (1 � p) re-
spectively (i. e., a Bernoulli process). In such a case, every
unit, at each time step, either does not update, with proba-
bility p, or updates according to the function f , with prob-
ability (1 � p). Running this algorithm synchronously is
equivalent to asynchronous independent updating of the
units in a randomway – a realistic description of a random
swarm. So, under these independently stochastic condi-
tions, running a simulation synchronously, represents cor-
rectly the physical asynchronous updating of the swarm
units. On the other hand, this does not change the fact
that different results are obtained when using this ran-
dom updating (whether simulated with stochastic syn-
chrony or not) instead of synchronous or sequential up-
dating.

Local Synchrony and Self-Synchronization

Another approach to dealing with the problem of random
updating by the swarm units, is to explore the possibility
of self-synchronization. If the swarm can self-synchronize,
then all the results for synchronous swarms could be ap-
plied.

To look into this, let us return to the classification of
the types of asynchrony, i. e., the SMR classification above.
If the SMR properties are applied to blocks of units rather
than individual units, the resulting updating orders are re-
ferred to as ‘locally synchronous’.

CA with cells organized into blocks have been inves-
tigated [60]. These CA relax the normal requirement of
all cells having the same update rule. Cells within a block
are updated synchronously, but blocks are updated asyn-
chronously. They experimented with different SMR types
of asynchrony and concluded that synchronous and asyn-
chronous CA can be evolved with equivalent computa-
tional properties, but CA of the asynchronous type may
require a larger number of cells [60]. Another study [61]
has shown cases in which local synchronization can lead
to the same outcome as with global synchronization. But
how can local synchronization be achieved?

A number of schemes have appeared in which the or-
der of updating depends on local interactions and leads
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to local synchronization. In effect, what local interactions
(or constraints) can do is to force a unit to wait to update
until others are ready, and so this creates a local synchro-
nization. An asynchronous CA model that can behave as
a synchronous CA has been demonstrated [62]; it func-
tions by the addition of extra constraints on the order of
updating, effectively providing a type of local synchroniza-
tion. Whether these methods of self-synchronization may
in some cases result in realistic models of natural systems
of SI remains an open question.

The Natural Asynchrony of Swarms

We have seen that the implicit assumption of asynchrony-
synchrony equivalence must be rejected and that different
types of asynchrony give different results. But what type of
asynchrony is most relevant to SI? There is no easy answer.
For example, ants work and rest; active and resting periods
have an aperiodic pattern for individual ants, but for the
whole colony there are synchronized periodic patterns of
active and resting periods.

In spite of the difficulty of finding a clear cut answer to
the question of the natural mode of SI updating, from ob-
servations of biological systems, and from local synchro-
nization models, it may be plausible to assume that the es-
sential form of asynchrony in SI is the randomness in the
working of the individual clocks, as argued in Sect. “Ran-
domness in Swarm Intelligence”; hence the SI asynchrony
must be characterized by the presence of all three asyn-
chrony properties, i. e., (SMR).

In conclusion, at this stage of our discourse, the Swarm
remains defined as in Definition 2, qualified by SMR asyn-
chronous updating, which hereinafter we call ‘natural’
asynchrony. Note that stochastic synchronous simulations
of this model can also be carried out as, e. g., in case (3)
above.

The Realizationof Asynchronous Swarms

So far we have established the importance and type of
asynchronous models in SI, but what SI investigations us-
ing asynchronous swarms are there?

As noted in Sect. “Asynchronous Swarms”, research in
asynchronous models is still very limited, relative to syn-
chronous models, and this in spite of the fact that the very
first models of SI were all asynchronous, using SMm based
on finite differences [46]. Explicit updating schemes in fi-
nite difference methods can also be regarded as parallel
CA, thus belonging to both SMm and CCm. Investigations
of asynchronicity in finite differencemethods are not com-
mon [58]. Examples include a non-linear updating rule
was based on a linear relation between two neighboring

units [45]. A gradient type of swarm updating, was also
proposed in modeling morphogenesis [54].

For swarms updating with ‘natural’ asynchrony, i. e.,
according to (SMR), a recent study [58] gives a proof of
convergence to the same state as by using synchronous or
sequential iterations. It was also shown that, under cer-
tain conditions, the (SMR) asynchronous updating leads
to convergence while synchronous updating does not. This
is another example of the advantages of randomness in al-
lowing the swarm to reach a fixed state.

At the end of Sect. “Cellular-Computing Methods” we
concluded that CCm have, for SI modeling, many advan-
tages over SMm. The most crucial advantage is the pos-
sibility of universal computation which we took as the
definition of intelligence for SI. We also noted, however,
that studies based on CCm which include randomness are
scarce.We described a few in Sect. “Randomness in Swarm
Intelligence”, especially in discussing the qualitative differ-
ences with synchronous CA and in relation tomechanisms
of local and self-synchronization.

Generally these studies model relatively trivial phe-
nomena but cannot model nontrivial phenomena such as
universal computation. In fact, there are very few studies
of universal computation in asynchronous CA. Significant
advances have been made only recently. The first attempts
were made by simulating a synchronous CA on an asyn-
chronous CA [63] after which a synchronous model, as
a Turing Machine, was simulated on the synchronous CA.
However, this asynchronous CA is, in practical realization,
synchronous.

Improved asynchronous CA do not rely on global syn-
chronization but conduct asynchronous computation di-
rectly by simulating Delay-Insensitive circuits, i. e., cir-
cuits in which delays of signals do not affect the correct-
ness of the circuit operation [64]. This method essentially
uses local synchronization with undetermined exact tim-
ing between transitions. In this way an asynchronous CA,
with a hexagonal cell structure, capable of universal com-
puting has been realized [65]. Although relying on lo-
cal synchronization, this type of asynchronous CA can
mimic natural phenomena as, e. g., phenomena that rely
on chemical reactions which occur only when the right
molecules are available in the right positions at the right
times.

More recently a computation-universal and construc-
tion-universal asynchronous CA has been designed [66]
and used to implement self-reproducing [67,68]machines.
Besides computational universality, construction univer-
sality is important in SI because it allows the swarm to
be hardware reconfigurable, an important characteristic of
many biological systems.
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We note that the recent interest in asynchronous CA
stems not directly from SI but from nanotechnology. In
fact nanocomputer architectures with asynchronous up-
dating may reduce heat dissipation, an important limiting
factor in scaling down the size of computing chips [64]. In
this respect, it is likely that SI concepts will play a major
role in nanoscale systems.

In conclusion, the recent realization [66] of universal
asynchronous CA is a major step toward the realization of
true SI.

Characteristics of Swarm Intelligence

The demonstration of universal computation in asyn-
chronous CA, amounts to a validation of the concept of SI.
In fact we can now combine universal computation with
the Elementary Swarm definition (Definition 2) to quan-
tify the intuitive definition of SI (Definition 1), as

Definition 3 SI is the study of universal cellular-comput-
ing systems updating with natural asynchrony.

Here ‘natural’ means SMR-asynchrony (see Sect. “Asyn-
chronous Swarms”) or updating randomly in parallel, as in
case (3) of Sect. “Asynchronous Swarms”. We call it ‘natu-
ral’ since it models the natural mode of updating of typical
biological swarms and human societies.

A few remarks about Definition 3. The four elements
of the intuitive notions (Definition 1) are made precise by
Definition 3: ‘collectively’ and ‘unknowingly’ are inherent
in the structure of cellular computing; ‘intelligence’ is in
universal computation; and ‘randomness’ is in the natural
asynchronous operation.

Definition 3 deals with CCm and may appear to ex-
clude SMm in SI; but this is not the case. In fact, many
SMm, as used in SI, can be regarded as special cases of cel-
lular computing methods, as, e. g., are swarm optimization
and iterative methods in finite differences.

Also Definition 3 does imply that every SI systemmust
be capable of universal computation; what Definition 3
does is to establish a focus of attention for the SI area of
studies and at the same time give a precise and realistic
meaning to the kind of ‘intelligence’ aimed at in SI, rather
than the often vague and exaggerated meanings given in
the popular literature.

Definition 3 also indicates how SI becomes of rele-
vance beyond biological systems and robotics. In fact SI
will likely be an important concept in the future of com-
putation. At very small scales, time delays between com-
putational components cannot guarantee synchrony; the
various components must have independent clocks, thus
beginning to resemble the operation of a biological swarm.

So, swarms are likely to be studied extensively in connec-
tions with nanocomputing.

The above arguments bring up the question as to
whether SI is nothing more than asynchronous cellular
computing. The answer is that designs of asynchronous
CA, as investigated in computer engineering, are generally
not models of SI. A first, basic reason is that, with one re-
cent exception [66], asynchronous CA, do not update ‘nat-
urally’. A second,more fundamental reason, is that inmost
SI studies (both in natural and technological systems) the
units are dynamic. When the units of an asynchronous
CA are made mobile, a different, and more complex set
of problems need to be solved due to the changing neigh-
borhoods of each cell. These issues of dynamic reconfigu-
rations of cells have not been addressed in asynchronous
cellular computing designs and are likely to remain out-
side the scope of research aimed at improved computer ar-
chitectures. The computational problems arising from dy-
namically reconfiguring cells are central in SI. We address
this issue next.

Dynamics in Swarm Intelligence

In the definitions of SI and Swarm given so far (Def. 1.,
Def. 2., Def. 3.), there has been no mention of the dynam-
ics of the units. But a general characteristic of the units of
a swarm is that almost invariably they are mobile. In fact
we have already discussed the dynamic nature of swarms
in Sects. “Biological Systems” and “Robotic Systems” in re-
lation to biological and robotic swarms. The reason we
have so far omitted this dynamic character of the units
from the progressively more precise definitions of SI is
simply for clarity of exposition: if the dynamics is intro-
duced after all the other elements of SI have been defined
and quantified it is easier to single out its real importance.

FromDefinition 3, with appropriate specializations, all
aspects of SI considered so far can be included in a com-
mon core of studies. The most general notion of SI is in
fact that of universal computation carried out with ‘natural
asynchrony’ by a cellular computing system. But we should
add, whose cells are, in general, mobile units.

The latter qualification would be unnecessary if the de-
scription of the dynamic state could be included among
the state variables of the cell. But this is not possible in
computing cells since the computation depends on neigh-
bors that change their locations. The fact that dynamic
cellular computing systems (also called cellular robotic sys-
tems) are not equivalent to (and very hard to simulate by)
cellular computers has been emphasized since the very be-
ginning of SI studies [44]. Thus, we conclude by stating
a definition of SI which, while remaining grounded in the
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intuitive ideas (Definition 1), includes all the concepts dis-
cussed quantitatively in this article.

Definition 4 SI is the capability of universal computation
carried out with ‘natural’ asynchrony by a dynamic cellular
computing system.

As we have seen, studies in the area of SI so far have been
concerned with models of collective behavior which, to
some limited degree, approach SI as defined above. Even
though, to date, no system with SI (Def. 4.) has been built
(or designed), significant progress has been made and,
from what we have seen, it is reasonable to expect that it
can be done.

In fact, although there is not yet proof of univer-
sal computation carried out with ‘natural’ asynchrony by
a cellular robotic system (i. e., a dynamic cellular comput-
ing system), the recent proof [66] for ‘static’ cellular com-
puters indicates that this may be possible in the near fu-
ture. Other future perspectives for SI are discussed in Sect.
“Future Directions”.

Unpredictability in Swarm Intelligence

We are now in a position to consider an aspect of SI which
has been inherent to the concept of SI from its inception,
i. e., the unpredictability [1,2] of the Swarm.

The unpredictability of the Swarm agrees with the
common intuition that it is usually difficult to predict what
a program will do by reading its code, and the more so the
lower the level of the language used by the program. More
precisely, a Swarm, like other universal computers, may be
impossible to predict in the sense that even if one knows
the rules of evolution and an initial state, it can still take
an irreducible [50,69] amount of computation to actually
predict future states. Furthermore, the unpredictability of
the Swarm is of a more general character than that of any
universal computer because of the randomness inherent in
its evolution and because of its dynamics.

The unpredictability of a Swarm by a Von Neumann
universal computer has been argued in [1,10] on the basis
of its dynamics. The unpredictability of a Swarm by a cel-
lular automaton has also been discussed [1,10]. Although
unpredictability is difficult to quantify, it is generally en-
gineered by adding randomness to the system as in cam-
ouflage and cryptography. Also, in animals, randomness
and dynamics are used by a herd to avoid predators by be-
coming unpredictable. And so in team sports, such as soc-
cer, unpredictability by the opponent is usually achieved
by a combination of randomness and dynamics.

Therefore, intuitively we may conjecture that among
systems capable of universal computation, a Swarm, be-

cause it operates with randomness and dynamically, would
be the least predictable.

Swarms of Intelligent Units

We can now consider collections of intelligent units, i. e.,
such that each unit is capable of universal computation.
These seem excluded from the definitions of SI given so
far – a key characteristic of SI is that intelligence is an
emergent property, happening only above a certain criti-
cal number of units, and not a property of any of the in-
dividual units. On the other hand, some of these groups
are often included in broad considerations of SI [4] as ap-
plied to human societies. Under what conditions can these
groups be regarded as swarms?

A simple answer to this question runs as follows. Con-
sider the special case of Definition 4, when the cells are
not finite statemachines but universal computing units. As
long as the task at hand cannot be accomplished by a sin-
gle unit, but only by more than a critical number of units,
the system operates as a swarm. That this can be the case
is supported intuitively and from computational consider-
ations, as follows.

Intuitively, we may refer back to the example of the
free market model mentioned as illustration of SI at the
beginning of the article. Each individual contributes only
as a trader; the ‘computation’ of the market price is done
by the swarm collectively and could not be done by any
individual agent. The point is that each unit, albeit ‘intelli-
gent’, uses only a fraction of its capability, i. e., the trading
ability, thus operating, effectively, in a restricted, ‘non-in-
telligent’ capacity.

Computationally, we have noted in discussing un-
predictability that, in spite of theoretical computational
equivalence among universal computers, the capability for
one universal computer to predict another is limited. And,
in fact, at the end of Sect. “Swarms of Intelligent Units”,
we put forth the conjecture that a Swarm is the least pre-
dictable universal computer.

But even if this conjecture were not true, it still makes
sense to think of a case when a Swarm of universal com-
puters is unpredictable by any of the units comprising it, as
it has been argued for the case of units capable of universal
computation with Von Neumann architecture [1,10]. In
this sense we may think of a swarm of universal comput-
ers as beingmore capable than any one of its units, in spite
of the fact that the Swarm and any of its units are compu-
tationally equivalent. For these reasons, it makes sense to
apply, under appropriate conditions, the notion of SI also
to human societies.
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We may give then a more complete definition of
Swarm by adding the characteristic of unpredictability of
the Swarm by its units.

Definition 5 SI is the capability of universal computation
carried out with ‘natural’ asynchrony by a dynamic cellu-
lar computing system, none of whose cells can predict the
computation done by the Swarm.

The latter specification is obviously redundant for com-
mon cellular computing systems but it is useful to exclude
from SI trivial cases of human social activities; for exam-
ple, activities of human groups whose association cannot
be proven to solve a problem that could not have been
solved by any individual alone.

Many popular interpretations of SI have appropriated
the label SI to refer to almost any trivial human group ac-
tivity, such as brainstorming. In such activities often there
is no way of proving that the final output of the group
could not have been predicted by one of the members of
the group. Ultimately, however, these considerations re-
quire an understanding of the relation between human
thinking and computation, and thus fall beyond the scope
of this article.

Similarly, beyond the scope of this article and SI,
fall studies of multiagent systems in Artificial Intelli-
gence [70]. In the Artificial Intelligence area, the emphasis
on multi-agent systems is in finding decision algorithms,
i. e. ‘agents’, for open environments in which these agents
must operate robustly and rapidly, i. e. ‘intelligently’. Gen-
erally, however, the problem of collective decision mak-
ing, organization theory, distributed reasoning and dis-
tributed Artificial Intelligence is typically beyond the scope
of SI.

SI deals with human groups only when they operate
at a low level of intelligence. Definition 5 includes human
groups of individuals that operate under restrictions which
the Swarm can overcome. An example is that of groups of
individuals each with a limited computation device con-
nected wirelessly to neighbors as in a cellular computing
system. With appropriate algorithms such a Swarm could
compute universally while the individual device cannot.
This concept is applicable in, e. g., defense operations or
emergency mass evacuations strategies.

In conclusion, Definition 5 embodies the intuitive def-
inition of SI (Definition 1) and indicates why SI methods
can be used to solve problems not solvable by traditional
methods. Besides having all the properties of universal CA,
the Swarm operates, as natural systems do, by independent
clocks with no centralization and can be designed to be dy-
namic and unpredictable by any system including any its
own units.

Future Directions

The field of SI is still less than 20 years old and it is in
a formative phase, with SI researchers engaged in a broad
range of disciplines. During these formative years the ‘con-
versation’ about SI has followed several strands around
some common themes with various emphases ranging
from speculative inquiries to practical interests, as we have
seen in this article.

The meaning of the term SI has tended to broaden,
covering now many areas, apparently only weakly related
by the some intuitive notions.We have seen, however, how
all these SI ideas have a ‘center of attraction’ in a basic con-
cept of SI that can be made precise and quantified (Defini-
tion 4 or 5), and thus used to provide unity, continuity, and
boundaries, thus preventing the area from broadening to
the point of being unable to sustain an effective research
community.

With this perspective, SI can also be seen as having
an ultimate theoretical goal for the practical realization of
engineered Swarms, whether robotic, biological or simply
computational.

Practically, the goal of SI will remain two-fold: to pro-
vide models to explain biological societies and to engineer
algorithms and deviceswith capability beyond those of tra-
ditional technologies. It will continue to include Swarm
Robotics and bio-inspired algorithms such as swarm op-
timization methods.

But although commonly regarded as a typical example
of bio-inspired technology, SI applications are likely to go
beyond bio-inspired systems. We can see this if we con-
sider how nature-inspired technologies have evolved.

Science discovers laws of nature, and technology
makes inventions using those laws, often together with
design ideas also derived from nature. Thus, for exam-
ple, laws of physics and designs inspired by crystal struc-
tures are now applied to nanotechnologies; similarly, laws
of biology and designs inspired by genetic configurations
are applied to make artificial organisms in biotechnology.
More recently a new kind of science [50] is discovering the
laws and designs of computing machines as though they
were natural systems, and these discoveries are likely to be
used to invent new software algorithms and hardware im-
plementations of those algorithms. SI, besides being bio-
inspired, can be said to be inspired also by this new sci-
ence, which, in some respects, can be more general than
biology.

In this perspective, SI will evolve into the study of what
amounts to be very powerful computing systems. Design-
ing the simplest of these, i. e., the simplest universal dy-
namic cellular-computing system updating with natural
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asynchrony, is an example of a future theoretical and prac-
tical challenge for SI. More immediate, future applications
can be extrapolated from the examples given throughout
the article.
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Glossary

In this glossary, we give only brief descriptions of key
terms. We refer to specific sections in the text for more
precise definitions.

Almost conjugacy (Sect. “Other Coding Problems”)
A common extension of two shift spaces given by
factor codes that are one-to-one almost everywhere.

Automorphism (Sect. “The Conjugacy Problem”) An in-
vertible sliding block code from a shift space to it-
self; equivalently, a shift-commuting homeomorphism
from a shift space to itself; equivalently, a topological
conjugacy from a shift space to itself.

Dimension group (Sect. “The Conjugacy Problem”)
A particular group associated to a shift of finite type.
This group, together with a distinguished sub-semi-
group and an automorphism, captures many invari-
ants of topological conjugacy for shifts of finite type.

Embedding (Sect. “Shift Spaces and Sliding Block
Codes”) A one-to-one sliding block code from one
shift space to another; equivalently, a one-to-one con-
tinuous shift-commuting mapping from one shift
space to another.

Factor map (Sect. “Shift Spaces and Sliding Block
Codes”) An onto sliding block code from one shift
space to another; equivalently, an onto continuous
shift-commuting mapping from one shift space to
another. Sometimes called Factor Code.

Finite equivalence (Sect. “Other Coding Problems”)
A common extension of two shift spaces given by
finite-to-one factor codes.

Full shift (Sect. “Shift Spaces and Sliding Block Codes”)
The set of all bi-infinite sequences over an alphabet
(together with the shift mapping). Typically, the alpha-
bet is finite.

Higher dimensional shift space (Sect. “Higher Dimen-
sional Shift Spaces”) A set of bi-infinite arrays of
a given dimension, determined by a collection of finite
forbidden arrays. Typically, the alphabet is finite.

Markov partition (Sect. “Origins of Symbolic Dynamics:
Modeling of Dynamical Systems”) A finite cover of the
underlying phase space of a dynamical system, which
allows the system to bemodeled by a shift of finite type.
The elements of the cover are closed sets, which are
allowed to intersect only on their boundaries.

Measure of maximal entropy (Sect. “Connections with
Information Theory and Ergodic Theory”) A shift-
invariant measure of maximal measure-theoretic en-
tropy on a shift space. Its measure-theoretic entropy
coincides with the topological entropy of the shift
space.

Road problem (Sect. “Other Coding Problems”) A re-
cently-solved classical problem in symbolic dynamics,
graph theory and automata theory.

Run-length limited shift (Sect. “Coding for Data
Recording Channels”) The set of all bi-infinite binary
sequences whose runs of zeros, between two succes-
sive ones, are bounded below and above by specific
numbers.

Shift equivalence (Sect. “The Conjugacy Problem”) An
equivalence relation on defining matrices for shifts of
finite type. This relation characterizes the correspond-
ing shifts of finite type, up to an eventual notion of
topological conjugacy.

Shift space (Sect. “Shift Spaces and Sliding Block Codes”)
A set of bi-infinite sequences determined by a collec-
tion of finite forbidden words; equivalently, a closed
shift-invariant subset of a full shift.

Shift of finite type (Sect. “Shifts of Finite Type and Sofic
Shifts”) A set of bi-infinite sequences determined by
a finite collection of finite forbidden words.

Sliding block code (Sect. “Shift Spaces and Sliding Block
Codes”) A mapping from one shift space to another
determined by a finite sliding block window; equiva-
lently, a continuous shift-commuting mapping from
one shift space to another.

Sofic shift (Sect. “Shifts of Finite Type and Sofic Shifts”)
A shift space which is a factor of a shift of finite type;
equivalently, a set of bi-infinite sequences determined
by a finite directed labeled graph.

State splitting (Sect. “The Conjugacy Problem”) A split-
ting of states in a finite directed graph that creates
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a new graph, whose vertices are the split states. The
operation that creates the new graph from the origi-
nal graph is a basic building block for all topological
conjugacies between shifts of finite type.

Strong shift equivalence (Sect. “The Conjugacy Prob-
lem”) An equivalence relation on defining matrices for
shifts of finite type. In principle, this relation charac-
terizes the corresponding shifts of finite type, up to
topological conjugacy.

Topological conjugacy (Sect. “Shift Spaces and Sliding
Block Codes”) A bijective sliding block code from one
shift space to another; equivalently, a shift-commut-
ing homeomorphism from one shift space to another.
Sometimes called conjugacy.

Topological entropy (Sect. “Entropy and Periodic
Points”) The asymptotic growth rate of the number
of finite sequences of given length in a shift space (as
the length goes to infinity).

Zeta function (Sect. “Entropy and Periodic Points”) An
expression for the number of periodic points of each
given period in a shift space.

Definition of the Subject

Symbolic dynamics is the study of shift spaces, which con-
sist of infinite or bi-infinite sequences defined by a shift-
invariant constraint on the finite-length sub-words. Map-
pings between two such spaces can be regarded as codes or
encodings. Shift spaces are classified, up to various kinds
of invertible encodings, by combinatorial, algebraic, topo-
logical and measure-theoretic invariants.

The subject is intimately related to many other ar-
eas of research, including dynamical systems, ergodic the-
ory, automata theory and information theory. Shift spaces
and their associated shift mappings are used to model
a rich and important class of smooth dynamical systems
and ergodic measure-preserving transformations. These
models have provided a valuable tool for classifying and
understanding fundamental properties of dynamical sys-
tems. In addition, techniques from symbolic dynamics
have had profound applications for data recording appli-
cations, such as algorithms and analysis of invertible en-
codings, and problems inmatrix theory, such as character-
ization of the set of eigenvalues of a nonnegative matrix.

Introduction

This article is intended to give a picture of major top-
ics in symbolic dynamics. Section “Origins of Symbolic
Dynamics: Modeling of Dynamical Systems” reviews the
roots of symbolic dynamics in modeling of dynamical
systems. Section “Shift Spaces and Sliding Block Codes”

lays the foundation by defining the kinds of spaces and
mappings considered in the subject. Section “Shifts of Fi-
nite Type and Sofic Shifts” focuses on distinguished spe-
cial classes of spaces, known as shifts of finite type and
sofic shifts. Section “Entropy and Periodic Points” intro-
duces the most fundamental invariants, periodic points
and topological entropy. Sections “The Conjugacy Prob-
lem” and “Other Coding Problems” survey progress on the
conjugacy problem and other classification/coding prob-
lems for shifts of finite type and sofic shifts. In Sect. “Cod-
ing for Data Recording Channels”, we present applica-
tions to coding for data recording. Section “Connections
with Information Theory and Ergodic Theory” provides
a link with information theory and ergodic theory. Finally,
Sect. “Higher Dimensional Shift Spaces” treats higher di-
mensional symbolic dynamics.

While this article covers many of the most important
topics in the subject, others have been omitted or treated
lightly, due to space limitations. These include one-sided
shift spaces, countable state symbolic systems, orbit equiv-
alence, flow equivalence, the automorphism group, cellu-
lar automata, and substitution systems. References to work
in these sub-areas can be found in the sources mentioned
below.

For introductory reading on symbolic dynamics and
its applications, beyond this article, one can consult the
textbooks Kitchens [65] and Lind and Marcus [78]. There
are also excellent introductory survey articles, such as
Boyle [23], Lind and Schmidt [79], and S. Williams [132].
In addition there are very good expositions which focus
on other aspects of the subject. These include Beal [11],
which focuses on connections between symbolic dynam-
ics and automata theory, the lecture notes Marcus–Roth–
Siegel [83], which focuses on constrained coding applica-
tions, and Immink [54], which focuses on applications to
data storage. There are also several excellent collections of
articles on special areas of the subject, such as [17,133],
and [128]. The book [15] by Berstel and Perrin treats the
subject of variable length codes and contains many ideas
related to symbolic dynamics. Finally, there is an excellent
recent survey by Boyle on Open Problems in Symbolic Dy-
namics [24].

Origins of Symbolic Dynamics:
Modeling of Dynamical Systems

Symbolic dynamics began as an effort to model dynamical
systems using sequences of symbols. A dynamical system
is a pair (X; T) where X is a set and T is a transforma-
tion from X to itself. For definiteness, we assume that T
is invertible, although this is not a necessary restriction.
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Since T maps X to itself, we can iterate T : T2 D T ı T;
T3 D T ı T ı T , etc. The orbit of a point x 2 X is the se-
quence of points: : : : ; T�2(x); T�1(x); x; T(x); T2(x); : : :
In the theory of dynamical systems, one asks questions
about orbits such as the following: Are there periodic or-
bits (i. e., x such that Tn(x) D x for some n > 0)? Are
there dense orbits (the orbit of x is dense if for any point y
in X, Tn(x) is “close” to y for some n)? How does the be-
havior of an orbit vary with x? How can we describe the
collection of all orbits of the dynamical system? When is
the dynamical system “chaotic”? For more information on
dynamical systems, we refer the reader to [16,38,47].

The subject of dynamical systems has its roots in Clas-
sical Mechanics; in that setting, X is the set of all possible
states of a system (e. g., the positions, momenta of all par-
ticles in a physical system), and the transformation T is the
time evolution map, which maps the state of the system at
one time to the state of the system at one time unit later.

Symbolic dynamics provides a model for the orbits of
a dynamical system (X; T) via a space of sequences. This is
done by “quantizing” X into cells, associating symbols to
the cells and representing points as bi-infinite sequences
of symbols. For instance in Fig. 1, X is a square, and T is
some transformation of the square.

We have drawn a portion of the orbit of a point x 2 X
for the dynamical system (X; T).We have also quantizedX
into two cells: the left half, called ‘0’, and the right half,
called ‘1’. Then the point x is represented by the bi-infinite
sequence s(x) D : : : s�2s�1:s0s1s2 : : : where sn is the label
of the cell to which Tn(x) belongs (here, we use the deci-
mal point to separate coordinates si ; i < 0 from si ; i � 0).
So, for x as given in Fig. 1, we see that

s(x) D : : : 11:001 : : :

for instance s0 D 0 because x belongs to the left half of the
square, and s2 D 1 because T2(x) belongs to the right half

Symbolic Dynamics, Figure 1
Representing points symbolically

of the square. Now, if x is represented by the sequence s(x),
then T(x) is represented by the shift of s(x):

s(T(x)) D : : : 110:01 : : : :

So, T is represented ‘symbolically’ as the shift transforma-
tion.

By representing all points of X as bi-infinite sequences,
we obtain a symbolic dynamical system (Y ; �) where Y is
a set of sequences (representing X) and � is the shift trans-
formation (representing T). The “symbolic” refers to the
symbols, and the “dynamical” refers to the action of the
shift transformation.

For this representation to be faithful, distinct points
should be represented by distinct sequences, and this im-
poses extra conditions on how X is quantized into cells.
Also, Y is typically a set of sequences constrained by cer-
tain rules, such as a certain symbol may only be followed
by certain other symbols.

In this way, one can use symbolic dynamics to study
dynamical systems. Properties of orbits of the original dy-
namical system are reflected in properties of the resulting
sequences. For instance, a point whose orbit is periodic
becomes a periodic sequence, and the distribution of the
orbit of a point x in X is reflected in the distribution of
finite strings within s(x). Beginning with Hadamard [46]
in 1898 and followed by Hedlund, Morse and others in
the 1920s, 1930s and 1940s [48,49,92,93], this method
was used to prove the existence of periodic, almost pe-
riodic and other interesting motions in classical dynam-
ical systems, such as geodesic flows on surfaces of neg-
ative curvature; this was done by finding interesting se-
quences satisfying the constraints defined by the corre-
sponding symbolic dynamical system. Later on, this was
extended to general hyperbolic systems, where the sym-
bolic dynamics is constructed using a Markov Partition,
which is a disjoint collection of open sets whose closures
cover X, each of which looks like a “rectangle”, with verti-
cal (resp., horizontal) fibers contracted (resp., expanded)
by T. Markov Partitions were developed by Adler and
Weiss [5], Sinai [120] and Bowen [18,19]; see also [13] and
Sect. 6.5 in [78].

In more recent years, symbolic dynamics has been
used as a tool in classification problems for dynamical sys-
tems. Here, the problem of determining when one dynam-
ical system is ‘equivalent’ to another becomes, via symbolic
dynamics, a coding problem. Roughly speaking, two dy-
namical systems, (X1; T1) and (X2; T2), are equivalent if
there is an invertible mapping from X1 to X2 which makes
T1 “look like” T2. If the corresponding symbolic dynami-
cal systems are denoted (Y1; �) and (Y2; �), then an equiv-
alence between (X1; T1) and (X2; T2) becomes a time-in-
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variant, invertible encoding from Y1 to Y2 (time-invariant
because the shift transformation represents the dynam-
ics). Thus, the classification problem in dynamical systems
leads to a coding problem between constrained sets of se-
quences.

We have described dynamical systems as the discrete-
time iteration of a single mapping. However, continuous-
time iterations have been studied since the inception of the
subject. These are known as continuous-time flows, with
the main example being the set of solutions to a system of
ordinary differential equations. Indeed, the work of Hed-
lund and Morse mentioned above was done in this con-
text.

Shift Spaces and Sliding Block Codes

LetA be an alphabet of symbols, which we assume to be
finite. The principal objects of study in symbolic dynam-
ics are certain kinds of collections of sequences of sym-
bols from A. Typically, these sequences are infinite x D
x0x1x2 : : :, but it is often more convenient to deal with
bi-infinite sequences x D : : : x�2x�1x0x1x2 : : : For some
problems, the results are similar in the infinite and bi-in-
finite categories, while for other problems, they are quite
different. In this article, we focus on the bi-infinite setting.

The symbol xi is the ith coordinate of x. When writ-
ing a specific sequence, we need to specify which is the
0th coordinate. As suggested in Sect. “Origins of Sym-
bolic Dynamics: Modeling of Dynamical Systems”, this is
done with a decimal point to separate the xi with i � 0
from those with i < 0: x D : : : x�2x�1:x0x1x2 : : :. A block
or word over A is a finite sequence of symbols from A.
A block of length N is called an N-block. For blocks u; v,
the block uv is the concatenation of u and v, and for
a block w, the concatenation of N copies of w is de-
noted wN .

The full A-shift AZ is the set of all bi-infinite se-
quences of symbols fromA. The full r-shift is the full shift
over the alphabet f0; 1; : : : ; r � 1g. The shift map � on
a full shift maps a point x to the point y D �(x) whose ith
coordinate is yi D xiC1.

The orbit of a point in a full shift is its orbit under the
shift map. The full shift contains many different types of
orbits. For instance, it contains a dense orbit (namely, any
sequence which contains every block in the alphabet) and
periodic orbits (namely, any sequence which is periodic).

We are interested in sets that can be specified by a list
(finite or infinite) of forbidden blocks. Namely, given a col-
lectionF of “forbidden blocks” overA, the subset X con-
sisting of all sequences in AZ, none of whose subwords
belong toF , is called a shift space (or simply shift), and we

write X D XF . When a shift space X is contained in a shift
space Y , we say that X is a subshift of Y .

Example 1 X is the set of all binary sequences with no two
1’s next to each other. Here X D XF , where F D f11g.
This shift is called the golden mean shift, for reasons that
will become apparent later.

Example 2 X is the set of all binary sequences so that be-
tween any two 1’s there are an even number of 0’s. We can
take forF the collection

f102nC11 : n � 0g :

This example is naturally called the even shift.

Example 3 X is the set of all binary sequences such that
between any two successive 1’s number of 0’s is prime. We
can take forF the collection

f10n1 : n is compositeg :

This example is naturally called the prime shift.

Alternatively (and equivalently), shift spaces can be de-
fined as closed, shift-invariant subsets of full shifts. Here,
“closed” means with respect to a metric, for which two
points are close if they agree in a large “central block”;
one such metric is �(x; y) D 2�k if x ¤ y, with k maxi-
mal such that x[�k;k] D y[�k;k] (with the conventions that
�(x; y) D 0 if x D y and �(x; y) D 2 if x0 ¤ y0).

Let X be a subset of a full shift, and let BN(X) de-
note the set of all N-blocks that occur in elements of X.
The language of X is B(X) D [NBN(X). It can be shown
that the language of a shift space determines the shift space
uniquely, and so we can equally well describe a shift space
by specifying the “occurring” or “allowed” blocks, rather
than the forbidden blocks. For example, the golden mean
shift is specified by the language of blocks in which 1’s are
isolated.

This establishes a connection with automata the-
ory [6,11], which studies collections of blocks, rather than
infinite or bi-infinite sequences. The languages that occur
in symbolic dynamics, i. e. as B(X) for some shift space X,
are simply those sets L of blocks that satisfy two simple
properties: every sub-block of an element of L belongs
to L, and every element w 2 L is extendable to a larger
block awb 2 L, with a; b 2A.

Some examples are best described by allowed blocks.
One example is the famousMorse shift.

Example 4 Let A0 D 0 and inductively define blocks
AnC1 D AnAn , where An denotes bitwise complement.
The shift space whose allowed blocks are the sublocks of
the An is called theMorse shift.
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This shift space has an alternative description as follows.
Since each An is a prefix of AnC1, the sequence of blocks
An determines a unique right-infinite sequence xC (with
eachAn as a a prefix). If we denote x� as the left-infinite se-
quence obtained by writing xC backwards, then theMorse
shift is the closure of the orbit of the point x�:xC. The se-
quence xC is known as the Prouhet–Thue–Morse (PTM)
sequence, since Prouhet and Thue introduced it earlier,
but for different purposes.

While it is not immediately obvious, it can be shown
that the PTM sequence is not periodic; moreover, the
Morse shift is a minimal shift, which means that all its or-
bits are dense [91]. In contrast, while the full, goldenmean,
even and prime shifts all have dense orbits, each also has
a dense set of periodic orbits.

There are two simple, but very important, construc-
tions in symbolic dynamics that construct from a given
shift space a new version which in some sense looks deeper
into the space at the cost of a larger alphabet and more
complex description.

Let X be a shift space over the alphabet A, and
A(N) D BN(X). We can considerA(N) as an alphabet in
its own right, and form the full shift (A(N))Z. Define the
Nth higher block code by

(ˇN(x))i D x[i;iCN�1] :

Then theNth higher block shift or higher block presentation
of a shift space X is the image X[N] D ˇN(X) in the full
shift overA(N).

Similarly, define the Nth higher power code �N : X !
(A(N))Z by

(�N(x))i D x[iN;iNCN�1] :

The Nth higher power shift XN of X is the image
XN D �N(X) of X. The difference between X[N] and XN

is that the former is constructed by considering overlap-
ping blocks and the latter by non-overlapping blocks.

Next, we turn to mappings between shift spaces. Sup-
pose that x D : : : x�1:x0x1 : : : is a sequence in a shift space
X overA. We can transform x into a new sequence y D
: : : y�1:y0y1 : : : over another alphabetC as follows. Fix in-
tegers m and n with �m � n. To compute the ith coordi-
nate yi of the transformed sequence, we use a function ˚
that depends on the “window” of coordinates of x from po-
sition i � m to position i C n. Here˚ : BmCnC1(X)! C
is a fixed block map, called an (mC nC 1)-block map
from allowed (mC n C 1)-blocks in X to symbols in C,
and so

yi D ˚(xi�mxi�mC1 : : : xiCn) D ˚(x[i�m;iCn]) :

Symbolic Dynamics, Figure 2
Sliding block code

This is illustrated in Fig. 2.
Let X be a shift space overA, and ˚ : BmCnC1(X)!

C be a block map. Then the map � : X ! CZ defined by
y D �(x), with yi given by ˚ above, is called the slid-
ing block code with memory m and anticipation n induced
by ˚ . We will denote the formation of � from ˚ by
� D ˚

[�m;n]
1 , or more simply by � D ˚1 if the memory

and anticipation of � are understood. If not specified, the
memory is taken to be 0. If Y is a shift space contained in
CZ and �(X) � Y , we write � : X ! Y .

In analogy with the characterization of shift spaces as
closed shift-invariant sets, sliding block codes can be char-
acterized in a topological manner: namely, as the maps be-
tween shift spaces that are continuous and commute with
the shift. This result is known as the Curtis–Hedlund–
Lyndon theorem [50].

Example 5 LetA D f0; 1g D C, X DAZ,m D 0, n D 1,
and ˚(a0a1) D a0 C a1 (mod 2). Let � D ˚1 : X ! X.

Example 6 The sliding block code, generated by ˚(00)
D 1; ˚(01) D 0 D ˚(10), maps the golden mean shift
onto the even shift.

Example 7 There is a trivial sliding block code from the
full 2-shift into the full 3-shift, generated by ˚(0) D 0;
˚(1) D 1.

If a sliding block code � : X ! Y is onto, then � is called
a factor code or factor map, and Y is a factor of X. If
� : X ! Y is one-to-one, then � is called an embedding
of X into Y . The sliding block code in Example 7 is an em-
bedding but not a factor code, while the codes in Exam-
ples 5 and 6 are factor maps, but not embeddings.

A major (and unrealistic) goal of symbolic dynamics
is to classify in an explicit way shift spaces up to the fol-
lowing natural notion of equivalence. A sliding block code
� : X ! Y is a conjugacy (or topological conjugacy) if it is
invertible with sliding block inverse. Equivalently, a conju-
gacy is a bijective sliding block code and therefore simulta-
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neously a factor code and an embedding. If there is a con-
jugacy from one shift space X to another Y , we say that X
and Y are conjugate, denoted X Š Y .

As an example, the higher block mapˇN is a conjugacy
between a shift space X and its higher block shift X[N]. Via
this code, we can “re-code” any sliding block code as a 1-
block code (though typically a conjugacy and its inverse
cannot, by this artifice, be simultaneously re-coded to 1-
block codes).

In this section, we have given examples of relatively
simple sliding block codes. But the typical conjugacy, as
well as factor code and embedding, can be much more
complicated.

Shifts of Finite Type and Sofic Shifts

A shift of finite type (SFT) is a shift space that can be
described by a finite set of forbidden blocks, i. e., a shift
space X having the form XF for some finite set F of
blocks. The terminology shift of finite type (or subshift of
finite type) comes from dynamical systems (Smale [121]).

An SFT is M-step (or has memory M) if it can be de-
scribed by a collection of forbidden blocks all of which
have length M C 1. It is easy to see that any SFT isM-step
for someM.

Since any shift space can be defined by many different
collections of forbidden blocks, it is useful to have the fol-
lowing equivalent condition expressed in terms of allowed
blocks: an SFT is M-step if and only if whenever u is an
allowed block of length at leastM, u0 is the suffix of u with
lengthM and a is a symbol, then ua is allowed if and only
if u0a is allowed. In other words, in order to tell whether
a symbol can be allowably concatenated to the end of an
allowed word u, one need only look at the lastM symbols
of u. This is analogous to the “finite memory” property
ofM-step Markov chains.

The golden mean shift X is is a 1-step SFT, since it was
defined by a forbidden list consisting of exactly one block:
F D f11g. Equivalently, it is only the last symbol of an al-
lowed block that determines whether a given symbol can
be concatenated at the end. In contrast, the even shift is
not an SFT: for any M, the symbol 1 can be concatenated
to the end of exactly one of the (allowed) words 10M and
10MC1.

Recall that the higher block code ˇM is a conjugacy
from X to X[M]. Via this code, any SFT can be recoded
to a 1-step SFT. And so any sliding block code on a shift
space can be recoded to a 1-block code on a 1-step SFT.
It is useful to have a concrete description of 1-step SFT’s.
In fact, these are precisely the shift spaces consisting of all
bi-infinite sequences of vertices along paths on a finite di-

rected graph. These are called vertex shifts. We find it more
convenient to work with sequences of edges instead. To be
precise:

Let G be a finite directed graph (or simply graph) with
vertices (or states) V D V (G) and edges E D E(G). For
an edge e, i(e) denotes the initial state and t(e) the termi-
nal state. A path inG is a finite sequence of edges inG such
that the terminal state of an edge coincides with the initial
state of the following edge; a cycle in G is path that begins
and ends at the same state. We will assume that G is essen-
tial, i. e., that every state has at least one outgoing edge and
one incoming edge.

The adjacency matrix AD A(G) is the matrix indexed
by V with AIJ equal to the the number of edges in G with
initial state I and terminal state J. Since a graph and its
adjacency matrix essentially determine the same informa-
tion, we will frequently associate a graph G with its adja-
cency matrix A and a nonnegative integer matrix A with
a graph G.

The edge shift XG or XA is the shift space over the al-
phabetA D E defined by

XG D XA

D
˚
� D (�i )i2Z 2 EZ : each �iC1 follows �i

�
:

It can be readily verified that edge shifts are 1-step SFT’s.
While edge shifts do not include all 1-step SFT’s, any 1-
step SFT can be recoded to an edge shift, and, compared
with vertex shifts, edge shifts offer the advantage of a more
compact description.

For many purposes, one can study a general shift
space X by breaking it into smaller, more well-behaved
pieces. A shift space is irreducible if whenever u and w
are allowed blocks, there is a “connecting” block v such
that uvw is allowed. While shift spaces do not always de-
compose into disjoint unions of irreducible shifts, every
SFT can be written as a finite disjoint union of irreducible
SFT’s Xi together with “transient” one-way connections
from one Xi to another. And irreducible edge shifts can be
characterized in a particularly concrete form: namely, XG
is irreducible if and only if G is irreducible, i. e., for every
ordered pair of vertices I and J there is a path in G starting
at I and ending at J.

There is a stronger notion which is defined by a uni-
formity condition on the length of the connecting block.
A shift space is mixing if whenever u and w are allowed
blocks, there is anN, possibly depending on u and w, such
that for all n � N, there is block v of length n such that uvw
is allowed. And an edge shift XG is mixing if and only if G
is primitive, i. e., there is an integer N such that for any
n � N and any ordered pair of vertices I and J there is
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Symbolic Dynamics, Figure 3
Presentation of golden mean shift

Symbolic Dynamics, Figure 4
Presentation of even shift

a path in G of length n starting at I and terminating at J. It
follows that for SFT’s in the definition of mixing, the uni-
form connecting length N can be chosen independent of
the allowed blocks u and w.

It can be shown that, in some sense, any irreducible
SFT X can be broken down into a union of disjoint maxi-
mal mixing shifts; namely, X can be written as the disjoint
union of finitely many sets Xi ; i D 0; : : : ; p � 1 such that
�(Xi ) D XiC1 mod p and for each i, �p restricted to Xi
can be regarded as a mixing SFT. This is a consequence of
Perron–Frobenius theory, upon which symbolic dynamics
relies heavily; see Seneta [118] for an introduction to this
theory.

A sofic shift is the set of bi–infinite sequences obtained
from a finite labeled directed graph G D (G;L); here, G is
a finite directed graph andL is a labeling of the edges of G.
The labeled graph is often called a presentation of the sofic
shift. The golden mean shift and even shift are sofic, with
presentations given in Figs. 3 and 4.

SFT’s are sofic because any M-step SFT can be pre-
sented by a graph whose states are allowedM-blocks. Note
also that any sofic shift is a factor of an SFT, namely via
a (1-block) factor code L1 on the edge shift XG based on
a presentation (G;L). In fact, the converse is true, and so
the sofic shifts are precisely the shift spaces that are fac-
tors of SFT’s. This was the original definition of sofic shifts
given by Weiss [130].

Typically, the labeling is right resolving, which means
that at any given state, all outgoing edges have distinct la-
bels (as in Figs. 3 and 4).

Theorem 1

(a) Any sofic shift has a right resolving presentation.
(b) Any irreducible sofic shift has a unique minimal right

resolving presentation.

Part (a) is a direct consequence of the subset construction
in automata theory [6,11] which constructs a right resolv-

ing presentation from an arbitrary presentation; see also
Coven and Paul [33,34]. Part (b)makes use of the the state-
minimization algorithm from automata theory [6,11], but
requires an idea beyond that found in automata theory
(Fischer [39,40]). The unique presentation in part (b) may
be regarded as a canonical presentation. We remark that
for an irreducible (resp. mixing) sofic shift, the underlying
graph of the unique minimal right resolving presentation
is irreducible (resp., primitive).

Sometimes it is useful to weaken the concept of right
resolving to right closing, which means “right resolving
with delay”; more precisely a labeling is right closing, with
delay D if all paths of length DC 1 with the same initial
state and the same label have the same initial edge.Also, we
sometimes consider left resolving and left closing labellings
(replace “outgoing” with “incoming” in the definition of
right resolving, and replace “initial” with “terminal” in the
definition of right closing).

While the class of SFT’s is defined by a “finite-mem-
ory” property, the more general class of sofic shifts is de-
fined by a “finite-state” property, in that the possible sym-
bols that can occur at time 0 are determined by the past
via one of finitely many states. In a presentation, the ver-
tices can be viewed as state information which connects
sequences in the past with sequences in the future.

It is not difficult to show that neither the prime shift
(Example 3) nor the Morse shift (Example 4) are sofic and
therefore also not SFT. For the prime shift, this can be
done by an application of the pumping lemma from au-
tomata theory [6] (or p. 68 of [78]).

There are uncountably many shift spaces, but only
countably many sofic shifts. So, it is not surprising that
the behavior of sofic shifts is very special. However, they
are very useful in modeling smooth dynamical systems
(Sect. “Origins of Symbolic Dynamics: Modeling of Dy-
namical Systems”) and in information theory and appli-
cations to data recording (Sect. “Coding for Data Record-
ing Channels”), where they arise as constrained systems, al-
though this term is usually reserved for the set of (finite)
blocks obtained from a finite directed labeled graph [83].

Entropy and Periodic Points

An invariant of conjugacy is an object associated to a shift
space that is preserved under conjugacy. It can be shown
that many of the concepts that we have already introduced
are invariants: irreducibility, mixing, as well as the proper-
ties of being a shift of finite type or sofic shift. Beyond these
qualitative invariants, there are many quantitative invari-
ants that can, in many cases, be computed explicitly. Fore-
most among these is topological entropy.
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The (topological) entropy (or simply entropy) of X is:

h(X) D lim
N!1

log jBN(X)j
N

;

here, j � j denotes cardinality, and for definiteness the log
is taken to mean log2 but any base will do. A subadditivity
argument shows that the limit does indeed exist [127]. It
should be evident that h(X) is a measure of the “size” or
“complexity” of X, as it is simply the asymptotic growth
rate of the number of blocks that occur in X. Topological
entropy for continuous dynamical systems was defined by
Adler, Konheim andMcAndrew [3], in analogy with mea-
sure-theoretic entropy.

Since a k-block sliding block code from a shift space X
to a shift space Y maps BNCk�1(X) into BN (Y), it is not
hard to see that entropy is an invariant of conjugacy and
that it cannot increase under factors and cannot decrease
under embeddings.

In many cases, one can explicitly compute entropy.
For example, for the full r-shift X, jBN(X)j D rN , and
so h(X) D log r. And from the defining sequence of the
Morse shift, we see that the number of distinct 2N-blocks
is at most 4(2N), it follows that the growth rate cannot be
exponential and so the entropy of the Morse shift is zero.

For SFT’s and more generally for sofic shifts, entropy
can be computed explicitly. The key to this computation
is the following result, which is based on the Perron–
Frobenius theorem.

Theorem 2 [99,119] For any graph G, h(XG )D logA(G),
where A(G) is the largest eigenvalue of A(G).

The rough idea is that the number of N-blocks in XG is
the number of paths of length N and thus also the sum
of the entries of A(G)N , which is controlled by the largest
eigenvalue. This is proven first for primitive graphs, whose
adjacency matrices have a unique eigenvalue of maximum
modulus and this eigenvalue is positive; in fact, for a prim-
itive graph and a pair of states I; J, the number of paths
of length N from I to J grows like NA(G) D 2Nh(XG ). For
general graphs, one uses the decomposition into primitive,
and then irreducible, graphs.

To extend this to a sofic shift Y , one uses a right resolv-
ing presentation (G;L) of Y . Since every block of Y is the
label of at most mostV (G) paths in G, it follows that:

Theorem 3 Let G D (G;L) be a right-resolving labeled
graph presenting a sofic shift Y. Then h(Y) D h(XG ).

From Fig. 3, we see that the golden mean shift is obtained
as a right resolving presentation of the graph with adja-

cency matrix:

AD
�

1 1
1 0

�
:

A computation shows that A is the golden mean, and
so the entropy of the golden mean shift is the log of the
golden mean; this is one explanation of the meaning of the
term golden mean shift. From Fig. 4, we see that the even
shift has the same entropy.

One cannot overstate the importance of entropy as an
invariant. Yet, it is somewhat crude; it is perhaps not sur-
prising that a single numerical invariant would not be suf-
ficient to completely capture the many intricacies of shift
spaces, even of sofic shifts or SFT’s.

An invariant finer than entropy is the zeta function,
which combines information regarding the numbers of
periodic sequences of all periods, described as follows.

For a shift space X, let pn(X) denote the number of
points in X of period n (i. e., the number of x 2 X such
that � n(x) D x). It is straightforward to show that each
pn(X) is an invariant. Since distinct periodic sequences de-
fine distinct blocks, it follows that

lim sup
n!1

1
n
log pn(X) � h(X) :

The inequality can be strict; for example, there are shift
spaces (such as the direct product of the Morse shift with
the full 2-shift) with positive entropy but no periodic
points at all.

However, for irreducible SFT’s and sofic shifts, the en-
tropy h(X) can be recovered from the sequence pn(X). The
key to understanding this is the fact that for an edge shift
X D XA, pn(X) D tr(An) and thus is the sum of the nth
powers of the (non-zero) eigenvalues of A; in the case
that A is primitive, the largest eigenvalue A strictly dom-
inates the other eigenvalues, and thus for large n,

log pn(X) D log tr(An) � n logA � nh(X) :

This shows that for a mixing SFT, the entropy equals the
growth rate of numbers of periodic points. In fact, this re-
sult applies to all SFT’s and sofic shifts.

Theorem 4 For a sofic shift X,

lim sup
n!1

1
n
log pn(X) D h(X) :

The lim sup turns out be a limit in the case that X is a mix-
ing sofic shift.
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Most of what we have stated for pn(X) here applies
equally well to qn(X), the number of points of least pe-
riod n in X. This follows from the fact that “most” periodic
points of period n have least period n.

The periodic point information can be conveniently
combined into a single invariant, known as the zeta func-
tion. For a shift space X,

�X(t) D exp

 
1X

nD1

pn(X)
n

tn
!

:

For an edge shift XA, one computes the zeta function to be
the reciprocal of a polynomial:

�XA(t) D
1

tr �A(t�1)
D

1
det(I � tA)

;

which is completely determined by the non-zero eigenval-
ues (with multiplicity) of A (Bowen and Lanford [21]). As
an example, the zeta function of the golden mean shift is
1/(1 � t � t2).

The discussion above applies equally well to SFT’s
since they are conjugate to edge shifts. For a sofic shift,
the zeta function turns out to be a rational function, i. e.,
quotient of two polynomials. This can be shown by analyz-
ing properties of a right resolving presentation of the sofic
shift. From this it turns out that the zeta function of the
even shift is (1 � t)/(1 � t � t2). The technique for com-
puting zeta functions of sofic shifts was developed byMan-
ning [80] (actually, Manning developed the technique to
compute zeta functions of hyperbolic dynamical systems).

So, for sofic shifts, all of the periodic point information
is determined by a finite collection of complex numbers,
namely the zeros and poles of the zeta function.

Finally, we mention another simple invariant obtained
from the periodic points. The period, per(X), of a shift
space X is the gcd of lengths of periodic points in X, i. e.,
the gcd of the set of n such that pn(X) ¤ 0. If X D XG is
an edge shift and G is irreducible, then per(XG ) D per(G),
which is defined to be the gcd of cycle lengths in G and co-
incides with the gcd of the lengths of all cycles inG based at
any given state. For an irreducible graph with period p and
any state I, the number of cycles of length N, a multiple
of p, at I grows like NA(G) D 2Nh(XG ). Also, an irreducible
graph G is primitive if per(G) D 1.

The Conjugacy Problem

The conjugacy problem for SFT’s and sofic shifts is a major
open problem. After much effort, it remains unsolved to-
day.Much of what we know goes back to R.Williams [131]
in the 1970s. One of Williams’ main results was that any

conjugacy can be decomposed into simple building blocks,
as follows.

Let A and B be nonnegative integral matrices, with
associated graphs G and H. An elementary equivalence
from A to B is a pair (R; S) of rectangular nonnegative in-
tegral matrices satisfying

AD RS ; B D SR : (1)

In this case we write (R; S) : A� B. A strong shift equiv-
alence of lag ` from A to B is a sequence of ` elementary
equivalences

(R1; S1) : AD A0 � A1 ;

(R2; S2) : A1 � A2 ;

: : : ;

(R`; S`) : A`�1 � A` D B :

In this case we write A� B(lag `). We say that A is strong
shift equivalent to B (and write A� B) if there is a strong
shift equivalence of some lag from A to B.

Via the matrix Equation (1), one creates a graph K
whose state set is the disjoint union of V (G) and V (H);
for each I 2 VG and J 2 VH , the graph has RIJ edges
from I to J and SJI edges from J to I. The equation
AD RS allows one to associate each edge e of G with
a unique path r(e)s(e) of length two running from V (G)
to V (H) to V (G). Similarly, the equation B D SR allows
one to associate each edge e of H with a path s(e)r(e) of
length two running from V (H) to V (G) to V (H). One
can show that the 2-block sliding block code defined by
˚(e f ) D s(e) r( f ) defines a conjugacy from XA to XB, and
so whenever A � B, XA Š XB . Williams proved this and
its converse:

Theorem 5 (R. Williams [131]) The edge shifts XA and XB
are conjugate if and only if A and B are strong shift equiva-
lent.

In fact, Williams showed that any conjugacy can be de-
composed into a composition of conjugacies defined by
elementary equivalences. This can be interpreted in a way
that shows that XA and XB are conjugate if and only if we
can pass from G to H by a sequence of state splittings and
amalgamations, defined as follows.

Let G be a graph with states V and edges E. For each
I 2 V , partition the outgoing edges from I into disjoint
nonempty sets E1

I ;E2
I ; : : : ;E

m(I)
I . Let P denote the result-

ing partition of E, and let PI denote the partition P re-
stricted to EI . The out-split graph H formed from G us-
ing P has states I1; I2; : : : ; Im(I), where I ranges over the
states in V , and edges ej, where e is any edge in E and
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1 � j � m(t(e)). If e 2 E goes from I to J, then e 2 E i
I for

some i, and we define the e j to have initial state Ii and ter-
minal state Jj, The 2-block code generated by ˚(e f ) D e j ,
where f 2 E j

t(e), defines a conjugacy, called an out-split-
ting code, from XG to XH . Similarly, one defines an in-
splitting code. Inverses of these conjugacies are called out-
amalgamation and in-amalgamation codes.

Figure 5 depicts an out-splitting. The graph (a) on the
left has three states I; J;K and the partition elements that
define the splitting are E1

I D fag;E2
I D fb; cg;E1

J D fdg;
E1
K D feg;E2

K D f f g; the graph (b) is the resulting split
graph.

By interpreting state splitting and amalgamation in
terms of adjacency matrices one can show that such op-
erations generate elementary equivalences. And one can
decompose elementary equivalences into splittings and
amalgamations. It follows that:

Theorem 6 (R. Williams [131]) Every conjugacy from one
edge shift to another is the composition of splitting codes and
amalgamation codes.

This classification for edge shifts naturally extends to SFT’s
since every SFT is conjugate to an edge shift. It also extends
to sofic shifts, and we describe this in the context of irre-
ducible sofic shifts.

Recall that an irreducible sofic shift has a unique min-
imal right resolving presentation. Any labeled graph can
be completely described by a symbolic adjacency matrix,
which records the transitions (edges) in the underlying
physical graph, as well as the labels of the edges. Namely,
the symbolic adjacency matrix is indexed by the states of
the underlying graph and the (I; J)-entry is the formal sum
of the labels of edges from I to J. It turns out that the
notions of elementary equivalence, and hence strong shift
equivalence, can be extended to more general categories,
in particular to symbolic adjacency matrices.

Theorem 7 (Krieger [72], Nasu [97]) Let X and Y be irre-
ducible sofic shifts. Let A and B be the symbolic adjacency
matrices of the minimal right-resolving presentations of X
and Y, respectively. Then X and Y are conjugate if and only
if A and B are strong shift equivalent.

The classification, provided by these results, would be of
limited use if the story ended here. Fortunately, Williams
showed that strong shift equivalence yields a strong, del-
icate and somewhat computable necessary condition for
conjugacy.

Let A and B be nonnegative integral matrices and
` � 1. A shift equivalence of lag ` is a pair (R; S) of rect-
angular nonnegative integral matrices satisfying the shift

equivalence equations

AR D RB ; SAD BS ; A` D RS ; B` D SR :

We denote this situation by (R; S) : A � B(lag l). We
say that A is shift equivalent to B, written A � B, if there is
a shift equivalence fromA to B of some lag. It is not hard to
see that an elementary equivalence is a shift equivalence of
lag 1 and that shift equivalence is an equivalence relation.
It follows that:

Theorem 8 (Williams [131]) Strong shift equivalence im-
plies shift equivalence. More precisely, if A � B(lag `), then
A � B(lag `).

Recall from Sect. “Entropy and Periodic Points” that for an
edge shift XA, the set of nonzero eigenvalues, with multi-
plicity, of A determines the zeta function and hence this
set is an invariant of conjugacy. Using the shift equiva-
lence equations, one can show more: the entire Jordan
form corresponding to the nonzero eigenvalues is an in-
variant. This information depends only on properties of
the adjacencymatrix considered as a linear transformation
(over R or Q). However, A is a nonnegative, integral ma-
trix and both nonnegativity and integrality provide sub-
stantially more information. One such invariant, that fol-
lows from shift equivalence and makes use of integrality is
the Bowen–Franks group [20], BF(A) D Zr/Zr(I � A).

Until recently all of the information contained in
known conjugacy invariants, such as those above, was sub-
sumed in shift equivalence. And Kim and Roush showed
that shift equivalence is decidable [60,61], meaning that
there is a finite decision procedure via a Turing machine
that decides whether two given edge shifts, and therefore
two given SFT’s, are conjugate (they also showed that a no-
tion of shift equivalence for sofic shifts, formulated by
Boyle and Krieger [26], is decidable [62]). So, a central
focus of the subject was the question: is shift equivalence
a complete invariant of conjugacy? The answer turns out
to be No, as proven by Kim and Roush [63]; see also the
survey article [125]. However, it is a complete invariant
of a weaker form of conjugacy; we say that XA and XB are
eventually conjugate if all sufficiently large powers are con-
jugate. It is not hard to show that if A � B, thenXA and XB
are eventually conjugate, and the converse is true as well:

Theorem 9 (Kim and Roush [60], Williams [131]) Edge
shifts XA and XB are eventually conjugate if and only if A
and B are shift equivalent.

Also the Kim–Roush counterexamples and subsequent
work do not bear on a special case of the conjugacy prob-
lem: if A is shift equivalent to the 1 � 1 matrix [n], is
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XA conjugate to the full n-shift? This question, known as
the little shift equivalence problem, is particularly intrigu-
ing because in this case the condition A � [n] is simply
the statement that A has exactly one non-zero eigenvalue,
namely n.

Shift equivalence can be characterized in another way
that has turned out to be very useful. Let A be an r � r
integral matrix. Let RA denote the real eventual range ofA,
i.e, RA D RrAr . The dimension group of A is defined:

�A D fv 2 RA : vAk 2 Zr for some k � 0g :

The dimension group automorphism ıA of A is the restric-
tion of A to �A, so that ıA(v) D vA for v 2 �A. The di-
mension pair of A is (�A; ıA).

If A is also nonnegative, then we define the dimension
semigroup of A to be

�CA D fv 2 RA : vAk 2 (ZC)r for some k � 0g :

The dimension triple of A is (�A; �
C
A ; ıA).

It can be shown that the dimension triple completely
characterizes shift equivalence, i. e., two nonnegative in-
tegral matrices are shift equivalent if and only if their di-
mension groups are isomorphic by an isomorphism that
preserves the dimension semigroup and intertwines the
dimension group automorphisms. Also, by associating
equivalence classes of certain subsets of the shift space XA
to elements of �CA , one can interpret the dimension triple
in terms of the action of the shift map on XA [27,68]. And
the dimension triple arises prominently in the study of the
automorphism group of an SFT, which we now briefly de-
scribe. The dimension group for SFT’s was developed by
Krieger [68,69].

In many areas of mathematics, objects are studied by
means of their symmetries. This holds true in symbolic
dynamics, where symmetries are expressed by automor-
phisms. An automorphism of a shift space X is a conjugacy

from X to itself. The set of all automorphisms of a shift
space X is a group under composition, and is naturally
called the automorphism group, denoted aut(X).

The goals are to understand aut(X) as a group (What
kinds of subgroups does it contain? How “big” is it?) and
how it acts on X, e. g., given shift-invariant subsets U;V ,
such as finite sets of periodic points, when is there an au-
tomorphism of X that maps U to V?. One might hope
that the automorphism group would shed new light on the
conjugacy problem for SFT’s. Indeed, tools developed to
study the automorphism group eventually paved the way
for Kim and Roush to find examples of shift equivalent
matrices that are not strong shift equivalent. On the other
hand, the automorphism group cannot tell the entire story.
For instance, aut(XA) and aut(XA> ) are isomorphic, since
any automorphism read backwards can be viewed as an
automorphism of the transposed shift, yet XA and XA>

may fail to be conjugate (for an example due to Kollmer,
see p. 81 of [105]). It is not even known if the automor-
phism groups of the full 2-shift and the full 3-shift are iso-
morphic.

A good deal of our understanding of the action of the
automorphism group on an SFT comes from understand-
ing its induced representation as an action of the dimen-
sion group; this action is known as the dimension represen-
tation. For a much more thorough exposition on aut(X),
we refer the reader to Wagoner [125,126].

Other Coding Problems

The difficulties encountered in attempts to solve the con-
jugacy problem motivated the formulation and study of
weaker, but meaningful, notions of equivalence. For in-
stance, we might say that two shift spaces are equivalent
if one can be invertibly encoded to the other by some kind
of “finite-state machine”. A precise version of this is as fol-
lows.
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Shift spaces X and Y are finitely equivalent if there is
an SFT W together with finite-to-one factor codes �X :
W ! X and �Y : W ! Y . We call W a common exten-
sion, and �X, �Y the legs.

Here, by “finite-to-one” we mean merely that each
point has a finite number of inverse images. It can be
shown that any finite-to-one factor code from one shift
space to another must preserve entropy, and so entropy
is an invariant of finite equivalence. For irreducible sofic
shifts, entropy is a complete invariant:

Theorem 10 (Parry [100]) Two irreducible sofic shifts are
finitely equivalent if and only if they have the same entropy.

Note that from this result and the fact that finite-to-one
codes between general shift spaces preserve entropy, for
irreducible sofic shifts, we could have just as well de-
fined finite equivalence with the common extension W
merely being a shift space. However, if W is an SFT,
we get a more concrete coding interpretation as follows.
First, we recode W to an edge shift XG and recode the
legs, �X D (˚X)1 and �Y D (˚Y )1, to one-block codes,
and (with a bit more argument) we can assume that G
is irreducible. In this set-up, the finite-to-one condition
translates to the so-called “no-diamond” condition, which
means that for any given pair of states I; J and finite se-
quence w, there is at most one path from I to J with la-
bel w [33,34]. Since, for any fixed state I, the number of
cycles of length n, a multiple of p D per(G), at I grows like
2nh(W), we have, in this set-up a means to invertibly en-
code a “large” set of allowed blocks in X to allowed blocks
in Y : namely, fix state I, and a large n, which is a multi-
ple of p; for any cycle � of length n at state I encode the
˚X-label of � to the ˚Y -label of � .

For encoding and decoding, one can dispense with
state information if the legs are “almost invertible”. A fac-
tor code � is almost invertible if it is one-to-one on se-
quences that are typical in the following sense: x is typical
if every allowed block appears infinitely often in x both to
the left and the right.We then say that shift spaces X and Y
are almost conjugate if there is an SFT W and almost in-
vertible factor codes �X : W ! X, �Y : W ! Y . We call
(W; �X ; �Y ) an almost conjugacy between X and Y .

For irreducible sofic shifts, it can be shown that any
almost invertible factor code is finite-to-one, and so al-
most conjugacy implies finite equivalence. Thus, entropy
is again an invariant, and together with a second very mild
invariant, it is complete:

Theorem 11 (Adler–Marcus [4]) Let X and Y be irre-
ducible sofic shifts with minimal right resolving presenta-
tions (G;L) and (H;M). Then X and Y are almost conju-
gate if and only if h(X) D h(Y) and per(G) D per(H).

In particular, if X and Y are mixing, then per(G) D 1
D per(H) and entropy itself is a complete invariant.

Thus, with an an almost conjugacy, one can invertibly
encode most sequences inX to those of Y without the need
for auxiliary state information. Moreover, if X and Y are
almost conjugate, then there is an almost conjugacy of X
and Y in which one leg is right-resolving and the other
leg is left-resolving (and the common extension is irre-
ducible [4]). This gives an even more concrete interpre-
tation to the encoding.

The proofs of Theorems 10 and 11 are actually quite
constructive. For illustration we consider a very special,
but historically important, case.

Let G be a graph with constant out-degree n. A road
coloring ˚ is a labeling of G such that at each state of G,
each symbol 0; : : : ; n � 1 appears exactly once as the label
of an outgoing edge. An n-ary word w is synchronizing if
all paths that are labeled w end at the same state. Figure 6
gives examples of road-colorings, with n D 2.

For a road-coloring, a binary word may be viewed as
a sequence of instructions given to drivers starting at each
of the states. A synchronizing word is a word that drives
everybody to the same state. For instance, in Fig. 6a, the
word 11 drives everybody to the state in the lower-left cor-
ner. But Fig. 6b does not have a synchronizing word be-
cause whenever a driver takes a ‘0’ road he stays where he
is and whenever a driver takes a ‘1’ road he rotates by 120
degrees. The road-coloring in Fig. 6c is essentially the only
road-coloring of its underlying graph, and there is no syn-
chronizing word because drivers must always oscillate be-
tween the two states.

Now, let X be the full n-shift and Y be an irreducible
SFT with entropy log n. Suppose that we could find a pre-
sentation (G;L) of Y with G having constant out-degree n
and L1 finite-to-one. Then, define ˚ to be any road col-
oring of G. Then ˚1 would be a finite-to-one (in fact,
right resolving!) factor code from XG to X. And we would
obtain a finite equivalence with X D XG , �Y D L1 and
�X D ˚1. If, moreover, we could choose L and ˚ such
that �Y and �X are almost invertible, then we would have
an almost conjugacy.

It turned that this could be arranged for �Y via a con-
struction related to state splitting [2]. And if Y were mix-
ing, thenG could be chosen to be primitive and �Y almost
invertible. In this setting, �X D ˚1 would be almost in-
vertible iff˚ has a synchronizing word; the sufficiency fol-
lows from the fact that every bi-infinite binary sequence
which contains w infinitely often to the left would be the
label of exactly one bi-infinite sequence of edges (to see
this, use the synchronizing and road-coloring properties).

The construction of such a labeling ˚ became known
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as the Road Problem, which remained open for thirty
years. In the meantime, a weaker version of the the road
problem was solved and applied to yield this special case of
Theorem 11 (see [2]). Nevertheless, the problem remained
an important problem in graph/automata theory and was
only recently solved:

Theorem 12 (Road theorem (Trachtman [122])) If G is
a finite directed primitive graph with constant out-degree n,
there a road-coloring of G which has a synchronizing word.

Trachtman’s approach relies heavily on earlier work of
Friedman [44] and Kari [57].

The primitivity assumption above is close to necessary.
Clearly some kind of connectivity is required and in the
presence of irreducibility, primitivity would be necessary
since otherwise there would be a “phase” introduced in the
graph that would never allow a word to synchronize, as in
Fig. 6c.

So far, we have focused on equivalences between sym-
bolic systems. There has also been considerable attention
paid to problems of embedding one system into another
and factoring one onto another.

One of the most striking results of this type is the
Krieger embedding theorem. It is not hard to show that
any proper subshift of an irreducible SFT must have
strictly smaller entropy. Thus, a necessary condition for
a proper embedding of a shift space into an irreducible
SFT is that it have strictly smaller entropy. This condition,
together with a trivially necessary condition on periodic
points, turns out to be sufficient. Recall that qn(X) denotes
the number of points of least period n in X.

Theorem 13 (Embedding Theorem (Krieger [70])) Let X
and Y be irreducible shifts of finite type. Then there is
a proper embedding of X into Y if and only if h(X) < h(Y)
and for each n � 1, qn(X) � qn(Y).

In fact, Krieger’s theorem shows that these conditions are
necessary and sufficient for a proper embedding of any
shift space into a mixing shift space. The analogous prob-

lems for embedding into irreducible or mixing sofic shifts
are still open, though there are partial results [22].

Using the embedding theorem and other tools from
symbolic dynamics, Boyle and Handelman [25] obtained
a stunning application to linear algebra: namely, a com-
plete characterization of the non-zero spectra of primitive
matrices over R. In fact, they obtained characterizations of
non-zero spectra for primitive matrices over many other
subrings of R. While they did not obtain a complete char-
acterization over Z, they formulated a conjecture for Z
and obtained many partial results towards that conjecture,
which was later proven using other tools. The result, stated
below, shows that three simple necessary conditions on
a set of nonzero complex numbers are actually sufficient.
In order to state these conditions, we need the following
notation:

Let � D f1; : : : ; kg be a list of nonzero complex
numbers (with multiplicity). Let f�(t) D

Qk
iD1(t � i ),

and trn(�) D
P

d/n �(n/d)
Pk

iD1 
k
i , with � being the

Mobius Inversion function.

� Integrality Condition: f�(t) is a monic polynomial
(with integer coefficients).

� Perron Condition: There is a positive entry in�, occur-
ring just once, that strictly dominates in absolute value
all other entries. We denote this entry by �.

� Net Trace Condition: trn(�) � 0 for all n � 1.

Theorem 14 (Kim–Ormes–Roush [64]) Let � be a list of
nonzero complex numbers satisfying the Integrality, Perron,
and Net Trace Conditions. Then there is a primitive integral
matrix A for which� is the non-zero spectrum of A.

These conditions are all indeed necessary for � to be the
non-zero spectrum of a primitive integral matrix. The in-
tegrality condition is that � forms a complete set of alge-
braic conjugates; the Perron condition states that � must
satisfy the conditions of the Perron–Frobenius theorem
for primitive matrices; and the Net Trace condition as-
sures that the number of periodic points of least period n
would be nonnegative.
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We now turn from embeddings to factors. One spe-
cial case, which is somewhat related to the Road Problem
above and also important for data recording applications
(Sect. “Coding for Data Recording Channels”) is:

Theorem 15 [1,81] An SFT X factors onto the full n-shift
iff h(X) � log(n).

While this special case treats both the equal en-
tropy case (h(X) D log(n)) and unequal entropy case
(h(X) > log(n)), in general, the factor problem naturally
divides into two cases: lower entropy factors and equal
entropy factors. In either case, a trivial necessary condi-
tion for Y to be a factor of X is that whenever qn(X) ¤ 0,
there exists a d/n such that qd (Y) ¤ 0. This condition is
denoted P(X)& P(Y). Building on ideas from Krieger’s
embedding theorem, this necessary condition was shown
to be sufficient.

Theorem 16 (Lower entropy factor theorem (Boyle [22]))
Let X and Y be irreducible SFT’s with h(X) > h(Y).
Then there is a factor code from X to Y if and only if
P(X)& P(Y).

As with the embedding theorem, the lower entropy factors
problem for irreducible sofic shifts is still open.

The equal entropy factors problem for SFT’s is quite
different. Clearly, P(X)& P(Y) is a necessary condition.
A second necessary condition involves the dimension
group and is simplest to state in the case of mixing edge
shifts XA and XB.

We say that a subgroup � of the dimension group
�A is pure if whenever an integer multiple of an element
v 2 �A is in �, then so is v; intuitively � does not have
any “rational holes” in �A. The condition is that there is
a pure ıA-invariant subgroup � of �A such that (�B ; ıB)
is a quotient of (�; ıAj#).

In the equal entropy case, this condition and the triv-
ial periodic point condition, P(X)& P(Y), subsume all
known necessary conditions for the existence of a fac-
tor code from one mixing edge shift to another. It is not
known if these two conditions are sufficient. For references
on this problem, see [9,27,66].

Coding for Data Recording Channels

In magnetic recording, within any given clock cell, a ‘1’ is
represented as a change in magnetic polarity, while a ‘0’
is represented as an absence of such a change. Two suc-
cessive 1’s (separated by some number, m � 0, of 0’s) are
read as a voltage peak followed by a voltage trough (or vice
versa). If the peak and trough occur too close together,
intersymbol interference can occur: the amplitudes of the

Symbolic Dynamics, Figure 7
X(1, 3)

peak and trough are degraded, and the positions at which
they occur are distorted. In order to control intersymbol
interference, it is desirable that 1’s not be too close to-
gether, or equivalently that runs of 0’s not be too short.
On the other hand, for timing control, it is desirable that
runs of 0’s not be too long; this is a consequence of the fact
that only 1’s are observed: the length of a run of 0’s is in-
ferred by connection to a clock via a feedback loop, and
a long run of 0’s could cause the clock to drift more than
one clock cell.

This gives rise to run-length-limited shift spaces,
X(d; k), where runs of 0’s are constrained to be bounded
below by some positive integer d and bounded above by
some positive k � d. More precisely, X(d; k) is defined by
the constraints that 1’s occur infinitely often in each direc-
tion, and there are at least d 0’s, but no more than k 0’s, be-
tween successive 1’s. Note that X(d; k) is an SFT with for-
bidden list F D f0kC1; 10i1; 0 � i < dg. Figure 7 depicts
a labeled graph presentation of X(1; 3). The SFT’s X(1; 3),
X(2; 7), and X(2; 10) have been used in floppy disks, hard
disks, and the compact audio disk, respectively.

Now in order to record completely arbitrary infor-
mation, we need to build an encoder which encodes
arbitrary binary sequences into sequences that satisfy
a given constraint (such as X(d; k)). The encoder is a fi-
nite-state machine, as depicted in Fig. 8. It maps ar-
bitrary binary data sequences, grouped into blocks of
length p (called p-blocks), into constrained sequences,
grouped into blocks of length q (called q-blocks). The en-
coded q-block is a function of the p-block as well as an in-
ternal state. When concatenated together, the sequence of
encoded q-blocks must satisfy the given constraint. Also,
the encoded sequences should be decodable, meaning that
given the initial encoder state, a string of p-blocks can be

Symbolic Dynamics, Figure 8
Encoder
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recovered from its encoded string of q-blocks, possibly al-
lowing a fixed delay in time.

If the constrained sequences satisfy the constraints of
a sofic shift X, we say that such a code is a rate p:q fi-
nite-state code into X. In terms of symbolic dynamics, such
a code consists of an edge shift XG, a right resolving factor
code �1 from XG onto the full 2p-shift and a right closing
sliding block code �2 into Xq (the right closing condition
expresses the decodability condition).

Inmost applications, it is important that a stronger de-
coding condition be imposed. Namely, a sliding block de-
codable rate p:q finite-state code into X consists of a finite-
state code given by (XG ; �1; �2) and a sliding block code
 : Xq ! X2p such that ı �2 D �1. This means that the
decoded p-block depends only upon the local context of
the received q-block – that is, decoding is accomplished by
applying a time-invariant function to a window consisting
of a bounded amount of memory and/or anticipation, but
otherwise is state-independent (see Fig. 9, which depicts
the situation where the memory is 1 and the anticipation
is 2). The point is that whenever the window of the decoder
passes beyond a raw channel error, that error cannot pos-
sibly affect future decoding; thus, sliding block decoders
control error propagation.

Symbolic dynamics has played an important role in
providing a framework for constructing such codes as well
as for establishing bounds on various figures of merit for
such codes. Specifically, by modifying the constructions
used in the proofs of Theorems 10 and 11, in the early
1980’s, Adler, Coppersmith and Hassner (ACH) estab-
lished the following results:

Theorem 17 (Finite-state coding theorem [1]) Let X be
a sofic shift and p; q be positive integers. Then there is a rate
p:q finite-state code into X if and only if p/q � h(X).

Theorem 18 (Sliding block decoding theorem [1]) Let X be
an SFT and p; q be positive integers. Then there is a rate p:q

sliding-block decodable finite-state code into X if and only
if p/q � h(X).

We have described all of this in the context of the binary
alphabet for data sequences. In fact, it works just as well
for any finite alphabet, and the method used to prove The-
orem 18 solved, at the same time, a special case of the fac-
tor problem for SFT’s: namely, Theorem 15 above. Some-
times, Theorems 17 and 18 are stated only for rate 1 : 1
codes but in the context of arbitrary finite alphabets (e. g.
see Chap. 5 in [78]), this easily extends to the general p : q
case by passing to powers.

The ACH paper was the beginning of a rigorous the-
ory of constrained coding. Theorem 18 has been extended
to a large class of sofic shifts, and bounds have been es-
tablished on such figures of merit as number of encoder
states as well as the size of the decoding window of the
sliding block decoder. While the state-splitting algorithm
does construct codes with “relatively small” decoding win-
dows, it is not yet understood how to construct codes with
the smallest such windows. This is of substantial engineer-
ing interest since the smaller the decoding window, the
smaller the error propagation. There is now a substantial
literature on the construction of these types of codes, in-
cluding the state-splitting algorithm as well as many other
methods of encoder/decoder design and a wealth of exam-
ples that go well beyond the run length limited constraints.
See for example the expositions [11,54], and [83] as well as
the papers [7,8,10,12,31,41,42,43,53,56].

Connections with Information Theory
and Ergodic Theory

The concept of entropy was developed by Shannon [119]
in information theory in the 1940’s and was adapted to er-
godic theory in the 1950’s and to dynamical systems, and
in particular symbolic dynamics, in the 1960’s. Shannon
focused on entropy for random variables and finite se-
quences of random variables, but the concept naturally ex-
tends to stationary stochastic processes, in particular sta-
tionary Markov chains. Roughly speaking, for a stationary
process �, the entropy h(�) is the asymptotic growth rate
of the number of allowed sequences, weighted by the joint
stationary probabilities of � (for background on entropy
and information theory see Cover and Thomas [35]).

A Markov chain on a graph G is defined by assign-
ing transition probabilities to the edges. Let P denote the
stochastic matrix indexed by states of G, with PIJ equal
to the sum of the transition probabilities of all edges
from I to J. This, together with a stationary vector for P,
completely defines the (joint distributions of the) Markov
chain.
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So, a graph itself can be viewed as specifying only
which transitions are possible. For that reason, one could
view G as an “intrinsic Markov chain”, and Parry [99]
used this terminology when he introduced SFT’s based on
graphs and matrices.

More generally, a stationary process on a shift space X
is any stationary process which assigns positive probability
only to allowed blocks in X.

For an irreducible graph Gwith strictly positive transi-
tion probabilities on all edges, by Perron–Frobenius the-
ory, P will always have a unique stationary vector. And
there is a particular such Markov chain �G on G that in
some sense distributes probabilities on paths as uniformly
as possible. This Markov chain is the most “random” pos-
sible stationary process (not just among Markov chains)
on XG in the sense that it has maximal entropy; moreover,
its entropy coincides with the topological entropy of XG.

The Markov chain �G is defined as follows: let  de-
note the largest eigenvalue of A(G) and w; v denote cor-
responding left, right eigenvectors, normalized such that
w � v D 1; for any path � of length n from state I to state J,
we define the stationary probability of � :

�G (� ) D
wIvJ
n

:

It is clear from the formula that this distribution is fairly
uniform, since all paths with the same initial state, termi-
nal state and length have the same stationary probability.

This defines a joint stationary distribution on allowed
blocks of XG, and it is not hard to show that it is consis-
tent andMarkov, given by assigning transition probability
vJ/(vI ) to each edge from I to J. To summarize:

Theorem 19 Let G be an irreducible graph.

� Any stationary process � on G satisfies h(�) � log,
and

� The Markov chain �G is the unique stationary process
on G such that h(�G ) D log.

The construction of�G is effectively due to Shannon [119]
and uniqueness is due to Parry [99] The unique entropy-
maximizing stationary process on irreducible edge shifts
naturally extends to irreducible SFT’s and irreducible sofic
shifts (this process will be M-step Markov for an M-step
SFT).

Many results in symbolic dynamics were originally
proved using �G. One example is the fact that any fac-
tor code from one irreducible SFT to another of the same
entropy must be finite-to-one [32]. This result, and many
others, were later proven using methods that rely only on

the basic combinatorial structure of G and XG. Neverthe-
less, �G provides much motivation and insight into sym-
bolic dynamics problems, and it illustrates a connection
with ergodic theory, which we now discuss.

For background on ergodic theory (such as the con-
cepts of measure-preserving transformations, homomor-
phisms, isomorphisms, ergodicity, mixing, and measure-
theoretic entropy), we refer the reader to [107,113,127].
Observe that a stationary process on a shift space X can be
viewed as a measure-preserving transformation: the trans-
formation is the shift mapping and the measure on “cylin-
der sets”, consisting of x 2 X with prescribed coordinate
values xi D ai ; : : : ; x j D a j , is defined as the probability
of the word ai : : : a j ; the stationarity of the process trans-
lates directly into preservation of the measure. The sym-
bolic dynamical concepts of irreducibility and mixing cor-
respond naturally to the concepts of ergodicity and (mea-
sure-theoretic) mixing in ergodic theory.

It is well-known [107,127] that the measure-preserv-
ing transformation (MPT) defined by a stationary Markov
chain � on an irreducible (resp., primitive) graph G is er-
godic (resp., mixing) if � assigns strictly positive condi-
tional probabilities to all edges of G.

Now, suppose that G andH are irreducible graphs and
� : XG ! XH is a factor code. For a stationary measure �
on G, we define a stationary measure � D �(�) on XH by
transporting � to XH : for a measurable set A in XH , define

�(A) D �
�
��1(A)


:

Then � defines a measure-preserving homomorphism
from the MPT defined by � to the MPT defined
by �. Since measure-preserving homomorphisms between
MPT’s cannot reduce measure-theoretic entropy, we have
h(�) � h(�).

Suppose that now � is actually a conjugacy. Then it
defines a measure-preserving isomorphism, and so h(�)
D h(�). If � D �G , then by uniqueness, we have � D �H .
Thus � defines a measure-theoretic isomorphism between
the MPT defined by �G and the MPT defined by �H . In
fact, this holds whenever � is merely an almost invertible
factor code. This establishes the following result:

Theorem 20 Let G;H be irreducible graphs, and let
�G ; �H be the stationary Markov chains of maximal en-
tropy on G;H. If XG ; XH are almost conjugate (in par-
ticular, if they are conjugate), then the measure-preserving
transformations defined by �G and �H are isomorphic.

Hence conjugacies and almost conjugacies yield isomor-
phisms between measure-preserving transformations de-
fined by stationary Markov chains of maximal entropy.
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In fact, the isomorphisms obtained in this way have some
very desirable properties compared to the run-of-the-mill
isomorphism. For instance, an isomorphism � between
stationary processes typically has an infinite window; i. e.,
to know �(x)0, you typically need to know all of x, not
just a central block x[�n;n] (these are the kinds of isomor-
phisms that appear in general ergodic theory and in par-
ticular in Ornstein’s celebrated isomorphism theory [98]).
In contrast, by definition, a conjugacy always has a finite
window of uniform size. It turns out that an isomorphism
obtained from an almost conjugacy, as well as its inverse,
has finite expected coding length in the sense that to know
�(x)0, you need to know only a central block x[�n(x);n(x)],
where the function n(x) has finite expectation [4]. In par-
ticular, by Theorem 11, whenever XG and XH are mixing
edge shifts with the same entropy, the measure-preserving
transformations defined by �G and �H are isomorphic via
an isomorphism with finite expected coding length.

The notions of conjugacy, finite equivalence, almost
conjugacy, embedding, factor code, and so on can all be
generalized to the context of stationary measures, in par-
ticular to stationary Markov chains. For instance, a con-
jugacy between two stationary measures is a map that is
simultaneously a conjugacy of the underlying shift spaces
and an isomorphism of the associated measure-preserv-
ing transformations. Many results in symbolic dynam-
ics have been generalized to the context of stationary
Markov chains. There is a substantial literature on this, in
particular on finitary isomorphisms with finite expected
coding time, e. g., [71,84,101,114], and [90]. The exposi-
tions [102,105] give a nice introduction to the subject of
strong finitary codings between stationary Markov chains.
See also the research papers [45,85,86,103,104,123,124].

Higher Dimensional Shift Spaces

In this section we introduce higher dimensional shift
spaces. For a more thorough introduction, we refer the
reader to Lind [76]. For the related subject of tiling sys-
tems, see Robinson [112], Radin [110], andMozes [94,95].

The d-dimensional full A-shift is defined to be AZd .
Ordinarily,A is a finite alphabet, and here we restrict our-
selves to this case. An element x of the full shift may be
regarded as a function x : Zd !A, or, more informally,
as a “configuration” of alphabet choices at the sites of the
integer lattice Zd .

For x 2AZd and F � Zd , let xF denote the restric-
tion of x to F. The usual metric on the one-dimensional
full shift naturally generalizes to a metric on AZd given
by �(x; y) D 2�k , where k is the largest integer such
that x[�k;k]d D y[�k;k]d (with the usual conventions when

x D y and x0 ¤ y0). In analogy with one dimension, ac-
cording to this definition, two points are “close” if they
agree on a large cube [�k; k]d .

We define higher dimensional shift spaces, with the
following terminology. A shape is a finite subset F of Zd ,
and a pattern f on a shape F is a function f : F !A. We
say that X is a d-dimensional shift space (or d-dimensional
shift) if it can be represented by a list F (finite or infinite)
of “forbidden” patterns

X D XF D
˚
x 2AZd

: � n(x)F 62 F
for all n 2 Zd and all shapes F

�
:

Just as in one dimension, we can equivalently define
a shift space to be a closed (with respect to the metric �)
translation-invariant subset ofAZd . Here “translation-in-
variance” means that � n(X) D X for all n 2 Zd , where
�n is the translation in direction n defined by (� n(x))m
D xmCn .

We say that a pattern f on a shape F occurs in a shift
space X if there is an x 2 X such that xF D f . Hence the
analogue of the language of a shift space is the set of all
occurring patterns.

A d-dimensional shift of finite type X is a subset ofAZd

defined by a finite list F of forbidden patterns. Just as in
one dimension, a d-dimensional shift of finite type X can
also be defined by specifying allowed patterns instead of
forbidden patterns, and there is no loss of generality in re-
quiring the shapes of the patterns to be the same. Thus we
can specify a finite listL of patterns on a fixed shape F, and
set

X D XLc D
˚
x 2AZd

: for all n 2 Zd ; � n(x)F 2 L
�
:

In fact, there is no loss in generality in assuming that F is
a d-dimensional cube F D [0; k]d .

Given a finite list L of patterns on a shape F, we say
that a pattern f 0 on a shape F 0 is L-admissible (in the shift
of finite type X D XLc ) if each of its sub-patterns, whose
shape is a translate of F, belongs to L. Of course, any pat-
tern which occurs in X is L-admissible. But an L-admissi-
ble pattern need not occur in X.

The analogue of vertex shift (or 1-step shift of finite
type) in higher dimensions is defined by a collection of d
transition matrices A1; : : : ;Ad all indexed by the same set
of symbolsA D f1; : : : ;mg. We set

˝(A1; : : : ;Ad )

D
˚
x 2 f1; : : : ;mgZ

d
: Ai(xn ; xnCe i ) D 1 for all n; i

�
;

where ei is as usual the ith standard basis vector and
Ai (a; b) denotes the (a; b)-entry of Ai. Such a shift space
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is called a matrix subshift. When d D 2, this amounts to
a pair of transition matrices A1 and A2 with identical ver-
tex sets. The matrix A1 controls transitions in the horizon-
tal direction and the matrix A2 controls transitions in the
vertical direction. Note that anymatrix subshift is a shift of
finite type and, in particular, can be specified by a list L of
patterns on the unit cube F D f(a1; : : : ; an) : ai 2 f0; 1gg;
specifically, ˝(A1; : : : ;An) D XLc where L is the set of
all patterns f : F ! f1; : : : ;mg such that if n; n C ei 2 F,
then Ai ( f (n); f (nC ei)) D 1. When we speak of admissi-
ble patterns for a matrix subshift, we mean L-admissible
patterns with this particular L. Just as in one dimension,
we can recode any shift of finite type to a matrix subshift.

Higher dimensional SFT’s can behave very differ-
ently from one dimension. For example, there is a simple
method to determine if a one-dimensional edge shift, and
therefore a one-dimensional shift of finite type, is non-
empty, and there is an algorithm to tell, for a given fi-
nite list L, whether a given block occurs in X D XLc . The
corresponding problems in higher dimensions, called the
nonemptiness problem and the extension problem, turn out
to be undecidable [14,111]; see also [67]. Even for two-
dimensional matrix subshifts X, these decision problems
are undecidable. On the other hand, there are some spe-
cial classes where these problems are decidable. This class
includes any two-dimensionalmatrix subshift such thatA1
commutes with A2 and A>2 . For this class, any admissible
pattern on a cube must occur, and so the nonemptiness
and extension problems are decidable; see [87,88].

A point x in a d-dimensional shift X is periodic if its
orbit f� n(x) : n 2 Zdg is finite. Observe that this reduces
to the usual notion of periodic point in one dimension.
Now an ordinary (one-dimensional) nonempty shift of fi-
nite type is conjugate to an edge shift XG, where G has
at least one cycle. Hence a one-dimensional shift of finite
type is nonempty if and only if it has a periodic point.
This turns out to be false in higher dimensions [14,111],
and this fact is intimately related to the undecidability re-
sults mentioned above. While one can formulate a notion
of zeta function for keeping track of numbers of periodic
points, the zeta function is hard to compute, even for very
special and explicit matrix subshifts, and, even in this set-
ting, it is not a rational function[77].

In higher dimensions, the entropy of a shift is defined
as the asymptotic growth rate of the number of occurring
patterns in arbitrarily large cubes. In particular, for two-
dimensional shifts it is defined by

h(X) D lim
n!1

1
n2

log jX[0;n�1]�[0;n�1]j ;

where X[0;n�1]�[0;n�1] denotes the set of occurring pat-

terns on the square

[0; n � 1] � [0; n � 1]

that occur in X. Recall from Sect. “Entropy and Periodic
Points” that it is easy to compute the entropy of a (one-
dimensional) shift of finite type using linear algebra. But
in higher dimensions, there is no analogous formula and,
in fact, other than the group shifts mentioned below, the
entropies of only a very few higher dimensional shifts of fi-
nite type have been computed explicitly. Even for the two-
dimensional “golden mean”matrix subshift defined by the
horizontal and vertical transition matrices

A1 D A2 D

�
1 1
1 0

�

an explicit formula for the entropy is not known. However,
there are good numerical approximations to the entropy of
some matrix subshifts (e. g., [30,96]). And recently the set
of numbers that can occur as entropies of SFT’s in higher
dimensions has been characterized [51,52]; this character-
ization turns out to be remarkably different from the anal-
ogous characterization in one dimension [74].

One of the few 2-dimensional SFT’s for which entropy
has been computed is the domino tiling system (see [58],
Chap. 5 in [115]), which consists of all possible tilings of
the plane using the 1 � 2 and 2 � 1 dominoes. This can be
translated into an SFT with four symbols L; R; T; B, sub-
ject to the constraints:

� xi; j D L) xiC1; j D R ,
� xi; j D R) xi�1; j D L ,
� xi; j D T ) xi; j�1 D B ,
� xi; j D B) xi; jC1 D T .

The entropy of this SFT is given by a remarkable inte-
gral formula:

1
4

Z 1

0

Z 1

0
(4 � 2 cos(2� s)� 2 cos(2� t)) ds dt

Further work along these lines can be found in [59,117].
One can formulate notions of irreducibility and mix-

ing for higher dimensional shift spaces. It turns out that
for SFT’s there are several notions of mixing that all co-
incide in one dimension, but are vastly different in higher
dimensions. For instance, a higher dimensional shift space
is strongly irreducible if there is an integer R > 0 such that
for any two shapes F; F 0 of distance at least R, any occur-
ing configurations on F and F 0 can be combined to form
an occuring configuration on F [ F 0 [29,129]. For one-di-
mensional SFT’s, this is equivalent to mixing, but much
stronger than mixing for two-dimensional SFT’s.

Just as in one dimension, we have the notion of sliding
block code for higher dimensional shifts. For finite alpha-
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betsA;B, a cube F � Zd and a function˚ : AF ! B, the
mapping � D ˚1 : AZd

! BZd defined by

˚1(x)n D ˚(xnCF )

is called a sliding block code. By restriction we have the
notion of sliding block code from one d-dimensional shift
space to another. As expected, for d-dimensional shifts X
and Y , the sliding block codes � : X ! Y coincide ex-
actly with the continuous translation-commuting maps
from X to Y , i. e., the maps which are continuous with
respect to the metric �, defined above, and which satisfy
� ı � n D � n ı � for all n 2 Zd . Thus it makes sense to
consider the various coding problems, in particular the
conjugacy, factor and embedding problems, in the higher
dimensional setting, but these are very difficult.

Even the question of determining when a higher di-
mensional SFT of entropy at least log n factors onto
the full n-shift seems very difficult (in contrast to The-
orem 15). However, there are some positive results for
strongly irreducible SFT’s. For instance, it is known that
any strongly irreducible SFT of entropy strictly larger than
log n factors onto the full n-shift [37,55]. In fact, that re-
sult requires only a weaker assumption than strong irre-
ducibility, but still much stronger than mixing; recent ex-
amples [28] show, among other things, that one cannot
weaken that assumption to mere mixing.

There are results on other coding problems as well.
For instance, a version of the Embedding theorem in one
dimension (Theorem 13) holds for SFT’s in two dimen-
sions with a strong mixing property [73]; however, it is re-
quired that the shift to be embedded contains no points
that are periodic in any single direction. And some other
results on entropy of proper subshifts of strongly irre-
ducible SFT’s carry over from one dimension to higher di-
mensions [106,109]. But in many cases where versions of
the result carry over, the proofs are much different from
those in one dimension.

Measures of maximal entropy for two-dimensional
SFT’s behave very differently from the one dimensional
case. For instance, even with very strong mixing prop-
erties, such as strong irreducibility, there can be more
than one measure of maximal entropy [29], and the rela-
tionships among entropy-preserving, finite-to-one, and al-
most invertibility for factor codes discussed in Sect. “Other
Coding Problems” can be very different in higher dimen-
sions [89]. Other differences with respect to entropy can
be found in [108].

There is also the natural notion of higher dimensional
sofic shifts, which can be defined as those shift spaces that
are factors of SFT’s. Recall that every one-dimensional
sofic shift is a right-resolving, and hence entropy-preserv-

ing, factor of an SFT. It is not known if there is an analogue
to this fact in higher dimensions, although recently there
has been some progress: every sofic shift Y is a factor of an
SFT with entropy arbitrarily close to h(Y) [36].

Finally, there is a subclass of d-dimensional SFT’s
which is somewhat tractable, namely d-dimensional shifts
with group structure in the following sense. LetA be a (fi-
nite) group. Then the full d-dimensional shift over A is
also a group with respect to the coordinate-wise group
structure. A (higher-dimensional) group shift is a subshift
of AZd which is also a subgroup. For a survey on results
for this class, we refer the reader to [79].

