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Glossary

Random graph a graph which is chosen from a certain
probability distribution over the set of all graphs satis-
fying some given set of constraints. Statements about
random graphs are thus statements about “typical”
graphs for the given constraints.

Graph diameter the maximumdistance between any pair
of vertices in a graph. Here the distance between two
vertices is the length of any shortest path joining the
vertices.

Node degree distribution nk the number of vertices hav-
ing degree k.

Power law distribution a node degree distribution which
(at least approximately) obeys nk / k�ˇ with fixed
positive exponent ˇ.

Erdős–Rényi random graphG(n; p) a graph with n ver-
tices, in which each possible edge between the

�n
2

pairs

of vertices is present with probability p. The fact that
the edges are chosen independently makes it relatively
easy to compute properties of G(n; p).

Random graph model G(w) for expected degree se-
quence w:] a model which generates random graphs

which, on average, will have a prescribed degree se-
quence w D (w1;w2; : : : ;wn).

On-line random graph a graph which grows in size over
time, according to given probabilistic rules, starting
from a start graph G0. One can make statements about
these graphs in the limit of long time (and hence large
vertex number n, as n approaches infinity).

Introduction

Nowadays we are surrounded by assorted large informa-
tion networks. For example, the phone network has all
users as vertices which are interconnected by phone calls
from one user to another. The Web can be viewed as
a network with webpages as vertices which are then linked
to other webpages. There are various biological networks
arising from numerous databases, such as the gene net-
work which represents the regulatory effect among genes.
Of interest are many social networks expressing various
types of social interactions. Some noted examples include
the Collaboration graph (denoting coauthorship among
mathematicians) and the Hollywood graph (consisting
of actors/actresses and their joint appearances in feature
films), among others.

How are these networks formed?What are basic struc-
tures of such large networks? How do they evolve? What
are the underlying principles that dictate their behaviors?

To answer these questions, graph theory comes into
play. Random graphs have a similar flavor as these large
information networks in a natural way. For example, the
phone network is formed by making random phone calls
while a random graph results from adding a random edge
one at a time. Although the classical random graphs can
not directly be used to model real networks and seem to
exhibit different ‘shapes’, the methods and approaches in
random graph theory provides useful tools for the model-
ing and analysis of these information networks.

In this article, we will start with some basic graph the-
ory in Sect. “Some Basic Graph Theory”. We then intro-
duce the main themes of random graphs in Sect. “Random
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Graphs in a Nutshell”. Then we consider the classical ran-
dom graph theory in Sect. “Classical Random Graphs” be-
fore we proceed to describe some general random graph
models with given degree distributions, in particular, the
power law graphs in Sect. “Random Power Law Graphs”.
In Sect. “On-Line Random Graphs”, we will cover two
types of “on-line” graph models, including the model of
preferential attachment and the duplication model.

Although random graphs can be used to analyze vari-
ous aspects of realistic networks, we wish to point out that
there is no silver bullet to answer all the difficult problems
about these large complex networks. In the last section we
will put things in perspective by clarifying what random
graphs can and can not do.

Some Basic Graph Theory

All the information networks that we have mentioned can
be formulated in terms of graphs. A graph G consists of
a vertex set, denoted by V D V(G) (which contains all
the objects that we wish to deal with) and an edge set
E D E(G) which consists of of specified pairwise relations
between vertices. For example, a friendship graph has the
vertex set consisting of people of interest and the edge set
denoting the pairs of people who are friends. In Table 1 we
list a number of graphs associated with various networks.

As an introduction to graph theory, we describe the so-
called party problem:

Among six people in a party, show that there are at
least three people who know each other or there are
three people who do not know each other.

This can be said in graph-theoretical terms:

Any graph on 6 vertices must contain a triangle
or contain three independent vertices with no edge
among them.

Indeed, 6 is the smallest number for this to occur since
there is a graph on 5 vertices that contain neither a triangle

RandomGraphs, A Whirlwind Tour of, Table 1
Graphmodels for several networks

Graph Vertices Edges
Flight schedule graph Cities Flights
Phone graph Telephone numbers Phone calls
Collaboration graph Authors in Math

Review
Coauthorship

Web graph Webpages Links
Biological graph Genes Regulatory effects

RandomGraphs, A Whirlwind Tour of, Figure 1
A five cycle C5 and a complete graph K5

nor three independent vertices. Such a graph is a cycle on
5 vertices, denoted by C5, as seen in Fig. 1.

Let Kn denote a complete graph on n vertices which
has all

�n
2

edges. For example, a triangle is K3 which turns

out is also C3. The above party problem is a toy case of
the so-called Ramsey theory which deals with unavoidable
patterns in large graphs. In 1930, Ramsey [40] showed the
following:

For any two positive integers k and l, there is an
associated number R(k, l) such that any graph on
n � R(k; l) vertices must contain either Kk as a sub-
graph or contain l independent vertices.

For example, R(3; 3) D 6 as stated in the party prob-
lem. It is not too difficult to show that R(4; 4) D 17. How-
ever, the value of R(5; 5) is not yet determined (in spite
of the huge computational power we have today). All that
is known is 43 � R(5; 5) � 49 (see [25] and [36]). Rela-
tively few exact Ramsey numbers R(k, l) are determined.
For an extensive survey on this topic, the reader is referred
to the dynamic survey in the Electronic Journal of Combi-
natorics at http://www.combinatorics.org/.

In 1947, Erdős wrote an important paper [21] that
helped start two areas including combinatorial probabilis-
tic methods and Ramsey theory. He established the follow-
ing lower bound for the Ramsey number R(k, k) by prov-
ing

R(k; k) � 2
k
2 ; (1)

the argument is quite simple and elegant:
Suppose we wish to find a graph on n vertices that

does not containKk or an independent subset of k vertices.
How large can n be? For a fixed integer n, there are all to-
gether 2(

n
2) possible graphs on n vertices. We say a graph

is bad if it contains Kk or an independent subset of k ver-
tices. How many bad graphs can there be? There are

�n
k


http://www.combinatorics.org/
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ways to choose k out of n vertices. So, there are at most
2
�n
k

2(

n
2)�(k2) bad graphs. Therefore there is a graph on n

vertices that is not bad if

2(
n
2) � 2

 
n
k

!

2(
n
2)�(k2) :

So, for n � 2k/2, there must be a graph on n vertices that is
not bad, which implies (1).

We note that for the upper bound there is an in-
ductive proof to show that R(k; k) �

�2k�2
k�2


which is

about 4k. In the previous five decades, there have been
some improvements only by a factor of a lower order
for both the upper and lower bounds [19,42]. It remains
unsettled (with Erdős award unclaimed) to determine if
limk!1(R(k; k))1/k exists or what value it should be.

A basic notion in graph theory is “adjacency”. A ver-
tex u is said to be adjacent to another vertex v if fu; vg is
an edge. Or, we say u is a neighbor of v. Equivalently, v
is a neighbor of u. The degree of a vertex u is the num-
ber of edges containing u. If we restrict ourselves to simple
graphs (i. e., at most one edge between any pairs of ver-
tices), then the degree of u is just the number of neigh-
bors that u has. Suppose that in a graph G the vertex vi has
degree di for 1 � i � n. Then (d1; d2; : : : ; dn) forms a de-
gree sequence for G. Sometimes, we organize the degree
sequence so that d1 � d2 � � � � � dn . Here comes a nat-
ural question on graph realization: For what values di is
the sequence (d1; d2; : : : ; dn) a degree sequence of some
graph?

To answer this question, first we observe that the sum
of all di’s must be even since that is exactly twice the num-
ber of edges. This is the folklore “Handshake Theorem”.

In a 1961 paper, Erdős and Gallai [24] answered the
above question. They gave a necessary and sufficient con-
dition by showing that a sequence (d1; d2; : : : ; dn), where
di � diC1, is a degree sequence of some graph if and only
if the sum of di’s is even and for each integer r � n � 1,

rX

iD1

di � r(r � 1)C
nX

iDrC1

minfr; di g :

Another way to keep track of the degrees of a graph
is to consider the degree distribution as follows: Let nk
denote the number of vertices having degree k. Instead
of writing down the degree sequence (which consists of
n numbers and n can be a very large number), we just
use nk. Therefore, the number of values that we need to
keep does not exceed the maximum degree. If all degrees
are the same value, we say the graph is regular. In this case,
only one of the nk’s is nonzero.

Many real-world graphs have degree distribution satis-
fying the so-called “power law”. Namely, the number nk of
vertices of degree k is proportional to k�ˇ for some fixed
positive value ˇ. For example, the Collaboration graph, as
illustrated in Fig. 2, can be approximated by a power law
with exponent ˇ D 2:46. The degree distribution of the
Collaboration graph is included in Fig. 3 in log-log scale.

In a graph G, a path is a sequence of vertices v0;
v1; : : : ; vk such that vi�1 is adjacent to vi for i D 1; : : : ; k.
The length of a path is the number of edges in the path.
For example, the above mentioned path has length k join-

RandomGraphs, A Whirlwind Tour of, Figure 2
The collaboration graph

RandomGraphs, A Whirlwind Tour of, Figure 3
The number of vertices for each possible degree for the collabo-
ration graph



7496 R Random Graphs, A Whirlwind Tour of

ing v0 and vk. If v0 D vk , the path is said to be a cycle.
A graph which contains no cycle is called a tree. A graph
is connected if any two vertices can be joined by a path.
For a graph G, a maximum subset of vertices each pair of
which can be joined by paths is called a connected compo-
nent. Thus, a graph is connected if there is only one con-
nected component. In a connected graph, the distance be-
tween two vertices u and v is the length of a shortest path
joining u and v. The maximum distance among all pairs of
vertices is called the diameter of a graph.

In 1967, the psychologist Stanley Milgram [37] con-
ducted a series of experiments which indicated that any
two strangers are connected by a chain of intermediate ac-
quaintances with the average chain length about six. Since
then, the so-called “small world phenomenon” has long
been a subject of anecdotal observation and folklore. Re-
cent studies have suggested that the phenomenon is per-
vasive in numerous networks arising in nature and tech-
nology, and in particular, in the structural evolution of the
World Wide Web [5,33,44].

In addition to “six degrees of separation”, various
numbers have emerged with many networks. In 1999,
Barabási et al. [5] estimated that any two webpages are at
most 19 clicks away from one another (in certain mod-
els of the Internet). Broder et al. [11] set up crawlers on
a webgraph of 200 million nodes and 1.5 billion links and
reported that the average path length is about 16. A math-
ematician who has written joint papers is likely to have
Erdős number at most eight [29] (i. e., with a chain of
coauthors with length at most 8 connecting to Erdős). The
majority of actors or actresses have the so-called “Kevin
Bacon number” two or three.

Before wemake sense of these numbers, some clarifica-
tion is in order: There are in fact two different interpreta-
tions of ‘short distance’ in a network. One notion is the di-
ameter of the graph. Another notion is the average distance
(which might be closer to what was meant by these experi-
ments). We will discuss the small world phenomenon fur-
ther in a later section.

RandomGraphs in a Nutshell

What does a “random graph” mean? Before proceeding to
describe random graphs, some clarification for “random”
is in order. According to the Cambridge Dictionary, “ran-
dom”means “happening, done or chosen by chance rather
than according to a plan”. Quite contrary to this explana-
tion, our random graphs have precise meanings and can
be clearly defined. Using the terminology in probability,
a random graph is a random variable defined in a prob-
ability space with a probability distribution. In layman’s

terms, we first put all graphs on n vertices in a lottery box
and then the graph we pick out of the box is a random
graph. (In this case, all graphs are chosen with equal prob-
ability.)