Future Directions

The future directions of the subject will likely be deter-
mined by progress on solutions to open problems. In the
course of describing topics in this article, we have men-
tioned many open problems along the way. For a much
more complete list on a wealth of sub-areas of symbolic
dynamics, we refer the reader to the article [24]. While
it is difficult to single out the most important challenges,
certainly the problem of understandingmulti-dimensional
shift spaces, especially of finite type, is one of the most
important.
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Glossary

Synchronization A problem in time-keeping, requiring
the coordination of events to operate a system or a task
in unison.

Distance A measure between two nodes, defined as the
number of edges connecting them through the shortest
paths.

Average distance The mean distance, averaged over all
pairs of nodes on the network.

Clustering coefficient The probability that two ran-
domly-selected neighboring nodes of a node are di-
rectly connected each other.

Node-degree The number of edges incident from a node.
Random-graph network A type of graph obtained by

starting with a set of nodes and then adding edges be-
tween them at random.

Small-world network A type of graph in which most
nodes are not neighbors of each other, but most nodes
can be reached from any other node by a small num-
ber of connection steps; thus, a small-world network
is highly clustered like a regular graph, and yet with
a small average distance, just like a random graph.

Scale-free network A type of graph in which a small
number of nodes have a large number of connections
while a large number of nodes have a small number of
connections, whose node-degree distribution typically
follows a power-law form, with both structure and dy-
namics being independent of the network size.

Node-betweenness A measure of the extent to which
a given node is occupied by the amount of information
passing through it via shortest paths between other
nodes, namely, the portion of shortest paths between
all pairs of nodes which have data traffic going through
this particular node in the network.

Definition of the Subject

The subject under consideration is synchronization on
complex networks, with respect to the phenomena and
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particularly the ability of achieving synchrony of a net-
work of dynamical systems. The subject of synchroniza-
tion is quite old, but it is a significant one continuously
calling for serious and systematic investigation. Ever since
the careful study of two synchronous pendulum clocks by
the great Dutch scientist Christian Huygens in 1665, the
subject has evolved to be an independent and indispens-
able field of scientific research. The current study of com-
plex networks, on the other hand, is pervading all kinds
of sciences, ranging from physical to biological, even to
social sciences. Its impact on modern engineering and
technology is prominent and will be far-reaching. Typi-
cal complex dynamical networks include the Internet, the
World Wide Web, various wireless communication net-
works, metabolic networks, biological neural networks,
social relationship networks, financial and economic net-
works, and so on. As it has turned out today, the study
of synchronization phenomena and synchronous behav-
iors of dynamical systems such as oscillators on complex
networks has become overwhelming. This article offers
an overview of the state-of-the-art advances and develop-
ments of the subject of synchronization on various com-
plex networks, with emphasis on network synchronizabil-
ity and performance.

Introduction

Many biological, social and technological systems can be
properly described by complex networks with nodes rep-
resenting individuals or organizations and edges charac-
terizing the interactions among them [1,2,3,4,5]. One of
the goals in the current studies on complex networks is
to understand and explain how the topological proper-
ties of a network affect the behaviors of dynamical sys-
tems built upon the network. Typical examples include
understanding how the topology of the Internet affects the
spread of the computer viruses [6,7,8,9,10], how the struc-
ture of a power grid affects the cascading failures over
time [11,12,13,14,15], how the connecting patterns of an
intercommunication network affect its data traffic and dy-
namics [16,17,18,19,20], and so on.

Synchronous behaviors have been observed in various
complex networks in nature and human society [23,24,
25,26], and they have been studied for hundreds of
years since the systematic investigation of pendulum syn-
chrony by the great Dutch scientist Christian Huygens in
1665 [27].

To understand how network structure affects the syn-
chronizability of a network not only has broad theoretical
interest [28], but also has important practical value [29].
One typical case in point is the synchronicity of sen-

sors in biological neural networks, where neurons com-
municate with each other through synaptic junctions for
which a mechanism called asynchronous release is impor-
tant [30]. There are many careful studies about collective
synchronization in the earlier literature, with a basic as-
sumption that dynamical systems of coupled oscillators
evolve either on regular networks [31,33,34] or on ran-
dom networks [35,36]. However, the structures of most
real-world networks are neither completely regular nor
completely random, but rather, somewhere in between.
Thus, it becomes important and even necessary to con-
sider how network structure affects the synchronization
process and the synchronizability of the dynamical sys-
tems on such networks. Recently, it has been found that
networks with small-world effects and scale-free proper-
ties are quite different from, and oftentimes achieve syn-
chronization more easily than, regular networks such as
lattices [37,38,39,40,41,42,43,44].

The study of synchronization on complex networks
has gone through several stages in the past decade, encom-
passing several important aspects of the subject: various
synchronization phenomena on complex networks and
their stability analysis, the relationships between struc-
tural ingredients and a network’s synchronizability, the
enhancement or reduction of network synchronizability,
etc. The first two are quite well understood today while
the last one will be further addressed in this article. First,
some basic concepts about synchronization of networked
dynamical systems and the associated stability analysis are
introduced. Second, some intrinsic relations between net-
work structure and synchronizability are discussed. Third,
three types of methods, namely, regulating coupling pat-
terns, modifying network structures, and designing output
functions, are introduced for enhancing network synchro-
nizability. Finally, some open questions are posed which
are deemed significant for further studies of the important
subject of complex network synchronization.

To proceed, some notations are introduced [5], among
which three are most significant with respect to net-
work synchronization: average distance L, clustering coef-
ficient C, node-degree ki of node i, and the corresponding
probability density function of degree distribution p(k).

In the past few years, by taking advantage of both high-
speed computing power and the huge amount of real data
available on the web, scientists were able to search and find
some common statistical characteristics shared by many
real-world networks. It is found that most real networks
have a very small average distance, scaled approximately as
L � lnN, where N is the size of the network (i. e., the to-
tal number of its nodes), while their clustering coefficient
is rather large, as compared with random-graph networks
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(Erdös and Rényi [28]). A network having both of these
two characteristics is referred to as a small-world network,
described by Watts and Strogatz [21]. Moreover, the de-
gree distributions of many real networks obey a power-
law form p(k) � k�� , where p(k) is the probability density
function for the corresponding degree distribution, and �
is the power-law exponent (typically 2 < � < 3) [1,2,3].
The power-law distribution falls off much more gradually
than an exponential one, allowing for a few nodes with
very large degrees to exist. Networks with power-law de-
gree distributions usually belong to the class of scale-free
networks, characterized by Barabási and Albert [22].

Basic Concepts of Network Synchronization

A general model of coupled identical oscillators on a net-
work can be described by [40,41]

ẋ i D F(x i) � �
NX

jD1

Gi jH(x j) ; i D 1; : : : ;N ; (1)

where ẋ i D F(x i ) governs the dynamics of the ith oscilla-
tor, with state vector x i ; H(x j) is the output function; �
is the coupling strength; G D [Gi j] is an N � N coupling
matrix determined by the given coupling pattern among
the N oscillators.

In the typical situation when the oscillators are sym-
metrically coupled, the coupling matrix G has the same
form as the graph Laplacian L, i. e., G D L, with

Li j D

8
<̂

:̂

ki for i D j
�1 for j 2 �i

0 otherwise ;
(2)

where ki is the degree of node i and �i is the set of its
neighboring nodes. In this setting, L is symmetrical and
semi-positive definite, and all the rows of L have a zero
sum, so that its smallest eigenvalue 1 is always a sin-
gle zero and all the other eigenvalues are strictly positive.
Thus, the eigenvalues of L can be ranked as

0 D 1 < 2 � 3 � � � � � N :

For network (1), the synchronization manifold is
an invariant manifold: x1 D x2 D � � � D xN D s, typically
satisfies ṡ D F(s) in engineering applications.

For a dynamical system, the so-called master stability
function is usually defined to be the ratio of the largest
Lyapunov exponent versus a connectivity parameter of the
system [42,45]. For some dynamical systems, the master
stability function is negative when 2 > ˛1/� for some

Synchronization Phenomena on Networks, Figure 1
Four typical master stability functions for coupled Rössler
oscillators: chaotic (bold curve) and periodic (regular curve);
with y-coupling (dashedcurve) and x-coupling (dottedcurve). The
vertical ordinate shows the changeof the largest Lyapunov expo-
nent. Curves are all scaled for clearer visualization (after [42])

constant ˛1. In this case, the largest Lyapunov exponent
is negative, and consequently the network is synchroniz-
able; moreover, the larger the 2 is, the better the network
synchronizability will be [40,41].

For some other dynamical systems, the master sta-
bility function is negative only within a finite interval
(˛1; ˛2) [46], over which the largest Lyapunov exponent
is negative [42,45], where ˛1 and ˛2 are constants. In
this case, the network is synchronizable for some � when
the eigenratio R D N /2 satisfies R < ˛2/˛1; moreover,
a smaller R indicates a better network synchronizability.

The former case corresponds to networks for which
the synchronized region is unbounded (the bold-dashed
curve in Fig. 1), and the latter, bounded (the bold-solid
curve and the two regular lines in Fig. 1) [42]. In both
cases, the right-hand side of the above two inequalities de-
pends only on the dynamics of each individual oscillator
and the output function of the network, while the eigen-
value 2 and eigenratio R depend only on the Laplacian L.
Therefore, the problem of synchronization can be divided
into two parts: choosing suitable dynamics (including the
aforementioned parameters and output function) and an-
alyzing the eigenvalues of the Laplacian. In fact, these two
cases can co-exist [32,101].

The same stability analysis can also be applied to some
more complicated coupling patterns [40,41,42,45,47], in-
cluding the case where G is non-diagonalizable (see Fig. 2
and [48]).

Network (1) has only identical oscillators, while in the
real world parameter mismatch between oscillators is very
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common, so that both the amplitudes and phases of dif-
ferent oscillators become different. However, quite often,
only the frequencies of oscillations are of concern in some
applications, while the amplitudes are not important. In
such cases, phase synchronization is the topic for study,
for which the Kuramoto model [49,50,51,52,53] is a repre-
sentative platform.

In the Kuramotomodel, oscillators run at arbitrary fre-
quencies and they are coupled through a periodic (e. g.,
sine) function of their phase differences. More precisely,
the model consists of a population of N coupled phase-
oscillators �i(t) having natural frequencies ! i distributed
with a given probability density g(!), governed by

�̇i D !i � �

NX

jD1

Gi j sin(�i � � j) ; i D 1; : : : ;N : (3)

To measure the synchronization phenomena, an order pa-
rameterM is introduced:

M �
hDˇ̌

N�1
PN

jD1e
i� j
ˇ̌Ei

; (4)

where � is a function of � , and h�i and [�] denote the
average over time and over different configurations, re-
spectively.

Initially, each node is assigned a random phase.
Without coupling, all the oscillators run independently
and, at any time, the phases of the oscillators are dis-
tributed almost uniformly on the interval [0; 2�], yielding
M D O(1/

p
N). In this situation, the oscillators are gen-

erally not synchronized. With coupling, as the coupling
strength gradually increases to beyond a certain threshold,
interactions among oscillators become stronger and more
inter-influential, which gradually dominate the individual
self-oscillations. Eventually, collective synchronization of
all oscillators emerges spontaneously. During this transi-
tion process, the order parameterM increases from 0 to 1.

Synchronizability Versus Structure

Previous studies have demonstrated that both scale-free
and small-world networks are much easier to synchro-
nize than regular lattices [37,38,39,40,41,42,43,44]. At this
point, a natural question arises: what makes them easier
to synchronize? An intuitive answer might be their aver-
age distance, which is much shorter than that of a regu-
lar network with the same size. However, after some sys-
tematic investigations on the relation between structural
ingredients and the network synchronizability, Nishikawa
et al. [54] found that as the network becomes more het-
erogeneous, i. e., the degree distribution becomes wider,

Synchronization Phenomena on Networks, Figure 2
Synchronization of scale-free networks. a, b the semi-random
model; c, d the growingmodel with aging of nodes. The small in-
sets are the responses of the indicated parameters with respect
to the changing parameters � or ˛ under the same conditions
(after [54])

a network can become less synchronizable even though
its average distance becomes much shorter. Figure 2 gives
two examples of this phenomenon. In a semi-random
model [55], with the increase of the power-law exponent � ,
which makes the network more homogeneous, the net-
work average distance D̄ becomes longer and the standard
deviation of the degree distribution reduces (Fig. 2a and
inset); meanwhile, the eigenratio N /2 of its Laplacian
becomes smaller (Fig. 2b), indicating improvement of the
network synchronizability. In a growing model of scale-
free networks with aging nodes [56], it is also observed
that as the average distance increases and the degree dis-
tribution becomes more homogeneous, the network gains
a better synchronizability (Fig. 2c,d).

A heuristic exploration may be given: in a network
with a heterogeneous degree distribution, a few “central”
oscillators, which interact with a large number of other
oscillators, tend to be overloaded by the traffic passing
through them. When too many independent traffic sig-
nals with different phases and frequencies are traversing
through a node at the same time, they cause congestion,
leading to the reduction of network synchronizability. The
same also happens to overloaded edges [54].

On the other hand, based on experience with WS
small-world networks, Hong et al. [57] concluded that the
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Synchronization Phenomena on Networks, Figure 3
Behavior of the difference ı of the eigenratio in a WS network
with rewiring probability p (after [57])

maximal node betweenness [58,59,60] is a good indicator
for network synchronizability: the smaller, the better, and
vice versa. To confirm their observation, they calculated
the difference of the eigenratio before and after the re-
moval of a node from aWSnetwork [21]. Figure 3 plots the
difference ı � (N /2)after � (N /2)befor. The reduction
of the ratio is brought about by the removal of the node
with the maximal betweenness (empty squares in the fig-
ure). In comparison, random removal of a node makes the
eigenratio almost unchanged (empty circles in the figure).
This implies that the node with the maximal betweenness
plays an important role in determining the synchroniz-
ability of the network. However, for scale-free networks,
this “maximal betweenness indicator” may not work, as
pointed out in [61] with a counterexample given in [62].

In the above studies, a network is usually modified in
order to see how the synchronizability changes as the net-
work structure varies. It is worth emphasizing that dur-
ing the modification process all the topological ingredi-
ents [5] have been changed at the same time, therefore it
is impossible to obtain any accurate relation between one
particular ingredient and the network synchronizability.
Knowing this problem, by using the edge-exchange oper-
ation [63,64], Zhao et al. [62] derived some fairly accu-
rate relations between the synchronizability and the av-
erage distance as well as the heterogeneity of the degree
distribution, on small-world and scale-free network mod-
els. Figure 4 presents a sketch of maps of their random
interchanging algorithms. The algorithmic operations will
change only the network average distance while keeping
the degree of each node unchanged. Thus, the relations be-
tween the two concerned ingredients can be investigated

Synchronization Phenomena on Networks, Figure 4
Sketch of maps of the random interchanging algorithm (af-
ter [62])

separately. Extensive simulations have verified that either
shortening the average distance or lowering the hetero-
geneity may lead to a better synchronizability, but only
their combination can always ensure that the network will
synchronize easily.

McGraw andMenzinger [65] investigated the relations
between the clustering coefficient and network synchro-
nizability, and concluded that for both random-graph and
scale-free networks, increasing the clustering coefficient
hinders global synchronization if the coupling strength
is strong, but it promotes the synchronization of scale-
free networks when the coupling strength is weak. Fig-
ure 5 shows this phenomenon. The main reason is that
the clusters around the hub-nodes promote the formation
of frequency-synchronized clusters, but they will inhibit
the synchronization of the network as a whole. The early
hub synchronization accounts for the slightly enhanced
order parameter when the coupling is weak [65,66]. This
analysis is based on non-identical oscillators in the Ku-
ramoto model. On the other hand, by means of master
stability analysis, Wu et al. [67] reported a negative corre-
lation between the clustering coefficient and synchroniz-
ability through a scale-free network model with a tunable
clustering coefficient [68].

Besides the main focus on small-world effects and
scale-free properties, as described by the clustering coeffi-
cient, average distance and degree distribution, some fur-
ther studies on the effects of other topological ingredients
on network synchronization have also been reported, par-
ticularly the degree-degree correlation. A network is said
to show assortative (or disassortative)mixing, if the nodes
having many connections tend to connect to other nodes
with many (or few) connections. The extent of this degree-
degree correlation can be measured by the Pearson coeffi-
cient [69]: its positive (or negative) value indicates assor-
tative (or disassortative) mixing. Di Bernardo et al. found
that disassortative networks generally have a better syn-
chronizability than the assortative ones [70,71]. However,
later works [72,73] show that the degree distribution, cou-
pling pattern, and degree-degree correlation among the
nodes compete with each other in an intrinsic manner,
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Synchronization Phenomena on Networks, Figure 5
Order parameter M vs coupling strength �, for different values
of the clustering coefficient � . a Poisson degree distribution.
b, c Power-law degree distribution. c A close-up of the transition
region, showing that increase of the clustering coefficient leads
to an advanced (lower-�) transition (after [65])

thereby together determining the network synchronizabil-
ity. That is, for one coupling pattern, disassortative mix-
ing may predict better synchronizability, while for another
coupling pattern, the result can be the opposite.

As we gain more knowledge of various network struc-
tures, more attention is paid to the effects of local struc-
tures of complex networks on their global behaviors and
dynamics. Huang et al. [74] found that in complex net-
works with prominent clusters, the synchronizability is de-
termined by the interplay between intercluster and intr-
acluster edges: a network is mostly synchronizable when
the numbers of the two types of edges are approximately
equal. If not equal, for example as the number of intra-
cluster edges increases, an abnormal synchronization phe-
nomenon appears: although the network average distance
becomes smaller, the network synchrony is weakened or
even destroyed.

Synchronization Phenomena on Networks, Figure 6
Order parameterM vs. community strength C for different values
of the coupling strength � (after [76])

Furthermore, the synchronization phenomenon of
a complex network with a community structure has also
been discussed. Qualitatively, a community is defined as
a subset of nodes within a network with the property that
the connections among the nodes therein are denser than
those within the other parts of the network [75]. Zhou
et al. studied phase synchronization in a network with
a community structure [76]. Defining the edges connect-
ing two nodes in one community as internal edges, and
those connecting nodes between two communities as ex-
ternal edges, the ratio of the number of external edges
to the number of internal edges can be used to charac-
terize the strength of the community structure, denoted
by C. Clearly, a smaller C corresponds to sparser external
edges thus a more prominent community structure. Fig-
ure 6 shows the relationship between the order parame-
terM and the community strengthC for different coupling
strengths � . It is found from Fig. 6 that a strong commu-
nity structure will hinder global synchronization no mat-
ter what the coupling strength is, but this effect will vanish
when the fraction of external connections exceeds 0.1.

Using a modified simulated annealing algorithm,
Donetti et al. [77] generated an entangled network with
optimal synchronizability. These kinds of networks are
shown to have an extremely homogeneous structure: dis-
tributions of node degrees, distances, betweenness, and
loops are all very uniform. Also, these networks are char-
acterized by short average distances and large loops, with
no well-defined community structures. In the approach
of [77], rewiring is applied, i. e., at each time step, the num-
ber of rewiring trials is randomly extracted from an ex-
ponential distribution. Except for rewiring which reduces
or increases the eigenratio, and except for operations that
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Synchronization Phenomena on Networks, Figure 7
Eigenratio Q as a function of the number of algorithmic iterations. Starting from different initial configurations, all the networks are
converted via iterations to entangled networks (after [77])

disconnect the network, for different initial configurations
the optimization process will always lead to the same op-
timal result. Figure 7 shows the changes of the eigenra-
tio in the optimizing process and the resultant network
configuration.

Enhancing Network Synchronizability

With a clearer understanding of the relations between the
network structure and synchronizability, a natural ques-
tion about how to enhance the network synchronizability
is in order. Some effective synchronizability-enhancement
methods are introduced in this section.

Coupling Pattern Regulation

In general, scale-free networks are much harder to syn-
chronize than random networks with the same size and
the same average degree. One reason is that in scale-free
networks, there are some “central” oscillators that interact
with a large number of other nodes [54]. Thus, when too
many independent signals with different phases and fre-
quencies are traversing through a “central” oscillator at the
same time they may have conflicts, thereby causing traffic
congestion. Hence, generally speaking, the more hetero-
geneous the degree distribution, the more difficult for the
network to synchronize. It is also known that in scale-free
networks, when the oscillators are coupled symmetrically,
oscillators with larger degrees usually approach the final
synchronized state first, and then the others with smaller
degrees synchronize to them gradually [65]. Therefore,
when the oscillators are coupled asymmetrically, if the
coupling strength from the “central” oscillators to the
other nodes are stronger than the reverse, the network will
synchronize much easier and faster.

Based on this idea,Motter, Zhou andKurths [78,79,80]
proposed a new coupling pattern, which we will call the

MZK pattern, which can sharply improve network syn-
chronizability. After that, quite a few methods for regu-
lating coupling patterns are brought forward to improve
network synchronizability, some static and some dynamic.

Static Coupling Patterns

In static coupling patterns, the elements of the coupling
matrix are formulated based on the MZK pattern, as

Gi j D Li j/k
ˇ
i ; (5)

where ˇ is a tunable parameter. The coupling is weighted
when ˇ ¤ 0, and unweighted when ˇ D 0. In spite of the
asymmetry of this coupling matrixG, it can be proved that
all the eigenvalues ofG are nonnegative reals with only one
eigenvalue being zero if the network is connected. Rewrite
Eq. (5) as

G D D�ˇ L ; (6)

where D D diag(k1; : : : ; kN ) is a diagonal matrix and L is
the Laplacian. From the identity

det(D�ˇ L � I) D det(D�ˇ /2LD�ˇ /2 � I) ; (7)

where I is the N � N identity matrix, one can prove that
the spectrum of G is the same as that of the following sym-
metric matrix:

H D D�ˇ /2LD�ˇ /2 : (8)

Similarly to the case of matrix G, if the network is con-
nected then all eigenvalues of H other than the single
1 D 0, are positive. With ˇ D 1, the matrix H is a nor-
malized Laplacian. Thus, if the network is connected and
N � 2, then

0 < 2 � N/(N � 1) ; 2 � N � N/(N � 1) : (9)
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Eigenratio R as a function of ˇ for four kinds of complex networks specified in [78]. For each model, the synchronizability peaks at
ˇ D 1:0 (after [78])

Figure 8 shows the changes of the eigenratio Rwith the
parameter ˇ in four kinds of complex networks specified
in [78]. It can be seen that the eigenratio R has a well-de-
fined minimum at ˇ D 1 in all cases. Mathematically, this
means that the best results are obtained when the matrixD
has a square-root. It is also clear that the more heteroge-
neous the network is, the more prominent the minimum
of the eigenratio R becomes.

By explicitly relating the asymmetry in the connections
to an age order among different nodes, Hwang et al. [81]
found that age-ordered networks provide a better propen-
sity for synchronization. The main reason is that an older
node becomes weaker, therefore more easily influenced by
other nodes. In this coupling pattern, the off-diagonal en-
tries of the zero-row-sum coupling matrix G are

Gi j D �ai j
	i jP

j2�i
	i j

; (10)

where aij are the elements of the adjacency matrix A
(ai j D 1 if nodes i and j are connected, and ai j D 0 other-
wise), and	i j D (1 � �)/2 (or	i j D (1C �)/2) for i > j
(or i < j). The parameter � 2 (�1; 1) governs the cou-
pling asymmetry in the network: the limit � ! �1 (or
� ! 1) gives a unidirectional coupling, where the old (or

young) nodes drive the young (or old) ones. When � D 0,
the coupling pattern degenerates to the MZK pattern at
ˇ D 1.

For a generic � , the spectrum of the coupling ma-
trix G is in the complex plane and the complex eigen-
values appear in pairs of complex conjugates (1 D 0;
` D r

`
C ji

`
, ` D 2; : : : ;N). It can be proved that

(i) 0 < r2 � � � � � rN � 2, and (ii) ji
`
j � 1;8`. The

best propensity for synchronization is then ensured when
both the ratio rN /

r
`
and M � max`fji`jg are simultane-

ously made as small as possible.
In scale-free network models, the age of a node can

be denoted by the time when it is being added to the net-
work. The class of scale-free networks under study is gen-
erated from the Barabasí–Albert model [82,83]. For com-
parison, a highly homogeneous random network with an
arbitrary initial age ordering is considered, with the aver-
age degree being equal to that of the scale-free network.
Figure 9 shows the variation of the synchronizability of the
two networks versus the parameter � . For the random net-
work, symmetric coupling makes the ratio rN /

r
2 smallest,

while for the scale-free model, the propensity for synchro-
nization is better (or worse) when � ! �1 (or � ! 1).
As for M, there are only very small differences between
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a �r

N and �r
2, b �

r
N/�

r
2, and c M, vs. � , for a scale-free network

(m D 5 and B D 0, solid curves) and random network (dashed
curves) (after [81])

the scale-free and the random-network models. Thus, it
is concluded that in scale-free networks, the network syn-
chronizability is enhanced when the dominant coupling
direction is from older to younger nodes [84].

Taking the edge-weights into account, Chavez et
al. [85,86] investigated the propensity for synchronization
of some weighted complex networks, where the weight in
an arbitrary edge, `i j , is defined as its traffic load [87],
which quantifies the traffic of shortest paths which make
use of that edge. In this coupling pattern, the off-diagonal
entries of the zero-row-sum coupling matrix G are

Gi j D �
`˛i jP
j2�i

`˛i j ; (11)

where ˛ is a tunable parameter, and `i j is the load of the
edge connecting nodes i and j.

Although G is asymmetric for all ˛, just like the MZK
pattern, it can be proved that all its eigenvalues are non-
negative reals with only one zero eigenvalue if the network
is connected. The case of ˛ D 0 corresponds to the best
synchronizability condition for the MZK pattern. From
Eq. (11), it can be seen that in the limit of ˛ D C1 (or
˛ D �1) only the edges with the largest (or smallest)
loads `i j are selected as the incoming edges for each node i.
Therefore, this generates a network with at leastN directed
edges, which can be either connected or disconnected. In
the connected (or disconnected) case, the ratio N /2 will
be equal to 2 (or C1), thus yielding a very strong (or
weak) condition for synchronization.

Figure 10a shows the logarithm ofN /2 in the param-
eter space (˛; B) for the above-discussed model [82,83].
Parameter B is used to regulate the heterogeneity of the

Synchronization Phenomena on Networks, Figure 10
a �N/�2 for scale-free networks vs. the parameter space (˛; B).
b � D log(�N/�2)� [log(�N/�2)]˛D0 vs. (˛; B). The domain
with� < 0 is outlined by the black contours drawn (after [85])

degree distribution. It can be observed that the surface
of N /2 has a prominent minimum when ˛ ' 1 for all
values of B above a given threshold Bc > 0, which means
that the weighting procedure based on edge loads always
enhances the network propensity for synchronization.
The quantity � D log(N /2) � [log(N /2)]˛D0 shown
in Fig. 10b may be used to quantify the synchronizability
enhancement.

The coupling patterns proposed by both Hwang et
al. [81] and Chavez et al. [85,86] can enhance the propen-
sity for network synchronization. The former works well
only for age-ordered networks, while the latter requires
the knowledge of the load on each edge of the whole net-
work. Therefore, a general coupling pattern using only lo-
cal information would be very desirable. Based on the idea
that different nodes should play different roles in a net-
work, Zhao et al. [73] proposed a coupling pattern which
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Synchronization Phenomena on Networks, Figure 11
a Eigenratio R in the parameter plane (˛, ˇ). b R vs.˛ for different values of parameterˇ (after [73])

requires only the degrees of neighboring nodes. The cou-
pling matrix G of this pattern is given by

Gi j D

8
<̂

:̂

�k˛j /S
ˇ
i for j 2 �i

Si /S
ˇ
i for i D j

0 otherwise ;

(12)

where Si D
P

j2�i
k˛j . When ˛ D ˇ D 0, this coupling

pattern degenerates to the symmetric coupling pat-
tern [45], where the case of ˛ D 0 corresponds to theMZK
pattern [78] and the case of ˇ D 1 is equivalent to the one
introduced in [80] (see Eq. (15) in [80] for more details).
Although this G is asymmetric for all ˛ with ˇ ¤ 0, it can
also be proved that all its eigenvalues are non-negative re-
als with only one zero eigenvalue, if the network is con-
nected. Figure 11 shows some simulation results. From the
figure, it can be concluded that there is always some pa-
rameter region in which the eigenratio R is smaller than
that of the symmetrically coupled case (˛ D ˇ D 0) and
that of the optimal case with the MZK pattern (˛ D 0 and
ˇ D 1).

From the viewpoint of gradient fields, Wang et al. [88]
also derived a coupling pattern that has the same configu-
ration as Eq. (12) with ˇ D 1.

Dynamic Coupling Patterns

The coupling patterns discussed above are all based on
a network having a fixed structure which remains un-
changed throughout the synchronizing process.

Zhou et al. [89] investigated synchronization in a scale-
free network of chaotic oscillators, where the coupling
strength of a node develops adaptively according to the
local synchronizing property between the node and its
neighbors. In this coupling pattern, the off-diagonal en-

tries of the zero-row-sum coupling matrix G are

Gi j D �ai jWi j ; (13)

where Wi j > 0 is the coupling strength from node j to
node i if they are connected. Here, suppose that the
strength between node i and all its ki neighbors increases
uniformly among the ki connections, in order to suppress
its difference �i from the mean activity of its neighbors;
namely,

Gi j(t) D �ai jVi (t) ; V̇i D ��i /(1C�i ) ; (14)

where �i D jH(x i) � (1/ki)
P

j ai jH(x j)j, and � > 0 is
the adaptation parameter. It is clear that, in this adap-
tive coupling scheme, the input weight (Wi j D Vi ) and the
output weight (Wji D Vj) of node i are generally asym-
metrical.

Next, synchronization of a network of coupled Rössler
oscillators and a chaotic foodweb model on Barabasí–
Albert scale-free networks are considered, and two cases of
unbounded and bounded stability zones are investigated,
respectively. When the stability zone is unbounded, the
transition to synchronization is shown in Fig. 12a. Start-
ing from random initial conditions on the chaotic attrac-
tors, the local synchronization difference �	 1, and the
input weights of each node, both increase uniformly on
the whole network, i. e., Wi j D Vi (t) � � t (Fig. 12a, in-
set). After a short period of time, the weights Vi of differ-
ent nodes develop at different rates and then converge to
different values Ṽi . The input weight is smaller on aver-
age for nodes with larger degrees ki (Fig. 12b). Here, the
synchronization error is measured by averaging all local
errors over the nodes: E(t) D hjx i � hx iiji.

The dependence of the input weight of a node on its
degree follows a power law,

V(k) � k�� ; (15)
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a Transition to synchronization in an adaptive network of Rössler
oscillators, indicated by the (averaged) synchronization error
E(t) D hjxi � hxiiji. Inset: the input strength Vi(t) vs. time over
three nodes. b Theweighted couplingmatrix G̃ crystallized after
the adaptation (for the foodweb model) (after [89])

with exponent � D 0:48˙ 0:01 for both oscillator mod-
els. Importantly, this scaling is also robust to the varia-
tion of network parameters, such as the minimal degreeM
(Fig. 13b), which should not be confused with the order
parameter M elsewhere, the system size N (Fig. 13c), and
the orders of magnitudes of the adaptation parameter �
(Fig. 13d).

When the stability zone is bounded, synchroniza-
tion can always be achieved by the adaption mechanism
of Eq. (14) if � � �c for a threshold �c somewhat de-
pending on N and the oscillator dynamics. The two re-
sulting weighted networks display the same power-law
behavior as in Eq. (15), but with different exponents:
� D 0:54˙ 0:01 (Rössler oscillator) or � D 0:36˙ 0:01
(foodweb). The eigenratio R for the weighted networks, af-
ter the adaptation, and for the unweighted networks (sym-
metric coupling) is calculated as a function ofN (Fig. 14a),
and as a function of the ratio Smax/Smin (Fig. 14b), where
Smax and Smin are the maximum and minimum intensities
of the variable coupling strengths of the model. Clearly,
this adaptive coupling scheme is more effective than sym-
metric coupling for network synchronization.

Huang [90] investigated another adaptive coupling
pattern, in which a node is coupled with its neighbors

non-uniformly through different coupling strengths, and
showed that they have better synchronizability than other
networks with symmetric coupling patterns.

In all the coupling patterns discussed above, whether
the coupling pattern is static or dynamic, only the coupling
strength is tunable while the connectivity matrix always
remains unchanged. However, as is intuitively clear, net-
work synchronizability can also be significantly improved
by evolving the graph topology giving rise to a time-vary-
ing connectivity matrix. This has been recently confirmed
by Boccaletti et al. [91].

It has been shown [91] that to make a network syn-
chronizable, either the coupling matrix G(t) D G remains
unchanged, or if starting from an initial wiring condi-
tion G(0) D G0, the coupling matrix G(t) commutes at
any time with G0, i. e., G0G(t) D G(t)G0;8t. At any time,
a zero-row-sum symmetric commutingmatrixG(t) can be
constructed, as

G(t) D V�(t)VT ; (16)

where V D fv i ; : : : ; vNg is an orthogonal matrix with
columns being the eigenvectors of G0, and�(t) D diag[0;
2(t); : : : ; N (t)] with i (t) > 0;8i > 1. This set of ma-
trices is referred to as the dissipative commuting set of
G(0). A condition to ensure the network synchronization
will be stable is

Si D lim
T!1

1
T

Z T

0
�max(�i (t0))dt0 < 0 8i ¤ 1 ; (17)

where�max(�i ) is the maximal transversal (conditional)
Lyapunov exponent along the direction of the ith eigen-
vector, and Si is its time average. Hence, it does not re-
quire �max(�i (t)) < 0 at all times. One can even con-
struct a commutative evolution such that at each time
there exists one eigenvaluei for which�max(�i (t)) > 0,
and yet obtain a stable synchronization manifold. Thus,
interestingly, synchronization in a dynamical network
can be achieved even in the case where each individual
commutative graph does not give rise to synchronized
behavior.

Modifications of Network Structures

It is well known that the synchronizability of a dynami-
cal network is determined simultaneously by the network
coupling pattern, the dynamical characteristics of the os-
cillators on its nodes, and the network structure. In the
above, several cases with variable coupling patterns have
been discussed. For some real-world networks, however,
the coupling pattern cannot be modified at will. Thus, if
the dynamics of the oscillators are given and fixed, and
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Synchronization Phenomena on Networks, Figure 13
Average input weight V(k) of nodes with degree k as a function of k for a network of Rössler oscillators (empty circles) and the food-
web model (filled circles) (a), and its dependence on various parameters,M (b), N (c), and � (d), where theM should not be confused
with the order parameterM elsewhere (after [89])

Synchronization Phenomena on Networks, Figure 14
Eigenratio R as a function of N (a), and Smax/Smin (b). The networks are synchronizable if R < R� in a, Rössler oscillators (squares),
R� D 40 (dashed curve), foodwebmodel (triangles), R� D 29 (dashed-dotted curve) (after [89])

if the coupling patterns cannot be changed, then the only
way to enhance the network synchronizability is to make
a change to the network structure.

There are some effective techniques to enhance the
network synchronizability by modifying the network
structure, as further discussed below in the rest of this
section.

Reducing Maximal Betweenness

In scale-free networks, the average distance is often very
short while the node-degree and node-betweenness distri-
butions are both quite broad. The bottleneck for the net-
work synchronizability seems to be the maximal node be-
tweenness [57]. In order to reduce the node betweenness
of the hubs, Zhao et al. [92] suggested a method of struc-

tural perturbations. Specifically, for a hub x0, m � 1 aux-
iliary nodes, labeled as x1; : : : ; xm�1, are added around
it. These m nodes are fully connected together. Then, all
the edges incident from x0 are re-distributed to all the
nodes xi (including x0 itself), i D 0; 1; : : : ;m � 1. After
this process, the betweenness of x0 is divided intom almost
equal parts associating with thesem nodes. This process is
calledm-division. A sketch map of a 3-division process on
node x0 is shown in Fig. 15.

Due to the huge sizes of many real-life networks,
it is usually impossible to obtain the node between-
ness from a complex network. Fortunately, studies have
shown that there exists a strongly positive correlation
between the node-degree and the node-betweenness in
Barabasí–Albert networks and some other heterogeneous
networks [87,93]. That is, a node with larger degree has
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Sketch map for the 3-division process on x0. The solid circle on
the left is the node x0 with degree 6. After the 3-division process,
this x0 is divided into 3 nodes, x0, x1 and x2, which are fully con-
nected. The six edges incident from x0 are then re-distributed to
all the three nodes (after [92])

higher node-betweenness statistically. Therefore, for prac-
tical reasons, it can be assumed that nodes with higher be-
tweenness are those with larger degrees in Barabasí–Albert
networks.

To further explore how the structural perturbations af-
fect the network synchronizability, the eigenratios before
and after the m-division process were compared in [92]
for a Barabasí–Albert scale-free network with the coupling
matrix being Laplacian. For use in the rest of the article, we
define a characteristic value R D r0/r, in which r and r0 are
the eigenratios before and after the division, respectively.
Figure 16 shows the correlation between R and the proba-
bility � of the divided nodes. It is clear that even them-di-
vision of a tiny fraction of nodes can sharply enhance net-
work synchronizability.

Synchronization Phenomena on Networks, Figure 16
Behavior of value R vs. the fraction of divided nodes �. As the
number of divided nodes increases, R is reduced, leading to bet-
ter synchronization (after [92])

Shortening the Average Distance

Zhou et al. [94] investigated the synchronizability of a net-
workmodel named crossed double cycles (CDCs). They not
only clarified the relationship between average distance
and network synchronizability, but also provided a pos-
sible way to make a network more synchronizable.

In the language of graph theory [95,96,97], a cycle CN
denotes a network consisting of N nodes (vertices) x1;
: : : ; xN . These N nodes are arranged in a ring, and the
nearest two nodes are connected to each other. Thus,
CN has N edges connecting the nodes x1x2; x2x3; : : : ;
xN�1xN ; xNx1. The set of all such CDCs, denoted by
G(N;m), can be constructed by adding two edges, called
crossed edges, to each node in CN . The two nodes con-
necting by a crossed edge have distance m within CN .
For example, the network G(N; 3) can be constructed
from CN by connecting x1x4; x2x5; : : : ; xN�1x2; xNx3 to-
gether. A sketch map of G(20; 4) is shown in Fig. 17 for
illustration.

Figure 18 shows how the average distance L affects the
network synchronizability (measured by the characteris-
tic value R). It is clear that the network synchronizability
is very sensitive to the average distance: as L increases, R
sharply spans more than three magnitudes. And the net-
work synchronizability is remarkably enhanced by reduc-
ing L. When the crossed length m is not too small or too
large (compared to N), networks with the same average
distance have approximately the same synchronizability,

Synchronization Phenomena on Networks, Figure 17
Sketch map of G(20;4) (after [94])
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Synchronization Phenomena on Networks, Figure 18
Characteristic value R vs. average distance L of CDCs. The black
squares, red circles, blue triangles and green pentagons represent
the cases of N D 1000, 2000, 3000 and 4000, respectively. The
inset shows the same data in log-log plot, indicating that the
characteristic value R approximately obeys a power-law form
R � L1:5. The solid line has slope 1.5, for comparison (after [94])

regardless of the network sizes. More interestingly, the nu-
merical results show that the characteristic value R ap-
proximately obeys a power-law form, as R � L1:5 (inset of
Fig. 18).

Decoupling Nodes by Removing Heavily-Loaded Edges

In the synchronization process, not only hubs may be the
bottlenecks but some edges with large loads may also limit
the network synchronizability. Yin et al. [99] found that
a scale-free network can become more synchronizable af-
ter some of its heavily-loaded edges have been removed.
To reduce the computational cost, they used local infor-
mation to approximately rank the edges, according to the
values of ki � k j , where i and j denote two adjacent nodes
connected by an edge. Subsequently, at each time step, an
edge with the highest rank is removed, i. e., the two nodes
are decoupled at both sides of their connecting heavily-
loaded edge. After this operation, the characteristic value
is decreased, as shown by Fig. 19.

Designing the Output Function

Very recently, the relationship between graph theory
and network synchronizability received some special at-
tention [100]. For example, Duan et al. [101,102,103]
found that for networks with disconnected complemen-
tary graphs, adding edges will often increase their synchro-
nizability. The complementary graph of a given graph G is

Synchronization Phenomena on Networks, Figure 19
Changes of the synchronizability as a function of the proportion
of cut edges Ncut/N for different values of the average distance
(after [99])

defined to be the graph consisting of all the nodes of G and
all the edges that are not in G.

In addition, they found [101,102] that when the
couplings between nodes are symmetric, an unbounded
synchronized region is always easier to analyze than
a bounded synchronized region (see Sect. “Basic Concepts
of Network Synchronization” to recall their definitions).
Therefore, to effectively enhance network synchronizabil-
ity, they presented a designmethod for the output function
(i. e., H in network (1), or the inner linking matrix in the
linear coupling case), such that the resultant network has
an unbounded synchronized region, for the case where the
synchronous state is an equilibrium of the network.

If the synchronous state is an equilibrium, then both
DF(s(t)) and DH(s(t)) in network (1), as discussed in
Sect. “Enhancing Network Synchronizability” (part B), re-
duce to constant matrices, denoted by F and H, respec-
tively. The synchronized region is the stability region of
the matric pencil F C ˛H with respect to parameter ˛.
It can be proved that there exists a matrix H of rank 1
(meaning that only one component in each state vector
is used for coupling), such that the stability region is un-
bounded. The method for obtaining the desired output
function is outlined below: first, take a column vector b
such that (F; b) is stabilizable [104]; then, find a matrix
P D PT such that FPC PFT � 2bbT < 0; consequently,
taking k D bTP�1 leads to the stability of F � ˛bk for all ˛
in the unbounded region; finally, H D bk is the matrix to
be found.

For illustration, synchronization of a simple 6-node
network (shown in Fig. 20) is studied, where each node
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A network of 6 nodes (after [101])

is located with a third-order smooth Chua’s circuit [105].
At first, arbitrarily take the output function

H D

0

@
0:8348
0:1002
�0:3254

9:6619
0:0694
�8:5837

2:6591
0:1005
�0:9042

1

A : (18)

But the network does not synchronize. The states of node
1 are shown in Fig. 21a. Then, let b D (0; 0; 1)T and
k D (0:0708;�0:15590; 0:4296), and then set H D bk, so
synchronization is achieved as guaranteed by the theory.
Figure 21b shows that the states of node 1 quickly reach
the equilibrium.

Future Research Outlook

Complex network synchronization is a rapidly growing
subject attracting increasing attention from various fields
of physics, engineering, mathematics, and biology alike.
Despite the current great advances and progress, there are
still many important open questions.

In the studies of static coupling, Nishikawa and Mot-
ter [48] once pointed out that optimal global synchro-

Synchronization Phenomena on Networks, Figure 21
States of node 1 (after [101])

nizability, with eigenratio being equal to 1, can be ob-
tained from a directed network structure without loops.
Even if adding one loop of length 2 (in a directed net-
work, two opposite edges between node i and node j can
be considered as a loop of length 2), the eigenratio will be
doubled [73,85]. Another scenario is shown by extending
the conclusion in [48] to the case of non-identical oscil-
lators [106]. Some further works in this direction will be
helpful for in-depth understanding about the role of loops
in network synchronization.

In the studies of dynamic coupling, the cost of cou-
pling has not been taken into account. However, cost is
usually very significant in some self-driven systems (for
example, in wireless sensor networks [107,108] and in
distributed autonomous robotic systems [109]). For each
node to report its current state to the neighbors (or to
detect the states of all its neighbors) requires a certain
amount of power, while the total power assigned to each
node is often limited, even if such communications are
possible. Yet, as found in collective behaviors of biologi-
cal swarms, a few effective leaders can well organize the
whole population [110]. And a recent study has pointed
out that partial coupling is more than enough to keep the
coherence of self-propelled particles [111]. Therefore, it is
very natural to expect to synchronize a complex network
with a very low cost, which is an important issue for fur-
ther investigation.

Very recently, there are some attempts at detecting
the network structures with the help of the synchroniza-
tion phenomenon on complex networks [112,113,114]: to
discover the hierarchical community structure by the dy-
namic time scales of the network synchronization pro-
cess [112,113], or to infer the complete connectivity of
a network from its stable response dynamics [114], etc.
These seemquite useful for optimal network design, analy-
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sis, and utilization in general, therefore should be pursued
with special efforts.

Similar to the aforementioned open questions, many
theoretically attractive and practically important problems
about various aspects of synchronization on complex net-
works can be posted and described. As the network re-
search further evolves in different fields, many new dy-
namical phenomena and analytic issues will also emerge.
Importance notwithstanding, the subject of “Synchroniza-
tion Phenomenon of Networks” will continue to prove it-
self an theoretically interesting and technically challenging
subject for scientific research in the years to come.
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Glossary

Synergetics Science of cooperation.
Pattern A pattern is essentially an arrangement. It is char-

acterized by the order of the elements of which it is
made rather than by the intrinsic nature of these ele-
ments (Norbert Wiener).

Self-organization Formation of spatio-temporal patterns
(structures) and/or performance of functions without
an “ordering hand”.

State vector Set of time- or time-independent variables
that characterize the state of a system.

Evolution equations Determine the temporal evolution
of the state vector. May be deterministic, stochastic or
both.

http://arxiv.org/abs/0707.3402
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Control parameter One or a set of (mostly externally)
fixed parameters in the evolution equations.

Spectrum Set of eigenvalues belonging to linear stability
equations with boundary conditions.

Stability of a system System returns after a (small) per-
turbation of its state vector into original state.

Instability Loss of stability.
Order parameters Collective variables that determine the

macroscopic behavior of systems.
Slaving principle A general theorem that allows the re-

duction of the variables of a system to order parame-
ters (close to instability).

Trajectory Smooth curve q(t) of solution of evolution
equation in q-space.

Attractor Region in the state vector space (“q-space”) to
which all neighboring states are attracted in the course
of time.

Fixed point, stable Point in q space to which all neigh-
boring trajectories converge in course of time.

Limit cycle, stable A closed trajectory to which all neigh-
boring trajectories converge.

Probability distribution function Function that deter-
mines the probability of a random variable r to have
fixed value r D r0.

Fokker Planck equation Evolution equation for proba-
bility density function, based on drift and diffusion.

Normal form Especially simple polynomial expression
that still captures the essential features, e. g. of the right
hand side of deterministic evolution equations.

Schrödinger picture of quantummechanics In it opera-
tors are time-independent, while the wave-function
(“state vector”) is time-dependent and determined by
the Schrödinger equation.

Heisenberg picture in quantummechanics The state
vector is time-independent, while the operators are
time-dependent and determined by Heisenberg equa-
tions of motion.

Fluctuating forces Stochastic (random) forces appearing
in evolution equations.

Quantum classical correspondence Establishes relation
between quantummechanical density matrix and clas-
sical quasi-probability distribution.

Symmetry Invariance of a system against specific trans-
formations (e. g. mirror symmetry).

Group Set of elements with specific multiplication rules
(axioms).

Dynamical system System whose state vector changes in
the course of time deterministically.

Langevin equation Originally: evolution equation for ve-
locity of a Brownian particle subject to damping and
fluctuating force.

Generalized Langevin equation General evolution equa-
tions that contain both a deterministic and a stochastic
part (“fluctuating forces”).

Hamilton operator Classical Hamilton function, in
which variables, e. g. position x and momentum p,
are replaced by quantum mechanical operators.

Spatial coordinate (vector x) in one, two or three dimen-
sions.


 Laplace operator (in 1,2 or 3 dimensions) :

r Vector
�

d
dx1

;
d
dx2

;
d
dx3

�
in 1,2 or 3 dimensions :

The Role of Synergetics in Science

In science, we may essentially distinguish between two
trends:

1. The accumulation of knowledge
2. Information reduction in the sense of finding general

principles, common features.

In physics, such unifying approaches are well known: the
unification of magnetism, electricity and, later on, weak
and other interactions leading eventually to a unified field
theory. General relativity unifies concepts of space, time
and gravitation. While these unifications take place at
a fundamental level, one may ask whether it is worth-
while to look also for unifications at say more macroscopic
or phenomenological levels. One example is thermody-
namics, another the theory of phase transitions of systems
in thermal equilibrium by means of the renormalization
group approach, or the concept of fractals, etc.

The main goal of Synergetics is the search for unify-
ing principles for systems that are composed of many in-
dividual parts or components, and that may show the phe-
nomenon of self-organization, i. e. the spontaneous for-
mation of spatial, temporal, spatial-temporal or functional
structures. The systems under discussion are, in the widest
sense of the word, open physical systems whose states are
maintained by an in- and outflux of energy, matter and
/or information. A typical and well known example is that
of a fluid in a pan that is uniformly heated from below.
When the temperature difference between the lower and
upper surface exceeds a critical value, the formerly homo-
geneous fluid develops roll or hexagonal patterns in which
the fluid moves in a specific manner (Fig. 1).

As it turned out, the general principles originally elab-
orated in physics, can also be applied to many other sys-
tems, such as in biology, economy, ecology, sociology,
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Synergetics: Basic Concepts, Figure 1
Hexagonal pattern of a fluid (liquid helium) uniformly heated
from below [12]

management theory, psychology etc. In spite of the great
variety of the individual systems with their components
quite different in nature, such principles apply to large
classes of phenomena. This is achieved by restricting the
study to situations where the systems undergo qualitative
changes at macroscopic scales. Here macroscopic means
“with time and length scales large compared to those of
the individual components”.

This leads to the definition of Synergetics as given in
the preamble of the Springer Series in Synergetics: “An
ever increasing number of scientific disciplines deal with
complex systems. These are systems that are composed of
many parts which interact with one another in a more
or less complicated manner. One of the most striking
features of many such systems is their ability to sponta-
neously form spatial or temporal structures. A great va-
riety of these structures are found, in both the inanimate
and the living world. In the inanimate world of physics
and chemistry, examples include the growth of crystals,
coherent oscillations of laser light, and the spiral struc-
tures formed in fluids and chemical reactions. In biology
we encounter the growth of plants and animals (morpho-
genesis) and the evolution of species. In medicine we ob-
serve, for instance, the electromagnetic activity of the brain
with its pronounced spatio-temporal structures. Psychol-
ogy deals with characteristic features of human behavior
ranging from simple pattern recognition tasks to complex
patterns of social behavior. Examples from sociology in-
clude the formation of public opinion and cooperation or
competition between social groups.”

In recent decades, it has become increasingly evident

that all these seemingly quite different kinds of structure
formation have a number of important features in com-
mon. The task of studying analogies as well as differences
between structure formation in these different fields has
proved to be an ambitious but highly rewarding endeavor.
The Springer Series in Synergetics provides a forum for in-
terdisciplinary research and discussions on this fascinat-
ing new scientific challenge. It deals with both experimen-
tal and theoretical aspects. The scientific community and
the interested layman are becoming ever more conscious
of concepts such as self-organization, instabilities, deter-
ministic chaos, nonlinearity, dynamical systems, stochas-
tic processes, and complexity. All of these concepts are
facets of a field that tackles complex systems, namely Syn-
ergetics.

The Laser Paradigm

This example elucidates central concepts used in Synerget-
ics in a qualitative fashion. An example for the laser device
(an acronym for light amplification by stimulated emis-
sion of radiation, originally called optical maser [121]) is
the gas laser in which gas atoms are enclosed in a tube at
the end-faces of which mirrors are mounted. The mirrors
serve the purpose of reflecting light running in axial direc-
tion sufficiently often so that the corresponding light wave
stays for an extended period in this device and can interact
intensely with the atoms. The atoms are excited from the
outside, e. g. by a pump light source. After having been ex-
cited, each atom can spontaneously emit a light wave track.
In the usual case of a lamp, these wave tracks are emitted
independently of each other and the amplitudes are Gaus-
sian distributed.When the pump intensity is increased be-
yond a critical value, the present state gives way to a single
wave with stable amplitude on which small amplitude fluc-
tuations and phase diffusion are superimposed [53]. The
pump intensity serves as control parameter. At its critical
value, the old state becomes unstable. The emerging coher-
ent wave acts as order parameter that via stimulated emis-
sion forces the electrons of the gas molecules to emit light
waves in a coherent fashion. This action of the order pa-
rameter on the individual parts of the system is called slav-
ing principle. If the pump power is increased further, more
instabilities can appear, and a variety of temporal but also
spatio-temporal patterns of light waves may appear, such
as laser light chaos [55] or ultrashort laser pulses. The first
laser threshold shows the typical features of a phase tran-
sition of a system in thermal equilibrium, namely critical
slowing down, critical fluctuations and symmetry break-
ing [25,46,53,58,119], as well as the emergence of a c-num-
ber amplitude of the quantized light field (Fig. 2).
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Synergetics: Basic Concepts, Figure 2
The stationary distribution function of the laser light intensity
as a function of the normalized intensity n̂. The individual curves
refer to different normalized pump power values a, where a < 0
below threshold, a D 0 at threshold, a > 0 above threshold (af-
ter [116])

The Hierarchical Structure of Synergetics

Before I discuss the mathematical approach in detail and
to provide the ground for farther reaching applications, I
hint at the three levels of Synergetics:

1. The microscopic theory, based either on microscopic
equations, such as in the laser example, those of quan-
tummechanics and quantum field theory, or in biology
on mathematical models on the behavior of individual
parts of a system. At this level, concepts, such as or-
der parameters and enslavement (cf. Sect. “The Laser
Paradigm”), can be mathematically derived.

2. Phenomenological Synergetics directly starts from con-
cepts, such as order parameters and enslavement,
which then may be cast into mathematical relations.

3. Semantic Synergetics deals with cases where a mathe-
matical formulation is (at present or in principle) not
possible, but still formulations using concepts and rela-
tionships unearthed in Synergetics are applicable.

A general goal of Synergetics consists in elaborating rela-
tionships between levels 1, 2, 3.

In the present article I will mainly focus my attention
on the mathematical formulation dealing with 1. and 2.

Basic Equations

The basic equations are classical or quantum mechani-
cal evolution equations, in which the temporal evolution
of the microscopic quantities under consideration is de-
scribed by ordinary or partial differential equations. Since
the systems are open, the inputs and outputs of energy,
matter and/or information must be taken care of, which,
quite often, appears in the form of coupling to heat baths
in the sense of thermodynamics. In open systems, these
heat baths must be kept at different temperatures, in or-
der to maintain the non-equilibrium state of the system.
The heat bath variables can be eliminated which gives rise
to differential equations which contain “pumping” and
“damping” terms as well as fluctuating (stochastic) forces.
In the case of quantum mechanical equations the stochas-
tic forces are operators. With the inclusion of stochas-
tic forces, the classical or quantum mechanical equations
acquire the character of stochastic differential equations
which may be called “generalized Langevin equations”.

Depending on the definition of the random forces, we
may distinguish between the Î to, the Statonovich and the
Klimontovich approach [62,72,134]. As is well known in
statistical physics, Langevin equations can be converted
into equations for distribution functions, such as e. g. the
Fokker–Planck equation. A further approach, mainly used
in quantum mechanics, but also in models on sociody-
namics, is the master equation.

In order not to overload this article, I will focus my
attention on the treatment of evolution equations.

This approach seems to be particularly suited for the
treatment of phase transition- like phenomena, i. e. the
transitions between qualitatively different states of a sys-
tem. If noise is neglected and transients are not treated,
these transitions are called bifurcations [5,22,49,71,79,
84,91].

At the microscopic level the systems are described by
a state vector q with components q1; : : : ; qn which may
also be space dependent, qj D qj(x; t), where x is a one,
two or three dimensional vector. The time dependence is
described by evolution equations of the form of a vector
equation.

q̇ D N(q;r; ˛)C F(q;r; ˛) : (1)

The dot˙ means time-derivative.N is a vector valued func-
tion that depends on q in a nonlinear fashion. r indicates
spatial derivatives (of any order) or non-local integrations
e. g. of the form

Z
K(x; x0)q(x0) dx0 (2)

where K is a matrix.
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˛ represents a set of fixed control parameters. If not
otherwise stated, we explicitly treat only one control pa-
rameter. Equation (1) must be supplemented by appropri-
ate boundary and initial conditions. F is a vector valued
stochastic function of time with vanishing mean.

Method of Solution

We assume that for a certain control parameter value ˛0
the state vector as solution of Eq. (1) is known, q D q0.
The following cases have been considered, see e. g. [62]:

a) q0 is a stable fixed point (Section “Instability of a Fixed
Point”)

b) q0 is a stable limit cycle (Section “Instability of a Limit
Cycle, q0(t) [62]”)

c) q0 is a stable n-dimensional torus. (Section “Instability
of Tori [62]”)

Now the control parameter value is changed and the sta-
bility of the system is checked by means of linear stability
analysis [52].

Instability of a Fixed Point We first elucidate our gen-
eral procedure by means of the instability of an originally
stable fixed point. This procedure differs from the classical
approach of bifurcation theory [90,124] in two important
aspects:

1. The role of the fluctuating forces is fully taken into ac-
count in order to be able to make contact with the the-
ory of phase transitions in the Landau sense [86].

2. The approach covers the surrounding of the fixed point
in order to deal with relaxation processes towards the
newly evolving stable states.

The hypothesis

q(t) D q0 CW(t) (3)

is inserted into (1) and the Eq. (1) with F � 0 linearized
with respect toW(t),

Ẇ D LW (4)

where Lmay be a linear differential (or integral) linear op-
erator.

The solutions are of the form

W(x; t) D e�k t
DX

dD0

td vk;d (x) (5)

where D > 0 may happen if the corresponding eigenvalue
k is degenerate. In the following we consider D D 0 and

vk;d D vk . The unstable modes vk � vu are connected
with

Rek � 0 ; (6)

the stable modes vk � vs with

Rek < 0 : (7)

It is assumed that Rek < A < 0, A fixed, if the eigenval-
ues are discrete.

We decompose the wanted solution to the original
non-linear and stochastic equations into a super position
of modes determined by the instability analysis whereby
we distinguish between the unstable and stablemodes. The
amplitudes of the unstable modes are the order parame-
ters. Inserting

q(t) D q0 C
X

u
�u(t)vu(x)C

X

s
�s(t)vs (x) (8)

into the Eqs. (1) and projecting both sides of the result-
ing equation on the stable and unstable modes, we obtain
equations of the form

�̇u D u�u C N̂u (f�ug ; f�sg)C F̂u (f�ug ; f�sg) (9)

�̇u D s�s C N̂s (f�ug ; f�sg)C F̂s (f�ug ; f�sg) : (10)

u ; s are the eigenvalues (6), (7), which are assumed to
be discrete. By a suitable, in general nonlinear, transfor-
mation to new variables, Ñ(f�ug) can be cast into a partic-
ularly simple form (“normal form” theory [101,103], initi-
ated by Poincaré [113]).

If the eigenvalues u ; 0 > Res > � jBj are a contin-
uous function of an index, e. g. a wave number k, wave
packets of �u(t) are used as new order parameter variables
� and u(k) is replaced by an operator �u(�i d

dx ) in one
space-dimension or, more generally, �u D (�ir) [62].
For a related approach in fluid dynamics cf. [105].

The central idea of further procedure consists in elimi-
nating the amplitudes of the stable modes. This is achieved
by the slaving principle [56,62,65,148] which allows us to
express the amplitudes of the stable modes in terms of the
unstable modes

�s(t) D fs (f�u(t)g ; t) ; (11)

where �s ; �u are taken at the same time t. The explicit time-
dependence of f s stems exclusively from that of the fluc-
tuating forces. f s can be explicitly calculated in terms of
a series expansion in powers of the order parameters. For
practical purposes, in general only a few terms are needed.
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For a general discussion of the convergence of this series
see [62]. When noise is neglected, contact can be made
with center manifold theory [76,112], which originally was
a mere existence theory and was not constructive. For
more recent developments, see books on bifurcation the-
ory. A related approach is based on time-scale separation:
The slowly damped or undampedmodes serve as order pa-
rameters, which enslave the rapidly dampedmodes. A spe-
cial case is adiabatic elimination.

Resulting Langevin Equations The enslavedmode ampli-
tudes can be expressed by the order parameters and in-
serted in (9), so that closed equations for the order param-
eters alone result.

�̇u D u�u C Ñu (f�ug)C F̃u (f�ug ; t) (12)

where Ñ is a polynominal of �(x; t) starting with at least
second order. F̃ is a stochastic force. A simple, yet proto-
typical example is (with a single order parameter � D �u)

�̇ D � C a�2 � b�3 C F(t) ; b > 0 (13)

or

�̇ D �
@V(�)
@�

C F(t) ; (14)

with the potential

V D �


2
�2 �

a
3
�3 C

b
4
�4 : (15)

If u ; s (6), (7) represent a continuous spectrum, (gener-
alized) Ginzburg–Landau equations result [62]. For exam-
ple, the complex Ginzburg–Landau equation with fluctu-
ating force reads [6].

(�(x; t) � �u ; complex order parameter)

�̇ D � C a
� � c j�j2 � C F(t) :
(16)

A further example is given by the Swift–Hohenberg equa-
tion [135], see also [24] (which was derived differently,
however)

�̇(x; t) D (a � b
)2�(x; t)C c�(x; t)� d�(x; t)3 : (17)

The Eqs. (12,13,16,17) allow for a great variety of solu-
tions. In the case of real  and a single order parameter,
a nonequilibrium phase transition occurs (see below). In
case of  complex, and (at least) one complex order pa-
rameter, Landau–Hopf bifurcation [67,68], i. e. formation
of a limit cycle may happen. In case of (at least) three or-
der parameters and no noise, deterministic chaos may oc-
cur [89,118,132] (in the presence of noise, mixed effects
may occur).

Fokker–Planck Equation Below and above the instabil-
ity point in control parameters space, in a first step the
fluctuations can be neglected and then, in the next step,
taken care of by means of lowest order perturbation the-
ory. In order to cover the transition region, under well de-
fined conditions a Fokker–Planck equation for the prob-
ability density function f (f�ug) of the order parameters
can be derived. For details see [62,63a}] and the article by
T. Frank, this volume.

The Fokker–Planck equation is of the general form

ḟ (f�ug) D �
X

u

@

@�u

�
Ñu f


C

1
2

X

uv

@2

@�u@�v

�
Quv f


:

(18)

It is assumed that F̃u in (12) is ı correlated in time,

hF̃u(t)F̃v (t0)i D Quvı(t � t0) : (19)

If F̃u depends on �u , the Î to, Stratonovich or Klimon-
tovich procedure must be applied.

In the case of a single order parameter, where the
Langevin equation [88], originally with Ñ D �˛�) is given
by

�̇ D Ñ(�)C F(t) ; hF(t)F(t0)i D Qı(t � t0) : (20)

The steady state distribution function of (18) is given
by [62,116]

f (�) D N exp
�
�2

�Z
(Ñ(� 0)/Qd� 0) � N exp(�2V(�)/Q

�

(21)

provided the boundary conditions are

f (�)! 0 for j�j ! 1 : (22)

In the second Eq. (21), Q D const. is assumed.N is a nor-
malization constant. A generalization of (18) to continu-
ous variables, �u(x; t), gives rise to a functional Fokker–
Planck equation. An explicit solution of the Fokker–
Planck equation in the case of several discrete or contin-
uous order parameters can be found if the drift and diffu-
sion coefficients obey the rules of detailed balance [45,47].

Nonequilibrium Phase Transition. Connection with Lan-
dau Theory The explicit form of the solution of the
Fokker–Planck Eq. (21) allows us tomake contact with the
theory of phase transitions in the sense of the Landau the-
ory [86] where

f (�) D N exp (�F(�; T)/(kT)) ;

F(�; T) D F(0; T)C a(T � Tc)�2 C
ˇ

4
�4 :

(23)
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In (21), V corresponds to the free energy F and the noise
strength Q corresponds to absolute temperature T. Tc is
the critical temperature, and (23) refers to a second order
phase transition. In case of a first order phase transition,
an additional term ��3 appears in (23).

An important difference between phase transitions at
thermal equilibrium and in the present case of non-equi-
librium should be mentioned, however. The decisive con-
stants in the case of non-equilibrium [62] phase transitions
are rate constants in contrast to thermodynamic quanti-
ties in (23). While non-equilibrium phase transitions de-
scribed by (21) were experimentally very well verified for
instance in the case of lasers [116] (Fig. 1), in the case of
thermal equilibrium the Landau theory can not be con-
sidered as a good approximation and had been replaced
by the concept of critical exponents etc. as dealt with
by renormalization group theory [75,146]. For a treat-
ment of the time dependent Fokker–Planck equations see
Risken [117].

In a number of cases the drift- and diffusion co-
efficients of the Fokker–Planck equation are by them-
selves expectation values, defined on the probability den-
sity function so that the Fokker–Planck equation becomes
non-linear. For more details see the article by T.D. Frank
in this volume.

Instability of a Limit Cycle, q0(t) [62] The instability
is checked by linear stability analysis by means of the hy-
pothesis

q(t) D q0(t)CW(t) ; (24)

where q0(t) is a time-periodic solution to (1) with ˛ D ˛0,
W(t) a small deviation.

Inserting (24) into (1) with F � 0 and linearization
leads to an equation of the form (4), where L because of
q0(t) has become also a time-periodic function with the
same period as qo(t). According to Floquet theory [35],
the solutions to (4) with periodic L(t) are given by

W(t) D e� f tv j(t) (25)

(in the case of nondegeneracy), where v j(t) has the same
period as q0, i. e. L.

Depending on Re j � 0 or < 0 we distinguish be-
tween unstable and stable modes (6, 7), respectively. One
eigenvalue is D 0 and corresponds to an indeterminate
phase shift, which in nonlinear analysis is taken care of by
a phase �(t) that acts as additional order parameter. In or-
der to solve the fully nonlinear and stochastic equations,

the hypothesis

q(t) D q0(t C �(t))C
X

u
�u(t)vu (t C �(t))

C
X

s
�s(t)vs (t C �(t)) (26)

is inserted in the Eqs. (1). The subsequent procedure fol-
lows the lines outlined above and leads to order parameter
equations of the form

�̇u D u�u C N̂u (f�ug ; �)C F̂u (f�ug ; �) (27)

�̇ D M (f�ug ; �)C G (f�ug ; �) (28)

where N̂; F̂;M;G are polynominals in f�ug and periodic
functions of � .

The novelty as compared to the case of an unstable
fixed point consists in the introduction of a phase as or-
der parameter.

When noise is neglected, the newly evolving, i. e. bifur-
cating solutions are either two (or several) limit cycles or
tori. Also basically, depending on the system, also a “back
bifurcation” to a stable focus can happen.

Instability of Tori [62] The corresponding theory is
rather complex so that a few words must suffice here. The
basic idea [62] is based on an extension of (24,26) where
q0 is chosen as a quasi periodic function

q0 D q0(!1t; !2t; : : : ; !Mt) (29)

where the ! 0smust be sufficiently irrational in the sense of
the KAM (Kolmogorov [80], Arnold [3], Moser [100]) the-
orem. Besides amplitudes as order parameters, also phases
�1(t); : : : ; �M(t) are introduced. For details cf. [62], and
for alternative approaches [21,128].

A Remark on the Method of Solution
of Evolution Eqs. (1)

In this article the central role of order parameters is
stressed because this allows us to establish profound analo-
gies between quite different systems. In practical applica-
tions it may be preferable, however, to apply other meth-
ods of solution, analytical, numerical or mixed, in order to
derive the spatial, temporal or spatio-temporal patterns. In
this way, the Springer Series in Synergetics have developed
a “tool box” of models [98].

Quantum Theoretical Formulation

In a quantum theoretical treatment one deals with quan-
tum mechanical Langevin equations which are Heisen-
berg equations of motion for operators to which pumping
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and damping terms as well as random noise sources are
added. Here, according to quantum theory, the system’s
observables are represented by time-dependent quantum
mechanical operators, ˝ j . For instance, by the position
operator x̂ and the momentum operator p̂ of a particle,
or, in quantum field theory, by creation and annihilation
operators b̂C; b̂, respectively. The quantum mechanical
Langevin equations read (see, for instance [54,58]):

˙̋ j D
i
„

�
H;˝ j

�
C dampingC Fj(t) ; (30)

where H is the Hamilton operator, and Fj(t) are stochas-
tic operators which usually are assumed to be ı-correlated
in time. The quantum mechanical properties can be de-
termined by the postulate of quantum mechanical consis-
tency of˝ j , (cf. [54], appendix).

If the non-commutativity of operators is taken care
of, the procedure to derive order parameter equa-
tions is formally the same as in the case of classi-
cal Langevin equations as indicated above. The Fokker–
Planck equation, however, must be replaced by a den-
sity matrix equation, originally introduced as master equa-
tion [109]. For nonequilibrium systems, such as the laser,
see [50,126,144], also [54,119]. Usingmethods of quantum
classical correspondence, this density matrix equation can
be converted into a Fokker–Planck equation under specific
conditions. The basic idea is this:

Quantum-Classical Correspondence

There are several ways to define quantum classical cor-
respondence. In the case of position operator x̂ and mo-
mentum operator p̂ with the commutator [p̂; x̂] D „i and
the density matrix �, the Wigner distribution function
W(x; p) [145] is defined by

W(x; p) D
1

(2�)2
�

Z 1Z

�1

e�i kx�i l p

� tr


ei k x̂Ci l p̂�

�
dkdl (31)

where “tr” means trace.
Thus a relation is established between the quantum

mechanical density matrix and a classical quasi-density
W(x; p). Based on (31) or (34,35,36), a density matrix
equation can be converted into a generalized Fokker–
Planck equation [54].

By the transformation of x̂; p̂ to creation and annihila-
tion operators bC; b by means of

b̂C D
1
p
2„

(x̂ C i p̂) (32)

b̂ D
1
p
2„

(x̂ � i p̂) (33)

an alternative form to (31) is given by

P(ˇ; ˇ�) D
1
�2

Z 1Z

�1

e�iˇ k�iˇ
� l � tr(ei kb̂

CCi l b̂�)dkdl :

(34)

Because b̂C; b̂ are noncommuting operators, [b̂C; b̂] D 1,
different “quasiprobability” distributions P result, if

ei kb̂
CCi l b̂

is replaced by

ei kb̂
C

ei l b̂ (35)

or

ei kb̂ei l b̂
C

: (36)

(35) gives rise to the Glauber–Sudarshan representation.
For details and references see [54].

Regular Spatial and Spatio-Temporal Patterns

One of the most striking features of nonequilibrium sys-
tems in physics, chemistry and biology is their capability of
forming (more or less) regular spatial pattern (for explicit
examples see below). (There is a rich literature on pat-
tern formation in physics, especially fluids [20,24,92,136],
but also semiconductors [125] and nonlinear optics [133],
chemistry [28,33,83] and biology [7,95,96,102] and gen-
eral [69,70,98,104,110,111,115,140]. Furthermore, the pat-
terns exhibit striking similarities in spite of the fact that
the individual parts are quite different. The methodology
of Synergetics (e. g. [62]) provides us with a basic insight
into the causes of such analogies.

Pattern formation is determined by at least three
causes:

1. internal mechanism, such as e. g. the interplay between
reactions and diffusion in large scale chemical pro-
cesses,

2. the influence of boundaries,
3. initial conditions.

Concerning 1) and 2) between two (limiting) cases can be
distinguished.

1. dimensions of the internally evolving patterns are of the
same or larger order as those of the boundaries. Here
a strong influence of the boundaries must be expected.
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2. dimensions of evolving patterns are small compared to
those of the boundaries (boundaries!1).

To bring out the essential features we consider that orig-
inally for a control parameter value ˛0 the system is ho-
mogeneous and quiescent. The approach can, however, be
extended to a space dependent reference state (which, e. g.
resulted from a first bifurcation leading to q0 D q0(x))
and the cases of a limit cycle or torus. The space may be 1,
2 or three dimensional Euclidian or, e. g., a 2 or 3 sphere.

Infinite Boundaries

We start with 2) infinite boundaries, the medium is ho-
mogeneous and isotropic. We assume a continuous transi-
tion from the homogeneous to the “bifurcating” state. The
evolving patterns are determined by the leading terms in
(8) that we call the “mode skeleton”

q(x; t) D q0 C
X

�u(t)vu(x) (37)

and the order parameter Eq. (12). The functions vu(x) are
the space-dependent part of the solutions to (4) where L
is a differential (or integral) operator which is invariant
against translation and rotation. Thus, e. g., L commutes
with the displacement operator

˝a : x ! x C a ; a constant vector :

Thus vu(x) can be chosen as eigenfunction to˝a ,

˝avu(x) D �vu(x) (38)

with

vu D ei kx (39)

� D ei ka (40)

i. e. plane waves. Which waves must be considered in (37)
is determined byu in (6) as well as by the order parameter
Eq. (12).

The condition Reu(k) D 0 defines k D kcrit. As was
shown by means of many examples k � kcrit ¤ 0. If the
boundaries are finite, such a discrete k must be chosen
which comes closest to kcrit. If the boundaries tend to in-
finity, a continuous set k is taken care of by (generalized)
Ginzburg–Landau equation (see above). If the boundaries
are “narrow” in 1 or 2 dimensions, but large in the remain-
ing dimensions, the wave vector k must be split into kII
and k? where kII is practically continuous and k? discrete.
Quite often only one k? (the most critical) needs to be
considered. This leads to practically 2 (or 1) dimensional

patterns connected with kII. In the 2-dimensional case, the
modes with jkIIj D kcrit. are degenerate. This degeneracy
can be lifted by a weak influence of boundaries (leading
to roll patterns), by specific initial condition which (by
chance) prefers a specific roll pattern, or by terms in the
order parameter-equations that lead to specific combina-
tions, e. g.

k1 C k2 C k3 D 0 ; (41)

where k j; j D 1; 2; 3 belong to kII.
This gives rise to the formation of hexagons. This is the

case if the leading term of Ñ contains
Z

vk1vk2vk3d
2x ¤ 0 : (42)

In three dimensions this mechanism may lead to plane
wave fronts stabilizing each other which gives rise to
icosaeders, as observed in diatomea.

An important class of spatio-temporal patterns (in 2
dimensions) results when the system utilizes rotation sym-
metry. This can best be explained by the following exam-
ple:

In many cases of practical interest, N in (1) and thus L
in (4) contain the Laplace operator �. When written in
planar polar coordinates r; # , solutions to (4) are of the
general form

v / ei(m#�kr�! t) (43)

(times a rotation symmetric function g(r)) which rep-
resents spirals. m D 0 represents concentric rings, while
an integer m > 0 represents the number of spiral arms.
! D 0 represents standing spirals, ! ¤ 0 rotating spirals.

The mode skeleton (37) is composed of functions of
the form (43). Which of the functions (43) appear in (37)
depends on the competition Eqs. (12) for order parame-
ters, which may also allow for a super position of counter
rotating spirals (such as in the sunflower head). As group
theory shows (see below), solutions (43) with different m’s
belong to different irreducible representations, and do not
coexist in (37). This does not exclude the coexistence of
differently rotating spirals in different regions of space,
however.

The above results can be cast into the isomorphy prin-
ciple:

While the “true” q is represented by (we omit the ho-
mogeneous q0)

q D
X

u
�uvu(x)C enslaved modes, with same symmetry:

(44)
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and vu “truemodes”, its symmetry features can be replaced
by a “representative” q0:

q0 D
X

k

�kRk (x) ; (45)

where Rk represent the “elementary” functions showing
the symmetry under consideration.While thematerial sig-
nificance and explicit form of q according to (44) may
be quite different for different material substrates, q0 (45)
shows the same patterns for different systems.

These results can be deepened by invoking group the-
ory, in which also the effect of the boundaries is taken into
account.

Symmetries, Group Theory, Representation Theory,
Finite Boundaries

Consider a set of transformations Gj of space variables
x ! x0 so that

Gjq! q0 (46)

Example 1 Gj induces the translation

x ! x C a so that Gjq(x) D q(x C a) : (47)

The transformations must be so that they are compati-
ble with the internal properties of the system (1) and the
boundary conditions. Example: when dealing with a prob-
lem on a 2-dimensional sphere, the transformed coordi-
nates xmust not leave the sphere.

Because of the symmetry of the problem, the transforma-
tions Gj form a group defined by

1. existence of unity E such

GjE D Gj for all j (48)

2. the product of two group elements is again an element
of the group,

GjGk D Gl for all j; k (49)

3. existence of an inverse G�1j for all j so that

G�1j G j D E ; (50)

4. associative law

(GkGl )Gj D Gk (GlGj) (51)

for all group elements.

In the following we first ignore random forces, i. e. we con-
sider (1) with F � 0.

q̇(x; t) D N(q; 
; ˛) : (52)

Jointly with the boundary conditions, (52) defines a func-
tion space S in which all functions to be considered must
lie (i. e. can be represented by linear combinations of
a complete set of (vector valued) basic functions of S; ex-
ample: S is a Hilbert space)

Definition 1 The system is invariant against Gj if for all
f "S

GjN


G�1j f

�
D N( f ) : (53)

Example 2

Gj : x ! x C a ; (54)

N( f ) D 
 f C V(x) f C f 2 : (55)

Then

Gj �N


G�1j f

�
D 
G�1j f (xCa)CV(xCa)G�1j f (xCa)

C


G�1j f (x C a)

�2
(56)

D 
 f (x)C V (x C a) f (x)C f (x)2 (57)

¤ N( f ) D 
 f (x)C V (x) f (x)C f (x)2 (58)

unless V(x C a) D V (x). If a in (54) is arbitrary, N is not
invariant against (54).

Application of Gj to q in (52) leads to

d
dt

(Gjq) D N(Gjq) (59)

or because of (53), (with f D Gjq), to

d
dt

(Gjq) D GjN(q) : (60)

In the spirit of representation theory of groups the action
of Gj on f can be understood as an abstract operation, but
also as a matrix acting on the vector f in S- space.

By appropriate transformation of basis of q, and using
the representation theory of symmetry groups, all matrices
Uj belonging to all group elements j can simultaneously be
decomposed into “irreducible” representations so that (in
the example of 3 irreducible representations)

Uj D

0

@
� � �

� � �

� � �

1

A (61)
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Each box � is a matrix U (k)
j with dimension Dk, so that

D1C D2C � � � C Dk D dimension Uj :

Example 3 Rotation group applied to 2-sphere (e. g. earth
surface). Basis functions are spherical harmonicsY l

m with
“quantum numbers” l,m. Subspace l fixed,m D 0; : : : ; l�
1. As a consequence, the mode skeleton reduces to (q0
dropped)

ql D
X

m
�m(t)Y l

m : (62)

There is no coupling between different ls, which implies
a low dimensional dynamics of �m .

Generally, the original function space S is decomposed
into subspaces forming the basis of each irreducible repre-
sentation. This implies a symmetry reduction beyond bi-
furcation point, compared to the situation below bifurca-
tion point, where

Gjq D q for all j ; (63)

i. e. q fully symmetric under G.
In our example beyond the bifurcation point q is given

by ql where Y l
m transforms according to the subgroup Gl,

which leaves the space spanned by Y l
m invariant. If, how-

ever, group elements not belonging to Gl are applied to
ql, this space is left. In other words, ql is connected with
a lower symmetry than q (63). By bifurcations, the sym-
metry of q is lowered and one speaks of “symmetry break-
ing instability”. If fluctuating forces in (1), i. e. in (52) are
taken into account, the full symmetry can be restored (un-
der specific conditions on the fluctuating forces).

While group theory has found important and widespread
applications to quantum theory, it is less frequently used in
problems of Synergetics, though there it may lead to deep
insights as pointed out above. (For an in-depth approach
see [42,43,120].)

On top of, or jointly with, regular patterns, a vari-
ety of defects as well as boundaries between different pat-
terns may occur (cf. contribution by Pismen, this volume
and [110,111]).

A FurtherMathematical Tool: Shannon Information
and the Maximum (Information) Entropy Principle

While evolution equations are the backbone of Synerget-
ics, also other tools are invoked to deal with complex sys-
tems. Such a tool is Shannon information [129] which is
defined by

i D �
X

j

p j log2 p j (64)

where pj is the relative frequency of the event j or, in a dif-
ferent interpretation, the probability of finding the real-
ization j in an experiment. The maximum (information)
entropy principle as formulated by Jaynes [73,74], for an
earlier proposal see [27]), allows one to make unbiased
guesses on systems on which only incomplete data are
known by maximizing the informations, i. e. (64) = max!
or = extremum! under given constraints.

A simple example is provided by a gas composed of N
particles, where the total kinetic energy Etotkin is fixed. De-
noting the kinetic energy of a particle with mass m and
velocity vi by fi D (m/2)v2i , the mean kinetic energy per
particle is

X

i

pi fi D Etotkin/N (65)

To fix pi, (64) must bemaximized under the normalization
condition

X

i

pi D 1 (66)

and the constraint (65).
Using Lagrange multipliers, ; 1, the result reads

pi D exp
�
� � 1mv2i /2


(67)

i. e. the Maxwell–Boltzmann distribution function. Also
relations between the Lagrange multipliers ; 1 can be
establishedwhich, evidently, have fundamental thermody-
namic significance.

This approach has been extended to the treatment
of nonequilibrium phase transitions, i. e. determination
of order parameters, enslaved modes and emerging pat-
terns [60]. The crucial idea consists in the proper choice of
constraints, as which the moments of the variables qi are
chosen:

< : : : > means average over the joint distribution
function f (q1; q2; : : : ; qn) which replaces pj and the vector
(q1; : : : ; qN ) replaces j. The variables qj may be discrete or
continuous.

fi D< qi >; i D 1; 2; : : : ;N : (68)

fi j D< qi q j > : (69)

fi jk l D< qi q jqkql >; i; j; k; l D 1; 2; : : : ;N : (70)

The resulting distribution function is given by

q D expV (; q) (71)
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with

V(; q) D C
X

i

i qiC� � �C
X

i jk l

i jk l qi q j qkql : (72)

(71) is a starting point to make contact with the Landau or
Ginzburg–Landau theory of phase transitions [86], and to
guessing Fokker–Planck equations. The approach allows
one to calculate the efficiency of self-organizing systems
close to their instability points.

The method has been extended to the “unbiased mod-
eling” of stochastic processes: how to guess path inte-
grals, Fokker–Planck equations and Langevin-Îto equa-
tions [60]. The central quantity to be searched for is the
probability density Pn of paths.

Let q(t) be the state vector q D (q1; : : : ; qN ) at time t,
then

Pn(tn ; tn�1; : : : ; t0) D Pn
�
q(tn); tn ; q(tn�1); tn�1; : : : ;

q(t0); t0

; tn > tn�1 > : : : > t0 : (73)

This task is simplified if theMarkov hypothesis on the pro-
cess holds, i. e.

Pn(tn ; tn�1; : : : ; t0) D P̂
�
q(tn); tn

ˇ̌
q(tn�1)tn�1


� Pn�1
(74)

where P̂ is the transition probability so that only transition
probabilities between subsequent states (with 
t ! 0)
must be guessed in addition to P0. In the frame of the
present approach, this task is fulfilled by use of the maxi-
mum information principle. The constraints to be used are
essentially conditional first order moments and two-time
correlation functions of the state vectors q(t); q(t0).

Phenomenological Synergetics

In many fields of science, including medicine, the micro-
scopic variables and their dynamics are not well-known or
not known at all. Nevertheless, in quite a number of cases,
namely where dramatic macroscopic changes of the sys-
tem’s behavior take place, general insights, gained by Syn-
ergetics, can be invoked. A paradigm for this procedure is
themodeling of Kelso’s finger experiments [77,78] (Fig. 3).
He instructed subjects to move their index fingers in paral-
lel which was accordingly performed. However, when the
speed of the fingers was increased, the parallel movement
was replaced by a symmetric movement quite involuntar-
ily and spontaneously. In other words, a transition from
a parallel to an anti-parallel phase takes place. In terms
of Synergetics, the interpretation is simple: the control pa-
rameter consists in the prescribed frequency ! of the fin-
ger movement, whereas the macroscopic quantity, i. e. the

Synergetics: Basic Concepts, Figure 3
Transition between finger movements from parallel to symmet-
ric in Kelso’s experiment [64]

order parameter that changes dramatically is provided by
the relative phase of the two index fingers. According to
the experience made in Synergetics, the order parameter,
here called � obeys a typical order parameter equations of
the form [64]

�̇ D �
@V
@�
C F(t) ; (75)

where V(�; !)is a potential function and F a fluctuating
force. When the control parameter ! is changed, the po-
tential runs through a series of forms as depicted in Fig. 4.
As was shown in detail, at a critical value of !, the transi-
tion from one potential minimum to another one occurs,
as related to the change of the kind of finger movement.
The mathematical analysis shows hysteresis, critical slow-
ing down and critical fluctuations [59] which reject the
idea that the brain acts like a computer via a motor pro-
gram but rather via self-organization.

Another application is made by the Synergetic com-
puter [61] (Figs. 5, 6), where to each pattern to be recog-
nized a specific order parameter is attached. Pattern recog-
nition is then achieved via a competition between order
parameters. The competition equations are given by

�̇k D
@V
@�k
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�4k : (76)

This approach may serve also for modeling of brain func-
tions: both recognition as well as movements are governed
by the establishing of order parameters which may wander
from one quasi attractor to another one. Quasi attractors
are defined as attractors that vanish after the task has been
accomplished, e. g. after a pattern has been recognized or
movement performed.
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Synergetics: Basic Concepts, Figure 4
Sequence of potential curves of the Haken–Kelso–Bunzmodel of
Kelso’s experiment [64]

Based on the concept of order parameters, a learn-
ing procedure for Synergetic computers has been devel-
oped [61]. Here the number of patterns to be recognized
is prescribed and then a special functional must be min-

Synergetics: Basic Concepts, Figure 5
Recognition of faces by the synergetic computer: stored or learned prototype patterns [61]

Synergetics: Basic Concepts, Figure 6
Pattern recognition by the synergetic computer: recognition of a specific face of which initially only a subset of pixels is pre-
sented [61]

imized. In the case of the Synergetic computer, it is pos-
sible to make contact between the microscopic and the
mesoscopic description, i. e. the microscopic variables are
pixel values qj; j pixel index, whereas the mesoscopic (or
macroscopic) quantities are the order parameters �k .

The relation between �k ; qj is given by

�k D
X

j

vkCj q j ; (77)

where vkCj are adjoint prototype patterns, with k pattern
index, j pixel index.

The relation between prototype patterns vkj and their
adjoints is given by

X

j

vkCj vk
0

j D ıkk0 (78)

At the phenomenological level the order parameter con-
cept allows us to interpret and model complex movement
patterns, e. g. learning to ride on a pedalo [59]. In the
experiments, LED’s are fixed at the joints of the subject
and their positions measured which gives rise to a series
of time-dependent tracks. Then, in a first step, a princi-
ple component analysis is performed, in the next step, by
means of a variational principle, the best fit is searched in
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Synergetics: Basic Concepts, Figure 7
Example of an ambivalent figure: young / or old woman? [34]

terms of order parameters and their equations of motion,
in order to mimic the actual tracks. While in the learning
phase several order parameters are needed, at the end the
whole movement is governed by a rather simple equation
for a complex order parameter.

During the development of Synergetics it turned out
that there are strong relations to gestalt theory [85] as well
as to psycho physics. A typical example is provided by am-
bivalent figures where (Fig. 7) [34] shows an example. An
observer may either perceive a young woman or an old
woman, but not both simultaneously, rather the percep-
tion switches between these two percepts. In the mathe-
matical modeling to each percept an order parameter is
attached [61], which obeys the typical equations of Syn-
ergetics. The control parameter invoked here is attention.
According to an early suggestion byWolfgangKöhler [85],
when a pattern is recognized, the corresponding attention
fades away. This has been modeled mathematically based
on a competition dynamics between two order parame-
ters, when the control parameter (attention) of one pat-
tern fades away, the other pattern gets the possibility of
being perceived. Then in the next step the correspond-
ing attention parameter fades away and the first pattern
may re-appear (Fig. 8) [61]. This model describes details
of the observed phenomena, such as the dependence of
the duration of the perception of one face as compared to
that of the other face, dependent on the bias which face is
recognized first. Also, one may distinguish between slow,
medium and fast observers, depending on the individual
parameters.

Synergetics: Basic Concepts, Figure 8
Order parameter oscillations belonging to the recognition
young woman / old woman with bias towards the young
woman [59]

Quite generally, order parameters may have properties
of gestalt in the sense that they are invariant against size,
orientation and perception of objects in space.

Inmedicine, a syndrome has the characteristic features
of an order parameter. On the one hand it is generated by
the co-operation, or at least by the simultaneous presence
of specific features, on the other hand once the syndrome
(order parameter) is established, it acts on the individual
parts of the system, where the slaving principle induces
specific phenomena at the level of individual parts. Clearly,
the concept of circular causality plays an important role
here. It shows that the syndrome, at least in general, can
not be cured by curing an individual symptom, but rather
by curing a decisive majority of individual causes.

Semantic Synergetics

In soft sciences, but also in medicine and other fields,
a mathematicalmodeling, even at the level of order param-
eters may not be possible. Nevertheless, Synergetics may
provide uswith qualitative insights into basicmechanisms.
In psychology and psychiatry [122], quite often specific
mental states can be ascribed to a patient. For instance in
bipolar patients a depressive phase or a manic phase may
appear or in depressive patients a normal phase and a de-
pressive phase. Another example is provided by patients
with a compulsory action. In the spirit of Synergetics, as
a theory of indirect control, one may ask, whether there
are appropriate control parameters by means of which the
behavior of a person can be changed. Let the two states be
represented by the positions of a ball in a landscape with
two valleys. In this situation, direct control means to push
the ball from the unwanted position to the wanted. Indi-
rect control means to lower the potential hill between the
two valleys so that the wanted transition may occur via
self-organization. This may happen through interventions
used in cognitive psychology, a change of environmental
conditions, or/and by specific medication. The central is-
sue here is that the patient is not directly influenced, e. g.
by saying you must do this or that, but rather by a soft
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changing of his/her point of view. A number of successes
have been reported about this method which is, to some
extent, well known in psychiatry, but finds here a scien-
tific theoretical basis. For more details see the article by G.
Schiepek and V. Perlitz, this section, and in a somewhat
related form [66].

Some Selected Examples

The study of nonlinear, self-sustained oscillations [1,2,13]
be it in radio-engineering, mechanics or other fields, has
a long tradition. In the context of bifurcation theory, their
origin was unearthed by Hopf [67,68].

Nonlinear optics [99] and, when quantum effects are
important, quantum optics [57,97,123,142] provide us
with a wealth of phenomena, in particular of the for-
mation of coherent oscillations. A device, closely related
to the laser, is the parametric oscillator [44], in which,
within a nonlinear crystal, incoming pumplight is split
into a signal and an idler. Then, similar to the laser light,
the signal light becomes amplified, and its generation can
be described as that of a nonlinear quantum-mechani-
cal oscillator. Fluid dynamics is rich of pattern forma-
tions (including chaos) [12,16,17,18,31,41,89,92,105,115,
118,127,135,136], to mention just a few. In a fluid heated
uniformly from below, with increasing temperature differ-
ence, several instabilities may occur for instance giving rise
to stationary patterns, such as rolls, hexagons (Fig. 9) or
squares. In the next step the rolls may start to show oscil-
lations, and still more complex patternsmay occur (Fig. 3).
In the case of the Taylor instability [137], a liquid is placed
in between two coaxial cylinders, where the outer one is
rotating. With increasing rotation speed, a hierarchy of in-
stabilities is reached, first the formation of roles, then oscil-
lating rolls at one frequency, then oscillation of rolls at two
frequencies, and finally weak turbulence, i. e. chaos occurs
(Fig. 10) [31,93]. Important phenomena are the establish-
ing of boundaries and of defects as described in the article
by Pismen [110,111] and other articles of this Encyclope-
dia. A rich variety of pattern formationmay occur in semi-
conductors [125], where electrons and holes as well as cur-
rents form specific spatio-temporal patterns. In meteorol-
ogy, atmospheric convection patterns and other instabil-
ities are treated [38]. In chemistry, oscillations and large
scale patterns arise by means of the interplay of chemical
reactions and diffusions [9,15,28,32,33,149], e. g. concen-
tric ring patterns, each starting from a center, which then
annihilate each other when colliding. An important class is
provided by spiral patterns which may have one to several
arms (Fig. 11). In biology, specific models on morphogen-
esis were treated, such as the formation of stripe or spot

Synergetics: Basic Concepts, Figure 9
Model calculation of the motion of a fluid in a circular pan uni-
formly heated from below (after [29]). Upper left corner: above
a critical temperature difference between lower and upper sur-
face of the fluid layer, a hexagonal pattern appears. If the bound-
ary is also heated uniformly, a transition to the spiral pattern
with one or several arms can be found (lower right corner)

patterns on animal furs or skins of fish (Fig. 12) or still
more complicated patterns on sea shells [39,62,95,96,102].
The basic idea which can be traced back to Turing [139]
is this: originally unspecialized cells produce activator and
inhibitor molecules which by reaction and diffusion form
a prepattern, a morphogenetic field [147]. At positions of
high activator concentration, genes are switched on which
then leads to cell differention producing e. g. pigments. In
aggregating slime mold, spiral or concentric ring patterns
are observed [14,37]. Mathematical models on prebiotic
evolution [26] study the competition between species of
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Synergetics: Basic Concepts, Figure 10
Pattern hierarchy in the Taylor–Couette instability. A fluid in between two vertical coaxial cylinders of which the outer one rotates,
shows no macroscopic movement pattern, if the movement of the outer cylinder is slow. When the rotation speed is increased,
first a role pattern appears in which the fluid moves outwards at one height, and then inwards at another height. This movement
pattern is periodic with respect to height [137]. At a further critical rotation speed, the pattern shows oscillations which at a further
speed transform into a motion with two frequencies until eventually chaotic motion appears. The experiments were done by [31],
themodeling was done for the first transition (homogeneous to roles) and especially the second transition (roles to oscillating roles)
by [93]

Synergetics: Basic Concepts, Figure 11
Belousov–Shabotinsky reaction: the occurrence of spirals (cour-
tesy A.T. Winfree). They may show one to several arms. The cen-
ters of the spiralsmay occur at different positions. Spirals hitting
each other, annihilate each other

biomolecules and the “survival” of the fittest, where pro-
nounced analogies with the dynamics of laser photons can
be unearthed, fully in line with Synergetics [62]. In the
understanding of brain function, for instance, steering of
movements, pattern recognition or decision making, the
reduction of degrees of freedom of the numerous neurons
to few order parameters is central [59].

The concepts and principles of Synergetics shed new
light on important relationships in economy, such as co-
operation and competition between companies, the im-

Synergetics: Basic Concepts, Figure 12
Stripe pattern on a tropical fish

portant role of indirect steering by means of control pa-
rameters, such as taxes, interest rates. It can be shown,
that a fusion of companies does not necessarily lead to
so called synergy effects, but rather critically depends on
initial conditions and details of the cooperation between
the previously separated firms. Important insights are also
gained into fundamental processes of climatology, as well
as in ecology such as the by now well-known and publicly
discussed effects that even small concentrations of chem-
icals in the atmosphere can change the climate dramati-
cally. The same is true for lakes, in which beyond a critical
pollution, fish population dies out entirely.

In this way, the numerous examples collected in the
field of Synergetics, provide not only scientists but also the
public with impressive examples of dramatic changes (in-
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stabilities) provoked by even a slight change of control pa-
rameters. Clearly, an important research subject of Syner-
getics is a detailed study of which control parameters are
critical and to which control parameters a system is rather
insensitive. Sociology is an important field for the applica-
tion of stochastic models [8]. In particular, basic concepts
of Synergetics have proven useful in the developing field of
sociodynamics, where e. g. phase transition-like phenom-
ena may occur [143].

History and Relations to Other Fields

The term Synergetics was coined by H. Haken in 1969 in
a lecture at University of Stuttgart. A first description of
the goals of this field was given by H. Haken and R. Gra-
ham in 1971 [63] where the unifying role of the concept of
order parameters is outlined. A relationship exists to the
general system theory due to von Bertalanffi [10], which
also aims at the exploration of analogies between different
systems, but on the level of the individual elements rather
than on the level of order parameters. Von Bertalanffi
coined the term flux equilibrium (Fließgleichgewicht) in
order to characterize homeostasis in active systems [11].
A general mathematical frame for Synergetics is provided
by dynamic systems theory (see, for instance, [49]) which,
however, in the traditional approach ignores stochastic
processes (mainly chance events) which are also of great
relevance for Synergetics. Here the theory of Markov pro-
cesses with their typical equations, such as Langevin equa-
tions, Fokker–Planck equations, Chapman–Kolmogorov
equations, the Kramers–Moyal expansion etc. is impor-
tant (see for instance [134] and � Linear and Non-linear
Fokker–Planck Equations by T. Frank).

A basic feature of Synergetics consists in dealing with
nonlinearities in complex systems and studying, mainly
quantitatively, qualitative changes at macroscopic scales.
Qualitative changes of systems at macroscopic levels are
studied also by catastrophe theory [5,138], which may be
interpreted as a study of the surfaces of equilibrium points
of few order parameters, where different cases are clas-
sified according to the (low) number of control and or-
der parameters. Chaos theory studies the mostly irregu-
lar dynamics of deterministic low dimensional continu-
ous [89,106,118,132] or discrete dynamic systems [23,30,
48,94,130], where the behavior is mainly characterized by
so called Lyapounov exponents, various kinds of fractal di-
mensions and chaotic attractors. The slaving principle of
Synergetics provides a basis for an application of chaos
theory to multi-component systems in that Synergetics
shows the possibility of reducing the degrees of freedom.
Synergetics shares some of its topics with singularity the-

ory [4,42,43], which applies to bifurcation points and their
surrounding. Another point of contact is bifurcation the-
ory (see the quotations in previous chapters), in which
the branching of solutions of the dynamic system close
to instability points is studied. The term dissipative struc-
ture was coined by Prigogine [40] to characterize evolv-
ing structures in systems away from thermal equilibrium
where as in all such non-equilibrium systems dissipation
occurs. A typical example is that of the convection instabil-
ity. Prigogine tried to base his approach on thermodynam-
ics, introducing concepts of entropy production and ex-
cess entropy production. As we now know, these concepts
are, however, insufficient to deal with structure formation
in such systems [87]. Based on a fundamental idea of A.
Turing [139], Prigogine and Nicolis [114], see also [108],
treated macroscopic pattern formation in a specific chem-
ical reaction model. For more recent work see [107].