What do we want from our random graphs? Well, we
would like to say that a random graph (in some given
model) has certain properties (e. g., having small diame-
ter). Such a statement means that with probability close
to 1 (as the number n of vertices approaches infinity),
the random graph we pick out of the lottery box satis-
fies the property that we specified. In other words, a ran-
dom graph has a specified property means that almost all
graphs of interest have the desired property. Note that this
is quite a strong implication! Any statement about a ran-
dom graph is really about almost all graphs! The beauty of
random graphs lies in being able to use relatively few pa-
rameters in the model to capture the behavior of almost
all graphs of interest (which can be quite numerous and
complex).

In the early days of the subject, Erdős and Rényi intro-
duced two random graph models. The first one is a ran-
dom graph F(n;m) defined on all graphs with n vertices
and m edges each of which is chosen with equal proba-
bility. The second is the celebrated Erdős–Rényi random
graph G(n; p) defined on all graphs on n vertices and each
edge is chosen independently with probability p. Conse-
quently, a graph on n vertices and x edges is chosen with
probability px (1 � p)(

n
2)�x in G(n; p).

The advantage of the Erdős–Rényi model is the inde-
pendence of choices for the edges (i. e., each pair of ver-
tices has its own dice for determining being chosen as an
edge). Since the probability of two independent events is
the product of probabilities of two events, we can compute
with ease. For example, the probability of a random graph
in G(n; p) containing a fixed triangle is 1/8 for p D 1/2.
It is possible to compute such a probability for a ran-
dom graph inF(n;m), e. g.,

�(n2)�3
m�3


/
�(n2)
m

, which is a more

complicated expression. For many problems, such as the
diameter problem, it can be quite nontrivial for F(n;m)
because the dependency among edges is getting in the
way.

To model real graphs, there are some obvious difficul-
ties. For example, the random graph G(n; p) has all de-
grees very close to pn if the graph is not so sparse, (i. e.,
p � log n/n). The distribution of the degrees follows the
same bell curve for every vertex. As we know, many real-
world graphs satisfy the power law which is very different
from the degree distribution of G(n; p). In order to model
real-world networks, it is imperative to consider random
graphs with general degree distribution and, in particular,
the power law distribution.
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There are basically two types of random graph models
for general degree distributions. The configuration model
is a take-off from random regular graphs [6]. The way to
define random regular graphs Gk of degree k on n ver-
tices is to consider all possible matchings in a complete
graph Kkn. Note that a matching is a maximum set of
vertex-disjoint edges. Each matching is chosen with equal
probability. We then get a random k-regular graph by
partitioning the vertices of k into subsets. Each k-subset
then is associated with a vertex in a random regular graph
Gk . Although such a random regular graph might contain
loops (i. e., an edge having both endpoints the same ver-
tex), the probability of such an event is of a lower order
and can be controlled. It is then obvious to define ran-
dom graphs with general degrees. Instead of partitioning
the vertex set of the large graph into equal parts, we choose
a randommatching of a complete graph on

P
i di vertices

which are partitioned into subsets of sizes d1; d2; : : : ; dn .
Then we form the random graph by associating each edge
in the matching with an edge between associated ver-
tices.

In the configuration model, there are nontrivial de-
pendencies among the edges. There is another random
graph model for general expected degrees as a generaliza-
tion of the Erdős–Rényi model. Let w D (w1;w2; : : : ;wn)
denote the specified degrees. The G(w) model yields ran-
dom graphs with expected degreesw. The edge between vi
and vj is independently chosen with probability wiwj/W
where W D

P
i wi . In other words, each pair of vertices

has its own dice with probability assigned so that the ex-
pected degree at vertex vi is exactly wi. The Erdős–Rényi
model is just the case with all wi’s equal to pn. Since the
G(w) model inherits the robustness and independence of
the Erdős–Rényi model, many strong properties can be
derived. We will discuss some of these further in Sect.
“Parameters for Modeling Power Law Graphs”, especially
when w satisfies power laws.

All the random graph models mentioned above are
off-line models. Since real-world graphs are dynami-
cally changing—both in adding and deleting vertices and
edges—there are several on-line random graph models in
which the probability spaces are changing at the tick of the
clock. In fact, in the study of complex real-world graphs,
the on-line model came to attention first.

There are a large number of research papers, surveys
and books on random graphs, mostly about the Erdős–
Rényi model G(n; p). After the year 2000, the study of
real-world graphs has led to interesting directions and new
methods for analyzing random graphs with general degree
distributions. Many on-line models have been proposed
and published. Here we will only be able to cover the main

ones—the preferential attachment schemes and the dupli-
cation model later.

Classical RandomGraphs

In early 60’s, Erdős and Rényi wrote a series of influential
papers on random graphs. Theirmodeling and analysis are
thorough and elegant. Their approaches and methods are
powerful and have had enormous impact up to this day.
In this section, we will give a brief overview. First we will
describe the classical results on the evolution of random
graphs G(n; p) of the Erdős–Rényi model. Then we will
discuss the diameter of G(n; p) as the edge density ranges
from 0 to 1.

The Evolution of the Erdős–Rényi Graph

What does a random graph inG(n; p) look like? Erdős and
Rényi [23] gave a full answer for the edge density p ranging
from 0 to 1.

At the start, there is no edge and the edge density is 0.
We have isolated vertices.