Because of the fundamental importance of thermody-
namics, we elucidate its relationship to Synergetics more
closely.

Thermodynamics (see for instance [19]) deals with
systems in and out of thermal equilibrium. A central con-
cept is entropy. In a closed system, it tends to its maxi-
mum value. Thermal equilibrium is characterized by the
equipartition theorem: each degree of freedom has an av-
erage energy of 1/2 kT; k D Boltzmann constant; T abso-
lute temperature. This may refer e. g. to gas atoms as well
as to collective excitations in crystals. These systems are
in thermal equilibrium with their surrounding (heatbaths,
reservoirs).

Irreversible thermodynamics [51] treats systemswhich
are not in thermal equilibrium but close to it. It mainly
deals with transport and relaxation processes. A central
concept is entropy production.

In the domains of physics, chemistry, biology, Syner-
getics deals with systems far from (thermal) equilibrium .
This state is caused and maintained by an in- and outflow
of matter, energy and / or information. This is achieved
by a coupling of the “proper system” to heat baths (reser-
voirs) at different temperatures. The former concepts of
thermodynamics, in particular the first and second law,
are still valid for the total system (“proper” plus reser-
voirs), but no more sufficient to deal with the kinetics of
the proper system. Now the central concept is growth and
decay rates. In systems far from thermal equilibrium, col-
lective modes are formed. One or several of them com-
pete best for the external supply of matter, energy, infor-
mation and grow at the expense of all other degrees of
freedom (or modes). Thus the equipartion theorem is no
more valid. In general, the behavior of the system is gov-
erned by few degrees of freedom (order parameters). Inci-
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Synergetics: Basic Concepts, Scheme 1
Quantum optics, example laser (after [54])

dentally, this “growth and competition” principle applies
to a great variety of fields out of physics, chemistry and
biology, where “modes” may not only be special physi-
cal structures, but may mean behavioral patterns, special
functions etc. Quite often, a “mode” is initiated by a chance
event (fluctuation). Clearly, a generalized Darwinian prin-
ciple can be seen: The interplay between mutations (mi-
croscopic chance events) and selection (competition be-
tween mascropic modes) leads to macroscopic patterns
(structures) in the widest sense of the word.

In present days research, a new name is spreading,
namely complexity or complexity theory. There seems to
be no precise definition of this field available in the scien-
tific community. Of what is known so far, we may con-
clude that this field has strong ties to the original field of

Synergetics in that it searches also for general principles
but, in addition, it allows the collection or accumulation
of knowledge on all kinds of complex systems, as is wit-
nessed in the excellent Complexity Digest, weekly edited
by Gottfried Mayer. What “complexity” eventually might
mean is reflected by the present encyclopedia.

Future Directions

Synergetics is surely not a closed scientific discipline but
quite open to further research. On the one hand we may
think of further applications of the principles of Synerget-
ics that have been hitherto elaborated on, such as order
parameters etc. Here a wide field of application is provided
by robotics, construction of prostheses, automatic steering
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of cars etc. On the other hand, new ideas to endow systems
with self-organizing properties are needed, e. g. groups of
mobile agents for the execution of specific tasks. First steps
have been done for instance by Kornienko [81].
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Stuttgart, Germany

Synergetics (Greek synergeon: science of cooperation)
is an interdisciplinary field of research that deals with

the behavior of complex systems, i. e. systems composed
of many individual parts that in general may produce
complex behavior. The systems considered may belong
to a great variety of fields, ranging from natural sciences
with physics, chemistry, biology, through medicine and
psychology to economy, ecology, management theory etc.
The central topic of the synergetics enterprise is this: By
means of their cooperation, the individual parts of a sys-
tem can spontaneously produce structures, i. e. special ar-
rangements between the elements or specially coordinated
behavior without specific steering from the outside, i. e.
without the interference of an external agent. The physical
systems, studied by synergetics, are away from thermal
equilibrium. The structures may be spatial patterns, be
it regular or irregular, temporal patterns, i. e. all kinds of
self-sustained oscillations, ranging from harmonic oscil-
lations to chaotic behavior, spatio-temporal patterns, or
functional patterns such as produced, for instance, by the
brain of humans or animals, giving rise to specific behav-
ior. The basic question synergetics asks is this: Are there
general principles that govern the self-organization of sys-
tems, irrespective of the nature of the individual parts?
When this question was posed some 40 years ago by H.
Haken, the problem put forward seemed to be absurd in
view of the great variety of possible elements. However,
this research program has turned out to be quite successful
as witnessed, for instance by the Springer Series in Syner-
getics, as well as by an independent book series in Russian.
The price to be paid for approaching this goal is as follows:

1. Focus the study on those situations where the macro-
scopic state of a system changes qualitatively.

2. Start from comparatively simple systems that are pro-
vided either by systems in physics (e. g. lasers or fluids)
or model systems dealing with self-organization pro-
cesses in a variety of fields, such as biology.

As has become evident over the past few decades, self-
organization phenomena occur in a vast variety of fields
whose presentation actually would fill a whole encyclope-
dia, which would have led to an encyclopedia within an en-
cyclopedia. Indeed the reader him- or herself may find nu-
merous examples in his/her own field of research. In view
of this situation, I felt it would be wise to present to the
reader a few basic concepts and only a few prototypical
examples. It is, indeed, an outstanding fact that few con-
cepts allow us to cover a great variety of self-organization
phenomena from a unifying point of view. Among these
concepts are stability, instability, control parameters, or-
der parameters and the slaving principle. Future research
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will have to add more concepts as has already happened,
for instance, in chaos theory.

As the reader will note, from the theoretical point of
view, synergetics has become a meeting place between bi-
furcation theory and mathematical theories related to it,
the theory of stochastic processes, and phase transition
theory, actually in the sense of the Landau theory. The
mathematical tools employed are generalized Langevin
equations and the Fokker–Planck equation, and to some
extent also the density matrix equation. In physics, it has
become possible to start from first principles. For instance
in quantum optics, based on Heisenberg equations of mo-
tion for operators, the coherence properties of laser light
(and other non-linear optical devices) were derived in ev-
ery detail (its explicit presentation would require, how-
ever, a whole handbook article, so that the reader is re-
ferred to the original literature). Fluid dynamics was cho-
sen as a highly illustrative and prototypical example of
pattern formation in systems away from thermal equilib-
rium. When a fluid is energetically excited, with an in-
creasing degree of excitation it may run through a hier-
archy of spatio-temporal patterns. At comparatively low
excitation levels, well defined patterns evolve. While regu-
lar patterns stand in the foreground of the article � Fluid
Dynamics, Pattern Formation by Bestehorn, the article by
Pismen � Patterns and Interfaces in Dissipative Dynam-
ics emphasizes defects and interfaces. At higher excitation
levels, we reach the field of turbulence, which even after the
ground-breaking work by Kolmogorov is still a hot sub-
ject of research. Important steps are done here, e. g. by the
study of the dynamics of vortices. The work by Friedrich
and Peinke, authors of the article� Fluid Dynamics, Tur-
bulence comprises also the Fokker–Planck equation ap-
proach. Actually, in the introductory article� Synergetics:
Basic Concepts by Haken, a method using the concept of
information (entropy) is outlined how to derive a Fokker–
Planck equation from measured data. Friedrich (private
communication) and Peinke found a more direct access,
the results of which are briefly outlined in the article by
Friedrich and Peinke.

A quite modern line of research on complex systems
follows up the method of the Fokker–Planck equation and
especially of non-linear Fokker–Planck equations. This
will be outlined in the article � Linear and Non-linear
Fokker–Planck Equations by Frank.

So far, all these articles deal with “hard” science, espe-
cially physics. As it has turned out over past decades, the
general concepts of synergetics have great potentialities in
fields often called “soft” science such as movement sci-
ence, medicine, and even psychology and psychiatry. Ac-
tually, as the following articles will show, basic concepts of

synergetics help to convert soft science into hard science.
The article by Fuchs and Kelso � Movement Coordina-
tion deals with movements of humans (and animals). But
though these “systems” are highly complex, large classes of
transitions between movement coordination can be theo-
retically and experimentally treated in great detail, even of
a prototypical character.

While these approaches might be called “macro-
scopic”, the article by Tass, Popovych and Hauptmann
� Brain Pacemaker penetrates into the microscopic level
of brain functions, namely by modeling the collective be-
havior of neurons and their reactions to external interven-
tions. This paper is remarkable, because it shows a new
aspect of the research on coupled nonlinear oscillators.
Whereas so far the problem of how such systems synchro-
nize, was in the foreground of research, now for medical
reasons, namely to fight Parkinsons’s disease, the problem
arises how to desynchronize such a system by appropriate
interventions.

The mathematical theory of synergetics or perhaps in
a wider sense dynamical systems theory with concepts
such as attractors, allows one to cast earlier concepts devel-
oped by Gestalt theory into clear-cut mathematical mod-
els. The order parameters just play the role of Gestalt. Syn-
ergetics may be considered as a theory of indirect control
of systems, in that it provides psychiatrists with insights
for how to intervene with their clients. A comprehensive
article, dealing with these aspects, is given in � Self-Or-
ganization in Clinical Psychology by Schiepek and Perlitz.
This article shows how methods of mathematical analysis
are penetrating more and more into the field of psychia-
try, and allowing doctors to monitor the mental and be-
havioral state of a patient.

In conclusion, in particular with respect to biological
systems (but not exclusively), the following remarks are in
order:

1. While in physical systems, at least those considered in
the article on synergetics, the control parameters are
fixed from the outside, in biological systems the con-
trol parameters are in general produced by the system
itself. They are the slowly varying variables in this case.
When their dynamics is admitted, specific phenomena
may occur, such as the recognition of ambivalent fig-
ures (switching between two or several percepts).

2. In biological and some physical processes, pattern for-
mation (morphogenesis) is a two- or multi-step pro-
cess. In the first step dynamic structures are formed. In
a second step these dynamic patterns are transformed
into solid patterns. A nice example is provided by ra-
diolarians in which eventually dynamic concentration
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patterns of chemicals are transferred into skeletons by
means of calcification. The exploration of such two- or
multi-step processes is, as it seems, just at its beginning.

In the article � Intentionality: A Naturalization Pro-
posal on the Basis of Complex Dynamical Systems, W.
Tschacher shows how mental processes can be linked to
material processes where he tackles the longstanding prob-
lem of intentionality and relates it to a gradient dynamics
which can be formalized by concepts of synergetics.

Last but not least, Synergetics as a theory dealing with
systems composed of many individual parts deals with the
interrelation between human individuals and their ability
to form specific social groups, viewed as a process of self-
organization. An outstanding example is provided by Juval
Portugali’s article� Self-Organization and the City.
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Glossary

Behavior mode The traditional meaning of the term is
the qualitative nature of the observed system behav-
ior, such as damped or expanding oscillations, over-
shoot and collapse, exponential growth or adjustment
to equilibrium, or limit cycles. In linear systems theory,
the term has a more specific meaning, cf. the explana-
tion for eigenvalues.

Bode plot (phase and gain plot) A tool used in classical
control theory to characterize the frequency response,
i. e., the amplification A and phase shift � in the sys-
tem output variable of interest x (t) D A sin (! t C �)
compared to the input variable u (t) D sin (! t), as
a function of the frequency ! of the input.

Chaos A type of behavior exhibited by nonlinear systems
that appears to be approximately periodic but with
a seemingly random element. A hallmark of chaotic
behavior is that it is sensitive to initial conditions.

Dominant structure A general term for the feedback
loops (or possibly external driving forces) that are
“most important” in generating a behavior pattern of
interest. In nonlinear models, particularly single-tran-
sient models, there is frequently a shift in structural
dominance, i. e. in the strength and significance of cer-
tain feedback loops.

Dynamic decomposition weights (DDW) An applica-
tion of Eigenvector Elasticity Analysis (EVA) that
focuses on how parameter changes influence the rela-
tive weights (DDW’s) of the system behavior modes in
a particular variable.

Eigenvalue An eigenvalue for a square matrix A is a value
 for which the equation Ar D r has a non-zero so-
lution r ¤ 0. The column vector r is called the (right)
eigenvector corresponding to the eigenvalue . The
eigenvalues and eigenvectors determine the behavior
modes (components) in the solution to the linear dy-
namical system ẋ D Ax. A real eigenvalue  leads to
an exponential behavior mode exp (t) while a com-
plex eigenvalue  D � ˙ i! leads to oscillatory behav-
ior modes exp (� t) sin (! t C �). The eigenvectors de-
termine the weight, or the degree to which a particular
behavior mode is expressed in a particular system vari-
able.

Eigenvalue elasticity analysis (EEA) A method of ana-
lyzing the significance of a structural element, say
a loop or a link in the model with a gain g, in terms
of its marginal effect upon the eigenvalues  of the sys-
tem. There are several suchmeasures, such as the influ-
ence measure @/@g � g, the elasticity @/@g �

�
g/


, or,

in the case of complex-valued eigenvalues, the effect
upon the damping ratio, natural frequency, damping
time, etc., as illustrated in Fig. 7. See also Loop Eigen-
value Elasticity Analysis (LEEA).

Eigenvector See explanation for Eigenvalue.
Eigenvector elasticity analysis (EVA) A complement to

Eigenvalue Elasticity Analysis (EEA) that looks explic-
itly at the expression or relative weight of each behav-
ior mode in each system variable. These weights are
related to the eigenvectors of the system matrix.
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Frequency domain A term used to describe the analysis
of signals with respect to frequency. While a time do-
main graph shows the behavior of the signal over time,
the frequency domain graphs shows how much of the
signalvariance lies within each given frequency band.

Independent loop set (ILS) Although the number of
feedback loops in a model can be very large (theoreti-
cally astronomically large), there is a much smaller in-
dependent loop set that can be considered independent
structural elements. For a strongly connected system
(where any pair of variables are connected via causal
chain in both directions) with N links and n vari-
ables, there are exactly N � nC 1 independent loops.
Simple algorithms exist for constructing independent
loop sets, in particular Shortest Independent Loop Sets
(SILS). See also explanation for Loop Eigenvalue Elas-
ticity Analysis (LEEA).

Linear dynamical system A system where the rates
ẋ D (dx1/dt; : : : ; dxn/dt) are a linear function of the
state variables x D (x1; : : : ; xn) and exogenous or con-
trol variables u D

�
u1; : : : ; up


, expressed by the equa-

tion ẋ D Ax C Bu where A is an n � nmatrix and B is
an n � p matrix. Unlike nonlinear systems of the gen-
eral form ẋ D f (x; u), linear systems have analytical
solutions based on the eigenvalues and eigenvectors of
the matrix A (cf. explanation for Eigenvalues).

Linear systems theory The mathematical theory of linear
dynamical systems.

Loop eigenvalue elasticity analysis (LEEA) A form of
eigenvalue elasticity analysis (EEA) that uses graph
theory to express structural changes in terms of
change in the strength of individual feedback loops.
Independent loops can be assigned individual (loop)
eigenvalue elasticities or influence measures just like
other structural elements (see explanation for Eigen-
value Elasticity Analysis (EEA) and Independent Loop
Set (ILS)).

Model simplification approach A way of attributing dy-
namic behavior to particular pieces of structure by re-
placing the full model with a simplified structure. See
also Structure contribution approach.

Nonlinear systems Systems of the form ẋ D f (x; u)
where f is a nonlinear function. See explanation for
Linear dynamical systems.

Pathway participation metric A measure that decom-
poses the curvature (ẍ D d2x/dt2) of a variable
xi into the individual driving components, ẍi DP

j @ẋi /@x j � ẋ j . By considering the sign of the curva-
ture relative to the slope, i. e., ẍ/ẋ, one may define be-
havior as (apparently) dominated by positive ẍ/ẋ > 0
or negative ẍ/ẋ < 0 feedback loops. The component

(pathway) with the largest absolute value and the same
sign as ẍ/ẋ is then defined as the dominant structure.

Quasilinear models Models that are almost linear in
structure around the operating point of interest so that
they may be well approximated by a linear model.

Quasiperiodic behavior A behavior that is a sum of os-
cillations of incommensurate frequencies so that the
system never returns to exactly the same point (which
would be the case for periodic behavior).

Shortest independent loop set (SILS) An Independent
Loop Set (ILS) that consists of the shortest possible
loops (in terms of the number of nodes and links in
each loop). Since the choice of ILS is far from unique,
an SILS provides amore focused choice of loops, which
are typically also easier to interpret due to their short
length.

Single-transient models Models where the behavior of
interest is the transition toward an equilibrium or con-
stant growth rate. Models are typically nonlinear, ex-
hibit patterns such as smooth transition, overshoot
and collapse, growth, or stagnation.

Structure contribution approach A way of linking
model structure to dynamic behavior by consider-
ing how individual pieces of structure (feedback loops
or subsystems) contribute to the behavior pattern of
interest by turning the structure on or off (in tra-
ditional simulation experiments) or by considering
the marginal effect of small changes in structure (the
eigenvalue approach). See also Model simplification
approach.

Definition of the Subject

The link between system structure and dynamic behav-
ior is one of the defining elements in the system dynam-
ics paradigm, yet it is only recently that systematic, math-
ematically rigorous methods for exploring this link have
started to become available. In a sense, a simulation model
can be viewed as an explicit and consistent theory of the
behavior it exhibits. Although this point of view has cer-
tainmerits, not least the fact that it lifts the discussion from
outcomes to causes of these outcomes and from events to
underlying structure [11,59], we are concerned here with
a more compact explanation of the system’s behavior. In
fact, most system dynamics modeling projects report their
results in terms of simpler explanations of the observed
results, typically in terms of dominant feedback loops that
produce the salient features of the behavior.

Most often, dominant structure is thought of in terms
of feedback loops and, occasionally, external driving forces
to the system. For simple systems with relatively few vari-
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ables it is usually easy to use intuition and trial and error
simulation experiments to explain the dynamic behavior
as resulting from particular feedback loops. In larger sys-
tems, this method becomes increasingly difficult and the
risk of incorrect explanations rises accordingly. There is
a need, therefore, for analytical methods that provide some
consistency and rigor to this process.

These analytical tools are important to the practitioner
because the structure-behavior link is the key to finding
leverage points for policy initiatives. And they are impor-
tant to the theorist because a system dynamics theory of
a particular phenomenon is an account of how certain
feedback loops cause certain dynamic patterns of behav-
ior to appear. The qualitative understanding of the model
behavior is often at least as important as the particular nu-
merical predictions obtained, even in applied studies. Yet
the rigor of such an account depends directly on the rigor
with which structure-behavior link can be made in a given
model.

The classical disciplines of linear systems theory and
control engineering have provided a set of concepts and
tools, particularly system eigenvalues and eigenvectors,
that can also be applied under many circumstances to the
nonlinear models found in system dynamics, not as a com-
plete theory but as a pragmatic aid. This article reviews the
recent advances in analytical tools based on linear systems
theory and discusses its future potential for the both the
system dynamics practitioner and the theorist.

Thoughwe strongly believe in the utility of thesemeth-
ods, it is important to realize that advances in nonlinear
dynamics and complexity theory in recent decades have
shown that it is not possible to construct a complete theory
of dominant structure because nonlinear systems are capa-
ble of exceedingly complex and intricate behavior that is
impossible to predict without actually simulating the sys-
tem. Furthermore, applications of graph theory to system
dynamics models have revealed that the concept of feed-
back loops has some inherent problems and limitations
because there are potentially many different loop descrip-
tions of the same system (see [28,40]). Thus, the analytical
tools should be viewed as pragmatic aids to model analysis
that can guide the modeler’s intuition, rather than univer-
sal methods that provide automatic answers.

We first provide a brief historical introduction to the
different ways scholars have thought about the notion of
dominant structure, including an example of the tradi-
tional approach to structural analysis. In the next section
we present the formal mathematical representation of lin-
ear and nonlinear systems and how one may describe the
dynamic behavior in terms of behavior modes and system
eigenvalues. In the four following sections we present al-

ternative approaches to performing this analysis. We con-
clude with a summary of the current state of research and
a discussion of future directions.

Introduction

Understanding model behavior is closely related to the
process of model testing and validation, for which there is
a well-established tradition and an extensive literature in
the field (e. g., [2,10,17,36,46,47]). Indeed there is no sharp
line between model building, testing, validation, and anal-
ysis – in practice, the analyst undertakes all these processes
simultaneously [17].

Of particular concern is whether one can identify
pieces of structure that are in some sense “important” in
generating the observed behavior of interest. Tradition-
ally, system dynamics analysts have relied on trial-and-
error simulation to discover these structures, by changing
parameter values or switching individual links and feed-
back loops on and off. The tradition is well developed and
includes a set of principles for partial model formulation
and testing based the organizational theory of bounded ra-
tionality [27,36].

The intuition guiding this effort often relies on simple
feedback systems with one or a few state variables, where
the behavior is fully documented and understood. In par-
ticular, the modeler uses well-understood “generic struc-
tures” that seem to appear again and again in system dy-
namics models, such as “overshoot and carrying capacity
collapse”, “drifting goal structure”, etc. (see [30,56,60] for
an account of these structures). Clearly such structures can
be a useful aid to understanding if the model is sufficiently
simple to allow such simple structures to be identified.

A simple example of a generic structure is the classical
model of diffusion, sometimes known as the Bass model
([3], see also Chapter 9 in [59]). The model structure is il-
lustrated in Fig. 1, and the resulting behavior, an s-shaped
growth curve, is illustrated in Fig. 2. The idea behind the
model is that the adoption of a new technology is driven by
the number of users that have already adopted it, through
a word-of-mouth effect. One may interpret the s-shaped
behavior as the interaction of two feedback loops, namely
loop no. 2, the positive “word-of-mouth”, and loop no. 1,
the negative “exhaustion” loop (see Fig. 1). In the begin-
ning, the positive loop dominates, leading to exponential
growth in the number of adopters. Later, however, the
negative loop gains strength, and the behavior shifts to an
exponential adjustment toward the eventual market satu-
ration. Thus, the traditional feedback loop analysis helps
give an intuitive understanding of the dynamics of the
model.
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The Bass model of diffusion
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Analysis in, Figure 2
Behavior of the Bass model

In large-scale models with perhaps hundreds of state
variables, however, the traditional approach shows signifi-
cant limitations. In practice, model building and analysis is
often done using a “nested” partial model testing approach
where one goes from the level of small pieces of structure
to entire subsystems of the model, with frequent re-use of
known formulations and partial models. Although this ap-
proach does carry a long way, it can be very difficult to
discover feedback mechanisms that transcend model sub-
structures in ways not anticipated by the modeler in the

original dynamic hypothesis. Thus, there is a danger that
observed behavior is falsely attributed to certain feedback
mechanisms when in fact another set of feedbacks is driv-
ing the outcome. Likewise, one may make false inferences
about how a particular feedback mechanism modifies the
behavior, e. g., whether it attenuates or amplifies a partic-
ular oscillation.

Modern software packages can run extensive tests for
sensitivity and “reality checks” where a large number of
parameters are varied simultaneously [44]. This is clearly
a significant improvement over “manual” trial and er-
ror methods, particularly when these methods are com-
bined with statistical inference methods such as Kalman
Filtering or Monte Carlo maximum likelihood estima-
tion [6,8,39,43,45,55]. A variant of this approach involves
using statistical experimental design and correlationmeth-
ods to screen for significant model structure (parameters),
as suggested by Ford and Flynn [9]. Indeed, the prospects
of marrying such methods with modern search and opti-
mization methods like classifier systems [26] or genetic al-
gorithms [19] seem very promising. However, these meth-
ods are more addressing issues in estimation, validation
and testing than inferences about or understanding how
(dominant) structure is causing behavior.

Richardson [47] suggested a taxonomy of approaches
to the notion of dominant structure, where he distin-
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guishes along three dimensions, namely linear vs. nonlin-
ear systems, model reduction vs. loop contribution, and
the characterization of behavior in terms of time graphs
vs. eigenvalues or frequency response. Of these, the dis-
tinction between model reduction and loop contribution
is the most important.

In the model reduction approach, the idea is to replace
a large complicated model with a simplified smaller model
that captures the “essence” of the dynamics. A good ex-
ample of this is Sterman’s simple model of the economic
long wave [58], which was distilled from the much larger
System Dynamics National Model [18]. Eberlein [5,7] at-
tempted to tackle model simplification in a systematic way
in linear systems by focusing on retaining specific behavior
modes. In large part his results were negative: it is gener-
ally not possible to build simpler models that reproduce
the salient behavior without sacrificing either the accuracy
of the behavior or the ability to relate the simplified model
variables to those in the full model. It is fair to say that this
line of inquiry has largely been abandoned as a result. Ex-
tracting the “essence” of a model remains an art more than
a science.

The focus here will be on Richardson’s second cate-
gory, the loop contribution or, more generally, the struc-
ture contribution approach. It reflects the intuitive idea
that if one removes the element under consideration, e. g.
by weakening a link or switching off a feedback loop, and
the behavior then “disappears”, one would say that the el-
ement in some sense “causes” the observed behavior.

This notion underlies the traditional trial-and-error
simulation approach, sometimes supplemented with
methods from the classical control engineering, which fo-
cuses on how structural elements modify the behavior of
the system, viewed in terms of the frequency response.
Typically, the method works “backwards” by starting with
simple feedback systems of single loops and then consid-
ering the marginal effect of adding links and loops. We
discuss this approach in Sect. “Traditional Control Theory
Approaches” below.

If, instead, one considers marginal (infinitesimal)
changes in structure, e. g. in the strength of a particular
link, it is possible to derive rigorous analytical results for
the resulting change in behavior expressed as the eigen-
values of the linearized model. One would then say that if
a change in a system element has a relatively large effect
upon the behavior pattern of interest, this element is “sig-
nificant” in “causing” the behavior. This is what underlies
the eigenvalue elasticity and eigenvector approaches dis-
cussed in Sects. “Eigenvalue Elasticity Analysis”, “Eigen-
vectors and Dynamic Decomposition Weights (DDW)”.
The marginal and experimental approaches may supple-

ment each other well, where a marginal analysis may iden-
tify elements that can then be tested experimentally for
their significance.

Unlike the traditional control method and the eigen-
value method that work in the structural and frequency
domain, the pathway participation method (PPM) relates
directly to the time path of particular system variables and
is more concerned with the qualitative nature of the time
path, expressed in terms of signs of the slope (whether
growing or declining) and curvature (whether convex or
concave) than with numerical measures of degree of influ-
ence. Briefly stated, the PPM traces the causal links in the
variables influencing the system variable in question and
then identifies the most important chain of links. We dis-
cuss this method in Sect. “Pathway Participation Metrics”.

Common to the approaches discussed here is that they
all build upon a precise mathematical characterization of
the system behavior. In the next section, we demonstrate
how the concepts from linear systems theory may be used
to give a precise characterization of behavior in terms of
component behavior modes.

Characterizing Linear and Nonlinear Systems

A system dynamics model can be represented mathemati-
cally as a set of ordinary differential equations

dx (t)
dt
� ẋ (t) D f (x (t) ; u (t)) ; (1)

where x (t) is a (column) vector of n state variables (lev-
els) (x1 (t) ; : : : ; xn (t)), u (t) is a column vector of p ex-
ogenous variables or control variables

�
u1 (t) ; : : : ; up (t)


,

f ( ) is a corresponding vector function, and t is simulated
time. In this paper, we restrict our attention to the state
variables (levels) of the model for notational convenience,
ignoring the auxiliary variables. Mathematically, a model
can always be brought to the reduced form (1), but in prac-
tice, the auxiliary variables give a more intuitive account
of the analysis. Likewise, we do not consider time-varying
systems (where time t enters as an explicit argument in the
function f ), since these can usually be accommodated by
an appropriate definition of the exogenous variables u. In
general, f is a nonlinear function of its arguments, and we
speak of a nonlinear system. Conversely, if f is a linear
function, we speak of a linear system.

Figure 3 and Table 1 show a well-known example, the
inventory–workforce model. It has three state variables,
Inventory (INV),Workforce (WF), and Expected Demand
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Flow diagram of the inventory workforce model

(ED), and one exogenous variable, Demand (DEM), i. e.,

x (t) D

0

@
INV
WF
ED

1

A ; u (t) D (DEM) ; (2)

and the function f is determined by the equations in Ta-
ble 1.

Given the model structure (1), knowledge of the ini-
tial conditions x (0), and the path of the input variables
u (t), the behavior of the model is completely determined.
It is in this sense that the model structure (1) constitutes
a “theory” of the time behavior x (t), as mentioned in the
introduction. Yet, we are interested in methods that yield
a more compact explanation, short of having to simulate
the entire model structure.

It turns out that in its ultimate form, this dream is
beyond reach: Since the days of Henri Poincaré, mathe-
maticians have known that it is impossible to find general
analytical solutions to nonlinear systems. Furthermore,
the development of nonlinear dynamics and chaos theory
has proven that such systems, even when they have very
few state variables, can produce highly complex and intri-
cate behavior that goes beyond general analytic methods

(e. g., [42,48]). Thus, we will never find a final general the-
ory where we can infer the behavior of the system directly
from its structure; instead, we will always have to rely on
simulation to discover the dynamics implied by the struc-
ture. (This is not to say that no general analytical results
exist in nonlinear systems. The field of chaos theory has
uncovered a number of universal features, e. g., relating
to the transition from periodic or quasi-periodic behavior
to chaos, where the transitions show both qualitative and
quantitative similarities that are independent of the spe-
cific forms of the model equations (see, e. g., [42]). How-
ever, these universal features relate to specific situations
such as period-doubling or intermittency routes to chaos).

The best we can hope for, therefore, is a set of tools
that will guide intuition and help identify dominant struc-
ture in the model. By dominant structure we mean par-
ticular feedback loops that are in some sense “important”
in shaping the behavior of interest. To the extent that we
can identify such dominant structures, we may say that we
have found a “theory” of the observed behavior.

Although the term “behavior” may appear rather
loose, experience and reflection tells us that there is a lim-
ited number, perhaps a dozen or so, of relevant behav-
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Equations of the inventory workforce model

Equation Name Units
d/dt(ED) D (DEM� ED)/tce; ED0 D DEM � df Expected demand [Units/Month]
d/dt(INV) D P� S; INV0 D DI Inventory [Units]
d/dt(WF) D HFR;WF0 D DWF Workforce [Workers]
S D DEM Shipments [Units/Month]
PD NP � EO Production [Units/Month]
EOD fp � (1� (1� 1/fp)̂SP) Effect of overtime [Dimensionless]
NPD WF � pdy Normal production [Units/Month]
DI D ED � nic Desired inventory [Units]
SPD DP/NP Schedule pressure [Dimensionless]
DEMD 1(Exogenous) Demand [Units/Month]
DP D EDC IC Desired production [Units/Month]
ICD (DI� INV)/tci Inventory correction [Units/Month]
HFR D (DWF�WF)/hft Hire/fire rate [Workers/Month]
DWF D ED/pdy Desired workforce [Workers]
hftD 5 Hire/fire time [Month]
pdy D 1 Productivity [Units/Month/Worker]
tceD 4 Time to change expectations [Month]
fp D 1:05 Flexibility in production [Dimensionless]
nicD 3 Normal inventory coverage [Months]
ictD 2 Inventory correction time [Months]
df D 0:5 Disequilibrium fraction [Dimensionless]

ior patterns that dynamical systems can exhibit. Some of
these behaviors, like exponential growth, exponential ad-
justment, and damped or expanding oscillations, are typ-
ical of linear systems. Others, like limit cycles, quasiperi-
odic motion, mode-locking, and chaos, can only be exhib-
ited by nonlinear systems.

Common to the approaches considered in this paper
is that they are based on tools from linear systems theory,
i. e., they approximate the nonlinear model (1) with a lin-
earized version, using first-order Taylor expansion around
some operating point x0; u0, i. e.,

ẋ(t) � f (x0; u0)C
@ f
@x

(x � x0)C
@ f
@u

(u � u0) ; (3)

or, by redefinition of the variables x ! x � x0 � f (x0; u0)
�(t � t0) and u! u � u0,

ẋ (t) � Ax (t)C Bu (t) ; (4)

where A is constant n � n matrix of partial derivatives
@ fi /@x j and B is constant n � p matrix of partial deriva-
tives @ fi /@uj , and all partial derivatives are evaluated at the
operating point.

For the linear system (4), there is a well-developed and
extensive theory of the system behavior as a function of
its structure, expressed in the matrices A and B. One may

broadly distinguish two parts of the theory, named classi-
cal control theory (e. g., [38]) and modern linear systems
theory (e. g., [4,31]). We return to the classical control the-
ory in the next section.

Modern control theory or linear systems theory (LST)
is concerned with the dynamical properties of the system
as a direct function of the system matrices A and B. A key
element in this theory is the notion of the system eigenval-
ues, i. e., the eigenvalues of the matrix A. If, for simplicity,
we restrict ourselves to the endogenous dynamics of the
system (set u D 0), we can write the solution to (4) as

xi (t) D ci;1 exp (1t)C ci;2 exp (2 t)C � � �
C ci;n exp (n t) ; i D 1; : : : ; n ; (5)

where 1; : : : ; n are the n eigenvalues of the matrix A
and ci: j are constants that depend upon the eigenvectors
and the initial condition of the system. In other words, the
resulting behavior is a weighted sum of distinct behavior
modes, exp (t). If an eigenvalue is real, the correspond-
ing behavior mode is exponential growth (if  > 0) or ex-
ponential decay (if  < 0). Complex-valued eigenvalues
come in complex conjugate pairs  D � ˙ i! which give
rise to oscillations exp (� t) sin (! t C �) of frequency !
that are either expanding (if � > 0) or damped (if � < 0).
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In this manner, the eigenvalues serve as a compact and rig-
orous characterization of the behavior (of linear systems).

At any point in time, any system, linear or nonlinear,
may be approximated by the expression (5). Whether it
remains a good approximation depends upon how much
and how quickly the eigenvalues change due to the nonlin-
earities in the function f . If they are more or less constant
for significant periods of time, we may speak of quasilinear
systems that are well approximated by the linear system.
In some cases, however, the eigenvalues change so rapidly
that it makes little sense to characterize the behavior by
equation (5). (See [29] for further discussion).

Traditional Control Theory Approaches

The first set of methods, which we call the traditional ap-
proach, has been used for decades and is part of the stan-
dard curriculum in system dynamics teaching at the grad-
uate level. It involves using the concepts from classical
control theory [38] to very simple systems with only a few
state variables.

The starting point is the simple first- and second-order
positive and negative feedback loops found in any intro-
ductory treatment of system dynamics. The advantage of
the approach is its simplicity. Although it serves at a guide
to intuition, however, the obvious shortage is that it ap-
plies rigorously only to simple systems. There have been
some attempts to treat higher-order systems by adding
a few feedback loops [23], but the step to large-scale mod-
els is beyond this method given its inherent limitations.

Graham [23] distills a number of principles that are
based on the metaphor of a “disturbance” traveling along
the chain of causal links in a feedback loop and getting
amplified, damped, and possibly delayed in the process.
For major negative feedback loops, which are known to
tend to produce oscillation, adding minor negative loops
and cross-links, or shortening the delay times increases the
damping. Conversely, adding positive loops in to the os-
cillatory system tends to lengthen the period of oscillation
whereas the effect on the damping depends upon the de-
lays in the positive loop. Using the metaphor of pushing
a child on a swing, it becomes clear that the timing of the
propagation of a disturbance has as much importance for
its effect on the damping as its strength.

For analyzing the behavior of positive feedback loops,
Graham suggested calculating the Open-loop steady-state
gain (OLSSG), a measure of the amplification around the
loop. A gain greater than unity will result in exponential
growth while gains less than 1 will give exponential adjust-
ment (leveling off or decay). The intuition is perhaps best
illustrated by an example: sales-driven growth. Suppose

a salesperson can eventually pull in $100,000 per month
in orders (probably with a several-month long delay), and
assume that the company allocates 10% of revenue to mar-
keting. Then this eventually leads to $10,000 per month
for sales efforts. If the cost of a salesperson (salary, over-
head, expenses etc.) is, say, $8,000 dollars per month, then
the efforts of the current sales force will provide enough
revenue to support 10; 000/8; 000 D 1:25 persons per cur-
rent person. Thus, the OLSSG of the positive loop from
salespersons! orders! revenues! marketing budget
! salespersons is 1.25, and the system will grow exponen-
tially (until other factors limit the growth). Conversely, if
the gain is less than 1, one salesperson will not sell enough
to support their own cost, and the loop will lead to ex-
ponential decay. Graham showed how the actual rate of
growth is partly determined by the OLSSG, and partly by
the time constants (delays etc.) involved. (See also Sub-
sect. 15.3 in [59]).

In the context of oscillating systems, system dynamics
has also employed a concept from classical control theory,
frequency response. The frequency response is determined
from the transfer function of the system, G (i!), which is
a complex-valued function that specifies how an input sig-
nal u (t) with frequency ! results in an output signal x (t)
that may be phase shifted (delayed), and either amplified
or attenuated. For linear systems, G can be calculated di-
rectly from the system matrices in (4) – the transfer func-
tion (matrix) is G (i!) D B (i! I � A)�1, where I is the
identitymatrix (see e. g. [4]). For nonlinear systems,Gmay
be found through simulation experiments.

Usually, G is represented in a Bode or phase-and-gain
diagram. For instance, Fig. 4 shows a Bode diagram of the

System Dynamics, Analytical Methods for Structural Dominance
Analysis in, Figure 4
Phase-and-gain diagram (Bode diagram) showing the inventory
A sin(!tC�) with amplitude A and phase shift �, relative to
a sinusoidal demand sin(!t), for varying values of the frequency
! of the demand fluctuation
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inventory variable INV (t) relative to the exogenous de-
mand input variable DEM(t) in the inventory workforce
model in Fig. 3. The diagram shows how the relative am-
plitude of the oscillation and the relative phase shift (in
radians) between input and output varies as a function of
the frequency of the input.

It is clear from the diagram that there is a certain fre-
quency range, around the system’s own natural frequency,
where fluctuations in demand are greatly amplified com-
pared to other frequencies. Indeed, it is a general phe-
nomenon in systems that they will tend to amplify cer-
tain frequencies while attenuating other frequencies. This
may be used to explain or understand the role of particu-
lar structures in the model in generating oscillation at cer-
tain frequencies, even when there are no oscillations com-
ing in from the outside world. (External random noise is
enough to produce oscillations in the system because ran-
dom noise contains fluctuations at all frequencies). In this
manner, the approach nicely demonstrates the “endoge-
nous viewpoint” that behavior (oscillations) is generated
internally by the system. As an analytic tool for large scale
systems, however, the method does not seem to produce
any additional insights. Thus, we may conclude that the
classical approaches servemostly as intuitive metaphors to
guide the analyst rather than as full analytical tools.

Pathway ParticipationMetrics

The pathway participation method [34,35] represents
a further development of an original suggestion by
Richardson [46] to provide a rigorous definition of loop
polarity and loop dominance. Richardson motivated this
with the common confusion associated with positive feed-
back loops, which may exhibit a wide range of behav-
iors [23], as Barry Richmond noted with wonderful hu-
mor:

“Positive loops are . . . er, well, they give rise to expo-
nential growth . . . or collapse . . . but only under certain
conditions . . . Under other conditions they behave like
negative feedback loops . . . ” [49].

Richardson proposed that the polarity of a loop be de-
fined as the sign of the expression

@ẋi
@xi
D
@ fi (x ; u)
@xi

; (6)

in the model (1), with a positive sign indicating a positive
loop and vice-versa. When several loops operate simulta-
neously, the sign of the expression indicates whether the
positive or negative loops dominate. Note, however, that
the definition only applies to minor loops (i. e. loops in-
volving a single level). Put differently, it only considers

the diagonal elements of the matrix A in the linearized
system (4). Richardson [46] demonstrates how even with
this limitation, analyzing the system with this metric can
(sometimes) yield insights into behavior of higher-order
systems.

The expression (6) hints that it is relevant to consider
the curvature, i. e., the second time derivative, ẍ, of a vari-
able when looking for dominant structure. Although he
does not say so explicitly, this is effectively the focus ofMo-
jtahedzadeh’s pathway method. Figure 5 shows how one
may classify behavior by comparing the first and second
time derivatives of a variable. As seen in the figure, the
sign of the expression ẍ/ẋ, which Mojtahedzadeh denotes
the total pathway participation metric or PPM, indicates
whether the behavior appears dominated by positive or
negative loops, much in line with Richardson’s definition
of dominant polarity. A zero curvature indicates a shift
in loop dominance (cf. the middle column in the figure).
Note, however, that the interpretation of the middle row
in the figure where the slope ẋ is zero has no clear inter-
pretation in terms of loop dominance. Indeed this hints at
one of the weaknesses of the approach that we will return
to below.

Mojtahedzadeh’s method proceeds by decomposing
the PPM into its constituent terms as follows,

PPMi D
ẍi
ẋi
D

nX

jD1

@ fi
@x j

ẋ j
ẋi
; (7)

where, for brevity, we have chosen to ignore the exoge-
nous variables u. One might say that each of the terms in
the sum in (7) represents the separate influence of each of
the systems’ state variables on the behavior of xi. Mojta-
hedzadeh in fact uses a normalized measure for the terms,

�
@ fi /@x j


ẋ j

nP

kD1

ˇ̌�
@ fi /@xk


ẋk
ˇ̌ ; (8)

which can vary between �1 and +1, to measure the rela-
tive importance of the pathway from variable j. By explic-
itly considering auxiliary variables y in themodel, one may
further decompose each term @ fi /@x j into a sum of terms

@ f ki
@x j
D
@ fi
@y1
�
@y1
@y2
� � � � �

@ym�1
@ym

�
@ym
@x j

; (9)

corresponding to a causal chain or pathway �k D

fx j ! ym ! � � � y2 ! y1 ! ẋig. Mojtahedzadeh now
considers each possible pathway (9) and defines the “dom-
inant” pathway as the one with the largest numerical value
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Characteristic behavior patterns based on the first and second time derivatives

and the same sign as PPMi . Having selected this domi-
nant pathway, ��i j D fx j ! ym ! � � � y2 ! y1 ! ẋig,
which originates in the state variable x j the procedure is
repeated for that state variable xj, and so forth, until one
either reaches one of the already “visited” state variables
(in which case a loop has been found) or an exogenous
variable (in which case an external driving force has been
found). Thus, the procedure may result in three alternative
forms of dominant structure illustrated in Fig. 6, namely
a “pure” minor or major feedback loop, a pathway from
a feedback loop elsewhere in the system, or a pathway
from an exogenous variable.

By dividing the observedmodel behavior into different
phases according to the taxonomy in Fig. 5 and then apply-
ing the method just described at different points in during
these phases, one can reveal how the dominant structure
changes over time. For illustration, the PPM method is
applied to the Bass model and the results are presented
in Fig. 7. The figure shows the metrics of four alterna-
tive pathways (four feedback loops) and the results ac-
cord nicely with the informal analysis done earlier: The
method identifies two phases, exponential growth, expo-
nential adjustment, and identifies the “word-of-mouth”
positive loop (loop 1) as dominant in the first phase and

the “exhaustion” loop (loop 2) as dominant in the second
phase.

The PPMmethod is still mostly used at an early explo-
rative stage on rather simple models, where it does appear
to aid insight into the dynamics (e. g. [41]), and has been
implemented in a software package, Digest, [35].

From the studies performed so far, it is clear that
the main strength of this method is its relative computa-
tional simplicity (it does not require computing eigenval-
ues, which is a numerically demanding task), and the intu-
itive and direct connection it makes between the observed
behavior and the influencing structural elements. Unlike
the other approaches which operate in the “frequency do-
main”, the method considers the time path of a specific
variable directly.

There are, however, some important outstanding is-
sues that remain to be clarified. First, the method is not
suitable for oscillatory systems. The problem is easy to
recognize when one considers how the PPM measure will
vary over the course of a sinusoidal outcome: The sign of
the PPM will shift twice during each cycle, indicating that
the behavior is alternately dominated by positive and neg-
ative loops, even though the system structure, and hence
the loop dominance, may remain unchanged all the time.
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Three alternative forms of dominant structure in the PPMmethod

System Dynamics, Analytical Methods for Structural Dominance
Analysis in, Figure 7
Pathway participationmeasures in the Bass model

Richardson [46] already alluded to this problem by noting
that the measure only considers the diagonal elements in
the system matrix in (4), yet we know that the structure
causing oscillation is the major negative loop that involve
the off-diagonal elements. This is a significant limitation,
given the prevalence and importance of oscillation in sys-
tem dynamics analysis.

A second limitation of the current implementation
of PPM is that it uses a depth-first search for the single
most influential pathway for a variable. This strategy does
not capture the situation where more than one structure
may contribute significantly to the model behavior and,

through the depth-first algorithm, may miss alternative
paths that could prove to yield a larger total value of the
metric. This problem could be addressed by modifying the
search algorithm and is most likely of minor importance.

Another issue is how to treat the case when ẋ D 0 since
it appears in the denominator of the terms in (6). How-
ever, it is not clear that it is necessary to do this division,
given that it is easy to identify the nine cases in the figure
by simply examining its sign. Thus, the issue is probably
not of much significance.

The fourth issue, on the other hand, is more signifi-
cant, namely the emphasis on identifying a single “domi-
nant” structure. In reality, of course, the behavior of a vari-
able is influenced bymany loops and pathways at once. Re-
ducing the consideration to a single one of these may miss
important features of the structure-behavior relationships.
For instance, a variable may be influenced by two negative
loops and one positive, with the sum of the two negative
loops dominating the influence of the positive loop, even
though that loop by itself has the strongest influence on the
behavior. It is more appropriate to consider the relative
importance of alternative pathways, yet the method does
not address how one would partition the behavior among
pathways (the three structures in Fig. 6) – only among in-
dividual links.

Thus, while the notion of pathways seems an interest-
ing and useful idea, it may be that it will ultimately bemore
effective to use a list, ranked in order of magnitude, of the
pathways that influence a variable.

Finally, the method shares a weakness with the tradi-
tional method in that it considers primarily partial system
structures rather than global system properties. In con-
trast, the two eigenvalue methods to which we now turn
are based on a rigorous characterization of the entire sys-
tem (at a given point in time).

Eigenvalue Elasticity Analysis

The third method may be termed eigenvalue elasticity
analysis (or EEA for short) and builds upon the tools



System Dynamics, Analytical Methods for Structural Dominance Analysis in S 8959

from modern linear systems theory (LST), applied to
the linearized model (4). The method is concerned with
the structural elements that significantly affect the sys-
tem eigenvalues or behavior modes – the values  in (5).
Specifically, it measures influence by the elasticity of an
eigenvalue  with respect to some parameter g in the
model, defined as " D

�
@/@g


(g/), i. e. the fractional

change in the eigenvalue relative to the fractional change
in the parameter. The advantage of this fractional mea-
sure is that it is dimensionless, i. e., independent upon
the choice of units, including the time scale unit. Some-
times, the influence measure is used instead, defined as
� D (@/@g)g . This measure has dimension [1/time] and
so depends upon the choice of is time unit, but it is gener-
ally easier to interpret for complex-valued eigenvalues and
avoids numerical problems with very small or zero eigen-
values (see [29,54]).

The idea behind EEA was first introduced in system
dynamics by Forrester [14] in the context of economic sta-
bilization policy. For purposes of policy analysis in oscil-
lating systems, one may define a number of criteria from
engineering control theory, all of which relate to the eigen-
values of the system, as summarized in Table 2. Figure 8
provides a graphical characterization of the eigenvalues
and policy criteria in the complex plane. Though these
measures are not new, the EEA method is unique in its
attempt to use them to gain qualitative intuitive under-
standing of the system. A significant step in this direction
was first suggested by Forrester [15] with the notion that
the elasticities of any links in the model (corresponding
to elements of the matrix A in the linearized system (4)),
can be interpreted as the sum of elasticities of all feedback

System Dynamics, Analytical Methods for Structural Dominance Analysis in, Table 2
Stabilization policy criteria and corresponding effects on eigenvalues and BDW of a policy change in a system element g

Policy Criterion Description Change in
eigenvalue
� D ı ˙ i!;! > 0

Change in
BDWw

Appropriate
measure in
time path

Damping Increases the rate of decay of oscillation (or decreases the rate
of expansion)

@ı
@g

g
ı
< 0 N/A x(tCT)

x(t)

Frequency Decreases the frequency of oscillation (or lengthens the
period T)

@!
@g

g
!
< 0 N/A T

Variance Reduces the variance of a target variable (or the weighted
average variances of several variables)

No simple relation @w
@g

g
w < 0

R
x (t)2 dt

Auto-spectrum Reduces variance of target variable(s) within a target frequency
range

No simple relation @w
@g

g
w < 0 Filter in

frequency
domain

Frequency
response gain

Reduces the gain (amplification) in the target frequency range
for a particular combination of disturbance exogenous and
output variables.

Based upon transfer function G (i!)

System Dynamics, Analytical Methods for Structural Dominance
Analysis in, Figure 8
Characterization of eigenvalues plotted in the complex plane

loops containing that link. We have chosen to name this
approach loop eigenvalue elasticity analysis (LEEA).

Kampmann [28] provided a rigorous definition of
LEEA and also pointed to the fact that feedback loops
are not independent. In other words, given the possibly
very large number of loops in a given model (Kampmann
demonstrated how the theoretical maximum number of
loops grows combinatorically with the number of vari-
ables), it only makes sense to speak of individual contribu-
tions of a limited set of independent loops. He proved that
a fully connected system (where there is a feedback loop
between any pair of variables – the typical case in system
dynamics models) with N links and n variables has a to-
tal of N � nC 1 independent loops and provided a pro-
cedure for constructing this set and calculating the loop
elasticities.

Kampmann’s analysis points to a fundamental issue
relating to the notion of feedback loops as a way to explain
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Loops and their influences in the inventory workforcemodel. Values aremeasured at time t D 0. Themodel contains three eigenval-
ues,�1 D �0:250 and�2;�3 D �0:138˙ i 0:285. The influencemeasure is defined as g � @�/@g. For the imaginary part, a positive
influence measure means that the frequency is increased

Loop Nodes Gain Influence
on Re[�1]

Influence
on Re[�2]

Influence
on Im[�2]

1 ED > CED �0.250 �0.250 0.000 0.000
2 W > HFR �0.200 0.000 �0.100 �0.022
3 INV > IC > DP > SP > EO > P �0.076 0.000 �0.038 0.008
4 INV > IC > DP > DW > HFR > W > NP > P �0.100 0.000 0.000 0.176
5 INV > IC > DP > DW > HFR > W > NP > SP > EO > P 0.015 0.000 0.000 �0.027

behavior: the significance assigned to a particular loop de-
pends upon the context (the chosen independent loop set).
In other words, feedback loops are derived and relative
concepts rather than fundamental independent building
blocks of systems. Oliva [40] further refined the defini-
tion of independent loop sets by introducing the Short-
est independent loop set (SILS) along with a procedure
for constructing the set. Although a SILS is not generally
unique, experience seems to suggest that it is easier to in-
terpret [41]. Yet the issue remains that independent feed-
back loop sets are relative concepts.

In Table 3, we show how the LEEA analysis applies
to the simple inventory–workforce model in Fig. 3. The
model contains a total of 5 feedback loops, all of which
are independent. The loops are listed in Table 3, includ-
ing their constituent variables (nodes), and the gain of the
loop (defined in a similar manner to the pathway partic-
ipation metrics above). We see that there are three mi-
nor negative loops, related to the exponential smoothing
of expected demand (loop 1) and the adjustment of work-
force to desired workforce (loop 2). The minor loop 3 is
the “overtime shortcut” that allows production to adjust
part way to desired production immediately so one does
not have to wait for the workforce to adjust. Loop 4 is the
main major negative loop that adjusts inventory to desired
levels via workforce adjustment. Finally, loop 5 (the only
positive loop) is a fairly weak loop that moderates the ef-
fect of loop 4 by adjusting the overtime effect “back to nor-
mal” when the workforce is brought in line with desired
production.

Although the model is nonlinear (due to the overtime
function), the eigenvalues do not change very much over
the course of its behavior. The model contains one real
eigenvalue (1 D �0:250) and one pair of complex con-
jugate eigenvalues (2; 3 D �0:138˙ i 0:285). The first
eigenvalue corresponds to the adjustment of expected de-
mand (ED). The other pair produces a damped oscillation
in inventory and workforce.

Table 3 also shows the loop influences upon the three
eigenvalues. Note how there is a one-to-one correspon-
dence between loop 1 (the adjustment of expected de-
mand) and the first eigenvalue. This is due to fact that
the ED level constitutes a single strongly connected com-
ponent of the model (see Fig. 3), i. e. there is no feed-
back between this level and the rest of the model. We also
note that the workforce adjustment and the overtime loops
have a stabilizing influence upon the behavior (they make
the real part of the oscillatory eigenvalues more negative
and have relative little effect upon the frequency of oscil-
lation). Conversely, the major negative loop 4 has a desta-
bilizing influence, since strengthening it will increase the
frequency of oscillation and not increase the damping. The
effects of loop 5 are fairly weak.

From this analysis, one would therefore expect param-
eters that strengthen loop 2 (shortening hire/fire time) or
loop 3 (increase overtime effect) would stabilize the system
while strengthening loop 4 (shorter inventory adjustment
time) will destabilize the system. Indeed this is what hap-
pens, as illustrated in the simulations in Fig. 9.

The EEA/LEEA method has been applied in a num-
ber of contexts (e. g. [1,20,22,24,29,51,52,54]), but remains
a tool employed only by specialists in fundamental re-
search, not least because it has not been incorporated
into standard software packages. Thus, the potential of the
method for widespread practice remains unexplored.

One might be skeptical that a method derived from
linear systems theory may have any use for the nonlin-
ear models found in system dynamics. Kampmann and
Oliva [29] considered what types of models the method
would be particularly suited for. They defined three cat-
egories of models, based upon the behavior they are de-
signed to exhibit: 1) linear and quasilinear models, 2) non-
linear single-transient models, and 3) nonlinear periodic
models. The first category encompasses models of oscil-
lations, possibly combined with growth trends, with rel-
atively stable equilibrium points, (e. g., the classical in-
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Simulated behavior of inventory–workforce model, showing the effect on inventory of parameter changes for overtime (flexibility
of production), inventory adjustment time (ict), and labor hiring/firing time (hft), respectively

dustrial dynamics models [11]). Nonlinearities may mod-
ify behavior (particularly responses to extreme shocks)
but the instabilities and growth trends can be analyzed in
terms of linear relationships. Kampmann and Oliva con-
cluded that LEEA showed the most promise and potential
for this class of models because the analytical foundations
are solid and valid, and because the method has the abil-
ity to find high-elasticity loops even in large models very
quickly without much intervention on the part of the ana-
lyst.

The second class is typical of scenario models like the
World Model [13,33], the Urban Dynamics Model [12], or
the energy transition model in [57], to name a few, that
show a single transient behavior pattern, like overshoot
and collapse or a turbulent transition to a new equilib-
rium. In these models, nonlinearities usually play an es-
sential role in the dynamics. Yet it is possible to divide
the behavior into distinct phases where certain loops tend
to dominate the behavior. In this class of models LEEA
also shows promise by measuring shifts in structural dom-
inance by the change in elasticities. But it requires more
input from the analyst (e. g. in defining the different phases
of the transition) and it has no obvious advantage over
other methods, like PPM.

The third class, nonlinear periodic models, are those
that exhibit fluctuating behavior in which nonlinearities
play an essential role, such as like limit cycles, quasiperi-
odic behavior, or chaos, (see, e. g. [48]). Here the utility
of the method is much less clear and depends upon the

specifics of the model in question. For example, the clas-
sic Lorenz model that exhibits limit cycles, period dou-
bling and deterministic chaos does not lend itself to any
insight using LEEA [29]. This is particularly the case in
systems with strong nonlinearities such as min and max
functions. In these systems, the behavior may change
abruptly (eigenvalues suddenly shift) in what is called
border-collision bifurcations [37,61]. In other cases, the
method of breaking the behavior into phases with dif-
ferent dominant structures may yield significant insight
from LEEA. For instance, Sterman’s simple long wave
model [58] lends itself well to this approach (e. g. [24,28]).

In the present paper, we add a fourth category of mod-
els or behavior for which the method has not been ex-
plored yet. We name this category nonlinear multi-modal
models. These encompass the cases where one behavior
mode interacts with and therefore modifies another be-
havior mode – something that can only happen in non-
linear systems. The most common example is mode-lock-
ing or entrainment, in which oscillations become synchro-
nized (e. g. [25]). Another example is mode modification,
where one behavior mode (growth or oscillation) affects
the character of another (typically oscillation). An exam-
ple of this is the interaction of the business cycle with the
economic long wave, where the former tends to get more
severe during long wave downturns [16]. Whether LEEA
can contribute to this class of models remains to be seen.

Compared to the former two methods, the EEA/LEEA
is mathematically more general and rigorous, though
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many of the mathematical issues in the method remain to
be addressed, as we summarize below. This rigor is also
the main strength of the method, since it provides an un-
ambiguous and complete measure of the influence of the
entire feedback structure on all behavior modes.

A weakness or challenge that is starting to show up is
the computational intensity in calculating eigenvalues and
elasticities. This is not so much an issue of computer time
and memory space as of the stability of numerical meth-
ods. Kampmann and Oliva [29] found that the numerical
method used sometimes proved unstable, yielding mean-
ingless results. Clearly, there is a need to explore this issue
further, possibly building upon the developments in con-
trol engineering.

A more serious weakness is the difficulty in interpret-
ing the results: Eigenvalues do not directly relate to the
observed behavior of a particular variable. The concepts
of eigenvalues and elasticities are rather abstract and un-
intuitive [10]. There is a need for tools and methods that
can translate them into visible, visceral, and salient mea-
sures. Here, the measures in Table 2 may provide a guide.
In particular, it is possible to use (linear) filtering in the
frequency domain to define a behavior of interest. For ex-
ample, an analyst may be concerned with structures caus-
ing a typical business cycle (3–4-year oscillation) and, by
specifying a filter that “picks out” that range of fluctuation,
could obtain measures for structures that have elasticities
in that range. Because filters are typically linear operators,
all the analytical machinery of the LEEA method will also
apply in this case – a significant advantage.

Using filters will also solve an issue that appears in
large-scale models, namely the presence of several identi-
cal or nearly identical behavior modes. Saleh et al. [54] do
consider the analytical problems associated with repeated
eigenvalues, where it becomes necessary to use general-
ized eigenvectors, and where other behavior modes ap-
pear involving power functions of time. A filter essentially
constitutes a weighted average of behavior modes and in
this fashion avoids the “identity problem” of non-distinct
eigenvalues.

The most serious theoretical issue, in our view, is how
the results are interpreted using the feedback loop concept.
As mentioned, the concept is relative (to a choice of an in-
dependent loop set). Moreover, practice reveals that the
number of loops to consider is rather large and that the
loops elasticities often do not have an easy or intuitive ex-
planation. A lot of care must be taken when interpreting
the results. For instance, Kampmann and Oliva [29] found
that “phantom loops” – loops that cancel each other by
logical necessity and are essentially artifacts of the equa-
tion formulations used in the model – could nonetheless

have large elasticities and thus seriously distort the inter-
pretation of the results. An example of “phantom loops” is
found in the Bass model in Fig. 1, where loops 3 and 4 are
artifacts of the way the model is formulated. If the variable
Total population (T) was eliminated from the equations,
the loops would disappear and in fact they exactly cancel
each other out (since T is constant). Nonetheless, they ap-
pear on the list of loops and appear to have a separate in-
fluence on behavior. These kinds of problems may not be
intractable, but their resolution will require careful math-
ematical analysis.

Finally, a problem with EEA and LEEA is that it only
considers changes to behavior modes, not the degree to
which these modes are expressed in a system variable of
interest. This issue is addressed by also considering the
eigenvectors of the system, which is the foundation for the
analysis in the next section.

Eigenvectors and Dynamic DecompositionWeights
(DDW)

The last set of methods, which are still in early devel-
opment, we have termed the eigenvector-based approach
(EVA). EVA attempts to improve the EEA/LEEA method
by considering howmuch an eigenvalue or behavior mode
is expressed in a particular system variable. The logic of the
method and how EEA and EVA complement each other is
shown in Fig. 10. As shown by Kampmann [28], in a sense
there is a one-to-one correspondence between eigenvalues
and loop gains whereas the eigenvectors arise from the re-
maining “degrees of freedom” in the system. The observed
behavior of the state variables in the model is then the
combined outcome of the behavior modes (from the loop
gains) and the weights for each mode (from the eigenvec-
tors) in the respective state variable.

A number of researchers have attempted to develop
EVA methods. Some emphasize the curvature (second
time derivative) of the behavior, similar to the starting
point of the PPM method [24,50,51,52]. The slope or rate
of change ẋ (t) of a given variable x in the linearized system
may be written by

ẋ (t � t0) D w1 exp (1 (t � t0))C � � �
C wn exp (n (t � t0)) ; (10)

where the weights wi are related to the eigenvectors. Then
the curvature at time t0 is

ẍ (t0) D w11 C � � � C wnn : (11)

One may therefore interpret (11) has the sum of contri-
bution from individual behavior modes. Güneralp [24]
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Schematic view of eigenvalue and eigenvector analysis approach

suggested using the terms on the right-hand side of (11)
as weights to combine elasticities of individual behavior
modes "i with respect to some system element (like a link
gain or a loop gain) into a weighted sum

"̄ D

nP

iD1
wii"i

nP

iD1
jwii j

; (12)

as a measure of the overall significance of that system ele-
ment. He further normalized the elasticity measure by the
elasticity measure for other system elements, i. e., assum-
ing there are K such elements (loops or links), the relative
importance �k of the kth element is defined as

�k D
"̄k

KP

jD1

ˇ̌
"̄ j
ˇ̌
; (13)

with themotivation that elasticitiesmay vary greatly in nu-
merical values, making comparisons at different points in
time difficult, whereas �k is a relative measure varying be-
tween +1 and �1. His results shed an alternative light on
the behavior of these models, but the mathematical mean-
ing, consistency and significance of the doubly normalized
measure (13) remains to be clarified. It is still too early to
tell what the most useful approach will be, but one may
note that the emphasis on the curvature shares the basic
weakness in the PPM approach in dealing with oscilla-
tions.

Other researchers have looked directly at the dynamic
decomposition weights (DDW) wi in (10), i. e., the relative
weight of the modes for a particular variable, from a policy

criterion perspective, similar to Forrester’s original focus
and the starting point for the EEA analysis [21,53,54].

For instance, Saleh et al. [54] look at how alterna-
tive stabilization policies affect the behavior of business
cycle models, using both a simple inventory–workforce
model [59], and a more extensive model based on
Mass [32] and used in the LEEA analysis of Kampmann
and Oliva [29]. Using the procedure in Fig. 9, they decom-
pose the net stabilizing effect of a policy into its effect on
the behavior mode itself (LEEA) and its effect on the ex-
pression of that mode in the variable of interest, measured
the dynamic decomposition weights (EVA or DDW).

To illustrate the approach we perform the computa-
tions for the inventory–workforce model (Fig. 3 and Ta-
ble 1). We find that the following equations describe the
behavior of the state variables

ED D 1 � 0:500e�0:250t

INV D 3 � 2:167e�0:250t

C 1:134e�0:138t sin (2:945C 0:285t)

WF D 1C 0:669e�0:250t

� 1:169e�0:138t sin (1:553 � 0:285t) :

(14)

As expected from the structure of the model, the behavior
of Expected Demand does not have an oscillatory compo-
nent and only shows a short transient exponential adjust-
ment for the stock to match Demand. On the other hand,
Inventory and Workforce, in addition to having the tran-
sient behavior to reach equilibrium captured by the first
eigenvalue, have an oscillatory component represented by
the second eigenvalue. Note that each state variable has
a different Dynamic Decomposition Weight (w) for each
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System Dynamics, Analytical Methods for Structural Dominance Analysis in, Table 4
Elasticity to parameters of weight of eigenvalue 2 (�0:138C i 0:85) on inventory and influence of parameters on eigenvalue 2 –
inventory–workforce model

Parameter w2 on INV Elasticity Influence on Re[�2] Influence on Im[�2]
Demand 2:000 0:000 0:000
Inventory correction time 0:656 0:038 �0.157
Flexibility in production 0:364 �0.549 �0.266
Productivity �0.353 0:000 0:000
Time to change expectations �0.240 0:000 0:000
Normal inventory coverage 0:239 0:000 0:000
Hiring/Firing time 0:238 0:100 �0.127
Disequilibrium fraction 0:000 0:000 0:000

reference mode, i. e., each eigenvalue contributes differ-
ently to the overall behavior of each state variable.

An exploration of the policy design space can be
achieved by assessing the influence of model parameters
on the dynamic decomposition weight. By focusing on the
weights of the behavior modes for the variable of interest
we can identify leverage points to increase or decrease the
presence of a behavior mode in the variable. The weight
elasticity column in Table 4 reports the parameter elastic-
ity of w2 (the weight of eigenvalue 2, the oscillatory behav-
ior mode) on Inventory ("w D (dw/dp)(p/w)). The mag-
nitude of the elasticity quantifies the impact that changes
in the parameter value have on the weight of the oscilla-
tory behavior model on Inventory. The table is sorted in
descending order of absolute value of elasticity.

Changes in parameters, however, not only impact
the behavior decomposition weights, but also change the
eigenvalues themselves. This dual impact of parameter
changes introduces a challenge in developing policy rec-
ommendations. The last two columns of Table 4 report the
influence on the eigenvalue (real and imaginary part) for
each parameter. These measures of influence should be in-
terpreted in a similar way as the weight elasticities. The in-
fluence measure is defined as �� D

�
@/@p


p. A positive

real-part measure indicates that increasing the parameter
will destabilize the system by lengthening the settling time
and vice-versa. A positive imaginary-part measure indi-
cates that increasing the parameter will increase the fre-
quency of oscillation – normally considered a destabilizing
influence – and vice-versa.

Five parameters, demand, disequilibrium fraction, pro-
ductivity, normal inventory coverage, and time to change
expectations, have no influence on the oscillatory behavior
mode. Demand and disequilibrium fraction are initializa-
tion constants that do not participate in any of the feed-
back loops in the model. Productivity is essentially a scal-
ing measure having to do with the definition of units of

labor and goods in the model. Redefining units should not
affect the dynamics of the model. While time to change
expectations is involved in loop 1, it does not participate
in the oscillatory behavior observed in the model since, as
discuss above, Expected Demand is in a separate strongly
connected component of the model.

In accordance with LEEA, the flexibility in produc-
tion parameter, which strengthens overtime loop 3 (cf.
Fig. 3), has a strong stabilizing influence, by both increas-
ing the damping and lowering the frequency of the os-
cillatory mode. Likewise, as predicted by LEEA, a shorter
hiring/firing time will increase damping by strengthening
the labor adjustment loop 5 but, again in accordance with
LEEA, also increases the frequency of adjustment because
it also strengthens the major loop 4. Finally, lowering the
inventory correction time will strengthen the link from in-
ventory to desired production, and consequently the three
loops 3, 4 and 5, with the net effect that although the ad-
justment is a little faster (a more negative real part), the
frequency is also increased significantly, i. e., it is a less ef-
fective way of stabilizing the system (cf. Fig. 9).

As an alternative approach, Fig. 11 shows what hap-
pens to the frequency response of the state variables (In-
ventory INV, Workforce WF, and Expected Demand ED)
when the parameter Hiring/Firing Time (hft) is reduced
by 2% from 5 to 4.9. There are a number of things to no-
tice in the figure. First, there is no effect whatsoever on the
ED variable, which should not be surprising, given that
there is no feedback to this variable from the rest of the
system. Second, the effect on the amplitude, like the am-
plitude itself, is strongly dependent upon the frequency
of variation. We see that there is a significant amount of
dampening on the Inventory fluctuation around the reso-
nant frequencies in the range 0.1 to 0.3. On the other hand,
there is a small amount of amplification of inventory in the
higher frequency ranges. The effect on Workforce is very
different: though there is a small attenuation in the reso-
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Effect on frequency response of the inventory workforce model
of reducing the parameter Hiring/Firing Time (hft) from 5.0 to
4.9. The diagram shows the gain of the base case (upper graph)
for the three state variables, and the resulting change in the
gain, measured as the ratio (A0/A) from the parameter change
(lower graph)

nant frequencies, there is a significant increase in variance
in the higher frequency range. In other words, although
the LEEA analysis showed a faster hiring policy to be sta-
bilizing (by strengthening loop 2, cf. Table 3), the DDW
analysis shows that it depends – both upon the variable in
question and the context (frequency of variation).

Future Directions

As mentioned above, it is not possible to construct a com-
plete theory that will automatically provide modelers with
“the” dominant structure. Given the analytical intractabil-
ity of nonlinear high-order systems found in our field, the
most we can hope for is a set of tools that will guide the
analysis and aid the development of the modeler’s intu-
ition.

That said, however, we are left with an impression
that the analytical foundation for these tools is in need of
further development before one rushes into implement-

ing them into software packages. We are quite satisfied
with the current state of affairs in this regard, where code,
models, and documentation are made freely to download
(most of the cited papers provide a URL to their code and
models). Understanding how and why the tools work the
way they do is crucial, and this will require that a number
of puzzles, uncertainties, and technical problems be ad-
dressed. Only then will the time come to submit the meth-
ods for wider application to test their real-world utility.

While the classical method remains a useful intuitive
guide and teaching tool for graduate students, there are
no signs that it may be developed further. (That said, it is
possible that the classical control transfer function method
may be employed in the eigensystem approaches to ex-
plore nested canonical systems, though this is purely spec-
ulative). The pathway method would benefit from a firmer
mathematical foundation. In particular, it would be im-
portant to compare how its results and conclusions com-
pare to those found in the LST. It is possible that the path-
way method may eventually be merged with the LST ap-
proaches as a subset of a general analytical toolbox. We
believe that there is a great deal of promise in combin-
ing the eigenvalue and eigenvector analysis in the LST ap-
proaches. This combination will yield a complete system
characterization and an understanding of both how par-
ticular feedback loops are involved in generating a behav-
ior mode, and how system elements determine the expres-
sion of that behavior mode in a particular variable. A uni-
fied LST approach along the lines suggested in Fig. 10 thus
seems within reach.

It will probably be a while, however, before these
methods will find their way into widely available and
use-friendly software packages. Apart from the theoreti-
cal issues alluded to above, a number of technical issues
related to numerical calculations, various “pathological
cases” (such as non-distinct eigenvalues), and special cases
of feedback loops (“figure-eight” loops, for instance), will
need to be addressed.

On the more creative side, it would be interesting to
explore alternative forms of visualizing the various influ-
ence measures developed. For instance, one could imagine
that links between variables in a model diagram “glow” in
different colors and intensities depending upon their effect
on a behavior pattern in question. This is not just a ques-
tion of fancy user interfaces: as mentioned in the introduc-
tion, the function of these tools will be as intuitive consis-
tent aids to understanding, not analytical “answering ma-
chines”. In this light, the visualization is as important as
the analytical principles behind it. Given the power of the
human eye in finding patterns in visual data, this could be
a significant next step.
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Glossary

Endogenous Generated from within. Contrasting with
“exogenous,” meaning generated by forces external to
a system or point of view.

Feedback loop A closed path of causal influences and in-
formation, forming a circular-causal loop of informa-
tion and action.

System dynamics System dynamics is a computer-aided
approach to theory-building, policy analysis and
strategic decision support emerging from an endoge-
nous point of view.

Definition of the Subject

System dynamics is a computer-aided approach to theory-
building, policy analysis, and strategic decision support
emerging from an endogenous point of view [18,20]. It ap-
plies to dynamic problems arising in complex social, man-
agerial, economic, or ecological systems – literally any dy-
namic systems characterized by interdependence, mutual
interaction, information feedback, and circular causality.

Introduction

The field of system dynamics developed initially from the
work of Jay W. Forrester. His seminal book Industrial Dy-
namics [7] is still a significant statement of philosophy and
methodology in the field. Within ten years of its publica-
tion, the span of applications grew from corporate and in-
dustrial problems to include the management of research
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and development, urban stagnation and decay, commod-
ity cycles, and the dynamics of growth in a finite world. It
is now applied in economics, public policy, environmen-
tal studies, defense, theory-building in social science, and
other areas, as well as its home field, management. The
name industrial dynamics no longer does justice to the
breadth of the field (for extensive examples, see [20,28], so
it has become generalized to system dynamics. The mod-
ern name suggests links to other systems methodologies,
but the links are weak and misleading. System dynamics
emerges out of servomechanisms engineering, not general
systems theory or cybernetics [18].

The system dynamics approach involves:

� Defining problems dynamically, in terms of graphs
over time.

� Striving for an endogenous, behavioral view of the sig-
nificant dynamics of a system, a focus inward on the
characteristics of a system that themselves generate or
exacerbate the perceived problem.

� Thinking of all concepts in the real system as continu-
ous quantities interconnected in loops of information
feedback and circular causality.

� Identifying independent stocks or accumulations (lev-
els) in the system and their inflows and outflows (rates).

� Formulating a behavioral model capable of reproduc-
ing, by itself, the dynamic problem of concern. The
model is usually a computer simulation model ex-
pressed in nonlinear equations, but is occasionally left
unquantified as a diagram capturing the stock-and-
flow/causal feedback structure of the system.

� Deriving understandings and applicable policy insights
from the resulting model.

� Implementing changes resulting frommodel-based un-
derstandings and insights.

Mathematically, the basic structure of a formal system
dynamics computer simulation model is a system of cou-
pled, nonlinear, first-order differential (or integral) equa-
tions,

d
dt

x(t) D f(x;p) ;

where x is a vector of levels (stocks or state variables),
p is a set of parameters, and f is a nonlinear vector-valued
function. Such a system has been variously called a state-
determined system in the engineering literature, an abso-
lute system [3], an equifinal system [32], and a dynamical
system [16].

Simulation of such systems is easily accomplished
by partitioning simulated time into discrete intervals of
length dt and stepping the system through time one dt

at a time. Each state variable is computed from its pre-
vious value and its net rate of change x0(t): x(t) D
x(t � dt)C dt � x0(t � dt). In the earliest simulation lan-
guage in the field (DYNAMO) this equation was written
with time scripts K (the current moment), J (the previ-
ous moment), and JK (the interval between time J and
K): XK D XJ C DT �XRATEJK (see, e. g., [22]). The com-
putation interval dt is selected small enough to have no
discernible effect on the patterns of dynamic behavior
exhibited by the model. In more recent simulation en-
vironments, more sophisticated integration schemes are
available (although the equation written by the user may
look like this simple Euler integration scheme), and time
scripts may not be in evidence. Important current sim-
ulation environments include STELLA and iThink (isee
Systems, http://www.iseesystems.com/), Vensim (Ventana
Systems, http://www.vensim.com/), and Powersim (http://
www.powersim.com/).

Forrester’s original work stressed a continuous ap-
proach, but increasingly modern applications of system
dynamics contain a mix of discrete difference equations
and continuous differential or integral equations. Some
practitioners associated with the field of system dynam-
ics work on the mathematics of such structures, including
the theory and mechanics of computer simulation, anal-
ysis and simplification of dynamic systems, policy opti-
mization, dynamical systems theory, and complex nonlin-
ear dynamics and deterministic chaos.

The main applied work in the field, however, focuses
on understanding the dynamics of complex systems for
the purpose of policy analysis and design. The conceptual
tools and concepts of the field – including feedback think-
ing, stocks and flows, the concept of feedback loop domi-
nance, and an endogenous point of view – are as important
to the field as its simulation methods.

Feedback Thinking

Conceptually, the feedback concept is at the heart of the
system dynamics approach. Diagrams of loops of infor-
mation feedback and circular causality are tools for con-
ceptualizing the structure of a complex system and for
communicating model-based insights. Intuitively, a feed-
back loops exists when information resulting from some
action travels through a system and eventually returns in
some form to its point of origin, potentially influencing
future action. If the tendency in the loop is to reinforce
the initial action, the loop is called a positive or reinforc-
ing feedback loop; if the tendency is to oppose the initial
action, the loop is called a negative, counteracting, or bal-
ancing feedback loop. The sign of the loop is called its po-

http://www.iseesystems.com/
http://www.vensim.com/
http://www.powersim.com/
http://www.powersim.com/
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larity. Balancing loops can be variously characterized as
goal-seeking, equilibrating, or stabilizing processes. They
can sometimes generate oscillations, as when a pendulum
seeking its equilibrium goal gathers momentum and over-
shoots it. Reinforcing loops are sources of growth or accel-
erating collapse; they are disequilibrating and destabiliz-
ing. Combined, balancing and reinforcing circular causal
feedback loops can generate all manner of dynamic pat-
terns.

Feedback loops are ubiquitous in human and natu-
ral systems and, under various names and representations,
have been widely recognized in popular and scholarly lit-
erature. Feedback thought has been present implicitly or
explicitly for hundreds of years in the social sciences and
literally thousands of years in recorded history [9]. We
have the vicious circle originating in classical logic and
morphing into common usage, the bandwagon effect, the
invisible hand of Adam Smith, Malthus’s correct obser-
vation of population growth as a self-reinforcing process,
Keynes’s consumption multiplier, the investment accel-
erator of Hicks and Samuelson, compound interest or
inflation, the biological concepts of proprioception and
homeostasis, Festinger’s cognitive dissonance, Myrdal’s
principle of cumulative causation, Venn’s idea of a sui-
cidal prophecy, Merton’s related notion of a self-fulfilling
prophecy, and so on. Each of these ideas can be concisely
and insightfully represented as one ormore loops of causal
influences with positive or negative polarities. Great social
scientists and feedback thinkers; great social theories are

System Dynamics, The Basic Elements of, Figure 1
Core structure of Forrester’s market growthmodel [8], showing a blue reinforcing loop underlying the growth (or reinforcing decline)
of Salesmen, Orders, and Revenue, a red balancing loop containing various delayed recognitions of the company’s delivery delay,
and a green balancing loop responsible for capacity ordering if the delivery delay drops too far below its operating goal

feedback thoughts. (For a full exposition of the evolution
of the feedback concept see [19].)

Loop Dominance and Nonlinearity

The loop concept underlying feedback and circular causal-
ity by itself is not enough, however. The explanatory power
and insightfulness of feedback understandings also rest
on the notions of active structure and loop dominance.
Complex systems change over time. A crucial requirement
for a powerful view of a dynamic system is the ability of
a mental or formal model to change the strengths of in-
fluences as conditions change, that is to say, the ability to
shift active or dominant structure.

In a system of equations, this ability to shift loop dom-
inance comes about endogenously from nonlinearities in
the system. For example, the S-shaped dynamic behavior
of the classic logistic growth model (dP/dt D aP � bP2)
or similar structures like the Gompertz curve (dP/dt D
aP� bP ln(P)) can be seen as the consequence of a shift in
loop dominance from a positive, self-reinforcing feedback
loop (aP) producing exponential-like growth, to a negative
feedback loop (�bP2 or �bP ln(P)) that brings the system
to its eventual goal. The shift in loop dominance in these
models comes about from the nonlinearity in the second
term, which grows faster than the first term and eventually
overtakes it. Only nonlinear models can endogenously al-
ter their active or dominant structure and shift loop dom-
inance.
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System Dynamics, The Basic Elements of, Figure 2
The dynamic behavior of the model shown in Fig. 1, illustrating an early growth phase, which turns into an oscillatory phase as the
feedback loop dominance shifts to the red balancing delivery delay loop, and results in a long term corporate decline as the green
capacity ordering loop responds to a sliding operating goal for the acceptable delivery delay

Real systems are perceived to change their active or
dominant structure over time, often because of the build-
up of internal forces. Thus from a feedback perspective,
the ability of nonlinearities to generate shifts in loop dom-
inance is the fundamental reason for advocating nonlinear
models of social system behavior.

Figures 1 and 2, abstracted from an early, classic pa-
per [8] illustrate these ideas. In Fig. 1 salesmen (in the blue
reinforcing loop) book orders for the company; if enough
revenue is generated, there is enough budget to hire more
salesmen and corporate growth ensues.Whether salesmen
(in this simplified picture) book enough orders depends
on the company’s delivery delay for the product, as per-
ceived by the market (red balancing loop). The company
builds production capacity according to its perceived need,
as indicated by its perceived delivery delay and its target
for that (green balancing loop).

Figure 2 shows the dynamics this feedback structure
endogenously generates. In the early phase, salesmen grow
as orders and revenue grow; the system’s exponential
growth behavior in that phase is generated by the reinforc-
ing salesmen loop. But then the feedback loop dominance
soon shifts to the balancing delivery delay loop, which con-
strains sales effectiveness and brings a halt to growth. The
system moves into an oscillatory phase generated by the
various monitoring and perception delays around the now
dominant red balancing loop. Salesmen eventual peak and
decline, as the green production capacity ordering loop

fails to keep production capacity sufficient to hold the de-
livery delays in check.

Thus the dynamic behavior of this system is a conse-
quence of its feedback structure and the nonlinearities that
shift loop dominance endogenously over time. The par-
ticular decline scenario shown in Fig. 2 illustrates one of
the deep insights of the model: the adaptive goal structure,
in which the delivery delay operating goal moves slowly
to accommodate changes in the company’s delivery delay,
weakens the green balancing loop trying to bring on ca-
pacity. The company never perceives its delivery delay is
sufficiently higher than its (sliding) target, so it fails to or-
der sufficient capacity to sustain growth. A fixed goal for
the acceptable delivery delay sends a stronger signal, which
can turn this corporate decline into oscillating growth [8].

Thus, nonlinearity is crucial to the system dynamics
approach. However, it is crucial not merely because of its
mathematical properties but because it enables the formal-
ization of a profoundly powerful perspective on theory and
policy – the endogenous point of view.

The Endogenous Point of View

The concept of endogenous change is fundamental to the
system dynamics approach. It has both philosophical and
engineering origins. A deep and lasting insight of the earli-
est attempts at servomechanisms control is the realization
that the attempt to control a system generates dynamics of
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its own, complicating the dynamics trying to be controlled.
A governor mechanism imposed to control the speed of
a steam engine can generate oscillatory “hunting behav-
ior,” as the control system overshoots and undershoots the
set point. As it becomes part of the system, the governing
mechanism thus generates dynamics of its own.

The insight transfers readily, but with added signifi-
cance, from engineering systems to people systems: At-
tempts to control complex human systems – coercing,
guiding, managing, governing – generate dynamics of
their own. Moreover, some of these endogenously gen-
erated dynamics are created by the control mechanisms
themselves (like the governor of a steam engine) and
some are created by human creative responses to the
management efforts (e. g., principal-agent interactions).
These natural and human forces, creating counteracting
and compensating pressures in response to system control
efforts, emerge as complicated circular-causal feedback
structures. The often complex, difficult-to-understand dy-
namics of such management systems are to a great degree
a consequence of their internal structures.

To capture and analyze such management complexi-
ties, one must look inward to see the ways a complex sys-
tem naturally responds to system pressures. The endoge-
nous point of view is thus central to the system dynamics
approach. It dictates aspects of model formulation: exoge-
nous disturbances are seen at most as triggers of system
behavior (like displacing a pendulum); the causes are con-
tained within the structure of the system itself (like the in-
teraction of a pendulum’s position and momentum that
produces oscillations). Corrective responses are also not
modeled as functions of time, but are dependent on condi-
tions within the system. Time by itself is not seen as a cause
in the endogenous point of view.

Theory building and policy analysis are significantly
affected by this endogenous perspective. Taking an en-
dogenous view exposes the natural compensating tenden-
cies in social systems that conspire to defeat many policy
initiatives. Feedback and circular causality are delayed, de-
vious, and deceptive. For understanding, system dynamics
practitioners strive for an endogenous point of view. The ef-
fort is to uncover the sources of system behavior that exist
within the structure of the system itself.

System Structure

These ideas are captured almost explicitly in Forrester’s [9]
organizing framework for system structure:

� Closed boundary
� Feedback loops
� Levels

� Rates
� Goal
� Observed condition
� Discrepancy
� Desired action.

The closed boundary signals the endogenous point of view.
The word closed here does not refer to open and closed
systems in the general system sense, but rather refers to the
effort to view a system as causally closed. The modeler’s
goal is to assemble a formal structure that can, by itself ,
without exogenous explanations, reproduce the essential
characteristics of a dynamic problem.

The causally closed system boundary at the head of this
organizing framework identifies the endogenous point of
view as the feedback view pressed to an extreme. Feedback
thinking can be seen as a consequence of the effort to cap-
ture dynamics within a closed causal boundary. Without
causal loops, all variables must trace the sources of their
variation ultimately outside a system. Assuming instead
that the causes of all significant behavior in the system
are contained within some closed causal boundary forces
causal influences to feed back upon themselves, forming
causal loops. Feedback loops enable the endogenous point
of view and give it structure.

Levels and Rates

Stocks (accumulations, or “levels” in early system dynam-
ics literature) and the flows (“rates”) that affect them are
essential components of system structure. A map of causal
influences and feedback loops is not enough to determine
the dynamic behavior of a system. A constant inflow yields
a linearly rising stock; a linearly rising inflow yields a stock
rising along a parabolic path; a stock with inflow propor-
tional to itself grows exponentially; two stocks in a balanc-
ing loop have a tendency to generate oscillations; and so
on. For example, the boxes in Fig. 1 represent accumula-
tions in the company and its market; the three stocks in
the red balancing loop (the order backlog and the two per-
ceptions of the company’s delivery delay) give that loop its
tendency to generate oscillations which propagate through
out the system. Accumulations are the memory of a dy-
namic system and contribute to its disequilibrium and dy-
namic behavior.

Forrester [7] placed the operating policies of a sys-
tem among its rates, the inflows and outflows governing
change in the system. Many of these rates of change as-
sume the classic structure of a negative feedback loop striv-
ing to take action to reduce the discrepancy between the
observed condition of the system and a goal. The simplest
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such rate structure results in an equation of the form

RATE D
GOAL� LEVEL

ADJUSTMENT TIME
;

where ADJUSTMENT TIME is the time over which the
level adjusts to reach the goal. This simple formulation re-
flects Forrester’s more general statement about rates in his
hierarchy of system structure (above) which can be richly
thought of as

RATE D f (DESIRED ACTION)

DESIRED ACTION
D g(DESIRED CONDITION;

OBSERVED CONDITION)

OBSERVED CONDITION D h(LEVELS) ;

for some functions f , g, and h representing particular sys-
tem characteristics.

Operating policies in a management system can in-
fluence the flows of information, material, and resources,
which are the only means of changing the accumulations
in the system. While flows can be changed quickly, as
a matter of relatively quick decisionmaking, stocks change
slowly – they rise when inflows are great than outflows,
and decline when inflows are less than outflows.

The simple “tub dynamics” of stocks are clear even to
children, yet can be befuddling in complex systems. The
accumulation of green house gases in the atmosphere, for
example, affects the flow of heat energy radiated from the
earth. To turn around global warming, the accumulation
of green house gases must drop far enough to raise ra-
diant energy above the inflow of solar energy, a simple
stock-and-flow insight. But to cause the accumulation of
green house gases to drop, their generation must fall be-
low their natural absorption rate (another simple stock-
and-flow observation). So turning around global warming
is a process involving a chain of at least two significant ac-
cumulations, and people have trouble thinking it through
reliably. The accumulations can only be changed by man-
aging their associated flows. They will change only slowly
even if we manage the technical and political pitfalls in-
volved in lowering green house gas production (see [29]).

The significance of stocks in complex systems is vivid
in a resource-based view of strategy and policy. Resources
that enable a corporation or government to function or
flourish are stocks, usually accumulated over long periods
of time with significant investment of time, energy, and
money. Reputations are also stocks, built over similarly

long periods of time. While inadequate by themselves to
give a full picture of the dynamics of a complex system,
stocks and flows are vital components of system structure,
without which fundamental understandings of dynamics
are impossible [33].

Behavior is a Consequence of System Structure

The importance of stocks and flows appears most clearly
when one takes a continuous view of structure and dy-
namics. Although a discrete view, focusing on separate
events and decisions, is entirely compatible with an en-
dogenous feedback perspective, the system dynamics ap-
proach emphasizes a continuous view [7]. The continuous
view strives to look beyond events to see the dynamic pat-
terns underlying them: model not the appearance of a dis-
crete new housing unit in a city, but focus instead on the
rise and fall of aggregate numbers of housing units. More-
over, the continuous view focuses not on discrete deci-
sions but on the policy structure underlying decisions: not
why this particular apartment building was constructed
but what persistent pressures exist in the urban system that
produce decisions that change housing availability in the
city. Events and decisions are seen as surface phenomena
that ride on an underlying tide of system structure and be-
havior. It is that underlying tide of policy structure and
continuous behavior that is the system dynamicist’s focus.

There is thus a distancing inherent in the system dy-
namics approach – not so close as to be confused by dis-
crete decisions and myriad operational details, but not so
far away as to miss the critical elements of policy structure
and behavior. Events are deliberately blurred into dynamic
behavior. Decisions are deliberately blurred into perceived
policy structures. Insights into the connections between
system structure and dynamic behavior, which are the goal
of the system dynamics approach, come from this particu-
lar distance of perspective.

Suggestions for Further Reading
on the Core of System Dynamics

The System Dynamics Review, the journal of the System
Dynamics Society, published by Wiley, is the best source
of current activity in the field, including methodological
advances and applications.

The core of a vibrant field is difficult to discern in
the flow of current work. However, the works that the
field itself singles out as exemplary can give some reliable
hints about what is considered vital to the core. In this
sense two edited volumes are noteworthy: An early, inter-
esting collection of applications is Roberts [24]; Richard-
son [21] is a more recent two-volume edited collection in
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the same spirit, containing prize-winning work in philo-
sophical background, dynamic decision making, applica-
tions in the private and public sectors, and techniques for
modeling with management.

In addition, the following works, selected from among
winners of the System Dynamics Society’s Jay Wright
Forrester Award (see www.systemdynamics.org/Society_
Awards.htm), can be considered insightful although im-
plicit exemplars of the core of system dynamics. (Publi-
cations are listed beginning with the most recent; see the
bibliography for full citations):

� Thomas S. Fiddaman, “Exploring policy options with
a behavioral climate-economy model”

� Kim D. Warren, Competitive Strategy Dynamics
� Eric F. Wolstenholme, “Towards the Definition and

Use of a Core Set of Archetypal Structures in System
Dynamics”

� Nelson P. Repenning, “Understanding Fire Fighting in
New Product Development”

� John D. Sterman, Business Dynamics, Systems Thinking
and Modeling for a Complex World

� Peter Milling, “Modeling innovation processes for de-
cision support and management simulation.”

� Erling Moxnes, “Not Only the Tragedy of the Com-
mons: Misperceptions of Bioeconomics.”

� Jac A. M. Vennix, Group Model Building: Facilitating
Team Learning Using System Dynamics

� Jack B. Homer, “A SystemDynamicsModel of National
Cocaine Prevalence.”

� Andrew Ford, “Estimating the Impact of Efficiency
Standards on Uncertainty of the Northwest Electric
System.”

� Khalid Saeed, Towards Sustainable Development: Es-
says on System Analysis of National Policy

� Tarek Abdul-Hamid and Stuart Madnick, Software
Project Dynamics: An Integrated Approach

� George P. Richardson, Feedback Thought in Social Sci-
ence and Systems Theory

� Peter M. Senge, The Fifth Discipline
� John D. W. Morecroft, “Rationality in the Analysis of

Behavioral Simulation Models.”
� John D. Sterman, “Modeling Managerial Behavior:

Misperceptions of Feedback in a Dynamic Decision
Making Experiment.”

For texts on the system dynamics approach, see Alfeld and
Graham [2], Richardson and Pugh [22], Wolstenholme
[34], Ford [6], Maani and Cavana [11], and the most com-
prehensive text to date, Sterman [28].
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Glossary

Cybernetics The science of communication and control
in complex, dynamical systems. The core objects of
study are information, communication, feedback and

adaptation. In the newer versions of cybernetics, the
emphasis is on observation, self-organization, self-ref-
erence and learning.

Dynamical system The dynamical system concept is
a mathematical formalization of time-dependent pro-
cesses. Examples include themathematicalmodels that
describe the swinging of a clock pendulum, the flow of
water in a river, and the evolution of a population of
fish in a lake.

Law of requisite variety Ashby’s law of requisite variety
says: “Only variety can destroy variety”. It implies that
the varieties of two interacting systems must be in bal-
ance, if stability is to be achieved.

Organizational cybernetics The science which applies
cybernetic principles to organization. Synonyms are
Management Cybernetics andManagerial Cybernetics.

System There are many definitions of system. Two ex-
amples: A portion of the world sufficiently well de-
fined to be the subject of study; something character-
ized by a structure, for example, a social system (Ana-
tol Rapoport). A system is a family of relationships be-
tween its members acting as a whole (International So-
ciety for the Systems Sciences).

System dynamics A methodology and discipline for the
modeling, simulation and control of dynamic sys-
tems. The main emphasis falls on the role of struc-
ture and its relationship with the dynamic behavior of
systems, which are modeled as networks of informa-
tionally closed feedback loops between stock and flow
variables.

Systems approach A perspective of inquiry, education
andmanagement, which is based on system theory and
cybernetics.

System theory A formal science of the structure, behav-
ior, and development of systems. In fact there are
different system theories. General system theory is
a transdisciplinary framework for the description and
analysis of any kind of system. System theories have
been developed in many domains, e. g., mathematics,
computer science, engineering, sociology, psychother-
apy, biology and ecology.

Variety A technical term for complexity which denotes
the number of (potential) states of a system.

Definition of the Subject

The purpose of this chapter is to give an overview of the
role of system dynamics (SD) in the context of the evolu-
tion of the systems movement. This is necessary because
SD is often erroneously taken as the systems approach as
such, not as part of it. It is also requisite to show that the
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processes of the evolution of both SD in particular and the
systems movement as a whole are intimately linked and
intertwined. Finally, in view of the purpose of the chapter
the actual and potential relationships between system dy-
namics and the other strands of the systemsmovement are
evaluated. This way, complementarities and synergies are
identified.

Introduction

The purpose of this contribution is to give an overview of
the role of system dynamics in the context of the evolution
of the systemsmovement. “Systemsmovement” – often re-
ferred to briefly as “systemics” – is a broad term, which
takes into account the fact that there is no single system
approach, but a range of different ones. The common de-
nominator of the different system approaches in our day is
that they share a worldview focused on complex dynamic
systems, and an interest in describing, explaining and de-
signing or at least influencing them. Therefore, most of the
system approaches offer not only a theory but also a way of
thinking (“systems thinking” or “systemic thinking”) and
a methodology for dealing with systemic issues or prob-
lems.

System dynamics (SD) is a discipline and a method-
ology for the modeling, simulation and control of com-
plex, dynamic systems. SD was developed by MIT pro-
fessor Jay W. Forrester (e. g. [20,21]) and has been prop-
agated by his students and associates. SD has grown to
a school of numerous academics and practitioners all over
the world. The particular approach of SD lies in repre-
senting the issues or systems-in-focus as meshes of closed
feedback loops made up of stocks and flows, in continuous
time and subject to delays.

The development of the system dynamics methodol-
ogy and the worldwide community that applies SD to
modeling and simulation in radically different contexts
suggest that it is a “systems approach” on its own. Nev-
ertheless, taking “system dynamics” as the (one and only)
synonym for “systemic thinking” would be going too far,
given the other approaches to systemic thinking as well as
a variety of system theories and methodologies, many of
which are complementary to SD. In any case, however, the
SD community has become the strongest “school” of the
Systems approach, if one takes the numbers of members in
organizations representing the different schools as a mea-
sure (by 2006, the SystemDynamics Society hadmore than
1000 members).

The rationale and structure of this contribution is as
follows. Starting with the emergence of the systems ap-
proach, the multiple roots and theoretical streams of sys-

temics are outlined. Next, the common grounds and dif-
ferences among different strands of the systems approach
are highlighted, and the various systems methodologies
are explored. Then the distinctive features of SD are an-
alyzed. Finally comes a reflection on the relationships of
SD with the rest of the systems movement as well as with
potential complementarities and synergies.

In Table 1, a time-line overview of some milestones in
the evolution of the systems approach in general and Sys-
tem Dynamics in particular is given. Elaborating on each
of the sources quoted therein would reach beyond the pur-
pose of this chapter. However, to convey a synoptic view,
a diagram showing the different systems approaches and
their interrelationships is provided in the Appendix “Sys-
tems Approaches – An Overview”.

Emergence of the Systems Approach

The systems movement has many roots and facets, with
some of its concepts going back as far as ancient Greece.
What we name as “the systems approach” today material-
ized in the first half of the twentieth century. At least two
important components should be mentioned: those pro-
posed by von Bertalanffy and by Wiener.

Ludwig von Bertalanffy, an American biologist of Aus-
trian origin, developed the idea that organized wholes of
any kind should be describable and, to a certain extent,
explainable, by means of the same categories, and ulti-
mately by one and the same formal apparatus. His gen-
eral systems theory triggered a whole movement which
has tried to identify invariant structures and mechanisms
across different kinds of organized wholes (for exam-
ple, hierarchy, teleology, purposefulness, differentiation,
morphogenesis, stability, ultrastability, emergence, and
evolution).

In 1948 Norbert Wiener, an American mathematician
at the Massachusetts Institute of Technology, published
his seminal book on Cybernetics, building upon interdisci-
plinary work carried out in cooperation with Bigelow, an
IBM engineer, and Rosenblueth, a physiologist. Wiener’s
opus became the transdisciplinary foundation for a new
science of capturing as well as designing control and
communication mechanisms in all kinds of dynamic sys-
tems [81]. Cyberneticists have been interested in concepts
such as information, communication, complexity, auton-
omy, interdependence, cooperation and conflict, self-pro-
duction (“autopoiesis”), self-organization, (self-) control,
self-reference and (self-) transformation of complex dy-
namic systems.