As p increases, the expected number p
�n
2

of edges gets

larger. When there are about
p
n edges, how many con-

nected components are there and what sizes and struc-
tures are they? For 0 < p
 1/n, Erdős and Rényi [23]
showed that the random graph G is a disjoint union of
trees. Furthermore, they gave a beautiful formula. For
p D cn�k/(k�1), the probability that j is the number of
connected components in G formed by trees on k vertices
is  je��/ j! where  D (2c)k�1kk�2/k!. For example, when
we have about

p
n edges, the probability that the random

graph G contains j trees on 3 vertices is close to 2 j/ j! (if n
is large enough).

As we have more edges, cycles start to appear. When
the graph has a linear number of edges, i. e., p D c/n; with
c < 1, almost all vertices are in connected components of
trees and there are only a small number of cycles. Namely,
the expected number of cycles is 1/2 log 1/(1 � c) � c/2 �
(c2)/4.

When a random graph has edges ranging from slightly
below n/2 to slightly over n/2 edges, i. e., p D (1C o(1))/n,
there is an unusual phenomenon, called “double jumps”.
What are double jumps and why is it so unusual? In the
study of “threshold function” or, “phase transition” that
happens in natural or evolving systems, it is of interest
to identify the critical point, below which the behavior
is dramatically different from what is above. Erdős and
Rényi [23] found that as p is smaller than 1/n, the largest
component in G has size O(log n) and all components are
either trees or unicyclic (i. e., each component contains
at most one cycle). If p is (1C �)/n and � > 0, then the



7498 R Random Graphs, A Whirlwind Tour of

RandomGraphs, A Whirlwind Tour of, Table 2
The diameter of random graphsG(n;p)

Range diam(G(n; p)) Reference
np

log n !1 Concentrated on at most 2 values [9]
np

log n D c > 8 Concentrated on at most 2 values [12]

8 � np
log n D c > 2 Concentrated on at most 3 values [12]

2 � np
log n D c > 1 Concentrated on at most 4 values [10]

1 � np
log n D c > c0 Concentrated on at most 2b 1

c0
c C 4 values [12]

log n > np!1 diam(G(n; p)) D (1C o(1)) log n
log(np) [12]

np � c > 1 The ratio diam(Gn;p)/



log n
log(np)

�
is finite (between 1 and f (c)) [12]

np < 1 diam(G(n; p)) equals the diameter of a tree component if (1� np)n1/3!1 [35]

giant component emerges. However, when p D 1/n, the
largest component is of size O(n2/3). There has been de-
tailed analysis examining this tricky transition in details
(see [7] and [31]).

When p D c/n for c > 1, the random graph G has one
giant component and all others are quite small, of size
O(log n). Also, Erdős and Rényi [23] determined the num-
ber of vertices in the giant connected component to be
f (c)n where

f (c) D 1 �
1
c

1X

kD1

kk�1

k!
�
ce�c

k
: (2)

Finally when p D c log n/n and c > 1, the random
graph G is almost always connected. When c gets larger,
G is not only connected but gets closer to a regular graph.
Namely, all vertices have degrees close to pn.

The Diameter of the Erdős–Rényi Graph

We consider the diameter of a random graph G in G(n; p)
for all ranges of p including the range for which G(n; p) is
not connected. For a disconnected graph G, the diameter
of G is defined to be the diameter of its largest connected
component.

Roughly speaking, the diameter of a random graph in
G(n; p) is of order log n/(log(np)) if the expected degree
np is at least 1. Note that this is best possible in the fol-
lowing sense. For any graph with degrees at most d, the
number of vertices that can be reached within distance k is
at most 1C dC d(d � 1)C d(d� 1)2C � � �C d(d � 1)k�1.
This sum should be at least n if k is the diameter. There-
fore we known that the diameter, denoted by diam(G) is at
least (log n)/ log(d � 1).

To be precise, it can be shown the diameter of a ran-
dom graph G in G(n; p) is (1C o(1))(log n)/(log np) if the
expected degree np goes to infinity as n approaches in-
finity. When np � c > 1, the diameter diam(G) is within

a constant factor of (log n)/(log np) where the constant
depends only on c and is independent of n. When
np D c < 1, the random graph is surely disconnected and
diam(G) is equal to the diameter of a tree component.

In fact, the diameter of a graph G in G(n; p) is quite
predictable as follows. The values for the diameter of
G(n; p) is almost surely concentrated on at most two val-
ues around (log n)/(log np) if (np)/(log n) D c > 8. When
(np)/(log n) D c > 2, the diameter of G(n; p) is almost
surely concentrated on at most three values. For the range
2 � (np)/(log n) D c > 1, the diameter of G(n; p) is al-
most surely concentrated on at most four values.

It is of particular interest to consider random graphs
G(n; p) for the range of np > 1 and np � c log n for some
constant c since this range includes the emergence of the
unique giant component. Because of a phase transition in
connectivity at p D log n/n, the problem of determining
the diameter of G(n; p) and its concentration seems to be
difficult for certain ranges of p. If (np)/(log n) D c > c0
for any (small) constant c and c0, then the diameter of
G(n; p) is almost surely concentrated on finitely many val-
ues, namely, no more than 2b1/(c0)c C 4 values.

These facts are summarized in Table 2 with references
listed. As we can see from the table, numerous questions
remain.

RandomPower Law Graphs

Parameters for Modeling Power Law Graphs

A large realistic network usually has a huge number of
parameters with complicated descriptions. By “modeling
a realistic network”, we mean cutting down the number of
parameters to relatively few and still capture a good part of
the character of the network.

To choose the parameters for modeling a real network,
the exponent ˇ of the power law is relatively easy to select.
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We can plot the log-degree versus log-frequency table and
choose a good approximation of the slope.

In a graph G, suppose that there are y vertices of de-
gree x. Then G is considered to be a power law graph if
x and y satisfy (or can be approximated by) the following
equation:

log y D ˛ � ˇ log x : (3)

In other words, we have

j fvjdeg(v) D xg j� y D
e˛

xˇ
:

Basically, ˛ is the logarithm of the volume of the graph and
ˇ can be regarded as the log-log growth rate of the graph.