Along the genetic line of the tradition which led to
the evolution of General Systems Theory (von Berta-
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lanffy, Boulding, Gerard, Miller, Rapoport) and Cyber-
netics (Wiener, McCulloch, Ashby, Powers, Pask, Beer),
a number of roots can be identified, in particular:

� Mathematics (for example, Newton, Poincaré, Lya-
punov, Lotka, Volterra, Rashevsky)

� Logic (for example, Epimenides, Leibniz, Boole, Russell
and Whitehead, Goedel, Spencer-Brown)

� Biology, including general physiology and neurophys-
iology (for example, Hippocrates, Cannon, Rosen-
blueth, McCulloch, Rosen)

� Engineering and computer science, including the re-
spective physical and mathematical foundations (for
example, Heron, Kepler,Watt, Euler, Fourier,Maxwell,
Hertz, Turing, Shannon and Weaver, von Neumann,
Walsh)

� Social and human sciences, including economics (for
example, Hume, Adam Smith, Adam Ferguson, John
Stuart Mill, Dewey, Bateson, Merton, Simon, Piaget).

In this last-mentioned strand of the systems movement,
one focus of inquiry is on the role of feedback in commu-
nication and control in (and between) organizations and
society, as well as in technical systems. The other focus of
interest is on the multidimensional nature and the multi-
level structures of complex systems. Specific theory build-
ing, methodological developments and pertinent applica-
tions have occurred at the following levels:

� Individual and family levels (for example, systemic psy-
chotherapy, family therapy, holistic medicine, cogni-
tive therapy, reality therapy)

� Organizational and societal levels (for example, man-
agerial cybernetics, organizational cybernetics, socio-
cybernetics, social systems design, social ecology, learn-
ing organizations)

� The level of complex (socio-)technical systems (sys-
tems engineering)

The notion of “socio-technical systems” has become
widely used in the context of the design of organized
wholes involving interactions of people and technol-
ogy (for instance, Linstone’s multi-perspectives-frame-
work, known by way of the mnemonic TOP (Technical,
Organizational, Personal/individual).

As can be noted from these preliminaries, different
kinds of system theory and methodology have evolved
over time. One of these is a theory of dynamic systems by
Jay W. Forrester, which serves as a basis for the method-
ology of system dynamics. Two eminent titles are [20]
and [21]. In SD, the main emphasis falls on the role of
structure and its relationship with the dynamic behavior
of systems, modeled as networks of informationally closed

feedback loops between stock and flow variables. Several
other mathematical systems theories have been elaborated,
for example, mathematical general systems theory (Klir,
Pestel, Mesarovic and Takahara), as well as a whole stream
of theoretical developmentswhich can be subsumed under
the terms “dynamic systems theory” or “theories of non-
linear dynamics” (for example, catastrophe theory, chaos
theory and complexity theory). Under the latter, branches
such as the theory of fractals (Mandelbrot), geometry of
behavior (Abraham), self-organized criticality (Bak), and
network theory (Barabasi, Watts) are subsumed. In this
context, the term “sciences of complexity” is used.

In addition, a number of mathematical theories, which
can be called “system theories,” have emerged in different
application contexts, examples of which are discernible in
the following fields:

� Engineering, namely information and communica-
tion theory (Shannon and Weaver), technology and
computer-aided systems theory (for example, control
theory, automata, cellular automata, agent-based mod-
eling, artificial intelligence, cybernetic machines, neu-
ral nets)

� Operations research (for example,modeling theory and
simulation methodologies, Markov chains, genetic al-
gorithms, fuzzy control, orthogonal sets, rough sets)

� Social sciences, economics in particular (for example,
game theory, decision theory)

� Biology (for example, Sabelli’s Bios theory of creation)
� Ecology (for example, E. and H. Odum’s systems

ecology).

Most of these theories are transdisciplinary in nature, i. e.,
they can be applied across disciplines. The Bios theory,
for example is applicable to clinical, social, ecological and
personal settings [54]. Examples of essentially non-math-
ematical system theories can be found in many different
areas of study, e. g.:

� Economics, namely its institutional/evolutionist strand
(Veblen, Myrdal, Boulding, Dopfer)

� Sociology (for example, Parsons’ and Luhmann’s social
system theories, Hall’s cultural systems theory)

� Political sciences (for example, Easton, Deutsch,
Wallerstein)

� Anthropology (for example, Levi Strauss’s structural-
ist-functionalist anthropology, Margaret Mead)

� Semiotics (for example, general semantics (Korzybski,
Hayakawa, Rapoport), cybersemiotics (Brier))

� Psychology and psychotherapy (for example, systemic
intervention (Bateson, Watzlawick, F. Simon), and
fractal affect logic (Ciompi))
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� Ethics and epistemology (for example, Vickers,
Churchman, von Foerster, van Gigch)

Several system-theoretic contributions have merged the
quantitative and the qualitative in new ways. This is the
case for example in Rapoport’s works in game theory as
well as general systems theory, Pask’s conversation theory,
von Foerster’s cybernetics of cybernetics (second-order
cybernetics), and Stafford Beer’s opus inmanagerial cyber-
netics. In all four cases, mathematical expression is virtu-
ously connected to ethical, philosophical, and epistemo-
logical reflection. Further examples are Prigogine’s the-
ory of dissipative structures, Mandelbrot’s theory of frac-
tals, complex adaptive systems (Holland et al.), Kauffman’s
complexity theory, and Haken’s synergetics, all of which
combine mathematical analysis and a strong component
of qualitative interpretation.

A large number of systems methodologies, with the
pertinent threads of systems practice, have emanated from
these theoretical developments. Many of them are ex-
pounded in detail in specialized encyclopedias (e. g., [27]
and, under a specific theme, named Systems Science and
Cybernetics, of the Encyclopedia of Life Support Sys-
tems [18]). In this chapter, only some of these will be ad-
dressed explicitly, in order to shed light on the role of SD
as part of the systems movement.

CommonGrounds and Differences

Even though the spectrum of system theories andmethod-
ologies outlined in the preceding section may seem multi-
farious, all of them have a strong common denominator:
They build on the idea of systems as organized wholes. An
objectivist working definition of a system is that of a whole,
the organization of which is made up by interrelationships.
A subjectivist definition is that of a set of interdependent
variables in the mind of an observer, or, a mental construct
of a whole, an aspect that has been emphasized by the
position of constructivism. Constructivism is a synonym
for second-order cybernetics. While first-order cybernet-
ics concentrates on regulation, information and feedback,
second-order cybernetics focuses on observation, self-or-
ganization and self-reference. Heinz von Foerster estab-
lished the distinction between ‘observed systems’ for the
former and ‘observing systems’ for the latter [74].

From the standpoint of operational philosophy, a sys-
tem is, as Rapoport says, “a part of the world, which is suf-
ficiently well defined to be the object of an inquiry or also
something, which is characterized by a structure, for ex-
ample, a production system” [50].

In recent systems theory, the aspect of relationships
has been emphasized as the main building block of a sys-

tem, as one can see from a definition published by the In-
ternational Society for the Systems Sciences (ISSS): “A sys-
tem is a family of relationships between its members acting
as a whole” [63]. Also, purpose and interaction have played
an important part in reflections on systems: Systems are
conceived, in the words of Forrester [21], as “wholes of el-
ements, which cooperate towards a common goal.” Pur-
poseful behavior is driven by internal goals, while purpo-
sive behavior rests on a function assigned from the out-
side. Finally, the aspects of open and closed functioning
have been emphasized. Open systems are characterized by
the import and export of matter, energy and information.
A variant of particular relevance in the case of social sys-
tems is the operationally closed system, that is, a system
which is self-referential in the sense that its self-produc-
tion (autopoiesis) is a function of production rules and
processes by which order and identity are maintained, and
which cannot be modified directly from outside. As we
shall see, this concept of operational closure is very much
in line with the concept of circularity used in SD.

At this point, it is worth elaborating on the spe-
cific differences between two major threads of the sys-
tems movement, which are of special interest because
they are grounded in “feedback thought” [52]: The cyber-
netic thread, from which organizational cybernetics has
emanated, and the servomechanic thread in which SD
is grounded. As Richardson’s detailed study shows, the
strongest influence on cybernetics came from biologists
and physiologists, while the thinking of economists and
engineers essentially shaped the servomechanic thread.
Consequently, the concepts of the former are more fo-
cused on the adaptation and control of complex systems
for the purpose of maintaining stability under exogenous
disturbances. Servomechanics, on the other hand, and SD
in particular, take an endogenous view, being mainly in-
terested in understanding circular causality as the princi-
pal source of a system’s behavior. Cybernetics is more con-
nected with communication theory, the general concern of
which can be summarized as how to deal with randomly
varying input. SD, on the other hand, shows a stronger
link with engineering control theory, which is primarily
concerned with behavior generated by the control sys-
tem itself, and by the role of nonlinearities. Managerial
cybernetics and SD both share the concern of contribut-
ing to management science, but with different emphases
and with instruments that are different but in principle
complementary. Finally, themathematical foundations are
generally more evident in the basic literature on SD than
in the writings on organizational cybernetics, in which the
formal apparatus underlying model formulation is con-
fined to a small number of publications (e. g., [7,10]),
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which are less known than the qualitative treatises. The
termsmanagement cybernetics andmanagerial cybernetics
are used as synonyms for organizational cybernetics.

The Variety of SystemsMethodologies

The methodologies that have evolved as part of the sys-
tems movement cannot be expounded in detail here. The
two epistemological strands in which they are grounded,
however, can be identified – the positivist tradition and the
interpretivist tradition.

Positivist tradition denotes those methodological ap-
proaches that focus on the generation of “positive knowl-
edge,” that is, a knowledge based on “positively” ascer-
tained facts. Interpretivist tradition denotes those method-
ological approaches that emphasize the importance of sub-
jective interpretations of phenomena. This stream goes
back to Greek art and science of the interpretation and un-
derstanding of texts.

Some systems methodologies have been rooted in the
positivist tradition, and others in the interpretivist tradi-
tion. The differences between the two can be described
along the following set of polarities:

� An objectivist versus a subjectivist position
� A conceptual–instrumental versus a communica-

tional/cultural/political rationality
� An inclination to quantitative versus qualitative mod-

eling
� A structuralist versus a discursive orientation.

A positivistic methodological position tends toward the
objectivistic, conceptual–instrumental, quantitative and
structuralist–functionalist in its approach. An interpretive
position, on the other hand, tends to emphasize the sub-
jectivist, communicational, cultural, political, ethical and
esthetic—that is, the qualitative and discursive aspects. It
would be too simplistic to classify a specific methodology
in itself as being “positivistic” or “interpretative”. Despite
the traditions they have grown out of, several methodolo-
gies have evolved and been reinterpreted or opened to new
aspects (see below).

In the following, a sample of systems methodologies
will be characterized and positioned in relation to these
two traditions, beginning with those in the positivistic
strand:

� “Hard” OR methods. Operations research (OR) uses
a wide variety of mathematical and statistical methods
and techniques—for example of optimization, queuing,
dynamic programming, graph theory, time series anal-
ysis—to provide solutions for organizational and man-

aperial problems, mainly in the operational domains of
production and logistics, and in finance.

� Living systems theory. In his LST, James Grier
Miller [44] identifies a set of 20 necessary components
that can be discerned in living systems of any kind.
These structural features are specified on the basis of
a huge empirical study and proposed as the “critical
subsystems” that “make up a living system.” LST has
been used as a device for diagnosis and design in the
domains of engineering and the social sciences.

� Viable system model. To date, Stafford Beer’s VSM is
probably the most important product of organizational
cybernetics. It specifies a set of management func-
tions and their interrelationships as the sufficient con-
ditions for the viability of any human or social system
(see [10]). These are applicable in a recursive mode, for
example, to the different levels of an organization. The
VSM has been widely applied in the diagnostic mode,
but also to support the design of all kinds of social sys-
tems. Specific methodologies for these purposes have
been developed, for instance for use in consultancy.
The term viable system diagnosis (VSD) is also used.

The methodologies and models addressed up to this point
have by and large been created in the positivistic tradi-
tion of science. Other strands in this tradition do exist,
e. g., systems analysis and systems engineering, which to-
gether with OR have been called “hard systems thinking”
(p. 127 in [31]). Also, more recent developments such
as mathematical complexity and network theories, agent-
based modeling and most versions of game theory can be
classified as hard systems approaches.

The respective approaches have not altogether been
excluded from fertile contacts with the interpretivist
strand of inquiry. In principle, all of them can be consid-
ered as instruments for supporting discourses about dif-
ferent interpretations of an organizational reality or alter-
native futures studied in concrete cases. In our time, most
applications of the VSM, for example, are constructivist in
nature. To put it in a nutshell, these applications are (usu-
ally collective) constructions of a (new) reality, in which
observation and interpretation play a crucial part. In this
process, the actors involved make sense of the system un-
der study, i. e., the organization in focus, by mapping it on
the VSM. At the same time they bring forth “multiple re-
alities rather than striving for a fit with one reality” (p. 299
in [29]).

The second group of methodologies is part of the in-
terpretive strand:

� Interactive Planning. IP is a methodology, designed by
Russell Ackoff [1], and developed further by Jamshid
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Gharajedaghi [28], for the purpose of dealing with
“messes” and enabling actors to design their desired fu-
tures, as well as to bring them about. It is grounded
in theoretical work on purposeful systems, reverts to
the principles of continuous, participative and holis-
tic planning, and centers on the idea of an “idealized
design.”

� Soft Systems Methodology. SSM is a heuristic designed
by Peter Checkland [13,14] for dealing with complex
situations. Checkland suggests a process of inquiry
constituted by two aspects: A conceptual one, which
is logic based, and a sociopolitical one, which is con-
cerned with the cultural feasibility, desirability and im-
plementation of change.

� Critical Systems Heuristics. CSH is a methodology,
whichWerner Ulrich [67,68] proposed for the purpose
of scientifically informing planning and design in or-
der to lead to an improvement in the human condi-
tion. The process aims at uncovering the interests that
the system under study serves. The legitimacy and ex-
pertise of actors, and particularly the impacts of deci-
sions and behaviors of the system on others – the “af-
fected” – are elicited by means of a set of boundary
questions. CSH can be seen as part of a wider move-
ment known as the “Emancipatory Systems Approach”
which embraces, e. g., Freire’s Critical Pedagogy, Inter-
pretive Systemology, and Community OR (see pp. 291ff
in [31]).

All three of these methodologies (IP, SSM, and CSH) are
positioned in the interpretive tradition. Other methodolo-
gies and concepts which can be subsumed under the in-
terpretive systems approach are, e. g., Warfield’s science of
generic design, Churchman’s social system design, Senge’s
soft systems thinking, Mason and Mitroff’s strategic as-
sumptions surfacing and testing (SAST), Eden and Ack-
ermann’s strategic options in development and analysis
(SODA), and other methodologies of soft operational re-
search (for details, see pp. 211ff in [31]). The interpretive
methodologies were designed to deal with qualitative as-
pects in the analysis and design of complex systems, em-
phasizing the communicational, social, political and ethi-
cal dimensions of problem solving. Several authors men-
tion explicitly that they do not preclude the use of quanti-
tative techniques or include such techniques in their reper-
toire (e. g., the biocyberneticist Frederic Vester).

In an advanced understanding of system dynamics
both of these traditions—positivist and interpretivist—are
synthesized. The adherents of SD conceive of model build-
ing and validation as a semi-formal, relativistic, holistic
social process. Validity is understood as usefulness or fit-

ness in relation to the purpose of the model, and validation
as an elaborate set of procedures – including logico-struc-
tural, heuristic, algorithmic, statistical, and also discursive
components – by which the quality of and the confidence
in a model are gradually improved (see [4,5,59]).

System Dynamics –
Its Features, Strengths and Limitations

The features, strengths and limitations of the SD method-
ology are a consequence of its specific characteristics. In
the context of the multiple theories and methodologies of
the systems movement, some of the distinctive features of
SD are (for an overview, see [52], pp. 142ff in [31]):

� Feedback as conceptual basis. SD model systems are
high-order, multiple-loop networks of closed loops of
information. Concomitantly, an interest in non-linear-
ities, long-term patterns and internal structure rather
than external disturbances is characteristic of SD (p. 31
in [40]). However, SD models are not “closed systems”,
as sometimes is claimed, in the sense that (a) flows
can originate from outside the system’s boundaries, (b)
representations of exogenous factors or systems can be
incorporated into any model as parameters or special
modules, and (c) new information can be accommo-
dated via changes to a model. In other words, the SD
view hinges on a view of systems which are closed in
a causal sense but not materially (p. 297 in [52]).

� Focus on internally generated dynamics. SD models are
conceived as closed systems. The interest of users is in
the dynamics generated inside those systems. Given the
nature of closed feedback loops and the fact that delays
occur within them, the dynamic behavior of these sys-
tems is essentially non-linear.

� Emphasis on understanding. For system dynamicists
the understanding of the dynamics of a system is the
first goal to be achieved bymeans of modeling and sim-
ulation. Conceptually, they try to understand events as
embedded in patterns of behavior, which in turn are
generated by underlying structures. Such understand-
ing is enabled by SD as it “shows how present poli-
cies lead to future consequences” (Sect. VIII in [23]).
Thereby, the feedback loops are “a major source of puz-
zling behavior and policy difficulties” (p. 300 in [52]).
SD models purport to test mental models, hone intu-
ition and improve learning (see [65]).

� High degree of operationality. SD relies on formal mod-
eling. This fosters disciplined thinking; assumptions,
underlying equations and quantifications must be clar-
ified. Feedback loops and delays are visualized and for-
malized; therewith the causal logic inherent in a model
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is made more transparent and discussable than in most
other methodologies [53]. Also, a high level of realism
in the models can be achieved. SD is therefore apt to
support decision-making processes effectively.

� Far-reaching requirements (and possibilities) for the
combination of qualitative and quantitative aspects of
modeling and simulation. This is a consequence of the
emphasis on understanding. The focus is not on point-
precise prediction, but on the generation of insights
into the patterns generated by the systems under study.

� High level of generality and scale robustness. The rep-
resentation of dynamic systems in terms of stocks and
flows is a generic form, which is adequate for a wide
spectrum of potential applications. This spectrum is
both broad as to the potential subjects under study, and
deep as to the possible degrees of resolution and de-
tail [38]. In addition, the SD methodology enables one
to deal with large numbers of variables within multi-
ple interacting feedback loops (p. 9 in [22]). SD has
been applied to the most diverse subject areas, e. g.,
global modeling, environmental issues, social and eco-
nomic policy, corporate and public management, re-
gional planning, medicine, psychology and education
in mathematics, physics and biology.

The features of SD just sketched out result in both
strengths and limitations. We start with the strengths.

Strengths of SD

1. Its specific modeling approach makes SD particularly
helpful in gaining insights into the patterns exhibited
by dynamic systems, as well as the structures underly-
ing them. Closed-loop modeling has been found most
useful in fostering understanding of the dynamic func-
tioning of complex systems. Such understanding is es-
pecially facilitated by the principle of modeling the sys-
tems or issues under study in a continuous mode and
at rather high aggregation levels [20,38]. With the help
of relatively small but insightful models, and by means
of sensitivity analyses as well as optimization heuristics
incorporated in the application software packages, de-
cision-spaces can be thoroughly explored. Vulnerabil-
ities and the consequences of different system designs
can be examined with relative ease.

2. The generality of the methodology and its power to
crystallize operational thinking in realistic models
have triggered applications in the most varied con-
texts. Easy-to-use software and the features of screen-
driven modeling via graphic user interfaces provide
a strong lever for collaborativemodel-building in teams
(cf. [2,69]).

3. Another strong point is themomentum of the SD move-
ment. Due to the strengths commented above this
point, the community of users has grown steadily, be-
ing probably the largest community within the systems
movement. Lane (p. 484 in [36]) has termed SD “one of
the most widely used systems approaches in the world.”

4. Its specific features make SD an exceptionally ef-
fective tool for conveying systemic thinking to any-
body. Therefore, it also has an outstanding track-
record of classroom applications for which “learner-
directed learning” [24] or “learner-centered learning”
is advocated [25,26]. Pertinent audiences range from
schoolchildren at the levels of secondary and primary
schools to managers and scientists.

Given these strengths, the community of users has not
only grown significantly, but has also transcended disci-
plinary boundaries, ranging from the formal and natu-
ral sciences to the humanities, and covering multiple uses
from theory building and education to the tackling of real-
world problems at almost any conceivable level. Applica-
tions to organizational, societal and ecological issues have
seen a particularly strong growth. This feeds back on the
availability and growth of the knowledge upon which the
individual modeler can draw.

The flip side of most of the strengths outlined here
embodies the limitations of SD; we concentrate on those
which can be relevant to a possible complementarity of SD
with other systems methodologies.

Limitations of SD

1. The main point here is that SD does not provide
a framework or methodology for the diagnosis and de-
sign of organizational structures in the sense of inter-
relationships among organizational actors. This makes
SD susceptible to completion from without – a com-
pletion which organizational cybernetics (OC), and the
VSM in particular, but also living system theory (LST),
especially can provide. The choice falls on these two
approaches because of their strong heuristic power
and their complementary strengths in relation to SD
(cf. [57,61]).

2. Another limitation of SD is related to the absorption
of variety (complexity) by an organization. Variety is
a technical term for complexity, which denotes a (high)
number of potential states or behaviors of a system
(based on [3,8]). SD offers an approach to the handling
of variety which allows modeling at different scales of
a problem or system [47]. It focuses on the identifica-
tion, at a certain resolution level or possibly several res-
olution levels, of the main stock variables which will be
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affected by the respective flows. These, in turn, will be
influenced by parameters and auxiliary variables. This
approach, even though it enables thinking and model-
ing at different scales, does not provide a formal proce-
dure for an organization to cope with the external com-
plexity it faces, namely, for designing a structure which
can absorb that complexity. In contrast, OC and LST
offer elaborate models to enable the absorption of vari-
ety, in the case of the VSM based explicitly on Ashby’s
Law of Requisite Variety. It says “Only variety can de-
stroy variety”, which implies that the varieties of two in-
teracting systems must be in balance, if stability is to be
achieved [3]. The VSM has two salient features in this
respect. Firstly, it helps design an organizational unit
for viability, by enabling it to attenuate the complex-
ity of its environment, and also to enhance its eigen-
variety, so that the two are in balance. The term variety
engineering has been used in this context [9]. Secondly,
the recursive structure of the VSM ensures that an orga-
nization with several levelswill develop sufficient eigen-
variety along the fronts on which the complexity it faces
unfolds. Similarly, LST offers the conditions for social
systems to survive, by maintaining thermodynamically
highly improbable energy states via continuous inter-
action with their environments. The difference between
the two approaches is that the VSM functions more in
the strategic and informational domains, while the LST
model essentially focuses on the operational domain.
In sum, both can make a strong contribution related
to coping with the external complexity faced by organi-
zations, and therefore can deliver a strong complement
to SD.

3. Finally, the design of modeling processes confronts SD
with specific challenges. The original SD methodology
of modeling and simulation was to a large extent func-
tionally and technically oriented. This made it strong in
the domain of logical analysis, while the socio-cultural
and political dimensions of the modeling process were,
if not completely out of consideration, at least not a sig-
nificant concern in methodological developments. The
SD community – also under the influence of the soft
systems approaches – has become aware of this limita-
tion and has worked on incorporating features of the
social sciences into its repertoire. The following exam-
ples, which document this effort to close the gap, stand
for many. Extensive work on group model building has
been achieved, which explores the potential of collabo-
rative model building [69]. A new schema for the mod-
eling process has been proposed, which complements
logic-based analysis by cultural analysis [37]. The social
dimension of system dynamics-based modeling has be-

come subject to intensive discussion ([77]; and other
contributions to the special issue of Systems Research
and Behavioral Science, Vol. 51, No. 4, 2006). Finally,
in relation to consultancy methodology, modeling has
been framed as a learning process [34] and as second-
order intervention [60].

As has been shown, there is a need to complement classi-
cal SD with other methodologies, when issues are at stake
which it cannot handle by itself. VSM and LST are excel-
lent choices when issues of organizational diagnosis or de-
sign are to be tackled.

The limitations addressed here call attention to other
methodologies which exhibit certain features that tradi-
tionally were not incorporated, or at least not explicit, in
SD methodology. One aspect concerns the features that
explicitly address the subjectivity of purposes and mean-
ings ascribed to systems. In this context, support for prob-
lem formulation, model construction and strategy design
by individuals on the one hand and groups on the other
are relevant issues. Also, techniques for an enhancement
of creativity (e. g., the generation and the reframing of
options) in both individuals and groups are a matter of
concern. Two further aspects relate to methodological ar-
rangements for coping with the specific issues of negotia-
tion and alignment in pluralist and coercive settings.

As far as the modeling processes are concerned, group
model building has proven to be a valuable complement
to pure modeling and simulation. However, there are
other systems methodologies which should be consid-
ered as potentially apt to enrich SD analysis, namely the
soft approaches commented upon earlier, e. g., interac-
tive planning, soft systemmethodology and critical system
heuristics.

On the other hand, SD can be a powerful complement
to other methodologies which are more abstract or more
static in nature. This potential refers essentially to all sys-
tems approaches which stand in the interpretive (“soft”)
tradition, but also to approaches which stand in the posi-
tivist traditions, such as the VSM and LST. These should
revert to the support of SD in the event that tradeoffs be-
tween different goals must be handled, or if implications
of long-term decisions on short-term outcomes (and vice
versa) have to be ascertained, and whenever contingencies
or vulnerabilities must be assessed.

Actual and Potential Relationships

It should be clear by now that the systems movement has
bred a number of theories and methodologies, none of
which can be considered all-embracing or complete. All of
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them have their strengths and weaknesses, and their spe-
cific potentials and limitations.

Since Burrell and Morgan [12] adverted to incom-
mensurability between different paradigms of social the-
ory, several authors have acknowledged or even advo-
cated methodological complementarism. They argue that
there is a potential complementarity between different
methods, and, one may add, models, even if they come
from distinct paradigms. Among these authors are, e. g.,
Brocklesby [11], Jackson [30], Midgley [43], Mingers [45],
Schwaninger [55] and Yolles [83]. These authors have
opened up a new perspective in comparison with the non-
complementaristic state-of-the-art.

In the past, the different methodologies have led to
the formation of their own traditions and “schools,” with
boundaries across which not much dialogue has evolved.
The methodologies have kept their protagonists busy test-
ing them and developing them further. Also, the differ-
ences between different language games and epistemolog-
ical traditions have often suggested incommensurability,
and therewith have impaired communication. Prejudices
and a lack of knowledge of the respective other side have
accentuated this problem: Typically, “hard” systems scien-
tists are suspicious of “soft” systems scientists. For exam-
ple, many members of the OR community, not unlike or-
thodox quantitatively oriented economists, adhere to the
opinion that “SD is too soft.” On the other hand the pro-
tagonists of “soft” systems approaches, even though many
of them have adopted feedback diagrams (causal loop dia-
grams) for the sake of visualization, are all too often con-
vinced that “SD is too hard.” Both of these judgments indi-
cate a lack of knowledge, in particular of the SD validation
and testing methods available, on the one hand, and the
technical advancements achieved in modeling and simu-
lation, on the other (see [5,59,66]).

In principle, both approaches are complementary. The
qualitative view can enrich quantitative models, and it
is connected to their philosophical, ethical and esthetical
foundations. However, qualitative reasoning tends to be
misleading if applied to causal network structures without
being complemented by formalization and quantification
of relationships and variables. Furthermore, the quanti-
tative simulation fosters insights into qualitative patterns
and principles. It is thus a most valuable device for val-
idating and honing the intuition of decision makers, via
corroboration and falsification.

Proposals that advocate mutual learning between the
different “schools” have been formulated inside the SD
community (e. g., [35]). The International SystemDynam-
ics Conference of 1994 in Stirling, held under the banner of
“Transcending the Boundaries,” was dedicated to the dia-

logue between different streams of the systems movement.
Also, from the 1990s onwards, there were vigorous ef-

forts to deal with methodological challenges, which tra-
ditionally had not been an important matter of scientific
interest within the SD community. Some of the progress
made in these areas is documented in a special edi-
tion of Systems Research and Behavioral Science (Vol. 21,
No. 4, July-August 2004). The main point is that much
of the available potential is based on the complementar-
ity, not the mutual exclusiveness, of the different systems
approaches.

In the future, much can be gained from leverag-
ing these complementarities. Here are two examples of
methodological developments in this direction, which ap-
pear to be achievable and potentially fertile: The enhance-
ment of qualitative components in “soft” systems method-
ologies in the process of knowledge elicitation and model
building (cf. [69]), and the combination of cybernetics-
based organizational design with SD-based modeling and
simulation (cf. [61]). Potential complementarities exist not
only across the qualities – quantities boundary, but also
within each one of the domains. For example, with the
help of advanced software, SD modeling (“top-down”)
and agent-based modeling (“bottom-up”) can be used in
combination.

From a meta-methodological stance, generalist frame-
works have been elaborated which contain blueprints for
combining different methodologies where this is indi-
cated. Two examples are:

� Total systems intervention (TSI) is a framework pro-
posed by Flood and Jackson [19], which furnishes
a number of heuristic schemes and principles for the
purpose of selecting and combining systems meth-
ods/methodologies in a customized way, according to
the issue to be tackled. SD is among the recommended
“tools”.

� Integrative systems methodology (ISM) is a heuristic for
providing actors in organizations with requisite vari-
ety, developed by Schwaninger [55,56]. It advocates (a)
dealing with both content– and context-related issues
during the process, and (b) placing a stronger emphasis
on the validation of qualitative and quantitative models
as well as strategies, in both dimensions of the content
of the issue under study and the organizational context
into which that issue is embedded. For this purpose, the
tools of SD (to model content) and organizational cy-
bernetics – the VSM (to model context) – are cogently
integrated.

These are only two examples. In principle, SD could
make an important contribution in the context of most of
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the methodological frameworks, far beyond the extent to
which this has been the case. Systems methodologists and
practitioners can potentially benefit enormously from in-
cluding SD methodology in their repertoires.

Outlook

There have recently been calls for an eclectic “mixing and
matching” of methodologies. In light of the epistemologi-
cal tendencies of our time towards radical relativism, it is
necessary to warn against taking a course in which “any-
thing goes”. It is most important to emphasize that the de-
sirable methodological progress can only be achieved on
the grounds of scientific rigor. This postulate of “rigor”
is not to be confused with an encouragement of “rigid-
ity.” The necessary methodological principles advocated
here are disciplined thinking, a permanent quest for bet-
ter models (that is, thorough validation), and the highest
achievable levels of transparency in the formalizations as
well as of the underlying assumptions and sources used.
Scientific rigor, in this context, also implies that combina-
tions of methodologies reach beyond merely eclectic add-
ons from different methodologies, so that genuine inte-
gration towards better adequacy to the issues at hand is
achieved.

The contribution of system dynamics can come in the
realms of the following:

� Fostering disciplined thinking
� Understanding dynamic behaviors of systems and the

structures that generate them
� Exploring paths into the future and the concrete impli-

cations of decisions
� Assessing strategies as to their robustness and vulner-

abilities, in ways precluded by other, more philosophi-
cal, and generally “soft” systems approaches

These latter streams can contribute to reflecting and tack-
ling the meaning- and value-laden dimensions of com-
plex human, social and ecological systems. Some of their
features should and can be combined synergistically with
system dynamics, particularly by being incorporated into
the repertoires of system dynamicists. From the reverse
perspective, incorporating system dynamics as a standard
tool will be of great benefit for the broad methodologi-
cal frameworks. Model formalization and dynamic simu-
lation may even be considered necessary components for
the study of the concrete dynamics of complex systems.

Finally, there are also many developments in the
“hard”, i. e., mathematics-, statistics-, logic-, and infor-
matics-based methods and technologies, which are apt
to enrich the system dynamics methodology, namely in

terms of modeling and decision support. For example,
the constantly evolving techniques of time-series analy-
sis, filtering, neural networks and control theory can im-
prove the design of system-dynamics-based systems of
(self-)control. Also, a bridge across the divide between the
top-down modeling approach of SD and the bottom-up
approach of agent-based modeling appears to be feasible.
Furthermore, a promising perspective for the design of
genuinely “intelligent organizations” emerges if one com-
bines SD with advanced database-management, coopera-
tive model building software, and the qualitative features
of the “soft” systems methodologies.

The approaches of integrating complementary
methodologies outlined in this contribution definitely
mark a new phase in the history of the systems movement.

Appendix

Milestones in the Evolution of the Systems Approach
in General and System Dynamics in Particular

The table gives an overview of the systems movement’s
evolution, as shown in its main literature; and that
overview is not exhaustive.

Systems Approaches – An Overview

Note: This diagram shows three streams of the systems
approach in the context of their antecedents. The general
systems thread has its origins in philosophical roots from
antiquity: The term system derives from the old Greek
�(́����˛ (systēma), while, cybernetics stems from the
Greek �(ˇ"���́��& (kybernētēs). The arrows between the
threads stand for interrelationships and efforts to synthe-
size the connected approaches. For example, integrated
systems methodology is an integrative attempt to lever-
age the complementarities of system dynamics and orga-
nizational cybernetics. Enumerated to the left and right of
the scheme are the fields of application. The big arrows
in the upper region of the diagram indicate that the roots
of the systems approach continue influencing the different
threads and the fields of application even if the path via
general systems theory is not pursued.

The diagram is not a complete representation, but the
result of an attempt to map the major threads of the sys-
tems movement and some of their interrelations. Hence,
the schema does not cover all schools or protagonists of
the movement. Why does the diagram show a dynamic
and evolutionary systems thread and a cybernetics thread,
if cybernetics is about dynamic systems? The latter em-
braces all the approaches that are explicitly grounded in
cybernetics. The former relates to all other approaches
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System Dynamics in the Evolution of the Systems Approach, Table 1
Milestones in the evolution of the systems approach in general and system dynamics in particular

Foundations of general system theory
Von Bertalanffy Zu einer allgemeinen Systemlehre 1945

An Outline of General System Theory 1950
General System Theory 1968

Bertalanffy, Boulding, Gerard, Rapoport Foundation of the Society for General Systems Research 1953
Klir An Approach to General System Theory 1968
Simon The Sciences of the Artificial 1969
Pichler Mathematische Systemtheorie 1975
Miller Living Systems 1978
Mesarovic & Takahara Abstract Systems Theory 1985
Rapoport General System Theory 1986
Foundations of cybernetics
Macy Conferences
(Josiah Macy, Jr. Foundation)

Cybernetics. Circular Causal, and Feedback Mechanisms in Biological and
Social Systems

1946–1951

Wiener Cybernetics or Control and Communication in the Animal and in the Machine 1948
Ashby An Introduction to Cybernetics 1956
Pask An Approach to Cybernetics 1961
Von Foerster, Zopf Principles of Self-Organization 1962
McCulloch Embodiments of Mind 1965
Foundations of organizational cybernetics
Beer Cybernetics and Management 1959

Towards the Cybernetic Factory 1962
Decision and Control 1966
Brain of the Firm 1972

Von Foerster Cybernetics of Cybernetics 1974
Foundations of system dynamics
Forrester Industrial Dynamics 1961

Principles of Systems 1968
Urban Dynamics 1969
World Dynamics 1971

Meadows et al. Limits to Growth 1972
Richardson Feedback Thought in Social Science and Systems Theory 1991
Systemsmethodology
Churchman Challenge to Reason 1968

The Systems Approach 1968
Vester & von Hesler Sensitivitätsmodell 1980
Checkland Systems Thinking, Systems Practice 1981
Ackoff Creating the Corporate Future 1981
Ulrich Critical Heuristics of Social Planning 1983
Warfield A Science of Generic Design 1994
Schwaninger Integrative Systems Methodology 1997
Gharajedaghi Systems Thinking 1999
Sabelli Bios – A Study of Creation 2005
Selected recent works in system dynamics
Senge The Fifth Discipline 1990
Barlas & Carpenter Model Validity 1990
Vennix Group Model Building 1996
Lane & Oliva Synthesis of System Dynamics and Soft Systems Methodology 1998
Sterman Business Dynamics 2000
Warren Strategy Dynamics 2002, 2008
Wolstenholme Archetypal Structures 2003
Morecroft Strategic Modelling 2007
Schwaninger & Grösser Theory-building with System Dynamics & Model Validation 2008, 2009
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<<<

Dynamic & Evolu-
tionary Syst.Thread

System Dynamics
(Forrester, Meadows, 
Richmond, Sterman)

Dynamic(al) Systems
(Luenberger, Abraham, 

Haken)

Control Theory
(Lyapunov, Nyquist,

Powers)

Chaos Theory
(Poincaré, Kolmogorov,

Lorenz, Mandelbrot)

Cellular Automata
(Turing, von Neumann)

Agent-based Modeling &
Evolutionary Computation
(Holland, Wolfram, Langton)

Complexity Theory
(Kauffman)

<<<

<<<
Fields of 

Application

Operations
Research

Engineering
& Computer

Science

Economics

Sociology

Organization
& Management

Ecology

Political
Science

Cybernetics Thread
Soft Systems

(Interpretive) Thread

"Cybernetics"
(Wiener, Ashby)

Neurocybernetics
(McCulloch, Pitts)

Information Theory
(Shannon & Weaver)

Conversation Theory
(Pask)

Communication Theory
(Watzlawick, Beavin,

Jackson)

Political Cybernetics
(Deutsch)

Managerial Cybernetics
(Beer, Espejo)
Second-order 
Cybernetics

(von Foerster, Luhmann)

Systems Epistemology
(Vickers, Bateson, 

Churchman, van Gigch)

Social Systems Design 
(Churchman)

Interactive Planning
(Ackoff, Gharajedaghi)

Soft Systems 
Methodology

(Checkland, Wilson)

Soft Operations 
Research

(Eden, N. Howard, 
Rosenhead)

Total Systems 
Intervention

(Flood, Jackson)

Critical Systems 
Heuristics
(W. Ulrich)

Integrative 
Systems

Methodology
(Schwaninger)

Sensitivity 
Model (Vester)
Cybersemiotics

(Brier)

Generic 
Design 

(Warfield)
Mental 
Models
(Senge)

Group Model 
Building 
(Vennix, 

Andersen, 
Richardson) 

Fields of 
Application

Ethics

Esthetics

Semiotics

Anthro-
pology

Psychology
& Psychiatry

Medicine

Neuro-
science

Origins

Philosophy, Mathematics, Logic, Biology, Social Sciences, etc.

General Systems Thread
GST (von Bertalanffy, Rapoport, Gerard, Boulding), LST (Miller), Systems Philosphy (Laszio) 

Connections/
Synthesis

Connections/
Synthesis

Code:
GST: General Systems Theory
LST: Living Systems Theory

System Dynamics in the Evolution of the Systems Approach, Figure 1

concerned with dynamic or evolutionary systems. The
simplification made it necessary to somewhat curtail log-
ical perfection for the sake of conveying a synoptic view
of the different systems approaches, in a language that
uses the categories common in current scientific and pro-
fessional discourse. Overlaps exist, e. g., between dynamic
systems and chaos theory, cellular automata and agent-
based modeling.
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When Jay Wright Forrester published his first paper in
1958 he subtitled it “a major breakthrough for decision-
makers”. At the time some thought this rather an exag-
geration if not pompous. Now that 50 years of system
dynamics (SD) has elapsed we can at least point to the
achievements made and re-state continuing progress in

the pages of this section. Was it a ‘major breakthrough’?
It certainly has the potential to raise the standards in evi-
dence-based policy making to warrant this description and
some startlingly good examples of such work will be men-
tioned here. But after 50 years perhaps one might expect
more than has surfaced heretofore.

The key might be connected to the skills required to
formulate good SD models – those which address a real-
world problem with devastating simplicity and insight. It
is deceptively easy to produce an SD model but there are
subtleties involved in producing a really effective model
for policy purposes. An uplift in modeling skills is some-
thing which a subset of the (now significant) amount of
published material on SD is aimed at and this section will
add to that corpus of work. In addition it will illustrate
the extent to which SD applications have spread from its
genesis in business to embrace health care, environmen-
tal, energy and climate issues, project management, some
aspects of biological science and human physiology, gov-
ernmental and public policy generally, economics (mainly
macro), the diffusion of innovations and finally social and
economic development. Other applications are being en-
countered as the power of the methodology is becoming
appreciated. It has long since justified the change of ti-
tle from Industrial Dynamics (1958) to System Dynamics
(1970 onwards).

Richardson contributes an overview of the basics of SD
modeling (see � System Dynamics, The Basic Elements
of). The underlying conceptual framework is that of the
information feedback loop together with resource stocks
and flows and an endogenous perspective on causation.
The simplicity of the loop concept is apt to contribute to
the apparent ease with which SD models can be created
(along with the icon-based suites of SD software). But the
novice reader should appreciate that it can take time to as-
similate the modeling skills necessary to execute well an
SD model-based application. Practice is essential and the
references included will lead to further published material
to assist the steep climb up the learning curve. So-called
experts are still being confronted with the subtleties of SD
modeling after years of involvement.

To place the SD methodology in context, the contri-
bution by Schwaninger (see � System Dynamics in the
Evolution of the Systems Approach) profiles it along-
side various others ‘systems’ based approaches which have
emerged in the management and social sciences. Those
professing to become experts in SD need to know about
the other range of approaches which co-exist in the field of
systems science. All these other methodologies have their
own enthusiasts and this may even extend to the forma-
tion of societies with annual conferences. His Appendix B
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shows a diagram of the different systems approaches and
their interrelationships.

The foundations of the SD methodology can be char-
acterized by certain philosophical issues. Olaya’s text (see
� System Dynamics Philosophical Background and Un-
derpinnings) defines a central one as presentationalism,
associated with the notion of ‘mental models’. A number
of other philosophical issues which relate to SD are intro-
duced, including those of positivism and social theory.

The practice of SD when applied to real-world appli-
cations essentially involves managerial learning and will
often involve an interaction with client teams rather than
one individual. How best to organize such structured ap-
proaches to participative model building is described by
Rouwette and Vennix (see � Group Model Building).
Client participation is required for successful modeling.

If the promotion of learning and understanding is the
primary raison d’etre of SD, then achievement of this goal
in an individual can be a significant accomplishment, es-
pecially if that person is the most senior in the client team.
But there is a further goal to be pursued should the study
fully reap the benefits of the SDmethodology: How can we
foster organizational learning? Maani tackles this head on
(see � System Dynamics and Organizational Learning).
He defines the core capabilities of a learning organization
and goes on to list the developing literature on organiza-
tional learning and, most importantly, how SD can aid the
process through learning laboratories and microworlds.

Running an SD model creates a time-path of output
behavior covering all the variables it is deemed necessary
to include in the model. The various runs of the model are,
most frequently, addressed in comparative fashion rather
than taken in isolation. They can therefore be described
as computer-based scenarios each of which charts a pos-
sible but not assured future. Georgantzas (see � Scenari-
o-Driven Planning with System Dynamics) describes en-
vironmental (traditional) scenario generation for which
there is a considerable body of literature. But he empha-
sizes that successful strategy design involves the integra-
tion of three things: a knowledge of the business environ-
ment; the effects of unstated assumptions about change in
the environment and strategy on performance; and finally
the need to compute the effects on organizational perfor-
mance. These three facets are accomplished by the process
of SD modeling.

Thus far this introductory roadmap has covered all the
background for contextualizing and creating an SDmodel.
We now turn to various tasks associated with ex post mod-
eling activities. Three such aspects are covered: model val-
idation; analytical methods to explain behavior and deter-
mine dominant loops; and model optimization.

Schwaninger and Groesser (see � System Dynamics
Modeling: Validation for Quality Assurance) range over
the various aspects of model validation, beginning with its
epistemological foundations. In real-worldmodeling stud-
ies testing and validation is a sine qua non of the pro-
cess. The range of tests made available and the attention
given to the task of validation in the literaturemark out SD
as unique in the field of management science. Few other
methodologies get near to the variety of tests which can be
applied to an SD model. The authors consider the range of
tests under three headings: model-related context; model
structure; and model behavior.

Kampmann and Oliva deal with the behavioral analy-
sis issue (see� System Dynamics, Analytical Methods for
Structural Dominance Analysis in). This activity tries to
shed light on the model’s dynamic behavior: Why does it
behave as it does?What loop structures are responsible for
the dominant behavior – and indeed shifts in that behav-
ior where it occurs? In other words, they explore the link
between system structure and dynamic behavior. Early
methods used eigenvalue analysis but, since then, more
sophisticated approaches have been put forward. A major
advance will occur when one or more of these is refined
enough to be included in an SD software package. This is
likely to take some time although an improved user inter-
face showing links glowing with differing degrees of inten-
sity, reflecting their relative importance, is possible in the
not-too-distant future.

Dangerfield describes the methods for improving
model performance (see� System Dynamics Models, Op-
timization of). The task can be categorized under two
headings: calibration and policy optimization. The for-
mer relates to the determination of optimal parameter sets
which deliver the best fit of the model to past time series
data. Policy optimization on the other hand seeks to estab-
lish policies which deliver the ‘best’ performance against
a suitable metric, such as minimum cost or maximum rev-
enue. Using such an approach can accelerate the learning
which comes from repeated runs of the model. Sadly, in
the existing SD literature, there is scant evidence of its use
in real-world studies.

Themethodology of SD exists for no other reason than
to offer a quantum leap in the standards of policy anal-
ysis. Therefore, any review must include a range through
the landscape which defines areas of application. There are
eight such areas covered in this section and the choice has
been made in the knowledge that there are others which
may also have been included and some new areas which
are only just being opened up to the tools of SD modeling.

Business Strategy was the genesis of SD applications
and rightly takes pride of place. This is the field in which
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the most numerous SD applications occur. Lyneis (see
� Business Policy and Strategy, System Dynamics Appli-
cations to) concentrates on the process of how SD models
are used in the task of strategy formulation. He goes on
to consider the various drivers of business dynamics such
as oscillations in supply chains and boom and bust life cy-
cles. Detailed references are provided for a wide range of
business application case studies.

Health care is consuming a higher share of GDP in
many Western industrialized countries. This is due to the
age profile of the population and advances in pharmaco-
logical and medical technologies. It is unsurprising that
SD methods have been applied in tackling some of the
most high-profile issues in health care and the relatively
recent literature is testimony to the success of SD-based
analysis. Indeed, it is arguable that some of the best mod-
eling applications have surfaced in this sector. To do jus-
tice to the field of health care two contributions were so-
licited, in part because of the different funding systems
which exist on either side of the Atlantic: Wolstenholme
surveys the work done by UK and European authors (see
�Health Care in the UnitedKingdom and Europe, System
Dynamics Applications to), whilst Hirsch andHomer con-
centrate on work published by US authors (see � Health
Care in the United States, System Dynamics Applications
to).

Wolstenholme describes work carried out in the UK
and Continental Europe but gives particular emphasis to
three areas where models have been deployed. He starts
with the problem of delayed hospital discharge which gen-
erates hospital capacity problems. Epidemiology is also
reviewed, in particular research on the epidemiology of
HIV/AIDS. Finally, recent work on mental health reform
in the UK is described.

Hirsch and Homer note that the system in the USA
is comparatively difficult to manage because of its free-
market approach and relative lack of regulation. They con-
centrate on threemain areas: disease epidemiology includ-
ing heart disease and diabetes; substance abuse; and health
care capacity and delivery.

Along with health care, the depletion of environmen-
tal resources and its effects has consumedmany thousands
of column inches in printed news media. SD has been em-
ployed in the pursuit of more compelling applications in
this sector and the efforts go back to the well-known Lim-
its to Growth study in 1971–72. Ford charts the most no-
table efforts which have emerged (see � System Dynam-
ics Models of Environment, Energy and Climate Change).
He ranges over environmental resource problems in the
western USA, models for greater understanding of climate
change and global warming and concludes with studies in

energy, specifically two applications to the electric power
industry.

The field of economics is one where SD has received
a mostly hostile reception. The statistical economic mod-
eling tool of econometrics has an extensive history and
as a preferred modeling methodology seems hard to dis-
lodge. However, there are an increasing number of hetero-
dox economists who are prepared to embrace SD concepts
and Radzicki (see � System Dynamics and Its Contribu-
tion to Economics and Economic Modeling) describes the
advances taking place. Whilst some of the literature em-
bodies the translation of existing economic models into an
SD format (which is a laudable objective) he calls for more
economic dynamics models to be built from scratch em-
bodying the best practice in SD modeling. Economic pol-
icy is too important to be informed by a single, seemingly
unassailable, modeling methodology and it is to be hoped
that in the future SD will become even more accepted as
a viable tool for use in this field.

In a similar vein comes the contribution of Saeed (see
� Dynamics of Income Distribution in a Market Econ-
omy: Possibilities for Poverty Allevation). He takes an eco-
nomic modeling perspective and describes an SD model
which explains resource allocation, production and enti-
tlements in a market economy. Its purpose is to under-
stand better how poverty might be reduced in the context
of the redistribution of income. A comprehensive listing
of the model is provided in an appendix.

The application of SD to public policy generally is dealt
with by Andersen, Rich and MacDonald (see � Public
Policy, System Dynamics Applications to). They empha-
size how public policy issues are complex, cross organi-
zational boundaries, involve stakeholders with widely dif-
ferent perspectives and evolve over time, such that longer
term results may be wholly different from short-term out-
comes. Detail is provided for one public policy case in-
volving the Governor’s Office of Regulatory Assistance in
New York State. They conclude with coverage of studies
in a range of public domains such as defense, health care,
education and the environment.

One area of SD application has brought the methodol-
ogy into the legal arena. Disruption and delay in the exe-
cution of complex projects invariably finds two parties in
dispute. Such disputes often center upon time delays and
use of resources on projects – and what might have hap-
pened if things had been managed differently. SD models
have been employed by parties to such disputes to attempt
to justify the occurrence of these events. Howick, Acker-
mann, Eden and Williams (see � Delay and Disruption
in Complex Projects) report on how cognitive mapping,
cause mapping and SD can be fused into what they de-
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scribe as a cascade model building process. The result is
a rigorous process for explaining why a project behaved in
a certain way.

New products and processes are emerging at an ever-
increasing rate in modern times. We need to understand
themyriadmechanismswhich are the basis for their rate of
adoption. Milling andMaier range over various SDmodels
which have been created to understand and improve the
management of the diffusion of innovations (see � Dif-
fusion of Innovations, System Dynamics Analysis of the).
From the often-cited Bass diffusion model (1969) the au-
thors develop a series of additional features in a modu-
lar fashion. These features include competition, network
externalities, dynamic pricing and research and develop-
ment. They conclude by stressing how it is not possible to
offer general recommendations for strategies in dynamic
and complex environments; such recommendations can
only be given in the context of the specific case under
scrutiny.
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Glossary

Stock Stocks, which are sometimes referred to as “levels”
or “states”, accumulate (i. e., sum up) the information
or material that flows into and out of them. Stocks
are thus responsible for decoupling flows, creating de-

lays, preserving system memory, and altering the time
shape of flows.

Flow Flows of information or material enter and exit
a system’s stocks and, in so doing, create a system’s
dynamics. Stated differently, the net flow into or out
of a stock is the stock’s rate of change. When hu-
man decision making is represented in a system dy-
namics model, it appears in the system’s flow equa-
tions. Mathematically, a system’s flow equations are
ordinary differential equations and their format de-
termines whether or not a system is linear or nonlin-
ear.

Feedback Feedback is the transmission and return of in-
formation about the amount of information or mate-
rial that has accumulated in a system’s stocks. When
the return of this information reinforces a system’s be-
havior, the loop is said to be positive. Positive loops
are responsible for the exponential growth of a sys-
tem over time. Negative feedback loops represent goal
seeking behavior in complex systems. When a nega-
tive loop detects a gap between the amount of infor-
mation or material in a system’s stock and the desired
amount of information or material, it initiates correc-
tive action. If this corrective action is not significantly
delayed, the system will smoothly adjust to its goal. If
the corrective action is delayed, however, the system
can overshoot or undershoot its goal and the system
can oscillate.

Full information maximum likelihood with opti-
mal filtering FIMLOF is a sophisticated technique for es-

timating the parameters of a system dynamics model,
while simultaneously fitting its output to numerical
data. Its intellectual origins can be traced to control
engineering and the work of Fred Schwepe. David Pe-
terson pioneered a method for adapting FIMLOF for
use in system dynamics modeling.

Definition of the Subject

System dynamics is a computer modeling method that has
its intellectual origins in control engineering,management
science, and digital computing. It was originally created as
a tool to helpmanagers better understand and control cor-
porate systems. Today it is applied to problems in a wide
variety of academic disciplines, including economics. Of
note is that system dynamics models often generate be-
havior that is both counterintuitive and at odds with tradi-
tional economic theory. Historically, this has caused many
system dynamics models to be evaluated critically, espe-
cially by some economists. However, today economists
from several schools of economic thought are beginning to
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use system dynamics, as they have found it useful for in-
corporating their nontraditional ideas into formal models.

Introduction

System dynamics is a computer simulation modeling
methodology that is used to analyze complex nonlinear
dynamic feedback systems for the purposes of generat-
ing insight and designing policies that will improve sys-
tem performance. It was originally created in 1957 by Jay
W. Forrester of the Massachusetts Institute of Technol-
ogy as a method for building computer simulation mod-
els of problematic behaviorwithin corporations. Themod-
els were used to design and test policies aimed at altering
a corporation’s structure so that its behavior would im-
prove and become more robust. Today, system dynamics
is applied to a large variety of problems in a multitude of
academic disciplines, including economics.

System dynamics models are created by identifying
and linking the relevant pieces of a system’s structure
and simulating the behavior generated by that structure.
Through an iterative process of structure identification,
mapping, and simulation a model emerges that can ex-
plain (mimic) a system’s problematic behavior and serve
as a vehicle for policy design and testing.

From a system dynamics perspective a system’s struc-
ture consists of stocks, flows, feedback loops, and limit-
ing factors. Stocks can be thought of as bathtubs that ac-
cumulate/de-cumulate a system’s flows over time. Flows
can be thought of as pipe and faucet assemblies that fill or
drain the stocks. Mathematically, the process of flows ac-
cumulating/de-cumulating in stocks is called integration.
The integration process creates all dynamic behavior in
the world be it in a physical system, a biological system,
or a socioeconomic system. Examples of stocks and flows
in economic systems include a stock of inventory and its
inflow of production and its outflow of sales, a stock of the
book value of a firm’s capital and its inflow of investment
spending and its outflow of depreciation, and a stock of
employed labor and its inflow of hiring and its outflow of
labor separations.

Feedback is the transmission and return of informa-
tion about the amount of information or material that
has accumulated in a system’s stocks. Information trav-
els from a stock back to its flow(s) either directly or in-
directly, and this movement of information causes the sys-
tem’s faucets to open more, close a bit, close all the way, or
stay in the same place. Every feedback loop has to contain
at least one stock so that a simultaneous equation situa-
tion can be avoided and amodel’s behavior can be revealed
recursively. Loops with a single stock are termed minor,

while loops containing more than one stock are termed
major.

Two types of feedback loops exist in system dynam-
ics modeling: positive loops and negative loops. Generally
speaking, positive loops generate self-reinforcing behavior
and are responsible for the growth or decline of a system.
Any relationship that can be termed a virtuous or vicious
circle is thus a positive feedback loop. Examples of positive
loops in economic systems include path dependent pro-
cesses, increasing returns, speculative bubbles, learning-
by-doing, and many of the relationships found in macroe-
conomic growth theory. Forrester [12], Radzicki and Ster-
man [46], Moxnes [32], Sterman (Chap. 10 in [55]), Radz-
icki [44], Ryzhenkov [49], andWeber [58] describe system
dynamics models of economic systems that possess domi-
nant positive feedback processes.

Negative feedback loops generate goal-seeking behav-
ior and are responsible for both stabilizing systems and
causing them to oscillate. When a negative loop detects
a gap between a stock and its goal it initiates corrective
action aimed at closing the gap. When this is accom-
plished without a significant time delay, a system will ad-
just smoothly to its goal. On the other hand, if there are
significant time lags in the corrective actions of a neg-
ative loop, it can overshoot or undershoot its goal and
cause the system to oscillate. Examples of negative feed-
back processes in economic systems include equilibrating
mechanisms (“auto-pilots”) such as simple supply and de-
mand relationships, stock adjustment models for inven-
tory control, any purposeful behavior, and many of the re-
lationships found in macroeconomic business cycle the-
ory. Meadows [27], Mass [26], Low [23], Forrester [12],
and Sterman [54] provide examples of system dynamics
models that generate cyclical behavior at the macro-eco-
nomic and micro-economic levels.

From a system dynamics point of view, positive and
negative feedback loops fight for control of a system’s be-
havior. The loops that are dominant at any given time de-
termine a system’s time path and, if the system is nonlin-
ear, the dominance of the loops can change over time as
the system’s stocks fill and drain. From this perspective,
the dynamic behavior of any economy – that is, the in-
teractions between the trend and the cycle in an economy
over time – can be explained as a fight for dominance be-
tween the economy’s most significant positive and nega-
tive feedback loops.

In system dynamics modeling, stocks are usually con-
ceptualized as having limits. That is, stocks are usually seen
as being unable to exceed or fall below certain maximum
and minimum levels. Indeed, an economic model that can
generate, say, either an infinite and/or a negative work-
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System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 1
Simple system dynamics model containing examples of all components of system structure

force would be seen as severely flawed by a system dy-
namicist. As such, when building a model system dynam-
icists search for factors that may limit the amount of ma-
terial or information that the model’s stocks can accumu-
late. Actual socioeconomic systems possess many limiting
factors including physical limits (e. g., the number of wid-
gets a machine can produce per unit of time), cognitive
limits (e. g., the amount of information an economic agent
can remember and act upon), and financial limits (e. g., the
maximum balance allowed on a credit card). When limit-
ing factors are included in a system dynamics model, the
system’s approach to these factors must be described. Gen-
erally speaking, this is accomplished with nonlinear re-
lationships. Figure 1 presents a simple system dynamics
model that contains examples of all of the components of
system structure described above.

Types of Dynamic Simulation

From a system dynamics point of view, solving a dynamic
model – any dynamic model – means determining how

much material or information has accumulated in each of
a system’s stocks at every point in time. This can be ac-
complished in one of two ways – analytically or via sim-
ulation. Linear dynamic models can be solved either way.
Nonlinear models, except for a few special cases, can only
be solved via simulation.

Simulated solutions to dynamic systems can be at-
tained from either a continuous (analog) computer or
a discrete (digital) computer. Understanding the basic
ideas behind the two approaches is necessary for under-
standing how economic modeling is undertaken with sys-
tem dynamics.

In the real world, of course, time unfolds continuously.
Yet, devising a way to mimic this process on a machine is
a bit tricky. On an analog computer, the continuous flow of
economic variables in and out of stocks over time is mim-
icked by the continuous flow of some physical substance
such as electricity or water. A wonderful example of the
later case is the Phillips Machine, which simulates an or-
thodox Keynesian economy (essentially the IS-LM model)
with flows of colored water moving through pipes and ac-
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cumulating in tanks. Barr [2] provides a vivid description
of the history and restoration of the Phillips Machine.

On a digital computer, the continuous flow of eco-
nomic variables in and out of stocks over time is approxi-
mated by specifying the initial amount of material or infor-
mation in a system’s stocks, breaking simulated time into
small increments, inching simulated time forward by one
of these small increments, calculating the amount of mate-
rial or information that flowed into and out of the system’s
stocks during this small interval, and then repeating. The
solution to the system will always be approximate because
the increment of time cannot bemade infinitesimally small
and thus simulated time cannot be made perfectly contin-
uous. In fact, on a digital computer a trade-off exists be-
tween round-off error and integration error. If the incre-
ment of time is made too large, the approximate solution
can be poor due to integration error. If the increment of
time is made too small, the approximate solution can be
ruined due to round-off error.

In system dynamics modeling the “true” behavior of
the underlying system is conceptualized to unfold over
continuous time. As such, mathematically, a system dy-
namics model is an ordinary differential equation model.
To approximate the solution to a continuous time ordi-
nary differential equation model on a digital (discrete)
computer, however, difference equations are used. Unlike
traditional difference equation modeling in economics, in
which the increment of time is chosen to match economic
data (typically a quarter or a year), the increment of time
in system dynamics modeling is chosen to yield a solution
that is accurate enough for the problem at hand, yet avoids

System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 2
System dynamics representation of John Hicks’ multiplier-accelerator difference equation model

the problems associated with significant round-off and in-
tegration error.

The use of difference equations to approximate the un-
derlying differential equations represented by a system dy-
namics model provides another interesting option when it
comes to economic modeling. Since many well known dy-
namic economic models have been created with difference
equations, they can be recast in a system dynamics format
by using the difference equations in the system dynamics
software literally as difference equations, and not as a tool
to approximate the underlying continuous time system.
Although doing this deviates from the original ideas em-
bodied in the system dynamics paradigm, it is occasion-
ally done when a modeler feels that analyzing a difference
equation model in a system dynamics format will yield
some additional insight.

Translating Existing EconomicModels
into a SystemDynamics Format

There are three principle ways that system dynamics is
used for economic modeling. The first involves translat-
ing an existing economic model into a system dynamics
format, while the second involves creating an economic
model from scratch by following the rules and guidelines
of the system dynamics paradigm. Forrester [7], Richard-
son and Pugh [47], Radzicki [42], and Sterman [55] pro-
vide extensive details about these rules and guidelines.
The former approach is valuable because it enables well-
known economic models to be represented in a common
format, which makes comparing and contrasting their as-
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System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 3
System dynamics representation of Robert Solow’s ordinary differential equation growth model

sumptions, concepts, structures, behaviors, etc., fairly easy.
The latter approach is valuable because it usually yields
models that are more realistic and that produce results
that are “counterintuitive” [11] and thus thought-provok-
ing.

The third way that system dynamics can be used for
economic modeling is a “hybrid” approach in which a well
known economicmodel is translated into a system dynam-
ics format, critiqued, and then improved by modifying it
so that it more closely adheres to the principles of system
dynamics modeling. This approach attempts to blend the
advantages of the first two approaches, although it is more
closely related to the former.

Generally speaking, existing economic models that
can be translated into a system dynamics format can be
divided into four categories: written, static (mathemati-
cal), difference equation, and ordinary differential equa-
tion. Existing economic models that have been created
in either a difference equation or an ordinary differential
equation format can be translated into system dynamics
in a fairly straight-forward manner. For example, Fig. 2
presents Sir John Hicks’ [21] Multiplier-Accelerator dif-
ference equation model in a system dynamics format and
Fig. 3 presents the Robert Solow’s [52] ordinary differen-
tial equation growth model in a system dynamics format.

Translating existing static and written economic mod-
els and theories into a system dynamics format is a more
formidable task.Writtenmodels and theories are often dy-
namic, yet are describedwithout mathematics. Static mod-
els and theories are often presented with mathematics, but
lack equations that describe the dynamics of any adjust-
ment processes they may undergo. As such, system dy-
namicists must devise equations that capture the dynam-
ics being described by the written word or that reveal the

adjustment processes that take place when a static system
moves from one equilibrium point to another.

An interesting example of a system dynamics model
that was created from a written economic model is Barry
Richmond’s [48] model of Adam Smith’s Wealth of Na-
tions. This model was created principally from Robert
Heilbronner’s [20] written description of Smith’s eco-
nomic system. A classic example of a static model that has
been translated into a system dynamics format is a simple
two sector Keynesian cross model, as is shown in Fig. 4.

Improving Existing EconomicModels
with SystemDynamics

The simple two sector Keynesian cross model presented
in Fig. 4 is an example of a well known economic model
that can be improved after it has been translated into
a system dynamics format. More specifically, in this ex-
ample the flow of investment spending in the model
does not accumulate anywhere. This violates good sys-
tem dynamics modeling practice and can be fixed. Fig-
ure 5 presents the improved version of the Keynesian
Cross model, which now more closely adheres to the sys-
tem dynamics paradigm. Other well known examples of
classic economics models that have been improved after
they have been translated into a system dynamics format
and made to conform more closely with good system dy-
namics modeling practice include the cobweb model [27],
Sir John Hicks’ multiplier-accelerator model [23], the
IS-LM/AD-AS model [13,59], Dale Jorgenson’s invest-
ment model [51], William Nordhaus’ [34] DICE climate
change model [4,5], and basic micro economic supply
and demand mechanisms [24]. Low’s improvement of
Hicks’ model is particularly interesting because it results
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System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 4
Simple two sector Keynesian cross model in a system dynamics format

System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 5
Improved simple two sector Keynesian cross model

in a model that closely resembles Bill Phillips’ [40] multi-
plier-accelerator model. Senge and Fiddaman’s contribu-
tions are also very interesting because they demonstrate
how the original economicmodels are special cases of their
more general system dynamics formulations.

Creating Economic DynamicsModels from Scratch

Although translating well known economic models into
a system dynamics format can arguably make them easier
to understand and use, system dynamicists believe that the
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“proper” way to model an economic system that is experi-
encing a problem is to do so from scratch while following
good system dynamics modeling practice. Unlike ortho-
dox economists who generally follow a deductive, logical
positivist approach to modeling, system dynamicists fol-
low an inductive pattern modeling or case study process.
More specifically, a system dynamicist approaches an eco-
nomic problem like a detective who is iteratively piecing
together an explanation at a crime scene. All types of data
that are deemed relevant to the problem are considered in-
cluding numerical, written, and mental information. The
system dynamicist is guided in the pattern modeling pro-
cess by the perceived facts of the case, as well as by real ty-
pologies (termed “generic structures” in system dynamics)
and principles of systems. Real typologies are commonali-
ties that have been found to exist in different pattern mod-
els and principles of systems are commonalities that have
been found to exist in different real typologies. Paich [36]
discusses generic structures at length and Forrester [8] lays
out a set of principles of systems.

Examples of a real typologies in economics include
Forrester’s [9] Urban Dynamics model, which can repro-
duce the behavior of many different cities when properly
parametrized for those cities, and Homer’s [22] model of
the diffusion of new medical technologies into the mar-
ket place, which can explain the behavior of a wide variety
of medical technologies when properly parametrized for
those technologies. Examples of fundamental principles
of systems include the principle of accumulation, which
states that the dynamic behavior of any system is due to
flows accumulating in stocks, and the notion of stocks and
flows being components of feedback loops. The parallels
for these principles in economics can be found in modern
Post Keynesian economics, in which modelers try to build
“stock-flow consistent models,” and in institutional eco-
nomics, in which the principle of “circular and cumulative
causation” is deemed to be a fundamental cause of eco-
nomic dynamics. Radzicki [41,43,45] lays out the case for
the parallels that exist betweenmethodological concepts in
system dynamics and methodological concepts in various
schools of economic thought.

The economic models that have been historically cre-
ated from scratch by following the system dynamics
paradigm have tended to be fairly large in scale. For-
rester’s [12] national economic model is a classic exam-
ple, as are the macroeconomic models created by Ster-
man [53], the Millennium Institute [31], Radzicki [45],
Wheat [59], and Yamaguchi [60]. Dangerfield [3] has
developed a model of Sarawak (E. Malaysia) to ana-
lyze and plan for economic transition from a production
economy to a knowledge-based one. With the exception

of Radzicki [45], whose model is based on ideas from
Post Keynesian and institutional economics, these mod-
els, by and large, embody orthodox economic relation-
ships.

Model Validity

When a system dynamics model of an economic system
that is experiencing a problem is built from scratch, the
modeling process is typically quite different from that
which is undertaken in traditional economics. As such, the
question is raised as to whether or not an original system
dynamics model is in any sense “valid”.

System dynamicists follow a “pattern modeling” ap-
proach [41] and do not believe that models should be
judged in a binary fashion as either “valid” or “invalid”.
Rather, they argue that confidence in models can be gen-
erated along multiple dimensions. More specifically, sys-
tem dynamicists such as Peterson [38], Forrester and
Senge [16] and Barlas [1] have developed a comprehensive
series of tests that can be applied to a model’s structure
and behavior and they argue that the more tests a model
can pass, the more confidence a model builder or user
should place in its results. Evenmore fundamentally, how-
ever, Forrester [13] has argued that the real value gener-
ated through the use of system dynamics comes, not from
any particular model, but from the modeling process itself.
In other words, it is through the iterative process of model
conceptualization, creation, simulation, and revision that
true learning and insight are generated, and not through
interaction with the resulting model.

Another issue that lies under the umbrella of model va-
lidity involves fitting models to time series data so that pa-
rameters can be estimated and confidence in model results
can be raised. In orthodox economics, of course, econo-
metric modeling is almost universally employed when do-
ing empirical research. Orthodox economic theory dic-
tates the structure of the econometric model and powerful
statistical techniques are used to tease out parameter val-
ues from numerical data.

System dynamicists, on the other hand, have tradition-
ally argued that it is not necessary to tightly fit models to
time series data for the purposes of parameter estimation
and confidence building. This is because:

1. the battery of tests that are used to build confidence in
system dynamics models go well beyond basic econo-
metric analysis;

2. the particular (measured) time path that an actual eco-
nomic system happened to take is merely one of an in-
finite number of paths that it could have taken and is
a result of the particular stream of random shocks that
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happened to be historically processed by its structure.
As such, it is more important for a model to mimic the
basic character of the data, rather than fit it point-by-
point [14];

3. utilizing the pattern modeling/case study approach en-
ables the modeler to obtain parameter values via ob-
servation below the level of aggregation in the model,
rather than via statistical analysis [18];

4. the result of a system dynamics modeling intervention
is typically a set of policies that improve system per-
formance and increase system robustness. Such poli-
cies are usually feedback-based rules (i. e., changes to
institutional structure) that do not require the accurate
point prediction of system variables.

Although the arguments against the need to fit mod-
els to time series data are well known in system dynamics,
many system dynamicists feel that it is still a worthwhile
activity because it adds credibility to a modeling study.
Moreover, in modern times, advances in software technol-
ogy have made this process relatively easy and inexpen-
sive. Although several techniques for estimating the pa-
rameters of a system dynamicsmodel from numerical data
have been devised, perhaps the most interesting is David
Peterson’s [38,39] Full Information Maximum Likelihood
with Optimal Filtering (FIMLOF). Figure 5 presents a run
from the Harrod growth model, to which an adaptive ex-
pectations structure has been added, after it has been fit
via FIMLOF to real GDP and labor supply data for the
United States economy for the years 1929–2002. The fit
is excellent and the estimated parameter values are consis-
tent with those frommore traditional econometric studies.
See Radzicki [44] for a detailed description of the model
and its parameter estimates.

System Dynamics and Its Contribution to Economics and Economic Modeling, Figure 6
Fit of the Harrod growth model to USmacroeconomic data for the years 1929–2002

Controversies

Since system dynamics modeling is undertaken in a way
that is significantly different from traditional economic
modeling, it should come as no surprise that many
economists have been extremely critical of some system
dynamics models of economic systems. For example, For-
rester’s [9] Urban Dynamics and [10] World Dynamics
models have come under severe attack by economists, as
has (to a lesser degree) his national economic model. On
the other hand, the first paper in the field of system dy-
namics is Forrester [6], which is essentially a critique of
traditional economic modeling.

Greenberger et al. [19] present a nice overview of
the controversies surrounding the Urban Dynamics and
World Dynamics models. Forrester and his colleagues’
replies to criticisms of theUrbanDynamicsmodel are con-
tained in Mass [25] and Schroeder et al. [50].

One of the harshest critics of the World Dynam-
ics (WORLD2) model has been Nordhaus [33]. Nord-
haus [35] has also very critical of the well known follow-
up study to World Dynamics known as The Limits to
Growth [28]. Meadows et al. [29,30] contain updates to
the original Limits to Growth (WORLD3) model, as well
as replies to the world modeling critics.

Forrester [12] presents a nice overview of his national
economic model, and the critiques by Stolwijk [57] and
Zellner [61] are typical of the attitude of the professional
economists toward macroeconomic modeling that is un-
dertaken by following the traditional system dynamics
paradigm. The criticism of Forrester’s national economic
model by the economics profession has probably been
less severe, relative to the criticisms of the Urban Dynam-
ics and world models, because most of its details are still
largely unpublished at the time of this writing.
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Another interesting and timely example of the sort
of controversy surrounding system dynamics model-
ing in economics is provided by Sterman and Richard-
son [56]. In this paper they present a technique for testing
whether Hubbert’s lifecycle method or the geologic anal-
ogy method yields superior estimates of the ultimately re-
coverable amount of petroleum resources. This study was
motivated by a disagreement with a traditionally trained
economist over the proper way to conceptualize this is-
sue. Sterman and Richardson devised a clever synthetic
data experiment in which a system dynamics model serves
as the “real world” with a known ultimately recoverable
amount of oil. Hubbert’s method and the geologic anal-
ogy method are then programmed into the model so they
can “watch” the data being generated by the “real world”
and provide dynamic estimates of the “known” ultimately
recoverable stock of oil. The results showed that Hub-
bert’s method was quite accurate, although it had a ten-
dency to somewhat underestimate the ultimately recov-
erable amount of oil, while the geologic analogy method
tended to overshoot the resource base quite substantially.

Future Directions

Historically, system dynamicists who have engaged in eco-
nomic modeling have almost never been trained as pro-
fessional economists. As such, they have had the advan-
tage of being able to think about economic problems dif-
ferently from those who have been trained along tradi-
tional lines, but have also suffered the cost of being seen
as “amateurs” or “boy economists” [41] by members of
the economics profession. The good news is that there
are currently several schools of economic thought, popu-
lated by professional economists, in which system dynam-
ics fits quite harmoniously. These include Post Keynesian
economics, institutional economics, ecological economics,
and behavioral economics. Historically, the economists in
these schools have rejected many of the tenets of tradi-
tional economics, including most of its formal modeling
methods, yet have failed to embrace alternative modeling
techniques because they were all seen as inadequate for
representing the concepts they felt were important. How-
ever in the modern era, with computers having become
ubiquitous and simulation having become in some sense
routine, system dynamics is increasingly being accepted as
an appropriate tool for use in these schools of economic
thought. The future of economics and system dynamics
will most probably be defined by the economists who work
within these schools of thought, as well as by their stu-
dents. The diffusion of system dynamics models of eco-
nomic systems through their translation into user-friendly

interactive “learning environments” that are available over
the world wide web will most likely also be of great impor-
tance (see [24,59]).
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Glossary
Model/model system A model is a simplified representa-

tion of a real system. Models can be descriptive or pre-

scriptive (normative). Their functions can be to enable
explanation, anticipation or design. A distinction used
in this contribution is between causal and non-causal
models, with System Dynamics models being of the
former type. The term model system is used to stress
the systemic character of a model; this serves to iden-
tify it as an organized whole of variables and relation-
ships on the one hand, and to distinguish it from the
real system which is to be modeled, on the other.

Model validity A model’s property of adequately reflect-
ing the system modeled. Validity is the primary mea-
sure of model quality. It is a matter of degree, not a di-
chotomized property.

Model purpose The goal for which a model is designed
or the function it is intended to fulfill. The model pur-
pose is closely linked to the end-model user or model
owner. Model purpose is the criterion for the choice of
a model’s boundary and design.

Modeling process The process involving phases such as
problem articulation, boundary selection, develop-
ment of a dynamic hypothesis, model formulation,
model testing, policy formulation and policy evalua-
tion [28]. The modeling process is followed by model
use and implementation, i. e., the realization of actions
designed or facilitated by the use of the model.

Validation process Validation is the process by which
model validity is enhanced systematically. It consists
in gradually building confidence in the usefulness of
a model by applying validation tests as outlined in this
chapter. In principle, validation pervades all phases of
the modeling process, and, in addition, extends into
the phases of model use and implementation.

Definition of the Subject

The present chapter addresses the question of build-
ing better models. This is crucial for coping with com-
plexity in general, and in particular for the manage-
ment of dynamic systems. Both the epistemological and
the methodological-technological aspects of model valida-
tion for the achievement of high-quality models are dis-
cussed. The focus is on formal models, i. e. those formu-
lated in a stringent, logical, and mostly mathematical lan-
guage.

Introduction

The etymological root of valid is the Latin word validus,
which denotes attributes such as strong, powerful and
firm. A valid model, then, is well-founded and difficult to
reject because it accurately represents the perceived real
system which it is supposed to reflect. This system can

http://www.systemdynamics.org/
http://www.systemdynamics.org/
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be either one that already exists or one that is being con-
structed, or even anticipated, by a modeler or a group of
modelers.

Validation standards in System Dynamics are more
rigorous than those of many other methodologies. Let
us distinguish between two types of mathematical mod-
els, which are fundamentally different: Causal, theory-like
models and non-causal, statistical (correlational) mod-
els [4]. The former are explanatory, i. e., they embody the-
ory about the functioning of a real system. The latter are
descriptive and express observed associations among dif-
ferent elements of a real system. System Dynamics models
are causal models.

Non-causal models are tested globally, in that the sta-
tistical fit between model and data series from the real sys-
tem under study is assessed. If the fit is satisfactory, the
model is considered to be accurate (“valid”, “true”). In
contrast, system dynamicists postulate that models be not
only right, but right for the right reasons. As the models
are made up of causal interdependencies, accuracy is re-
quired for each and every variable and relationship. The
following principle applies: if only one component of the
model is shown to be wrong, the whole model is rejected
even if the overall model output fits the data [4]. This strict
standard is conducive to high-quality modeling practice.

A model is an abstract version of a perceived reality.
Simulation is a way of experimenting with mathematical
models to gain insights and to employ these to improve
the real system under study. It is often said that System
Dynamics models should portray problems or issues, not
systems. This statement must be interpreted in the sense
that one should not try to set the boundaries of the model
too widely, but rather give the model a focus by concen-
trating on an object in accordance with the specific pur-
pose of the model. In a narrower definition, even an issue
or problem can be conceived of as a “system”, i. e., “a por-
tion of the world sufficiently well defined to be the subject
of study” [21]. Validity then consists in a stringent corre-
spondence between model system and real system.

We will treat the issue of model validation as a means
of assuring high-quality models. We interject that validity
is not the only criterion of model quality, other criteria in-
cluding parsimony, ease-of-use, practicality, importance,
etc. [22].

In the following, the epistemological foundations of
model validity are reviewed (Sect. “Epistemological Foun-
dations”). Then, an overview of the methods for assuring
model validity is given (Sect. “Validation Methods”). Fur-
ther, the survey includes an overview of the validation pro-
cess (Sect. “Validation Process”) and our final conclusions
(Sect. “Synopsis and Outlook”).

System Dynamics Modeling: Validation for Quality Assurance,
Figure 1
The Validation Cube – A frame of reference showing three di-
mensions of the validation topic

The substance of this article will be made more palpa-
ble by means of the following frame of reference. We call
it the Validation Cube. The diagram in Fig. 1 shows three
dimensions of the validation topic:

� Orders of Reflection:We distinguish between an episte-
mological and a methodological layer. These define the
objects of the next two Sects. “Epistemological Founda-
tions” and “Validation Methods”.

� Domains of Validation: The three domains, context,
structure and behavior refer to the groups of validation
methods as described in Sect. “Validation Methods”.

� Degrees of Resolution: We address the different granu-
larities of models.Micro refers to the smallest building
blocks of models (e. g., variables or small sets of vari-
ables), meso to modules which constitute a model, and
macro to the model as a whole.

Epistemological Foundations
Epistemology is the theory that enquires into the nature
and grounds of knowledge: “What can we know and how
do we know it?” [13]. These questions are of utmost im-
portance when dealing with models and their validity, be-
cause a method of validation is only as good as its episte-
mological basis.

We can only briefly refer to the antecedents of the epis-
temological perspective inherent in the idea of model val-
idation as commonly held today in the community of sys-
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tem dynamicists. One could go back to Socrates who, in
Plato’s Republic (fourth century BC), addressed the prob-
lematic relationship between reality, image and knowl-
edge. One could also refer to John Locke (seventeenth cen-
tury), the first British empiricist whomaintained that ideas
could come only from experience, while admitting that our
knowledge about external objects is uncertain. We will ad-
dress the philosophical movements of the nineteenth and
twentieth centuries, which are direct sources of the epis-
temology which is important for model validation. The
reader may kindly excuse us for certain massive simplifi-
cations that we are obliged to make.

What will be said here about theories applies equally
to formal models. In System Dynamics, models either em-
body theories or they are considered essential components
of theories. In addition, processes of modeling and theory-
building are of the same nature; a model, like any theory, is
built and improved in a dialectic of propositions and refu-
tations [22].

Positivism and Critique

Positivism is a scientific doctrine founded by Auguste
Comte (nineteenth century) which raises the positive to
the principle of all scientific knowledge. “Positive”, in this
context, is not meant to be the opposite of negative, but
the given, factual, or indubitably existent. The positive is
associated with features such as being real, useful, certain,
and precise. Positivism confines science to the observable
and manipulable, drawing on the mathematical, empiri-
cal orientation of the natural sciences as its paragon. The
objectivist claim of positivism is that things exist indepen-
dently of the mind and that truths are detached from hu-
man values and beliefs. This stance calls for models that
approximate an objective reality.

A younger development in this vein is the school of
logical positivism, also logical empiricism (with Schlick,
Neurath, Hempel, etc.), which concentrates on the prob-
lem of meaning and has developed the verifiability princi-
ple: Something is meaningful only if verifiable empirically,
i. e., ultimately by observation through the senses. To ver-
ify here means to show to be true [13]. For the logical pos-
itivists, the method of verification is the essence of theory-
building. Tests of theories hinge on their confirmation by
facts. In System Dynamics, testing models on real-world
data is a core component of validation.

Positivism has been criticized for being reductionist,
i. e., for its tendency to reduce concepts to simpler or em-
pirically more accessible ones, and to conceive of learning
as an accumulation of particular details. The critique has
also asserted that there is no theory-independent identifi-

cation of facts, and therefore different theories cannot be
tested by means of the same data [6]. Another objection
maintains that social facts are not merely given, but pro-
duced by human action, and that they are subject to inter-
pretation [23]. These arguments introduce the principle of
relativity, which is of crucial importance for the field of
model validation: A model is a subjective construction by
an observer.

Pragmatism – A Challenge to Positivism

Pragmatism, which arose in the second half of the nine-
teenth century, emphasizes action and the practical conse-
quences of thinking. Its founder, Charles Sanders Peirce,
was interested in the effects that the meaning of scien-
tific concepts could have on human experience and action.
He defined truth as “the opinion which is fated to be ul-
timately agreed to by all who investigate” [13], whereby
truth is linked to consensual validation. For pragmatists,
truth is in what works (Ferdinand Schiller) or satisfies us
(John Dewey), and what we find believable and consistent:
“ ‘The true’ . . . is only the expedient in the way of our
thinking”, and “truth is made . . . in the course of expe-
rience.” (see p. 581 and p. 583 in [11]).

Pragmatism is often erroneously disdained for suppos-
edly being a crass variety of utilitarianism and embodying
a crude instrumentalist rationality. A more accurate view
considers the fact that pragmatists are not satisfied with
a mere ascertainment of truth; instead they ask: “If an idea
or assumption is true, does this make a concrete difference
to the life of people? How can this truth be actualized?”
In other words, pragmatism does not crudely equate truth
and utility. It rather postulates that those truths which are
useful to people ought to be put into practice [23].

Pragmatism introduces the criteria of confidence and
usefulness, which are more operational as guides to the
evaluation of experiments than is the notion of an absolute
truth, which is unattainable in the realm of human affairs.
At the same time, pragmatism triggers a crucial insight for
the context of model-building: The validity of a model de-
pends not only on the absolute quality of that model but
also hinges on its suitability with respect to a purpose [7].
In the context of model validation, then, truth is a relative
property; more exactly, a truth holds for a limited domain
only.

More Challenges to Positivism

We discuss three more challenges to positivism in the
twentieth century. First, Thomas Kuhn’s theory of scien-
tific revolutions [12]: Kuhn shows, by means of histori-
cal cases, that in the sphere of science, generally accepted
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ways of looking at the world (“paradigms”) change over
time through fundamental shifts. Therefore, the activities
of a scientist are largely shaped by the dominant scien-
tific worldview. Second, Willard Van Orman Quine and
Wilfrid Sellars argue that knowledge creation and theory-
building is a holistic, conversational process, as opposed to
the reductionist and confrontational views [4].

Both of these movements contribute to our under-
standing of how real systems are to be modeled and val-
idated: as organized wholes, and consciously with respect
to the values and beliefs underlying a given modeling pro-
cess. This approach adheres to the spirit of models them-
selves, by means of which the behavior of whole systems
can be simulated and tested on their inherent assumptions.

A third challenge is presented by the interpretive
streams of epistemology (for an overview, see [9]). Among
them, a main force which expands the possibilities of
scientific methodologies is the strand of hermeneutics.
Derived from the Greek hermeneuein – to interpret or
to explain – the term hermeneutics stands for a school,
mainly associated with Hans-Georg Gadamer, which pur-
sues the ideal of a human science of understanding. The
emphasis is on interpretation in an interplay between
a subject-matter and the interpreter’s position. This em-
phasis introduces the subjective into scientific method-
ology. Hermeneutics denies both that a single “objective
true interpretation” can transcend all individual view-
points, and that humans are forever confined within their
own ken [13]. This epistemology offers a necessary com-
plement to a scientific stance, which exclusively hinges
on “hard”, quantitative methods in order supposedly to
achieve absolute objectivity. The implication of hermeneu-
tics for model validation is that it recognizes the perti-
nence of subjective judgment. In this connection, interpre-
tive discourses play a crucial role in group model-building
and validation. Such discourses lead beyond the subjective,
entailing the creation of inter-subjective, shared realities.
We will return to this factor in Sect. “Validation Process”.

Critical Rationalism

Critical rationalism is a philosophical position founded by
Karl R. Popper [19,20]. It grew out of positivism but re-
jected its verificationist stance. Critical rationalism posits
that, in the social domain, theories can never be definitely
proved, but can only reach greater or lesser levels of truth.
Scientific proofs are confined to the realm of the formal
sciences, namely logic and mathematics.

As Popper demonstrates, all theories are provisional.
As a consequence, the main criterion for the assessment of
a theory’s truth status is falsification [19]. A theory holds as

long as it is not refuted. Consequently, any theory can be
upheld as long as it passes the test of falsification. In other
words, the fertile approaches to science are not those of
corroboration, but the falsificationist efforts to test if theo-
ries can be upheld. In the context of modeling this means
that validationmust undertake attempts to falsify a model,
thereby testing its robustness.

Even Popper’s theory of science is not unchallenged.
For example, Kuhn has made the point that its principles
are applicable only to normal science, which operates in-
crementally within a given paradigm, but not to anoma-
lous science, which uncovers unsuspected phenomena in
periods of scientific revolution [12]. This observation has
an implication for model validation: Alternative and even
multiple model designs should be assessed for their ability
to account for fundamental change.

On the Meaning of Validity and Validation

One of the predominant convictions about science is the
obsessive idea that proofs are the touchstone of the valid-
ity of both theories and models. We follow a different ra-
tionale, reverting to the philosophy of science as embodied
in critical rationalism.

Popper’s refutationist concept (as opposed to a verifi-
cationist concept) of theory-testing implies both an evo-
lutionist perspective and an empiricist stance. The evo-
lutionist perspective is primary because it welcomes the
challenges posed to a theory, since these attempts at fal-
sification lead to an evolutionary process: successful fal-
sification efforts result in revisions and improvements of
the theory. Correspondingly, empiricism is paramount in
the social sciences, because the main source for the refuta-
tion of a theory is empirical evidence. However, falsifica-
tion can also be grounded in logical arguments where em-
pirical evidence cannot be obtained. In this sense, a struc-
turalist approach as used in System Dynamics validation
transcends the bounds of logical empiricism.

As a consequence of the evolutionist perspective, there
is no such thing as absolute validity. Validity is always im-
perfect, but it can be improved over time. The empiricist
aspect of theory-building implies that theoriesmust be val-
idated by means of empirical data. However, logical assay,
estimation and judgment are complementary to this em-
piricist component (see below).

A validation process is about gradually building con-
fidence in the model under study [2]. This is both analyt-
ical and synthetic. It is directed at the model as a whole
as much as it is at the components of the model. The
touchstone of validity is less whether the model is right or
wrong: as Sterman states, “. . . all models are wrong.” [28].
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Some models, however, fulfill the purpose ascribed to
them, i. e., they are useful. Models are inherently incom-
plete; they cannot claim to be true in an absolute sense,
but only to be relatively true [4]. In this sense, validation is
a goal-oriented activity and validity a relative concept.

Finally, the validation process often involves several
people because the necessary knowledge is distributed.
In these cases, the dialectics of propositions and refuta-
tions, as well as the interaction of different subjective view-
points, and consensus-building, are integral. Validation
processes, then, are semiformal, discursive social proce-
dures with a holistic as opposed to a fragmentary orien-
tation [ibidem].

On Objectivity

If subjective views and judgments are as prominent as al-
leged above, does objectivity play a role at all? Operational
philosophy shows a way out of this dilemma: Rapoport
defines objectivity as “invariance with respect to different
observers.” [21]. Popper has a similar stance in proposing
that general statements must be formulated in a way that
they can be criticized and, where applicable, falsified [20].
This concept of objectivity is a challenge to model vali-
dation: When defining concepts and functions, one must
first of all strive for falsifiable statements. In principle, for-
mal models meet this criterion: each variable and every
function or relationship can be challenged. And they must
be challenged, so that their robustness can be tested. The
duty, then, is in finding the invariances that are inter-sub-
jectively accepted as the best approximations to truth. Fre-
quently this is best achieved in group model-building pro-
cesses [30]. Finally, truth is something we search for but
do not possess [20], i. e., even an accepted model cannot
guarantee truth with final certainty.

ValidationMethods

A considerable set of qualitative and quantitative tests has
been developed for the enhancement of model validity.
The state-of-the-art has been documented in seminal pub-
lications [2,4,7,8,14,17,28]. Our purpose here is to present
and exemplify the different tests to encourage and help
those who strive to develop high-quality System Dynam-
ics models.

In the following, an overview of the types of tests de-
veloped for SystemDynamics models is given, without any
claim to completeness. Most of these tests have been doc-
umented extensively in [2,7,8,28]. The descriptions of the
tests adhere closely to the specifications of these authors
(mainly Forrester and Senge). In addition, we have devel-
oped a new category for tests that concentrate on the con-

text in which the model is to be developed. High-quality
models can be created only if the relevant context is taken
into consideration. To facilitate orientation, we have at-
tached an overview of all described tests in the Appendix.

In this section we describe three groups of tests: those
related to model-related context, tests of model structure
and tests of model behavior. Many of the tests described
in the following can be utilized for explanatory analysis
which aims at an understanding of the problematic behav-
ior of the issue under study. Others are suitable for nor-
mative ends, in analyzes targeted on improvements of sys-
tem performance with regard to a specified objective of
the reference system. Also known as policy tests, or pol-
icy analyses, these “tests of policy implications differ from
other tests in their explicit focus on comparing changes in
a model and in the corresponding reality. Policy . . . tests
attempt to verify that response of a real system to a pol-
icy change would correspond to the response predicted by
the model” [8]. Policy testing can show the risk involved
in adopting the model for policy making.

Tests About the Model-Related Context

These tests deal with aspects related to the situation in
which the model is to be developed and embedded. They
imply metalevel decisions which have to be taken in the
first place, before engaging in model-building. Applied
ex-post-facto, i. e., after modeling, they allow for assessing
the utility of the modeling endeavor as such.

Issue Identification Test. The raison d’être of a System Dy-
namics model is its ability to adequately address an issue
and to enhance stakeholders’ understanding, an ability
which may lead to policy insights and system improve-
ments. The issue identification test examines whether or
not the identified issue or problem is indeed meaningful.
Has the “right” problem been identified?Does the problem
statement address the origins of an issue or only super-
ficial symptoms? Whenever complex issues are addressed
by a model, different perspectives (e. g. professional, eco-
nomic, political) must be integrated for accurate problem
identification and modeling. This is not a “one-shot-only”
test; it must be applied recurrently during the modeling
procedure. By reflecting regularly on the correctness of the
identified issue, the modeler can increase the likelihood of
capturing the origins of suboptimal system behavior.

Adequacy of Methodology Test. Simulation models re-
spond to the limitations of humans’ mental ability to
comprehend complex, dynamic feedback systems [27].
The adequacy of methodology test scrutinizes whether the
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System Dynamics methodology is best-suited for dealing
with the issue under study. One needs to clearly ascer-
tain if that issue is characterized by dynamic complex-
ity, feedback mechanisms, nonlinear interdependency of
structural elements and delays between causes and effects.
One needs to ask also if the issue under study could be
better addressed by another methodology. For example,
in a case where the question is to understand the differ-
ence in numerical outcomes between two configurations
of a production system, it lets one determine whether dis-
crete event simulation would fulfill this requirement more
accurately than System Dynamics.

System Configuration Test. This test asks the fundamental
question about whether the structural configuration cho-
sen can be accepted. It challenges the assumption that the
model represents the actual working of the system under
study. The applicability of a different design would be
suggested by its ability to capture new conditions, such as
different system configurations, phenomena or rules of the
game. Even revolutionary changes might be considered.
Such an outlook may require a totally new model, or an
alternative model designed from a different vantage point.
This would at least feasibly approximate the need to take
paradigmatic change into account.

System Improvement Test. The purpose of modeling is
to understand a part of reality and to resolve an issue.
The system improvement test can be performed only af-
ter the modeling project (an ex-post-facto test), once the
insights derived from the model have already been imple-
mented in the real system. This test reestablishes the con-
nection between the abstract mathematical model and the
real system. The system improvement test helps to evalu-
ate whether or not model development was successful. In
operational terms, any improvements of the real system
under study must be compared with explicit objectives. In
practice, the test might assess the impact of the modeling
process or the model use either on the mental models of
decision makers or on changes in organization structures.
In principle, assessing the impact of a modeling endeavor
is very difficult (one preliminary example is provided by
Snabe and Grössler [25]).

Tests of Model Structure

Tests of model structure refer to the “nuts and bolts” of
System Dynamics modeling, i. e., to the formal concepts
and interrelationships which represent the real system.
Model structure tests aim to increase confidence in the
structure of the created theory about the behavior mode of

interest. The model structure can be assessed by means of
either direct or indirect inspection. Tests of model struc-
ture assess whether the logic of the model is attuned to the
corresponding structure in the real world. They do not yet
compare the model behavior with time series data from
the real system.

Direct Structure Tests Direct structure tests assess
whether or not the model structure conforms to rele-
vant descriptive knowledge about the real system or class
of systems under study. By means of direct comparison,
they qualitatively assess any disparities between the origi-
nal system structure and the model structure.

Structure Examination Test. Examination in this case
means comparison in the sense just outlined. Qualitative
or quantitative information about the real system structure
can be obtained either empirically or theoretically. Empir-
ically based tests include reviews of model assumptions
about system elements and their interdependencies, e. g.,
reviews made by highly knowledgeable experts of the real
system. Theory-based tests compare the model structure
with theoretical knowledge from literature about the type
of system being studied. Thereby, a preference for theoret-
ical knowledge specific to themodeled situation overmore
abstract and general knowledge is usually the case.

To pass the structure examination test, a model must
not contradict either the evidence or knowledge about
the structure of the real system. This test ensures that
the model contains only those structural elements and
interconnections that are most likely extant in the real
system. In this context, formal inspections of the model’s
equations, reviews of the syntax for the stock and flow
diagram, and walkthroughs along the causal loop dia-
grams and their embodied causal explanations may be
indicated. The experienced reader might recommend the
use of statistical tests to identify and validate model struc-
ture. As Forrester and Senge [8] indicate, a long-standing
discussion exists about the application of inferential sta-
tistical tests for structure examination. After a series of
experiments, Forrester and Senge conclude “that conven-
tional statistical tests of model structure are not sufficient
grounds for rejecting the causal hypotheses in a system
dynamics model.” [8]. In the future, however, new statis-
tical approaches might enrich the testing procedures.

Parameter Examination Test. A parameter is a quantity
that characterizes a system and is held constant in a case
under study, but may be varied in different cases (e. g.,
energy consumption per capita per day). The aim of pa-
rameter examination is to evaluate a model’s parameters
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against evidence or knowledge about the real system. The
test can utilize both empirical and theoretical information.
Furthermore, the test can be conceptual or numerical. The
conceptual parameter examination test is about construct
validity; it identifies elements in the real system that cor-
respond to the parameters of the model. Conceptual cor-
respondencemeans that the parametersmatch elements of
the real system’s structure. Numerical parameter examina-
tion checks to see if the quantities of the conceptually con-
firmed parameters are estimated accurately. Techniques
for the estimation of parameters are described in [9].

Direct Extreme Condition Test. Extreme conditions do not
often occur in reality; they are exceptions. The validity of
a model’s equations under extreme conditions is evalu-
ated by assessing the plausibility of the results generated
by the model equations against the knowledge about what
would happen under a similar condition in reality. Direct
extreme condition testing is a mental process and does not
involve computer simulation. Ideally, it is applied to each
equation separately. It consists of assigning extreme val-
ues to the input variables of each equation. The values of
the output variables are then interpreted in terms of what
would happen in the real system under these extreme con-
ditions. For example, if a population is zero, then neither
births, deaths, nor consumption of resources can occur.

Boundary Adequacy Structure Test. Boundary adequacy is
given if themodel contains the relevant structural relation-
ships that are necessary and sufficient to satisfy a model’s
purpose. Consequently, the boundary adequacy test in-
quires whether the chosen level of aggregation is appropri-
ate and if the model includes all relevant aspects of struc-
ture. It should ensure that the model contains the concepts
that are important for addressing the problem endoge-
nously. For instance, if parameters are likely to change
over time, they should be endogenized [8]. The pertinent
validation question is: “Should this parameter be endoge-
nized or not?” That question must be decided in view of
the model’s purpose.

The boundary adequacy test can be applied in three
ways: as a structural test, as a behavioral test, and as a pol-
icy test. The names are correspondingly: boundary ade-
quacy structure test, boundary adequacy behavior test, and
boundary adequacy policy test.

As a test of model structure, the boundary adequacy
test involves developing a convincing hypothesis relat-
ing the proposed model structure to the particular issue
addressed by the model. The boundary adequacy behav-
ior/policy test (explained in Subsect. “Indirect Structure
Tests”) continues this line of thinking.