To take a closer look of the degree distribution of a typ-
ical realistic graph, several impediments obviously exist.

(a) When we fit the power law model, there are discrep-
ancies especially when the degree is very small or very
large. There is almost always a heavy tail distribution
at the upper range and there seems to be scattering
at the lower range. For example, for the collabora-
tion graph, should we or shouldn’t we include the data
point for isolated vertices (an author with no coau-
thors)? Should we stay with the largest component or
include all small components (including the isolated
vertices)?

(b) The power law states that the number of vertices of
degree k is proportional to k�ˇ . We can approximate
the number of vertices of degree k by the function
f (k) D ck�ˇ for some constant c. However, f (k) is
usually not an integer. By taking either the ceiling or
floor of f (k), some errors are inevitable. In fact, such
errors are acute when k or f (k) is small.

(c) The power law model is usually a better fit in the mid-
dle range (than at either end). Still, in many examples,
there is a visible slight “hump” in the curve instead of
the straight line representing the power law in the log-
log table.

Among the above three points, (c) is mainly due to first-
order approximations. The straight line with slope ˇ is
a linear approximation of the actual plotted data. Thus the
power law model is an important and necessary step for
more complicated real cases. Here, we will first discuss (b)
and then (a).

Item (b) concerns rounding errors which can be
checked by the following basic calculations about the
power law graphs as described by Eq. (3).

(1) The maximum degree of the graph is at most e˛/ˇ .
Note that 0 � log y D ˛ � ˇ log x.

(2) The number of vertices n can be computed as fol-
lows (under the assumption that the maximum degree is
e˛/ˇ ). By summing y(x) for x from 1 to e˛/ˇ , we have

n D
e
˛

ˇX

xD1

e˛

xˇ
�

8
ˆ̂̂
<

ˆ̂̂
:

�(ˇ)e˛ if ˇ > 1 ;
˛e˛ if ˇ D 1 ;

e
˛

ˇ

1�ˇ if 0 < ˇ < 1 ;

where �(t) D
P1

nD1 1/(n
t) is the Riemann Zeta function.

(3) The number of edgesE can be computed as follows:

E D
1
2

e
˛

ˇX

xD1

x
e˛

xˇ
�

8
ˆ̂<

ˆ̂:

1
2�(ˇ � 1)e˛ if ˇ > 2 ;
1
4˛e

˛ if ˇ D 2 ;
1
2
e
2˛
ˇ

2�ˇ if 0 < ˇ < 2 :

(4) The differences of the real numbers in (1)–(3)
and their integer parts can be estimated as follows: For
the number n of vertices, the error term is at most e˛/ˇ .
For ˇ � 1, it is o(n), which is a lower order term. For
0 < ˇ < 1, the error term for n is relatively large. In this
case, we have

n �
e
˛

ˇ

1 � ˇ
� e

˛

ˇ D
ˇe

˛

ˇ

1 � ˇ
:

As can be seen, n can have the same magnitude as
(e˛/ˇ )/(1 � ˇ). Therefore the rounding error can be of the
same order of magnitude. For the number E of edges, sim-
ilar situations occur. For ˇ � 2, the rounding error term
of E is o(E), a lower order term. For 0 < ˇ < 2, the error
of E has the same magnitude as in the formula of item (3).
Thus, one is advised to exercise caution when dealing with
the case 0 < ˇ < 2.

To deal with the concerns mentioned above in (a), we
need additional parameters.

� The average degree w is a useful parameter.
� The second order average degree w̃ D

P
i w

2
i /
P

i wi .
� The maximum degree m D dmax and also the mini-

mum degree dmin denote the range that the power law
degree distribution fits (within acceptable approxima-
tion). In other words, the maximum degree m D dmax
and the minimum degree dmin are meant to be the
largest and the least degrees in a power law subgraph
of G. Often, dmin is taken to be 1 unless otherwise spec-
ified.

With these parameters, we are ready to define a random
power law graph. For random graphs with given expected
degree sequences satisfying a power law distribution with
exponent ˇ, we may assume that the expected degrees
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are wi D ci�
1
ˇ�1 for i satisfying i0 � i < n C i0.

Here c depends on the average degree and i0 depends on
the maximum degree m, namely, c D (ˇ � 2)/(ˇ � 1)
wn1/(ˇ�1); i0 D n((w(ˇ � 2))/(m(ˇ � 1)))ˇ�1.

The power law graphs with exponent ˇ > 3 are quite
different from those with exponent ˇ < 3 as evidenced by
the value of w̃ (assuming m	 w).

w̃ D

8
ˆ̂
<

ˆ̂:

(1C o(1))w (ˇ�2)2
(ˇ�1)(ˇ�3) if ˇ > 3 ;

(1C o(1)) 12w ln 2m
w if ˇ D 3 ;

(1C o(1))dˇ�2 (ˇ�2)ˇ�1m3�ˇ

(ˇ�1)ˇ�2(3�ˇ ) if 2 < ˇ < 3 :

The above values of w̃ are quite useful in the study of
average distance and diameter of random graphs.

The Evolution of Random Power Law Graphs

A natural question concerning the configuration model
is how the random graphs evolve for power law distribu-
tions. Can we mimic the classical analysis as in the Erdős–
Rényi random graph model?

Here we consider a configuration model with degree
distribution as in the (˛; ˇ)-graph. As it turns out, the evo-
lution only depends on ˇ and not on ˛ as follows.

1. When ˇ > ˇ0 D 3:47875 : : :, the random graph al-
most surely has no giant component where the value
ˇ0 D 3:47875 : : : is a solution to

�(ˇ � 2) � 2�ˇ � 1) D 0 :

When ˇ < ˇ0 D 3:47875 : : :, there is almost surely
a unique giant component.