Dimensional Consistency Test. This test checks the dimen-
sional consistency of measurement units of the expres-
sions on both sides of an equation. The test is performed
only at the equation level. When all tests of the individual
equations are passed, a large system of dimensionally con-
sistent equations results. This test is passed only if consis-
tency is achieved without the use of parameters that have
no meaning in respect to the real world. The dimensional
consistency test is a powerful test to establish the internal
validity of a model.

Indirect Structure Tests Indirect structure tests assess
the validity of the model structure indirectly by examining
model-generated outcome behaviors. These tests require
computer simulation. The comparative activities in these
tests are based on logical plausibility considerations which
in turn are based on the mental models of the analyst.
Comparisons of model generated data and time series
about the real system are not yet involved. The tests can be
applied to different degrees of model completeness, i. e., to
the smallest “atomic” model components, to sub-models,
as well as to the entire model.

Indirect Extreme Condition Test. For this test, the modeler
assigns extreme values to selected model parameters and
compares the generated model behavior to the observed
or expected behavior of the real system under the same
extreme conditions. This test is the logical continuation
of the direct extreme condition test, i. e., many of the ex-
treme conditions mentally developed in the previous stage
can now be deployed to evaluate the simulated behavioral
consequences. This test can be used for the explanatory
analysis phase of modeling, but also for the normative
phase of policy development. In the first instance, indirect
extreme conditions are used to develop a structure that
can reproduce the system behavior of interest and guard
against developments impossible in reality. In the latter
instance, the introduction of policies aims to improve the
system’s performance. The indirect extreme policy test in-
troduces extreme policies to the model and compares the
simulated consequences to what would be the most likely
outcome of the real system if the same extreme policies
would have been implemented.

Behavior Sensitivity Test. Sensitivity analysis assesses
changes of model outcome behavior given a systematic
variation of input parameters. This test reveals those pa-
rameters to which the model behavior is highly sensitive,
and asks if the real system would exhibit a similar sensi-
tivity to changes in the corresponding parameters. “The
behavior sensitivity test examines whether or not plausi-
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ble shifts in model parameters can cause a model to fail
behavior tests previously passed. To the extent that such
alternative parameter values are not found, confidence in
the model is enhanced.” [8]. A model can be numerically
sensitive, i. e., the numerical values of variables change sig-
nificantly, but the behavioral patterns are conserved. It can
also exhibit behavioral sensitivity, i. e., the modes of model
behavior change remarkably based on systematic parame-
ter variations (Barlas [3] defines several distinct patterns
of model behavior).

As the test for indirect extreme conditions, the behav-
ior sensitivity test can also be deployed to assess policy
sensitivity. It can reveal the degree of robustness of model
behavior and hence indicate to what degree model-based
policy recommendations might be influenced by uncer-
tainty in parameter values. If the same policies would
be recommended regardless of parameter changes over
a plausible range, risk in using the model would be lower
than if two plausible sets of parameters lead to distinct
policy recommendations.

Integration Error Test. Integration error is the deviation
between the analytical solution of differential equations
and the numerical solution of difference equations. This
test ascertains whether the model behavior is sensitive to
changes in either the applied integration method or the
chosen integration interval (often referred to as simula-
tion time step). Euler’s method is the simplest numerical
technique for solving ordinary differential and difference
equations. For models that require more precise integra-
tion processes, the more elaborated Runge–Kutta integra-
tion methods can produce more accurate results, but they
require more computational resources.

Boundary Adequacy Behavior Test/Boundary Adequacy
Policy Test. The logic for testing boundary adequacy has
already been developed under the aspect of direct struc-
ture testing in the preceding section. The indirect structure
version of this test asks whether model behavior would
change significantly if the boundary were extended or re-
duced; i. e., the test involves conceptualizing additional
structure or canceling unnecessary structure with regard
to the purpose of the study. As one example of expand-
ing the model boundary, this version of the test allows one
to detail the treatment of model assumptions considered
as unrealistically simple but still important for the model’s
purpose. On the other hand, simplifying the model is also
a way to reduce the model boundary. The loop-knockout
analysis is a useful method to implement this two-sided
test. Knockout analysis checks behavior changes induced
by the connection and disconnection of a portion of the

model structure, and helps themodeler to evaluate the use-
fulness of those changes with respect to the model’s pur-
pose.

The other version of this test is the boundary adequacy
policy test. It examines whether policy recommendations
would change significantly if the boundary were extended
(or restricted): That is, what would happen if the boundary
assumptions were relaxed (or confined)?

Loop Dominance Test. Loop dominance analysis studies
the internal mechanisms of a dynamic model and their
temporal, relative contribution to the outcome behavior
of the model. The relative contribution of a mechanism is
a complex quantitative statement that explains the fraction
of the analyzed behavior mode caused by the mechanism
considered in� SystemDynamics, Analytical Methods for
Structural Dominance Analysis in. The analysis reveals the
relative strengths of the feedback loops in the model. The
loop dominance test compares these results with the mod-
eler’s or client’s assumption about which are the dominant
feedback loops in the real system. Since the results are ana-
lytical statements, interpretation and comparison with the
real system requires profound knowledge about the system
under study.

Loop dominance analysis reveals insights about
a model on a different level of analysis than the other val-
idation tests discussed so far: It works not on the level of
individual concepts or behaviors of variables but on the
level of causal structure, and compares the temporal sig-
nificance of the different structures to each other. The use
of this test for model validation is a novelty. If the rela-
tive loop dominances of the model map the relative loop
dominances of the real system, confidence in the model is
enhanced. If the relative loop dominances of the real sys-
tem are not known, it is still possible to evaluate whether
or not the loop dominance logic in the model is reason-
able.

Tests of Model Behavior

Tests of model behavior are empirical and compare sim-
ulation outcomes with data from the real system under
study. On that basis, inferences about the adequacy of the
model can be made. The empirical data can either be his-
torical or refer to reasonable expectations about possible
future developments.

Behavior Reproduction Tests The family of behavior
reproduction tests examines how well model-generated
behavior matches the observed historical behavior of the
real system. As a principle, models should be tested against
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data not only from periods of stability but also from un-
stable phases. Policies should not be designed or tested on
the premise of normality, but rather should be validated
with a view toward robustness and adaptiveness.

Symptom Generation Test. This test indicates whether or
not a model produces the symptom of difficulty that mo-
tivated the construction of the model. To pass the symp-
tom generation test is a prerequisite for considering policy
changes, because “unless one can show how internal poli-
cies and structures cause the symptoms, one is in a poor
position to alter those causes” [8].

Summary statistics, which measure and enable the in-
terpretation of quantitative deviations, provide the means
to operationalize the symptom generation test.

One known example is Theil inequality statistics,
whichmeasures themean square-error (MSE) between the
model-generated behavior and the historical time series
data. It breaks down the deviation into three sources of
error: Bias (Um), unequal variation (Us), and unequal co-
variation (Uc) [26].

An example taken from Schwaninger and Groes-
ser [22] illustrates the interpretation of the error sources.

This example from an industrial firm concerns the
design of a model that replicates the observed, histori-
cal product life-cycle pattern with high accuracy (Fig. 2).
“Product Revenue” is the main variable of interest and
specifies the symptom (growth phase followed by rapid
decay). The mean square-error for revenues is 0.35. The
individual components of the inequality statistics are:
Um D 0:01;Us D 0:01;Uc D 0:98. The break down of
the statistics shows that the major part of the error is in
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An example comparison of historical and simulated time series for product revenues. The explained variance is close to 100%
(R2 D 0:9967)

the Uc component, while the other two sourees of error are
small. This signifies that the point-by-point values of the
simulated and historical data do not match, even though
the model captures the dominant trend and the average
values in the historical data. Such a situation indicates that
a major part of the error is probably unsystematic, and
therefore the model should not be rejected for failing to
match the noise component of the data. The residuals of
the historic and simulated time series show no significant
trend. This strengthens the assessment that the model
comprises a structure that captures the fundamental dy-
namics of the issue under consideration.

Frequency Generation and Phase Relationship Tests. These
tests focus on the frequencies of time series and phase re-
lationships between variables. An example is the pattern of
investment cycles in an industry. These tests are superior
to point-by-point comparisons between model-generated
and observed behavior (cf. [7]).

Frequency refers to periodicities of fluctuation in
a time series. Phase relationship is the relationship be-
tween the time series of at least two variables. In principle,
three phase relations are possible: Preceding, simultane-
ous, and successive. The frequency generation test evalu-
ates whether or not the periodicity of a variable is in ac-
cordance with the real system. The phase relationship test
assesses the phase shifts of at least two variables by com-
paring their trajectories.

If the phase shift between the selected simulation vari-
ables contradicts the phase shift between the same vari-
ables as observed or expected in the real system, a struc-
tural flaw in the model might be diagnosed. The test can
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uncover failures in the model, but offers only little guid-
ance as to where the erroneous part of the model might
be. The autocorrelation function test is one way to oper-
ationalize the frequency generation test [1]. The function
test consists in comparing the autocorrelation functions of
the observed and the model-generated behavior outputs,
and can detect if significant errors between them exist.

Modified Behavior Test. Modified behavior can arise from
a modified model structure or changes in parameter val-
ues. This test concerns changes in the model structure. It
can be performed if data about the behavior of a struc-
turally modified version of the real system are available.
“The model passes this test if it can generate similar mod-
ified behavior, when simulated with structural modifica-
tions that reflect the structure of the “modified” real sys-
tem” [2]. The applicability of this test is rather limited
since it requires specific data about the modified real sys-
tem which must be similar in kind to the original real sys-
tem.Only under this condition can additional insights into
the suitability of the original model structure be obtained.
If the modified real system deviates strongly from the orig-
inal real system, the test does not result in any additional
insights, because no stringent conclusions about the valid-
ity of the original system can be derived from a model that
is dissimilar in its structure.

Multiple Modes Test. A mode is a pattern of observed be-
havior. The multiple mode test considers whether a model
is able to generate more than one mode of observed be-
havior, for instance, if a model about the production sec-
tor of an economy generates distinct patterns of fluctu-
ations for the short-term (production, employment, in-
ventories, and prices) and for the long term (investment,
capital stock) [15]. “ A model able to generate two dis-
tinct periodicities of fluctuation observed in a real system
provides the possibility for studying possible interaction
of the modes and how policies differentially affect each
mode” [8].

Behavior Characteristic Test. Characteristics of a behavior
are features of historical data that are clearly distinguish-
able, e. g., the peculiar shape of an oscillating time series,
sharp peaks, long troughs, or such unusual events as an
oil crisis. Since System Dynamics modeling is not about
point prediction, the behavior characteristic test evaluates
whether or not the model can generate the circumstances
and behavior leading to the event. The creation of the exact
time of the behavior is not part of the test.

Behavior Anticipation Tests System Dynamics models
do not strive to forecast future states of system variables.

Nevertheless, given that the fundamental system structure
is not subject to rapid and fundamental change, dynamic
models might provide insights about the possible range
of future behaviors. Hence, behavior anticipation tests are
similar to behavior reproduction tests but possess a higher
level of uncertainty.

Pattern Anticipation Test. This test examines whether
a model generates patterns of future behavior which are
assumed to be qualitatively correct. The limits of anticipa-
tion reside in the fact that that the structure of the system
may change over time. The pattern anticipation test entails
evaluation of periods, phase relationships, shape, or other
characteristics of behavior anticipated by the model. One
possibility for implementing this test is to split the histori-
cal time series into two data sets and introduce an artificial
present time at the end of the first data series. The first set
is then used for model development and calibration. The
second data series is employed to perform the behavior an-
ticipation test, i. e., to evaluate whether the model is able to
anticipate possible future behavior.

This test can also be used for policy considerations,
in which case it is called “Changed Behavior Anticipation
Test”. It determines whether the model correctly antici-
pates how the behavior of the real system will change if
a governing policy is altered.

Event Anticipation Test. In respect to System Dynamics,
the anticipation of events does not imply knowing the ex-
act time at which the events occur; it rather means under-
standing the dynamic nature of events and being able to
identify the antecedents leading to them. For instance, the
event anticipation test is passed if a model has the ability
to anticipate a steep peak in food prices based on the de-
velopment of the conditioning factors.

Behavior Anomaly Test In constructing and analyzing
a System Dynamics model, one strives to make it behave
like the real system under study. However, the analyst
may detect anomalous features of the model’s behavior
which conflict with the behavior of the real system. Once
the behavioral anomaly is traced to components of the
model structure responsible for the anomaly, one often
finds flaws in model assumptions. The test for recogniz-
ing behavioral anomalies is sporadically applied through-
out the modeling process.

Family Member Test A System Dynamics model often
represents a family of social systems. Whenever possible,
a model should be a general representation of the class
of that system to which the particular case belongs. One
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should ask if the model can generate the behavior in other
instances of the same class. “The family-member test per-
mits a repeat of the other tests of the model in the context
of different special cases that fall within the general theory
covered by the model. The general theory is embodied in
the structure of the model. The special cases are embodied
in the parameters. To perform this test, one uses the par-
ticular member of the general family for picking parameter
values. Then one examines the newly parametrized model
in terms of the various model tests to see if the model
has withstood transplantation to the special case” [8]. The
model should be calibrated so as to be applicable to the
widest range of related systems. For the family member
test, only the parameter values of the model are subject
to alterations; changes in the model structure are part of
the modified behavior test, as discussed in the preceding
section.

Surprise Behavior Test A surprising model behavior is
a behavior that is not expected by the analysts. When such
an unexpected behavior appears, the model analysts must
first understand the causes of the unexpected behavior
within the model. They then compare the behavior and
its causes with those of the real system. In many cases,
the surprising behavior turns out to be due to a formula-
tion flaw in the model. However, if this procedure leads to
the identification of behavior previously unrecognized in
the real system, the confidence in the model’s usefulness is
strongly enhanced. Such a situation may signify a model-
based identification of a counter-intuitive behavior in a so-
cial system.

Turing Test The Turing test is a qualitative test which
uses the intuitive knowledge of system experts to evalu-
ate model behavior. Experts are presented with a shuffled
collection of real and simulated output behavior patterns.
They are asked if they can distinguish between these two
types of patterns. If they are unable to discern which pat-
tern belongs to the real system andwhich to the simulation
output, the Turing test is passed. Similar to the phase re-
lationship test, the Turing test is powerful in its ability to
indicate structural flaws, but offers only little guidance for
locating them in the model.

Validation Process

The validation process pervades all phases of model-build-
ing and reaches even beyond, into the phases of model im-
plementation and use. The diagram in Fig. 3 visualizes the
function of validation in the process of model-building.

System Dynamics Modeling: Validation for Quality Assurance,
Figure 3
Validation in the context of the System Dynamics modeling pro-
cedure

For the purposes of this contribution, validation is
placed at the center of the scheme. From there it is dis-
persed through all steps of the modeling process, Map
(high-level model creation), Model (build the formal
model), Simulate (explore scenarios, etc.) and Design (ar-
ticulation of policies). We have limited the differentiation
of these steps in order to highlight the structure of the pro-
cess – a recursive structure drawn as a nested loop line.
After the initial identification of issues and the articula-
tion of model purpose, the simplified diagram denotes the
four phases, of mapping tomodeling to simulation and de-
sign. The small loops symbolize micro-processes in which,
for example, a model is submitted to validation, e. g., a di-
rect structure test, which may lead to its modification (two
small arrows). The larger loops illustrate more compre-
hensive processes. For example, an indirect structure test
of the model is carried out, in which the behavior is tested
by means of simulation. Or a policy test by simulation
leads to implications for design (large loop), and the de-
sign is validated in detail thereafter (small loop).

Now, we should note that the process scheme reminds
us of a further aspect which is quite fundamental. If the re-
sults of the model’s operation, e. g., a “prediction”, diverge
from the results of a test, then either the model is wrong or
the test is inadequate (see p. 168 in [24]). This meta-per-
spective lets us keep an eye on the adequacy of the tests:
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is the logic of the test flawless? Are the data sources in or-
der? (see adequacy of methodology test in Sect. “Valida-
tion Methods”).

Model-building is a process of knowledge-creation,
and model validation is an integral part of it. As the model
is validated using the methods described in the former
chapter, insights emerge, and a better understanding of
the system under study keeps growing. But model-build-
ing is also a construction of a reality in the minds of ob-
servers [31,32] concerned with an issue. In this procedure,
validation is supposed to be a “guarantor” for the realism
of the model, a control function for preventing gross aber-
rations in individual and collective perceptions. Valida-
tion should encompass precautions against cognitive lim-
itations and modeler blindness. The set of tests presented
above is a system of heuristic devices for enhancing such
provisions. A question not yet answered is how these tests
should be ordered along the timeline. We have fleshed out
three structural principles, which are illustrated in Fig. 4:

1. Validation is a parallel process: Validation in all three
domains – context, structure and behavior – is carried
out in a synchronized fashion, as shown in Fig. 4. Con-
text validation is continuous, while the other two com-
ponents show alternations.

2. Parts of the validation process have a sequential struc-
ture: This refers to the alternations between the compo-
nents of structure and behavior validation. In principle,
they occur alternately, with structural validation taking
the lead and behavior validation following. After that,

System Dynamics Modeling: Validation for Quality Assurance, Figure 4
The interplay of validation activities

one might revert to structural validation again and so
forth.

3. Validation processes are polyrhythmic: The length and
accentuation of validation activities vary among the
three levels. This fact is symbolized by the frequency of
the vertical lines in the blocks of the chronogram.

A further important factor affecting the validation pro-
cess is the degree of resolution: micro, meso or macro (as
visualized in Fig. 1). The focus of validation is primarily
on micro-objects, the smallest building blocks of a model,
for example, a stock or a subsystem containing a stock
with its flows. One could call them metaphorically atoms
or molecules. Each building-block should be validated in-
dividually, before it is integrated into the overall model
structure. The reason is that at this atomic level disfunc-
tionalities or errors of thinking are discovered immedi-
ately, while at higher levels of resolution the identifica-
tion of structural flaws is more difficult and cumbersome.
The same holds for the relation between modules (meso)
and the whole model (macro). Before adding a module, it
should be validated in itself. This way, errors at the level of
the whole system can be minimized and, it is very impor-
tant to add, counterintuitive behavior of the model can be
understood with more ease.

Until now we have examined what occurs in a valida-
tion process and how the process is structured. Finally, we
raise the issue of who the actors are and why. In this con-
text, we will concentrate on group processes in model val-
idation.
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Different observers associate diverse contents with
a system, and they might even conceive the system dis-
tinctly, as far as its boundaries, goals and structures are
concerned. They might also succumb to erroneous infer-
ences and therefore adhere to defective propositions. Con-
sequently, error-correcting devices are needed. A powerful
mechanism for this purpose is the practice of model-build-
ing and validation in groups. We have already referred to
that concept in respect to several of the methods discussed
in Sect. “Validation Methods”, and now we will briefly ex-
pand on it.

Group Model-building (GMB) is a methodology to fa-
cilitate team learning with the help of System Dynam-
ics [30]. The methodology consists of a set of methods
and instruments as well as heuristic principles. These are
meant to facilitate the elicitation of knowledge, the negoti-
ation of meanings, the creation of a shared understanding
of a problem in a team, as well as the joint construction
and validation of models. The process of GMB is essen-
tially a dialog in which different interpretations of the real
system under study are exposed, transformed, aligned and
translated into the concepts and relationships which make
up the model system. This is mainly a matter of structural
validation, of qualitative mapping and the elaboration of
the formal model.

Given its transdisciplinary approach, GMB enables an
integration of different perspectives into one shared image
of the system-in-focus. GMB is an important provision for
attaining higher model quality: it can broaden the avail-
able knowledge base, inhibit errors and show itself to be
a cohesive force in the quest for consensual model valida-
tion. The opportunity for validation inheres in the broad
knowledge base normally available in a modeling group.
Much of this knowledge can be leveraged for validation
purposes. Most validation tests are carried out in coordi-
nation with model-building activities. Often the tests be-
come a task to be accomplished betweenworkshops. How-
ever, the members of the model-building group can, in
principle, be made available for knowledge input into and
monitoring of validation activities.

A functioning GMB process requires a number of nec-
essary elements [18]: commitment of key players (e. g.,
attendance of workshops), impartial facilitation, on-the-
spot modeling at conversational pace, with continuous
display of the developing model as well as an interactive
and iterative group process.

Let us not forget that there are many situations in
which one single person is in charge of building and vali-
dating amodel. In these cases the modelermust constantly
challenge his or her own position. Normally, it is preferred
that one should also call for external judgment in reviews,

walkthroughs and the like. The same holds for knowledge
supply. One-person modelers can find a lot of material in
the media, libraries, the internet, etc., but it is also usually
beneficial to find experienced persons from whom to elicit
relevant knowledge, or even persons who join the model-
ing and validation venture.

Synopsis and Outlook

Models should be relevant for coping with the complex-
ity of the real world. At the same time, the methods by
which they are constructed must be rigorous; otherwise
the quality of the model suffers. Rigor and relevance are
not entirely dichotomous, but given resource constraints
they are in competition to a certain extent. Lack of rigor
in building a model is often worse than limitations to
the model’s relevance. One may say, cum grano salis: in-
complete validation entails complete irrelevance. Model-
ers must find a way to ensure both rigor and relevance,
as both are necessary conditions for achieving the model
purpose. Neither alone is sufficient, but one may assume
that, taken together, rigor and relevance are sufficient con-
ditions. The relative importance of these two dimensions
of model building may vary over time as a function of the
model quality achieved. At the beginning, relevance might
be more important, while at high levels of model accom-
plishment rigor might become prevalent.

Investing in high model quality is indeed both worth-
while and imperative. It is impressive to register the fact
that model validation has achieved higher levels of rigor
not only in the academic field but also in the world of af-
fairs: According to Coyle and Exelby, the need for orien-
tating decisions about “real-world” affairs has also fueled
strong efforts among commercial modelers and consul-
tants for ensuring model validity [5].

We have discussed two essential aspects of model vali-
dation, the epistemological foundations andmethodologi-
cal procedures for ensuring model validity. The main con-
clusion we have reached on epistemology is that crude
positivism has been superseded by newer philosophical
orientations that provide guidance for an adequate con-
cept of validation in System Dynamics. Validation has
been defined as a rich and well-defined process by which
the confidence in a model is gradually enhanced. Validity,
then, is always a matter of degree, never an absolute prop-
erty.

Well-defined here is not meant in the sense of a rigid
algorithm, but as the rigorous application of a battery of
validation methods which we have described in some de-
tail. We have included a number of new validation tests
by which modelers’ understanding of the relevant con-
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text can be scrutinized. These additional tests are rightly
supposed to prevent wrong methodological choices. They
should also trigger innovative approaches to the issues un-
der study and foster the ability to think in terms of contin-
gencies. Finally, they should liberate modelers from tun-
nel vision and open avenues to creativity. The imperative
here is to cultivate a “sense of the possible” (Robert Musil’s
Möglichkeitssinn) and a skepticism against the supposedly
impossible (see also [29]).

Simulation based on formal dynamic models is likely
to become ever more important for both private and pub-
lic organizations. It will continue to support managers at
all levels in decision-making and policy design. The more
that models are relied upon, the greater the importance of
their high quality. Therefore, model validation is one of
the big issues lying ahead in System Dynamics modeling.

Appendix: Overview of the Tests Described
in This Chapter

1. Tests of the Model-Related Context
1.1 Issue Identification Test
1.2 Adequacy of Methodology Test
1.3 System Configuration Test
1.4 System Improvement Test

2. Tests of Model Structure
2.1 Direct Structure Tests

2.1.1 Structure Examination Test
2.1.2 Parameter Examination Test
2.1.3 Direct Extreme Condition Test
2.1.4 Boundary Adequacy Structure Test
2.1.5 Dimensional Consistency Test

2.2 Indirect Structure Tests
2.2.1 Indirect Extreme Condition Test
2.2.2 Behavior Sensitivity Test
2.2.3 Integration Error Test
2.2.4 Boundary Adequacy Behavior Test/Boundary

Adequacy Policy Test
2.2.5 Loop Dominance Test

3. Tests of Model Behavior
3.1 Behavior Reproduction Tests

3.1.1 Symptom Generation Test
3.1.2 Frequency Generation and Phase Relationship

Test
3.1.3 Modified Behavior Test
3.1.4 Multiple Modes Test
3.1.5 Behavior Characteristic Test

3.2 Behavior Anticipation Tests
3.2.1 Pattern Anticipation Test
3.2.2 Event Anticipation Test

3.3 Behavior Anomaly Test

3.4 Family Member Test
3.5 Surprise Behavior Test
3.6 Turing Test
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Glossary

CO2 Carbon dioxide is the predominant greenhouse gas.
Anthropogenic CO2 emissions are created largely by
the combustion of fossil fuels.

CGCM Coupled general circulation model, a climate
model which combines the atmospheric and oceanic
systems.

GCM General circulation model, a term commonly used
to describe climate models maintained at large re-
search centers.

GHG GHG is a greenhouse gas such as CO2 andmethane.
These gases contribute to global warming by capturing
some of the outgoing infrared radiation before it leaves
the atmosphere.

GT Gigaton, a common measure of carbon storage in the
global carbon cycle. A GT is a billion metric tons.

IPCC The Intergovernmental Panel on Climate Change
was formed in 1988 by the World Meteorological
Organization and the United Nations Environmental
Program. It reports research on climate change. Their
assessments are closely watched because of the require-
ment for unanimous approval by all participating del-
egates.

Definition of the Subject

System dynamics is a methodology for studying and man-
aging complex systems which change over time. The
method uses computer modeling to focus our attention
on the information feedback loops that give rise to the dy-
namic behavior. Computer simulation is particularly use-
ful when it helps us understand the impact of time de-
lays and nonlinearities in the system. A variety of mod-
eling methods can aid the manager of complex systems.
Coyle (p. 2 in [3]) puts the system dynamics approach in
perspective when he describes it as that “branch of control
theory which deals with socio-economic systems, and that
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branch of management science which deals with prob-
lems of controllability.” The emphasis on controllability
can be traced to the early work of Jay Forrester [9] and
his background in control engineering [10]. Coyle high-
lighted controllability again in the following, highly prag-
matic definition:

System dynamics is a method of analyzing problems
in which time is an important factor, and which in-
volve the study of how a system can be defended
against, or made to benefit from, the shocks which fall
upon it from the out-side world.

The emphasis on controllability is important as it directs
our attention to understanding and managing the system,
not to the goal of forecasting the future state of the system.
Making point predictions is the objective of some mod-
eling methods, but system dynamics models are used to
improve our understanding of the general patterns of dy-
namic behavior. System dynamics has been widely used in
business, public policy and energy and environmental pol-
icy making. This article describes applications to energy
and environmental systems.

Introduction

System dynamics has been used extensively in the study of
environmental and energy systems. This article describes
some of these applications, paying particular attention to
the problem of global climate change. The applications
were selected to illustrate the power of the method in
promoting an interdisciplinary understanding of complex
problems.

The applications to environmental and energy systems
are similar to applications to other systems described in
this encyclopedia. They usually begin with the recognition
of a dynamic pattern that represents a problem. System
dynamics is based on the premise that we can improve
our understanding of the dynamic behavior by the con-
struction and testing of computer simulation models. The
models are especially helpful when they illuminate the key
feedbacks that give rise to the problematic behavior.

System dynamics is explained in the core article in this
volume, in the early texts by Forrester [9], Coyle [3] and
Richardson [18] and in more recent texts on strategy by
Warren [22] and by Morecroft [17]. The most compre-
hensive explanation is provided in the text on business
dynamics by Sterman [19]. Applications to environmen-
tal systems are explained in the text by Ford [7]. The most
widely read application to the environment is undoubtedly
The Limits to Growth [16]. Collections of environmental

applications appear in special issues of the System Dynam-
ics Review [11,20].

The models are normally implemented with visual
software such as Stella (http://www.iseesystems.com),
Vensim (http://www.vensim.com/) or Powersim (http://
www.powersim.com/). These programs use stock and flow
icons to help one see where the accumulations of the sys-
tem take place. They also help one to see the information
feedback in the simulated system. The programs use nu-
merical methods to show the dynamic behavior of the sim-
ulated system. The examples selected for this article make
use of the Stella and Vensim software.

This article begins with textbook examples of environ-
mental resources in the western US. The management of
water levels at Mono Lake in Northern California is the
first example. It shows a hydrological model to simulate
the decline in lake levels due to water exported out of the
basin. The second example involves the declining salmon
population in the Tucannon River in EasternWashington.
These examples demonstrate the clarity of the approach,
and they illustrate the potential for interdisciplinary mod-
eling.

The article then turns to the topic of climate change
and global warming. The focus is on the global carbon
cycle and the growing concentration of carbon dioxide
(CO2) in the atmosphere. A wide variety of models have
been used to improve our understanding of the climate
system and the importance of anthropogenic CO2 emis-
sions. Examples of system dynamics models are presented
to show how they can improve our understanding and
provide a platform for interdisciplinary analysis.

System dynamics has also been widely applied in the
study of energy problems, especially problems in the elec-
tric power industry. The final section describes two appli-
cations to electric power. The first involved the financial
problems of regulated electric utilities in the US during
the 1970s. It demonstrates the usefulness of the method in
promoting an interdisciplinary understanding of the util-
ities’ financial problems. The second study dealt with the
CO2 emissions in the large electricity system in the West-
ern USA and Canada. It demonstrated how the power in-
dustry could lead the way in reducing CO2 emissions in
the decades following the implementation of a market in
carbon allowances.

TheModel of Mono Lake

Mono Lake is an ancient inland sea on the east side of
the Sierra Nevada Mountains in California. Microscopic
algae thrive in its saline waters, and the algae support huge
populations of brine flies and brine shrimp which can,

http://www.iseesystems.com/
http://www.vensim.com/
http://www.powersim.com/
http://www.powersim.com/
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System Dynamics Models of Environment, Energy and Climate Change, Figure 1
Stella diagram of the model of Mono Lake

under the right conditions, provide a virtually limitless
food supply for migratory and nesting birds. Starting in
1941, stream flows toward Mono Lake were diverted into
the aqueduct for export to Los Angeles. The large export
deprived the lake of the historical flows, and the volume
shrunk over the next four decades. By 1980, the lake’s vol-
ume was cut approximately in half, and its salinity nearly
doubled. Higher salinity levels posed risks to the ecosys-
tem, and environmental scientists feared for the future of
the lake ecosystem. Various groups filed suit in the 1970s
to limit exports, and the California Supreme Court ruled
in 1983 that public trust doctrine mandated a reconsider-
ation of the management of the waters of the Mono Basin.
That reconsideration led to a long-term plan to limit ex-
ports until the lake’s elevation would return to safer levels.

Figure 1 shows a system dynamics model to simulate
water flows and storage in the Mono Basin. The goal was
to understand the pattern of decline over four decades and
to study the responsiveness of the lake to a change in ex-
port policy. The model is implementedwith the Stella soft-
ware, and Fig. 1 shows how the model appears when using
the software. A single stock variable is used to represent
the storage in the basin. The main flow into the lake is the
flow from gauged streams that bring runoff from the Sierra
to the lake. The aqueduct system diverts a portion of this
flow south to Los Angeles, and the flow allowed past the
diversion points is the main flow into the lake. The main
outflow is the evaporation. It depends on the surface area
of the lake and the evaporation rate. The surface area de-
pends in a nonlinear way on the volume of water in the
lake. Figure 1 shows that this model follows the standard,
system dynamics practice of using familiar names to con-

vey the meaning of the variables in the model. (These par-
ticular names match the terms used by water managers
and hydrological models of the basin.)

Figure 2 shows the simulated decline in the lake if ex-
ports were allowed to continue at high levels for 50 years.
The lake would decline from 6374 to around 6342 feet
above sea level, a value which is designated as a hypo-
thetical danger level for this simulation. The long, gradual
decline is a match of projections by the other hydrolog-
ical models used in the management plan for the basin.
The lake will continue to fall until the area has been re-
duced sufficiently to create an evaporation which will lead
to a balance of the flows in and out of the basin.

Figure 3 shows the simulated responsiveness of the
lake to a change in export. The export is cut to zero mid-
way through the simulation, and the elevation increases
rapidly in the ensuing decade. The simulation reveals an
immediate and rapid response, indicating that there is
little downward momentum associated with the hydrol-
ogy of the basin. This responsiveness is highly relevant
to the management plan. When the lake falls to a dan-
gerous level, the export could be reduced, and the lake
would climb to higher elevations within a few years af-
ter the change in policy. This rapid response supports the
“wait and see” argument by those who advocated waiting
for full signs of a dangerous salinity before changing ex-
port policy.1 But there is far more than hydrology at work
in this system. The waters of Mono Lake support a com-

1“Wait and see” may be supported by an analysis of the hydrology
of the basin, but it does not necessarily make sense when consider-
ing the long delays in the political and managerial process to change
water export.
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System Dynamics Models of Environment, Energy and Climate Change, Figure 2
Simulated decline in Mono Lake elevation if historical export were allowed to continue until the year 2040

System Dynamics Models of Environment, Energy and Climate Change, Figure 3
Simulated recovery of Mono Lake elevation if export is set to zero for the second half of the simulation

plex ecosystem which may or may not recover as quickly
as the lake elevation. To explore the larger system requires
an interdisciplinary model, one that looks at both hydrol-
ogy and population biology.

Figure 4 shows a model of the population of brine
shrimp that live in Mono Lake. The life cycle begins when
the adult females deposit cysts in the summer. A stock is
assigned to the over wintering cysts. The nauplii and ju-
venile phases are combined into a second stock, and the
maturation leads to a new population of adults in the fol-
lowing summer. Themodel operates in months and is sim-
ulated over a long time interval to show the population re-
sponse to long-term changes in elevation and in salinity.
The model shows the population’s response to changes in
lake elevation, so one can learn about the delays in the pop-

ulation’s response to the changes in lake elevation. Since
the shrimp life cycle is 12 months, one would expect the
population to rebound rapidly after the increase in ele-
vation and the reduction in salinity. The model confirms
that the shrimp population would increase rapidly in the
years following the elimination of water export from the
basin.

The Mono Lake models are textbook models [7]. They
demonstrate the clarity that the system dynamics ap-
proach brings to the modeling of environmental systems.
The stock and flow icons help one see the structure of
the system, and the long variable names help one appre-
ciate the individual relationships. The simulation results
help one understand the downwardmomentum in the sys-
tem. In this particular case, there is no significant down-
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System Dynamics Models of Environment, Energy and Climate Change, Figure 4
Stella model of the brine shrimp population of Mono Lake

ward momentum associated with either the hydrological
dynamics or the population dynamics.

The model in Fig. 1 allows for a system dynamics por-
trayal of the type of calculations commonly performed by
hydrologists. Compared to the previous methods in hy-
drology, system dynamics adds clarity and ease of exper-
imentation. The population model in Fig. 4 is a system
dynamics version of the type of modeling commonly per-
formed by population biologists. System dynamics adds
clarity and ease of experimentation in this discipline as
well.

The main theme of this article is that system dynam-
ics offers the opportunity for interdisciplinary modeling
and exploration. The Mono Lake case illustrates this op-
portunity with the combination of the hydrological and
biological models that allows one to simulate management
policies that control export based on the size of the brine
shrimp population. The new model is no longer strictly
hydrology nor strictly population biology; it is an inter-
disciplinary combination of both. And by using stock and
flow symbols that are easily recognized by experts from
many fields of study, the system dynamics enables quick
transfer of knowledge. The ability to combine perspectives
from different disciplines is one of the most useful aspects
of the system dynamics approach to environmental and
energy systems. This point is illustrated further with each
of the remaining examples in the article.

TheModel of the Salmon in the Tucannon River

The next example involves the decline in salmon popula-
tions in the Snake and Columbia River system of the Pa-
cific Northwest. By the end of the 1990s, the salmon had
disappeared from 40% of their historical breeding ranges
despite a public and private investment of more than $1
billion. The annual salmon and steelhead runs had dwin-
dled to less than a quarter of the runs from one hun-
dred years ago. Figure 5 shows a system dynamics model
one of the salmon runs, the population of Spring Chinook
that spawn in the Tucannon River. The river rises in the
Blue Mountains of Oregon and flows 50 miles toward the
Snake River in Eastern Washington. It is estimated that
the river originally supported runs of 20 thousand adults.
But the number of returning adults has declined substan-
tially due to many changes in the past sixty years. These
changes include agricultural development in the Tucan-
non watershed, hydro-electric development on the Snake
and Columbia, and harvesting in the ocean.

Each of the stocks in Fig. 5 correspond to a different
phase in the salmon life cycle (see Table 1), with a total life-
cycle of 48 months. The parameters represent predevelop-
ment conditions, the conditions prior to agricultural de-
velopment in the Tucannon watershed and hydro-electric
development on the Snake and Columbia. Each of these
parameters is fixed regardless of the size of the salmon
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System Dynamics Models of Environment, Energy and Climate Change, Figure 5
Stella diagramof the model of the salmon life cycle

populations. One of the most important variables is the
“juvenile loss fraction depends on density.” It can be as
low as 50% when there are only a few emergent fry each
spring. With higher densities, however, juvenile survival
becomes more difficult due to crowding in the cool and
safe portions of the river.

Figure 6 shows the model results over a 480 month pe-
riod with the population parameters in Table 1. The simu-
lation begins with a small number to see if the population
will grow to the 20 thousand adults that were thought to
have returned to the river in earlier times. The time graph
shows a rapid rise to around 20 thousand adults within the
first 120 months of the simulation. The remainder of the
simulation tests the population response to variability in
environmental conditions, as represented by random vari-
ations in the smolt migration loss fraction. (This loss tends
to be high in years with low runoff and low in years with
high runoff.) Figure 6 confirms that the model simulates
the major swings in returning adults due to environmental

variability. The runs can vary from a low of ten thousand
to a high of thirty thousand.

System dynamics models are especially useful when
they help us to understand the key feedbacks in the sys-
tem. Positive feedback loops are essential to our under-

System Dynamics Models of Environment, Energy and Climate
Change, Table 1
Inputs to simulate the salmon population under pre-develop-
ment conditions

Months in each phase Population parameters
Adults ready to spawn 1 fraction female 50%
eggs in redds 6 eggs per redd 3,900
juveniles in Tucannon 12 egg loss fraction 50%
smolts in migration 1 smolt migration loss factor 90%
one yr olds in ocean 12 loss fr for first yr 35%
two yr olds in ocean 12 loss fr for second yr 10%
adults in migration 4 adult migration loss fraction 25%
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System Dynamics Models of Environment, Energy and Climate Change, Figure 6
Test of the salmonmodel with random variations in the smolt migration losses

System Dynamics Models of Environment, Energy and Climate
Change, Figure 7
Key feedback loops in the salmonmodel

standing of rapid, exponential growth; negative feedbacks
are essential to our understanding of the controllability of
the system. Causal loop diagrams are often used to depict
the feedback loops at work in the simulated system. Fig-
ure 7 shows an example by emphasizing the most impor-
tant feedback loops in the salmon model.

Most readers will immediately recognize the impor-
tance of the outer loop which is highlighted by bold arrows
in the diagram. Starting near the top, imagine that there

are more spawning adults and more eggs in redds. We
would then expect to see more emergent fry, more juve-
niles, more smolts in migration, more salmon in the ocean,
more adults entering the Columbia, and a subsequent in-
crease in the number of spawning adults. This is the pos-
itive feedback loop that gives the salmon population the
opportunity to grow rapidly under favorable conditions.

An equally important feedback works its way around
the inner loop in the diagram. If we begin at the top with
more spawners, we would expect to see more eggs, more
fry and a greater juvenile loss fraction as the fry compete
for space in the river.With a higher loss fraction, we expect
to see fewer juveniles survive to be smolts, fewer smolts
in migration, and fewer adults in the ocean. This means
we would see fewer returning adults and less egg deposi-
tion. This “density dependent feedback” becomes increas-
ingly strong with larger populations, and it turns out to
be crucial to the eventual size of the population. Simulat-
ing density dependent feedback is also essential to our un-
derstanding of the recovery potential of the salmon pop-
ulation. Suppose, for example, that the salmon experience
high losses during the adult migration, This will mean that
fewer adults reach the spawning grounds. There will be
less egg deposition and fewer emergent fry in the follow-
ing spring. The new cohort of juveniles will then experi-
ence more favorable conditions, and a larger fraction will
survive the juvenile stage and migrate to the ocean. The
density dependent feedback is crucial to the population’s
ability to withstand shocks from external conditions.2

2The shocks could take the form of changes in ocean mortalities,
changes in harvesting and changes in the migrationmortalities. These
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System Dynamics Models of Environment, Energy and Climate Change, Figure 8
Salmon harvestingmodel to encourage student experimentation

Figure 8 shows a version of the model to encourage
student experimentation with harvesting policies. The in-
formation fields instruct the students to work in groups
of three with one student playing the role of “the harvest
manager”. The harvest manager’s goal is to achieve a large,
sustainable harvest through control of the harvest fraction.
The other students are given control of the parameters that
describe conditions on the Snake and Columbia and in the
Tucannon watershed. These students are encouraged to
makemajor and unpredictable changes to test the instincts
of the harvest manager.

Models designed for highly interactive simulations of
this kind are sometimes called “management flight sim-
ulators” because they serve the same function as actual
flight simulators. With a pilot simulator, the trainee takes
the controls of an electro-mechanical model and tests his
instincts for managing the simulated airplane under dif-
ficult conditions. The Tucannon harvesting model pro-
vides a similar opportunity for environmental students.
They can learn the challenge of managing open access fish-
eries that are vulnerable to over harvesting and the tragedy

shocks are external to the boundary of this model, so one is reminded
of Coyle’s definition of system dynamics. That is, the model helps us
understand how the salmon population could withstand the shocks
which fall upon it from the out-side world.

of the commons [12]. In this particular exercise, students
learn that they can achieve a sustainable harvest under
a wide variety of difficult and unpredictable conditions.
The key to sustainability is harvest manager’s freedom to
change the harvest fraction in response to recent trends in
number of returning adults. This is an important finding
for fishery management because it reveals that the popula-
tion dynamics are not the main obstacle to sustainability.
Rather, unsustainable harvesting is more likely to occur
when the managers find it difficult to change the harvest
fraction in response to recent trends. This is the funda-
mental challenge of an open-access fishery.

The salmon model is a system dynamics version of
the type of modeling commonly performed by popula-
tion biologists. System dynamics adds clarity and ease of
experimentation compared to these models. It also pro-
vides a launching point for model expansions that can go
beyond population biology. Figure 9 shows an example.
This is a student expansion to change the carrying capac-
ity from a user input to a variable that responds to the
user’s river restoration strategy. The student was trained
in geomorphology and was an expert on restoring de-
graded rivers in the west. The Tucannon began the sim-
ulation with 25 miles of river in degraded condition and
the remaining 25 miles in a mature, fully restored river
with a much higher carrying capacity. The newmodel per-
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System Dynamics Models of Environment, Energy and Climate Change, Figure 9
Student addition to simulate river restoration

mits one to experiment with the timing of river restoration
spending and to learn the impact on the management of
the salmon fishery.

The student’s model provides another example of in-
terdisciplinary modeling that aids our understanding of
environmental systems. In this particular case, the mod-
eling of river restoration is normally the domain of the ge-
omorphologist. The model of the salmon population is the
domain of the population biologist. Their work is often
conducted separately, and their models are seldom con-
nected. This is unfortunate as the experts working in their
separate domains miss out on the insights that arise when
two perspectives are combined within a single model. In
the student’s case, surprising insights emerged when the
combined model was used to study the economic value of
the harvesting that could be sustained in the decades fol-
lowing the restoration of the river. To the student’s sur-
prise, the new harvesting could “pay back” the entire cost
of the river restoration in less than a decade.

Models of Climate Change

Scientists use a variety of models to keep track of the
greenhouse gasses and their impact on the climate. Some
of the models combine simulations of the atmosphere,
soils, biomass and ocean response to anthropogenic emis-
sions. The more developedmodels include CO2, methane,
nitrous oxides and other greenhouse gas (GHG) emissions
and their changing concentrations in the atmosphere.
Claussen [2] classifies climate models as simple, interme-

diate and comprehensive. The simple models are some-
times called “box models” since they represent the stor-
age in the system by highly aggregated stocks. The param-
eters are usually selected to match the results from more
complicated models. The simple models can be simulated
faster on the computer, and the results are easier to inter-
pret. This makes them valuable for sensitivity studies and
in scenario analysis [13].

The comprehensivemodels aremaintained by large re-
search centers, such as the Hadley Center in the UK. The
term “comprehensive” refers to the goal of capturing all
the important processes and simulating them in a highly
detailed manner. The models are sometimes called GCMs
(general circulation models). They can be used to describe
circulation in the atmosphere or the ocean. Some simu-
late both the ocean and atmospheric circulation in a si-
multaneous, interacting fashion. They are said to be cou-
pled general circulation models (CGCMs) and are consid-
ered to be the “most comprehensive” of the models avail-
able [2]. They are particularly useful when a high spa-
tial resolution is required. However, a disadvantage of the
CGCMs is that only a limited number of multi-decadal
experiments can be performed even when using the most
powerful computers.

Intermediate models help scientists bridge the gap
between the simple and the comprehensive models.
Claussen [2] describes elevenmodels of intermediate com-
plexity. These models aim to “preserve the geographic in-
tegrity of the Earth system” while still providing the op-
portunity for multiple simulations to “explore the param-
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eter space with some completeness. Thus, they are more
suitable for assessing uncertainty”. Figure 10 characterizes
the different categories of models based on their relative
emphasis on:

� number of processes (right axis)
� detailed treatment of the each process (left axis), and

the
� extent of integration among the different processes (top

axis).

Regardless of the methodology, climate modeling teams
must make some judgments on where to concentrate their
attention. No model can achieve maximum performance
along all three dimensions. (Figure 10 uses the dashed lines
to draw our attention to the impossible task of doing every
thing within a single model.)

The comprehensive models strive to simulate as many
processes as possible with a high degree of detail. This
approach provides greater realism, but the models often
fail to simulate the key feedback loops the link that at-
mospheric system with the terrestrial and oceanic sys-
tems. (An example is the feedback between CO2 emis-
sions, temperatures and the decomposition of soil carbon.
If higher temperatures lead to accelerated decomposition,
the soils could change from a net sink to a net source of
carbon [15].) The simple models sacrifice detail and the
number of processes in order to focus on the feedback
effects between the processes. Using Claussen’s terminol-
ogy, one would say that such models aim for a high de-
gree of “integration”. However, the increased integration
is achieved by limiting the number of processes and the
degree of detail in representing each of the processes.

System dynamics has been used in a few applications
to climate change. These applications fit in the category of
simple models whose goal is to provide a highly integrated
representation of the system. Two examples are described
here; both deal with the complexities of the global carbon
cycle.

SystemDynamics Models of the Carbon Cycle

Figures 11 and 12 depict the global carbon cycle. Figure 11
shows the carbon flows in a visual manner. Figure 12 uses
the Vensim stock and flow icons to summarize carbon
storage and flux in the current system. The storage is mea-
sured in GT, gigatons of carbon, (where carbon is the C
in CO2). The flows are in GT/year of carbon with values
rounded off for clarity.

The left side of Fig. 12 shows the flows to the terrestrial
system. The primary production removes 121GT/yr from
the atmosphere. This outflow exceeds the return flows by

System Dynamics Models of Environment, Energy and Climate
Change, Figure 10
Classification of climate models

1GT/year. This imbalance suggests that around 1GT of
carbon is added to the stocks of biomass and soil each
year. So the carbon stored in the terrestrial system would
grow over time (perhaps due to extensive reforestation of
previously cleared land.) The right side of Fig. 12 shows
the flows from the atmosphere to the ocean. The CO2 dis-
solved in the ocean each year exceeds the annual release
back to the atmosphere by 2 GT. The total, net-flow out
of the atmosphere is 3GT/year which means that natu-
ral processes are acting to negate approximately half of the
current anthropogenic load.

As the use of fossil fuels grows over time, the anthro-
pogenic load will increase. But scientists do not think that
natural processes can continue to negate 50% of an ever
increasing anthropogenic load. On the terrestrial side of
the system, there are limits on the net flow associated with
reforestation of previously cleared land. And there are lim-
its to the carbon sequestration in plants and soils due
to nitrogen constraints. On the ocean side of the system,
the current absorption of 2GT/year is already sufficiently
high to disrupt the chemistry of the ocean’s upper layer.
Higher CO2 can reduce the concentration of carbonate,
the ocean’s main buffering agent, thus affecting the ocean’s
ability to absorb CO2 over long time periods.

Almost of the intermediate and comprehensive cli-
mate models may be used to estimate CO2 accumulation
in the atmosphere in the future. For this article, it is use-
ful to draw on the mean estimate published in Climatic
Change by Webster [23]. He used the climate model de-
veloped at the Massachusetts Institute of Technology, one
of the eleven models of “intermediate complexity” in the
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System Dynamics Models of Environment, Energy and Climate Change, Figure 11
The global carbon cycle. (Source: United Nations Environmental Program (UNEP) http://www.unep.org/)

System Dynamics Models of Environment, Energy and Climate Change, Figure 12
Diagram of the stocks and flows in the carbon cycle

review by Claussen [2]. The model began the simulation
in the year 2000 with an atmospheric CO2 concentration
of 350 parts per million (ppm). (This concentration cor-
responds to around 750GT of carbon in the atmosphere.)
The mean projection assumed that anthropogenic emis-
sions would grow to around 19GT/year by 2100. The

mean projection of atmospheric CO2 was around 700 ppm
by 2100. The amount of CO2 in the atmosphere would be
twice as high at the end of the century.

Figure 13 shows the simplest possible model to explain
the doubling of atmospheric CO2. The stock accumulates
the effect of three flows, each of which is specified by the

http://www.unep.org/
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System Dynamics Models of Environment, Energy and Climate
Change, Figure 13
Simple model to understand accumulation of CO2 in the atmo-
sphere

user. Anthropogenic emissions are set to match Webster’s
assumption. They grow to 19GT/year by the end of the
century. Net removal to oceans is assumed to remain con-
stant at 2GT/year for the reasons given previously. Net re-
moval to biomass and soils is then subject to experimenta-
tion to allow this simple model to matchWebster’s results.
A closematch is provided if the net removal increases from
1 to 2GT/year during the first half of the century and then
remains at 2GT/year for the next fifty years. With these
assumptions, the CO2 in the atmosphere would double
from 750 to 1500GT during the century. This means that
the atmospheric concentration would double from 350 to
700 ppm, the same result published by Webster [23].

The model in Fig. 13 is no more than an accumula-
tor. This is the simplest of possible models to add insight
on the dynamics of CO2 accumulation in the atmosphere.
It includes a single stock and only three flows, with all of
the flows specified by the user. There are no feedback re-
lationships which are normally at the core of system dy-
namics models. This extreme simplification is intended to
make the point that simple models may provide perspec-
tive on the dynamics of a system. In this case, a simple ac-
cumulator can teach one about the sluggish response of
atmospheric CO2 in the wake of reductions in the anthro-
pogenic emissions. As an example, suppose carbon poli-
cies were to succeed in cutting global emissions dramati-
cally in the year 2050. By this year, emissions would have
reached 10GT/yr, so the supposed policy would reduce
emissions to 5GT/yr. What might then happen to CO2
concentrations in the atmosphere for the remainder of
the century? Experiments with highly educated adults [21]
suggest that some subjects would answer this question
with “pattern matching” reasoning. For example, if emis-
sions are cut in half, it might make sense that CO2 concen-
trations would be cut in half as well. But pattern matching
leads one astray since the accumulation of CO2 in the at-
mosphere responds to the total effect of the flows in Fig. 13.
Were anthropogenic emissions to be reduced to 5GT/year

and net removals were to remain at 4GT/year, the CO2
concentration would continue to grow, and atmospheric
CO2 would reach 470 ppm by the end of the century.

The model in Fig. 13 is an extreme example to make
a point about the usefulness of simple models. The next
example is by Fiddaman [6]. It was selected as illustrative
of the type of model that would emerge after a system dy-
namics study. Figure 14 shows the view of the carbon cy-
cle, one of 30 views in the model. The model simulates
the climate system within a larger system that includes
growth in human population, growth in the economy, and
changes in the production of energy. The model was orga-
nized conceptually as nine interacting sectors with a high
degree of coupling between the energy, economic and the
climate sectors.

Fiddaman focused on policy making, particularly the
best way to put a price on carbon. In the current debate,
this question comes down to a choice between a carbon tax
and a carbon market. His simulations add support to those
who argue that the carbon tax is the preferred method
of putting a price on carbon. The simulations also pro-
vide another example of the usefulness of system dynamics
models that cross disciplinary boundaries. By representing
the economy, the energy system and the climate system
within a single, tightly coupled model, he provides another
example of the power of system dynamics to promote in-
terdisciplinary exploration of complex problems.

System dynamics has also been applied to a wide vari-
ety of energy problems [1,7]. Indeed, a key word frequency
count in 2004 revealed nearly 400 energy entries in the
System dynamics bibliography [11]. Many of these appli-
cations deal with the electric power industry, and I have
selected two electric studies to illustrate the usefulness of
the approach. The first involves the regulatory and finan-
cial challenges of the investor owned electric utilities in the
United States.

Lessons from the Regulated Power Industry
in the 1970s

The 1970s was a difficult decade for the regulated power
companies in the United States. The price of oil and gas
was increasing rapidly, and the power companies were fre-
quently calling on their regulators to increase retail rates
to cover the growing cost of fuel. The demand for elec-
tricity had been growing rapidly during previous decades,
often at 7%/year. At this rate, the demand doubled every
decade, and the power companies faced the challenge of
doubling the amount of generating capacity to ensure that
demand would be satisfied. The power companies dealt
with this challenge in previous decades by building ever
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System Dynamics Models of Environment, Energy and Climate Change, Figure 14
Representation of the carbon cycle in the model by Fiddaman [6]

larger power plants (whose unit construction costs de-
clined due to economies of scale). But the economies of
scale were exhausted by the 1970s, and the power compa-
nies found themselves with less internal funds and poor
financial indicators. Utilities worried that the construction
of new power plants would not keep pace with demand,
and the newspapers warned of curtailments and blackouts.

Figure 15 puts the financial problems in perspective by
showing the forecasting, planning and construction pro-
cesses. The side by side charts allows one to compare the
difficult conditions of the 1970s with conditions in previ-
ous decades. Figure 15a shows the situation in the 1950s
and 1960s. Construction lead times were around 5 years,
so forecasts would extend 5 years into the future. Given
the costs at the time, the power company would need to
finance $3 billion in construction. This was a substantial,
but manageable task for a company with $10 billion in as-
sets.

Figure 15b shows the dramatic change in the 1970s.
Construction lead times had grown to around 10 years,
and construction costs had increased as well. The power
company faced the challenge of financing $10 billion in
construction with an asset base of $10 billion. The utility
executives turned to the regulators for help. They asked

for higher electricity rates in order to increase annual rev-
enues and improve their ability to attract external financ-
ing. The regulators responded with substantial rate in-
creases, but they began to wonder whether further rate
increases would pose a problem with consumer demand.
If consumers were to lower electricity consumption, the
utility would have less sales and less revenues. The execu-
tives might then be forced to request another round of rate
increases. Regulators wondered if they were setting loose
a “death spiral” of ever increasing rates, declining sales and
inadequate financing.

Figure 16 puts the problem in perspective by show-
ing the consumer response to higher electricity rates along
side of the other key feedback loops in the system. Higher
electricity rates do pose the problem which came to be
called “the death spiral”. But the death spiral does not
act in isolation. Figure 16 reminds us that higher rates
lead to lower consumption and to a subsequent reduc-
tion in the demand forecast and in construction. After de-
lays for the new power plants to come on line, the power
companies experiences a reduction in its “rate base” and
the “allowed revenues”. When the causal relationships are
traced around the outer loop, one sees a negative feedback
loop that could act to stabilize the situation. The prob-
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System Dynamics Models of Environment, Energy and Climate Change, Figure 15
a The electric utility’s financial challenge during the 1950s and 1960s.b The electric utility’s financial challenge during the 1970s

lem, however, is that the delays around the outer loop
are substantially longer than the delay for the death spi-
ral.

The utility companies financial challenge was the sub-
ject of several system dynamics studies in the 1970s and
1980s [7]. The studies revealed that the downward spi-
ral could pose difficult problems, especially if consumers
reacted quickly while utilities were stuck with long-lead
time, capital intensive power plants under construction.
The studies showed that utility executives needed to do
more than rely on regulators to grant rate increases; they
needed to take steps on their own to soften the impact
of the death spiral. The best strategy was to shift the in-
vestments to technologies with shorter lead times. (As an
example, a power company in coal region would do bet-
ter to switch from large to smaller coal plants because of
the small plants’ shorter lead time.) The studies also re-
vealed that the company’s financial situation would im-
prove markedly with slower growth in demand. By the
late 1970s and early 1980s, many power companies began
to provide direct financial incentives to their customers
to slow the growth in demand. System dynamics studies
showed that the company-sponsored efficiency programs
would be beneficial to the both the customers (lower elec-

tric bills) and to the power companies (improved financial
performance).

An essential feature of the utility modeling was the in-
clusion of power operations along side of consumer be-
havior, company forecasting, power plant construction,
regulatory decision making and company financing. This
interdisciplinary approach is common within the system
dynamics community because practitioners believe that
insights will emerge from simulating the key feedback
loops. (This belief leads one to follow the cause and effect
connections around the key loops regardless of the disci-
plinary boundaries that are crossed along the way.) This
approach contrasts strongly with the customary modeling
framework of large power companies who were not famil-
iar with system dynamics. Their approach was to assign
models to different departments (i. e., operations, account-
ing and forecasting) and string the models together to pro-
vide a view of the entire corporation over the long-term
planning interval.

Figure 17 shows what can happen when models within
separate departments are strung together. A large corpo-
ration might use 30 models, but this diagram makes the
point by describing three models. The analysis would be-
gin with an assumption on future electricity prices over the
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System Dynamics Models of Environment, Energy and Climate Change, Figure 16
Key feedbacks and delays faced by power companies in the 1970s

20-year interval. These are needed to prepare a forecast of
the growth in electricity load. The forecast is then given to
the planning department which may run a variety of mod-
els to select the number power plants to construct in the
future. The construction results are then handed to the ac-
counting and rate making departments to prepare a fore-
cast of electricity prices. When the company finally com-
pletes the many calculations, the prices that emerge may
not agree with the prices that were assumed at the start.
The company must then choose whether to ignore the
contradiction or to repeat the entire process with a new es-
timate of the prices at the top of the diagram. This was not
an easy choice. Ignoring the price discrepancy was prob-
lematic because it was equivalent to ignoring the “death
spiral,” one of the foremost problems of the 1970s. Repeat-
ing the analysis was also problematic. The new round of
calculations would be time consuming, and there was no
guarantee that consistent results would be obtained at the
end of the next iteration.

The power companies’ dilemma from the 1970s is de-
scribed here to make an important point about the use-
fulness of system dynamics. System dynamics modeling is
ideally suited for the analysis of dynamic problems that re-
quire a feedback perspective. The method allows one to
“close the loop”, as long as one is willing to cross the neces-
sarily disciplinary boundaries. In contrast, other modeling
methods are likely to be extremely time consuming or fall

System Dynamics Models of Environment, Energy and Climate
Change, Figure 17
The iterative approach often used by large power companies in
the 1970s

short in simulating the key feedbacks that tie the system
together.

Simulating the Power Industry Response
to a CarbonMarket

The world is getting warmer, both in the atmosphere and
in the oceans. The clearest and most emphatic description
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System Dynamics Models of Environment, Energy and Climate Change, Figure 18
Comparison of goals for emissions (100 on the vertical axis represent emissions in the year 1990)

of global warming was issued by the intergovernmental
panel on climate change (IPCC) in February of 2007. Their
summary for policymakers (p. 4 in [14]) reported that the
“Warming of the climate system is unequivocal, as is now
evident from observations of increases in global average
air and ocean temperatures, widespread melting of snow
and ice and rising global mean sea level”. The IPCC con-
cluded that “most of the observed increase is very likely
due to the observed increase in anthropogenic greenhouse
gas concentrations”. As a consequence of the IPCC and
other warnings, policymakers around the world are calling
for massive reductions in CO2 and other greenhouse gas
(GHG) emissions to reduce the risks of global warming.

Figure 18 summarizes some of the targets for emission
reductions that have been adopted or proposed around the
world. In many cases, the targets are specified relative to
a country’s emissions in the year 1990. So, for ease of com-
parison, the chart uses 100 to denote emissions in the year
1990. Emissions have been growing at around 1.4%/year.
The upward curve shows the future emissions if this trend
continues: emissions would reach 200 by 2040 and 400 by
2090. The chart shows the great differences in the strin-

gency of the targets. Some call for holding emissions con-
stant; others call for dramatic reductions over time. Some
targets apply to the next two decades; many extend to the
year 2050; and some extend to the year 2100. However,
when compared to the upward trend, all targets require
major reductions relative to business as usual.

The targets from the Kyoto treaty are probably the best
known of the goals in Fig. 18. The treaty became effective
in February of 2005 and called for the Annex I countries to
reduce emissions, on average, by 5% below 1990 emissions
by the year 2008 and to maintain this limit through 2012.
The extension of the Kyoto protocol beyond 2012 is the
subject of ongoing discussions. The solid line from 2010 to
2050 represents the “stabilization path” used in the climate
modeling byWebster [23]. The limit on emissions was im-
posed in modeling calculations designed to stabilize atmo-
spheric CO2 at 550 ppmv or lower. The scenario assumed
that the Kyoto emissions caps are adopted by all countries
by 2010. The policy assumed that the caps would be ex-
tended and then further lowered by 5% every 15 years. By
the end of the century, the emissions would be 35% below
the value in 1990.
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System Dynamics Models of Environment, Energy and Climate
Change, Figure 19
Map of the western electricity system

This article concentrates on Senate Bill 139, The Cli-
mate Stewardship Act of 2003. Figure 19 shows the S139
targets over the interval from 2010 to 2025. The bill called
for an initial cap on emissions from 2010 to 2016. The
cap would be reduced to a more challenging level in 2016,
when the goal was to limit emissions to no more than
the emissions from 1990. S139 was introduced by Sen-
ators McCain and Lieberman in January of 2003. It did
not pass, but it was the subject of several studies includ-
ing a highly detailed study by the Energy Information Ad-
ministration [5]. The EIA used a wide variety of models to

System Dynamics Models of Environment, Energy and Climate Change, Figure 20
Opening view of the model of the western electricity system

search for the carbon market prices that would induce in-
dustries to lower emissions to come into compliance with
the cap. The carbon prices were estimated at $22 per met-
ric ton of CO2 when the market was to open in 2010. They
were projected to grow to $60 by the year 2025.

The EIA study showed that the electric power sector
would lead the way in reducing emissions. By the year
2025, power sector emissions would be reduced 75% be-
low the reference case. This reduction was far beyond the
reductions to be achieved by other sectors of the economy.
This dramatic response was possible given the large use of
coal in power generation and the power industry’s wide
range of choices for cleaner generation.

A system dynamics study of S139 was conducted at
Washington State University (WSU) to learn if S139 could
lead to similar reductions in the west. Electricity genera-
tion in the western system is provided in a large, inter-
connected power system shown in Fig. 19. This region has
considerably more hydro resources, and it makes less use
of coal-fired generation than the nation as a whole. The
goal was to learn if dramatic reductions in CO2 emissions
could be possible in the west and to learn if they could be
achieved with generating technologies that are commer-
cially available today.

The opening view of the WSU model is shown in
Fig. 20. Themodel dealswith generation, transmission and
distribution to end use customers, with price feedback on
the demand for electricity. The model is much larger than
the textbook models described earlier in this article. Fifty
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System Dynamics Models of Environment, Energy and Climate Change, Figure 21
Annual emissions in a base case simulation (annual emissions are inmillion metric tons of carbon)

views are required to show the all the diagrams and the
simulation results. The opening view serves as a central
hub to connect with all the other views.

The opening view uses Vensim’s comment icons to
draw attention to the CO2 emissions in the model. The
emissions arise mainly from coal-fired power plants, as
shown in Fig. 21. A smaller, but still significant fraction
of the emissions is caused by burning natural gas in com-
bined cycle power plants. Total emissions vary with the
seasons of the year, with the peak normally appearing in
the summer when almost all of the fossil-fueled plants are
needed to satisfy peak demand. The base case shows an-
nual emissions growing by over 75% by the year 2025.

A major challenge for the system dynamics model is
representing power flows across a transmission grid. Find-
ing the flows on each transmission line and the prices
in each area is difficult with the standard tools of system
dynamics. It simply doesn’t make sense to represent the
power flows with a combination of stocks, flows and feed-
back processes to explain the flows. It makes more sense to
calculate the flows and prices using traditional power sys-
temsmethods, as explained by Dimitrovski [4]. The power
flows were estimated using an algebraic approach which
power engineers label as a reduced version of a direct-cur-
rent optimal power flow calculation. The solution to the
algebraic constraints were developed with the Matlab soft-
ware and then transferred to user-defined functions to op-

erate within theVensim software. TheVensim simulations
were set to run over twenty years with time in months.
(A typical simulation required 240 months with changes
during a typical day handled by carrying along separate
calculations for each of 24 h in a typical day.) These are ex-
tensive calculations compared to many system dynamics
models, so there was concern that we would lose the rapid
simulation speed that helps to promote interactive explo-
ration and model testing. The important methodological
accomplishment of this project was the inclusion of net-
work and hourly results within a long-termmodel without
losing the rapid simulation response that encourages users
to experiment with the model.

One of the model experiments called for a new simu-
lation with carbon prices set to follow the $20 to $60 tra-
jectory projected by the EIA for S139. These prices were
specified as a user input, and the model responded with
a change in both short-term operations and long-term in-
vestments. The important result was a 75% reduction in
CO2 emissions by the end of the simulation. This dramatic
reduction corresponds almost exactly to the EIA estimate
of CO2 reduction for the power industry in the entire US.

Figure 22 helps one understand how CO2 emissions
could be reduced by such a large amount. These diagrams
show the operation of generating units across the Western
US and Canada for a typical day in the summer of the fi-
nal year of the simulation. Figure 22a shows the reference
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System Dynamics Models of Environment, Energy and Climate Change, Figure 22
a Projected generation for a peak summer day in 2024 in the reference case. b Projected generation for a peak summer day in 2024
in the S139 case

case; Figure 22b shows the case with S139. The side by side
comparison helps one visualize the change in system op-
eration. A comparison of the peak loads shows that the
demand for electricity would be reduced. The reduction
is 9%, which is due entirely to the consumers’ reaction to
higher retail electric prices over time.

Figure 22b shows large contributions from wind and
biomass generation. Wind generation is carbon free, and
biomass generation is judged to be carbon neutral, so these
generating units make an important contribution by the
end of the simulation. Both of these generating technolo-
gies are competitive with today’s fuel prices and tax cred-
its. The model includes combined cycle gas generation
equipped with carbon capture and storage, a technology
that is not commercially available today. The model as-
sumes that advances in carbon sequestration over the next
two decadeswould allow this technology to capture a small
share of investment near the end of the simulation. By the
year 2025, the combined cycle plants with sequestration
equipment would provide 2% of the generation.

The most important observation from Fig. 22 is the
complete elimination of coal-fired generation in the S139
case. Coal-fired units are shown to operate in a base load
mode in the reference simulation. They provide around
28% of the annual generation, but they account for around
two/thirds of the CO2 emissions in the western system.
The carbon prices from S139 make investment in new
coal-fired capacity unprofitable at the very start of the sim-
ulated market in 2010. As the carbon prices increase, util-

ities to cut back on coal-fired generation and compensate
with increased generation from gas-fired CC capacity. In
the simulations reported here, this fuel switching would
push the coal units into the difficult position of operating
fewer and fewer hours in a day. Eventually this short dura-
tion operation is no longer feasible, and coal generation is
eliminated completely by the end of the simulation.

The WSU study of the western electric system was
selected as the concluding example because of its novel
treatment of network flows inside a system dynamics
model [4]. The model is also interesting for its treatment
of daily price changes within a long-term model. (Such
changes are important to the simulation of revenues in the
wholesale market.) From a policy perspective, the study
confirms previous modeling of the pivotal role of the elec-
tric power industry in responding to carbon markets. The
study indicated that the western electricity system could
achieve dramatic reductions in CO2 emissions within 15
years after the opening of a carbon market, and it could
do so with technologies that are commercially available to-
day [8].

Conditions for Effective InterdisciplinaryModeling

All of the applications demonstrate the usefulness of sys-
tem dynamics in promoting interdisciplinary modeling.
The article concludes with comments on the level of effort
and the conditions needed for effective, interdisciplinary
modeling.
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The examples in this article differ substantially in the
level of effort required, from several weeks for the class-
room examples to several years for the energy studies. The
textbook examples involved student expansions of mod-
els of Mono Lake and the Tucannon salmon. The ex-
pansions were completed by undergraduate students in
projects lasting two or three weeks. The key was the stu-
dents’ previous education (classes frommany different de-
partments) and their receptiveness to an interdisciplinary
approach.

Fiddaman’s model of the climate and energy sys-
tem [6] was a more ambitious exercise, requiring several
years of effort as part of his doctoral research. Bringing
multi-year interdisciplinary modeling projects to a suc-
cessful conclusion requires one to invest the time to mas-
ter several disciplines and to maintain a belief that there
are potential insights at the end of the effort.

The electric power industry examples were also am-
bitious projects that required several years of effort. The
modeling of the western electricity system was a four-year
project with support from the National Science Founda-
tion. The long research period was crucial for it allowed
the researchers from power systems engineering, system
dynamics and environmental science to take the time to
learn from one another. The modeling of the electric com-
pany problems in the 1970s was also spread over several
years of effort. The success of this modeling was aided by
utility planners, managers and modelers who were look-
ing for a systems view of their agency and its problems.
They saw system dynamics as a way to tie existing ideas to-
gether within an integrated portrayal of their system. Their
existing ideas were implemented in models maintained by
separate functional areas (i. e., forecasting, accounting, op-
erations). The existing models often provided a founda-
tion for the system dynamics models (i. e., in the same
way that the comprehensive climate models in Fig. 11 pro-
vide support for the development of the more integrated
models). The key to effective, interdisciplinary modeling
within such large organizations is support from a client
with a strong interest in learning and with managerial re-
sponsibility for the larger system.

Future Directions

This article concludes with future directions for system
dynamics applications to climate change. People often
talk of mitigation and adaptation. Mitigation refers to the
challenge of lowering greenhouse gas emissions to avoid
dangerous anthropogenic interference with the climate
system. Adaptation refers to the challenge of living in
a changing world.

Mitigation: The challenge of lowering CO2 and other
GHG emissions is the fundamental challenge of the com-
ing century. The next two decades will probably see var-
ious forms of carbon markets, and system dynamics can
aid in learning about market design. It is important that
we learn how to make these markets work well. And if
they don’t work well, it’s important to speed the transition
to a carbon tax policy with better prospects for success.
System dynamics can aid in learning about markets, espe-
cially if it is coupled with simulating gaming to allowmar-
ket participants and regulators to “experience” and better
understand market dynamics.

Adaptation: The world will continue to warm, and sea
levels will continue to rise. These trends will dominate the
first half of this century even with major reductions in
CO2 emissions. These and other climate changes will bring
a wide variety of problems for management of water re-
source, public health planning, control of invasive species,
preservation of endangered species, control of wildfire,
and coastal zone management, just to name a few. Our un-
derstanding of the adaptation challenges can be improved
through system dynamics modeling. The prospects for in-
sight are best if the models provide an interdisciplinary
perspective on adapting to a changing world.

Bibliography

Primary Literature
1. Bunn D, Larsen E (1997) Systems modelling for energy policy.

Wiley, Chichester
2. Claussen M et al (2002) Earth system models of intermediate

complexity: closing the gap in the spectrum of climate system
models. Climate Dyn 18:579–586

3. Coyle G (1977) Management system dynamics. Wiley, Chich-
ester

4. Dimitrovski A, Ford A, Tomsovic K (2007) An interdisciplinary
approach to long term modeling for power system expansion.
Int J Crit Infrastruct 3(1–2):235–264

5. EIA (2003) United States Department of Energy, Energy Infor-
mation Administration, Analysis of S139, the Climate Steward-
ship Act of 2003

6. Fiddaman T (2002) Exploring policy options with a behavioral
climate-economy model. Syst Dyn Rev 18(2):243–264

7. Ford A (1999) Modeling the environment. Island Press, Wash-
ington

8. Ford A (2008) Simulation scenarios for rapid reduction in car-
bon dioxide emissions in the western electricity system. En-
ergy Policy 36:443–455

9. Forrester J (1961) Industrial dynamics. Pegasus Communica-
tions

10. Forrester J (2000) From the ranch to system dynamics: An au-
tobiography, in management laureates. JAI Press

11. Ford A, Cavana R (eds) (2004) Special Issue of the Syst Dyn Rev
12. Hardin G (1968) The tragedy of the commons. Science

162:1243–1248



9034 S System Dynamics Models, Optimization of

13. IPCC (1997) An introduction to simple climate models used in
the IPCC second assessment report. ISBN 92-9169-101-1

14. IPCC (2007) Climate change 2007: The physical science basis,
summary for policymakers. www.ipcc.ch/

15. Kump L (2002) Reducing uncertainty about carbon dioxide as
a climate driver. Nature 419:188–190

16. Meadows DH, Meadows DL, Randers J, Behrens W (1972) The
limits to growth. Universe Books

17. Morecroft J (2007) Strategicmodelling and business dynamics.
Wiley, Chichester

18. Richardson J, Pugh A (1981) Introduction to system dynamics
modeling with dynamo. Pegasus Communications

19. Sterman J (2000) Business dynamics. McGraw-Hill, Irwin
20. Sterman J (ed) (2002) Special Issue of the Syst Dyn Rev
21. Sterman J, Sweeney L (2007) Understanding public compla-

cency about climate change. Clim Chang 80(3–4):213–238
22. Warren K (2002) Competitive strategy dynamics. Wiley, Chich-

ester
23. Webster M et al (2003) Uncertainty analysis of climate change

and policy response. Climat Chang 61:295–320

Books and Review
Houghton J (2004) Global warming: The complete briefing, 3rd

edn. Cambridge University Press, Cambridge

SystemDynamics Models,
Optimization of
BRIAN DANGERFIELD
Centre for OR & Applied Statistics, Salford Business
School, University of Salford, Salford, UK

Article Outline

Glossary
Definition of the Subject
Optimization as Calibration
Optimization of Performance (Policy Optimization)
Examples of SD Optimization Reported in the Literature
Future Directions
Bibliography

Glossary

Econometrics A statistical approach to economic model-
ing in which all the parameters in the structural equa-
tions are estimated according to a ‘best fit’ to historical
data.

Maximum likelihood A statistical concept which under-
pins calibration optimization and which generates the
most likely parameter values; it is equivalent to the pa-
rameter set which minimizes the chi-square value.

Objective function See Payoff below.

Optimization The process of improving a model’s results
in terms of either an aspect of its performance or by
calibrating it to fit reported time series data.

Payoff A formula which expresses the objective, say, max-
imization of profits, minimization of costs or mini-
mization of the differences between a model variable
and historical data on that variable.

Zero-one parameter A parameter which is used as a mul-
tiplier in a policy equation and serves the effect of
bringing in or removing a particular influence in de-
termining the optimal policy.

Definition of the Subject

The term ‘optimization’ when related to system dynam-
ics (SD) models has a special significance. It relates to the
mechanism used to improve the model vis-à-vis a crite-
rion. This collapses into two fundamentally different in-
tentions. Firstly one may wish to improve the model in
terms of its performance. For instance, it may be desired
to minimize overall costs of inventory whilst still offering
a satisfactory level of service to the downstream customer.
So the criterion here is cost, and this would be minimized
after searching the parameter space related to service level.
The direction of need may be reversed and maximization
may be desired as, for instance, if one had amodel of a firm
and wished to maximize profit subject to an acceptable
level of payroll and advertising costs. Here the parameter
space being explored would involve both payroll and ad-
vertising parameters. This type of optimization might be
described generically as policy optimization.

Optimization of performance is also the raison d’etre
of other management science tools, most notably math-
ematical programming. But such tools are usually static:
they offer the ‘optimum’ resource allocation given a set
of constraints and a performance function to either maxi-
mize or minimize. These models normally relate to a sin-
gle time point and may then need to be re-run on a weekly
or monthly basis to determine a new optimal resource al-
location. In addition, these models are often linear (cer-
tainly so in the case of linear programming), whereas SD
models are usually non-linear. So the essential differences
are that SD model optimization for performance involves
both a dynamic and a non-linear model.

A separate improvement to the model may be sought
where it is required to fit themodel to past time series data.
Optimization here involves minimizing a statistical func-
tion which expresses how well the model fits a time-series
of data pertaining to an important model variable. In other
words a vector of parameters are explored with a view to
determining the particular parameter combination which

http://www.ipcc.ch/
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offers the best fit between the chosen important model
variable and a past time series data set of this variable. This
type of optimization might be generically termed model
calibration. If all the parameters in the SD model are de-
termined in this fashion then the process is equivalent to
the technique of econometric modeling. A good compari-
son between system dynamics and econometric modeling
can be found in Meadows and Robinson [12].

Optimization as Calibration

In these circumstances we wish to determine optimal pa-
rameters, those which, following a search of the parameter
space, offer the best fit of a particular model variable to
a time series dataset on that variable taken from real world
reporting.

As an example consider a variation of the one of the
epidemic models which are made available with the Ven-
sim™ software. The stock-flow diagram is presented as
Fig. 1.

In this epidemiological system members of a suscepti-
ble population become infected and join the infected pop-
ulation. Epidemiologists call this an S–I model. It is a sim-
pler variation of the S–I–R model which includes recov-
ered (R) individuals.

Suppose some data on new infections (at intervals of
five days) are available covering 25 days of a real-world
epidemic. The model is set with a time horizon of 50 days
which is consistent with, say, a flu epidemic or an infec-
tious outbreak of dysentery in a closed population such

System Dynamics Models, Optimization of, Figure 1
Stock-flow diagram for a simple epidemic model

as a cruise ship. The ‘current’ run of the model is shown
in Fig. 2, with the real-world data included for compari-
son.

Clearly there is not a very good correspondence be-
tween the actual data and the model variable for the in-
fection rate (infections). We wish to achieve a better cal-
ibration, and so there is a need to select relevant param-
eters through which the calibration optimization can be
performed over. Referring back to Fig. 1, we can see that
the fraction infected from contact and the rate that people
contact other people are two possible parameters to con-
sider. The initial infected and initial susceptible are also
parameters of the model in the strict sense of the term, but
we will ignore them on this occasion. In this model the ini-
tial infected is 10 persons and initial susceptibles number
750,000 persons.

The chosen value for the fraction infected from contact
is 0.1, while that for the rate that people contact other peo-
ple is 5.0. The former is a dimensionless number while the
latter is measured as a fraction per day (1/day). This is ob-
tained from consideration of the rate of potential infectious
contacts (persons/day) as a proportion of the susceptible
population (persons).

The optimization process for calibration involves read-
ing into the model the time series data, in this case on
new infections, and, secondly, determining the range for
the search in parameter space. There is usually some basic
background knowledge which allows a sensible range to be
entered. For instance, a probability can only be specified
between 0 and 1.0. In this case we have chosen to specify
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System Dynamics Models, Optimization of, Figure 2
Current (base) run of the model and reported data on infections

the ranges as follows:

0:03 � fraction infected from contact � 0:7
2 � rate that people contact other people � 10 :

A word of warning is necessary in respect of optimizing
delay parameters. Because there is a risk of mathematical
instability in themodel if the value of DT (the TIME STEP)
is too large relative to the smallest first-order delay con-
stant, it is important to ensure the TIME STEP employed
in the model is sufficiently small to cope with delay con-
stant values which may be reached during the search of
the delay parameter space. In other words ensure the min-
imum number for the search range on the delay parameter
is at least double the value of the TIME STEP.

Maximum Likelihood Estimation
and the Payoff Function

The optimization process involves a determination of
what are termed statistically as maximum likelihood esti-
mates. In Vensim™ this is achieved by maximizing a pay-
off function. Initially this is negative and the optimization
process should ensure this becomes less negative. An ideal
payoff value, after optimization, would be zero. A weight-
ing is needed in the payoff function too, but for calibration
optimization this is normally 1.0. Driving the payoff value
to be larger by making it less negative has parallels with
the operation with the simplex algorithm common in lin-
ear programming. This algorithm was conceived initially

for problems where the objective function was to be min-
imized. Its use on maximization problems is achieved by
minimizing the negative of the objective function.

During the calibration search, Vensim™ takes the dif-
ference between the model variable and the data value,
multiplies it by the weight, squares it and adds it to the er-
ror sum. This error sum is minimized. Usually data points
will not exist at every time point in the model. Here the
model TIME STEP is 0.125 (1/8th), but let us assume that
reported data on new infections have been made available
only at times t D 5, 10, 15, 20 and 25 so the sum of squares
operation is performed only at these five time points.

The data are shown as Table 1.

System Dynamics Models, Optimization of, Table 1
Data used for calibration experiment

Time 5 10 15 20 25
Infections 30 230 1400 9500 51 400

The Recording Point for Reported Data

System dynamics models differentiate between stock and
flow variables and the software used for simulating such
models advances by a small constant TIME STEP (also
known as DT). This has implications for the task of fitting
real-world reported data to each type of system dynamics
model variable. The following is the issue: at what point
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in a continuum of time steps should the reported data be
recorded at? This is important because the reported data
has to be read into the model to be compared with the sim-
ulated data. The answer will be different for stock and flow
variables.

Where the reported data relate to a stock variable the
appropriate time point for recording will be known. If it is
recorded at the end of the day (say a closing bank balance)
then the appropriate point for data entry in the model will
be the beginning of the next day. Thus the first data point
above is at time t D 5 (5.00) and would, if it were a stock,
correspond to a record taken at the very end of time pe-
riod 4.

However, if the data relate to a flow variable, as in the
case of new infections here, the number is the total new
infections which have occurred over the entire time unit
(day, week, month etc.) and so there is a decision to be
reached as to which time point the data are entered at.
This is because the TIME STEP (DT) is hardly ever as
large as the basic time unit which the model is calibrated
in. The use of 5 (10, 15 etc.) above implies that the data
on new infections over the period of time t D 0 to t D 5
are compared with the corresponding model variable at
time 5C 1  DT (and the new infections over the period
t D 5 to t D 10 at time 10C 1  DT etc.). A more ap-
propriate selection might be towards the end of the 5-day
time period. Following the example above using a TIME
STEP D 0:125, this might be at time 4C 7  DT (that is at
4.875).

Calibration Optimization Results

Based upon the data on new infections shown above and
the chosen ranges for the parameter search, the follow-
ing output is obtained (Table 2). After 114 simulations the
optimized values for our two parameters are shown to be

System Dynamics Models, Optimization of, Table 2
Results from the calibration optimization

Initial point of search
fraction infected from contactD 0:1
rate that people contact other people D 5
SimulationsD 1
Pass D 0
Payoff D �2:67655eC 009
Maximum payoff found at:
fraction infected from contactD 0:0794332
*rate that people contact other people D 5:11568
SimulationsD 114
Pass D 6
Payoff D �1:06161eC 006

0.08 and 5.12 and the payoff is over 2500 times larger (less
negative). Replacing the original parameters with the op-
timized values reveals the result shown in Fig. 3. To take
things further we may wish to put confidence intervals on
the estimated parameters. One way of accomplishing this
is by profiling the likelihood and is described in Danger-
field and Roberts [3].

Avoid Cumulated Data

There might be a temptation to optimize parameters
against cumulated data when the data are reported essen-
tially as a flow, as is the case here. Were the data to be cu-
mulated we would obtain as shown in Table 3.

The results from this optimization are shown in Ta-
ble 4. The ranges for the parameter space search are kept
the same but the payoff function now involves a compari-
son of the model variable infected population with the cor-
responding cumulated data. Figure 4 shows the resultant
fit to infected population is good, but that is manifestly not
borne out whenwe consider the plot of infections obtained
from the same optimization run (Fig. 5).

The reason for this is rooted in statistics. The maxi-
mum likelihood estimator is equivalent to the chi-squared
statistic. This is turn assumes that each expected data value
is independent. A cumulated data series would not exhibit
this property of independence.

As an aside it is worth pointing out that this model,
with suitable changes to the variable names and the time
constants involved, could equally represent the diffusion

System Dynamics Models, Optimization of, Table 3
Cumulated reported data for the infected population

Time 5 10 15 20 25
Infected population 30 260 1660 11 160 62 560

System Dynamics Models, Optimization of, Table 4
Results from the calibration using cumulated data

Initial point of search
fraction infected from contact D 0:1
rate that people contact other peopleD 5
SimulationsD 1
Pass D 0
Payoff D �2:48206eC 011
Maximum payoff found at:
fraction infected from contact D 0:0726811
*rate that people contact other people D 4:96546
SimulationsD 145
Pass D 6
Payoff D �212 645
The final payoff is�212 645
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System Dynamics Models, Optimization of, Figure 3
Reported data on infections and optimized (calibrated) model; the base case (current) is reproduced for reference

System Dynamics Models, Optimization of, Figure 4
The cumulative model variable (infected population) together with reported data

of a new product into a virginmarket. In systems terms the
structures are equivalent. The fraction infected from con-
tact is the same as, say, the fraction reached by word of
mouth or advertising and the rate that people contact other
people is a measure of the potential interactions at which
new products might be mentioned amongst the members
of the relevant market segment. An infected population
is equivalent to a customer base, the number of adopters
of the relevant product. So it is possible to shed light

on important real-world marketing parameters through
a calibration optimization of models of this general struc-
ture.

Optimization of Performance (PolicyOptimization)

An example model is to be used to illustrate the process of
optimization to improve the performance of the system,
and this is illustrated in Fig. 6. It concerns the service re-
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System Dynamics Models, Optimization of, Figure 5
The corresponding fit to infections is poor

System Dynamics Models, Optimization of, Figure 6
Model of service delays for durable goods under warranty

quirements which can arise following the sale of a durable
good. These items are typically sold with a 12-month war-
ranty and during this time the vendor is obliged to offer
service if a customer calls for it. In this particular case the
vendor is not being responsive in terms of staffing the ser-

vice section. The result is that as sales grow the increas-
ing number of service requests is putting pressure on the
service personnel. The delay in responding to service calls
also increases and the effect of this is that future sales are
depressed because of the vendor’s acquired reputation for
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poor service response. The basic behavior mode is over-
shoot and collapse.

In the model depicted in Fig. 6, the growth process is
achieved by a RAMP function which causes sales of the
good to increase linearly by 20 units permonth from a base
of 500 units per month.

The payoff function is restricted to the variable Sales.
However, this need not be the case. Where a number of
variables might be options in a payoff function, it is pos-
sible to assign weights to each such that the sum of the
weights is 1.0 (or 100). The optimization process will then
proceed with the software accumulating a weighted pay-
off which it will attempt to maximize. Weights are positive
when more is better and negative when less is better.

Policy Experiment No. 1

Here it is decided to try to improve the productivity of
the service staff. Currently they manage, on average, to
respond to 120 calls per operative per month. It may be
an option to improve their productivity by, say, providing
them with hand-held devices which direct each operative
from one call to the next – calls which may have arisen
since setting out from their base. In this way their call rout-
ing is improved.

The optimization parameter is Prod Serv Staff , and
we select an upper limit for the search range of 240 calls
per person per month. The chosen performance variable
is Sales, since we wish to maximize this – or at least not
have it overly depressed by poor response times. The re-
sults are shown in Table 5. We see that the payoff is in-
creased and that the optimum productivity is a modest in-
crease of 2.6 requests per month, on average. This should
be easily achievable and perhaps without expenditure on
high-tech devices. The graphical output for sales is shown
in Fig. 7.

For comparison, the effect of increasing the produc-
tivity to as high as 150 calls per month, on average, is

System Dynamics Models, Optimization of, Table 5
Optimization results for the productivity of the service staff

Initial point of search
Prod Serv Staff D 120
SimulationsD 1
Pass D 0
Payoff D 27 743:5
Maximum payoff found at:
*Prod Serv Staff D 122:647
SimulationsD 27
Pass D 3
Payoff D 29 915

also shown. This would represent an increase of 25% and
would be much more difficult to accomplish. Here the
benefit of optimization is highlighted. A modest increase
in productivity returns a visibly improved sales perfor-
mance (although the basic behavior mode is unchanged),
whilst a much greater productivity increase offers little ex-
tra benefit for the effort and cost involved in improving
productivity.

Policy Experiment No. 2

Another approach to policy optimization involves the use
of a zero-one parameter which has the effect of either in-
cluding or excluding an influence on policy. Suppose it
was thought that the quantity of product units in warranty
should exert an influence on the numbers of service per-
sonnel hired (or fired). The equation for the desired num-
ber of service staff (Des Serv Staff ) can be expressed as:

Des Serv Staff D “Av #Serv Req Satis”/Prod Serv Staff
 triggerC (“Av #Serv Req Satis”/Prod Serv Staff)(Units
Warr/initial units in warranty)(1-trigger). (Units: Per-
sons).

The trigger variable is initially set to 1.0 and so the
more sophisticated policy is not active. The optimization
run results are shown in Table 6. Clearly there is benefit
from including the more sophisticated policy which takes
into account the current numbers of product units in war-
ranty.

The graphical output is unequivocal (Fig. 8). Sales are
continuously increasing when the recruitment policy for
service personnel takes into account the number of prod-
uct units in warranty. The depressive effect on sales of poor
service performance is non-existent.

Whilst this might seem an obvious policy, it is sur-
prising how easily the naïve alternative might be accepted
without question. The number of calls a typical operative
can manage eachmonth is well known along with the (his-

System Dynamics Models, Optimization of, Table 6
Optimization results from selection of policy drivers

Initial point of search
trigger D 1
SimulationsD 1
Pass D 0
Payoff D 27 743:5
Maximum payoff found
at:
�trigger D 0
SimulationsD 13
Pass D 3
Payoff D 47 090:9
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System Dynamics Models, Optimization of, Figure 7
Plots of sales achieved for differing productivities

System Dynamics Models, Optimization of, Figure 8
Comparison of sales from two different policy drivers

torical) number of service requests satisfied. Hence, the
desired number of staff is more or less fixed. This comes
undone when there is a growth in the number of prod-
ucts sold. In this different environment such a simplistic
policy can, as shown, lead to overshoot and collapse. No-
tice needs to be taken of the changing number of product
units in warranty in order that amore effective system per-
formance is achieved.

The above experiments are illustrative only, and there
is no intention of over-working a simple teaching model
in order to uncover an ideal policy. In the case of pol-

icy optimization a wide range of possible alternatives ex-
ists. Indeed, a process of learning naturally arises through
carrying out repeated optimization experiments with the
model [1].

Examples of SDOptimization Reported
in the Literature

Amongst the earliest work in this area the writings of Kelo-
harju are worthy of mention. He contributed a number
of papers on the topic in the pages of Dynamica. See, for
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example, Keloharju [9]. His work brought the concept to
prominence but he did not employ the method on any-
thing other than problems described in text books or pos-
tulated by himself. For instance, an application of opti-
mization to the project model contained in Richardson
and Pugh’s [13] text is contained in Keloharju and Wol-
stenholme [11]. A statement of the method together with
some textbook examples is also available [10]. Addition-
ally, an overview of the methods and their deployment on
textbook examples has been contributed by the current au-
thor [3]. Finally, there is an example of optimization ap-
plied to defence analysis. Again though it is a standard de-
fence model – the armored advance model – rather than
any real-world study [14].

Retaining the emphasis on textbook problems for the
moment, Duggan [6] employs Coyle’s model [1] of theDo-
mestic Manufacturing Company to illustrate the methods
of multi-objective optimization – an advance over stan-
dard SD optimization with its single objective function.
The concept of multiple objectives arises from multi-cri-
teria decision-making where a situation can be judged on
more than one performance metric. While a multi-ob-
jective payoff function can be formulated using a set of
weights, it is argued that the selection of the weights is
very individual-specific. The multi-objective approach –
underpinned by the methods of genetic algorithms – rests
upon determining a Pareto-optimal situation, defined as
one where no improvement is possible without making
some other aspect worse. In other words the method
strives for an optimal solution which is not dominated by
any other solution. The author demonstrates the approach
combining two objectives in the model: one for the dif-
ferences between desired stock and actual and another be-
tween desired backlog and actual.

In terms of applications to real-world problems, the
current author has also used the methods of optimiza-
tion in research conducted in connection with modeling
the epidemiology of HIV/AIDS. Fitting a model of AIDS
spread to data was carried out for a number of European
countries [2,4]. The optimized parameters furnished sup-
port for some of the features of AIDS epidemiology which,
at the time, were being uncovered by other branches of
science. For example, the optimized output revealed that
a U-shaped profile of infectiousness in a host was neces-
sary in order to achieve a best fit to data on new AIDS
cases. This infectiousness profile was also evidenced by vi-
rologists who had analyzed patients’ blood and other se-
cretions on a longitudinal basis.

Within this strand of research, a much more com-
plex optimization was performed using American data on
transfusion-associated AIDS cases [5]. The purpose here

was to estimate the parameters for a number of plausi-
ble statistical HIV incubation distributions. Given the na-
ture of the data, the point of infection could be quite ac-
curately determined, but two difficulties were evident: the
data were right-censored and the number receiving in-
fected transfusions in each quarter was unknown. How-
ever, the SD optimization could estimate this number as
part of the process, in addition to estimating parameters
of the incubation distribution. The best fit was found to
be a three stage distribution similar to the gamma and one
which accorded with the high-low-high U-shaped infec-
tiousness profile which was receiving support from a num-
ber of sources.

In the marketing domain Graham and Ariza [8] car-
ried out an optimization on a system dynamics model
which was designed to shed light on the allocations to
make from a marketing budget in a high-tech client firm.
Assuming the budget was fixed, the task was to optimize
the allocations across more than 90 ‘buckets’ – combina-
tions of product lines, marketing channels and types of
marketing. However, these were not discrete: advertising
on one product line might have crossover effects on an-
other and the impacts could propagate over a period of
time. One major conclusion for this firm was that the ad-
vertising allocation should be increased markedly. In gen-
eral intuitive allocations were shown to fall short of the
ideal: they were directionally correct but magnitudes fell
short often by factors of three or four.

Future Directions

A primary aim must be to see more published work
which describes optimization studies carried out on real-
world SD applications. There may be frequent use of opti-
mization in consulting assignments but such activities are
rarely published. The references herein suggest that, thus
far, outside of unpublished work, the numbermay be three
at most. Whilst software requirements may have inhibited
use of SD optimization in the past, there are now no com-
putational barriers to its use and it is to be hoped that in
future this quite powerful analytical tool in SD will feature
in more application studies.

An advance in the methodology itself has been devel-
oped by Duggan [7] and this is a promising pointer for the
future. Based on genetic algorithms, it is best suited to the
class of SD problems that are agent-based and this high-
lights a slight limitation. Traditional optimization takes
the policy equations as given and explores the parame-
ter space to determine an optimal policy. Instead he has
offered an approach which searches over both parameter
space and policy (strategy). Theoretically there is no limit
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to the number of strategies which can be evaluated in this
approach, although the user has to define a set in advance
of the runs. Under a conventional optimization approach
a limited tilt at this is possible using the zero-one parame-
ter method suggested above, although this would restrict
the enumerated strategies to two only. Duggan demon-
strates the new approach using a classic SD problem: the
four agent beer-game. We await its use in a real-world ap-
plication.
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Glossary

Stock In system dynamics stock is a concept representing
accumulation and the state of a variable, such as, as-
sets, inventory, capacity, reputation, morale etc. Stock
can be measured at any point of time. In mathematical
terms, stock is the sum over time (integral) of one or
more flows.

Flow Flow or rate represents change or movement in
a stock such as, buying assets, building inventories,
adding capacity, losing reputation or morale, etc. Flow
is measured as “per unit of time” like hiring rate (em-
ployees hired per year, production rate (units made per
day), or rainfall (inches of rain per month).

Causal loops Causal loops (model) are visual maps that
connect a group of variables with known or hypoth-
esized cause and effect relationships. A causal loop
can be open or closed. Causal loops can be used for
complex problem solving/decision making, consensus
building, conflict resolution, priority setting and group
learning.

Feedback In a cause and effect chain (system), feedback is
a signal from the effect/s to cause/s as to its/their influ-
ence on downstream effect/s. Feedback can be infor-
mation, decision or action. For example, if X causes or
changes Y , Y in turn could influence or change X di-
rectly or through other intervening variables. This cre-
ates a closed “causal loop” with either a positive or am-
plifying feedback (Reinforcing – R) or a negative feed-
back with damping, counteracting or (Balancing – B)
effect.

Delay Cause and effect relationships are often not close in
time or space. The lapse time between a cause and its
effect is called a systems delay or simply delay. Because
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some delays in physical, natural and social systems are
rather long they mask the underlying or earlier causes
when effects become evident. This provides confusion
and unintended consequences, especially in social sys-
tems, such as economics, education, immigration, ju-
dicial systems, etc.

Reference Mode Reference mode is the actual/observed
pattern of a key variable of interest to decision mak-
ers or policy analysts. It represents the actual behavior
of a variable over time which is used to compare with
the simulated pattern of the same variable generated
by a simulation model to validate the accuracy of the
model.

Simulation A computer tool and methodology for mod-
eling complex situations and challenging problems
where mathematical tools fail to operate.

Microworld Microworlds are simulation models of real
systems such as a firm, a hospital, a market, or a pro-
duction system. They provide a “virtual” world where
decision makers can test and experiment their policies
and strategies in a laboratory environment before im-
plementation. Microworlds are constructed using sys-
tem dynamic software with user friendly interfaces.

Leverage Leverage refers to decisions and actions for
change and intervention which have the highest like-
lihood of lasting and sustainable outcomes. Leverage
decisions are best reached by open discussion after the
group develops a deep understanding of system dy-
namics through a causal loop or stock & flowmodeling
process.

Systems thinking Systems thinking is a paradigm for
viewing reality based on the primacy of the whole
and relationships. It is one of the key capabilities
(disciplines) for organizational learning [30]. Systems
Thinking consists of a series of conceptual and mod-
eling tools such as behavior over time, causal loop dia-
grams and systems archetypes. These tools reveal cause
and effect dynamics over time and assist understand-
ing of complex, non-linear, and counter-intuitive be-
haviors in all systems – physical, natural and social.

Definition of the Subject

System dynamics (SD) is “a methodology for studying and
managing complex feedback systems. . . While the word
system has been applied to all sorts of situations, feedback
is the differentiating descriptor here. Feedback refers to the
situation ofX affectingY andY in turn affectingX perhaps
through a chain of causes and effects. . . Only the study of
the whole system as a feedback system will lead to correct
results.” [36]

Sterman ([35], p 4) defines System Dynamics as
“a method to enhance learning in complex systems”. “Sys-
tem dynamics is fundamentally interdisciplinary. . . It is
grounded in the theory of nonlinear dynamics and feed-
back control developed in mathematics, physics, and en-
gineering. Because we apply these tools to the behavior of
human as well as physical and technical systems, system
dynamics draws on cognitive and social psychology, eco-
nomics, and other social sciences.”

Wolstenholme’s [40] offers the following description
for system dynamics and its scope:

A rigorous way to help thinking, visualizing, shar-
ing, and communication of the future evolution of
complex organizations and issues over time; for the
purpose of solving problems and creating more ro-
bust designs, which minimize the likelihood of un-
pleasant surprises and unintended consequences; by
creating operational maps and simulation models
which externalize mental models and capture the
interrelationships of physical and behavioral pro-
cesses, organizational boundaries, policies, informa-
tion feedback and time delays; and by using these
architectures to test the holistic outcomes of alter-
native plans and ideas; within a framework which
respects and fosters the needs and values of aware-
ness, openness, responsibility and equality of indi-
viduals and teams.

Organizational Learning
Organizational learning is the ability of organizations to
enhance their collective capacity to learn and to act, har-
moniously. According to Senge [30] “Real learning gets to
the heart of what it means to be human. Through learn-
ing we re-create ourselves. Through learning we become
able to do something we never were able to do. Through
learning we re-perceive the world and our relationship to
it. Through learning we extend our capacity to create, to be
part of the generative process of life. There is within each
of us a deep hunger for this type of learning.” Organiza-
tional learning extends this learning to the organization
and its members.

Introduction
History of System Dynamics
(This section is due to US Department of Energy website)
“System dynamics was created during the mid-1950s by
Professor Jay W. Forrester of the Massachusetts Institute
of Technology. Forrester arrived at MIT in 1939 for grad-
uate study in electrical engineering.His first research assis-
tantship put him under the tutelage of Professor Gordon
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Brown, the founder of MIT’s Servomechanism Labora-
tory. Members of theMIT ServomechanismLaboratory, at
the time, conducted pioneering research in feedback con-
trol mechanisms for military equipment. Forrester’s work
for the Laboratory included traveling to the Pacific Theatre
during World War II to repair a hydraulically controlled
radar system installed aboard the aircraft carrier Lexing-
ton. The Lexington was torpedoed while Forrester was on
board, but not sunk.

At the end of World War II, Jay Forrester turned his
attention to the creation of an aircraft flight simulator for
the US Navy. The design of the simulator was cast around
the idea, untested at the time, of a digital computer. As
the brainstorming surrounding the digital aircraft simu-
lator proceeded, however, it became apparent that a bet-
ter application of the emerging technology was the test-
ing of computerized combat information systems. In 1947,
the MIT Digital Computer Laboratory was founded and
placed under the direction of Jay Forrester. The Labora-
tory’s first task was the creation of WHIRLWIND I, MIT’s
first general-purpose digital computer, and an environ-
ment for testing whether digital computers could be effec-
tively used for the control of combat information systems.
As part of the WHIRLWIND I project, Forrester invented
and patented coincident-current random-access magnetic
computer memory. This became the industry standard for
computer memory for approximately twenty years. The
WHIRLWIND I project also motivated Forrester to cre-
ate the technology that first facilitated the practical digital
control of machine tools.

After the WHIRLWIND I project, Forrester agreed to
lead a division of MIT’s Lincoln Laboratory in its efforts
to create computers for the North American SAGE (Semi-
Automatic Ground Environment) air defense system. The
computers created by Forrester’s team during the SAGE
project were installed in the late 1950s, remained in service
for approximately twenty-five years, and had a remarkable
“up time” of 99.8%.

Forrester’s seminal book Industrial Dynamics [11] “is
still a significant statement of philosophy and methodol-
ogy in the field. Since its publication, the span of applica-
tions has grown extensively and now encompasses work
in

� corporate planning and policy design
� public management and policy
� biological and medical modeling
� energy and the environment
� theory development in the natural and social sciences
� dynamic decision making
� complex nonlinear dynamics” [36]

Systems Thinking andModelingMethodology

System Dynamics is one of the five phases of systems
thinking and modeling intervention methodology [6,21].
These distinct but related phases are as follows:

1. Problem structuring;
2. Causal loop modeling;
3. System dynamics modeling;
4. Scenario planning and modeling;
5. Implementation and organizational learning (learning

lab).

These phases follow a process, each involving a number of
steps, as outlined in Table 1. This process does not require
all phases to be undertaken, nor does each phase require
all the steps listed. Which phases and steps are included
in a particular project or intervention depends on the is-
sues or problems that have generated the systems enquiry
and the degree of effort that the organization is prepared
to commit to.

System Dynamics Modeling

This phase follows the causal modeling phase. Although
it is possible to go into this phase directly after problem
structuring, performing the causal modeling phase first
will enhance the conceptual rigor and learning power of
the systems approach. The completeness and wider in-
sights of systems thinking is generally absent from other
simulation modeling approaches, where causal modeling
does not play a part. The following steps are generally fol-
lowed in the system dynamics modeling phase.

1. Develop a high-level map or systems diagram show-
ing the main sectors of a potential simulation model,
or a ‘rich picture’ of the main variables and issues in-
volved in the system of interest.

2. Define variable types (e. g. stocks, flows, converters,
etc.) and construct stock flow diagrams for different
sectors of the model.

3. Collect detailed, relevant data including media re-
ports, historical and statistical records, policy docu-
ments, previous studies, and stakeholder interviews.

4. Construct a computer simulation model based on the
causal loop diagrams or stock-flow diagrams. Identify
the initial values for the stocks (levels), parameter val-
ues for the relationships, and the structural relation-
ships between the variables using constants, graphical
relationships and mathematical functions where ap-
propriate. This stage involves using specialized com-
puter packages like STELLA, ithink, VENSIM, POW-
ERSIM, DYSMAP, COSMIC and Consideo.
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System Dynamics and Organizational Learning, Table 1
The five phase process of systems thinking andmodeling (Source: [6])

Phases Steps
1 Problem structuring Identify problems or issues of concern to management,

Collect preliminary information and data
2 Causal loop modeling Identify main variables,

Prepare behavior over time graphs (reference mode),
Develop causal loop diagram (influence diagram),
Analyze loop behavior over time and identify loop types,
Identify system archetypes,
Identify key leverage points,
Develop intervention strategies

3 System dynamicmodeling Develop a systems map or rich picture,
Define variable types and construct stock-flow diagrams,
Collect detailed information and data,
Develop a simulation model,
Simulate steady -state/stability conditions,
Reproduce reference mode behavior (base case),
Validate the model,
Perform sensitivity analysis,
Design and analyze policies,
Develop and test strategies

4 Scenario planning andmodeling Plan general scope of scenarios,
Identify key drivers of change and keynote uncertainties,
Construct forced and learning scenarios,
Simulate scenarios with the model,
Evaluate robustness of the policies and strategies

5 Implementation and organizational learning Prepare a report and presentation to management team,
Communicate results and insights of proposed intervention to stakeholders,
Develop a microworld and learning lab based on the simulation model,
Use learning lab to examine mental models and facilitate

5. Simulate the model over time. Select the initial value
for the beginning of the simulation run, specify the
unit of time for the simulation (e. g. hour, day, week,
month, year, etc.). Select the simulation interval (DT)
(e. g. 0.25, 0.5, 1.0) and the time horizon for the simu-
lation run (i. e. the length of the simulation). Simulate
model stability by generating steady state conditions.

6. Produce graphical and tabular output for the base
case of the model. This can be produced using any
of the computer packages mentioned above. Compare
model behavior with historical trends or hypothesized
reference modes (behavior over time charts).

7. Verify model equations, parameters and boundaries,
and validate the model’s behavior over time. Carefully
inspect the graphical and tabular output generated by
the model.

8. Perform sensitivity tests to gauge the sensitivity of
model parameters and initial values. Identify areas of
greatest improvement (key leverage points) in the sys-
tem.

9. Design and test policies with the model to address the
issues of concern to management and to look for sys-
tem improvement.

10. Develop and test strategies (i. e. combinations of func-
tional policies, for example operations, marketing, fi-
nance, human resources, etc.).

Organizational Learning

(This section is adapted from [21])
Peter Senge, who popularized the concept through his
seminal book: The Fifth Discipline [30], describes a learn-
ing organization as one ‘which is continually expanding
its ability to create its future’. He identifies five core capa-
bilities (disciplines) of the learning organization that are
derived from three “higher orientations”: creative orien-
tation; generative conversation; and systems perspective.
“The reality each of us sees and understands depend on
what we believe is there. By learning the principles of the
five disciplines, teams begin to understand how they can
think and inquire that reality, so that they can collaborate
in discussions and in working together create the results
that matter [to them].”

As Fig. 1 shows the learning organization capabilities
are dynamically interrelated, and collectively they lead to
organizational learning.
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System Dynamics and Organizational Learning, Figure 1
The core capabilities of a learning organization (Source: [19])

Senge maintains that Creative orientation is the source
of a genuine desire to excel. It is the source of an intrin-
sic motivation and drive to achieve. It relinquishes per-
sonal gains in favor of the common good. Generative con-
versation refers to a deep and meaningful dialog to cre-
ate unity of thought and action. Systems perspective is the
ability to see things holistically by understanding the in-
terconnectedness of the parts. The foregoing elements give
rise to the five core capabilities of learning organizations,
namely: personal mastery; shared vision; mental models;
team learning and dialog; and systems thinking. These five
disciplines are described below. Figure 1 below shows the
core capabilities and their relationships.

Personal Mastery

Senge [30] describes that personal mastery is the corner-
stone and ‘spiritual’ foundation of the learning organiza-
tion. It is born out of a creative orientation and systemic
perspective. Personal mastery instils a genuine desire to do
well and to serve a noble purpose. People exhibiting high
levels of personal mastery focus “on the desired result it-
self, not the process or the means they assume necessary
to achieve that result” [30]. These people can “successfully
focus on their ultimate intrinsic desires, not on secondary
goals. This is a cornerstone of Personal Mastery”. Per-
sonal mastery also requires a commitment to truth, which
means to continually challenge “theories of why things are
the way they are”. Without committing to the truth, peo-

ple all too quickly revert to old communication routines
which can distort reality and prevent them from knowing
where they really stand.

Shared Vision

It is commonly assumed that in contemporary organiza-
tions senior management can develop a vision which em-
ployees will follow with genuine commitment. This is a fal-
lacy. Simply promoting a ‘vision statement’ could result in
a sense of apathy, complacency and resentment. Instead,
there needs to be a genuine endeavor to understand what
people will commit to. The overriding vision of the group
must build on the personal visions of its members. Shared
vision should align diverse views and feelings into a uni-
fied focus.

This is emphasized by Arie de Geus [9] when he de-
scribes what makes a truly extraordinary organization.
“The feeling of belonging to an organization and identi-
fying with its achievements is often dismissed as soft. But
case histories repeatedly show that a sense of community
is essential for long term survival”. For example, when Ap-
ple Corporation challenged IBM, it was in its ‘adolescent’
years, characterized by creativity, confidence and even de-
fiance. This is similar to the spirit in Team New Zealand
when it competed against the bigger-budget syndicates!
Within these organizations there is a real passion for the
outcome; a common vision for success [19].
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Creating a shared vision is the most fundamental job
of a leader [26]. By creating a vision, the leader provides
a vehicle for people to develop commitment, a common
goal around which people can rally, and a way for peo-
ple to feel successful. The leader must appeal to people’s
emotions if they are to be energized towards achieving the
goal. Emotional acceptance of, and belief in, a vision is far
more powerful in energizing team members than is intel-
lectual recognition that the vision is simply a ‘good idea’.
One of the most powerful ways of communicating a vi-
sion is through a leader’s personal example and actions,
demonstrating behavior that symbolizes and furthers that
vision.

Mental Model and Leadership

Mental models reflect beliefs, assumptions and feelings
that shape one’s world views and actions. They are formed
through family, education, professional and social learn-
ing based, on the most part, on cultural and social norms.
Mental models, however, can be altered and aligned.

Organizations are often constrained by deep-seated
belief systems, resulting in preconceived ideas on how
things ought to perform. Goodstein and Burke ([14] p. 10),
pioneers in the field of social psychology of organizations,
observed that ‘the first step in any change process is to un-
freeze the present patterns of behavior as a way of man-
aging resistance to change’. The leader has a pivotal role
in dismantling negative mental models and shaping new
ones.

In order to get people to engage in open discussions of
issues that affect the organization, a leader must appeal to
their emotions andmust get beyond the superficial level of
communication. In the 1970s Shell Oil undertook major
changes in its leadership approach and communications
style. According to a manager at Shell, “When I tried to
talk personally about an issue rather than say ‘here’s the
answer’, it was powerful. It caused me to engage in di-
alog with others that resulted in mutual learning on all
sides” ([7] p. 71).

The leader is a ‘designer’, and part of that role is de-
signing the governing ideas of purpose and core values
by which people will live [30,31]. In this role, the leader
must propose and model the manner in which the group
has to operate internally. This provides ample opportuni-
ties for leaders to examine their deeply held assumptions
about the task, the means to accomplish it, the unique-
ness of the people and the kinds of relationship that should
be fostered among the people. Only after people have ob-
served and experienced the organizational values in prac-
tice would these values become the basis for prolonged

group behavior. These values should be manifested first
and should be most visible in the leader’s own behavior.

Leadership, especially in knowledge-based organiza-
tions, must be distributed and shared to a far greater ex-
tent than it was in the past. For example, in the Chicago
Bulls basketball team, Michael Jordan changed his role: it
became not only that of an individually brilliant player but
also that of a leader whose job it was to raise the level of
play of other teammembers. After this transition, the Bulls
began their record run of championship seasons [7].

Team Learning and Dialog

The word ‘dialog’ comes from the Greek words dia and
logos. It implies that when people engage in dialog, the
meaning moves through them – Thus, it enables them to
‘see through words’ [16]. Dialog is an essential require-
ment for organizational learning. It results from genera-
tive conversation, shared vision, and transparent mental
models. Dialog creates a deep sense of listening and sus-
pending one’s own views. Feedback is an integral aspect of
dialog.

Communication routines in organizations are gener-
ally anti-learning and promote mediocrity. They include
‘defensive routines’ [2] – statement that can stifle dialog
and innovative thinking. Exposing and unlearning such
routines, and understanding the powerful detrimental im-
pact they have on learning, are serious challenges many
organizations face if they are to create effective learning
environments.

Many leaders are charismatic and are highly eloquent
when it comes to presenting their ideas; that’s often why
they get to the top of the organization. However, many ap-
pear to lack the ability to extract the very best from em-
ployees in a non-threatening manner.Without this ability,
leaders may miss many good ideas, or might act on many
bad ones.

In a group context, encouragement from the leader
and mutual encouragement among group members is es-
sential. Furthermore, personal differences must be put
aside in order for effective dialog to ensue.

How Organizations Learn

(This section is edited from Wikipedia: http://en.
wikipedia.org/wiki/Organizational_learning)
“Argyris and Schon were the first to propose concepts and
models that facilitate organizational learning, the follow-
ing literatures have followed in the tradition of their work:

� March andOlsen [23] attempt to link up individual and
organizational learning. In their model, individual be-

http://en.wikipedia.org/wiki/Organizational_learning
http://en.wikipedia.org/wiki/Organizational_learning
http://en.wikipedia.org/wiki/Chris_Argyris
http://en.wikipedia.org/wiki/Donald_Schon
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liefs lead to individual action, which in turn may lead
to an organizational action and a response from the en-
vironment which may induce improved individual be-
liefs and the cycle then repeats over and over. Learning
occurs as better beliefs produce better actions.

� Argyris and Schon [3] distinguish between single-loop
and double-loop learning, related to Gregory Bateson’s
concepts of first and second order learning. In sin-
gle-loop learning, individuals, groups, or organizations
modify their actions according to the difference be-
tween expected and obtained outcomes. In double-loop
learning, the entities (individuals, groups or organiza-
tion) question the values, assumptions and policies that
led to the actions in the first place; if they are able to
view and modify those, then second-order or double-
loop learning has taken place. Double loop learning is
the learning about single-loop learning.

� Kim [17], as well, in an article titled “The link between
individual and organizational learning”, integrates Ar-
gyris, March and Olsen and another model by Kofman
into a single comprehensive model; Further, he ana-
lyzes all the possible breakdowns in the information
flows in the model, leading to failures in organizational
learning; For instance, what happens if an individual
action is rejected by the organization for political or
other reasons and therefore no organizational action
takes place?

� Nonaka and Takeuchi [27] developed a four stage spi-
ral model of organizational learning. They started by
differentiating Polanyi’s concept of “tacit knowledge”
from “explicit knowledge” and describe a process of
alternating between the two. Tacit knowledge is per-
sonal, context specific, subjective knowledge, whereas
explicit knowledge is codified, systematic, formal, and
easy to communicate. The tacit knowledge of key per-
sonnel within the organization can be made explicit,
codified in manuals, and incorporated into new prod-
ucts and processes. This process they called “external-
ization”. The reverse process (from explicit to implicit)
they call “internalization” because it involves employ-
ees internalizing an organization’s formal rules, pro-
cedures, and other forms of explicit knowledge. They
also use the term “socialization” to denote the sharing
of tacit knowledge, and the term “combination” to de-
note the dissemination of codified knowledge. Accord-
ing to this model, knowledge creation and organiza-
tional learning take a path of socialization, externaliza-
tion, combination, internalization, socialization, exter-
nalization, combination. . . etc. in an infinite spiral.

� Flood [10] discusses the concept of organizational
learning from Peter Senge and the origins of the theory

from Argyris and Schon. The author aims to “re-think”
Senge’s The Fifth Discipline through systems theory.
The author develops the concepts by integrating them
with key theorists such as Bertalanffy, Churchman,
Beer, Checkland and Ackoff. Conceptualizing organi-
zational learning in terms of structure, process, mean-
ing, ideology and knowledge, the author provides in-
sights into Senge within the context of the philosophy
of science and the way in which systems theorists
were influenced by twentieth-century advances from
the classical assumptions of science.

� Nick Bontis et al. [4] empirically tested amodel of orga-
nizational learning that encompassed both stocks and
flows of knowledge across three levels of analysis: indi-
vidual, team and organization. Results showed a neg-
ative and statistically significant relationship between
the misalignment of stocks and flows and organiza-
tional performance.

� Imants [15] provides theory development for or-
ganizational learning in schools within the context
of teachers’ professional communities as learning
communities, which is compared and contrasted to
teaching communities of practice. Detailed with an
analysis of the paradoxes for organizational learning in
schools, twomechanisms for professional development
and organizational learning, (1) steering information
about teaching and learning and (2) encouraging in-
teraction among teachers and workers, are defined as
critical for effective organizational learning.

� Common [8] discusses the concept of organizational
learning in a political environment to improve public
policy-making. The author details the initial uncon-
troversial reception of organizational learning in the
public sector and the development of the concept with
the learning organization. Definitional problems in ap-
plying the concept to public policy are addressed, not-
ing research in UK local government that concludes
on the obstacles for organizational learning in the pub-
lic sector: (1) overemphasis of the individual, (2) resis-
tance to change and politics, (3) social learning is self-
limiting, i. e. individualism, and (4) political “blame
culture”. The concepts of policy learning and policy
transfer are then defined with detail on the conditions
for realizing organizational learning in the public sec-
tor.”

Modeling for Organizational Learning

In general, the process of model building can be an effective
conduit for collective learning. System Dynamics model-
ing, in particular, can be used to enhance organizational
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learning [35] through rapid feedback and experimentation
and its facility to test assumptions and mental models. As
we have discussed, dealing effectively with mental models
is one of the core competencies for organizational learning

Ackoff [1] likens complex problems to “messes”.
“Messy problems are defined as situations in which there
are large differences of opinion about the problem or even
on the question of whether there is a problem. Messy
situations make it difficult for a management team to
reach agreement. System Dynamics modeling with groups
known as GroupModel Building (GMB) is a powerful tool
for dealing with these. SD and GMB are especially effective
in dealing with semi-structured and ill-structured decision
situations.”

GMB offers an opportunity to align and share piece-
meal mental models and create the possibility of assimi-
lating and integrating partial mental models into a holistic
system description [38,39]. GMB and SD can help uncover
‘illusions’ that may occur due to the fact that the definition
of a problem may be a socially constructed phenomenon
that has not been put to test ([18] p. 84).

Learning Laboratory

(This section is adapted from [21], Chapter 6)
Learning laboratory is a setting as well as a process in
which a group can learn together. The purpose of the
learning lab is to enable managers to test their long held
assumptions and to experiment and ‘see’ the consequences
of their actions, policies and strategies. This often re-
sults in finding inconsistencies and the discovery of unin-
tended consequences of actions and decisions, before they
are implemented. System Dynamics models known as Mi-
croworlds orManagement Flight Simulators (MFS) are the
‘engine’ behind the learning lab. “Just as an airline uses
flight simulators to help pilots learn, system dynamics is,
partly, a method for developing management flight simu-
lators, often computer simulation models, to help us learn
about dynamic complexity, understand the sources of pol-
icy resistance, and design more effective policies.” ([35],
p. 4)

A learning lab is distinct from so-called management
games. In management games, the players are required to
compete – design the ‘best’ strategy and ‘beat’ other players
or teams. The competitive nature of management games
often encourages aggressive and individualistic behavior
with scant regard for group learning and gaining deep in-
sights. The learning lab, in contrast, aims to enhance learn-
ing: To test individual and group mental models and to
provide deeper understanding and insights into why sys-
tems behave the way they do. This will help the partic-

ipants to test their theories and discover inconsistencies
and ‘blind spots’ in policies and strategies before they are
implemented.

A significant benefit of the learning lab stems from
the process in which participants examine, reveal and test
their mental models and those of their organization. The
learning lab can also help participants

� To align strategic thinking with operational decisions;
� To connect short-term and long-term measures;
� To facilitate integration within and outside the organi-

zation;
� To undertake experimentation and learning;
� To balance competition with collaboration.

Managerial Practice Field

Team and teamwork are parts of the lexicons of numer-
ous organizations today. Company after company has re-
organized work around a variety of team concepts. From
factories to hospitals, titles like ‘manager’ and ‘supervisor’
have been replaced by roles such as ‘facilitator’ and ‘team
leader’. Despite this level of attention to team and team-
work the expected benefits have been marginal at best.

But when we examine real teams, such as sporting
teams, orchestras or ballet companies more closely, they
all share one key characteristic. That is they practice a lot
more than they ‘perform’. Practice involves allowing time
and space to experiment with new ways, try different ap-
proaches and most importantly, make mistakes without
the fear of failure. In fact, making mistakes is indispens-
able to learning. One cannot learn from doing things right
all the time! Yet a great deal of organizational energy and
attention is devoted to the prevention andmasking of mis-
takes.

But, what is the practice field for management teams?
The fact is that the practice field is, by and large, absent
from the managerial world. In other words, there is no
time and no space for management to ‘practice’ in the true
sense of the word – to experiment, make mistakes and
learn together. In this era of restructuring and downsizing,
lack of time is the greatest impediment to managerial and
organizational learning. As a recent advertisement by IBM
reads, “Innovative Thinking! We don’t even have time for
bad thinking”. The pace in the modern work environment
is so unrelenting that there is virtually no room for man-
agers to slow down, to practice, to reflect and learn. The
consequence of this lack of practice and learning space is
grave, in that most organizations only achieve a small frac-
tion of their potential – about 5%, according to Jay For-
rester, the father of System Dynamics [13].
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In order to fill this gap, the concept of learning lab-
oratory has been developed to provide practice fields for
managers. The learning lab allows learning to become an
integral part of managerial work and helps learning to be-
come institutionalized [17].

AligningMental Models
Through the Learning Laboratory

Mental models are formed throughout one’s life. Family,
school, culture, religion, profession and social norms play
important roles in this formation. Therefore, modifying
one’s mental model is not a small matter. The most effec-
tive way to check one’s mental models is to experience al-
ternative realities at first hand and see their implications
with a new ‘lens’ [5].

There are rarely any opportunities in the course of
a manager’s daily work for him/her to engage in lengthy,
drawn-out experimentation. Learning in a ‘laboratory’
setting is a viable and powerful alternative. Fortunately,
advanced computers and sophisticated system dynamics
software have enabled the creation of managerial learning
labs where managers can experiment, test their theories
and learn rapidly. Thus, learning labs can play a significant
role in clarifying and changing mental models. Learning
lab deals with mental models at three levels [33], as de-
scribed below.

� Mapping mental models. This step begins at the con-
ceptualization phase. Here, the learning lab partici-
pants articulate and clarify their assumptions, views,
opinions, and biases regarding the issue at hand.

� Challenging mental models. The participants identify
and discuss inconsistencies and contradictions in their
assumptions. This step will begin at the conceptualiza-
tions phase and will continue to the experimentation
phase.

� Improving mental models. Having conducted experi-
mentation and testing, the participants reflect on the
outcomes. This may cause them to alter, adjust, im-
prove and harmonize their mental models.

The laboratory setting provides a neutral and ‘safe’ space
for the participants to create a shared understanding of
complex and endemic issues. The following characteristics
of the learning lab provide a powerful catalyst for align-
ment of divergent mental models in the organization.

� The laboratory environment is neutral and non-threat-
ening. The emphasis is on learning and theory build-
ing (what we don’t know), not on winning or display of
knowledge.

� Lack of hierarchy. Managers and staff are equal in this
environment. The traditional hierarchy is minimized in
the laboratory setting.

� The response time is fast. Hence, the feedback cycle is
short, which leads to rapid learning.

� There is no cost or ‘loss of face’ attached to failure.
Hence, it is safe to makemistakes. In fact, mistakes pro-
vide opportunities for learning.

� People can see the consequences of their actions first
hand. No one attempts to convince or teach anyone else
or force his or her preconceived views on others. People
learn by themselves and through group interactions.

Implications for Management

The practice field and the learning lab concepts offer fresh
and challenging implications for managers and their role.
They suggest that a leader/manager should think as a sci-
entist, be open to and welcome hard questions, experiment
with new ideas, and be prepared to bewrong. This requires
managers to learn systems thinking skills and use them
not just for ‘solving’ problems but as powerful tools for
communication, team building and organizational learn-
ing. This means that an effective leader should be the ‘de-
signer’ of the ship and not its captain [31]. Once they have
designed a new structure, strategy, policy or procedure
then the managers/leaders should allow (i. e. create a prac-
tice field for) the staff to experience the new design, and
experiment with it and learn for themselves – the desired
outcome is shared understanding leading to alignment of
thoughts and actions. This is the essence of organizational
learning.

Future Directions

Agent-Based Modeling (ABM)

Agent based modeling (ABM) is an emerging model-
ing technology which draws its theories and techniques
from complexity science [29]. While System Dynamics
and Agent-Based Modeling (ABM) use different model-
ing philosophies and approaches, they can be used com-
plementarily and synergistically.

System Dynamics focuses on modeling structures (i. e.
relationships, policies, strategies) that underlie behavior
of systems. This may be viewed as a weakness of sys-
tem dynamics approach in that behavior is assumed to
be solely a function of structure (model relationships de-
fined a priori). In contrast, in ABM, organizations are
modeled as a system of semi-autonomous decision-mak-
ing elements – purposeful individuals called agents. Each
agent individually assesses its situation and makes de-
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cisions based upon value hierarchies representing goals,
preferences, and standards for behavior. Thus, macro-be-
havior is not modeled separately but emerges from the mi-
cro-decisions of individual agents. In other words, in agent
based modeling; “emergent” behavior is expected as a re-
sult of agents’ interactions. This is a key difference between
the two approaches.

While system dynamics acknowledges the critical role
of individual and organizational mental models (e. g., mo-
tivations, values, norms, biases, etc.) it does not explicitly
model them. SD utilizes factual data or “cold knowledge”
and does not take into account decision makers ‘mood’.
In contrast, ABM attempts to capture “warm knowledge”,
representing emotional and human context of decision-
making.

Recent advances in video game technology allow the
development of multi-agent, artificial ‘society’ simulators
with capabilities for modeling physiology, stress and emo-
tion in decision-making [34]. At the simplest level, an
agent-based model consists of a system of agents and their
relationships. This new approach enables superior under-
standing of the complexity in organizations and their rel-
evant business environments. This in turn provides an
opportunity for new sophistications in game-play that
enhances decision-making. Experience with agent-based
modeling shows that even a simple agent-based model can
exhibit complex behavior patterns and provide valuable
information about the dynamics of the real world system
that emulates them.

Despite their differences, SD and ABM can be used in
a complementary fashion. Both ABM and SD are power-
ful tools for transforming information into knowledge and
understanding leading to individual and group learning.
However, the transition from knowledge to understand-
ing may not be immediate or transparent. This requires
a deep shift in mental models through experimentation
and group learning.

Systems Thinking and Sustainability

Systems Thinking has a natural affinity with sustainabil-
ity modeling and management. Sustainability issues are
complex; cut across several disciplines; involve multiple
stakeholders and require a long term integrated approach.
Thus, the systems paradigm and tools have direct and
powerful applications in sustainability issues and manage-
ment.

The applications of system dynamics in sustainability
go back to the early 1970s with Jay Forrester’s “World2
and World3 analyzes against 30 years of history”, fol-
lowed by “World Dynamics” and “Limits to Growth” [24]

and “Beyond the Limits” [25]. “The politics of the envi-
ronment has also evolved dramatically since 1970. Public
awareness of the reality of the environmental challenge has
risen; Ministries of Environment have become common-
place” ([28] p. 220). As an example today concern over
carbon emissions has already become an international cur-
rency. As a result, sustainability has brought a fresh chal-
lenge for governments, business and industry, scientists,
farmers and all the citizens of the world collectively to find
systemic solutions that are mutually and globally agree-
able. Systems Thinking and System dynamics can make
real and valuable contributions to addressing this chal-
lenge.

Bibliography

Primary Literature

1. Ackoff RA (1999) Re-creating the corporation – A design of or-
ganizations for the 21st century. Oxford University Press, Ox-
ford

2. Argyris C (1992) The next challenge for TQM: Overcoming or-
ganisational defences. J Qual Particip 15:26–29

3. Argyris C, Schon D (1978) Organizational learning: A theory of
action perspective. Addison-Wesley, Reading

4. Bontis N, Crossan M, Hulland J (2002) Managing an organiza-
tional learning system by aligning stocks and flows. J Manag
Stud 39(4):437–469

5. Brown JS (1991) Research that reinvents the corporation. Harv
Bus Rev 68:102–111

6. Cavana R, Maani K (2004) A methodological framework for in-
tegrating systems thinking and system dynamics. In: System
Dynamics Society Proceedings. Oxford

7. Cohen E, Tichy N (1997) How leaders develop leaders. Training
and Development, May

8. Common R (2004) Organisational learning in a political envi-
ronment: Improving policy-making in UK government. Policy
Stud 25(1):35–49

9. De Geus A (1997) The living company. Harv Bus Rev
75(2):51–59

10. Flood RL (1999) Rethinking the fifth discipline: Learning within
the unknowable. Routledge, London

11. Forrester JW (1961) Industrial dynamics. Productivity Press,
Cambridge

12. Forrester JW (1971) World dynamics. Wright-Allen (Subse-
quently re-published by Productivity Press, and Pegasus Com-
munications)

13. Forrester JW (1994) Building a foundation for tomorrow’s orga-
nizations. In: Systems thinking in action video collection, vol 1.
Pegasus Communications, Cambridge

14. Goodstein L, Burke W (1991) Creating successful organisation
change. Organ Dyn 19(4):5–17

15. Imants J (2003) Two basic mechanisms for organizational
learning in schools. Europ J Teach Educ 26(3):293–311

16. Isaacs W (1993) Taking flight: Dialogue, collective thinking and
organisational learning. Organ Dyn 22(2):24–39

17. Kim DH (1993) The link between individual and organizational
learning. Sloan Manag Rev 35(1):37–50



System Dynamics and Organizational Learning S 9053

18. Maani K (2002) Consensus building through systems thinking –
the case of policy and planning in healthcare. Aust J Inform
Syst 9(2):84–93

19. Maani K, Benton C (1999) Rapid team learning. Lessons from
teamNewZealand’s America’s cup campaign. OrganDyn 27(4)

20. Maani K, Cavana R (2007) Systems methodology. Syst Think
18(8):2–7

21. Maani K, Cavana R (2007) Systems thinking, system dynam-
ics – Managing change and complexity, 2nd edn. Prentice Hall,
Pearson Education, Auckland

22. Maani K, Pourdehnad J, Sedehi H (2003) Integrating system dy-
namics and intelligent agent-based modelling – theory and
case study. Euro INFORMS, Istanbul

23. March JG, Olsen JP (1975) The uncertainty of the past; Organi-
zational ambiguous learning. Europ J Polit Res 3:147–171

24. Meadows DH, Meadows DL, Randers J, Behren W (1972) The
limits to growth. Universe Press, New York

25. Meadows DH, Meadows DL, Randers J (1992) Beyond the lim-
its. Chelsey Green, Post Mills

26. Nadler DA, TushmanML (1990) Beyond the charismatic leader:
Leadership and organisational change. Calif Manag Rev

27. Nonaka I, Takeuchi H (1995) The knowledge creating company.
Oxford University Press, New York

28. Randers J (2000) From limits to growth to sustainable develop-
ment or SD (sustainable development) in a SD (system dynam-
ics) perspective. Syst Dyn Rev 16(3):213–224

29. Rothfeder J (2003) Expert voices: Icosystem’s Eric Bonabeau.
CIO Insights

30. Senge P (1990) The fifth discipline: The art and practice of the
learning organisation. Currency

31. Senge P (1990) The leader’s New Work: Building learning or-
ganisation’s. Sloan Manag Rev:7–23

32. Senge P (1992) Building learning organisation’s. J Qual Par-
ticip:1–8

33. Senge P, Sterman JD (1991) Systems thinking and organiza-
tional learning: Acting locally and thinking globally in the or-
ganization of the future. In: Kochan T, Useem M (eds) Trans-
forming organizations. Oxford University Press, Oxford

34. Silverman BG et al (2002) Using human models to improve the
realism of synthetic agents. Cogn Sci Q 3

35. Sterman JD (2000) Business dynamics, systems thinking and
modeling for a complex world. McGraw-Hill, Irwin

36. System Dynamics Society website http://www.
systemdynamics.org/

37. US Department of Energy Introduction to system dynamics,
A systems approach to understanding complex policy issues,
US Department of Energy. http://www.systemdynamics.org/
DL-IntroSysDyn/inside.htm

38. Vennix JAM (1995) Building consensus in strategic decision-
making: System Dynamics As A Support System. Group Decis
Negot 4(4):335–355

39. Vennix JAM (1996) Group model-building: Facilitating team
learning using system dynamics. Wiley, Chichester, chapt 5

40. Wolstenholme E (1997) System dynamics in the eleva-
tor (SD1163), e-mail communication, 24 Oct 1997 system-
dynamics@world.std.com

Books and Reviews
(This section is due toM. Anjali Sastry and John D. Sterman, “AnAn-
notated Survey of the Essential SystemDynamics Literature System

Dynamics Group”, Sloan School of Management, MIT)
Industrial and Economic Dynamics: The Foundations
Forrester JW (1961) Industrial dynamics. Productivity Press, Cam-

bridge (Presents dynamic analysis of a business problem
through a model of a production-distribution system that
shows oscillatory behavior. Policies to improve system perfor-
mance are discussed, and numerous policy experiments are
demonstrated. Includes full equation listing.)

Forrester JW (1968) Principles of systems. Productivity Press, Cam-
bridge (System structure and behavior are differentiated, with
examples showing how structure determines behavior. Rates
and levels are described. Inventory model shows effects of de-
livery delay and resulting production cycles.)

Forrester JW (1975) Collected papers of JayW. Forrester. Productiv-
ity Press, Cambridge (Includes many seminal papers, such as
Industrial Dynamics: A Major Breakthrough for Decision Mak-
ers; Common Foundations Underlying Engineering and Man-
agement; A New Corporate Design; Market Growth as Influ-
enced by Capital Investment; and CounterintuitiveBehavior of
Social Systems.)

Forrester JW (1989) The beginnings of system dynamics (Working
Paper No. D-4165). System Dynamics Group, Sloan School of
Management, MIT, Cambridge (A personal history beginning
on the high plains of western Nebraska. Describes the early
projects that shaped the field.)

Mass NJ (1975) Economic cycles: An analysis of underlying
causes. Productivity Press, Cambridge (Shows how production
scheduling and work force management policies generate the
3–5 year business cycle. Economic cycles, in turn, are caused
by capital investment policies that fail to account for delays in
acquiring long-lead time plant and equipment.)

Meadows DL (1970) Dynamics of commodity production cycles.
Productivity Press, Cambridge (Develops a simple generic
model of commodity supply and demand with explicit pro-
duction capacity and delays, prices and markets. Applies the
model to hogs, chicken and cattle.)

Urban and Public Policy Dynamics
Alfeld LE, Graham AK (1976) Introduction to urban dynamics. Pro-

ductivity Press, Cambridge (A very readable introductory text.
Uses the urban system as an example to teach general points
about modeling methods, formulation and analysis.)

Forrester JW (1969) Urban dynamics. Productivity Press, Cambridge
(Seminal model of urban growth and decay, controversial then
and vindicated now. Chapter 6 describes general characteris-
tics of complex systems such as compensating feedback and
shifting the burden to the intervener.)

Mass NJ (ed) (1974) Readings in urban dynamics, vol I. Productivity
Press, Cambridge (Extensions, modification, and responses to
criticisms of the Urban Dynamics model.)

Schroeder WW, III, Sweeney RE, Alfeld LE (eds) (1975) Readings in
urban dynamics, vol II. Productivity Press, Cambridge (Further
extends and explores the Urban Dynamics model.)

Limits to Growth and Other Global Models
Forrester JW (1973) World Dynamics, 2nd edn. Productivity Press,

Cambridge (The first global model, on which Limits to Growth
was based. The extreme simplicity of the model allowed it to
be presented to a wide audience.)

Meadows DL, Meadows DH (eds) (1974) Toward global equilib-
rium: Collected papers. Productivity Press, Cambridge (De-
scribes and explores, through system dynamics models, poli-

http://www.systemdynamics.org/
http://www.systemdynamics.org/
http://www.systemdynamics.org/DL-IntroSysDyn/inside.htm
http://www.systemdynamics.org/DL-IntroSysDyn/inside.htm
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cies for sustainability designed to avoid the collapse shown in
the ‘business as usual’ WORLD3 scenarios.)

Meadows DH, Meadows DL, Randers J, Behrens WW III (1972) The
limits to growth: A report for the club of Rome’s project on the
predicament of mankind. Universe Books, New York (Classic
controversial study of the human future. Nontechnical presen-
tation of structure, assumptions, and results of the WORLD3
model. Concluded that present policies were unsustainable;
shows how alternate policies could stabilize population at
a high standard of living.)

Meadows DL, Behrens WW III, Meadows DH, Naill RF, Randers J,
Zahn EKO (1974) Dynamics of growth in a finite world. Produc-
tivity Press, Cambridge (Full documentation and data for the
WORLD3 model used in the Limits to Growth. Describes the
structure and assumptions; includes all data needed for com-
plete replication of all runs in the popular book. Formulations
described here may be useful to all system dynamics model-
ers.)

Meadows D, Richardson J, BruckmannG (1982) Groping in the dark.
Wiley, New York (Describes a range of global models built un-
der different approaches and discusses the strengths, weak-
nesses, and implications of each. Presented in an engaging,
personal style.)

Meadows DH, Meadows DL Randers J (1992) Beyond the limits:
Confronting global collapse, envisioning a sustainable future.
Chelsea Green, Post Mills (Follows up on Limits to Growth.
Shows that many problems described in 1972 have worsened,
as predicted by the model. Argues for a shift in values neces-
sary to create a sustainable and equitable future.)

SD forManagement: Firm andMarket Models
Coyle RG (1977) Management System Dynamics. Wiley, New York

(Text emphasizing managerial modeling, with a focus on op-
erations and examples including discrete elements.)

Hall RI (1976) A system pathology of an organization: The rise and
fall of the Old Saturday Evening Post. Adm Sci Q 21(2):185–211
(A case-study using a system dynamics model to explain how
failure to understand the feedbacks among policies governing
ad rates, ad and editorial pages, marketing, and pricing lead
to the failure of the Post just as circulation reached an all-time
high.)

Lyneis JM (1980) Corporate planning and policy design. Productiv-
ity Press, Cambridge (Begins with a simple model of inventory
management in a manufacturing firm and gradually extends
the model to one of the entire firm.)

Merten PP (1991) Loop-based strategic decision support systems.
Strat Manag J 12:371–382 (Describes a model of a multina-
tional firm establishing new markets in less-developed coun-
tries. Captures qualitative shifts in firm structure and organiza-
tion endogenously as the firm evolves.)

Morecroft JDW (1984) Strategy support models. Strat Manag J
5(3):215–229 (Describes the use of models as participants in
the ongoing dialogue among managers regarding strategy
formation and evaluation. Emphasizes the processes for model
development and use that enhance the utility of modeling in
design of high-level corporate strategy.)

Morecroft JDW, Lane DC, Viita PS (1991) Modelling growth strat-
egy in a biotechnology startup firm. Syst Dyn Rev 7(2):93–
116 (Describes a case-study of a start-up in which system dy-
namics modeling helps to define a desirable growth strat-
egy for the firm. The integrated model generated strategies

that allowed different parts of the firm to choose consistent
approaches.)

Roberts EB (ed) (1978) Managerial applications of system dynam-
ics. Productivity Press, Cambridge (Extensive collection of early
corporate models, including history and commentary by prac-
titioners. Covers R&D management, production and opera-
tions, human resources, and other applications areas.)

Economic Models
Forrester JW (1989) The system dynamics national model: Mac-

robehavior frommicrostructure. In: Milling PM, Zahn EOK (eds)
Computer-based management of complex systems: Interna-
tional System Dynamics Conference. Springer, Berlin (Provides
an overview of the national modeling project in which both
micro- and macro-economic factors are included. Model gen-
erates business cycles, inflation, stagflation, the economic long
wave, and growth.)

Saeed K (1986) The dynamics of economic growth and political in-
stability in the developing countries. Syst Dyn Rev 2(1):20–35
(Shows how rapid economic development can generate social
and political instability through amodel that links socio-politi-
cal factors to economic development.)

Sterman JD (1985) A behavioral model of the economic long wave.
J Econ Behav Organ 6(1):17–53 (Proposes and tests a simple
model of the long wave. The intended rationality of each de-
cision rule is tested and the long wave is explained as the un-
intended result of the interaction of locally rational decision
processes. The model is the basis for the STRATAGEM-2 game,
and can exhibit chaos.)

Sterman JD (1989) Deterministic chaos in an experimental eco-
nomic system. J Econ Behav Organ 12:1–28 (Sterman’s 1985
model of the long wave is converted into amanagement flight
simulator and used as an experiment in which subjects make
the capital investment decision. Simple decision rules captur-
ing subject’s policies are estimated and explain their behavior
well. Simulation of these rules yields deterministic chaos for
about 25% of the subjects.)

Sterman JD (1986) The economic long wave: Theory and evidence.
Syst Dyn Rev 2(2):87–125 (Comprehensive overview of the the-
ory of long waves arising from the System Dynamics National
Model. Reviews the feedback structures responsible for the
longwave and empirical evidence supporting the dynamic hy-
potheses. Discusses the role of innovation and political value
change.)

Conceptualizing, Formulating and Validating Models
Barlas Y (1989) Multiple tests for validation of system dynamics

type of simulation models. Europ J Operat Res 42(1):59–87
(Discusses a variety of tests to validate SD models, including
structural and statistical tests.)

Barlas Y, Carpenter S (1990) Philosophical roots ofmodel validation:
Two paradigms. Syst Dyn Rev 6(2):148–166 (Contrasts the sys-
tem dynamics approach to validity with the traditional, logical
empiricist view of science. Finds that the relativist philosophy
is consistent with SD and discusses the practical implications
for modelers and their critics.)

Forrester JW (1980) Information sources for modeling the national
economy. J Am Stat Assoc 75(371):555–574 (Argues that mod-
eling the dynamics of firms, industries, or the economy re-
quires use of multiple data sources, not just numerical data
and statistical techniques. Stresses the role of the mental and
descriptive data base; emphasizes the need for first-hand field
study of decision making.)
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Forrester JW (1985) Themodel versus amodeling process. Syst Dyn
Rev 1(1):133–134 (The value of amodel lies not in its predictive
ability alone but primarily in the learning generated during the
modeling process.)

Forrester JW (1987) Fourteen ‘Obvious Truths’. Syst Dyn Rev
3(2):156–159 (The core of the system dynamics paradigm, as
seen by the founder of the field.)

Forrester JW (1987) Nonlinearity in high-order models of social sys-
tems. Europ J Operat Res 30(2):104–109 (Nonlinearity is perva-
sive, unavoidable, and essential to the functioning of natural
and human systems. Modeling methods must embrace non-
linearity to yield realistic and useful models. Linear and nearly-
linear methods are likely to obscure understanding or lead to
erroneous conclusions.)

Homer JB (1983) Partial-model testing as a validation tool for sys-
tem dynamics. In: International System Dynamics Conference,
pp 920–932 (How model validity can be improved through
partial model testing when data for the full model are lacking.)

Legasto AA Jr, Forrester JW, Lyneis JM (eds) (1980) System dynam-
ics. In: TIMS studies in themanagement sciences, vol 14. North-
Holland, Amsterdam (Collection of papers focusedonmethod-
ology. Includes Forrester and Senge on Tests for Building Con-
fidence in System Dynamics Models and Gardiner & Ford’s dis-
cussion on Which Policy Run is Best, andWho Says So?)

Mass N (1991) Diagnosing surprise model behavior: A tool for
evolving behavioral and policy insights. Syst Dyn Rev 7(1):68–
86 (Guidelines for learning from surprise model behavior with
tests to resolve anomalous behavior.)

Morecroft JDW (1982) A critical review of diagramming tools for
conceptualizing feedback system models. Dynamica 8(1):20–
29 (Critiques causal-loop diagrams and proposes subsystem
and policy structure diagrams as superior tools for represent-
ing the structure of decisions in feedback models.)

Randers J (ed) (1980) Elements of the system dynamics method.
Productivity Press, Cambridge (Includes Mass on Stock and
Flow Variables and the Dynamics of Supply andDemand; Mass
& Senge onAlternative Tests for SelectingModel Variables; and
Randers’ very useful Guidelines for Model Conceptualization.)

Richardson GP (1986) Problems with causal-loop diagrams. Syst
Dyn Rev 2(2):158–170 (Causal-loop diagrams cannot show
stock-and-flow structure explicitly and can obscure important
dynamics. Offers guidelines for proper use and interpretation
of CLDs.)

Richardson GP, Pugh AL III (1981) Introduction to system dynam-
icsmodelingwithDYNAMO. Productivity Press, Cambridge (In-
troductory text with excellent treatment of conceptualization,
stocks and flows, formulation, and analysis. A good way to
learn the DYNAMO simulation language as well.)

Roberts N, Andersen DF, Deal RM, Grant MS, Shaffer WA (1983) In-
troduction to computer simulation: A system dynamics mod-
eling approach. Addison-Wesley, Reading (Easy-to-understand
introductory text, complete with exercises.)

Sterman JD (1984) Appropriate Summary Statistics for Evaluat-
ing the Historical Fit of System Dynamics Models. Dynamica
10(2):51–66 (Describes the use of rigorous statistical tools for
establishing model validity. Shows how Theil statistics can be
used to assess goodness-of-fit in dynamic models.)

Wolstenholme EF (1990) System enquiry – A system dynamics ap-
proach. Wiley, Chichester (Describes a research methodology
for building a system dynamics analysis. Emphasizes causal-

loop diagramming, mapping of mental models, and other
tools for qualitative system dynamics.)

Modeling for Learning: Systems Thinking
and Organizational Learning

Kim D (1989) Learning laboratories: Designing a reflective learning
environment. In: Milling PM, Zahn EOK (eds) Computer-based
management of complex systems: International system dy-
namics conference. Springer, Berlin (A case-study of a process
designed to convey dynamic insights to participants in a work-
shop setting designed around a management flight simulator
game.)

Morecroft JDW (1988) System dynamics and microworlds for pol-
icymakers. Europ J Operat Res 35(3):301–320 (Describes the
model-building tools available to managers and policymak-
ers.)

Morecroft JDW, Sterman JD (eds) (1992)Modelling for Learning. Eur
J Operat Res Special Issue 59(1) (17 papers describing models
andmethods to enhance learning, both for individuals and or-
ganizations. Covers elicitation and group process techniques,
management flight simulators, and tools for capturing, repre-
senting, and simulatingmental and formal models.)

Richmond B (1990) Systems thinking: A critical set of critical think-
ing skills for the 90’s and beyond. In: Andersen DF, Richard-
son GP, Sterman JD (eds) International System Dynamics Con-
ference, 1990 (Proposes a process and skill set to teach sys-
tems thinking. The process relies on learner-directed learning.
The skill set includes general scientific reasoning and SD, sup-
ported by simulation.)

Senge PM (1990) Catalyzing systems thinking within organiza-
tions. In: Masarik F (ed) Advances in organization develop-
ment. Ablex, Norwood (Presents a case study in which the use
of system dynamics generated insights into a chronic business
problem. Steps in generating, testing and disseminating a sys-
tem dynamics model are described.)

Senge PM (1990) The fifth discipline: The art and practice of
the learning organization. Doubleday Currency, New York (In-
troduces systems thinking as part of a wider approach to
organizational learning. Conveys basic system structures to
a non-technical business audience bymeans of anecdotes and
archetypes.)

Decision Making
Morecroft JDW (1983) System dynamics: Portraying bounded ra-

tionality. Omega 11(2):131–142 (SDmodels represent decision
making as boundedly rational. Reviews and contrasts the con-
cept of bounded rationality as developed by Herbert Simon.
Uses Forrester’s Market Growth model to show how locally ra-
tional decision rules can interact to yield globally dysfunctional
outcomes.)

Morecroft JDW (1985) Rationality in the Analysis of Behavioral Sim-
ulation Models. Manag Sci 31(7):900–916 (Shows how the in-
tended rationality of decision rules in SD models can be as-
sessed, and how one analyzes a simulation model and output
to understand the assumed bounds on rationality in dynamic
models. A model of salesforce effort allocation is used to illus-
trate.)

Sterman JD (1987) Expectation formation in behavioral simulation
models. Behav Sci 32:190–211 (Proposes and tests a simple
dynamic model of expectation formation in dynamic models
(the TREND function). Shows how the TREND function explains
a forty year history of inflation forecasts and several different
types of long-term energy demand forecasts.)
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Sterman JD (1989) Misperceptions of feedback in dynamic deci-
sion making. Organ Behav Hum Decis Process 43(3):301–335
(Describes an experiment with a simple economic system in
which subjects systematically generate costly oscillations. Es-
timates decision rules to characterize subject behavior. Finds
that people systematically ignore feedbacks, time delays, ac-
cumulations, andnonlinearities. Thesemisperceptions of feed-
back lead to poor quality decisions when dynamic complexity
is high.)

Sterman JD (1989) Modeling managerial behavior: Misperceptions
of feedback in a dynamic decision making experiment. Manag
Sci 35(3):321–339 (Analyzes the results of the Beer Distribution
Game. Misperceptions of feedback are found to cause poor
performance in the beer game, as in other experiments. Es-
timates of the subjects’ decision rules show they ignore time
delays, accumulations, feedbacks, and nonlinearities.)

Selected Applications of SD
Abdel-Hamid TK, Madnick SE (1991) Software project dynamics:

An integrated approach. Prentice Hall, Englewood Cliffs (Inte-
grated SD model of the software development process. The
model covers design, coding, reviewing, and quality assur-
ance; these are integrated with resource planning, scheduling,
and management of software projects. Includes full documen-
tation, validation, and policy tests.)

Cooper KG (1980) Naval ship production: A claim settled and
a framework built. Interfaces 10(6) (An SD model was used to
quantify the causes of cost overruns in a large military ship-
building project. One of the first and most successful applica-
tions of system dynamics to large-scale project management;
initiated a long line of related project modeling work.)

Ford A, Bull M (1989) Using system dynamics for conservation pol-
icy analysis in the pacific northwest. Syst Dyn Rev 5(1):1–15
(Describes the use of an extensive SD model of electric power
generation with endogenous demand. The model is used to
evaluate strategies for conservation and new generation ca-
pacity. Includes discussion of implementation and integration
of the SDmodel with other existing planning tools.)

Gardiner LK, Shreckengost RC (1987) A system dynamics model for
estimating heroin imports into the United States. Syst Dyn Rev
3(1):8–27 (Describes how the CIA used SD to estimate the ille-
gal importation of drugs to the US.)

Homer JB (1985) Worker burnout: A dynamic model with impli-
cations for prevention and control. Syst Dyn Rev 1(1):42–62
(Explains how knowledge workers can experience cycles of
burnout through a simple system dynamics model. Avoiding
burnout requires that one work at less than maximum capac-
ity.)

Homer JB (1987) A diffusion model with application to evolving
medical technologies. Technol Forecast Soc Chang 31(3):197–
218 (Presents a generic model of the diffusion of new medical
technologies. Case studies of the cardiac pacemaker and an
antibiotic illustrate how the same model can explain the dif-
ferent diffusion dynamics of successful and unsuccessful tech-
nologies.)

Homer JB (1993) A system dynamics model of national cocaine
prevalence. Syst Dyn Rev 9(1):49–78 (An excellentmodel of the
interacting dynamics of addiction, policy-setting, and enforce-
ment.)

Jensen KS, Mosekilde E, Holstein-Rathlou N (1985) Self-sustained
oscillations and chaotic behaviour in kidney pressure regula-
tion. In: Prigogine I, Sanglier M (eds) Laws of nature and hu-

man conduct. Taskforce of Research Information and Study on
Science, Brussels (Presents a system dynamicsmodel of the dy-
namics of rat kidneys. Experimental data show previously un-
explained oscillations, sometimes chaotic. The model explains
how these fluctuations arise. Excellent example of SD applied
to physiology.)

Levin G, Hirsch GB, Roberts EB (1975) The persistent poppy: A com-
puter-aided search for heroin policy. Ballinger, Cambridge
(Examines the interactions within a community among drug
users, the police and justice system, treatment agencies, and
the citizens. Analyzes policies designed to restore the commu-
nity’s health.)

Levin G, Roberts EB, Hirsch GB, Kligler DS, Roberts N, Wilder JF
(1976) The Dynamics of Human Service Delivery. Ballinger,
Cambridge (Presents a generic theory of human service deliv-
ery, with case studies and examples drawn frommental health
care, dental planning, elementary education, and outpatient
care.)

Naill RF (1992) A system dynamics model for national energy policy
planning. Syst Dyn Rev 8(1):1–19

Naill RF, Belanger S, Klinger A, Peterson E (1992) An analysis of
the cost effectiveness of US energy policies to mitigate global
warming. Syst Dyn Rev 8(2):111–128 (Reviews the 20 year his-
tory of the SD energy models used by the US Dept. of Energy
to forecast and analyze policy options for national energy se-
curity, including the impact of US policies on global climate
change.)

Sklar Reichelt K (1990) Halter marine: A case study of the dangers
of litigation. (Working Paper No. D-4179). System Dynamics
Group, Sloan School of Management, MIT, Cambridge (A case-
study illustrating the use of system dynamics in litigation. Suit-
able for classroom teaching.)

Sturis J, Polonsky KS, Mosekilde E, Van Cauter E (1991) Com-
puter model for mechanisms underlying ultradian oscillations
of insulin and glucose. Am J Physiol 260(Endocrinol. Metab.
23):E801–E809 (New experimental data show that the human
glucose/insulin system is inherently oscillatory. An SD model
explains these dynamics. The model is validated against de-
tailed physiological data.)

Cross-Fertilization and Comparative Methodology
Allen PM (1988) Dynamic models of evolving systems. Syst Dyn

Rev 4(1–2):109–130 (Reviews approaches to nonlinear dynam-
ics, self-organization, and evolution developed in the Brussels
school by Prigogine, Allen, and others. Provides illustrations
and examples.)

Kim DH (1990) Toward learning organizations: Integrating total
quality control and systems thinking. (Working Paper No. D-
4036). System Dynamics Group, Sloan School of Management,
MIT, Cambridge (Argues that SD and Total Quality Manage-
ment are complementary approaches to improvement and
organizational learning. Systems thinking and modeling are
needed to speed the improvement cycle for processes with
long time delays.)

Meadows DH, Robinson JM (1985) The electronic oracle: Computer
models and social decisions. Wiley (Comparative assessment
of the underlying assumptions, boundary, limitations, anduses
of different models, including optimization, simulation, and
econometrics. Offers guidelines for assessing model assump-
tions, including ways to recognize the implicit biases of each
modeling paradigm.)

Powers WT (1990) Control theory: A model of organisms. Syst Dyn
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Rev 6(1):1–20 (An explicit feedback control perspective on per-
ception and decision making in living organisms. Argues the
behaviorist and cognitive paradigms have fundamentally mis-
understood the concept of feedback. For Powers, feedback al-
lows organisms to control perceptions by altering behavior.)

Radzicki MJ (1990) Methodologia oeconomiae et systematis dy-
namis. Syst Dyn Rev 6(2):123–147 (Surveys the institutional-
ist paradigm in economics and argues that system dynamics
is compatible with the institutionalist perspective. The SD ap-
proach offers a means by which institutional theories can be
formalized and tested.)

Sterman JD (1985) The growth of knowledge: Testing a theory of
scientific revolutions with a formal model. Technol Forecast
Soc Chang 28(2):93–122 (Presents a formal dynamic model of
TS Kuhn’s theory of scientific revolutions.)

Sterman JD (1988) A skeptic’s guide to computer models. In: Grant
L, Lanham MD (eds) Foresight and national decisions. Univer-
sity Press of America (Reviews different modeling methods
and their underlying assumptions in nontechnical language.
Provides a list of questions model users should ask to assess
whether a model or method are appropriate to the problem.)

Other Themes: Pulling the Threads Together
Cooper K, Steinhurst W (eds) (1992) The system dynamics society

bibliography. System Dynamics Society. Available from Julie
Pugh, 49 Bedford Rd., Lincoln MA, USA 01773. (Lists over 3,000
system dynamics journal articles, books, conference proceed-
ings and working papers. Available in computer-readable for-
mat and compatible with bibliographic software)

Meadows DH (1989) System dynamics meets the press. Syst Dyn
Rev 5(1):68–80 (Reviews the history of encounters between SD
and the media. Offers guidelines for effective communication
to the public at large. Stresses the importance of communicat-
ing even the simplest system concepts.)

Meadows DH (1991) The global citizen. Island Press, Washington
(A collection of Dana’s syndicated newspaper columns apply-
ing system dynamics principles to problems of everyday life,
from organic farming to the fall of the Soviet Union. Empha-
sizes environmental issues.)

Richardson GP (1991) Feedback thought in social science. Uni-
versity of Pennsylvania Press (Traces the history of the con-
cept of feedback in the social sciences through two threads
of thought – the cybernetic and feedback threads. System dy-
namics is placed in context in a readable and scholarly man-
ner.)

Software
DYNAMO. Pugh-Roberts Associates, Cambridge MA. (The first

widely-used computer language developed to simulate sys-
tem dynamics models, DYNAMO is still in use, available for
mainframes and PCs. Many of the models in the system dy-
namics literature were simulated in DYNAMO)

DYSMAP. University of Salford, UK (PC-based simulation language
with syntax similar to DYNAMO. Includes optimization capabil-
ity based on hill-climbing.)

Microworld Creator and S^4. Microworlds Inc., Cambridge MA
(Easy to use environment for simulation and gaming. S^4, the
‘industrial strength’ version, supports arrays and includes diag-
nostics for analyzing behavior. Both Creator and S^4 support
user-defined information displays and facilitate rapid develop-
ment of management flight simulators.)

STELLA and ithink. High Performance Systems, Hanover NH. (User-
friendly modeling software with full graphical interface. Mod-

els are entered graphically, at the level of the stock and flow
diagram.Widely used in education from elementary school up;
also used in research and practice.)

Vensim. Ventana Systems, Harvard MA. (Powerful simulation en-
vironment for SD models. Runs on workstations and PCs. In-
cludes array capability and a wide range of features for analyz-
ing model behavior.)
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Glossary

Philosophy The reflection and study of our most basic as-
sumptions – or the assumptions themselves.

Mental model A mental image of selected concepts and
relationships of the world around us which we con-
sider relevant for explaining the behavior of a partic-
ular system.

Presentationalism Synonymous of idealism. The view
that material objects or external realities do not exist
apart from our knowledge or consciousness of them.

Definition of the Subject

We all tend to take things for granted. Indeed it is a com-
mon place to judge formal models exclusively based on the
technical grounds and on the logic with which those mod-
els were built without a proper reflection on the assump-
tions underlying thosemodels. This omission is evenmore
pressing in complexity and system science, since these ar-
eas represent a novel challenge for philosophers of sci-
ence – e. g. see an overview in [34].

What is the idea of reality with which we work? What
do we assume about human nature? What kind of knowl-
edge dowe pursue?What kind of knowledge dowe obtain?
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What is the scope of rational inquiry? What are the basis
and the implications of our own reasoning methods? The
identification of how philosophy has shaped the work of
scientists – on a conscious or unconscious level – is essen-
tial for comprehending the implications, the limitations,
and the scope of our very scientific practice. The lack of
concern by scientists for these issues may explain many
of their failures which has produced just a sort of inertial
blindness that is easy to recognize in current scientific de-
bates.

One of the strengths of system dynamics (abbreviated,
SD) is that it leads us to make explicit our assumptions
about the systems we deal with. This attitude, i. e. the im-
portance of reflection upon our own assumptions, is also
fundamental for the very development and practice of sys-
tem dynamics. Many of the debates on different issues of
every day scientific practice such as model conceptual-
ization, formal model building, validation, policy design,
etc. are informed and can be enlightened by the reflection
on the philosophical background behind those processes.
There are also various fundamental aspects of SD that are
yet to be demarcated, e. g. the characterization of SD ex-
planations. Furthermore, the ambiguity of the discussions
found in large part of related literature, characterized by
superficiality, confusion of terms, misdirected arguments,
etc. only adds noise and it complicates the advance of a dis-
cipline. This article sketches and overview on some basic
assumptions regarding the development and the practice
of system dynamics. Various suggestions that help to inte-
grate various debates are introduced and important clari-
fications are also indicated.

Introduction

The philosophical background and underpinnings of
a discipline should have to do with its most basic univer-
sal assumptions. Such a discussion becomes difficult if we
bear in mind that those assumptions are not necessarily
shared by practitioners and researchers. Nevertheless, cen-
tral premises can be identified which in turn can be related
to important questions regarding philosophical concerns
such as reality and knowledge.

The article is organized as follows. After this short in-
troduction, the second sections develops an overview of
the origins of system dynamics underlining fundamental
aspects that formed what can be called the core of the dis-
cipline. This historical review highlights the initial inter-
est, purposes and initial assumptions around the founda-
tion of SD. With these elements the following sections in-
troduce various philosophical issues that can be identified
underlying system dynamics. Perhaps the central aspect is

presentationalism, a stance associated with the notion of
“mental models” which is central in SD; this is the topic of
the fourth section. The following section makes a clarifi-
cation on the controversial issue of positivism and relates
presentationalism with knowledge. The sixth section sum-
marizes the position of system dynamics regarding social
theory. The seventh section presents the inquiry of expla-
nation clarifying that in spite that SD involves causal mod-
els the nature of its kind of explanation can be found in the
notion of mechanism. The eighth section introduces the
implication of the use of computer simulation as a distinc-
tive epistemology which is different from the traditional
discourse in philosophy of science. The ninth section out-
lines future directions.

Before starting, a brief warning should be made: given
the scope of this review and the limited space for cover-
ing very wide subjects then this article should be viewed as
a broad introductory overview of the different topics. The
cited literature has been selected as possible starting points
for further inquiry.

System Dynamics

In order to address a “philosophical background” the
first question naturally would be: What is system dy-
namics? Already this inquiry can be a matter of debate,
e. g. [102]. Indeed SD has been labeled as a theory [23,49],
a method [18,56,63,98,108], a methodology [81], a field
of study [17,78], a tool [61], a paradigm, among other
nouns. A natural starting point is the work of Jay Forrester,
the founder of system dynamics. A brief historical review
should help to grasp the very core we are looking for since
it can show the initial motivations, assumptions, and pur-
poses behind the development of SD.

Genesis of System Dynamics

Jay W. Forrester, member of the Sloan School of Manage-
ment at MIT, was looking for linkages between engineer-
ing and management education given his background in
feedback control systems and computers [28]. In 1956 he
wrote a “note” to the Faculty Research Seminar, the first
ever MIT “D-memo”; in this communication he sketched
the worldview of what would be known as “system dynam-
ics” [32].

He started with a strong criticism of economic mod-
els. The following were the central aspects: (i) their fail-
ure to reflect adequately the loop structures that make up
economic systems; in particular this neglect leads to ex-
clude inherent properties of closed loops such as resistance
to change, accumulations and delays; (ii) The incapacity
for including flows of goods, money, information, and la-
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bor, in one single interrelated model; (iii) The exclusion
of changing mental attitudes that affect and explain eco-
nomic processes; (iv) The use of linear equations for de-
scribing systems; (v) The restriction of building models
constrained by the capacity for manipulating numerical
data and solving the equations; (vi) The overconfidence in
multiple regression analysis for obtaining coefficients for
equations that define economic behavior; (vii) The lack of
reflection and discussion on the very assumptions under-
lying everymodel preferring an emphasis on the logic with
which the model is developed.

After delineating these points, Forrester then pro-
ceeded in the same note to highlight techniques that were
largely underused at that time: servomechanisms, differen-
tial equations, and what he called “the art of simulation”.
Anchored on the mentioned assessment and on these de-
velopments Forrester conceived “a new avenue of attack
for understanding the firm and the economy” ([28] p. 336)
envisaging a new kind of models that would include aspects
such as:

Dynamic structure: Detailed attention to the sequences
of actions which occur in the system being studied and to
the forces which trigger or temper such actions, with a par-
ticular concern on the controlling influences of lags and
delays.

Information flows: Explicit recognition of information
flow channels and information transformation with time
and transmission.

Decision criteria: Re-examination of the proper deci-
sion criteria which must not be defined as depending only
on current values of gross economic variables; instead,
such criteria must be traced to the motivations, hopes, ob-
jectives and optimism of the people involved, including as
well what he calls business man’s intuition which “repre-
sents a disordered accumulation of basic insights into how
people and social systems react. The hope for the future
lies in generating an orderly arrangement of basic insights”
([28] p. 342).

Non-linear systems: Economic systems present most –
if not all – of the time highly non-linear characteristics.

Differential equations: The behavior of economic sys-
tems should be better described by non-linear differential
equations since they have been developed to describe de-
lays, momentum, elasticity, reservoirs, and accelerations,
which are better suited quantities for describing the eco-
nomic world. In practice these equations would be han-
dled as incremental difference equations in order to obtain
numerical solutions.

Incremental changes in variables: To prefer the formu-
lation of a model in terms of the motivations that cause
incremental changes in a variable since the new value of

a variable “can be found by solving the equations for its
incremental change and then adding the change to the pre-
ceding full value of the variable” ([28] p. 344).

Model complexity: Much complex and complete mod-
els can be developed with these techniques.

Empirical solutions: It is useless to look for explicit
unique or “correct” solutions; instead, these models pro-
vide diverse solutions according to the different assump-
tions about the model structure and the initial values of
the variables.

Symbolism and correspondence with real counterparts:
The possibility of having a pictorial representation – a flow
diagram – whose processes of information, money, goods,
and people, are moved, i. e. simulated, time-step-by-time-
step from place to place.

Structure over coefficient accuracy: To prefer a struc-
ture in which we have confidence using intuitively esti-
mated coefficients instead of using unlikely structures with
accurately derived coefficients from statistical data.

A subsequent advance came in 1958 with an article
entitled “Industrial Dynamics: A Major Breakthrough for
Decision Makers” published in the Harvard Business Re-
view [27]. In this article Forrester shaped the previous
ideas with the concern that management should evolve
from a highly fragmentized art to a profession capable of
recognizing unified systems given that the task of man-
agement is to interrelate the flows of information, ma-
terials, labor, money, and capital equipment. He again
emphasized features such as electronic data processing,
decision making, simulation, feedback control, and infor-
mation flows. These elements were presented as the cor-
nerstones of the innovative industrial dynamics program
at MIT.

Industrial Dynamics

The definitive breakthrough came in 1961 with his mag-
nus opus “Industrial Dynamics” [24]. Themainmotivation
behind was the development of a science for designing and
controlling industrial systems, the quest for amanagement
science. In particular he conceived it as “a method of sys-
tem analysis for management.” (p. 9). He stated:

Industrial dynamics is the study of the informa-
tion-feedback characteristics of industrial activity
to show how organizational structure, amplification
(in policies), and time delays (in decisions and ac-
tions) interact to influence the success of the enter-
prise (p. 13).

Forrester underlined four pillars for this new science: in-
formation-feedback control theory anchored on the con-
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cept of servomechanisms, the study of decision-making
processes, an experimental approach to system analysis
based on simulation, and the use of computers.

Coming from engineering, he had inmindmodels that
deal with nonlinear dynamic systems whose purpose is to
design new systems – as opposed to just explain systems;
the models should show how changes in policies or struc-
ture will produce better or worse behavior. In order to ac-
complish this aim Forrester indicated that we should fo-
cus on understanding the characteristics of the system in
hands (instead of looking for specific predictions) and on
our assumptions about them. “We then have a means for
tracing the implications of our assumptions” ([24] p. 55).

What should be included in a model? Forrester un-
derlined that “there will be no such thing as the model
of a social system, any more than there is the model of
an aircraft . . . the factors that must be included arise di-
rectly from the questions that are to be answered” ([24]
p. 60). It is expected that these factors will include closed-
loop information-feedback structures that give rise to so
much of the interesting behavior. An important aspect of
this new kind of models is symbolism and pictorial rep-
resentations by means of flow diagrams with a special em-
phasis on correspondence: themodel variables should cor-
respond to those in the system being represented. In this
book Forrester also demarcated the network structure of
this new kind ofmodels asmade of four basic components:
accumulations (levels), flows (rates), decision functions,
and information channels; these networks trace cause-ef-
fect relationships which are described via mathematical
formalization. He also discussed in detail how to repre-
sent delays and how to model decision processes which
are particularly defined by general policies, i. e. rules that
state how operation decisions are made converting infor-
mation into action; this study of general policies explains
the importance for SD of the examination of human deci-
sion-making processes. Another fundamental characteris-
tics are continuous flows and aggregation: “grouping of in-
dividual events into classes . . . Our interest in themodel . . .
is from the viewpoint above the separate individual trans-
actions” ([24] p. 65); it is assumed that different individual
items are controlled by the same identical decision-func-
tion; this notion leads to aggregation which is a distinc-
tive aspect of SD: “items controlled by sufficiently simi-
lar policies that depend on sufficiently equivalent informa-
tion sources may be combined into a single channel” ([24]
p. 109); the central criterion for such aggregation is the
purpose of the model. Finally, model significance (or va-
lidity) rests on its suitability for a particular purpose which
is motivated by the design of improved industrial and eco-
nomic systems.

Principles of System Dynamics

Themain concern in these initial steps were business oper-
ations. However, Forrester sketched a glance to a broader
view in the final part of his book; there, he speaks of “sys-
tem” dynamics since “the study of systems can provide
a framework to unite subjects . . . The dynamic model rep-
resents a system as broad as one chooses to describe” ([24]
pp. 344, 346). Indeed, looking for a more general view he
presents a section of “principles of systems structure”:

The principles to be discussed here all arise in the
context of information-feedback systems. They are
systems principles. They are not the principles of the
management art such as have been taught in orga-
nization, production, and human relations courses.
Because the principles apply to systems behavior,
they do not fall into neat separate packages . . . The
concept of a system implies interaction and interde-
pendence. In attempting to identify factors that are
common to all systems, we must keep the essential
indivisibility in mind ([24] pp. 347, 348).

Indeed, Forrester reaffirmed this general systems view in
a follow-up book entitled Principles of Systems [25] pub-
lished in 1968. He gives a basic definition of system as
“a grouping of parts that operate together for a common
purpose” ([25] p. 1-1). Moreover, he suggests that the way
to organize knowledge is with this idea of systemwhich are
represented by the models we develop:

A structure (theory) is essential if we are to effec-
tively interrelate and interpret our observations in
any field of knowledge . . . Without an organizing
structure, knowledge is a mere collection of ob-
servations, practices and conflicting incidents . . .
A model is s substitute for an object or system . . .
Any set of rules and relationships that describe
something is a model of that thing. In this sense,
all of our thinking depends on models. Our men-
tal processes use concepts which wemanipulate into
new arrangements. These concepts are not, in fact,
the real system that they represent. The mental con-
cepts are abstractions based on our experience. This
experience has been filtered and modified by our in-
dividual perception and organization processes to
produce ourmental models that represent the world
around us ([25] pp. 1-2, 3-1).

The previous statement summarizes core assumptions for
SD. It points at the central notion of mental model and
it emphasizes that these models are models of systems.
In fact, in an article published in 1968 in Management
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Science, Forrester [28] underlined that this application of
feedback concepts to social systems was evolving toward
a theory of structure in systems with a particular goal of
policy design. Specifically, “industrial dynamics is a phi-
losophy of structure in systems. It is also gradually becom-
ing a body of principles that relate structure to behavior”
([28] p. 141). Two fundamental variables are identified:
levels and rates, and the basic structural element is the
feedback loop: “every decision is responsive to the exist-
ing condition of the system and influences that condition”
([28] p. 143). And, as stated above, the structure is an aid
to organize knowledge in a particular situation given a par-
ticular purpose which is motivated by the pursue of expla-
nation and policy design.

This historical review has accentuated central aspects
of the foundation of SD. As a summary, this science
initially envisaged by Forrester for designing systems is
known nowadays as system dynamics. The models de-
veloped in SD have distinctive characteristics: dynamic
structures, information flows, study of decision criteria,
non-linearity, difference equations, symbolism and cor-
respondence, and emphasis on confidence based on the
structure of the model. The practice of this science is an-
chored on: the concept of servomechanism, the study of
decision-making processes, the embrace of an experimen-
tal approach, and the use of computers for building for-
mal models. These models are models of systems and the
main goal is to help to organize our knowledge – which
can be seen as arranged in mental models – so as to en-
hance learning processes and systems design on concrete
settings and under specific purposes.

With these elements in mind, it is now possible to pro-
ceed with a brief discussion on important aspects regard-
ing assumptions on reality and knowledge that can be rec-
ognized behind these premises and the practice of SD.

“Real”World and Presentationalism

The traditional distinctions of ontology, epistemology,
and methodology, form the habitual framework to drive
a philosophical discussion. But the isolation of these issues
may not be the most adequate or clear strategy. Given the
interrelated nature of such categories and the misleading
discussion on those terms which is present in a large part
of organization and management science literature – part
of this confusion will be exposed and clarified below – then
a different plan will be used to develop the rest of this ar-
ticle. An instinctive option is to pick up significant issues
and to relate them with what we can identify as part of the
core of SD.

Where to start? Assumptions concerning a “real”
world can be a first step to take since the traditional debate
developed through the years around the claim of build-
ing models of “social systems” has fueled part of the dis-
cussions in systems science. As most of examinations on
philosophical matters the debate has been permeated by
a confusion originated in terms and words without the
proper examination of the topic. However, this short re-
vision is useful for opening the assessment of the premises
of SD regarding a real world.

A prominent example is the criticism made by influen-
tial commentators who state that SD models represent an
assumed “objective” real world [49]. This kind of critique
usually labels SD as a “hard” approach, e. g. [48], mean-
ing with such a term models of an assumed objective ma-
chine-like world – and habitually including and inverting
the meaning of the term “positivism” – a mistaken assess-
ment that still can be seen nowadays, e. g. [16]. This type
of comments can be illustrated with the following quote
from the work of Flood and Jackson [23]:

System dynamics models still center on capturing
the structure of the “real world” . . . the under-
lying assumption of SD that there is an external
world made up of systems the structure of which
can be grasped using models built upon feedback
processes . . . Because intentions derive from inside
social systems, from the conscious human actors
which constitute them, many possible appreciations
of the nature and purpose of particular social sys-
tems are possible. SD simply does not deal with the
innate subjectivity of human beings . . . In essence
the argument is that social systems cannot be stud-
ied, in the way of system dynamics, objectively from
the outside (pp. 78, 79–80).

However, that is not what SD looks for. The mentioned
emphasis on the examination of human decision-making
processes and on the assumptions behind, the notion of
mental model, the fact that model significance rests on its
suitability for a particular purpose, among other aspects,
should suffice to illustrate the point. Already Forrester in
1961 [24] emphasized: “a model can be useful if it repre-
sents only what we believe to be the nature of the system
under study . . . we are forced to commit ourselves on what
we believe is the relative importance of various factors. We
shall discover inconsistencies in our basic assumptions . . .
Thorough any of these we learn” (pp. 57–58, emphasis
original). This should be enough to discard the assessment
made by Flood and Jackson, and similar critics, who mis-
takenly placed SD in the terrain of a sort of naive realism as
depicted in the quote above; this point is extensively clar-
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ified by Lane [55,56]. More importantly, this argument is
helpful to introduce the discussion about the nature of SD
models, the assumptions behind these models, and their
relation with a “reality”. The notion that drives these mat-
ters has been labeled in SD literature as “mental model”
and even though this concept is not free of debate [21] it is
placed at the core of the discipline.

The idea of mental model was already addressed by
Forrester, as it has been indicated; he demarcated it in 1970
as the mental image of selected concepts and relationships
of the world around us that we carry in our heads [26];
furthermore, “the mental model is fuzzy. It is incomplete.
It is imprecisely stated . . . [It] changes with time” (p. 213).
Doyle and Ford [22], looking for a consensus on this sub-
ject, propose as a definition: “a relatively enduring and ac-
cessible [conscious], but limited, internal conceptual rep-
resentation of an external system (historical, existing or
projected) whose structure is analogous to the perceived
structure of that system” (p. 411). Sterman [98] summa-
rizes what the expression “mental model” refers to: “our
beliefs about the networks of causes and effects that de-
scribe how a system operates, along with the boundary of
the model (which variables are included and which are
excluded) and the time horizon we consider relevant . . .
Most of us do not appreciate the ubiquity and invisibil-
ity of mental models, instead believing naively that our
senses reveal the world as it is. On the contrary, our world
is actively constructed (modeled) by our senses and brain”
(p. 16–17). It should be noticed that these mental models
may refer as well to planned or desired systems existing in
the mind of the modeler [54]. The ultimate goal of system
dynamics is to enhance our learning processes by testing
and improving our mental models in a way that becomes
consistent with the complexity of the systems that we face
and design everyday [98].

Then, what is a SD model as related to some “real”
world? Or how is it related to the notion of mentalmodels?
The usual option to answer these questions is to frame the
discussion in the debate realism/anti-realism. This exam-
ination is even more relevant considering that some criti-
cism labels SD as anchored on “realism”. A brief clarifica-
tion follows.

Realism? Anti-Realism?

Typical of latest debates in history of science concerns the
dispute between the so-called realism, i. e. theories are true
or false as descriptions of the world, and instrumentalism,
i. e. theories are more or less adequate. This latter posi-
tion is closer to pragmatism: theories are just instruments
to systematize – and for many philosophers predict – ob-

servations, but theories are not claims about the world; or
they can be also subjected to linguistic frameworks but still
always truth-value-less. An overview of this debate is made
by Leplin [60]. Yet, here it should be clarified that both po-
sitions and those definitions – habitually taken by histori-
ans of science – are two sides of the same coin. In short,
both are forms of idealism. This assessment will be com-
mented next.

On the one hand, scientific “realism” is usually de-
fended using the method of abduction as source of knowl-
edge, i. e. inference to the best explanation, which is just
a form of induction and hence it is confirmationist, ul-
timately relativistic. It is not realism at all; it is exactly
the opposite, i. e. idealism. For instance, take the influen-
tial ideas of Sellars [91] who defends an illustrative tra-
ditional position of scientific realism holding the source
of knowledge on observation and relying on justification
by induction for building theoretical frameworks; he em-
phasizes: “Laws in question are stipulated to be induc-
tively established in the observation framework” (p. 313),
the theories are then refined by empirical generalizations
and what he calls further “injections” of images of the the-
ory into the observational framework, in a typical pro-
cess of instructional correction. A further refined and for-
mal model of such a framework (proposed by Friedmann,
holding a model–submodel relation) is commented by
Morrison [66] who still holds, nevertheless, the search for
truth and justification as support for his criticism and the
necessity of confirmation [67]; see also for example the pa-
per of Kukla [52] with a criticism to the ideas of Fried-
mann, yet also supported also on confirmation. In short,
this “realism” is just idealism as we know it. Similar “re-
alist” positions abound on the literature of the history of
science. E.g. Smith [95] postulates a realist stance based on
“common sense” but, since for him “science begins with
observations” (p. 53), his realism ends up, indeed, trapped
in sensations, i. e. idealism. Quantum mechanics does not
escape the debate, e. g. arguing in favor of realism within
the subjective theory of probability (the Copenhagen in-
terpretation, Bohr, Heisenberg, etc.), Dickson [20] stands
on the verification criterion for discussing on what he calls
“quantum realism”; naturally such base can not succeed,
which is anyway best self-explanatorily reflected in the first
part of the title of his paper “An Empirical Reply to Em-
piricism”; simply there is no such reply. Another case is
the criticism of Brown [13] to the deterministic notion of
“realism” that Cherniak discards (who supports it on com-
puter simulation of finite agents); the criticism of Brown
shows a Galilean notion of realism, i. e. achievable true de-
scriptions of the world via laws, but in a very “complex
world” and thus, for him, inaccessible to agents with lim-
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ited cognitive capacity; this Galilean view is found in large
part of complexity science. In other attempts, for instance
Schlagel [90] defends “contextualistic realism” which ends
up in relativism: elements of the world have a conditional
status relative to contexts and conditions, the existents are
real relative to the particular structures and contexts on
which they depend; his proposal is just idealism and can be
better described as a sort of multi-phenomenalism, indeed
relativism. The diverse “realist” positions actually rooted
on non-negotiable empiricism seem endless; e. g. further
examples are found in [1,59,75], and in most papers with
the expression “scientific realism” in the abstract.

On the other hand, let us consider a supposedly oppo-
site position, for instance instrumentalism. Instrumental-
ism actually ends up in relativism as well, e. g. with respect
to the points of view where instruments can be applied;
at the end the notions of “applicability” or “adequacy” be-
come reference frameworks for establishing partial truths.
Newton-Smith [68] proposes a conciliatory position, he
calls it “modest realism” which ends up indeed in a sort
of “moderate” relativism; a catalog of various scientific re-
alisms can be found in that paper too, all of them address-
ing still the question of how such truths about a real world
can be sustained (justified). In short, instrumentalists de-
clare the dependence on observations, i. e. idealism, and
thus this position is in fact sharing assumptions with the
alleged “realists”. Leplin [60] summarizes: “some theory
can be reduced to observation by defining or translating
theoretical terms into terms that describe observable con-
ditions. The remaindermust be construed instrumentally”
(p. 394).

The “realism” vs. instrumentalism debate is futile and
yet it is perhaps one of the core discussions in philoso-
phy of science. But unlike these influential historians of
science, the presented dispute tends to be dismissed by
several professional philosophers who see it as self-serv-
ing and unsophisticated; Fuller [33] underlines this assess-
ment though he also illustrates the consequences of leav-
ing such pointlessness discussions to endure. In this case,
two seemingly unaware idealist factions argue about the
best way to establish positive knowledge, e. g. either with
a supposedly “true” description of the world (more pre-
cisely: phenomena, subjectivism) or by pragmatism (and
again: phenomena, relativism). This shared idealism is the
matter of the next section.

Presentationalism

A broader debate can be assessed framed in the opposition
between realism and idealism, see e. g. [72] and [77]. It will
be shown that SD rests on the broad stance known as ide-

alism, i. e. presentationalism – this latter term is preferred
here just for clarity [10].

Firstly, it should be commented the widely inverted
and misleading use of both terms. And there is good com-
pany. Blackmore [10] shows various celebrities that be-
came misusers of the expressions in question such as the
former president of the American History of Science So-
ciety and prominent Harvard University professor, Er-
win Hiebert, and Sir Russell Brain, outstanding neurol-
ogist and former president of the British Association for
the Advancement of Science. Add the seemingly custom-
ary tendency to quote references in second hand without
inspecting direct sources and a few decades later we have
the terms used in exactly their opposite original sense in
journals and books. Blackmore pictures the situation:

Like-minded ‘empiricists’ have restricted what they
understand by the term to what idealistic philoso-
phers of science have wanted them to understand
by it. And since the term ‘realism’ sounds good
to ‘tough-minded empiricists’ and since idealistic
philosophers such as Hume, Comte, Schuppe, and
Mach and their recent successors scarcely if ever
have admitted their idealism, many scientists and
historians of science have let themselves be seduced
into reversing the normal epistemological defini-
tions of ‘realism’ and ‘idealism’. Even worse, re-
spected scholars such as Stillman Drake, perhaps
our most outstanding authority on the manuscripts
of Galileo, and Larry Laudan, a young, energetic,
and much published commentator on Mach and
‘empiricism’, have allowed themselves to become
advocates of hopelessly naive ‘non-philosophical’
positions. Drake is sure that Galileo held no philo-
sophical position, or that if he did, it had no effect on
his scientific work. Laudan is equally positive on the
basis of Mach’s written comments that his phenom-
enalistic epistemology had no influence on Mach’s
‘empirical’ methodology of science. The simplic-
ity of their views can party be explained by their
tendency to understand by the term ‘philosophy’,
not one’s most basic universal assumptions, but
expressed talk about speculative matters. Similarly,
many ‘materialists’ who feel sure that the physical
world is directly given in experience, and who ac-
cept the idealist Kant’s distinction between ‘science’
and ‘metaphysics’, are convinced that anyone who
identifies the physical world with what is beyond im-
mediate experience is an ‘idealist’ and ‘metaphysi-
cian’ and (following Wittgenstein) ‘is merely utter-
ing nonsense’ (p. 131 in [10]).
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In order to clarify, it is appropriate to underscore the atti-
tude behind an empiricist epistemology. A major defining
posture is what has been labeled as idealism, given the nat-
ural disbelief of a world beyond senses, which is the pillar
of an empiricist epistemology. The term “idealism” comes
from the “idea” of Bishop Berkeley, who took physical ob-
jects as “ideas” which included sensations and thoughts:
“It is evident to any one who takes a survey of the ob-
jects of human knowledge, that they are either ideas actu-
ally imprinted on the senses, or else such as are perceived
by attending to the passions and operations of the mind,
or lastly ideas formed by help of memory and imagina-
tion, either compounding, dividing, or barely represent-
ing those originally perceived in the aforesaid ways.” [8].
This idealism relies entirely on senses and mind-depen-
dent worlds since consequently sense-data were the only
things of whose existence our perceptions could assure us,
and that to be known is to be ‘in’ a mind, and therefore
to be mental. Berkeley, therefore, concluded that nothing
can ever be known except what is in some mind, and that
whatever is known without being in my mind must be in
some other mind [85]. Hunter [47] summarizes:

As a result of their constraints on knowledge and
meaning, empiricists tend to be skeptical of nec-
essary truths that are independent of mind and
language, and of putative eternal abstract entities
(p. 110).

This idealism can be equally identified with terms such
as ‘phenomenalism’, ‘neutral monism’, or ‘subjective ide-
alism’ (e. g. [10]), or presentationalism. In other words,
“anything in time or space, anything than can be known
by the human mind, is phenomenal” (p. 146 in [15]).

Taking this posture to the context of science, Bart-
ley [4] provides the implications: “Presentationalists see
the subject matter of science not as an external reality inde-
pendent of sensation. The subject matter of science is our
sensory perceptions. The collectivity of these sensations is
renamed ‘nature’ . . . The aim of science is seen not as the
description and explanation of that independent external
reality but as the efficient computation of perceptions . . .
[It] became the dominant twentieth-century philosophy of
physics” (p. 11, 16, emphasis original). In general this po-
sition is the pillar of the prevalent conception of science
which has been fueled by physics (for instance in the in-
terpretation of quantum mechanics of Bohr and Heisen-
berg) and backed by influential names like Mach, Russell,
Wittgenstein, Ayer, Lewis, Carnap, etc.

To appreciate the contrast, a standard definition of re-
alism can be:

‘Realism’ . . . is used for the view that material ob-
jects exist externally to us and independently of our
sense experience. Realism is thus opposed to ideal-
ism, which holds that no such material objects or
external realities exist apart from our knowledge or
consciousness of them, the whole universe thus be-
ing dependent on themind or in some sensemental.
It also clashes with phenomenalism, which, while
avoiding much idealist metaphysics, would deny
that material objects exist except as groups or se-
quences of sensa, actual and possible (p. 126 in [10]).

Apart from the particular emphasis on material objects (as
opposed to Berkeley’s ideas), another point is that real-
ism defends a cosmocentric thesis opposed to the anthro-
pocentric view in the discussions of the alleged “realists”
of science presented earlier; in the latter case the observer-
centered learning process is fundamental, and it is carried
on via induction looking for acquiring positive, verifiable,
and true knowledge – or justified true belief. Moreover,
let us recall that historians of science denote with the term
“realism” just the concern with supposed true descriptions
of the world. But in fact realismdoes not imply that knowl-
edge is achievable, it does not imply that the world is a per-
fect clock, it does not imply determinism, it does not im-
ply that there can be correspondence between theories and
such real world; these are different affirmations that un-
fortunately seem to be muddled inside the same bag. One
thing is to assume a real world beyond senses. But a differ-
ent inquiry is the character we ascribe to it. Another dif-
ferent issue is the role we assume for our senses. Another
very different concern is the question of knowability, etc.
Rescher [77] illustrates typical examples of the confusing
use of terms in literature: “The three positions to the effect
that real things just exactly are things as philosophy or as
science or as ‘commonsense’ takes them to be – positions
generally designated as scholastic, scientific and naive real-
ism, respectively – are in fact versions of epistemic ideal-
ism exactly because they see reals as inherently knowable
and do not contemplate mind-transcendence for the real”
(p. 187).

Coming back to presentationalism, this position then
assumes that we are imprinted by the environment, and we
call to this impressions “knowledge”. Given the limitation
of our senses then presentationalism postulates that noth-
ing more can be known; and thus, such assumption is used
to construct the world in our minds: for a presentational-
ist, strictly speaking, the world is not re-presented since we
do not have access to it, the world is just what is presented
to our senses: the world as we experience it happens to be
the world itself; and, since anything that can be known by
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the human mind is, then, phenomenal (sensations, etc.),
therefore knowledge strictly depends on – and is source
in – what is sensed, e. g. observed. Hence knowledge needs
to be justified in order to avoid error; and yet, the only ex-
istent knowledge is the imperfect evidence sourced in sen-
sation and, nevertheless, a foundation that can be justified
is pursued. This is the popular plan we have come up with,
so far, to try to avoid the destruction of empiricism made
by Hume. The picture can be summarized:

Almost all traditional epistemologies are Lamarck-
ian in their accounts of the growth of knowledge.
This is conspicuously true of presentationalism, al-
most all adherents to which maintain an inductivist,
justificationalist account of knowledge growth, ac-
cording to which knowledge is constructed out of
sensations (as building blocks or elements) by a rel-
ative passive process of combination, accumulation,
repetition, and induction (p. 25 in [4]).

This position is identified with idealism and most popu-
larly associated with epistemological empiricism, with all its
assumptions and its consequent scientific method.

The last point to underline is that this epistemology
has subordinated ontology. A remarkable illustration of
this type of problems was already made by Bowman [11]:
“The result . . . is the more or less deliberate abnega-
tion of a genuine epistemology and the substitution for
it of a highly formal logic. Hence the paradox illustrated
equally in the case of Plato and, recently, of Mr Russell,
of a radical empiricism (expressed in Plato’s Protagorean
theory of sensation and in Russell’s subjectivism) sub-
sisting side by side with the extremist rationalism. Such
a dualistic position is the despair of philosophy, and indi-
cates a failure in the synthetic work of thought” (p. 485).
This despair is easy to recognize in current science which
presents a contradictory ontological position whose diffi-
culty is found in its subsumption under a radical episte-
mology. Indeed extreme empiricism, i. e. presentational-
ism, has become the metaphysics, i. e. the theory of real-
ity, of our science. The debates on “scientific realism” pre-
sented earlier picture this failure. On this particular subject
the different use of terms in literature is a source of confu-
sion; but here the terms have been inverted by historians
of science and scientists; and beyond a semantic confusion
this has brought a narrow conception and a very restricted
examination of epistemological assumptions. In short, the
subjectivism of Descartes and Kant – or more precisely,
Kantian idealism – is what now is labeled as “realism”,
e. g. everything has become “phenomena”. As a matter of
fact common expressions like “objective phenomena” or
“real phenomena” uncover an idealistic position where

the “objective” or “real” are just phenomena. Indeed, the
so-called scientific “realism” commented above is nothing
more than a sort of empiricism driven by Hume and Kant.
This “realism” is just ontology overlapped by epistemol-
ogy (idealism).More precisely, regarding Kant, let us recall
his “Transcendental Idealism” which was the common an-
swer of Kant when he was accused of idealist, e. g. see [93],
denying to be a “dogmatic idealist” (in the Berkeley sense;
see e. g. [101]); a full discussion of this failed defence of
Kant is made by Guyer [37]. In particular Turbayne [101]
defends Kant when he was accused of having misinter-
preted (or even completely having misunderstood) Berke-
ley’s idealism; yet, Turbayne’s conclusion summarizes the
Kantian idealism (and its ambiguity) unmistakably: “The
Kantian antidote to this is not the a priori nature of space,
but its reality or subjectivity, which assimilates space and
its contents into the realm of ideas, and thus prevents illu-
sion” (p. 243, emphases added). Regarding consequences,
perhaps the best summary is the radical idealist position of
Mach – who denied even the existence of atoms since they
cannot be observed. Kant seems to be taken for granted
without a proper reflection on his position.

These few points were commented since this debate is
the major informer of the method and the assumptions of
management science, organization science, and social sci-
ence in general, places where SD has its roots. More im-
portant, by making this clarifications then a clear ground
for SD can be envisaged. It can be affirmed that SD has
been mistakenly labeled as “realist” by many commenta-
tors alluding the alleged aim of building “true” descrip-
tive theories of the world, and using the misleading defi-
nitions of historians of science. But also from the discus-
sion above it should be clear that SD safely rests on pre-
sentationalism. Moreover, the identified presentationalist
stance known as “instrumentalism”, and in general the so-
called anti-realists positions (independent of the inverted
use of the term), fit to the SD worldview: the abstractions
from our experience are arranged in mental models which
form knowledge that we want to improve in order to make
better decisions. The SD models built for achieving this
goal are judged against their adequacy and suitability for
a particular purpose; thesemodels are not claims about the
world but instruments for systematizing observations and
for boosting learning processes using experimentation via
simulation.

The Discussions on Positivism:
Presentationalismand Knowledge

An issue previously mentioned which is closely connected
with presentationalism is relativism and positivism. Since
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positivism usually – and mistakenly – is pejoratively asso-
ciated with a supposed objective representation of reality,
then an important clarification is needed. In short: posi-
tivism is consistent with presentationalism and with rela-
tivism as well.

Presentationalism Brings Positivism

Blackmore [10] reminds that strictly speaking neither “ra-
tionalism” nor “empiricism” are properly epistemologi-
cal terms at all; the entrenched idealism has led just to
this narrowed identification. For instance, usually the term
“empiricism” is synonymous of knowledge sourced in
observation, i. e. in a restricted epistemological context,
but such popular narrowness is inaccurate. Blackmore re-
marks: “Granted, that if one means by ‘empiricism’ not
just an extensive and careful concern with empirical ev-
idence but restricting reference or knowledge or both to
sensory appearances, then there are indeed epistemologi-
cal implications. One has become an epistemological phe-
nomenalist or subjective idealist, or if you will, a positivist”
(p. 130, emphases original). This clarification is needed for
two reasons; on the one hand, as it was stated, SD has been
labeled as “positivist” but the critics take this term as a sort
of naive realism; the confusion is patent once we realize
that positivism actually is a consequence of idealism, the
opposite doctrine of realism. On the other hand, since SD
is better identified with idealism then a sort of positivism
can be also associated with it, but not the sort of “posi-
tivism” that the critics have in mind but the authentic pos-
itivism; and yet we will see that with the use of simulation
positivism does not necessarily fit either.