2. When 2 < ˇ < ˇ0 D 3:47875 : : :, the second largest
component is almost surely of size 	(log n). For any
2 � x < 	(log n), there is almost surely a component
of size x.

3. When ˇ D 2, almost surely the second largest compo-
nent is of size 	(log n/(loglog n)). For any 2 � x <

	(log n/(loglog n)), there is almost surely a component
of size x.

4. When 1 < ˇ < 2, the second largest component is al-
most surely of size	(1). The graph is almost surely not
connected.

5. When 0 < ˇ < 1, the graph is almost surely connected.
6. When ˇ D ˇ0 D 3:47875 : : :, the situation is compli-

cated. It is similar to the double jump of the random
graph G(n; p) with p D 1/n. For ˇ D 1, there is a non-
trivial probability for either case that the graph is con-
nected or disconnected.

A useful tool in configuration model is a result of Molloy
and Reed [38,39]:

For a random graph with (�i C o(1))n vertices of de-
gree i, where �i are nonnegative values which sum to 1 and
n is the number of vertices, the giant component emerges
when Q D

P
i�1 i(i � 2)�i > 0, provided that the maxi-

mum degree is less than n1/4�� and some “smoothness”
conditions are satisfied. Also, there is almost surely no gi-
ant component when Q D

P
i�1 i(i � 2)�i < 0 and the

maximum degree is less than n1/8�� .
Let us consider Q for our (˛; ˇ)-graphs with ˇ > 3.

Q D
1
n

e
˛

ˇX

xD1

x(x � 2)b
e˛

xˇ
c

�
1
�(ˇ)

0

BB
@

e
˛

ˇX

xD1

1
xˇ�2

� 2
e
˛

ˇX

xD1

1
xˇ�1

1

CC
A

�
�(ˇ � 2) � 2�(ˇ � 1)

�(ˇ)

Hence, we consider the value ˇ0 D 3:47875 : : :, which
we recall is a solution to �(ˇ � 2)� 2�(ˇ � 1) D 0: If
ˇ > ˇ0, we have

e
˛

ˇX

xD1

x(x � 2)b
e˛

xˇ
c < 0 :

We remark that for ˇ > 8, Molloy and Reed’s result
immediately implies that almost surely there is no giant
component. When ˇ � 8, additional analysis is needed to
deal with the degree constraints [2].

It can be shown that the second largest component
almost surely has size 	(log n). Furthermore, the second
largest component has size at least	(log n).

G(w) Model for Power Law Graphs

In the Erdős–Rényi model G(n; p), the threshold func-
tion for the phase transition of the giant component is at
p D 1/n. Namely, when the average degree pn is less than
1, all connected components are small (of size O(log n))
and there is no giant component. When the average de-
gree is more than 1, the giant component emerges in full
swing. (There is a “double jump” which takes place when
the average degree is close to 1 as discussed in Sect. “Ran-
dom Graphs in a Nutshell”.)

For the random graph model G(w), with given ex-
pected degreesw, it is natural to ask the same question:

What parameter in which range will trigger the
(sudden) emergence of the giant component?
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In addition to w, the expected average degree, we have
scores of parameters, e. g., w̃ and higher order average de-
grees. Which parameter w, w̃ or others is critical for the
rise of the giant component?

These questions were answered in [13]:
Suppose that G is a random graph inG(w)with expected de-
gree sequence w. If the expected average degree w is strictly
greater than 1, then the following holds:

(1) Almost surely G has a unique giant component. Fur-
thermore, the volume of the giant component is at least
(1 � 2p

w e C o(1))Vol(G) if w � 4/e D 1:4715 : : :,
and is at least (1 � (1C logw)/w C o(1))Vol(G) if
w < 2.

(2) The second largest component almost surely has size at
most (1C o(1))�(w) log n, where

�(w) D

(
1

1Clogw�log 4 if w > 4
e ;

1
w�1�logw if 1 < w < 2 :

Moreover, with probability at least 1 � n�k , the sec-
ond largest component has size at most (k C 1 C
o(1))�(w) log n, for any k � 1.

There is a sharp asymptotic estimate for the vol-
ume of the giant component for a random graph in
G(w). In [15], it was proved that if the expected aver-
age degree is strictly greater than 1, then almost surely
the giant component in a graph G in G(w) has vol-
ume 0Vol(G)C O(

p
n log3:5 n), where 0 is the unique

nonzero root of the following equation:

nX

iD1

wie�wi� D (1 � )
nX

iD1

wi : (4)

Because of the robustness of the G(w) model, many
properties can be derived for appropriate degree distribu-
tions, including power law graphs.

AverageDistance and the Diameter A random graphG
in G(w) has average distance almost surely (1 C o(1)) �
(log n)/(log w̃), if w satisfies certain conditions (called
admissible conditions in [14]). The diameter is almost
surely 	((log n)/(log w̃)). In addition to studying the av-
erage distance and diameter, the structure of a random
power law graph is very interesting, especially for the
range 2 < ˇ < 3 where the power law exponents ˇ for
numerous real networks reside. In this range, the power
law graph can be roughly described as an “octopus” with
a dense subgraph having small diameter O(log log n), as

the core while the overall diameter is O(log n) and the av-
erage distance is O(log log n). When ˇ > 3 and the aver-
age degreew is strictly greater than 1, almost surely the av-
erage distance is (1C o(1))(log n)/(log w̃) and the diam-
eter is 	(log n). A phase transition occurs at ˇ D 3 and
then the graph has diameter almost surely 	(log n) and
average distance	(log n/ log log n).

Eigenvalues Eigenvalues of graphs are useful for con-
trolling many graph properties and consequently have nu-
merous algorithmic applications including clustering al-
gorithms, low rank approximations, information retrieval
and computer vision. In the study of the spectra of power
law graphs, there are basically two competing approaches.
One is to prove analogues of Wigner’s semi-circle law
(such as for G(n; p)) while the other predicts that the
eigenvalues follow a power law distribution [27]. Although
the semi-circle law and the power law have nothing in
common, both approaches are essentially correct if one
considers the appropriate matrices. there are in fact sev-
eral ways to associate a matrix to a graph. The usual adja-
cency matrix A associated with a (simple) graph has eigen-
values quite sensitive to the maximum degree (which is
a local property). The combinatorial Laplacian D � Awith
D denoting the diagonal degree matrix is a major tool
for enumerating spanning trees and has numerous ap-
plications. Another matrix associated with a graph is the
(normalized) Laplacian L D I � D�1/2AD�1/2 which con-
trols the expansion/isoperimetrical properties (which are
global) and essentially determines the mixing rate of a ran-
dom walk on the graph. The traditional random matri-
ces and random graphs are regular or almost regular so
the spectra of all the above three matrices are basically the
same (with possibly a scaling factor or a linear shift). How-
ever, for graphs with uneven degrees, the above three ma-
trices can have very different distributions.

Here we state bounds for eigenvalues for random
graphs in G(w) with a general degree distribution from
which the results on random power law graphs then fol-
low [18].

1. The largest eigenvalue of the adjacency matrix of a ran-
dom graph with a given expected degree sequence is
determined by m, the maximum degree, and w̃, the
weighted average of the squares of the expected degrees.
In this case the largest eigenvalue of the adjacency ma-
trix is almost surely (1C o(1))maxfw̃;

p
mg provided

some minor conditions are satisfied. In addition, if the
kth largest expected degree mk is significantly larger
than w̃2, then the kth largest eigenvalue of the adjacency
matrix is almost surely (1C o(1))

p
mk .
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2. For a random power law graph with exponent ˇ > 2:5,
the largest eigenvalue of a random power law graph is
almost surely (1C o(1))

p
m where m is the maximum

degree. Moreover, the k largest eigenvalues of a ran-
dom power law graph with exponent ˇ have power
law distribution with exponent 2ˇ � 1 if the maximum
degree is sufficiently large and k is bounded above by
a function depending on ˇ;m and w, the average de-
gree. When 2 < ˇ < 2:5, the largest eigenvalue is heav-
ily concentrated at cm3�ˇ for some constant c depend-
ing on ˇ and the average degree.

3. The eigenvalues of the Laplacian satisfy the semi-cir-
cle law under the condition that the minimum expected
degree is relatively large (	 the square root of the ex-
pected average degree). This condition contains the ba-
sic case when all degrees are equal (the Erdős–Rényi
model). If we weaken the condition on the minimum
expected degree, we can still have the following strong
bound for the eigenvalues of the Laplacian which im-
plies strong expansion rates for rapid mixing,

max
i 6D0
j1 � i j � (1C o(1))

4
p
w
C

g(n) log2 n
wmin

where w is the expected average degree, wmin is the
minimum expected degree and g(n) is any slow grow-
ing function of n.

On-Line RandomGraphs

Preferential Attachment Schemes

The preferential attachment scheme is often attributed to
Herbert Simon. In his paper [41] of 1955, he gave a model
for word distribution using the preferential attachment
scheme and derived Zipf’s law (i. e., the probability of
a word having occurred exactly i times is proportional to
1/i).

The basic setup for the preferential attachment scheme
is a simple local growth rule which leads to a global conse-
quence—a power law distribution. Since this local growth
rule gives preferences to vertices with large degrees, the
scheme is often described by “the rich get richer”. Of in-
terest is to determine the exponent of the power law from
the parameters of the local growth rule.

There are two parameters for the preferential attach-
ment model:

� A probability p, where 0 � p � 1.
� An initial graph G0, that we have at time 0.

Usually, G0 is taken to be the graph formed by one vertex
having one loop. (We consider the degree of this vertex to

be 1, and in general a loop adds 1 to the degree of a vertex.)
Note, in this model multiple edges and loops are allowed.

We also have two operations we can do on a graph:
Vertex-step Add a new vertex v, and add an edge fu; vg

from v by randomly and independently choosing u in
proportion to the degree of u in the current graph.

Edge-step Add a new edge fr; sg by independently choos-
ing vertices r and s with probability proportional to
their degrees.

Note that for the edge-step, r and s could be the same ver-
tex. Thus loops could be created. However, as the graph
gets large, the probability of adding a loop can be well
bounded and is quite small.

The random graph model G(p;G0) is defined as fol-
lows:

Begin with the initial graph G0.
For t > 0, at time t, the graph Gt is formed by

modifying Gt�1 as follows:
with probability p, take a vertex-step,
otherwise, take an edge-step.

When G0 is the graph consisting of a single loop, we will
simplify the notation and write G(p) D G(p;G0).

There were quite a number of papers analyzing the
preferential attachment model G(p), usually having sim-
ilar conclusions of power law degree distribution. How-
ever, many of these analyses are heuristics without speci-
fying the ranges for the power law to hold. Heuristics of-
ten run into the danger of incorrect deductions and in-
complete conclusions. It is quite essential to use rigorous
proofs which help specify the appropriate conditions and
ranges for the power law. The following statement was
proved in [16].

For the preferential attachment model G(p), almost
surely the number of vertices with degree k at time t is

Mkt C O(2
p
k3t ln(t)) :

where M1 D (2p)/(4 � p) and Mk D (2p)/(4 � p)
(� (k)� (1 C 2/(2 � p)))/(� (k C 1 C 2/(2 � p))) D
O(k�(2Cp/(2�p))), for k � 2. In other words, almost surely
the graphs generated by G(p) have the power law degree
distribution with the exponent ˇ D 2C p/(2 � p).