The case of management science is a good example re-
garding the discussion on relativism and positivism. Let us
consider the traditional and unfortunate sharp division be-
tween “hard vs. soft” which also takes the form “quantita-
tive vs. qualitative”. However, this discussion is misleading
as well. It is not difficult to find researchers that claim to
be anti-positivists but being themselves grounded on posi-
tivism (e. g. empirical observation, verification, induction,
etc.) without noticing the contradiction. A good exam-
ple is the claimed opposition between positivism and phe-
nomenology. Yet, phenomenology is authentic positivism
when is committed to evidence – Husserl himself under-
lines this aspect – see e. g. [94]. Indeed it is easy to appre-
ciate an inverted use of the term “positivism” in literature;
in management science this is a favored and widespread
practice where so-called anti-positivists do not notice their
positivism. The fact is that anthropocentrism is the ground
in our most influential epistemologies that recognize the
obvious imperfections of our sensorial apparatus but, nev-

ertheless, rely knowledge on sensation (observation, etc.),
that is, positivism, which is nothing more that our anxiety
to confirm and validate, i. e. justify, our “imperfect” knowl-
edge, e. g. empirically. This is a simplification of highly
loaded terms; clarifications and further discussions can be
found elsewhere, e. g. regarding positivism see [9,97,100].

Positivism is Anchored on Justification

Within a presentationalist worldview the search for confir-
mation and verification is nothing less than the search for
justification of knowledge where the intellectual authority
lies in sense experience. From a presentationalist account
it is straightforward to have a justificationist approach for
confirming and verifying theories. Following Bartley [4]:

Preoccupied with the avoidance of error, they sup-
pose that, in order to avoid error, they must make
no utterances that cannot be justified by – i. e., de-
rived from – the evidence available. Yet sense per-
ception seems to be the only available evidence . . .
The claim that there is an external world in addi-
tion to the evidence is a claim going beyond the evi-
dence. Hence, claims about such realms are unjusti-
fiable. Crucial to the presentationalist argument are,
then, two things: the desire to give a firm foundation
or justification to the tenets of science, and the con-
strual of sense experience as the incorrigible source
of all knowledge (pp. 12–13, emphases original).

In fact justification philosophy taken as the search for epis-
temic ‘authorities’ has been the dominant style of western
philosophy looking for “well-grounded” knowledge. For
instance in the customary view of knowledge as justified
true belief , e. g. in the sense of Russell [86]) – as the re-
sult of systematic analysis “of our sensory experience of
a knowable external reality” (p. 47 in [96]). Within this
popular position the central problem of epistemology – as
succinctly formulated by Radnitzky [76] – becomes:

“When is it rational or, so to speak consistent with
one’s intellectual integrity, to accept a particular
position?” The formulation suggests the direction
in which the answer is to be sought: “When con-
cerned with a statement, a theory, etc., accept those
and only those statements, theories, etc., which not
only are true but whose truth has been established”
(p. 282, emphasis original).

The goal of justification is usually entrenched within the
method of induction where every new repeated observa-
tion is a confirmation that validates – justifies – the the-
oretical statement. Even with weaker conditions the way
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of reasoning is the same, for instance within the ideas of
Ayer where strict verifiability is seen as a too rigid crite-
rion – he introduces confirmability to some degree, instead
of complete and conclusive verifiability (see [88]); justifi-
cation is still pursued. The appeal of justification can be
explained because it looks for avoiding relativism (inher-
ently attached to presentationalism) since not all positions
are equally good or bad and it suggests to look for some-
thing beyond blind belief [76]. Though it is not the only
option, nevertheless, it is the most common view of sci-
ence; the concerns on validation, justification, verification,
confirmation, and generalization, are part of this popular
and influential view. Here the observer is the fixed point
of reference. In short, within a justificationist logic, it is
rational to accept only those positions that have been jus-
tified according to the rational authority which in the case
of presentationalism is sense experience, consistent then
with the highly influential ideas of Locke, Berkeley, Hume,
Mach, Carnap that have shaped our prevalent view of sci-
ence [4].

Justification in System Dynamics

Turning back to SD, it must be recalled the role of mental
models whose characteristic nature of “abstractions based
on experience” can be better assessed within a presenta-
tionalist stance. Here justification has also a place. How
is this knowledge justified? Already Forrester [24] empha-
sized, within the debate of model validation, that, “knowl-
edge of all forms can be brought to bear on forming an
opinion of whether or not a model is suitable to its partic-
ular purpose” (p. 129). Therefore, Forrester [25] also em-
phasized that “we can never prove that any model is an
exact representation of ‘reality’ . . . Models are then to be
judged, not on an absolute scale that condemns them for
failure to be perfect, but on a relative scale that approves
them if they succeed in clarifying our knowledge” (p. 3–4).
This sort of relativism will be addressed next.

With the aim of placing this stance within the discus-
sion of history of science, Barlas and Carpenter [3] ad-
dressed the “philosophical roots of model validation” as-
sociating SD with what they called a “relativist philoso-
phy of science”. In this view justification is pursued: such
a knowledge is seen as socially, culturally and historically
dependent and it becomes socially justified belief. Here
“a valid model is assumed to be only one of many possible
ways of describing a real situation . . . for every model car-
ries in it the modeler’s world view . . . validation is a mat-
ter of social conversation” (p. 157). Hence, confirmation
and verification are pursued through a social process rel-
ative to a frame of reference. This sort of moderate rela-

tivism was later criticized by Vásquez, Liz and Aracil [103]
for whom such relativism is unacceptable in spite of their
recognition that there is no privileged single model (or set
of models); since they are also concerned with epistemo-
logical justification these authors present Putnam’s inter-
nal “realism” as a more adequate way to conceptualize the
type of knowledge consistent with the assumptions about
reality held by SD practitioners; in short, these authors un-
derline that mental models are the source of knowledge –
and its justification – helping to select the structures that
must be assumed as working in real systems; here knowl-
edge is taken as internal to the conceptual scheme of SD.
Since there can be many models for a given situation, the
authors argue that this framework gives the possibility of
convergence as a result of “the strong interactive charac-
ter of mental models” (p. 34) recognizing that in any case
SDmodeling is a process of revision and adjustment.With
this proposal these authors seek to achieve justification
and some realistic representational content in spite of the
plurality of alternative SD models available for a specific
situation. It is easy to see that this proposal is still relativis-
tic, in this case knowledge is relative to the mental models
and the conceptual scheme – though the mentioned au-
thors would not agree since for them there is a “reality”
given by the internal representational schema, in this case
the mental models of the modelers.

The fail to recognize presentationalism as the episte-
mology which is driving ontology is at the root of the pre-
sented discussions. This is a distinctive trait present in
large part of the philosophy of science literature. How-
ever, the characteristic problem of mistaking positivism
with a sort of supposed “objectivism” is also present in
this discussion – in fact, Barlas and Carpenter, following
the misdirecting literature on the subject, argue that the
relativist philosophy that they defend rejects positivism;
Vásquez, Liz and Aracil also follow the same inertia. How-
ever, these theses, which seek for confirmation, verifica-
tion, justification, reflect the search for positive knowledge
within an idealist epistemology. In the first case, knowl-
edge is confirmed and accepted through social interaction
and it is relative to a context. In the second case, knowl-
edge is justified onmentalmodels. To appreciate a genuine
contrasting position see an anti-justificationist approach
to validation in computer simulation in [51]; the core of
anti-justificationism can be found in the work of Popper,
e. g. [73,74].

System Dynamics as Presentationalist

It should be clear that the assumptions on SD reject naive
realism; the models are not supposed to be accurate and
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corresponding descriptions of an external true reality –
and furthermore, this is not what the term “positivism”
refers to. In any case validation in SD does not mean a sup-
posed “positive proof” or to assess the development of
“true models” of the world. On the contrary, SD aims at
enhancing our ways of reasoning, it emphasizes a process
of learning so as to consistently improve our mental mod-
els which are product of our experience and the opera-
tions of ourmind.Hence SD is closer to presentationalism.
Knowledge can be socially justified and our mental models
can be enhanced. Moreover, a particular emphasis on the
modeling process is also underlined – see e. g. [29,44,89]
and it will be commented in the eight section devoted to
simulation.

A Brief Note Regarding Social Theory

Another important discussion is related to the theories
about the “social world” that are supposedly held in SD,
i. e. the social theory behind SD if any. Part of the mis-
guided debate is explained by the widespread use of the
traditional framework of Burrell and Morgan [14] whose
oversimplification of social science in four paradigms has
deviated major issues covering important topics under
a too practical and inadequate schema – e. g. see a criti-
cism in Deetz [19]. Jackson [49] provides a summary of
such usual misconstruction:

System dynamics . . . is essentially functionalist in
nature. It sees system structure as the determining
force behind system behavior . . . If humans are free
to construct social systems as they wish, what de-
termining influence does system structure have? . . .
This tension between determinism and free will is
unresolved (p. 39).

It should suffice to recall from the discussion above that
the aggregate approach of SD is not a theory of human be-
havior; SD is not concerned with individual action. Fur-
thermore, it does not assume that a structure, of any kind,
determines human behavior either, i. e. the sort of de-
terminism that Burrell and Morgan [14] oppose to “free
will” and in the lines of the already vague term known
as “structuralism” – see an early clarification of the prob-
lems of such type of oversimplification in [84]. In any
case, this sort of criticism has been answered and clari-
fied by Lane [56] who has underlined the main point: SD
is concerned with aggregate social phenomena and not
with individual meaningful actions [55]. Moreover, sys-
tem dynamics does not propose invariant causal laws, as
Lane [56] also concludes: “The only universal law/theory
on offer is a grand methodological, or structural theory,

associated with a representation scheme . . . it does not at-
tract the determinism-related criticisms attached to grand
theory in the sense of Parsons and Mills” (p. 111). In [57]
Lane proposes to link system dynamics with a different
framework: agency/structure theories.

Servomechanism

Part of the confusion is because of the misunderstanding
by various commentators of the notion of feedback that
underlies SD. This point has been also a source of mis-
conception given the use of feedback in theories of control
applied to social systems, e. g. cybernetics. Consider for ex-
ample the following comment by Flood and Jackson [23]:

The attempt of SD thinkers to model external real-
ity is misguided . . . The emphasis placed on “struc-
ture” as the means of revealing knowledge about the
optimal behavior of systems cannot be accepted . . .
SD modelers using feedforward control appear to
believe that there are optimal future states that we
should steer systems towards” (pp. 80, 81).

Such criticism apparently is associated with the notion of
feedback used in cybernetics. However SD does not pursue
optimization, let alone by studying “knowledge revealing”
structures in order to achieve supposed optimal behavior
patterns. Instead, the goal is to have a better understanding
of feedback structures in order to enhance decision-mak-
ing and policy design. This point has been also addressed
by Lane [53,55]. The central clarification of this issue has
been made by Richardson [78] who distinguishes two dif-
ferent threads in the development of the concept of feed-
back in the social sciences: the cybernetics thread and the
servomechanisms thread. The failure in noticing these two
different lines of thought has produced various miscon-
ceptions regarding the notion of feedback in SD, a concept
that has been shown as one of its building blocks. On the
one hand, the cybernetic conception of feedback is defined
in terms of input and output, it is limited only to loops of
negative polarity which in turn are conceived as the mech-
anisms of control – and hence there is a particular inter-
est in goal seeking and goal formulation given the concern
in cybernetics for achieving adaptive behavior via directed
processes and homeostatic mechanisms; feedback mech-
anisms guide this pursue of viable behavior which is car-
ried by goal-seeking processes. On the other hand, in SD,
coming from the servomechanisms thread, feedback loops
are taken as intrinsic parts of the system (and not just as
mechanisms of control), it includes also loops of positive
polarity, and such feedback structures are seen as responsi-
ble for counterintuitive behaviors and policy resistance in
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social systems; here the analysis is directed toward policy
design.

Explanation and Mechanism

The next interesting question would be how we can
achieve better understanding and better policy design by
enhancing our mental models. How can we characterize
this type of knowledge?

A solid account of explanation should be placed at
the heart of any scientific activity. The general inquiry
about [scientific] explanation has to do with “learning
how the process of doing science facilitates understand-
ing, and what type(s) of understanding science provides”
([7] p. 307). In a very intuitive way, a first approach to ex-
planation might be associated plainly with removing puz-
zlement [6]. It is also common to affirm that an explana-
tion aims to answer queries of why in order to provide
understanding [87]. Yet, to characterize such idea is a ma-
jor and open unresolved question in philosophy of sci-
ence [69]. The notion of causality has traditionally played
a central role; this view has pervaded most of scientific re-
search where theory development and explanations are es-
sentially conceived as the search for causes, e. g. [50,87].
However, several explanations are not essentially based on
simple causal relations but on other approaches such as
identification, models, analogies, formal linguistics, laws
of association, laws of co-existence, variational principles,
among others [83]. Berger [7] underlines the prominence
of this question when attempting to characterize the expla-
nations provided by nonlinear dynamical modeling:

Mathematical modeling [is recognized] as one of
the central activities of science, and it is reasonable
to say that modeling explanations dramatically in-
crease our understanding of the world. But themod-
eling explanations found in contemporary scientific
research show that the interesting claims of causal
accounts are untenable . . . An adequate account of
scientific explanation must accommodate modeling
explanations, because they are simply too central to
ignore (pp. 329–330).

The main goal of this section is to explore the position and
the characterization of the kind of explanation pursued in
system dynamics. This characterization fits with the pre-
sented core of SD and the presentationalist stance. And
again various clarifications will be needed along the way.

Causality

The difficult issue of causality can be treated in several
senses. In the first place, a possible relationship associated

with the term “determinism” on human behavior is dis-
missed with a previous argument: SD causal models does
not point at supposed laws of causality governing human
action [55,56]. What is more interesting is to investigate
the concept of causality as such in SD models; after all,
a large part of SD modeling relies on what are known as
“causal”-loop diagrams. Forrester emphasized the term in-
terrelationships [24] where feedback loops are understood
as closed informational paths connecting in a sequence de-
cisions that control actions [25]; he labeled it as a “cir-
cular cause-and-effect structure” (p. 1–9). In fact the de-
velopment of causal-loop diagrams has become important
in SD practice; in particular, flow diagrams were initially
recognized as useful pictorial representations that help to
formulate and communicate the structure of a dynamic
model [24]. Thesemodels are ultimately theories of behav-
ior, surely causal theories of behavior. But consistent with
presentationalism, these theories are sourced in the men-
tal models of the modeler, there is no direct connection to
an alleged causation in a real world. Sterman summarizes
a definition: “a causal diagram consists of variables con-
nected by arrows denoting the causal influences among the
variables” [98]; here, every link represents what the mod-
eler believes is a causal relationship between two variables;
this causal attribution is seen as a central feature of mental
models, as Sterman also stresses “we all create and update
cognitive maps of causal connections among entities and
actors . . . Within a causal field, people use various cues
to causality including temporal and spatial proximity of
cause and effect, temporal precedence of causes, covaria-
tion, and similarity of cause and effect” [98]. Again, the
core of the discussion should be driven by the concept of
mental model in order to deliver a clear discussion on this
view of causality held in SD. This section outlines a frame-
work.

Most of the time we seem to hold a strong causal view
of the world. In particular, the causal relationship – what-
ever that could be – tends to be the source of explanatory
power, i. e. the explanans, and one usual source of valid-
ity, that is, for having a relevant valid explanation we must
have a causal relationship. That is the usual principle, and
it is usually associated to the term “determinism”. Recall-
ing the discussion on presentationalism, one should note
that – as Hesslow [42] underlines – if we are going to retain
a Humean view of the world, i. e. consistent with idealism,
then it seems that we have two different paths, probabilis-
tic or deterministic. The latter one is of interest here (for
the probability account of causation see e. g. [43]). Within
a deterministic approach, a cause is always sufficient con-
dition or a part of a sufficient condition for the effect, that
is, if At is a nonsufficient cause of Bt0 , then there must be
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some auxiliary condition Ct00 , [with t00 < t0], such that At
in combination with Ct00 is sufficient for Bt0 . Hesslow clar-
ifies this “sufficiency principle” [42]:

The deterministic approach has been something of
a received view of causation. This view, which we
may call the ‘sufficiency principle’ is also common
among scientists. The sufficiency principle is not in
itself strictly deterministic. It does not mean that ev-
ery event has a sufficient cause, only that if an event
has a cause, then it has a sufficient one. However, it
seems that the popularity of the sufficiency principle
is a reflection of a widely spread, though usually im-
plicit, commitment to the stronger thesis, that every
event has a sufficient cause (p. 592).

The cited paper of Hesslow aims to show that the de-
terministic approach is superior to the probabilistic one,
that is, the idea that the probabilistic account presup-
poses determinism. Indeed what is happening is the trap
of Hume – so to speak. The issue in hands is illustrated
with the Humean fork: based on observation of constant
conjunction of events – altogether with temporal prior-
ity, i. e. the cause is observed prior to its effect – we sup-
pose a causal connection between them – see summaries
in e. g. [46,70] and the original work of Hume [45]. These
suppositions are arranged in our mental models, that is, in
our theories about what we assume as the relevant causal
connections that we suppose so as to explain the world.

With this framework in mind, the network of causal
connections that the SD modeler believes to be relevant
indicates a sort of “sufficiency principle”, but of a special
kind. It is sufficient relative to the purpose of the model, as
it has been indicated above. And it is sourced in the mental
model since SD is seen as a vehicle for learning and not as
a device for operating a “real world”. How are these causal
relationships portrayed? In a generic form, a feedback loop
based stance is based on the fact that decisions in a time t
affect the environment which affects again the future as-
sessment of the situation in a time t0(t0 > t) which usually
is the base for new upcoming decisions and actions taken
in a time t00 (t00 > t0) and so on. These relationships are not
necessarily close in space or time. Furthermore, a related
issue is what can be labeled as “multiple causality”. The
complexity of social systems is a current concern for social
scientists; the multiple interactions among several agents,
actors, or entities, is what has been distinguished as the
key to study and to understand complex systems because
of the recognition of our inability to deal with them based
on traditional incomplete simple-causality thinking – the
assumption that explanation of phenomena can be satis-
factory or even sufficient based in simple unidirectional

causal relationships between variables or constructs. What
is more, feedback loops have important implications as-
sociated with counterintuitive behavior that usually we do
not consider easily or that we misunderstand; they have
a key role in complex settings; in fact they are, to a large
extent, responsible for the arising of complex behaviors;
this is a central affirmation in SD [26,98]. The simplest ex-
ample might be the tendency that we have to infer linear
growth from single first order positive feedback loops. But
the behavior here actually is exponential. Let S be the state
of a system and g the constant fractional growth rate, the
linear first order positive loop and its solution are:

dS
dT
D gS

and it has as solution:

S D S0eg t :

The central question is: are these causal theories, portrayed
in system dynamics, claims about the world? i. e. Are these
models assumed true descriptions of the world? Clearly
no. From the presentationalist stance of SD, the causal-
loop diagram is essentially what the modeler believes is
the relevant causal network for the problem in hands. It
constitutes his theory about it. The source of knowledge
is the mental model and causality is only a supposition of
the modeler and a way to arrange knowledge, it is not an
affirmation of truth about a supposed causal world. And
furthermore, causation as such is not the source of expla-
nation provided by SD. In order to clarify this we should
take a look to the notion of explanation held in system dy-
namics.

Mechanism

System dynamics aims to answer why questions. This is
done generally via the development of dynamic hypotheses.
A core premise of SD has always been to enhance learn-
ing and to provide understanding [30]. This aim has been
stated from the very beginning; for instance Forrester as-
serted in Industrial Dynamics: “Our objective is to enhance
understanding and to clarify our thinking about the sys-
tem” p. 57 in [24]).

How is this goal pursued? A SD model should be able
to account for a specific problematic behavior which is ex-
plained in terms of the structure of the model; here the
term “structure” refers to the stock and flow organization,
the feedback loops and the rules of interaction [98]. This
approach to explanation is known as a dynamic hypothe-
sis and is the core concept in order to provide understand-
ing from a system dynamics point of view; its endogenous
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character is the chief feature that makes it intelligible; for
instance: “One key task in this search for insightful, system
level understanding is the telling of ‘system stories’ – co-
herent, dynamically correct explanations of how influen-
tial pieces of system structure give rise to important pat-
terns of system behavior” (p. 1 in [65]). In fact this task
represents one of the more significant research lines [79].

How can we characterize this particular kind of ex-
planation? As a first point, the notion of organized social
complexity helps to drive this discussion. A quote bor-
rowed from Hayek illustrates it:

Where we have to deal with such social wholes we
cannot, as we do in the natural sciences, start from
the observation of a number of instances which we
recognize spontaneously by their common sense at-
tributes as instances of ‘societies’ or ‘economies’ . . .
What we group together as instances of the same
collective or whole are different complexes of indi-
vidual events, in themselves perhaps quite dissim-
ilar, but believed by us to be related to each other
in a similar manner: they are classifications or se-
lections of certain elements of a complex picture on
the basis of a theory about their coherence (p. 43
in [40]).

Based on the quote above of Hayek, he suggests conceiving
the explanation as modeling [104], and for social sciences
he rejects the usual prediction and control aspirations and
asks the reader to focus more on models to explain typi-
cal processes [64], he depicts it with biology: “It deals with
pattern-building forces, the knowledge of which is useful
for creating conditions favorable to the production of cer-
tain kinds of results, while it will only in comparatively few
cases be possible to control all the relevant circumstances”
(as cited in p. 202 in [104]). Hayek calls it “explanation
of the principle”. Essentially he means the explanation of
a kind of phenomena instead of particular events. As an-
other example consider mathematics: “A set of equations
which shows merely the form of a system of relationships
but does not give the values of the constants contained in
it, is perhaps the best general illustration of an explanation
merely of the principle on which any phenomenon is pro-
duced” (p. 291 in [39]). This analogy illustrates the notion
of abstract relations that would build an “explanation of
the principle” which can be associated with mechanism as
the source of explanatory power – instead of causality.

Again, a clarification is needed given the widespread
identification of the term “mechanism” with ontic com-
mitments. Fundamentallymechanism is a kind of explana-
tion. It should be noticed that “mechanism” refers to epis-
temological issues. However, the term is habitually associ-

ated with assumptions about reality. But Hogben already
clarified in 1930:

In any discussion between the two [mechanist and
holist or vitalist], the combatants are generally at
cross purposes. The mechanist is primarily con-
cerned with an epistemological issue. His critic has
always an ontological axe to grind. The mechanist
is concerned with how to proceed to a construction
which will represent as much about the universe as
human beings with their limited range of receptor
organs can agree to accept. The vitalist or holist has
an incorrigible urge to get behind the limitations of
our receptor organs and discover what the universe
is really like (1930, p. 100, as cited in [12], p. 347).

The explanatory notion of mechanism is well underlined
by Grene: “Let us look for a mechanism which might un-
derlie the phenomena we hope to understand, seeking
wherever we may relevant sources from which to derive . . .
an analogue of a possible mechanism . . . [Such an expla-
nation is of value because it tells us] how in fact those phe-
nomena are produced” (as cited in [12], p. 346, emphasis
original).

However, there is still no agreement about what
a mechanism is and how it appears to succeed in science
as a way to provide understanding. Perhaps the most com-
plete account is the one of Tabery [99] who proposes inte-
grating two complementary points of view. These two as-
pects are (i) the interactions among several parts and, (ii)
the activities associated with these interactions. Both char-
acteristic are taken as necessary for having a mechanism-
based explanation.

On the one hand there is the emphasis on interactions,
a thesis supported by Glennan [36] with a central con-
cern on the nature of complex systems since the role of
parts and its interactions are conceived as indispensable.
The work of Bechtel and Richardson [5] develops the as-
sociation of mechanism and complex systems (in biology
and psychology) and emphasizes the tasks of decomposi-
tion and localization as the heuristics in order to uncover
mechanisms. This position replies to the conventional
view of a mechanism as merely the interactions between
causal processes as the essential explanans; Glennan [36]
stresses: “A mechanism for a behavior is a complex system
that produces that behavior by the interaction of a num-
ber of parts, where the interactions between parts can be
characterized by direct, invariant, change-relating gener-
alizations” (p. 344). Glennan clarifies also that he avoids
using the term “causal-law” and instead uses “change-
relating generalizations” because these relations are not
exception-less as traditionally a law is understood. In addi-
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tion, he emphasizes the very different character of such ac-
count which is in opposition to the traditional causal view
in which mechanisms are sequences or chains of events
leading up to a particular event – which is often associated
in systems theory literature with “linear thinking”.

On the other hand we have activities. Machamer, Dar-
den and Craver [62] emphasize this aspect adding that
mechanisms are not only inter-connected entities but also
activities producing regular changes from initial to finish
conditions; they call themselves dualists since for them
both notions – entities and activities – are necessary to
constitute a mechanism: “The organization of these enti-
ties and activities determines the ways in which they pro-
duce the phenomenon. Entities often must be appropri-
ately located, structured, and oriented, and the activities
in which they engage must have a temporal order, rate,
and duration” (p. 3). It is important to underline their cri-
tique to Glennan’s view arguing that the concept of activity
is fundamental to understand the changes produced (be-
cause of the activities) through the process and not only
as the black-box view of change of states or change of
properties of the inter-connected entities; they picture it
clearly with the following statement: “it is not the peni-
cillin that causes the pneumonia to disappear, but what
the penicillin does” (p. 6). Furthermore, in order to ac-
count for a mechanism they emphasize three distinctions:
set-up conditions (as part of the mechanism, not as a sort
of input; this includes relevant entities and their properties
and initial states), intermediate activities (including also
relevant entities, properties, and an intelligible account of
the activities that link them) and termination conditions
(such as privileged endpoints, equilibrium states or the fi-
nal stage of some unitary integral process). They also draw
attention to the fact that mechanisms take place in nested
multi-level hierarchies and that they usually are not full
pictures but truncated abstract accounts – a mechanism
schema – depending on the required level of detail or ag-
gregation.

System dynamics modeling is perhaps one of the best
ways to picture this kind of explanation. One can distin-
guish twomain components in the structure of SDmodels:
the physical and institutional assumptions – including the
chosen parts/variables and the interconnections between
them, and the decision rules of the agents [98]. The in-
terplay between the physical structure and the associated
decision rules as the explanation for behavior is a founda-
tional aspect. Indeed the interconnections and the activ-
ities needed to account for a mechanism are included in
these system dynamic models structures. Specifically, the
activities producing change can be referenced in the links
of the models and the decision rules describe how the in-

teractions produce certain activities. The whole set of ini-
tial and final conditions and the inter-connected parts en-
gaged in producing activities characterize a mechanism.
For example, the simplest mechanism is perhaps a single
feedback loop. The set-up conditions are the initial values
of the variables involved, the termination condition is the
endpoint of the loop which can be accounted in a mech-
anism as “the final stage of what is identified as a unitary,
integral process” (p. 12 in [62]). The intermediate activi-
ties are depicted by the links and the application of the de-
cision rules. For instance, a simple positive first order loop
can produce exponential behavior beyond the particular
values of the variables involved. More intricate structures
are the source of different behaviors, i. e. the change in the
values or patterns of variables through time.

This stance fits an explanation of an abstract principle
in the sense of Hayek. The structure is the source of ex-
planation of patterns of behavior, i. e. the change in the
values or patterns of variables of interest through time.
This is known in SD as a dynamic hypothesis [98]. With
this focus on aggregate patterns – instead of individual
events – as consequence of the structure, it can be said
that the “causal” mechanism is indeed the loop structure
of the system, or the particular and relevant feedback sub-
structures of the model that may explain the behavior; for
instance Richardson [78] illustrates it in this way: “The
‘cause’ of an arms race is viewed not as a given event or
even a given sequence of events, but as a feedback struc-
ture dominated by self-reinforcing positive loops, within
which events take place” (p. 338). These types of explana-
tions are based on mechanisms as explanatory power and
not in simple causal relationships as the source of explana-
tion, even less in (substantivalist) causality, i. e. change in
singular properties/entities. Furthermore, these hypothe-
ses are developed for each problem consistent with the
mental models of the modelers. This is why system dy-
namics is not committed to specific theories and only to
the explanation of problematic behaviors in terms of struc-
ture of the model in order to enhance learning and deci-
sion-making.

A particular remark must be made. It can be noticed
a natural link betweenmechanism and the idea of “generic
structure”. This latter expression has been used in dif-
ferent senses in SD literature. Lane and Smart [58] trace
the evolution of this concept – see also [71], they iden-
tify three different interpretations. One of these view can-
not be connected with mechanism, the one popularized
by Senge, e. g. [92,109,110], usually known under the ex-
pression “system archetypes”. The lack of computer sim-
ulation within this interpretation points at a problem of
validity in its scope and claims, as Lane and Smart dis-
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cuss [58], e. g. since this perspective skips the possibility
of formal computer model building then the relation be-
tween structure and behavior is weak and the mentioned
approach becomes just a hasty shortcut from problematic
behavior to insights and principles, and without the exper-
imental spirit of SD for enhancing learning. But two other
notions are relevant. On the one hand, generic structures
can be conceived as general models (theories of behavior)
of a class of systems that are associated with a domain of
application, e. g. urban development, supply chain, eco-
nomic growth. Lane and Smart label these structures as
“canonical situation models”. On the other hand, a generic
structure may refer to theories of mathematical structures
(feedback loops, levels, rate equations, etc.) that generate
corresponding dynamic behaviors, i. e. “systems belong to
the same class if they can be represented by the same struc-
ture . . . This dynamic structure when abstracted from any
application domain data defines the class of system” (p. 93
in [58]); therefore they offer transferability of structure
across diverse domains. These models can be labeled as
“abstracted micro-structures”, e. g. patterns of exponential
growth, goal seeking, oscillation, etc. [58,98]. Both inter-
pretations look for establishing a general class of models
that formally link structure with behavior and they con-
stitute an important line of research. These developments
contribute to different aspects of SD practice; in particular
they directly fuel the processes of conceptualization and
formal model construction (e. g. see [31,58,98]), and more
important, they enhance understanding and the improve-
ment of our mental models as long as we can exploit the
powerful idea of having general classes of models, either
within a domain of application or across different domains
by transferring structures across them.

Consequently, system dynamics explanations can be
characterized asmechanisms, since there can be found the
source of explanatory power. In spite of its causal dia-
grams, the explanans, i. e. that which does the explain-
ing, is based on mechanisms – dynamic hypotheses based
on structures; and the problematic behavior is the ex-
planandum, i. e. that which is explained. Following Gly-
mour: “Remains, however, a considerable bit of science
that sounds very much like explaining, and which perhaps
has causal implications, but which does not seem to de-
rive its point, its force, or its interest from the fact that
it has something to do with causal relations (or their ab-
sence)” (as cited in [p. 212 in 83]). The theories built with
SD are essentially structure-based and not content-based
(substantivalist) explanations i. e. they are not associated
with intrinsic properties of objects or entities but with the
consequences of processes and activities entrenched in rel-
evant parts of the structure of the model. Recalling Hayek

who identifies explanation with modeling, it is interesting
to notice the range of his thought expressed half a century
ago and that accurately illustrates SD explanations:

Any model defines a certain range of phenomena
which can be produced by the type of situation
which it represents. We may not be able directly to
confirm that the causal mechanism determining the
phenomenon in question is the same as that of the
model. But we know that, if the mechanism is the
same, the observed structures must be capable of
showing some kinds of action and unable to show
others (p. 221 in [38]).

A further reminder follows. Since SD was previously iden-
tified with instrumentalism, then a mechanism is not to be
taken as a description; here a mechanism is an instrument
for arranging observations. It should be kept in mind that
mechanism is a kind of explanation which refers to episte-
mological issues.

The popularity of simple causality as the way to char-
acterize the explanation of phenomena contrasts with the
assumptions made in SD: structures that generate pro-
cesses responsible for behavior. This is consistent with the
purpose of system dynamics simulation which might be
oriented to activities such as theoretical-representations
building, articulation and testing in order to learn in and
about complex systems [98]. System dynamics uses simu-
lation as a method which is different from the traditional
inductive logic of research that deals with single instances
which attempts to confirm theories via repeated observa-
tion. However, SD does not dismiss presentationalism as
it was shown. This should be highlighted as an impor-
tant and distinctive characteristic of SD. Though there is
a commitment with a real world, justification is rooted in
social processes and on mental models, and it is also rel-
ative to the purpose of the model. Furthermore, the goal
is to enhance our decision-making processes by improv-
ing our mental models. How can we characterize such
method? A short comment follows.

Simulation andMethod

In a plain sense “simulation means driving a model of
a system with suitable inputs and observing the corre-
sponding outputs” (p. 23 in [2]). But simulation actually
is not just a matter of number crunching. Its scope is
broader. And it represents another challenge for philos-
ophy of science. Winsberg [107] illustrates it:

Typically, to a philosopher of science, epistemologi-
cal issues arise when we try to justify high level the-
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oretical claims based on low level data or specific
observational reports. But simulation is about start-
ing with theory and working your way down. This
kind of epistemology is, to the philosopher of sci-
ence, a curious beast. It is an epistemology that is
concerned with justifying inferences from a theory
to its application – an inference that most philoso-
phy of science has assumed is deductive and conse-
quently not in need of justification (p. S447).

What is simulation in SD? It can be affirmed that it is
a technique able to represent and test theoretical concepts
and not only – in a narrow sense – a tool to just solvemath-
ematical problems. Besides, the emphasis on processes, on
patterns of collective action and on the relations between
components and its dynamic consequences can be better
addressed with simulation because of its capacities to rep-
resent these issues with fewer restrictions than other ap-
proaches [35]. But there is more. Simulation reflects a very
different attitude. This way of inquiry suggests a whole dif-
ferent and new scientificmethodology [82,106,107].Wins-
berg emphasizes that “simulation represents an entirely
new mode of scientific activity – one that lies between the-
ory and experiment . . . a form of theory articulation or
‘model building’ (pp. 117, 119 in [106]). Axelrod [2] in-
deed suggests “a third way” of doing science:

Simulation as a way of doing science can be con-
trasted with the two standard methods of induction
and deduction . . . Simulation is a third way of do-
ing science. Like deduction, it starts with a set of
explicit assumptions. But unlike deduction, it does
not prove theorems. Instead, a simulation generates
data that can be analyzed inductively. Unlike typical
induction, however, the simulated data comes from
a rigorously specified set of rules rather than direct
measurement of the real world (p. 24).

Moreover, its strength rests on the capacity for conduct-
ing experiments [82]. This emphasis on experimentation is
the key to understand why this approach is different. Our
mental models are nothing more than theoretical mod-
els that attribute properties and relations to the systems
they represent; the relevance of these theoretical models
depends on the purpose of the model. And computer sim-
ulation simply permits experiments of these (theoretical)
models. This is where the novelty and the power of this
methodology are to be found, in the very iterative process
of model building and experimentation via simulation.
This position contrasts with the traditional prominence of
assumed representational capacities of theories and mod-
els where usually the emphasis has been placed, see [107].

But computer simulation has a distinct epistemology [105]
that emphasizes the process of modeling. The method was
demarcated by Forrester [24] in Industrial Dynamics:

Simulation consists of tracing through, step by step,
the actual flows of orders, goods, and information,
and observing the series of new decisions that take
place . . . This is the counterpart of trying a new pol-
icy or organizational structure in the real system. . .
After a simulation run comes interpretation of the
results. Did it turn out as expected? If not, why? As
the experiment is examined, new questions arise . . .
This is a process of invention and trial . . . Each sim-
ulation result teaches, and it also prompts additional
questions . . . Such experimentation will yield new
insights into the characteristics of the system that
the model represents (pp. 23, 44–45, 55).

Hence, the method of simulation through continued ex-
perimentation is aimed at providing better understand-
ing of the modeled system. As it was mentioned, the
method calls attention to the process – see also [44,89]. In-
deed SD aims at developing amodeling culture (consistent
with [80]) that gives emphasis to model building as an on-
going dialectic between stakeholders instead of a mapping
exercise concerned on the efficacy of the model itself.

Why is fundamental the use of the computer? Perhaps
the best answer is provided again by Forrester [26]:

We stress the importance of being explicit about
assumptions and interrelating them in a computer
model . . . The most important difference between
the properly conceived computer model and the
mental model is in the ability to determine the dy-
namic consequences when the assumptions within
the model interact with one another. The human
mind is not adapted to sensing correctly the con-
sequences of a mental model . . . The computer
model . . . is a statement of system structure. It con-
tains the assumptions being made about the sys-
tem . . . Generally, the consequences are unexpected
(pp. 213–215).

The shortcomings of our mental models coupled with the
complexity of the systems we model lead to the use of
the computer. Sterman [101] summarizes these drawback
with aspects such our flawed cognitive maps and our er-
roneous inferences about dynamics. As it was shown, the
strength of explanation and understanding in SD is not in
the causalmodels as such; the heart lies in the development
of dynamic hypotheses with the use of simulation in or-
der to enhance our understanding and our decision-mak-
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ing processes. Explanations are posed under the notion of
mechanism; but this is an iterative process that seeks a cen-
tral aim: to improve our own theories about the world.

Future Directions

There are several aspects to develop based on this reflec-
tion on various assumptions behind system dynamics. The
central argument was built around the position known
as presentationalism. This stance integrates and informs
many of the debates on related subjects, e. g. validation,
and it characterizes the initial purposes and assumptions
held in the field. However, there are a number of lines to
emphasize and to develop.

We have focused on the role of the idea of “mental
model” for the practice of SD. Yet, it can be seen utiliza-
tion of SD models under assumptions which are closer to
a naive realism that seem to ignore the purposes of en-
hancing understanding and learning processes. This ar-
ticle should help to underscore that system dynamics is
less naive – and hence more powerful – when we recog-
nize a presentationalist stance which means that our the-
ories about the world are just that, theories based on our
experience and on the operations of our own mind. We
can improve these theories with the use of system dynam-
ics, that is, making our assumptions about systems explicit
and using simulation as a method for enhancing under-
standing and for developing explanations that guide our
processes of systems design. This recognition includes the
relative nature of justification of knowledge held in SD and
the emphasis on mechanism as a powerful way to develop
explanations about complex systems.

It has been introduced mechanism as the way to char-
acterize the particular type of explanation pursued in SD.
The explanatory force does not rest on causal relations as
such but on the structures – physical and decision rules
aspects – and on the dynamic processes and activities that
explain change. The idea of mechanism is shaped in SD
under the expression “generic structure”. The focus on
understanding behavior in terms of abstract structures is
a central line of inquiry. This article underlines the impor-
tance of developing such a line of research since it has been
located at the core of the kind of knowledge that SD pro-
vides. The issue of unification to provide understanding
of diverse phenomena is a definitive step in the way to as-
sert that the field progresses as long as broader range of
phenomena may be explained with the same mechanism.
Should be the advance of system dynamics assessed by the
progress in this type of study? Behind this discussion there
are major and provocative issues that arise to be devel-
oped.

The long debate of qualitative and quantitative mod-
eling is informed by this characterization. It is clear that
the issue of explanation compels theorists and practition-
ers to ask themselves what is the kind of explanation they
are pursuing and if such explanations are enough and sat-
isfying; it is worthy to ask for qualitative modeling what
kind of understanding it gives and how it can be character-
ized, in other words, to give an account of explanans and
explanandum. Another line to develop might be oriented
around the following question: what would be essential cri-
teria for comparing different arranges or modes of orga-
nization in order to identifying them as belonging to the
same type of mechanism? The identification and search of
mechanisms becomes a powerful heuristic for guiding the
modeling process.

There are promising suggestions for philosophy of sci-
ence as well. SD offers guidelines, e. g. can the ways in
which system dynamicists work provide meaningful in-
sights, or even concrete accounts, for the philosophical un-
resolved issue of explanation? The mechanism depicted in
system dynamics proposes a kind of explanation that goes
beyond the received view based on causation. A related
question is whether explanation must always follow a de-
ductive path; the classic models of Hempel, e. g. [41], em-
phasized the condition of deduction and general laws for
having an explanation; however, the explanation in SD is
not framed under a deductive schema from universal cov-
ering laws, instead it can be conceived as a sort of abduc-
tive reasoning based on the understanding of the dynamics
of the model as a way to understand the actual behavior it
accounts for. A further issue is that in spite of the lack of
universality, i. e. no universal laws, SD models aim to pro-
vide understanding for a diverse range of phenomena that
might share relevant influential structures and similar as-
sociated behaviors, that is, it accounts for regularities in
order to unify them in a certain kind of explanation un-
der the same explanation. This situation insinuates a fla-
vor of paradox because of the traditional rigid association
of universal laws with the explanation of regularities, but
in SD there are no general laws though the aim is to ex-
plain general regularities. The study of models and com-
puter simulation – instead of abstract theories and tradi-
tional methodologies – is an additional indication that SD
suggests for philosophy of science, including the emphasis
on the modeling process.
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Glossary

Exosystem A dynamical system modeling the set of all
exogenous inputs (command/disturbances) affecting
a controlled plant.

Internal model A model of the exogenous inputs (com-
mand/disturbances) affecting a controlled plant, em-
bedded in the interior of the controller.

Generalized tracking problem The problem of design-
ing a controller able to asymptotically track/reject
any exogenous command/disturbance in a fixed set of
functions.

Observer A device designed to asymptotically track the
state of a dynamical system on the basis of measured
observations.

Steady state A family of behaviors, in a dynamical sys-
tem, that are asymptotically approached, as actual time
tends to infinity or as initial time tends to minus infin-
ity.

Definition

A central problem in control theory is the design of feed-
back controllers so as to have certain outputs of a given
plant to track prescribed reference trajectories. In any re-
alistic scenario, this control goal has to be achieved in
spite of a good number of phenomena which would cause
the system to behave differently than expected. These
phenomena could be endogenous, for instance parame-
ter variations, or exogenous, such as additional undesired
inputs affecting the behavior of the plant. In numerous
design problems, exogenous inputs are not available for
measurement, nor are known ahead of time, but rather
can only be seen as unspecified members of a given fam-
ily of functions. Embedding a suitable “internal model” of
such a family in the controller is a design strategy that has
proven to be quite successful in handling uncertainties in
the controlled plant as well as in the exogenous inputs.

Introduction

The problem of controlling the output of a system so as
to achieve asymptotic tracking of prescribed trajectories
and/or asymptotic rejection of disturbances is a central
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problem in control theory. There are essentially three dif-
ferent possibilities to approach the problem: tracking by
dynamic inversion, adaptive tracking, tracking via internal
models. Tracking by dynamic inversion consists in com-
puting a precise initial state and a precise control input
(or equivalently a reference trajectory of the state), such
that, if the system is accordingly initialized and driven, its
output exactly reproduces the reference signal. The com-
putation of such control input, however, requires “perfect
knowledge” of the entire trajectory which is to be tracked
as well as “perfect knowledge” of the model of the plant to
be controlled. Thus, this type of approach is not suitable in
the presence of large uncertainties on plant parameters as
well as on the reference signal. Adaptive tracking consists
in tuning the parameters of a control input computed via
dynamic inversion in such a way as to guarantee asymp-
totic convergence to zero of a tracking error. This method
can successfully handle parameter uncertainties, but still
presupposes the knowledge of the entire trajectory which
is to be tracked (to be used in the design of the adapta-
tion algorithm) and therefore an approach of this kind is
not suited to the problem of tracking unknown trajecto-
ries. Of course, one might consider the problem of track-
ing a slowly varying reference trajectory as a stabilization
problem in the presence of a slowly varying unknown pa-
rameter, but this would, in most cases, yield a very conser-
vative solution.

In most cases of practical interest, the trajectory to be
tracked (or the disturbance to be rejected) is not avail-
able for measurement. Rather, it is only known that this
trajectory is simply an (undefined) member in a set of
functions, for instance the set of all possible solutions of
an ordinary differential equation. These cases include the
classical problem of the set point control, the problem of
active suppression of harmonic disturbances of unknown
amplitude, phase and even frequency, the synchronization
of nonlinear oscillations, and similar others. It is in these
cases that tracking via internal models proves particularly
efficient, in its ability to handle simultaneously uncertain-
ties in plant parameters as well as in the trajectory which
is to be tracked.

For linear multivariable systems, tracking problems of
this kind (those in which the exogenous commands and/or
disturbances are only known to be members in the set of
solutions of a given ordinary differential equations) have
been addressed in very elegant geometric terms by Davi-
son, Francis, Wonham [8,10,11] and others. In particular,
one of the most relevant contributions of [11] was a clear
delineation of what is known as internal model principle,
i. e. the fact that the property of perfect tracking is insensi-
tive to plant parameter variations “only if the controller

utilizes feedback of the regulated variable, and incorpo-
rates in the feedback path a suitably reduplicated model of
the dynamic structure of the exogenous signals which the
regulator is required to process”. Conversely, in a stable-
closed loop system, if the controller utilizes feedback of
the regulated variable and incorporates an internal model
of the exogenous signals, the output regulation property is
insensitive to plant parameter variations.

A nonlinear enhancement of this theory, which uses
a combination of geometry and nonlinear dynamical sys-
tems theory, was initiated in [15,16,19] in the context of
solving the problem near an equilibrium, in the presence
of exogenous signals which were produced by a Poisson
stable system. In particular, in [19] it was shown how
the use center manifold theory near an equilibrium deter-
mines the necessity of the existence of an internal model
whenever one can solve an output regulation problem
in spite of (small) parameter uncertainties (see also [3]).
Since these pioneering contributions, the theory has ex-
perienced a tremendous growth, culminating in the de-
velopment of design methods able to handle the case of
parametric uncertainties affecting the autonomous (lin-
ear) systemwhich generates the exogenous signals (such as
in [9,23]), the case of nonlinear exogenous systems (such
as in [5]), or a combination thereof (as in [22]). The pur-
pose of these notes is to present a self-contained exposition
of the fundamentals of these design methods.

The Generalized Tracking Problem

In this article, we address tracking problems that can be
cast in the following terms. Consider a finite-dimensional,
time-invariant, nonlinear system described by equations
of the form

ẋ D f (w; x; u)
e D h(w; x)
y D k(w; x) ;

(1)

in which x 2 Rn is a vector of state variables, u 2 Rm

is a vector of inputs used for control purposes, w 2 Rs

is a vector of inputs which cannot be controlled and in-
clude exogenous commands, exogenous disturbances and
model uncertainties, e 2 Rp is a vector of regulated out-
puts which include tracking errors and any other variable
that needs to be steered to 0, y 2 Rq is a vector of outputs
that are available for measurement and hence used to feed
the device that supplies the control action. The problem
is to design a controller, which receives y(t) as input and
produces u(t) as output, able to guarantee that, in the re-
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sulting closed-loop system, x(t) remains bounded and

lim
t!1

e(t) D 0 ; (2)

regardless of what the exogenous input w(t) actually is.
The ability to successfully address this problem very

much depends on how much the controller is allowed to
know about the exogenous disturbance w(t). In the ideal
situation in whichw(t) is available to the controller in real-
time, the design problem indeed looks much simpler. This
is, though, only an extremely optimistic situation which
does not represent, in any circumstance, a realistic sce-
nario. The other extreme situation is the one in which
nothing is known about w(t). In this, pessimistic, scenario
the best result one could hope for is the fulfillment of
some prescribed ultimate bound for je(t)j, but certainly
not a sharp goal such as (2). A more comfortable, inter-
mediate, situation is the one in which w(t) is only known
to belong to a fixed family of functions of time, for instance
the family of all solutions obtained from a fixed ordinary
differential equation of the form

ẇ D s(w) (3)

as the corresponding initial condition w(0) is allowed to
vary on a prescribed set. This situation is in fact sufficiently
distant from the ideal but unrealistic case of perfect knowl-
edge of w(t) and from the realistic but conservative case of
totally unknown w(t). But, above all, this way of thinking
at the exogenous inputs covers a number of cases of ma-
jor practical relevance. There is, in fact, abundance of de-
sign problems in which parameter uncertainties, reference
commands and/or exogenous disturbances can be mod-
eled as functions of time that satisfy an ordinary differen-
tial equation.

The control law is to be provided by a system modeled
by equations of the form

�̇ D '(�; y)
u D � (�; y)

(4)

with state � 2 R� . The initial conditions x(0) of the plant
(1), w(0) of the exosystem (3) and �(0) of the controller (4)
are allowed to range over fixed compact sets X � Rn ,
W � Rs and, respectively, � � R� . All maps character-
izing the model of the controlled plant, of the exosystem
and of the controller are assumed to be sufficiently differ-
entiable.

The problem which will be studied, known as the gen-
eralized tracking problem (or problem of output regula-
tion or also generalized servomechanism problem) is to de-
sign a feedback controller of the form (4) so as to obtain

a closed loop system in which all trajectories are bounded
and the regulated output e(t) asymptotically decays to 0 as
t !1. More precisely, it is required that the composition
of (1), (3) and (4), that is the autonomous system

ẇ D s(w)
ẋ D f (w; x; � (�; k(w; x)))

�̇ D '(�; k(w; x))

(5)

with output

e D h(w; x) ;

be such that:

� The positive orbit ofW � X �� is bounded, i. e. there
exists a bounded subset S of Rs �Rn �R� such that,
for any (w0; x0; �0) 2 W � X �� , the integral curve
(w(t); x(t); �(t)) of (5) passing through (w0; x0; �0) at
time t D 0 remains in S for all t � 0.

� limt!1 e(t) D 0, uniformly in the initial condition,
i. e., for every " > 0 there exists a time t̄, depending
only on " and not on (w0; x0; �0), such that the in-
tegral curve (w(t); x(t); �(t)) of (5) passing through
(w0; x0; �0) at time t D 0 satisfies ke(t)k � " for all
t � t̄.

The Steady-State Behavior of a System

Limit Sets

The generalized tracking problem can be seen as the prob-
lem of forcing in the plant, by means of an appropri-
ate control input u(t), a response x(t) that asymptotically
compensates the effect, on the regulated variable e(t), of
the exogenous input w(t). The classical way in which the
problem is addressed for linear, time-invariant systems,
when the exosystem is a neutrally stable linear system, is
to seek a controller forcing in the associated closed-loop
system (5) a (stable) “steady state” behavior entirely con-
tained in the kernel of the map defining the tracking error
e. Thus, it is natural to expect that a similar tool should also
be effective in the more general setting considered here. It
appears, though, that a rigorous investigation of the con-
cept of “steady state”, beyond the classical domain of linear
system theory, had never been fully pursued.

Motivated by the current practice in linear system the-
ory, the “steady state” behavior of a dynamical system can
be viewed as a kind limit behavior, approached either as
the actual time t tends toC1 or, alternatively, as the ini-
tial time t0 tends to �1. Relevant, in this regard, are cer-
tain concepts introduced by G.D. Birkhoff in his classical
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1927 essay, where he asserts that “with an arbitrary dy-
namical system : : : there is associated always a closed set
of ‘central motions’ which do possess this property of re-
gional recurrence, towards which all other motions of the
system in general tend asymptotically” (see p. 190 in [2]).
In particular, a fundamental role is played by the concept
of !-limit set of a given point, which is defined as follows.
Consider an autonomous ordinary differential equation

ẋ D f (x) (6)

with x 2 Rn , t 2 R. It is well known that, if f : Rn ! Rn

is locally Lipschitz, for any x0 2 Rn , the solution of (6)
with initial condition x(0) D x0, denoted by x(t; x0), exists
on some open interval of the point t D 0 and is unique.

Assume, in particular, that x(t; x0) is defined for all
t � 0. A point x is said to be an !-limit point of the mo-
tion x(t; x0) if there exists a sequence of times ftkg, with
limk!1 tk D 1, such that

lim
k!1

x(tk ; x0) D x :

The !-limit set of a point x0, denoted !(x0), is the union
of all !-limit points of the motion x(t; x0).

It is obvious from this definition that an !-limit point
is not necessarily a limit of x(t; x0) as t !1, as the so-
lution in question may not admit any limit as t !1. It
happens though, that if the motion x(t; x0) is bounded,
then x(t; x0) asymptotically approaches the set !(x0). This
property is precisely described in what follows [2].

Lemma 1 Suppose there is a number M such that
kx(t; x0)k � M for all t � 0. Then, !(x0) is a nonempty
compact connected set, invariant under (6). Moreover, the
distance of x(t; x0) from !(x0) tends to 0 as t !1.

One of the remarkable features of !(x0), as indicated in
this Lemma, is the fact that this set is invariant for (6). In-
variance means that for any initial condition x̄0 2 !(x0)
the solution x(t; x̄0) of (6) exists for all t 2 (�1;C1) and
that x(t; x̄0) 2 !(x0) for all such t. Put in different terms,
the set !(x0) is filled by motions of (6) which are bounded
backward and forward in time. The other remarkable fea-
ture is that x(t; x0) approaches !(x0) as t!1, in the
sense that the distance of the point x(t; x0) (the value at
time t of the solution of (6) starting in x0 at time t D 0)
from the set !(x0) tends to 0 as t !1.

Since any motion x(t; x0) which is bounded in posi-
tive time asymptotically approaches the !-limit set !(x0)
as t!1, one may be tempted to look, for a system (6)
in which all motions are bounded in positive time, at the
union of the limit sets of all points x0, i. e. at the set

˝ D
[

x02Rn

!(x0)

and to say that the system is in steady state if its state x(t)
evolves in the (invariant) set ˝ . There is a major draw-
back, though, in taking this as definition of “steady state”
behavior of a nonlinear system: the convergence of x(t; x0)
to˝ is not guaranteed to be uniform in x0, even if the latter
ranges over a compact set (see, e. g [7]).

One of the main motivations for looking into the con-
cept of steady state is the aim to shape the steady state re-
sponse of a system to a given (or to a given family of) forc-
ing inputs. But this motivation looses much of its mean-
ing if the time needed to get within an "-distance from
the steady state may grow unbounded as the initial state
changes (even when the latter is picked within a fixed
bounded set). In other words, uniform convergence to the
steady state (which is automatically guaranteed in the case
of linear systems) is an indispensable feature to be required
in a nonlinear version of this notion. The set˝ , the union
of all !-limit points of all points in the state space does
not have this property of uniform convergence, but there
is a larger set which does have this property. This larger
set, known as the ! limit set of a set, is precisely defined as
follows.

Consider again system (6), let B be a subset of Rn and
suppose x(t; x0) is defined for all t � 0 and all x0 2 B. The
!-limit set of B, denoted !(B), is the set of all points x for
which there exists a sequence of pairs fxk ; tkg, with xk 2 B
and limk!1 tk D 1 such that

lim
k!1

x(tk ; xk) D x :

It is clear from the definition that if B consists of only one
single point x0, all xk’s in the definition above are necessar-
ily equal to x0 and the definition in question reduces to the
definition of !-limit set of a point, given earlier. It is also
clear form this definition that, if for some x0 2 B the set
!(x0) is nonempty, all points of !(x0) are points of !(B).
In fact, all such points have the property indicated in the
definition, if all the xk’s are taken equal to x0. Thus, in par-
ticular, if all motions with x0 2 B are bounded in positive
time,

[

x02B

!(x0) � !(B) :

However, the converse inclusion is not true in general.
The relevant properties of the !-limit set of a set,

which extend those presented earlier in Lemma 1, can be
summarized as follows [14].

Lemma 2 Let B be a nonempty bounded subset of Rn and
suppose there is a number M such that kx(t; x0)k � M for
all t � 0 and all x0 2 B. Then !(B) is a nonempty compact
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set, invariant under (6). Moreover, the distance of x(t; x0)
from !(B) tends to 0 as t !1, uniformly in x0 2 B. If B
is connected, so is !(B).

Thus, as it is the case for the !-limit set of a point, we
see that the !-limit set of a bounded set, being compact
and invariant, is filled with motions which exist for all
t 2 (�1;C1) and are bounded backward and forward
in time. But, above all, we see that the set in question is
uniformly approached by motions with initial state x0 2 B,
a property that the set˝ does not have. Note also that the
set of all such trajectories is a “behavior”, in the sense of
J.C. Willems [25].

The set!(B), as shown in the previous Lemma, asymp-
totically attracts, as t !1, all motions that start in B.
Since the convergence to !(B) is uniform in x0, it is also
true that, whenever !(B) is contained in the interior of B,
the set !(B) is asymptotically stable, in the sense of Lya-
punov (see [14]).

The Steady State Behavior of a Nonlinear System

Consider now again system (6), with initial conditions in
a closed subset X � Rn . Suppose the set X is positively in-
variant, which means that for any initial condition x0 2 X,
the solution x(t; x0) exists for all t � 0 and x(t; x0) 2 X
for all t � 0. The motions of this system are said to be ul-
timately bounded if there is a bounded subset B with the
property that, for every compact subset X0 of X, there is
a time T > 0 such that kx(t; x0)k 2 B for all t � T and all
x0 2 X0. In other words, if the motions of the system are
ultimately bounded, every motion eventually enters and
remains in the bounded set B.

Suppose the motions of (6) are ultimately bounded
and let B0 ¤ B be any other bounded subset with the
property that, for every compact subset X0 of X, there is
a time T > 0 such that kx(t; x0)k 2 B0 for all t � T and all
x0 2 X0. Then, it is easy to check that!(B0) D !(B). Thus,
in view of the properties described in Lemma 2 above, the
following definition can be adopted (see [7]).

Definition Suppose the motions of system (6), with ini-
tial conditions in a closed and positively invariant set X,
are ultimately bounded. A steady state motion is any mo-
tion with initial condition x(0) 2 !(B). The set!(B) is the
steady state locus of (6) and the restriction of (6) to !(B) is
the steady state behavior of (6).

The notion introduced in this way recaptures the classi-
cal notion of steady state for linear systems and provides
a new powerful tool to deal with similar issues in the case
of nonlinear systems.

Example In order to see how this notion includes the clas-
sical viewpoint, consider an n-dimensional, single-input,
asymptotically stable linear system

ż D FzC Gu (7)

forced by the harmonic input u(t) D u0 sin(! t C �0).
A simple method to determine the periodic motion of (7)
consists in viewing the forcing input u(t) as provided by
an autonomous “signal generator” of the form

ẇ D Sw u D Qw

in which

S D
�

0 !

�! 0

�
Q D (1 0)

and in analyzing the state state behavior of the associated
“augmented” system

ẇ D Sw
ż D FzC GQw :

(8)

As a matter of fact, let ˘ be the unique solution of the
Sylvester equation ˘ S D F˘ C GQ and observe that the
graph of the linear map

� : R2 ! Rn

w 7! ˘w

is an invariant subspace for the system (8). Since all tra-
jectories of (8) approach this subspace as t!1, the limit
behavior of (8) is determined by the restriction of its mo-
tion to this invariant subspace.

Revisiting this analysis from the viewpoint of the more
general notion of steady state introduce above, letW � R2

be a set of the form

W D fw 2 R2 : kwk � cg (9)

in which c is a fixed number, and suppose the set of ini-
tial conditions for (8) is W �Rn . This is in fact the case
when the problem of evaluating the periodic response of
(7) to harmonic inputs whose amplitude does not exceed
a fixed number c is addressed. The set W is compact and
invariant for the upper subsystem of (8) and, as it is easy to
check, the !-limit set ofW under the motion of the upper
subsystem of (8) is the subsetW itself.

The set W �Rn is closed and positively invariant for
the full system (8) and, moreover, since the lower subsys-
tem of (8) is a linear asymptotically stable system driven by
a bounded input, it is immediate to check that the motions
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of system (8), with initial conditions taken inW �Rn , are
ultimately bounded. As a matter of fact, any bounded set
B of the form

B D f(w; z) 2 R2 �Rn : w 2W; kz �˘wk � dg

in which d is any positive number, has the property indi-
cated in the definition of ultimate boundedness. It is easy
to check that

!(B) D f(w; z) 2 R2 �Rn : w 2 W; z D ˘wg ;

i. e. !(B) is the graph of the restriction of the map � to the
setW. The restriction of (8) to the invariant set!(B) char-
acterizes the steady state behavior of (7) under the family
of all harmonic inputs of fixed angular frequency !, and
amplitude not exceeding c.

Example A similar result, namely the fact that the steady
state locus is the graph of a map, can be reached if the “sig-
nal generator” is any nonlinear system, with initial condi-
tions chosen in a compact invariant setW. More precisely,
consider an augmented system of the form

ẇ D s(w)
ż D Fz C Gq(w) ;

(10)

in which w 2W � Rr , x 2 Rn , and assume that: (i) all
eigenvalues of F have negative real part, (ii) the set W is
a compact set, invariant for the the upper subsystem of
(10).

As in the previous example, the !-limit set of W un-
der the motion of the upper subsystem of (10) is the
subset W itself. Moreover, since the lower subsystem of
(10) is a linear asymptotically stable system driven by the
bounded input u(t) D q(w(t;w0)), the motions of system
(10), with initial conditions taken in W �Rn , are ulti-
mately bounded.

It is easy to check that the steady state locus of (10) is
the graph of the map

� : W ! Rn

w 7! �(w) ;

defined by

�(w) D lim
T!1

Z 0

�T
e�F�Gq(w(�;w))d� : (11)

To see why this is the case, pick any initial condition
(w0; z0) for (10) on the graph of � and compute the so-
lution z(t) of the lower equation of (10) by means of the
classical variation of constants formula, to obtain

z(t) D eFtz0 C
Z t

0
eF(t��)Gq(w(�;w0))d�

Since by hypothesis z0 D �(w0), using (10) one obtains

z(t) DeFt
Z 0

�1

e�F�Gq(w(�;w0))d�

C

Z t

0
eF(t��)Gq(w(�;w0))d�

D

Z t

�1

eF(t��)Gq(w(�;w0))d�

D

Z 0

�1

e�F�Gq(w(� C t;w0))d�

D

Z 0

�1

e�F�Gq(w(�;w(t;w0)))d�

D�(w(t;w0)) D �(w(t))

which proves the invariance of the graph of � for (10). It
is deduced from this that that any point of the graph of �
is necessarily a point of the steady state locus of (10). To
complete the proof of the claim it remains to show that no
other point of W �Rn can be a point of the steady state
locus. But this is a straightforward consequence of the fact
that F has eigenvalues with negative real part.

There are various ways in which the result discussed in the
previous example can be generalized. For instance, it can
be extended to describe the steady state response of a non-
linear system

ż D f (z; u) (12)

in the neighborhood of a locally exponentially stable equi-
librium point. To this end, suppose that f (0; 0) D 0 and
that the matrix

F D

"
@ f
@z

#

(0; 0)

has all eigenvalues with negative real part. Then, it is well
known (see e. g. p. 275 [13]) that it is always possible to
find a compact subset Z � Rn , which contains z D 0 in
its interior and a number � > 0 such that, if kz0k 2 Z and
ku(t)k � � for all t � 0, the solution of (12) with initial
condition z(0) D z0 satisfies kz(t)k 2 Z for all t � 0. Sup-
pose that the input u to (12) is produced, as before, by
a signal generator of the form

ẇ D s(w)
u D q(w)

(13)

with initial conditions chosen in a compact invariant setW
and,moreover, suppose that, kq(w)k � � for allw 2 W . If
this is the case, the setW � Z is positively invariant for

ẇ D s(w)
ż D f (z; q(w)) ;

(14)



9084 S System Regulation and Design, Geometric and Algebraic Methods in

and the motions of the latter are ultimately bounded, with
B D W � Z. The set !(B) may have a complicated struc-
ture but it is possible to show, by means arguments similar
to those which are used in the proof of the Center Man-
ifold theorem, that if Z and B are small enough the set
in question can still be expressed as the graph of a map
z D �(w). In particular, the graph in question is precisely
the center manifold of (14) at (0; 0) if s(0) D 0 and the ma-
trix

S D

"
@s
@w

#

(0)

has all eigenvalues on the imaginary axis.
A common feature of the examples discussed above is

the fact that the steady state locus of a system of the form
(14) can be expressed as the graph of amap z D �(w). This
means that, so long as this is the case, a system of this form
has a unique well defined steady state response to the input
u(t) D q(w(t)). As a matter of fact, the response in ques-
tion is precisely z(t) D �(w(t)). Of course, this may not
always be the case and multiple steady state responses to
a given input may occur. In general, the following prop-
erty holds.

Lemma 3 Let W be a compact set, invariant under the
flow of (13). Let Z be a closed set and suppose that the mo-
tions of (14) with initial conditions inW � Z are ultimately
bounded. Then, the steady state locus of (14) is the graph of
a set-valued map defined on the whole of W.

Necessary Conditions for Output Regulation

Taking advantage of the notions introduced in the previ-
ous section, we are now in a position to highlight some
general properties that any controller that solves a prob-
lem of output regulation must necessarily have. Recall
that, as defined earlier, the problem of output regulation
is solved if, in the composite system (5):

� the positive orbit ofW � X �� is bounded,
� limt!1 e(t) D 0, uniformly in the initial condition.

The notions introduced in the previous section are in-
strumental to prove the following, elementary – but fun-
damental – result, which is a nonlinear enhancement of
a Lemma of [10] on which all the theory of output regula-
tion for linear systems is based.

Lemma 4 Suppose the positive orbit of W � X �� is
bounded. Then

lim
t!1

e(t) D 0

if and only if

!(W � X ��) � f(w; x; �) : h(w; x) D 0g: (15)

It is seen from this simple result that the problem of output
regulation can be simply cast as the problem of shaping the
steady state locus of the closed loop system, in such a way
that property (15) holds.

To proceed with the analysis in a more concrete fash-
ion, we consider from now on the special case in which
the controlled plant (4) is modeled by equations in normal
form

ż D f0(w; z)C f1(w; z; e1)e1
ė1 D e2
:::

ėr�1 D er
ėr D q(w; z; e1; : : : ; er)C b(w; z; e1; : : : ; er)u
e D e1
y D col(e1; : : : ; er) ;

(16)

with state (z; e1; : : : ; er) 2 Rn�r �Rr , control input
u 2 R, regulated output e 2 R, measured output y 2 Rr .
The functions f0(�); f1(�); q(�); b(�); s(�) in (16) and (3) are
assumed to be at least continuously differentiable. It is also
assumed that

b(w; z; e1; : : : ; er) ¤ 0 8(w; z; e1; : : : ; er) :

The initial conditions of (16) range on a set Z � E,
in which Z is a fixed compact subset of Rn�r and
E D f(e1; : : : ; er) 2 Rr : jei j � cg, with c a fixed number.

Suppose that a controller of the form (4) solves the
problem of output regulation. Then Lemma 4 applies and,
since e D e1, we deduce that the steady state locus of the
closed loop system (5) is necessarily a subset of the set of
all states in which e1 D 0. This being the case, it is seen
from the form of the equations (16) that, when the closed
loop system (5) is in steady state, necessarily also

e2 D e3 D � � � D er D 0 :

As a consequence, the following conclusions hold:

� The steady state locus !(W � Z � E ��) of the closed-
loop system is a subset of the setRs �Rn�r � f0g �R� .

� The restriction of the closed-loop system to its steady
state locus !(W � Z � E ��) reduces to

ẇ D s(w)
ż D f0(w; z)

�̇ D '(�; 0) :

(17)
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� For each (w; z; 0; : : : ; 0; �) 2 !(W � Z � E ��)

0 D q(w; z; 0; : : : ; 0)C b(w; z; 0; : : : ; 0)� (�; 0) : (18)

The prior analysis implicitly assumes that the positive or-
bit ofW under the flow of exosystem is bounded, i. e. that
the motions of the exosystem asymptotically approach the
its own steady state locus !(W). In principle, !(W) may
differ fromW but there is no loss of generality in assuming
from the very beginning that the two sets coincide. After
all, the problem in question is a problem concerning how
the closed-loop system behaves in steady state and there is
no special interest in considering exosystems that are not
“in steady state”. We make this assumption precise as fol-
lows.

Assumption (i) The compact set W is invariant for (3).

With this in mind we observe that, by Lemma 3, if the
positive orbit of W � Z � E �� under the flow of (5) is
bounded, then !(W � Z � E ��) is the graph of a (pos-
sibly set-valued)map defined on the whole ofW. Consider
now the set

Ass D f(w; z) : (w; z; 0; : : : ; 0; �) 2 !(W � Z � E ��);
for some � 2 Rg

and define the map

uss : Ass ! R

(w; z) 7! �
q(w; z; 0; : : : ; 0)
b(w; z; 0; : : : ; 0)

:

By construction, the set Ass is the graph of a (possi-
bly set-valued) map defined on the whole of W, which is
invariant for the dynamics of

ẇ D s(w)
ż D f0(w; z) ;

(19)

that are precisely the zero dynamics of the “augmented
system” (3)–(16), while the map uss(�) is the control that
forces the motion of (3) –(16) to evolve onAss.

With this in mind, the conclusions reached above can
be rephrased in the following terms. Suppose that a con-
troller of the form (4) solves the problem of output regula-
tion for (16) with exosystem (3). Then, there exists a (pos-
sibly set-valued) map defined on the whole of W whose
graph Ass is invariant for the autonomous system (19).
Moreover, for each (w0; z0) 2Ass there is a point �0 2 R�

such that the integral curve of (19) issued from (w0; z0)
and the integral curve of

�̇ D '(�; 0)

issued from �0 satisfy

uss(w(t); z(t)) D � (�(t)) ; 8t 2 R :

This is a nonlinear version of the celebrated internal
model principle of [11].

Sufficient Conditions for Output Regulation

The Control Structure

On the basis of the ideas presented in the previous sec-
tion we proceed now with the construction of a controller
that solves the problem of output regulation. The “steady
state” features of this controller are those identified at the
end of the section, namely this controller has to be able
to “generate” all controls of the form uss(w(t); z(t)) for
any “steady state” trajectory w(t); z(t) of (19). The con-
troller should incorporate a device that generates all such
trajectories (the internal model), thus making sure that the
“appropriate” state-state behavior takes place, and a device
guaranteeing that convergence to this specific steady state
behavior occurs. It is here that additional assumptions are
needed.

Note that, since W is invariant for ẇ D s(w), the
closed cylinder

C :D W �Rn�r

is locally invariant for (19). Hence, it is natural regard (19)
as a system defined on C and endow the latter with the
subset topology.

Assumption (ii) There exists a bounded subset B of C
which contains the positive orbit of the set W � Z under
the flow of (19) and the resulting omega-limit set

A :D !(W � Z)

satisfies

(w; z) 2 C ; j(w; z)jA � d0 ) z 2 Z (20)

where d0 is a positive number.

While in the analysis of the necessity we have only identi-
fied the existence of a compact set (actually, the graph of
a map defined on W) which is invariant for (19), the new
assumption (ii) implies, in its first part, the existence of
a compact setA (still the graph of a map defined on W)
which is not only invariant but also uniformly attractive
of all trajectories of (19) issued from points ofW � Z. The
second part of the assumption, in turn, guarantees that this
set is also stable in the sense of Lyapunov. In the next as-
sumptionwe strengthen this property by also requiring the
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setA to be locally exponentially stable (this assumption is
useful to straighten the subsequent analysis, but is not es-
sential).

Assumption (iii) There exist M � 1,  > 0 such that

(w0; z0) 2 C ; j(w0; z0)jA � d0 )

j(w(t); z(t))jA � Me��t j(w0; z0)jA; 8t � 0

in which (w(t); z(t)) denotes the solution of (19) passing
through (w0; z0) at time t D 0.

To simplify the exposition, we address the special case in
which the controlled system (16) has relative degree 1, and
in which the coefficient b(w; z; e1) is identically equal to
1. In other words, we consider a system modeled by equa-
tions of the form

ż D f0(w; z)C f1(w; z; e)e
ė D q(w; z; e)C u
y D e :

(21)

There is no loss of generality in considering a system hav-
ing this simple form (21) because, as shown for instance
in [9,22], the case of a more general system of the form
(16) can easily be reduced, by appropriate manipulations,
to this one.

For convenience, rewrite the augmented system
(3)–(21) as

ż D f0(z)C f1(z; e)e
ė D q0(z)C q1(z; e)e C u

(22)

having set z D (w; z):Consistently let Z :D W � Z denote
the compact set where the initial condition z(0) is sup-
posed to range. In these notations, assumptions (i) – (ii) -
(iii) express the property that, in the autonomous system

ż D f0(z) ; (23)

the set A is asymptotically and locally exponentially sta-
ble, with a domain of attraction that contains the set Z.

Suppose now that the control u is chosen as u D �ke.
The closed-loop system thus obtained can be regarded as
a feedback interconnection of

ż D f0(z)C f1(z; e)e (24)

viewed as a system with input e and state z, and

ė D q0(z)C q1(z; e)e � ke (25)

viewed as a system with input z and state e.

By assumption, system (24) possesses, when e D 0, an
invariant setA which is asymptotically and locally expo-
nentially stable, with a domain of attraction that contains
the set Z of all admissible initial conditions. Thus, stan-
dard arguments (see, e. g [6].) can be invoked to claim
that, if k is large enough, all trajectories of the intercon-
nection (24)–(25) with initial conditions in Z � E remain
bounded and the state (z; e) can be steered to an arbitrary
small neighborhood of the setA � f0g. This does not solve
the problem at issue, though, because the variable e(t) is
not guaranteed to converge to zero (but only to converge
to a neighborhood of zero, whose size can be made arbi-
trarily small by increasing the gain coefficient k). The con-
dition for having e(t)! 0 as t!1 is simply that the
“coupling” term q0(z) vanishes on the set A, but there
is no reason for this to occur (see again, e. g.[6]). This is
why a more elaborate, internal-model-based, controller is
needed.

System (16) being affine in the control input u, it seems
natural to look for a controller having a similar structure,
namely a controller of the form

�̇ D '(�)C Gv
u D � (�)C v

(26)

with state � 2 R� , in which v is a residual control input, to
be eventually chosen as a function of the measured output
y. Here '(�),G and � (�) are functions to be determined.We
will show in what follows that, if the triplet f'(�);G; � (�)g
possesses what we will define as asymptotic internal model
property, the choice of the residual control v in (26) as

v D �ke

solves the problem of output regulation, provided that the
gain coefficient k is sufficiently high.

The Internal Model

Controlling this system by means of (26) yields a closed-
loop system

ż D f0(z)C f1(z; e)e
ė D q0(z)C q1(z; e)e C � (�)C v

�̇ D '(�)C Gv

(27)

which, regarded as a system with input v and output e, has
relative degree 1 and zero dynamics given by

ż D f0(z)

�̇ D '(�) � G[� (�)C q0(z)] :
(28)
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System (27) can be put in normal form by means of the
change of variables

� D � � Ge

which yields

ż D f0(z)C f1(z; e)e
�̇ D '(�C Ge) � G� (�C Ge)� Gq0(z) � Gq1(z; e)e
ė D q0(z)C q1(z; e)e C � (�C Ge)C v :

(29)

Setting x D (z; �), this system can be further rewritten
in the form

ẋ D f (x)C `(x; e)e
ė D q(x)C r(x; e)e C v

(30)

in which

f (x) D

 
f0(z)

'(x)� G[� (x)C q0(z)]

!

q(x) D q0(z)C � (x)

and `(x; e), r(x; e) are suitable continuous functions.
Suppose now that the residual control v is chosen as

v D �ke. This yields a closed-loop system having a struc-
ture similar to the one considered in the previous subsec-
tion, namely a feedback interconnection of

ẋ D f (x)C `(x; e)e (31)

viewed as a system with input e and state x, and

ė D q(x)C r(x; e)e � ke (32)

viewed as a system with input x and state e. As claimed
earlier, a high-gain control on e, namely a control v D �ke
with large k, would succeed in steering e(t) to zero if two
conditions are fulfilled:

(P1) the dynamics (28) possesses a compact invari-
ant set which is asymptotically (and locally exponentially)
stable, with a domain of attraction that contains the set
Z �� of all admissible initial conditions, and

(P2) the function q0(z)C � (�) vanishes on this invari-
ant set.

These are the properties that will be sought in what fol-
lows. Note that the fulfillment of these is determined only
by properties of the autonomous system (23) and of the
function

� D q0(z) (33)

which, in the composite system (28), can be viewed as the
output of (23) driving a system of the form

�̇ D '(�) � G[� (�)C �] : (34)

For convenience, we will say that triplet f'(�);
G; � (�)g is an asymptotic internal model of the pair (23) –
(33) if properties (P1) and (P2) are satisfied. In this termi-
nology, we can summarize as follows the conclusion ob-
tained so far.

Proposition 1 Pick compact sets Z, E and� for the initial
conditions of the closed-loop system (3), (21), (26). Assume
that (i)-(ii)-(iii) hold and that the triplet f'(�);G; � (�)g is
an asymptotic internal model of (23) – (33). Then there ex-
ists k? > 0 such that for all k � k? the controller (26) with
v D �ke solves the generalized tracking problem.

The notion of steady state provides a useful interpretation
of the properties in question. In fact, recall that, by as-
sumption, all trajectories of system (23) with initial condi-
tions in Z asymptotically converge to the compact invari-
ant setA, and the latter is also locally exponentially stable.
If property (P1) holds, all trajectories of the composite sys-
tem (28) with initial conditions in Z �� asymptotically
converge to the limit set !(Z � �). Since (28) is a trian-
gular system, it is readily seen that the set !(Z ��) is the
graph of a set-valued map defined onA, i. e. that there ex-
ists a map

� : z 2A 7! �(z) � R� ;

such that

!(Z ��) D f(z; �) : z 2A; � 2 �(z)g : D gr(�) :

The set gr(�) is the steady state locus of (28) and the
restriction of the latter to this invariant set characterizes
its steady state behavior. Property (P2), on the other hand,
expresses the property that at each point of (z; �) 2 gr(�)

q0(z) D �� (�) : (35)

Thus, looking again at system (28), it is realized that gr(�)
is in fact invariant for

ż D f0(z)

�̇ D '(�) :
(36)

Note that, if the map �(z) is single-valued and C1, its
invariance for (36) is expressed by the property that

@�(z)
@z

f0(z) D '(�(z)) 8 z 2A ; (37)

while the fact that (35) holds at each point of (z; �) 2 gr(�)
is expressed by the property that

q0(z) D �� (�(z)) 8 z 2A : (38)
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The Design of an Internal Model

As we have seen in the earlier sections, the proposed con-
troller, if the asymptotic internal model property holds, is
able to force – in the closed loop system – convergence
to a steady state in which the regulated variable is identi-
cally zero. As a consequence, the controller solves the gen-
eralized tracking problem. It remains to be shown, there-
fore, how the asymptotic internal model property can be
obtained. To this end, it is convenient to observe that the
properties required in (P1) and (P2) are quite similar to
properties that are usually sought in the design of state ob-
servers. As a matter of fact it is seen from (37) and (38)
that, for each z0 2A, the function of time

�̂(t) D �(z(t; z0))

which is defined (and bounded) for all t 2 R satisfies

d�̂(t)
dt
D '(�̂(t)) (39)

and, moreover

� (�̂(t)) D �q0(z(t; z0)) :

In view of the latter, system (34) can be rewritten in the
form

�̇ D '(�)C G[� (�̂) � � (�)] (40)

and interpreted as a copy of the dynamics (39) of �̂ cor-
rected by an “innovation term” [� (�̂)� � (�)] weighted by
an “output injection gain” G. This is the classical structure
on an observer and the requirement in (P1) expresses the
property that the difference �(t)� �̂(t) (the “observation
error”, in our interpretation) should asymptotically decay
to zero (with ultimate exponential decay).

This interpretation is at the basis of a number of ma-
jor recent advances in the design of regulators. In fact,
in a number of recent papers, this interpretation has
been pursued and, taking into consideration various ap-
proaches to the design of nonlinear observers, has lead to
effective designmethods (see [5,9,22]). Two of such design
methods are highlighted in the remaining part of this sec-
tion.

The High-Gain Observer as an Internal Model (see [5])
The construction summarized in this section relies upon
the following additional hypothesis.

Assumption (iv) Suppose there exist an integer d > 0 and
a locally Lipschitz function f : Rd ! R such that, for any

z0 2A, the solution z(t) of passing through z0 at time
t D 0 is such that the function �(t) :D q0(z(t)) satisfies

�(d)(t) D f (�(t); �(1)(t); : : : ; �(d�1)(t))

for all t 2 R.

Let � : W �Rn�1 ! Rd be the map defined as

�(z) :D col(q0(z); L f0q0(z); : : : ; L
d�1
f0 q0(z)) (41)

and let fc : Rd ! R be a C1 function with compact sup-
port which agrees with f (�) on �(A). Then, it easy to check
that the properties indicated in (37) and (38) are fulfilled
by choosing

'(�) D

0

B
BBB
B
@

�2

:::

�d

fc(�1; �2; : : : ; �d )

1

C
CCC
C
A
; � (�) D �1 : (42)

Comparing this construction with the earlier remarks we
observe, in particular, that system

ż D f0(z)
� D q0(z)

(43)

is immersed into a system which is uniformly observable, in
the sense of [12] (even though system (43) might not have
had such a property). It is precisely this that makes it pos-
sible to choose G in such a way that the property indicated
in (P1) can be achieved.

As amatter of fact, the property in question is achieved
by choosing

G D Dg

0

B
@

c0
:::

cd�1

1

C
A

where Dg D diag(g; g2; � � � ; gd ), g is a design parameter,
and the ci’s are such that the polynomial d C c0d�1 C
� � � C cd�1 D 0 is Hurwitz, as formally proved in Lemmas
1 and 2 of [5] to which the interested reader is referred for
details.

It is worth noting that the assumption in question
clearly covers the interesting (and widely addressed in the
recent past literature, see [15]) case in which the function
f (�) is linear, namely the case in which (43) is immersed
into a linear observable system. In this case, although the
choice indicated above is clearly still valid, a more direct
way of designing the regulator is to use f (�) instead of
fc(�) in the definition of '(�), and simply choose G in such
a way that �̇ D '(�)� G� (�) is a stable linear system.
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The Andrieu-Praly’s Observer as an Internal Model (see
[22]) In this subsection we exploit certain results of the
theory presented in [1] to weaken (and, to some extent,
suppress) the Assumption (iv) presented at the beginning
of the earlier subsection.

Let (F;G) 2 Rd�d �Rd�1 be a controllable pair and
set

'(�) D F� C G� (�); (44)

with � : Rd ! R a continuous function to be determined
later. If this is the case, the composite system (28) becomes

ż D f0(z)

�̇ D F� � Gq0(z) ;
(45)

which is precisely a system of the form (9), considered in
the Example. If the matrix F is Hurwitz, and we restrict z
to belong to the setA, this systemhas a well defined steady
state behavior, which is the graph of the map

�(z) D
Z 0

�1

e�FsGq0(z(s; z))ds : (46)

As shown in Example, the graph in question is invari-
ant for system (45), is asymptotically (and locally expo-
nentially) stable and with a domain of attraction that co-
incides withW �Rd . Moreover, it can also be shown that
there exists a number ` > 0 such that, if the eigenvalues
of F have real part which is less `, the map (46) is C1 (see,
e. g. [22]). If this is the case, to say that the graph of (46) is
invariant for (45) is equivalent to say that

@�

@z
f0(z) D F�(z) � Gq0(z) 8 z 2A : (47)

This being the case, it is immediate to check that prop-
erties (P1) and (P2) will be fulfilled if a function � (�) can
be found that renders (38) satisfied. As a matter of fact,
bearing in mind (44), condition (37) becomes

@�

@z
f0(z) D F�(z) � G� (�(z)) 8 z 2A

which, if condition (38) holds, reduces to (47). This, shows
that a triplet having the asymptotic internal model prop-
erty can be found if a function � (�) exists which satisfies
(38). It is here that the dimension d of the pair (F,G) plays
a role, as formalized in the next proposition whose proof
can be found in [22].

Proposition 2 Suppose

d � 2(s C n � r)C 2 :

Then for almost all choices (see [22] for details) of a control-
lable pair (F,G), with F a Hurwitz matrix whose eigenval-
ues have real part which is less than `, the map (46) satisfies

�(z1) D �(z2) ) q0(z1) D q0(z2) :

As a consequence there exist a continuous map � : �(A)!
R such that

q0(z) D �� (�(z)) 8 z 2A : (48)

The map �(�) in (46) is defined only onA, but is not dif-
ficult to extend it to a C1 map defined on the whole set
W �Rn�r , as shown in [22]. Also the map � (�) that makes
(48) true can be extended to the whole Rd , but this exten-
sion is only known to be continuous.

We have shown in this way that the existence of triplet
 (�);G; � (�) which has the internal model property can
always be achieved, so long as the integer d is large enough.
This result shows that the general design procedure out-
lined earlier in the article is always applicable (so long as
the standing hypotheses (i)–(ii)–(iii) are applicable). From
the constructive viewpoint, though, it must be observed
that the result indicated in Proposition PR1 is only an ex-
istence result and that the function � (�), whose existence
is guaranteed, is only known to be continuous. Obtain-
ing continuous differentiability of such � (�) and a con-
structive procedure are likely to require further hypothe-
ses, which should be in any case weaker than Assump-
tion (iv) considered earlier, whose study is subject of cur-
rent investigation.

Future Directions

One of the basic hypotheses of the theory described in the
previous sections is that the zero dynamics of the aug-
mented system consisting of the controlled plant and of
the exosystem possess a compact attractor which is also
locally asymptotically stable. This assumption, with an ac-
ceptable abuse of terminology, is usually referred to as the
“minimum-phase” property. Another standing hypothe-
sis is that the regulated variable coincides with the mea-
sured variable. The future directions of the research in this
area are aimed at the removal of these assumptions. There
are several directions in which the problem can be tack-
led. One way is the use of control structures by means of
which the controlled system (plus a part of the controller)
can be interpreted with systems having a different zero dy-
namics (in particular a zero dynamics possessing a com-
pact attractor). This is the nonlinear equivalent of certain
design procedures for linear systems based on the assign-
ment of zeros. This technique has proven to be power-
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ful in the stabilization of certain classes of nonlinear sys-
tems (see [18]) and is expected to be successful, with ap-
propriate enhancements, in the design of regulators. The
analysis of the necessary conditions for output regulation
has also shown that, if the generalized tracking problem
is solvable, the inverse dynamics of the augmented sys-
tem consisting of the controlled plant and of the exosys-
tem possesses a compact invariant set to which all ini-
tial conditions are asymptotically controllable (by means
of the regulated variable viewed as a control). This set is
not necessarily asymptotically stable (as it would be under
the “minimum-phase” hypothesis) but could be asymp-
totically stabilizable (by either full-state or measurement-
based feedback). Thus, another direction in which the re-
search will evolve, in the development of control schemes
for possibly non “minimum-phase” nonlinear systems, is
based on the exploitation of the (weaker) assumption that
in the zero dynamics of the augmented system there is
a compact set that can be made invariant and asymptot-
ically stable by means of feedback. This will yield a de-
sign procedure in which a virtual control (either full-state
or measurements-based) is designed to stabilize that com-
pact invariant set. The (possibly dynamic) controller ob-
tained in this way will then be embedded into a regulator
designed according to the principles developed in this ar-
ticle.
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Glossary

Complex disease A disease that has an etiology inconsis-
tent with the simple models of genetic inheritance pro-
posed by Gregor Mendel. A synonym for “complex
disease” is “non-Mendelian disease.” Type 2 diabetes is
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an example of a complex disease, as are most common
diseases. The term “complex phenotype” is employed
analogously to describe non-disease properties of indi-
viduals, such as height. Typically, complex diseases are
influenced by multiple genetic and environmental fac-
tors. For most diseases, little is known about either of
these sets of factors.

Nuclear regulation Many signals are integrated and pro-
cessed on segments of DNA that are near or adjacent
to genes. These segments of DNA are called cis-reg-
ulatory elements. Proteins that bind cis-regulatory el-
ements are called transcription factors. The informa-
tional output of cis-regulatory signal integration is the
rate of production of messenger RNA (mRNA) en-
coded by that gene. Amajor goal for many human sys-
tems biology projects is to understand key nuclear reg-
ulatory networks.

Regulatory network A paradigm for modeling informa-
tion flow within a biological system, such as a cell. El-
ements of the system that can have multiple states are
encoded as nodes; modes of communication between
these elements are encoded as edges. A typical node
would be a protein that might have multiple states re-
lated to its level of phosphorylation or cellular location.
A typical edge would represent the catalytic effect of
one protein upon another’s state of phosphorylation.

Systems Biology of Human Immunity and Disease, Figure 1
Example of a portion of a network model of a macrophage signaling network. This network was drafted with aid of CellDesigner
software [34], and is reproduced with permission of The Systems Biology Institute (period)

Signaling pathway Signals typically reach cells through
the binding of molecules to receptors on the cell sur-
face. Over the course of seconds to minutes, the recep-
tor interacts with other proteins or small molecules,
changing their structure, concentration, or intracellu-
lar location. These changes can in turn cause other
changes. One common ultimate effect is an alteration
in transcription factor binding to target genes, in turn
causing a change in mRNA levels. The term “signaling
pathway” pre-dates modern systems biology, and rep-
resents a paradigm for information flow that is largely
unidirectional and linear. Systems biology replaces this
paradigm with that of a “regulatory network.”

Definition of the Subject

Systems biology is the derivation of emergent properties
of a multicomponent biological system through the con-
struction of quantitative predictive models. These predic-
tive models are typically formulated as networks. A por-
tion of such a model is shown in Fig. 1. Human systems bi-
ology is the practice of systems biology to elucidate emer-
gent properties of humans or any subcomponent of the
human body, such as a cell. Human systems present chal-
lenges and opportunities not found in other organisms.
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Most problems in human systems biology are moti-
vated by a desire to understand, predict, prevent, amelio-
rate, or cure a human disease. The human immune system
is a mediator for most human diseases, and is the key sys-
temmediating autoimmune and infectious diseases.Many
problems in human systems biology focus on the immune
system.

As defined, human systems biology is a subset of sys-
tems biology. The subject merits special consideration
largely because of medical importance. The human subset
of systems biology is not an exceptionally distinct subset
compared to other reasonable subsets, such as mammalian
systems biology. However, it is fairly distinct from systems
biology as applied to unicellular and invertebrate organ-
isms.

Introduction

The difference between human systems biology and the
practice of systems biology in other organisms is one of
philosophy and emphasis [1]. The need to improve hu-
man health drives human systems biology. The empha-
sis of general systems biology is the development of tech-
nological, methodological, and algorithmic approaches to
science. Human systems biology exploits these develop-
ments, but tends to be more focused on clinical endpoints.
It is acceptable to approach these endpoints with incom-
plete, partial, hybrid, or modified versions of systems biol-
ogy. Because these approaches include elements of systems
biology, such as the analysis of high-throughput data, they
are labeled as systems biology, even though they may not
include all elements standard to general systems biology,
such as the use of multiple orthologous data sets [5].

The needs of modern medicine set the context for hu-
man systems biology. From a data-driven point of view,
there have been three major epochs of medicine: (1) ob-
servational medicine, (2) evidence-based medicine, and
(3) predictive and personalized medicine [51]. These cate-
gories overlap to some extent, but they correspond fairly
well to distinct periods of time. Observational medicine
was prevalent from the dawn of civilization until early in
the twentieth century. It is characterized by personal ex-
perience and oral tradition. An example and highlight of
observational medicine was the discovery of digitalis as
a treatment for dropsy, now known as edema. The dis-
covery is credited in 1776 to William Withering, an En-
glish doctor who lived outside of London. Dr. Wither-
ing noticed that a patient with dropsy had been cured by
a folk practitioner using a preparation from the foxglove
plant. It is likely that this discovery had been made many
times prior to the mid-eighteenth century, but lack of or-

ganized methods for communication and data handling
kept the knowledge fragmented and incomplete. Dr.With-
ering was rich and connected. He was a member of the
Lunar Society, a group of scientists founded by Matthew
Boulton and Erasmus Darwin, the grandfather of Charles.
These connections, foreshadowing those available to mod-
ern scientists through the internet, enabled the knowl-
edge of foxglove to be preserved, distributed, and im-
proved.

By the early twentieth century, incremental improve-
ments to medical knowledge became increasingly com-
mon, and evidence-based medicine flourished. Advance-
ments were enabled primarily by: (1) advances in com-
munication, such as inexpensive publishing by printing
presses, (2) chemistry, permitting the purification of active
ingredients from botanical medicines, and (3) the nascent
field of statistics. Statistics enabled legitimacy and falsifia-
bility of medical facts. The first major application of statis-
tics to medicine was the work of John Snow in 1843 to cor-
relate water sources with cholera outbreaks. This correla-
tion, and many others since, enabled preventive medicine.
Chemistry, and later other fields of science and engineer-
ing, enabled reductionism. For example, reductionism en-
abled the identification of digitalis as the component of
foxglove responsible for its effects on the cardiovascu-
lar system. The culmination of evidence-based medicine
was the Framingham Heart Study circa 1948. Thousands
of people from the town of Framingham and their de-
scendants were observed longitudinally. Many health pa-
rameters were recorded. The Framingham study provided
much of our modern knowledge concerning heart disease
risk, including effects of diet, exercise, and aspirin. The
Framingham Heart Study gave birth to the term “risk fac-
tor” and bolstered the recognition of prevention as the
most cost-effective form of medicine. Prior to preventive
medicine as a philosophy, a heart attack would be viewed
as the beginning of a relationship between patient and doc-
tor. With preventive medicine, the relationship would be-
gin at birth or even before, and focus on modifying risk
factors to prevent an attack from ever occurring. Data pro-
cessing and analysis for such studies became increasingly
sophisticated and required computers. Progress in evi-
dence-based medicine was linked to the simultaneous rev-
olution in computational power. In particular, the Fram-
ingham Heart Study benefited from scientific and socio-
logical momentum generated inWordWar II. Operations
Research was largely born in the Battle of the Atlantic. The
US population was willing to participate in large studies
with society as the primary beneficiary. Command-and-
control bureaucracies existed to coordinate large projects.
Projects requiring the collaboration of hundreds of medi-
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cal professionals were favorably viewed by researchers and
their funding agencies.

By the end of the HumanGenome Project at the begin-
ning of the twenty-first century, limitations of the previous
century’s approach to evidence-based medicine were be-
ginning to be recognized and solutions to these limitations
were envisioned. Statistics, exemplified by linear regres-
sion models and chi-squared tests, required increasingly
large cohorts to identify weaker risk factors. Knowledge
gained from large cohorts was applicable only to popula-
tions (such as “all white males”) and not individuals (such
as the person reading this article). Studies became very ex-
pensive and could take decades or even centuries to elu-
cidate correlations between causes and effects. The stage
was set for the era of predictive and personalizedmedicine.
A major approach to developing knowledge for this era of
data-drivenmedicine has been and will be human systems
biology.

In 1892, William Osler observed, “If it were not for
the great variability among individuals medicine might be
a science, not an art.” Historically, the art of medicine was
to personalize by trial and error. In the absence of per-
sonalization, a patient was prescribed a treatment based
on population-based statistics. This is still the norm. If
the treatment fails, the next best treatment from a popu-
lation-inferred list will be prescribed. This process will re-
peat until the patient or doctor tires of it or dies, money
becomes limiting, or effective treatment is achieved. Per-
sonalized medicine aims to match the best treatment for
an individual without such perilous trial-and-error—and
to turn Dr. Osler’s art into a science. Previously, data for
personalized models was based on orally conveyed family
history, together gender and a crude estimate of genetic
heritage, or race. Such personalization was tailored to sub-
populations of people. 21st-century personalizedmedicine
will develop predictions from an individual’s genes and
personal developmental and exposure history. Interven-
tions will be tailored to that individual, not to a subpop-
ulation to which the individual belongs. Systems-biology
research creates the data and knowledge required by this
approach. In particular, models are created based on the
understanding of molecular mechanisms. Emergent prop-
erties arise from holistic analysis of the interactions in the
modeled system. Each individual can be modeled based on
their genetic risks, environmental exposures and their re-
sponses, biomarkers, and health assessments. Recommen-
dations for particular medications, doses, interventions,
and lifestyle changes will be personalized [12].

Expectations for modern research may be portrayed
very highly in the popular press, with hopes for miracle
cures. These may arise, but the most profound changes in

Systems Biology of Human Immunity and Disease, Figure 2
Exponential rise in expected life span for cystic fibrosis. A fairly
low exponent, 5.5% in this case, can lead to dramatic advances
in human health over time. The goals of human systems biology
are to drive such exponential advances

medicine will most likely come from steady incremental
advances. Research in all epochs of medicine has produced
incremental advances. Cumulatively, these advances have
enabled vast gains in human health (Fig. 2). Future in-
cremental advances are expected throughout the epoch of
personalized and preventive medicine begins.

The phrase “systems biology” was first used early in
the twentieth century to describe analyses of ecosystems,
but the phrase never became popular until the turn of
21st century with the establishment of several institutes
and research groups focused on systems-biology research
and using the term “systems biology” to describe that re-
search. The timing of this surge in interest was almost
entirely due to the completion of the Human Genome
Project and the need to develop research methodolo-
gies appropriate for the post-genomic era. The complete
genome sequence provided a near-comprehensive “parts
list” of genes. Coinciding approximately with the Human
Genome Project, high-throughput technologies for mea-
suring other important parts of human systems were de-
veloped, including technologies for measuring proteins
and transcripts [18]. Neologisms with the suffix “omics”
describing these new fields of analysis have become popu-
lar, including “proteomics” and “transcriptomics.” Other
factors driving modern systems biology have been (1) the
tremendous boost to human collaboration and informa-
tion sharing provided by the internet and (2) the concep-
tualization of biology as an information science. The dig-
ital nature of the genome has led to a belief that all of
the individual components and interactions of biological
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systems are ultimately knowable, can be represented in
data structures, and are amenable to computational anal-
ysis. The elucidation of the digital genome is a triumph of
reductionism that has energized the pursuit of emergent
properties. In the near future, complete sequences of the
genomes of many humans will be known, further facilitat-
ing correlations between genotype and phenotype.

Modern systems biology focuses on systems at the cel-
lular or subcellular level because systems of these com-
plexities are considered to be neither too trivial to study
nor too complex to comprehend. Some systems biology
projects involve systems that are either more or less com-
plex. In particular, human systems biology tends to focus
on larger, more complex systems. For most problems of
medical interest, it is generally anticipated that clinically
useful predictions will require modeling at the multi-cel-
lular level or at the level of the entire organism. The need
to focus on very complex systems and to make clinically
useful predictions underlies fundamental differences be-
tween the conduct of systems biology in humans and in
other organisms.

There are tens of thousands of genes, small molecules,
and proteins in a typical cellular system. Properties of
these components and of the entire systemneed to be stud-
ied under many different conditions and dynamically over
time periods ranging from seconds to years. There are sev-
eral important generalizations that can be made about the
techniques required to study such systems. Systems bi-
ology requires: (1) the analysis of high-throughput data
sets, (2) the analysis of multiple qualitatively distinct dif-
ferent types of data (“orthologous data”), (3) a multidis-
ciplinary collaborative team capable of both data genera-
tion (“bench work”) and data analysis (“computational bi-
ology”). Also, because systems biology makes predictions,
its practice is necessarily iterative: a model is built, pre-
dictions are tested, discrepancies between predictions and
measurements are used to refine the model, predictions of
the new model are tested, and so on until the incremental
utility of the model refinements becomes small [47].

The application of the above approach to science is
not new; it is merely new to biology. Other disciplines
have used collaborative research employing multiple high-
throughput data sources to produce models and emergent
predictions. For example, in meteorology, a daily weather
report is a simple prediction derived from such a process.
One of the utilities of the phrase “systems biology” is that
it brings attention to the methodological differences be-
tween this approach and the more prevalent reductionist
approaches in biology during the twentieth century. The
coining of the phrase thus helps catalyze a sociological
change in biology.

A number of disciplines that might semantically be
considered to fit the definition of systems biology are not
usually implied by users of the phrase because these dis-
ciplines were well established prior to the completion of
the Human Genome Project. These include ecology, phys-
iology, and biochemistry. In these fields, research may in-
volve formulation of hypotheses as networks, and pre-
diction of emergent properties of multicomponent sys-
tems [26].

Challenges and Solutions
for Human Systems Biology

Human systems biology requires asking questions that are
distinct from typical questions asked of prokaryotic sys-
tems. These distinct questions require distinct methodolo-
gies to answer [30].

There aremany challenges for human systems biology.
Underlying network models are far more complex than
those of prokaryotes [43]. There are more components, or
network nodes, of nearly every type. For example, there
are more genes, as discussed in the accompanying chap-
ter on genome complexity. Each gene has more cis-reg-
ulatory elements. On average, any given gene has more
functions and products. These products are primarily
mRNAs. On average, any givenmRNAhasmore functions
and products. These products are primarily proteins. Eu-
karyotic cells have more cellular compartments, including
mitochondria, lysomomes, phagosomes, a nucleus, endo-
plasmic reticulum, and secretory granules. Humans have
many more cells, and more cell types, and they are orga-
nized into different tissues [6]. Furthermore, there is no
guarantee that insights gained from one human tissue will
be easily extrapolatable to other human tissues; the same
protein may play a very different role. In addition to many
more nodes in human networks, there are many more in-
teractions. In particular, the number and complexity of in-
teractions operating on cis-regulatory elements of eukary-
otic genes is greater (Fig. 3) [42,48].

Not only are human systemsmuchmore complex than
other systems, but it is much harder to acquire data from
these systems. Many experiments possible in other organ-
isms are impossible in humans due to ethical concerns.
Such concerns prevent the intentional creation of humans
with identical genomes. Humans have very long life spans
that essentially rule out acquiring data over the life span
of particular individuals, particularly for systems biology,
which requires iteration. Projects that might take weeks
in a prokaryotic context would take many centuries if the
experimental strategies were directly applied to human
problems. The cost of performing experiments on human
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Systems Biology of Human Immunity and Disease, Figure 3
Eukaryotic versus prokaryotic cis-regulation. The number of fac-
tors involved in regulating expression of a eukaryotic gene is at
least an order of magnitude greater than for a prokaryotic gene.
The complexity of the interactions is also greater. Reprinted
from [42]

systems also tends to be much higher than in other sys-
tems.

As a consequence of the difficulty of research in mam-
mals, whether that research is reductionist or holistic, on
average for any given node or edge of a human network
there is less prior information available than there would
be for a simple model organism. Inmany cases, a literature
or database search for information pertaining to a human
gene will yield either no information or information re-
stricted to a few cell types under only a few conditions [11].
For example, the target genes and sequences of most hu-
man transcription factors are completely unknown, lead-
ing to substantial uncertainties in models of human nu-
clear regulatory networks.

There aremany solutions to these challenges. Some so-
lutions remain visionary or require technologies that are in
development, such as the ability to sequence an individu-
als genome for less than $1,000. If the sole goal of human
research was knowledge for the sake of knowledge, then
the most economically efficient approach to most human
systems biology problems would be to wait for these tech-
nologies to be fully developed before applying them di-
rectly to disease research. However,medicine carries a per-

sonal urgency not found in most other areas of research.
Delays in research can be measured in human life and
well being. So in addition to investing in technology and
methodology, human systems biology must work with the
tools at hand.

Because so much less is known about the basic ele-
ments of human systems, a continued focus on the indi-
vidual nodes and edges is important. Human systems bi-
ology projects do not displace traditional reductionist bi-
ology projects, but rather rely on them. A key fundamental
question to be asked of all possible nodes in a network is
that of membership: “Does this node belong in the net-
work?” The same question can be asked of each possible
edge. The various qualities of the network components
also need to be determined. These include directionality
of directed edges and rate constants for parts of the net-
work modeled dynamically. If the most important nodes
and edges in a network can be determined, future reduc-
tionist research can be appropriately directed to expand
information on these network components. The complex-
ity of human systems, the difficulty of automatically pars-
ing the literature, and the high false positive rate in many
human high-throughput data sets demands increased ex-
pert curation at all steps in the process. The sheer volume
of the datamakes such a call for human curation seemingly
futile, but currently without such curation, most models
will not make useful medical predictions. Appropriately
directed projects will employ automated tools to reduce
the burden of curation. For this purpose some of the most
useful tools will be interfaces that present curators with in-
formation in forms that are easy to comprehend and inte-
grate manually and that also permit decisions and ratio-
nales to be quickly recorded. The visual computer inter-
faces imagined for the 2002 science fiction movie “Minor-
ity Report” serve to stimulate ideas of what such interfaces
might become.

Human systems biologists must also model simpler, or
smaller, networks than would be appropriate for a sim-
ple model organism. Although somewhat paradoxical, this
need arises from the intense need for data curation and the
difficulty of acquiring high-quality data. The more com-
plex the systems, the greater the number of free param-
eters. For larger networks, the lack of experimental data
prevents these parameters from being constrained, and
so no statistical confidence can be placed in predictions.
Therefore, a reasonable approach for building a predictive
network in a human system is to start very small. In some
cases, networks with as few as two nodes and a single con-
necting edge can form a reasonable nucleus for the iter-
ative process of building a systems biology network. Al-
though such a network would be too trivial to discuss in
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a prokaryotic setting, it might be capable of making a clin-
ically useful prediction and so would merit consideration
in a human disease setting.

One possible approach to reducing the network com-
plexity is to focus on only a few key nodes. Another is to
model systems at grosser levels [9]. Thus rather than rep-
resenting each protein as a node, one might group a set of
proteins as a conceptual “module,” and only represent the
module as a node in the network. However, this approach
requires exceptional care and curation, as it becomes hard
to define and even harder to measure quantitative prop-
erties of modules [30]. One approach to developing hy-
potheses related to the functionality of modules is to per-
form comparative network analysis between different ver-
tebrates [8]. Such analysis requires at least a moderate un-
derstanding of a network in at least two systems, which
is currently rare, but may become more available over the
next few decades.

It is easy for researchers to be distracted by the vast
quantity of high-throughput data available, and to yield to
reporting analyzes that are the result of automated in sil-
ico predictions of algorithms that often cannot be tested
against gold standards. Human curation is often viewed as
subjective, as it is hard to provide numerical statistics as-
sociated with such curation. Numerical statistics, on the
other hand, are fairly easy to provide with output from au-
tomated algorithms, and these outputs are considered ob-
jective. From a medical point of view, however, the crite-
rion of utility must trump evaluation of research based on
simple ratio of subjectivity to objectivity. Medical objectiv-
ity must be evaluated at a deeper level of objectivity: quan-
titative measures of improved health care. Frequently, the
output of automated algorithms is indeed objective, but is
also nonsense. Examples of such nonsense are often man-
ifested as very large networks consisting of hundreds or
thousands of nodes and edges. Such networks are said to
resemble hairballs and have been termed “ridiculomes.”
These networks have little if any predictive capability [32].
A weather report, as published in a daily newspaper, offers
an example of a prediction in a useful form. Systems biol-
ogy predictions should aim to bemore like weather reports
and less like hairballs.

Despite the large number of obstacles facing human
research, there are a few paths to knowledge that work
very well in humans. These derive largely from the abil-
ity of human research subjects to intellectually contribute
to a research project. This is especially true for pheno-
types of higher cognitive function. The most successful
examples of human-specific research projects are fam-
ily and genome-wide association studies. Volunteers with
specific phenotypes bring themselves to the attention of

researchers, permitting the genetic difference between af-
fected and unaffected individuals to be determined. This
is the most powerful and productive method that human
systems biologists currently have for identifying the genes
that are key nodes in human disease systems.

Given the fairly large number of differences in the
state of knowledge and in the constraints on how research
might be performed, the genre of questions asked by hu-
man systems biologists differs markedly from questions
asked in other systems. Whereas design of a synthetic mi-
croorganism from the ground up might be a reasonable
experimental agenda for a microbial biofuel project, other
questions are more natural in human medicine.

Human-Specific Problems

It became fairly clear by the height of the era of evidence-
based medicine that prevention has the highest ratio of
benefit versus cost to society. Prevention is most effective
when coupled to prediction. Interventions have risks and
costs, so should be targeted to those predicted to have suffi-
cient risk to benefit from a preventive intervention. There-
fore a major goal of systems biology is to develop person-
alized predictive risk assessments. These risk assessments
can be absolute (e. g., an individual’s risk at the time of
birth or at the time of a clinic visit) or conditional (e. g.,
risk if the individual stopped smoking). The types of out-
comes that are useful to predict for an individual include
whether or not a vaccination is protective, and whether
a disease might occur and when it is likely to do so. A par-
ticular world health challenge today is the unpredictabil-
ity of the effectiveness of the BCG vaccine for tuberculo-
sis. Individuals who receive the vaccine have little way of
knowing whether or not they will develop protective im-
munity [3]. The identification of biomarkers enabling such
a prediction would be useful for counseling individuals as
well as developing society-wide measures for preventing
tuberculosis. Predictions at the level of a cell or tissue in-
clude what developmental programs these cells might fol-
low or specific outcomes such as apoptosis, endocytosis, or
mobility.

Other types of questions that can be asked in human
systems include:

1. The identification of key information-transducing
nodes in a system, as well as the inference of nodes
that must be part of the system but are currently un-
suspected or unknown. Such inference would be based
on experimental results that differed from predicted re-
sults.

2. The identification of therapeutic drug targets [19].
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3. Prediction of the effects of a gene knockout or knock-
down, or overexpression of that gene.

4. Most generally, prediction of the effects of any pertur-
bation to a system, including chemical and environ-
mental perturbations.

5. Prediction of a particular property of a node or edge,
such as Gene Ontology category, the presence of nega-
tive regulation, or the presence of positive or negative
feedback.

6. Prediction of the concentration or flux or production of
a specific gene, mRNA, or protein under a specific set of
conditions at a specific time in a system.

The most successful projects will define exactly what ques-
tions will be addressed by the project before the project
begins, and will define measurable quantitative variables
that will be predicted by models [23]. The ability of a re-
search group to precisely and accurately make quantitative
predictions is one useful measure of whether a particular
researchmethodology and approach is working effectively.
Some questions lend themselvesmore naturally to quanti-
tative predictions, such as those related to flux or concen-
tration of small molecules. Others, such as the identifica-
tion of drug targets, are very difficult to evaluate on any
timescale less than a few decades.

Systems biology must be applied to all human dis-
eases, as the urgency of clinical discovery is paramount.
However, from the point of view of leveraging human sys-
tems biology research to gain fundamental understanding
of a system, some human diseases may lend themselves
more readily to knowledge discovery. These will be the
diseases for which the etiology lies contained in a fairly
small network and can be understood by understanding
the interactions of a relatively few nodes. Thus, one might
predict that research with Noonan Syndrome, which ap-
pears to be related to defects within the Ras signaling net-
work may lead more immediately to fundamental under-
standing than research in type 1 diabetes, which appears
to have etiologic effects spread throughout many cell types
that arise from both genetic and environmental influences,
and that act at disparate timepoints throughout the life of
the individual.

Examples

Research in Noonan Syndrome represents an elegant ex-
ample of systems biology as applied to human disease.
Phenotypes of Noonan Syndrome include congenital heart
malformation, short stature, and learning problems. Ap-
proximately 1 in 2,000 children are born with Noonan
Syndrome. The range and severity of features can vary
greatly between individuals, suggesting that there are mul-

tiple causes of the syndrome that affect common etiologic
pathways, but in subtly different manners. Frequent trans-
mission from parent to child suggested a genetic defect
with autosomal dominant inheritance. Traditional genetic
approaches mapped Noonan Syndrome to chromosome
12q24. By 2001, it was shown that about half of all individ-
uals with Noonan syndrome were caused by a mutation of
the PTPN11 gene at position 12q24. The PTPN11 gene en-
codes a tyrosine phosphatase. This discovery provided the
first insight into the formation of a predictive model for
Noonan Syndrome. With an underlying hypothesis that
Noonan Syndrome was the emergent result of the output
of an unknown dysfunctional network, the discovery that
PTPN11 was part of that network allowed orthologous
data sets and analysis to be leveraged [28,29]. PTPN11 is
a node in an intracellular signaling network, including the
traditional Ras/MAP kinase signaling pathway. This net-
work governs cell division and differentiation. This net-
work was fairly well characterized prior to the discovery of
the association of PTP11 with Noonan Syndrome, so the
network knowledge could be immediately applied to pre-
dict other nodes that, when perturbed, might also result in
a Noonan Syndrome phenotype [13]. When tested, using
an iterative network-refinement approach, several of these
genes were also found to be fundamental to Noonan Syn-
drome etiology. These genes include RAF1, SOS1, HRAS,
KRAS, and RAF1 [36,39,44,46,52].

Genetic association studies show great promise for
breaking into etiologic network models for other human
diseases. The technology for association studies for au-
toimmune diseases has been progressing steadily since the
1970s. However, until 2006, the only major genetic as-
sociation with these diseases had been the MHC locus,
which encodes the molecular complexes that train the im-
mune system to recognize particular peptides as activa-
tors. The accumulated progress in technology moved re-
search across a discovery threshold early in the twenty-
first century and a large number of additional gene associ-
ations in a variety of autoimmune diseases have been dis-
covered, as well in other complex human diseases. These
include the discovery of IFIH1 for type 2 diabetes [45],
ITPR3 for type 1 diabetes [40], and IL7R for multiple scle-
rosis [15,22]. Further progress in these diseases will be
somewhat slower than for Noonan Syndrome, but there
is every reason to believe that these larger and more com-
plex networks can be modeled in clinically useful ways by
applying the techniques discussed in the previous section.

In addition to genetic association studies, data analy-
sis from high-throughput sources can also help enumerate
key nodes in human networks. Carefully curated analyzes
of orthologous high-throughput data sets can yield lists of
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nodes that are likely to be fundamental to predictive net-
work models. One of the more promising human systems
for this systems biology approach ismodelingmacrophage
activation through innate immune receptors [2]. Non-pre-
dictive network diagrams based on extensive literature
analysis are available for the macrophage [34]. Such dia-
grams facilitate the development of predictive network hy-
potheses [35].

Rather than breaking into an unknown network,
Bergholdt et al. [7] have approached the type 1 diabetes
network by assuming that it is a subnetwork of current it-
erations of the global human protein-protein interaction
network. They take key-node analysis a step further by
developing a statistic for key subnetworks. Significance is
computed from genetic association data for all genes in
the subnetwork, as well as the interactions between these
genes. This approach is amenable to further refinement by
the incorporation of additional orthologous data sets, such
as function and expression, into the significance metric.
Bergholdt et al. succeed in identifying a number of can-
didate subnetworks that may transduce signals that cause
diabetes.

Human macrophages are tractable experimental sys-
tems even when taken out of the context of the human
body, and much of the macrophage regulatory network
operates in a near native fashion even when isolated from
other human cells. Because systems biology of the human
immune system can in cases be reduced to the analysis of
single cells, it shares some simplicities with prokaryotic
systems biology. Systems biology of the human immune
system is therefore a natural initial focus for human sys-
tems biology.

A large number of high-throughput data sets have
been acquired from macrophages, particularly time-se-
ries following stimulation through toll-like receptors. Sev-
eral preliminary comparative network analyzes are avail-
able [21,37]. Reasonable near-term expectations from such
studies, whichmay involve dozens of researchers and years
of research, are the addition of one or several nodes and
key interactions to a basic network such as the identifica-
tion of the role of ATF3 as a important negative regulator
of macrophage activation [14] or the bulk identification
of many key nodes without their interactions such as the
identification of all transcriptionally active transcription
factors [33,41]. Studies of signaling networks in T-cells
have also resulted in predictive models, but are impeded
by the resistance of T-cells to some forms of genetic per-
turbations, such as RNAi interference [25].

A lot of clinical value is currently being generated
through analyzes of high-throughput data sets that result
in predictive models for disease [27]. In some cases these

analyzes are done on only one type of data, such as mi-
croarray data, and are not orthologous data sets in the
truest sense. Furthermore, the results are frequently state-
ments of correlation, rather than causation, and thus are
a fairly preliminary step towards a true understanding of
the system, or a true predictive etiologic model. Neverthe-
less these predictions are amenable to iterative refinement
with a good prospect that such refinements will eventually
elevate these models to the level of understanding. Exam-
ples of such efforts include diagnosis and stratification.

Statistical methodologies such as discriminant or prin-
ciple components analysis can extract variables that are
highly informative for classifying systems. Quantitative
values can be obtained from many thousand nodes in sys-
tems with known properties. For example, one can mea-
sure the expression of thousands of genes in a set of ma-
lignant tumors and controls. Simplified classifiers can be
extracted from these many thousand variables. Clinically
useful stratification of breast cancers into subtypes that
respond preferentially to different therapeutic interven-
tions has been one example of this approach [16,49,50].
These multivariate approaches also show promise for di-
agnosing disease, including acute infections [38], arthri-
tis [4], and diabetes [24]. These diagnostic techniques
show promise for detecting presymptomatic disease, in
which cases the semantic line between prediction and di-
agnosis blurs considerably. These methodologies can also
stratify disease, allowing for the tailoring of specific ther-
apies to the disease. Additionally, responses to diseases,
medications, therapies, or the environment can them-
selves be stratified, permitting the early identification of
adverse reactions and changes towards a more positive
therapeutic direction.

Future Directions

The most productive element of the systems biology
paradigm is collaboration. Collaboration between scien-
tists with similar skills allows projects of greater size and
complexity to be tackled. Collaboration between scien-
tists with different knowledge and skill sets permits knowl-
edge to be combined in manners previously unimaginable
and opens previously inaccessible vistas of knowledge. For
decades, both types of collaboration have been widely used
in other branches of science, such as meteorology, astron-
omy, and particle physics. Therefore the most promising
future directions for system biology are those that maxi-
mize collaborations.

These collaborations will be enabled by new methods
of data sharing, most likely leveraging the worldwide web.
Interactive and updateable sources of information such as
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wikis and blogs will be key. Many online scientific journals
have recently begun to encourage online commenting of
papers. New methods of collaboration may evolve. These
may involve virtual collaboration andmight leverage peer-
to-peer networks such as Facebook. The Nature publish-
ing group has initiated such a tool, Nature Network.

New societal methods of career recognition and fund-
ing will likely stimulate systems biology. Traditional meth-
ods have recognized single-author or first author papers
and tend to focus on journal publishing as a measure of
productivity and utility. New methods will recognize col-
laboration and non-traditional measures of productivity,
such as the creation of online resources. Recently, the NIH
has altered its tenure track rules in recognition of these
needs. Many of these changes will require a new genera-
tion of researchers willing to embrace them. Progress in
systems biology will be increasingly driven by distributed
worldwide collaborations thatmay involve researchers un-
aware of each other, with the collaborative element being
contributions to virtual online projects. Projects will in-
volve both specialists and generalists. In many cases data
will be generated by a specialist in an experimental tech-
nique, and analyzed by distinct specialists in analytical
techniques. Generalists will need to have skills in multi-
ple disciplines and will be needed to direct projects and
integrate data. Among the traditional twentieth-century
fields of biology, immunology required extensive multi-
disciplinary knowledge from its practitioners; it is not sur-
prising that many of the pioneers of systems biology were
immunologists. Investigators trained in the clinical prac-
tice of medicine will be needed to set clinical priorities
and recognize opportunities for the transfer of informa-
tion from bench to bedside.Walls between disciplines will
need to erode.

New and improved technologies will increasingly yield
lower-costs, higher-throughputs, better sensitivity, better
reproducibility and precision, better accuracy, and more
comprehensivity [17,20]. Sequencing technologies con-
tinue to show promise for all of these characteristics, and
dropping costs may permit them to underlie many mea-
surements. Transcriptomics is currently performedmostly
with arrays which may have fundamental upper limits on
accuracy. Future transcriptomics may breach the accuracy
barrier by employing transcript enumeration technologies
that aim to sequence, for example, every mRNA in a sin-
gle cell. Improvement in computational prediction and di-
rect measurement of transcription factor binding to tar-
gets will permit these interactions to be confidently added
to networks, and will vastly improve the predictive power
of models of nuclear regulation. New methods of creat-
ing, storing, and sharing medical information electroni-

cally must be adopted that allow efficient use of aggregate
information for research while preserving patient confi-
dentiality and their rights to control their own informa-
tion.

Effective improvements to human health cannot be
made solely by a small group of individuals. Society must
participate. Individuals must be informed, must support
research, and must be willing to participate in and receive
therapeutic interventions. Systems biology must therefore
be alert to the broad needs of society [10]. These needs can
help focus priorities. A society willing tomodify its diet but
reluctant to take pharmaceuticals would inform systems
biology to prioritize models that predict the effects of al-
tered diets overmodels of drugmetabolism, and vice versa.
Because human systems biology relies on human partici-
pation in research, such as in the Framingham Study and
in gene association studies, efforts must be made to con-
tinue to educate all people in a deep inquiry-based scien-
tific knowledge and to encourage them to share their per-
sonal medical histories and experience with the common
knowledge pool. Current cultural shifts in the US towards
increased guarding of personal information and mistrust
of scientific information will create substantial challenges
for the next generation of systems biologists.
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Systems biology is a relatively new branch of life sci-
ences that is highly interdisciplinary and aims to provide
a quantitative analysis and understanding of life systems
within a mathematical framework. Systems biology is the
study of the interconnected aspect of molecular, cellular,
tissue, whole animal and ecological processes, and com-
prises mathematical and mechanistic studies of dynami-
cal, mesoscopic, open, spatiotemporally defined, nonlin-
ear, complex systems that are far from thermodynamic
equilibrium. The animating principle of systems biology
is that the most important behaviors and networks of in-
teracting elements (e. g.,molecules, cells, etc.), rather than
by individual elements and interactions. This really ne-
cessitates the integrated application of high-throughput
measurement technologies and advanced computational
methods to model and predict biological responses. The
11 articles comprising this section describe the basic as-
pects and processes of systems biology and the relationship
of systems biology to complexity and systems science. The
basis and content of each of the 11 articles in this section
are described below. There are six additional articles that
were nominated and accepted into other sections which
are connected to complexity in Systems Biology, and sup-
plement the 11 articles in this section. These six are listed
at the end of this Introduction.
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With rare exceptions, all known living organisms en-
code their genetic material in the form of double-stranded
DNA, in one or more chromosomes, collectively re-
ferred to as the “genome” (� Genome Organization). The
genome includes most of the information needed by the
cells to stay alive, to differentiate into new cell types, and
to perform their functions in the context of the organ-
ism. As such, it is the ultimate resource for identifying
the full set of components in the living system. Eukary-
otic genomes are much larger than strictly needed to en-
code the relatively modest set of genes in them, but several
mechanisms give rise to a very complex transcriptome. It
is necessary to understand how the genome is organized
and how it evolved and be able to build suitable null hy-
potheses for testing whether predictions are likely to be
real, and thereby understandwhether specific observations
are likely to be biologically meaningful.

Sequence data alone is currently of limited use for
identifying the functional elements of a genome and for
elucidating how these elements interact to control physio-
logical processes.

The field of functional genomics aims to meet these
challenges using the sequence data as a blueprint (� Func-
tional Genomics for Characterization of Genome Se-
quences). In a broad sense, functional genomics is defined
as the large-scale experimental study of gene function and
interactions. In the above article, the techniques and chal-
lenges in functional genomics are illustrated in the context
of an ever more common case scenario: given a complete
genome sequence, how does one figure out what the se-
quence means? The current state of the art is interpreted
to arrive at the function or functions of a given genome
sequence.

Among the most fundamental problems in biology is
deciphering the relationship between genotype and phe-
notype in the complex system of life forms. Understanding
a complex system broadly requires that one (1) iden-
tify the elements, (2) determine the function of each el-
ement, (3) identify and characterize the interactions be-
tween elements, and (4) assemble all of this information
into a mathematical model that accurately simulates the
system and predicts its responses to novel perturbations
(� Systems Genetics and Complex Traits). In the context
of systems biology, this process begins with sequencing
an organism’s genome and identifying the functional ele-
ments, e. g. the genes. There are numerousmethods for de-
termining the function(s) of a given gene product, where
“function” can describe both the specific biochemical ac-
tivity carried out by the gene product and the role that
activity plays in the organism’s response to an environ-
mental or developmental stimulus. Understanding com-

plex genetics is of increasing relevance to the study of hu-
man health and is essential to the development of predic-
tive, preventive, and personalized medicine.

Systems biology is the derivation of emergent prop-
erties of a multicomponent biological system through the
construction of quantitative predictive models. These pre-
dictive models are typically formulated as networks. Hu-
man systems biology is the practice of systems biology
to elucidate emergent properties of humans or any sub-
component of the human body, such as a cell (� Systems
Biology of Human Immunity and Disease). Human sys-
tems present challenges and opportunities not found in
other organisms. Most problems in human systems biol-
ogy are motivated by a desire to understand, predict, pre-
vent, ameliorate, or cure a human disease. The human im-
mune system is a mediator for most human diseases, and
is the key system mediating autoimmune and infectious
diseases.

Understanding the operation of cellular networks is
probably one of the most challenging and intellectu-
ally exciting scientific fields today (� Biological Models
of Molecular Network Dynamics). Cellular networks are
some of the most complex natural systems we know. Even
in a “simple” organism such as E. coli, there are at least
four thousand genes with many thousands of interactions
between molecules of many different sizes. With the avail-
ability of new experimental and theoretical techniques, our
understanding of the operation of cellular networks has
made great strides in the last few decades. An important
outcome of this work is the development of predictive
quantitative models. Such models of cellular function will
have a profound impact on our ability to manipulate living
systems which will lead to new opportunities for generat-
ing energy, mitigating our impact on the biosphere and
last but not least, opening up new approaches and under-
standing of important disease states such as cancer and ag-
ing.

Biological research over the past century or so has been
dominated by reductionism – identifying and character-
izing individual biomolecules – and has enjoyed enor-
mous success. Throughout this history, however, it has be-
come increasingly clear that an individual biomolecule can
rarely account for a discrete biological function on its own.
A biological process is almost always the result of a com-
plex interplay of relationships amongst biomolecules, and
the treatment of these relationships as a graph is a natu-
ral and useful abstraction (� Biomolecular Network Struc-
ture and Function).

Broadly speaking, a biomolecular network is a graph
representation of relationships (of which there are many
types) amongst a group of biomolecules. Vertices or nodes
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represent biomolecules, including macromolecules such
as genes, proteins, and RNAs, or small biomolecules like
amino acids, sugars, and nucleic acids. An edge or link
between two vertices indicates a relationship between the
corresponding biomolecules, which could include physi-
cal interaction, genetic interaction, or a regulatory rela-
tionship (e. g., the protein product of gene A regulates the
expression of gene B). This abstraction, although simpli-
fying, converts a complex web of biological relationships
into a mathematical graph, from which we can study its
structural features as well as their implications on biologi-
cal functions.

Data integration and model building have become es-
sential activities in biological research as technological ad-
vancements continue to empower the measurement of bi-
ological data of increasing diversity and scale (� Biological
Data Integration and Model Building). High-throughput
technologies provide a wealth of global data sets (e. g. ge-
nomics, transcriptomics, proteomics, metabolomics), and
the challenge becomes how to integrate this data to max-
imize the amount of useful biological information that
can be extracted. Integrating biological data is important
and challenging because of the nature of biology. Biolog-
ical systems have evolved over the course of billions of
years, and in that time biological mechanisms have be-
come very diverse, with molecular machines of intricate
detail. Thus, while there are certainly great general sci-
entific principles to be distilled – such as the founda-
tional evolutionary theory – much of biology is found
in the details of these evolved systems. This emphasis
on the details of systems and the history by which they
came into being (i. e. evolution) are distinct features of
biology as a science, and influence the need for large-
scale data integration. Also, biological systems are re-
sponsive to varying environments, with potential sys-
tem states influenced by the combinatorics of all pos-
sible molecular and environmental perturbations. Thus,
data space in this realm is extraordinarily large. There is
no shortage of possibilities to explore, and vast amounts
of data will be needed to reengineer biological systems
and understand their workings at a (near) complete level
of detail or at a level where accurate prediction can be
achieved.

Another reason data integration is essential, is that bi-
ology arises through the complex interworking of many
components. Thus, to understand biology we must inte-
grate biological data in a way that will allow us, not only to
access all our acquired data efficiently, but even more im-
portantly allow us to study, predict, modify, and even engi-
neer the emergent properties of biological systems, where
the whole is more than the sum of the parts.

Boolean Networks are a class of discrete dynamical
systems that can be characterized by the interaction of a set
of Boolean variables. Random Boolean Networks, which
are ensembles of random network structures, are a sim-
ple model class for studying dynamical properties of gene
regulatory networks (� Boolean Modeling of Biological
Networks). Boolean Networks have been used as generic
models for dynamics of complex systems of interacting en-
tities, such as social and economic networks, neural net-
works, as well as gene and protein interaction networks.
Despite their conceptual simplicity, Boolean Networks ex-
hibit complex nonlinear behaviors that are, to this day,
a challenging object of investigation for theoretical physi-
cists and mathematicians. Further, a discretization of gene
expression is often regarded as an experimentally justi-
fiable simplification making Boolean network models at-
tractive tools for the biologist.

Many processes in cell biology, such as those that carry
out metabolism, the cell cycle, and various types of sig-
naling, are comprised of biochemical reaction networks. It
has proven useful to study these networks using computer
simulations because they allow us to quantitatively inves-
tigate hypotheses about the networks. Deterministic sim-
ulations are sufficient to predict average behaviors at the
population level, but they cannot address questions about
noise, random switching between stable states of the sys-
tem, or the behaviors of systems with very few molecules
of key species. These topics are investigatedwith stochastic
simulations (� Stochastic Models of Biological Processes).
The dominant types of stochastic simulation methods that
are used to investigate biochemical reaction networks are
covered, as well as some of the results that have been found
with them. As new biological experiments continue to re-
veal more detail about biological systems, and as comput-
ers continue to become more powerful, researchers will
increasingly turn to simulation methods that can address
stochastic and spatial details.

Systems biology has various definitions. Common fea-
tures among accepted definitions generally involve the de-
scription and analysis of interacting biomolecular com-
ponents. Systems analysis of a biological network is
quickly demonstrating its utility as it helps to characterize
biomolecular behavior that could not otherwise be pro-
duced by the individual components alone. Three areas
in which systems analysis has been implemented in biol-
ogy include: (1) the generation and statistical analysis of
high-throughput data in an effort to catalog and charac-
terize cellular components; (2) the construction and analy-
sis of computational models for various biological systems
(e. g., metabolism, signaling, and transcriptional regula-
tion); and (3) the integration of the knowledge of parts and
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computational models to predict and engineer biological
systems (synthetic biology). Metabolism, as a system, has
played an important role in the development of systems bi-
ology, especially in the modeling sense (� Metabolic Sys-
tems Biology). This is because the network components
(e. g., enzymes and metabolites) have been studied in de-
tail for decades, andmany links between components have
been experimentally characterized. Metabolic systems bi-
ology, compared to systems biology in general, entails the
computational analysis of these enzymes and metabolites
and the metabolic pathways in which they participate.
Metabolic systems biology, using genome-scale metabolic
network reconstructions and their models, has helped
(1) to elucidate biomolecular function; (2) to predict phe-
notypic behavior; (3) to discover new biological knowl-
edge; and (4) to design experiments for engineering appli-
cations. Constraint-based methods have played a pivotal
role in the analysis of large and genome-scale metabolic
networks. The structure, mathematical formulation, and
analytical techniques of constraints-based methods have
also paved the way for the successful modeling of other
complex biological networks, such as transcriptional reg-
ulation and signaling networks.

Finally, ecological systems are paradigmatic examples
of complex systems. For example, consider the thousands
of species interacting in complex ways within rich com-
munities such as tropical rainforests or coral reefs. The
most pressing questions ecologists face deal with concepts
such as stability, resilience, thresholds and non-linearities
which are at the core of the sciences of complexity. How
robust are these cathedrals of biodiversity? At which rate
will they disassemble as a consequence of global change.
For example, one of the long-standing questions in ecol-
ogy is the relationship between complexity and stability.
A review of some of the applications of the complexity
sciences in the realm of ecological systems is presented
(� Ecological Systems). Predicting the consequences of
global change on biodiversity requires an interdisciplinary
approach in which complexity approaches may be very
useful. Information theory and diversity, networks, com-
plex dynamics and spatiotemporal dynamics are all dis-
cussed relative to ecology as a complex system.

Additional articles connected to Systems Biology:
� Consciousness and Complexity
�Molecular Evolution, Networks in
� Complexity in Systems Level Biology and Genetics:

Statistical Perspectives
� Fractals in Biology
� Biochemistry, Chaotic Dynamics, Noise, and Fractal

Space in
� Exobiology and Complexity

Systems and Control, Introduction to
MATTHIAS KAWSKI
Department of Mathematics and Statistics,
Arizona State University, Tempe, USA

Control of dynamical systems has a long history: Watt’s
automatic centrifugal governor designed to regulate steam
engines in the 1780s is considered a precursor of modern
feedback control. Similarly, Bernoulli’s work in the 1690s
on the brachystochrone problem is a progenitor of optimal
control. A distinguishing external feature of controlled dy-
namical systems is the presence of inputs that interact with
the system in the form of deliberate controls, or unavoid-
able perturbations. Commonly control systems also have
outputs (observations) that typically provide only incom-
plete information about the state of the system. Systems
and control theory utilizes a broad array of mathemati-
cal disciplines – but a uniting, characteristic feature is the
kind of questions being asked. In the 1950s the field be-
camemore formalized, it began to develop its own distinc-
tive identity, and it has rapidly evolved ever since. Natu-
rally, the linear theory developed first and quickly became
amature subject, with controllers now pervading everyday
life, from thermostats, dozens of controllers in every auto-
mobile, to cell phones, attitude control of satellites, elec-
tric power networks, highway traffic control, to name just
a few.

The articles in this section focus on the more recent
developments, articulating how the fundamental problems
and questions of systems and control theory are addressed
in ever new settings, on new tools, and new applications.

Whereas in classical dynamical systems one tries to
predict the uniquely determined future, a basic distin-
guishing question in control theory asks whether it is pos-
sible to steer the system to any desired target. This ques-
tion about controllability has a simple and elegant answer
in the case of linear systems. While much also is known
for nonlinear systems, many challenges remain in both
the finite dimensional setting [see � Finite Dimensional
Controllability] and in the setting of distributed systems
modeled by partial differential equations [see � Control
of Non-linear Partial Differential Equations].

Assuming controllability using controls that are func-
tions of time, the next question asks whether one can au-
tomate the control using feedback, that is, by making it
a function of the state or of a measured output. Whereas
for linear systems the theory is straightforward, unavoid-
able topological obstacles make nonlinear feedback stabi-
lization problems much more challenging [see � Stabil-
ity and Feedback Stabilization]. A notion dual to control-
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lability is that of observability: Rather than asking about
the map from inputs to the state, a system is observable
if the history of the outputs (measurements) determines
the state of the system [see�Observability (Deterministic
Systems) and Realization Theory]. The typical engineer-
ing problem involves much more complex multi-tasking,
dealing with multiple objectives in the presence of diverse
constraints. Much of this well developed theory of output
regulation, disturbance rejection, while attending to per-
formance criteria, has recently been generalized to non-
linear systems [see � System Regulation and Design, Ge-
ometric and Algebraic Methods in]. Generally, if there is
one, then there are many control strategies that achieve
a certain task – naturally one likes to single out a strategy
that is the best. This leads to optimal control theory, which
supersedesmuch of the classical calculus of variations, and
which has rich interfaces with Lagrangian and Hamilto-
nian mechanics [see � Maximum Principle in Optimal
Control].

In many applications all one has to work with are sam-
pled data for inputs and measured outputs. Moreover,
commonly these are also corrupted by measurement er-
rors and noises. A fundamental problem is to devise algo-
rithms to identify the best model system that could gen-
erate these input-output pairs. Characteristically such al-
gorithm should work in real time and improve the model
upon newly available measurements. This well developed
broad field includes geometric approaches to stochastic
systems [see � Stochastic Noises, Observation, Identifica-
tion and Realization with] as well as more formal learning
theories [see� Learning, System Identification, and Com-
plexity].

Systems and control theory is unified by a common
core of questions, but employs a diverse array of mod-
els. Consequently it interfaces a wide range of mathe-
matical disciplines, utilizes many different mathematical
tools, but also fosters new development in diverse sub-
disciplines. An area that has evolved closely together with
control is nonsmooth analysis with its rich theory of tan-
gent objects to nonsmooth sets. Not only are controlled
dynamical systems naturally modeled by differential in-
clusions, but control intrinsically is full of objects that are
not differentiable in a classical sense. Most important is
the value function in optimal control which encodes the
minimal cost (time) to the target. Closely related to clas-
sical dynamic programming, this function ought to sat-
isfy the Hamilton–Jacobi–Bellmann equation, a first order
partial differential equation, but the value function gener-
ally is not differentiable in a traditional sense [see�Nons-
mooth Analysis in Systems and Control Theory]. Comple-
mentary to the nonsmooth approach are differential ge-

ometric approaches which include Lie theory and sym-
plectic geometry. Closely related is a functional analytic
operator calculus introduced into control by Agrachëv
and Gamkrelidze which linearizes problems by imbedding
them into infinite dimensional settings. This dramatically
facilitates formal manipulations of nonlinear objects, and
also gives new ways of looking at the underlying geome-
try [see� Chronological Calculus in Systems and Control
Theory].

Many of the early successful engineering implemen-
tations of systems and control theory used models with
both continuous time and states (differential equations).
But with the advent of ubiquitous digital controllers as
well as ever broadening fields of applications the theories
for increasingly diverse models are becoming well devel-
oped, too. These include, systems with or mix of continu-
ous and discrete states (suitable, for example, tomodel sys-
tems with hysteresis) [see� Hybrid Control Systems] and
discrete time Hamiltonian and Lagrangian systems [see
� Discrete Control Systems] There are many new appli-
cations with quickly developing theories such as control
of biological and biomedical applications, social dynam-
ics, manufacturing systems, financial markets, and many
more. Some of the most intense research in recent years
has focused on systems with distributed intelligent agents
(controllers) each of which has access to only local infor-
mation [see � Robotic Networks, Distributed Algorithms
for]. Compared to these emerging areas the geometric the-
ory of mechanical systems is one of the most mature and
thriving research areas with scores of exciting new prob-
lems. It serves as a role model for the depth of geometric
insight and for its well-understood close interconnections
with many other disciplines [see � Mechanical Systems:
Symmetries and Reduction].
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Glossary

Allele A copy or alternate version of a gene.
Complex phenotype A trait (or phenotype) caused by

polymorphisms in multiple genes.
Diploid An organism with two copies of each chromo-

some.
Epistasis A genetic interaction in which the double-mu-

tant phenotype is identical to one of the single-mutants
(masking epistasis); sometimes used as a general term
for genetic interaction.

Genetic interaction A relationship that characterizes
how two (or more) genetic perturbations or alleles
combine to affect a phenotype.

Genetic network A representation of functional relation-
ships between genes, gene products, or gene perturba-
tions, often displayed as a graph.

Genetic perturbation The modification of a gene’s pres-
ence, structure, or activity by a change in the DNA se-
quence in or near a gene.

Genetic transformation Genetic modification of a cell by
the introduction of exogenous genetic material.

Haploid An organism with one copy of each chromo-
some.

Haplotype A set of polymorphisms that are linked and
thus inherited as a unit.

Homolog One of two or more genes with similar DNA
sequence due to shared ancestry.

Hybrid A diploid offspring from the mating of individu-
als from two distinct populations.

Intercross The mating of individuals from two distinct
populations.

Isogenic A term describing strains of model organisms
that are derived from the same individual or inbred
line, e. g. the yeast deletion collection, in which each
strain differs only by the presence of a specifically en-
gineered mutation (e. g. a gene knock-out).

Masking epistasis A genetic interaction in which the
double-mutant phenotype is identical to one of the sin-
gle-mutants.

Mendelian genetics The study of traits caused by varia-
tions of a single gene.

Microarray hybridization Sequence-specific binding of
nucleic acid (DNA or RNA) to short nucleic acid se-
quences tethered to a microarray chip.

Molecular barcode A short, unique sequence inserted
into DNA that can be used to identify or quantify
a gene, gene product, or strain.

Network motif A small subnetwork repeated in a larger
network, suggesting repeated organization for a spe-
cific function.

Phenotype An observable property of an organism;
sometimes implies an aberrant property, e. g. the mu-
tant has a phenotype.

Pleiotropy The phenomenon in which a mutation in
a single gene causes multiple phenotypes.

Quantitative trait locus (QTL) A chromosomal region
linked to a measurable phenotype.

RNA interference (RNAi) Amethod of silencing a gene’s
expression by introducing a small RNA molecule with
sequences complementary to a portion of the gene’s
mRNA transcript.

Reciprocal-hemizygote A hybrid in which one copy of
a gene or chromosomal region has been removed.

Sporulation The formation of spores in fungi, produced
by meiosis.

Synthetic sickness or lethality (SSL) A genetic interac-
tion in which two genetic perturbations without indi-
vidual fitness effects combine to cause a fitness defect
or inviability.

30 Untranslated region (UTR) The RNA sequence that
follows the protein-coding region of a messenger
RNA.

Definition of the Subject

Among the most fundamental problems in biology is de-
ciphering the relationship between genotype and pheno-
type. Genetics, the study of how the DNA sequence of
an individual (genotype) affects an observable character-
istic (phenotype), has many properties of a systems sci-
ence. Organisms contain large number of protein-cod-
ing genes, with � 500 predicted in the simple bacterium
Mycoplasma genitalium, � 25,000 in the human genome,
and over 50,000 in some plants. The relationship between
genotype and phenotype can be complex, with multi-
ple traits per gene (pleiotropy) and multiple genes per
trait (complex phenotypes). Genes are the blueprints for
both RNA transcripts and proteins that interact physically
and functionally to produce the emergent behaviors that
characterize life. Furthermore, biological systems can be
systematically studied by perturbing elements of the sys-
tem, such as genes or environmental factors, and quan-
titatively measuring the effects. This research strategy is
generally considered a central component of systems bi-
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ology [39,40], and here we refer to its application to the
genotype-phenotype problem as systems genetics.

Understanding a complex system broadly requires one
to (1) identify the elements, (2) determine the function
of each element, (3) identify and characterize the inter-
actions between elements, and (4) assemble all of this
information into a mathematical model that accurately
simulates the system and predicts its responses to novel
perturbations. In the context of biology, this process usu-
ally begins with sequencing an organism’s genome and
identifying the functional elements, e. g. the genes. There
are numerous methods for determining the function(s) of
a given gene product, where “function” can describe both
the specific activity carried out by the gene product and
the role that activity plays in the organism’s response to
an environmental or developmental stimulus. For exam-
ple, molecular or biochemical methods may reveal a pro-
tein to be enzyme that converts a substrate to a product,
while genetic analysis may reveal that this activity is re-
quired for growth in the presence if a specific drug. Simi-
larly, there are both molecular and genetic means of deter-
mining which gene products interact with each other, by
detecting physical interactions (e. g. protein binding) and
genetic interactions (e. g. a mutation in one gene modifies
the effect of a mutation in a second gene). These inter-
actions vary with respect to the nature, strength, and di-
rectionality of the interaction. Integrating these data into
a coherent computational model of the system is a major
challenge of systems biology, with early examples includ-
ing a comprehensive analysis of the galactose utilization
pathway in yeast [40] and bacterial chemotaxis [70].

Systems genetics approached to this problemuse large-
scale, high-throughput methods to decipher the network
of gene functions and genetic interactions in an organism.
Apart from their genome-wide scale, the data and meth-
ods used often mimic those of conventional genetic anal-
ysis. In classical Mendelian genetics, genes are defined as
the entities by which traits are inherited. A specific trait ex-
hibited by an organism thus depends on the version(s) of
the corresponding gene, known as an allele, carried by that
individual. Modern molecular biology has narrowed the
concept of a gene to a distinct DNA sequence that is tran-
scribed to encode an RNA or protein product. However,
few phenotypes are entirely determined by a single gene.
In most cases, multiple genes interact to confer a pheno-
type. These interactions can vary from simple modifier re-
lationships, in which an allele of one gene alters the pheno-
type of another gene, to multiple genes with complicated
interdependencies. The study of howmultiple genes inter-
act to influence a trait is generally known as complex ge-
netics.

Understanding complex genetics is of increasing rele-
vance to the study of human health and is essential to the
development of predictive, preventive, and personalized
medicine. Many diseases, such as asthma, diabetes, heart
disease, and cancer, show a degree of heritability that can-
not be traced to a single gene [3]. Moreover, risks inherited
from identified disease genes are often modified by back-
ground gene variation [11,22,33,34]. Genetic risk in these
cases is determined by an individual’s allelic profile across
many genes, combined with multiple environmental fac-
tors. Many of these allelic variations consistently appear
together, as haplotypes, which are beingmapped in the hu-
man HapMap project [1]. Multiple genes involved in can-
cer are being cataloged in The Cancer Genome Atlas [17].
This data must be combined with new modeling tech-
niques to develop models for understanding the multi-
genic, molecular basis of human diseases. Developing new
treatments for diseases with genetic susceptibilities will re-
quire not only the ability to genotype and classify patients
on the basis of molecular fingerprints in tissues, but also
an understanding of how genetic variants interact to affect
clinical outcomes.

Introduction

Genetic interaction refers to the phenotypic effect of com-
bining two or more genes with allelic variations. Ge-
netic interactions are ideally observed under constant en-
vironmental conditions and in isogenic strains of model
organisms, so that the lone variables are the genetic per-
turbations (i. e. the allele forms) carried by the strains be-
ing compared. Since genetic variants often combine in
complex ways to affect phenotypes, it is necessary to in-
fer and model the functional interactions between trait
genes rather than viewing each gene as an independent
factor. These functional interactions include all modes of
activation or repression of one gene’s activity by another.
Take as an example, a measurable phenotype and a wild-
type strain that defines the genetic background. Next con-
sider two genes, A and B, which can be varied from that
of the wild-type strain by mutations such that the (iso-
genic) genetic background is otherwise unchanged. Tak-
ing cell growth in the presence of the drug caffeine as an
example phenotype, imagine that a mutation in A inhibits
growth in the presence of caffeine. The presence of an ad-
ditional mutation (B) in the strain (i. e. an AB double mu-
tant) could have one of many different effects. B could of
suppress the phenotype of A (restoring wild-type growth
on caffeine), enhance the phenotype (decreasing growth
on caffeine further than that observed in the A single mu-
tant), or show no effect at all (growth equal to that of the A
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mutant). Interactions such as these have historically been
used to map functional pathways [36].

In addition to the direction of the effect, the magni-
tude of phenotypic suppression or enhancement also pro-
vides important information about the nature of the ge-
netic interaction. Additive effects, where the magnitude of
an AB double mutant is equal to the combined effect of
each individual’s phenotype, are consistent with indepen-
dent (non-interacting) genes in the same genetic pathway
(e. g. where A and B both confer a phenotype) or in dif-
ferent genetic pathways (e. g. where A displays the pheno-
type, but B does not). Synergistic effects describe an AB
double mutant trait that is quantitatively more extreme
than would be expected from the linear combination of
both. Perhaps the best studied class of synergistic inter-
action is synthetic lethality [21], in which the combination
of two non-lethal mutations, A and B, combine to con-
fer lethality in the AB double mutant. The concept has
been appreciated for many years in both fruit fly [75] and
yeast [30], and synthetic lethal interactions have identified
redundant functions in a common (essential) biological
pathways and parallel functions in separate pathways that
are able to buffer each other [32]. Such buffering against
genetic defects has long been believed to confer a fitness
advantage [84]. The buffering of disease-related genes is of
particular interest in identifying alleles that either alleviate
or aggravate effects within individuals across a genetically
diverse population.

In addition to assigning genes to functional pathways
and uncovering functional relationships between path-
ways, the direction and magnitude of genetic interactions
can also be used to determine the fine-structure of a ge-
netic network and information flow through the system.
Analysis of synthetic and epistatic interactions (Fig. 1) can
be used to determine functional topology and the direc-
tion of information flow, commonly referred to by geneti-
cists as “ordering genes in a pathway” [4]. Taking again
the example of a mutation in gene A that inhibits growth
in the presence of caffeine, now consider a mutation in
another gene, C, that enhances growth under that condi-
tion. If the phenotype of an AC double mutant is a caffeine
growth defect equal to that of the A single mutant, A is
said to be epistatic to C. Such an interaction is often in-
terpreted as evidence that A acts downstream of C, in that
its mutation masks any modifications that occur further
upstream of the phenotypic output [4]. This hypothesis is
an example of serial information flow through the system,
with the perturbed genes influencing each other and the
growth phenotype in a linear sequence.

While genetic interaction analysis cannot, when taken
alone, decipher the biochemical activity of the gene prod-

ucts, it can establish functional relationships between gene
pairs. One can thus view a genetic interaction as providing
a comprehensive view of the coordinated activity of two
genes, encompassing every step in cellular processing be-
tween genotype and phenotype. A broad picture of com-
plex genetic control emerges when these interactions are
assembled into a network.

Measuring Genetic Interactions Genome-Wide

Since assaying a genetic interaction requiresmeasuring the
phenotype of interest in multiple strains, inferring genetic
interactions on a genome-wide scale has historically been
intractable. The application of high-throughput assays in
model organisms with sequenced genomes has made the
systematic study of complex genetics possible. To date,
these studies have primarily involved the yeast Saccha-
romyces cerevisiae, which is easy to genetically modify and
has a large community of researchers committed to the
public dissemination of genome-wide reagent sets, and the
nematodewormCaenorhabditis elegans, which has proven
amenable to perturbations by RNAi. The large-scale study
of how a genotype contributes to the control of a pheno-
type has been greatly aided by advances inmethods to both
systematically perturb genes and measure phenotypes on
a genomic scale. These high-throughput methods produce
large, quantitative data sets, requiring parallel develop-
ment of computational and numerical modeling methods
to interpret the output in terms of biological function. The
primary objective of these methods is to identify func-
tionally relevant genes and describe how they influence
one another to generate cellular activity. Using a systems
biology approach to integrate this knowledge with other
data types has the potential to generate models capable of
validating biological insights and identifying high-priority
candidate molecules for targeted therapeutic intervention.

Synthetic Sickness and Lethality

Functional profiling of individual genes is most directly
carried out by deleting the gene and observing pheno-
typic consequences. Through advances in genomics [87],
a library of yeast mutants [27] now exists with deletions
for every gene in the background of the laboratory strain
derived from S288c [86], which was sequenced in the
yeast genome project [29]. The yeast genome contains
� 6000 protein coding genes (also know as open read-
ing frames or ORFs). Approximately 5000 of these genes
are nonessential and were deleted by replacing the gene
of interest with a “marker gene” that confers drug resis-
tance and two molecular barcodes, short DNA sequences
that uniquely identify each deletion mutant. The remain-



Systems Genetics and Complex Traits S 9109

Systems Genetics and Complex Traits, Figure 1
Two examples of genetic interactions for yeast invasion. Left panels show the interaction between deletions of SFL1 and FLO11, and
the right panels show the interaction betweendeletions ofHOG1 and TPK3. aYeast invasion assays for relevant strains. Yeast colonies
(light spots) were grown for two days on nitrogen-limiting media (prewash) and cells were scraped from the surface (postwash).
bQuantification of invasive growth, as the ratio of photo-assay signal before and after wash. Experimental ranges were determined
by the variation among replicate colonies. cGenetic interactions as classified by Drees et al. [23]. d Classical genetics interpretations
of pathway ordering. Epistasis (left) implies the genes are sequential in a pathway, and synthesis (right) implies the genes lie in
parallel pathways. (Adapted from [23])

ing� 1000 genes are essential for cell viability under stan-
dard laboratory conditions and thus must be maintained
in strains that contain another functional copy of the gene.
The lists of essential and non-essential genes are contin-
ually updated [44] as ORF annotation and verification
improves [46] and closely-related strains of S. cerevisiae
that have slight variations in essential genes are discov-
ered [63]. Nonetheless, the observation that only 15–20%
of yeast genes are essential, at least under optimal growth
conditions, suggests that the genetic network governing

yeast growth buffers the cell against genetic variation [32]
and implies that multiple genetic mutations may compro-
mise cell growth to a much greater degree than that ob-
served for any single mutation.

Using the yeast deletion library as a starting point,
three methods – synthetic genetic array (SGA), diploid-
based synthetic lethality analysis with microarrays
(dSLAM), and epistatic miniarray profiles (E-MAP) –
have been developed as comprehensive, high-throughput
assays for detecting pair-wise genetic interactions that
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Systems Genetics and Complex Traits, Figure 2
Overview of the synthetic genetic array (SGA) and diploid-based synthetic lethality with microarrays (dSLAM) methods. Many of
the experimental details have been simplified, more detailed descriptions are presented in [6]. In the SGA method a haploid strain
(yellow) is constructed that contains a deletion of the “query gene” marked by a selectable drug marker (Natr) and a specialized
reporter gene that facilitates high-throughput selection of haploid progeny that have mated and undergone sporulation 79. The
query strain is mated to an ordered grid, haploid yeast deletion library (blue) marked by the selectable drug marker G418r , forming
diploids (green) that contain both deletion mutants, but which also contain a functional copy of each gene. Those diploids are then
sporulated, allowing random shuffling of the genes and produces haploid progeny, which will only contain one copy of each gene
of interest, i. e. the deleted or functional copy of the query gene. In the final step (photograph of actual yeast grids), haploid progeny
that contain both the query gene (Natr) and the deletion strain present in that position of the grid (G418r) are selected. The ability
of the haploid progeny to grow in the presence of both drugs indicates that both deletions are present in the same strain, i. e. no
interaction. Lack of growth indicates the inability to recover the double mutant combination, i. e. synthetic lethality

confer synthetic growth defects. Experimental details of
these methods have been extensively reviewed [6,48,56].
We briefly summarize them here, as data generated by
these methods dominates the genetic interaction data cur-
rently available.We then discuss other methods now being
applied to comprehensively measure genetic interactions
in yeast, worm, and mouse.

The synthetic genetic array (SGA) method (Fig. 2) was
developed by Boone and colleagues [79,80] and extended
to incorporate essential genes by transcriptional control
via an artificial promoter [20]. The availability of a vari-

ety of drug-resistance markers enables a simple strategy
for efficient construction of double gene deletion strains in
yeast. Each strain in the haploid yeast deletion library har-
bors a gene (Kan) that confers resistance to the drug G418.
In the SGA method a second haploid strain is constructed.
This strain is a different mating type, and contains a dele-
tion of the gene of interest marked by a gene (Nat) en-
coding resistance to a second drug (nourseothricin) and
a reporter gene that enables selection for haploid progeny
strains. This strain is mated to the deletion library, the re-
sulting diploid strains are sporulated, and haploid progeny
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resistant to both drugs are selected. Synthetic lethality is
indicated by the inability to recover haploid strains with
both drug markers, suggesting that this combination of
mutant alleles is inviable. Double mutants which show sig-
nificant growth defects (so called “synthetic sickness”) can
also be identified by this method. The throughput of the
method is increased by robotic manipulation of strains
and phenotype scoring by image analysis software. To
date, over 400,000 interactions have been tested and tens
of thousands have been discovered [61], providing suffi-
cient data for sophisticated network analysis and a valu-
able source of functional relationships between hundreds
of yeast genes [80].

The issue of precise growth quantification of dou-
ble-mutants has been addressed by a modification of the
SGA method. In this approach, called epistatic miniar-
ray profiles (E-MAP), growth rates are quantified and ge-
netic interactions are identified as cases in which a dou-
ble mutant strain exhibits a growth rate significantly above
or below the expectation based on the two single mu-
tants [19,64]. Essential genes were tested in this study by
decreasing mRNA abundance via destabilization of the
3’ UTR. Precise quantification of growth rates was per-
formed by photo-assays of colony size and, based on the
assumption that genetic interactions are rare, identify-
ing the most significant deviations from the expectation
that a double-mutant growth rate will be the product of
the two single-mutant growth rates. Interactions with ex-
pected growth rates were classified as neutral, those with
growth rates above expectation were labeled alleviating,
and those with growth rates below expectation were la-
beled aggravating. To date, pair-wise interactions between
424 genes that localized to the endoplasmic reticulum [64]
and 743 Saccharomyces cerevisiae genes involved in var-
ious aspects of chromosome biology (e. g. DNA replica-
tion/repair, chromosome segregation and transcriptional
regulation) [18] have been tested.

Diploid-based synthetic lethality analysis with micro-
arrays (dSLAM) (Fig. 3) is an alternate, transforma-
tion-based approach to assaying synthetic lethal interac-
tions [57,58]. The method relies on molecular barcodes
that uniquely mark each deletion strain to identify double-
mutant fitness defects by DNA microarray hybridization.
Heterozygous diploid knockouts [27] are initially trans-
formed with a reporter gene that enables their conversion
to haploid mutants following sporulation. Then, the gene
of interest is deleted via high-efficiency integrative trans-
formation, and the pool of yeast strains is sporulated and
separated into single and double mutants using the drug
resistance markers. Genomic DNA containing identifying
bar codes from each pool is isolated. Bar codes are am-

Systems Genetics and Complex Traits, Figure 3
The dSLAM method takes advantage of the molecular barcodes
present in each deletion strain to facilitate the manipulation
of strains in a pooled format. This method uses a diploid ver-
sion of the yeast deletion set (heterozygous diploids) in which
each strain contains both the gene deletion (G418 r ) and a func-
tional copy of the same gene. Prior to the analysis, the same re-
porter gene that facilitates high-throughput selection of haploid
progeny used in SGA is introduced into all of the strains (not
shown). The first step is the deletion of the query gene in (ide-
ally) all the strains in the pool by transforming in a construct that
will delete the gene of interest and contains amarker that will al-
low successfully transformed cells to grow in the absence of the
nutrient uracil (Ura+). The pool is then sporulated and haploid
progeny containing both the G418 r deletion from the collection
and Ura+ query deletion are selected. DNA is then isolated from
the pool of strains and the sequences containing the molecular
barcodes are fluorescently labeled and hybridized to a DNA mi-
croarray that can detect the barcode sequences. Thus, microar-
ray intensity provides a quantitative readout of the amount of
each mutant recovered in the selection, with extremely low mi-
croarray intensity indicating synthetic lethality
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plified, labeled, and hybridized to microarrays to quantify
the ratio of single to double mutant growth rates. SSL in-
teractions, also referred to as synthetic fitness or lethal-
ity (SFL) defects, are identified by high ratios that corre-
spond to reduced double-mutant growth. Initial compar-
isons provide evidence that the dSLAM method achieves
higher data consistency and lower false-negative rates than
the SGA approach. dSLAM can also be modified to study
dosage dependent SSL, genetic suppression, and haplo-in-
sufficiency. Although the microarray basedmethod poten-
tially allows a more quantitative measure of synthetic sick-
ness, the low signal intensity observed for many barcodes
has hindered precise quantification. Because it relies on
growth in mutant pools, the dSLAM method may be the
most efficient method for genome-wide SSL screens.

The relatively recent introduction of RNA interference
(RNAi) technology for gene knock-down allows multiple
loss-of-function genetic perturbations to be carried out at
high throughput [43,50] in model organisms such as the
worm C. elegans and the fruit fly D. melanogaster. Large-
scale RNAi based synthetic lethal screens have been per-
formed in C. elegans [49]. Approximately 350 synthetic
interactions between 160 genes in the worm EGF/Ras,
Notch, and Wnt signaling pathways were discovered
among 65,000 tested gene pairs. The highly-connected
“hub” genes encode chromatin regulation proteins that are
conserved across multiple species, which were hypothe-
sized to be general buffers of genetic variation. Another
study used the same experimental techniques to test func-
tional redundancy between duplicated genes in C. ele-
gans [78]. Synthetic interactions were detected in eleven
percent of the duplicated pairs tested (16/143), suggest-
ing that in some cases duplicated genes have a degree of
functional redundancy. Interestingly, the majority of the
interacting gene pairs were found to be duplicated over 80
million years ago, strongly suggesting that this functional
redundancy can be conserved by positive selection.

Genetic Interactions for Quantitative Phenotypes

The vast majority of genetic interactions detected by the
large-scale methods described above have been limited
to the phenotype space of growth in rich yeast medium.
However, phenotypes can be derived from any observable
trait, including growth under a variety of environmen-
tal conditions, cell morphology, metabolite production, or
gene expression pattern. To date, the most comprehensive
analysis of genetic interactions detected using a phenotype
other than growth in rich media include an analysis of in-
teractions in nitrogen-poor media [23], or in the presence
of a DNA damaging agent [71].

Systems Genetics and Complex Traits, Figure 4
Subsection of the yeast invasion network showing genes from
various pathways and the variety of genetic interactions ob-
served. Edge colors correspond to different interaction modes,
e. g. violet is epistasis, yellow is synthesis, and dark blue is addi-
tivity. Subset of data from [23]

A mixture of gene deletions and high-copy, gain-of-
function gene mutations were combined to map inter-
actions in the yeast invasion network for nitrogen-poor
media (Fig. 4) [23]. When starved for nitrogen, many
strains of S. cerevisiae undergo cell differentiation into
a pathogen-like, filamentous growth form and colonies
subsequently invade solid media [28]. Drees and co-work-
ers measured invasive growth by photographing colonies
before and after vigorously washing cells from the agar
surface (Fig. 1a). Multiple replicates of each genotype were
assessed using image analysis software to quantitatively
determine amean invasion score and its variance (Fig. 1b).
Since the phenotypes of the original single mutants ranged
from non-invasive to strongly hyper-invasive, a wide va-
riety of genetic interactions were possible. These interac-
tions were first translated into mathematical inequalities
that defined the relationship between the wild-type strain,
the two single mutants, and the double mutant in terms
of “less than”, “greater than”, and “equal to” relationships.
For example, a synthetic interaction in which a double mu-
tant (AB) exhibits a phenotype not shown by either sin-
gle mutant (A or B) would be either “AB <A=B=WT”
or “A =B=WT<AB”. After systematically enumerating
all 45 possible inequalities, the equations were grouped
into nine “modes” of genetic interaction. Many of these
interaction modes, such as synthesis, epistasis, or suppres-
sion, are well known to geneticists, but less familiar modes
also appear. For example, the mode labeled “asynthesis”
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was defined as a double mutant phenotype which matched
that of both single mutants but was distinct from the wild
type. This general analysis was applied to over 130 genes
and over 1800 pair-wise interactions were tested, revealing
a rich spectrum of functional interactions that included
examples of all nine modes.

A similarly multi-modal genetic interaction network
was more recently constructed for genes that impart re-
sistance to the DNA-damaging agent methyl methanesul-
fonate (MMS) [71]. Twenty-six such gene deletions (out
of over 4700 tested) were identified by reduced growth
rate in the presence of MMS, and double-mutant strains
were constructed and assayed for all 325 pair-wise combi-
nations. Although the selection method precluded the de-
tection of synthetic interactions, this study is a quantitative
analysis of genetic interactions among a set of genes impli-
cated in a specific biological process.

Analysis of Complex Phenotypes
that Result from Natural Variation

Although the majority of systems biology approaches to
complex genetics have involved engineered genetic per-
turbations, genetic interaction studies are being extended
to models of natural populations. A series of papers by
Kruglyak and colleagues have attempted to infer genetic
interactions in recombinant progeny strains [7,8,74]. In
this work, two parent yeast strains, the sequenced “lab-
oratory strain” (BY) and a “wild strain” isolated from
a vineyard (RM) were mated and 112 haploid progeny
strains were isolated. Each strain was genotyped at ap-
proximately 3000markers and RNA expression levelswere
measured using DNA microarrays [9]. Statistical linkages
were found between expression variations and quantita-
tive trait loci (QTLs), and these loci were then assessed
for interactions [74]. Although the data suggest that most
transcripts were influenced by multiple loci [7], statis-
tically significant pair-wise interactions have only been
found for 225 transcripts [8]. Another series of yeast stud-
ies, taking high-temperature growth (HTG) as a quantita-
tive phenotype, used reciprocal-hemizygosity as a tool to
dissect QTLs in yeast [72]. The contribution of each al-
lele to HTG was inferred by constructing hybrids of two
yeast strains and then systematically deleting one copy of
each gene within a candidate QTL. The QTL architecture
was found to be more complex than expected, featuring
both in cis and in trans linkages and suggesting that QTL
regions cannot always be narrowed to a single local gene.
The method was also used to explore how the influences of
three trait genes were affected by variation in genetic back-
grounds [69]. Reciprocal-hemizygosity analysis with ten

other yeast strains demonstrated that the trait genes iden-
tified in one background did not necessarily contribute
in the same way in other genetic backgrounds. These re-
sults demonstrate that, in addition to complexity within
a QTL region, there is additional complexity due to ge-
netic interactions. Together these studies illustrate some of
the substantial complications that will arise in the analysis
of complex genetics in the context of natural populations,
such as the identification of trait loci in a background
of genetic random variance, the separation of phenotypic
effects from cis-acting and trans-acting polymorphisms,
and the limitations of the pair-wise interaction analysis to
complex genetics.

Furthermore, the logic of genetic interactions could be
applied to functional interactions between different types
of biomolecules. For example, recent work has studied the
genetic basis of drug response in yeast [59]. Multiple poly-
morphisms were found that linked genetic loci to certain
small molecule drugs, constituting a set of 124 gene-drug
interactions. This approach provides a model for under-
standing variation in drug response within a genetically
diverse population. Another study directly applied genetic
interaction techniques to pair-wise interactions between
drugs by mapping a set of compounds into classes that
correspond to the cellular functions they affect [93]. These
works begin to address how the understanding of complex
genetics can be extended to involve additional system ele-
ments and, ultimately, generate a view of the organism as
a complex system.

Overall, the study of genetic interactions is a field that
has seen substantial development in the past decade.High-
throughput methods will continue to open new avenues of
research and expand established approaches to genome-
wide scales. Data generated by these experiments will re-
quire formal and systematic approaches for analysis. Cur-
rently, network methods are the dominant framework.

Constructing Genetic InteractionNetworks

Prior to high-throughput experimentation, genetic stud-
ies mapped interactions between a few genes in isolated
functional pathways. These pathways represent informa-
tion flow through a small number of elements that regulate
a specific cell behavior, such as response to osmotic stress.
Today, high-throughput techniques enable the assembly
of large-scale genetic interaction data into networks and
hold the potential for constructing semi-global maps of
multiple, inter-connected pathways.

This wealth of data requires a formalism to efficiently
analyze relationships between system elements. Complex
systems are often best visualized as networks in which in-
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dividual points, called nodes, are connected by lines or
arrows, called edges. In genetic interaction networks, the
nodes commonly represent genes, alleles, or gene pertur-
bations (e. g. a gene deletion). Edges that connect nodes
can take on different meanings, ranging from classic regu-
latory influences of one gene’s activation or repression of
another’s activity to edges that signify a direct observation,
such as synthetic lethality. The central challenge is to rep-
resent the richness of complex genetics in an informative
way. Because the construction of each study is informed by
a different biological problem, diverse network approaches
have been pursued in the literature.

Since they are binary, synthetic lethal interactions are
easily represented as a network of gene deletions con-
nected by SSL edges. Although the formal information
content of the edges is low, SSL networks have the ad-
vantage of relatively high coverage. Pair-wise combina-
tion of about 1000 yeast genes have been tested, and al-
though this represents only 3% of all possible yeast pairs
it encompasses 500,000 experiments. Four thousand of
these pairs were SSL positive, producing a sparse but topo-
logically interesting network. Non-essential genes aver-
aged 34 synthetic lethal partners, and essential genes were
found to have more interaction partners on average [80].
Extrapolating these results genome-wide, the authors es-
timate 200,000 essential pair-wise combinations in yeast,
a number of lethal outcomes that is much larger than the
1000 genes that are essential individually [6]. The current
network of 4000 genetic interactions demonstrates that
SSL interactions are more likely to occur between non-
essential genes of the same or related function, unlike SSL
partners of essential genes that tend to show a broad spec-
trum of functions. This suggests that network location can
be a predictor of gene function for non-essential genes,
enabling novel functional hypotheses for genes based on
a common function of interaction partners.

The known SSL network exhibits two interesting topo-
logical properties. First, it appears to be a small world net-
work, defined as a network in which the length of the
shortest path between two nodes is smaller than random
expectation. Nodes are densely grouped into local clusters
in which the interaction partners of any gene also tend
to interact. Thus, the most likely candidates for SSL in-
teractions for a given gene are the interaction partners
of its known SSL partners, greatly increasing the likeli-
hood of finding additional interaction partners in a tar-
geted screen [80]. The second network property observed
is that the number of SSL partners for each gene follows
a power-law or scale-free distribution in both the yeast [80]
and worm [49] data. As a result, most genes have relatively
few interactions, and a small number of genes have rela-

tively large number of interactions. This latter set, referred
to as hubs, can be viewed as more important for fitness
since the organism is most sensitive to pair-wise perturba-
tions involving them. If this property is also a feature of
human networks, the hub concept may inform the treat-
ment of disease. Taking cancer as an example, hubs of can-
cer cell networks might be targeted for perturbation to in-
crease the chance of a SSL interaction with a gene already
genetically perturbed in the cancerous cell.

Nearly 5000 additional, and mostly novel, synthetic
fitness or SSL interactions were discovered by studying
genes involved in processes related to DNA integrity in
yeast using dSLAM [57]. A total of 16 gene modules were
identified in the network by clustering genes with a high
congruence in SSL interactions, and each module was as-
signed a function based on its member genes. The re-
sulting network mapped compensatory pathways among
multiple biological processes, including DNA replication,
DNA repair, checkpoint signaling, chromatin structure
maintenance, and the response to oxidative stress. The
modular architecture was consistent with prior models,
and involved many genes with human homologs linked to
cancer and aging.

The study of SSL interaction networks has the prac-
tical advantages of a simple, rapid assay and the direct
mapping of each positive result to an edge in the inter-
action network. This narrow definition of genetic inter-
action, however, cannot explore other types of genetic
interaction that have proved informative, such as suppres-
sion and masking epistasis. Encompassing all types of ge-
netic interaction requires a systematic formalism such as
the inequality relationships developed by Drees et al. [23].
As described above, these inequalities can be grouped into
rules of genetic interaction corresponding to familiar and
newly defined interaction modes. While many of these
modes, such as synthesis, were symmetric with respect to
the interacting genes, four of the modes produce direc-
tional edges. For example, instances of suppression were
rendered with a colored arrow from the suppressor gene to
its target gene. The resulting 1800 genetic interactions be-
tween 133 genes compose a genetic interaction network,
derived with the PhenotypeGenetics plug-in for the Cy-
toscape software platform [67]. The nodes of this network
included both gene deletions and plasmid-borne over-ex-
pressers, and the edges were mapped using nine colors
corresponding to the nine modes of genetic interaction
based on classical genetic interaction rules. This produced
a richly multichromatic network suitable for informatic
analysis (Fig. 4).

The multiplicity of genetic interaction modes facil-
itates the inference of relationships between individual
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genes and specific biological functions. In the Drees study,
individual alleles were often found to interact in a particu-
lar mode, ormonochromatically, with partner genes of co-
herent biological function, leading to hypotheses for regu-
latory and pathway organization [23]. Large-scale patterns
of mutual information were also extracted from the data
set, and groups of genes with significant mutual informa-
tion between them formed network cliques corresponding
to physical pathways. The genetic interaction patterns de-
fine a map of information flow from specific genetic per-
turbations to quantifiable phenotype effects.

This network was further analyzed by Taylor and Gal-
itski [76], who searched for repeated subnetworks or mo-
tifs of three or four nodes, in which repetition suggested
functional organization. Statistically enriched motifs were
then assessed for functional coherence andmany instances
of functional monochromaticity were observed involving
multiple genes. For example, deletions of multiple pro-
tein kinase genes were found to suppress gain-of-function
perturbations of both signaling and transcription factor
genes. This suggests that the kinases mediate information
flow from the signaling proteins to transcriptional factors,
and these pathways are broken by kinase deletions.

Multi-modal genetic interaction analysis was also per-
formed on the MMS-sensitivity network of St. Onge
et al. [71]. Genetic interactions were initially classified as
aggravating, alleviating, or neutral interactions based on
the double-mutant growth rates relative to that of the two
single mutants. Alleviating interactions were of particu-
lar interest since there are many ways genes can mask
or mimic another’s effect. Thus, these interactions were
sub-classified into five rules of interaction based on mod-
els of pathway ordering and protein co-function, four of
which were assigned directionality. The resulting network
model uncovered functional relationships and pathway
order. The principle of genetic congruence, that genes with
similar functional roles will share interaction patterns with
functionally related genes in the system, was used to impli-
cate a new regulator in DNA repair.

Both the yeast invasion and MMS networks classified
genetic interactions into multiple modes based on interac-
tion inequalities as described above. However, the authors
used slightly different classification schemes. For example,
in the invasion network “epistasis” included any inter-
action in which one single-mutant phenotype masks the
phenotype of another. In the MMS network a further dis-
tinction was drawn between “masking epistasis”, in which
the single-mutant with a stronger effect masks the other,
and “suppression”, in which a weakly defective single-mu-
tant masks the strongly defective one. While both net-
works proved informative, it is unclear which choice of

mode classifications are the most meaningful for a given
data set. This issue can be analyzed from the perspective
of information theory. A measure of network complexity
that places information in the context of the system under
study could be used for the unsupervised classification of
interaction modes for these two data sets. Network clas-
sification schemes that produce greater complexity might
also generate more biologically meaningful information,
i. e. more “biological statements” linking genes to func-
tions were obtained in the more complex networks. Such
complexity-based methods represent a powerful and gen-
eral approach to genetic interaction analysis, with poten-
tial for the study of mammalian systems in which interac-
tions are complex and gene annotation data is sparse.

Fully quantitative studies of genetic interactions have
been hindered by the limited amount of numeric phe-
notype data required for more sophisticated mathemat-
ical techniques that might decipher the principles un-
derlying genetic interaction. To overcome this limitation
many researchers have adopted gene expression microar-
rays as a quantitative phenotype [9,41,42,47,62,85]. For
each strain and environmental condition, genome-wide
transcript levels constitute thousands of quantitative phe-
notype measurements that provide much greater molecu-
lar detail than a whole-cell phenotype, such as growth rate.
This approach was combined with classical epistasis anal-
ysis by Van Driessche et al. [82]. By clustering mutants
based on genome-wide expression profiles and applying
the principle of masking epistasis, the authors accurately
reconstructed the protein kinase A signaling pathway. In
a more recent study, gene expression data was combined
with whole-cell phenotype data and mathematical model-
ing to infer and predict genetic interactions relevant for
yeast cell differentiation [12]. This analysis used combina-
torial perturbations to infer how a set of regulatory genes
quantitatively affect each other’s activity as well as the ex-
pression of thousands of downstream genes. This quan-
titative model of genetic interaction in terms of genetic
influences allowed the prediction of the effects of novel
pair-wise genetic perturbations. The decreasing costs of
microarrays and advances in genome-wide data analysis
make gene expression data an increasingly attractive op-
tion for genetic interaction analysis.

Interpreting Genetic Interactions

The functional relationships described by genetic inter-
action networks reveal pathway organization and gene
function. For predictive and therapeutic purposes, how-
ever, it is useful to translate these functional relationships
into biomolecular hypotheses. Such hypotheses can sug-
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gest additional genetic perturbations to test and validate
models, establishing the applicability of network analy-
sis techniques and enabling an iterative process of model
refinement. Moreover, the implication of specific alleles,
molecules, and interactions in health-related processes can
identify candidate genes and gene products for targeted
therapeutic intervention with drug compounds or RNA
interference. Thus, the interpretation of genetic interac-
tion networks is necessary to improve the basic under-
standing of complex genetics as well as facilitate the de-
velopment of personalized and predictive medicine.

Formulating such hypotheses generally involves both
molecular data integration and computational modeling.
While genetic interactions define functional relationships
and uncover pathways of information flow, molecular in-
teraction databases provide a wiring diagram of possible
mechanisms for the transmission of functional informa-
tion. These complementary data types can be integrated
to generate models of phenotype regulation [13,31,83,88].
Various computational methods enable this data integra-
tion. Kinetic modeling, for example, uses differential equa-
tions to predict the functional outcomes when a subset
of physical interactions is active. Constraint based ap-
proaches use data analysis techniques to narrow the possi-
ble mechanisms that may have generated an observation,
until the best hypothesis is identified [5,65,89,91]. Finally,
whole-cell phenotypes can be dissected at the molecular
level by integrating RNA expression levels and proteomic
data [12,35,40]. These systems biology approaches have re-
cently been applied to interpret complex genetic networks.

One particularly model-driven approach involves the
use of computational models that simulate cellular pro-
cesses to predict genetic interactions in silico. This requires
a model, often highly detailed, that captures the relevant
activity of every gene product involved in the process be-
ing simulated. Metabolic models based on Flux-Balance
Analysis (FBA) have been successful in predicting growth
rates for yeast [26] and bacteria [25] under a range of en-
vironmental conditions and genetic perturbations. Segré
and collaborators used an FBA model to explore genetic
interactions among metabolic genes in yeast by perform-
ing single and double gene knockouts in silico [66]. The
model predicted that genetic interactions for growth rates
fall into three distinct modes: cases in which the double
deletion effect is significantly less than the product of the
two single mutants (alleviating); cases in which the double
deletion effect is significantly greater than the product of
the two single mutants (aggravating); and cases in which
the double deletion is not significantly different than the
product of the two single mutants (neutral). The study also
predicted similarity in interaction modes, or monochro-

maticity, between co-functional genes, a result that echoes
the finding that genes with common functions preferen-
tially interact in SSL networks. This work illustrates the
power of using a system-wide computational simulation to
predict complex genetic interactions using sensitive, quan-
titative whole-cell phenotypes. One of the major disadvan-
tages of such an approach is the extensive amount of in-
formation necessary to formulate an FBA model. Further-
more, these predictions have not been empirically verified,
and this would involve a major experimental undertaking.

As an alternative to model-based approaches, data-
driven computational analysis has also been used to pre-
dict interacting gene pairs. Multiple types of relationships
between gene products, such as common localization,
function, and patterns of gene expression, were used to
create a decision tree for predicting SSL interactions in
yeast [88]. Genetic interactions were also predicted on
a genome-wide scale in the nematode worm Caenorhabdi-
tis elegans by computationally integrating physical interac-
tions, genetic interaction, gene expression, phenotype, and
functional annotation data from yeast, worm, and fly [95].
The authors of this study used logistic regression to deter-
mine the predictive power of each type of data, or feature,
based on a training set of 1816 known genetic interactions
in C. elegans. Each feature was thereby weighted according
to its predictive importance and the probability of interac-
tion between every pair of C. elegans genes was calculated.
In total, this procedure generated over 18,000 likely ge-
netic interactions. As with previous studies, co-functional
genes proved more likely to exhibit genetic interactions
(although this is not an entirely independent result given
that known genetic interactions between co-functional ho-
mologs were the predictors with greatest weight in the lo-
gistic regression). A handful of interaction candidates were
experimentally tested using RNAi, and about half of the
pair-wise perturbations exhibited some degree of genetic
interaction in either a vulval development or pharyngeal
pumping phenotypes. Interestingly, the vast majority of
newly implicated genes did not have vulval development
phenotypes when perturbed individually, supporting the
hypothesis that the observed double-perturbation pheno-
types were the result of genetic interaction. The trade-off
inherent in this approach to predicting genetic interac-
tions is that although the analysis can be performed on
a genome-wide scale, the nature of each interaction (e. g.
additivity, suppression) cannot be predicted. Nevertheless,
the approach enables the computational prioritization of
potential interaction pairs and greatly reduces the space of
likely genetic interactions.

Targeted strategies of data integration have also been
used to provide biological context to observed genetic in-
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teractions. Kelley and Ideker [45] demonstrated a use for
protein-protein and protein-DNA binding networks in
understanding the synthetic lethal interaction network in
yeast. The study evaluated three standard pathway models
for SSL interaction [30,81]: the between-pathway model,
in which SSL interaction partners are situated in paral-
lel pathways with redundant functions; the within-path-
way model, in which SSL gene pairs occur for protein sub-
units of a single complex or pathway that does not lose
function until multiple components are removed; and in-
direct effects, in which many pathways are affected and the
SSL deletions cannot be associated with specific molecu-
lar mechanisms. Based on maximum likelihood, the au-
thors estimated that 40% of yeast SSL interactions could
be explained by either the within-pathway or between-
pathway models. These models suggest specific patterns of
genetic interaction. For the between-pathwaymodel, near-
bipartite SSL subnetworks suggest that the missing bipar-
tite links represent undetected interactions. Alternatively,
the within-pathway model suggests that genes with many
common interaction partners should themselves interact.
These predictions were cross-validated by removing one-
fifth of the interactions from the data set and then tested
to see how well the withheld interactions could be pre-
dicted. Bothmodels showed enhanced prediction accuracy
relative to randomly predicted interactions, although the
between-pathway model was a significantly better predic-
tor, a finding consistent with those suggested by a deci-
sion tree approach [88] and an analysis of dSLAM mod-
ularity [57,90]. In the worm, integration of protein data
also reinforces the compensatory pathway interpretation
for SSL interactions [49]. A concurrent study by Zhang
et al. [94] integrated molecular and genetic interaction
data using the concept of network motifs [53] to guide
biological interpretation [92]. In this work, a global net-
work containing protein-protein binding, protein-DNA
binding, gene co-expression, sequence homology, and SSL
relationships was systematically searched for all possible
three-node motifs. A motif in which two proteins linked
by protein-protein interaction both have SSL interactions
with a third protein was detected in the network ten times
more often than random expectation. This was interpreted
as a sign of higher-order organization: two proteins that
bind in the same complex or pathway share genetic in-
teractions with other proteins in a separate complex or
pathway. This interpretation was supported by a search for
a four-protein motif in which two parallel pairs of co-bind-
ing proteins are linked by all four possible SSL interac-
tions. This motif was found over two hundred times more
than random expectation, further supporting the interpre-
tation that SSL interactions are often hallmarks of parallel

or compensatory pathways. The goals of integrative anal-
ysis are the systematic interpretation of SSL interactions
in terms of molecular interactions and the association of
specific pathways with observed genetic interactions.

For networks that include multiple modes of genetic
interactions, such as suppression, additivity, and genetic
synthesis, finding biologically meaningful, non-random
network topologies in an integrated network is hindered
by the enormous number of possible motifs and the large
datasets required for adequate statistics. One strategy for
interpreting these rich genetic interaction networks is
a quantitative generalization of the classical genetic inter-
action approach of observing how genetic perturbations
interact to affect phenotypes [4]. This method has his-
torically been used to infer how genes influence one an-
other and thereby affect a downstream phenotype, reveal-
ing functional relationships such as activation, repression,
and pathway order. Using filamentous growth in yeast
as a model system (a precursor to invasive growth due
to nitrogen starvation), a data decomposition technique
was developed to separate genetically “direct” (not neces-
sarily molecularly direct) effects of regulator genes from
the genetically “indirect” effects that involve genetic in-
teractions between regulator genes (Fig. 5) [12]. Molec-
ular interaction data were then integrated with the de-
composition results to construct regulatory network mod-
els of information flow through paths of genes (and gene
products) linked by physical interactions. These networks
represented quantitative hypotheses of influence from the
causal perturbation, through a series of molecular interac-
tions, to the expression of affected genes. Since additional
genes were implicated in specific influence-mediator roles
in the network, quantitative predictions could be made
for gene expression effects arising from their deletion and
combinations of deletions. This was done by removing
the quantitative influence corresponding to the molecular
pathways involving the deleted gene(s). A second round
of gene expression data was collected to test a set of pre-
dictions and the results demonstrated genome-wide suc-
cess. Next, by using additional decomposition methods to
link gene expression patterns with the filamentous growth
phenotype, a network model of whole-cell phenotype reg-
ulation was constructed. Predictions for additional pertur-
bations were formulated and experimentally tested. The
model successfully implicated new regulators of the phe-
notype and was used to accurately predict phenotypes for
novel combinatorial deletions.While this initial work used
laboratory-engineered mutant strains, the techniques can
be readily extended to dissect and map complex genetic
systems in which a handful of trait genes have been identi-
fied. With the increasing availability of human interaction
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Systems Genetics and Complex Traits, Figure 5
Influence network of five transcription factors that are trait
genes for the filamentous growth phenotype in yeast.Green and
red edges map positive and negative influences, respectively,
between genes and from genes to the filamentation phenotype.
Edge intensity denotes influence strength. (Adapted from [12])

data [73] and further modeling developments to address
allelic variation in outbred populations, similar quantita-
tive and integrative techniques may ultimately be applied
to disease-related models.

Future Directions

Although genetic complexity is central to all life, sys-
tems biology approaches to complex genetics have to this
point focused on simpler model organisms. The genetic
manipulability, rapid reproduction, and genome-wide in-
teraction databases for yeast, worm, and model prokary-
otes have enabled efficient development of experimental
and analytical methods. However, the possibility of un-
derstanding human disease through the study of complex
genetics has catalyzed substantial advances in genetic as-
sociation studies in mammalian models and human pop-
ulations [54,55]. The current status of systems approaches

to human heath are discussed elsewhere in this encyclope-
dia (see � Systems Biology, Introduction to and � Sys-
tems Biology of Human Immunity and Disease), and here
we will limit discussion to research opportunities in model
systems that are candidates for the systems approaches
discussed in this chapter. Future developments can be
roughly split into developments in two categories: labora-
tory resources and computational methods.

Recent programs in rodent breeding have engineered
controlled yet genetically diverse populations. These ex-
periments conceptually resemble the analysis of recom-
binant meiotic progeny generated by crosses in yeast
(Sect. “Measuring Genetic Interactions Genome-Wide”).
In mouse, two inbred, homozygous parent strains are
crossed and two of the resulting F1 offspring are mated
(Fig. 6). The resulting F2 progeny are then segregated into
breeding pairs, and each pair begins a line of repeated sib-
ling inbreeding that continues until a homozygous inbred
strain is obtained. Unlike yeast, in which homozygous
diploids can be obtained in a matter of weeks, producing
recombinant inbred (RI) lines in mice typically requires
20 generations, or 7–8 years, to produce the desired RI
lines. Nevertheless, RI genetics have been integrated with
gene expression and phenotype assays in mice [10,15,51]
and rats [37]. While each of these studies was able to asso-
ciate individual loci with gene expression patterns, impli-
cating new genes in metabolic, nervous system, and stem
cell function, the relatively small numbers of RI strains
(approximately 30 in each study) was insufficient for sys-
tematically inferring polygenic effects. Inferring such ef-
fects would require additional model parameters to en-
compass the quantitative interaction between each gene
pair, leading to overfitting for small data sets. Neverthe-
less, these works provide prototypes for further studies us-
ing RI strains.

While constructing RI strains is expensive and la-
borious, they have significant advantages over simpler
intercross strains in the study of complex genetics. Mul-
tiple mice from each RI line will allow biological replica-
tion and the observation of isogenic strains under a variety
of environmental conditions. Strains can be assayed over
long time scales and multiple generations. A collection of
shared RI strains would be especially valuable as a com-
munity asset both in terms of labor saved, since the strains
need only be constructed and genotyped once, and data
sharing, since the results from multiple researchers can be
integrated in novel analysis. With this in mind, the Com-
plex Trait Consortium is pursuing the Collaborative Cross
project [16], which aims to create approximately 1000 RI
strains derived from eight inbred founder strains. This set
of RI strains will contain a degree of genetic diversity suf-
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Systems Genetics and Complex Traits, Figure 6
The collaborative cross strategy for breeding recombinant inbred (RI) strains. The starting parents of the cross (Generation 0, G0)
consists of eight inbred laboratorymouse strains. The goal of the breeding strategy is to create 1000 new RImouse lines that contain
different combinations of alleles from the original parents. A theoretical example of the generation of a single chromosome for
a single RI strain is shown. In the first generation of the cross (G1) progeny receive an unaltered copy of a chromosome from each
parent. In all subsequent generations chromosomal material is exchanged between chromosomes generating chromosomes that
contain genomic regions from a variety of parents. The lines are ultimately converted to recombinant inbred (RI) strains, in which
an individual contains identical copies of these hybrid chromosomes (Ginfinity) by multiple generations of inbreeding, in this case
mating brother-sister pairs. (Reprinted with permission from The Complex Trait Consortium [16])

ficient to uncover gene-gene, gene-drug, and gene-envi-
ronment interactions. Furthermore, the resulting 1000 in-
bred mouse lines could be crossed to produce hundreds
of thousands of intercross (RIX) strains. Inbred homozy-
gosity ensures that these genotypes will be reproducible
and the genetic differences between RI strains will produce
low coefficients of inbreeding. Because the RIX strains
are not themselves inbred, they will more closely resem-
ble the human population in terms of heterozygosity, ge-
netic mixing, and hybrid vigor. When combined with the
proliferation of gene annotation andmolecular interaction
data, resources like the mice derived from the Collabora-
tive Cross will allow systems approaches to mammalian
genetics and provide a platform for adaption to human
disease.

In addition to improvements in laboratory resources,
a number of analytical advances are required to better un-
derstand large-scale genetic interaction networks. These
include further developments in data integration, quan-
titative prediction, data analysis, ontologies, and frame-
works for classifying complex genetics.

Strategies of data integration have taken diverse forms.
These range from all-inclusive, nearly universal strate-
gies of data pooling [88,95], to integrating only a handful
of physical interactions implicated by phenotype model-
ing [13,45], to modeling constrained by incomplete data
resources [52]. The accuracy and reliability of data varies
greatly both across data types (e. g. protein-protein versus
SSL interactions) and within data types (e. g. protein-pro-
tein data from yeast two-hybrid versus co-immunoprecip-
itation assays). Some methods have used machine learn-
ing techniques to weigh data types based on predictive
utility [38,94]. Through the repeated application of such
methods tomultiple data sets and biological systems a con-
sistent picture of data reliability might emerge, providing
valuable information for modeling and interpretation of
complex genetic systems. Finally, in many cases the inte-
gration of published data appears to be performed at a late
stage in the work as researchers seek more complete ex-
planations for their results. While this is to some extent an
inevitable result of large-scale screens or discovery-driven
science, it would be advantageous for investigators to con-
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sider from the outset the types of data that may be most
complementary and form a coherent plan of data integra-
tion [24]. The use of successful mathematical models and
biological simulations at such an early stage of research
would aid in this integrative research design.

Genetic interaction analysis is often showcased for
its predictive modeling potential. Since genetic interac-
tions inherently reveal functional information, under-
characterized genes can be assigned to biological pathways
[23,71] or functions [80], and these implicit hypotheses
about gene function can be experimentally tested. How-
ever, physical interaction networks organized into path-
ways of information flow can also explicitly predict the
consequences of additional perturbation [12,66]. The pre-
dictions are often quantitative and represent a potentially
powerful tool for predictive medicine when applied to the
development of therapeutic interventions. Expanded use
of computational modeling has the potential to generate
more accurate and sophisticated predictions of how sys-
tems respond to genetic or environmental perturbations.
Established modeling strategies include kinetic model-
ing, which has been used to understand complex cell cir-
cuitry [14,60] and to elucidate subtle stochastic effects [2],
and Boolean network approaches, which have been used to
model sophisticated systems such as host-parasite interac-
tions [77] and uncover fundamental properties of biolog-
ical dynamics [68]. Combined with time-series assays of
responses to environmental stimuli in genetically diverse
organisms, these quantitative modeling techniques can be
a powerful tool in understanding the dynamics of poly-
genic traits.

In the analysis of genetic interaction data, the field of
systems genetics now is primarily focused on synthetic
lethal interactions, to the extent that many authors use the
terms genetic interaction and synthetic lethality synony-
mously. However, synthetic lethal interactions may be less
relevant in the complex genetics of natural populations
than in laboratory-based screens. Their broad application
may also be limited by reliance on technology specific to
model organisms and networks composed of binary in-
teractions. For instance, although synthetic screens can
reveal compensatorymodules and classify genes into func-
tional pathways, the scale-free architecture of these net-
works often features many pathways connected to a com-
mon hub [49]. Since newly discovered synthetic interac-
tions are most likely to include a hub and a non-hub gene,
many pathways will be connected to the hub, and thus be
equally likely candidates. It may therefore be difficult to
place the latter gene in the correct pathway without ad-
ditional information. Alternatively, considering a broader
spectrum of genetic interactions can both resolve pathway

membership, via mutually informative partners, and pro-
vide information about pathway structure, e. g. the place-
ment of a factor in a signaling or transcriptional cascade.
A network encoding a more general set of genetic interac-
tion rules can thus enable the modeling of specific mech-
anisms in detail rather than congruence methods based
on guilt-by-association. Examples of such rules are direc-
tional, targeted interactions like epistasis and suppression
(Fig. 4) [23,71] or quantifiable influences describing one
gene’s influence on another (Fig. 5) [12].

To this point, the classification and interpretation
of genetic interactions has been inconsistent due to the
paucity of quantitative phenotypes that can be widely
screened paired with a limited knowledge of the nature
and prevalence of genetic interactions. As the field of com-
plex genetics evolves, so too will the meaning of genetic
interaction. To date, genetic interaction studies have pri-
marily focused on pair-wise interactions that are inter-
preted on a network level. This is often a result of ex-
ploring complex genetics with engineered strains, in which
single and double genetic perturbations are systematically
performed. The combinatorial expansion makes system-
atic construction of higher-order perturbations (such as
triple-mutants) intractable. Indeed, a comprehensive set of
double perturbations is daunting, andwould bemade even
more complicated when one considers the corresponding
increase in the number and richness of possible pheno-
types. In contrast, populations derived from genetically di-
verse strains, such as yeast and mouse crosses, will sample
all genetic combinations of arbitrarily high order. It is pos-
sible that network analysis based on pair-wise interactions
will be inadequate for experiments involving these strains.
Modules or densely interacting “gene complexes”may bet-
ter describe the space of polygenic effects. With these is-
sues being compounded by the limited capacity to assay
many of the phenotypes most relevant to disease, it is cur-
rently unknown which approaches will yield the most in-
formation about the underlying biology. It is likely that the
optimal approach will vary by organism and experiment.

Mature network analyses developed in a broad and
systematic framework could be readily expanded beyond
genotype-phenotype modeling. To model effects of en-
vironment and drugs, additional factors that affect phe-
notype might be integrated. Potential factors include
metabolites, exogenous molecules such as drugs or envi-
ronmental compounds, and external conditions such as
temperature or cell density. A model encompassing mul-
tiple factors could quantify how each factor interacts or
influences each other factor, in order to produce a map
of how effectors interact to generate a phenotype or out-
come. Predictive network models focused on specific phe-
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notypes would allow the development of highly specific
drugs and aid in the prediction of side effects by observing
how a particular perturbation affects connected systems
in silico. These models could also aid in the identification
of allelic combinations that cause genetic disease, the pre-
diction of desired drug-allele interactions for personalized
medicine, and the development of multi-drug treatments.
Creating such models will require substantial advances in
integration of mathematical modeling and genetics, with
the focus modest-sized systems rather than genome-scale
screens.

In addition to advancing biomedicine, predictivemod-
els could also inform evolutionary biology and bioengi-
neering. Rare mutations that confer fitness advantages
could be identified by systematically predicting the fitness
consequences of perturbations. Perturbations predicted to
have effects on multiple phenotypes may uncover evolu-
tionary trade-offs, in which the fitness balance might vary
as the environment changes. Fitness assays, such as the
E-MAPmethod in yeast [64], could be used to experimen-
tally test these predictions in model organisms. These ef-
fects could in turn be used as input for population model-
ing and predict evolutionary trends suitable for laboratory
testing with fast-replicating yeast or bacteria. As a more
practical application, the ability to predict the behavior of
re-engineered and synthetic biological networks is a key
ingredient in the design and development of novel bio-
engineered systems. Models that predict complex pheno-
types quantitatively and precisely will be a necessary com-
ponent of elaborate modeling schemes that link genotype,
phenotype, and ecosystem.

High throughput data acquisition and the develop-
ment of computational approaches have enabled the field
of systems genetics to progress rapidly. Far-sighted exper-
imental planning and continued technological advances
can be expected to fuel continued progress. Current stud-
ies, primarily focused on yeast as a model system, are lay-
ing the groundwork for network analysis and modeling
methods that may be adapted to higher organisms. A tar-
get for early adaption may lie in the field of metazoan de-
velopment to study complex genetic networks involved in
multicellular biology, possibly expanding the use of C. el-
egans as a model due to its ease of manipulation by RNAi
technology [43,48]. Knowledge accrued from these stud-
ies coupled with advances in statistical genetics may form
a solid basis for applications in more genetically diverse
populations, including the RI mouse strains generated by
the Collaborative Cross and their RIX intercross counter-
parts. The result will be new tools for complex human ge-
netics. Meanwhile, the mapping of the human HapMap,
The Cancer Genome Atlas, and human interaction net-

works will begin to provide data necessary to make use of
these tools in personalized and predictive medicine.
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