Duplication Models

Networks of interactions are present in all biological sys-
tems. The interactions among species in ecosystems, be-
tween cells in an organism and among molecules in a cell
all lead to complex biological networks. Using current
technological advances, extensive data of such interactions
has been acquired. To find the underlying structure in
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RandomGraphs, A Whirlwind Tour of, Table 3
Power law exponents for biological and nonbiological networks

Biological networks Exponent ˇ References
Yeast protein -protein net 1.6, 1.7 [20,43]
E. Coli metabolic net 1.7, 2.2 [3,28]
Yeast gene expression net 1.4–1.7 [20]
Gene functional interaction 1.6 [30]
Nonbiological networks
Internet graph 2.2 (indegree),

2.6 (outdegree)
[4,27,34]

Phone call graph 2.1 –2.3 [1,2]
Collaboration graph 2.4 [29]
Hollywood graph 2.3 [4]

these databases, it is of great importance to understand the
basic principles of various genetic andmetabolic networks.

It has been observed that many biological networks
have power law graphs with exponents ˇ less than 2. The
ranges for the exponents of the power law for biological
networks are quite different from the ranges for nonbio-
logical networks. Various examples, such as the WWW-
graphs, call graphs, and various social networks, among
others, are power law graphs with the exponent ˇ between
2 and 3. Table 3 lists the exponents of a variety of biologi-
cal and nonbiological networks with associated references.
As we saw in Sect. “Preferential Attachment Schemes”,
the preferential attachment model generates graphs with
power law degree distribution with exponents ˇ between
2 and 3. Therefore there is a need to consider alternative
models for biological networks.

The duplication of the information in the genome –
genes and their controlling elements – is a driving force
in evolution and a determinative factor of biological net-
works. The process of duplication is quite different from
the preferential attachment process that is regarded by
many as the basic growth rule for most nonbiological net-
works.

Here we consider a duplication model. If we only al-
low pure duplication, the resulting graph depends heavily
on the initial graph and does not satisfy the power law.
So we consider a duplication model that allows random-
ness within the duplication step as defined below. We will
see that this duplicationmodel generates power law graphs
with exponents in the range including the interval between
1 and 2 and therefore is more suitable for modeling com-
plex biological networks.

There are two basic parameters for the duplication
model:

� A selection probability p, where 0 � p � 1.
� An initial graph G0, that we have at time 0.

Usually,G0 is taken to be the graph formed by one ver-
tex. However, G0 can be taken to be any finite simple con-
nected graph. Unlike the preferential attachmentmodel, in
this model the generated random graph is always a simple
graph.

There is one basic operation:
Duplication step: A sample vertex u is selected randomly
and uniformly from the current graph. A new vertex v and
edge fu; vg is added to the graph. For each neighbor w of
u, with probability p, fv;wg is added as a new edge.

The edge fu; vg in the duplication step is called a ba-
sic edge. The vertex u is said to be the parent of v and v
is called a child of u. We note that a vertex can have sev-
eral children or no child at all and that each vertex not in
the initial graph G0 has a parent. All basic edges from chil-
dren to parents form a forest where the vertices in G0 are
roots of component trees. All terms like “leafs” and “de-
scendants”, if not defined, refer to this forest.

The duplication step can be further decomposed into
two parts—vertex-duplication and edge-duplication as
follows:
Vertex-duplication: At time t, randomly select a sample

vertex u and add a new vertex v and an edge fu; vg.
Edge-duplication: At time t, for the vertex v created, its

parent u and each neighbor w of u, with probability p,
add an edge fv;wg to w.
For any vertex v, a descendant of v can only be con-

nected to descendants of v’s neighbors (including v itself).
An edge fx; yg is said to be a descendant of an edge fu; vg,
if “x is a descendant of u and y is a descendant of v” or “x
is a descendant of v and y is a descendant of u”.

We remark that having the basic edges fu; vg makes
the graphG always connected. This helps avoid degenerate
cases such as having mostly isolated vertices.

For the above duplication model, it can be shown [17]
that its degree distribution obeys a power law with the ex-
ponent ˇ of the power law satisfying the following equa-
tion:

1C p D pˇ C pˇ�1 : (5)

We remark that the solutions for (5) that are illus-
trated in Fig. 4 consist of two parts. One is the line ˇ D 1.
The other is a curve which is a monotonically decreas-
ing function of p. The two curves intersect at (x; 1) where
x D 0:56714329 : : : the solution of x D � log x. One very
interesting range for ˇ is when p is near 1/2. To get
a power-law with exponent 1.5, for example, one should
choose p D 0:535898 : : :Also we see that the second curve
intersects zero at p D (

p
5 � 1)/2, an intriguing number

(the “golden mean”). At p D 1/2, one solution for ˇ is
2. Although there are two solutions for each p, the stable
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RandomGraphs, A Whirlwind Tour of, Figure 4
The value of ˇ as a function of p. The green section of the curve
shows the rangeofˇ valueswhich are typically found for biolog-
ical networks

solutions are on the curve when p < 0:56714329 : : : and
ˇ D 1 for p > 0:56714329 : : :

Remarks

The small world phenomenon, that occurs ubiquitously in
numerous existing networks, refers to two similar but dif-
ferent properties:
Small distance Between any pair of nodes, there is a short

path.
The clustering effect Two nodes are more likely to be ad-

jacent if they share a common neighbor.
There have been various approaches to model networks
that exhibit the small world phenomenon. In particular,
the aspect of small distances can be well explained by
using random graphs with general degree distributions
which include the power law distribution. However, the
other feature concerning the clustering effect seems much
harder to model.

To model the clustering effect, a typical approach is to
add random edges to a grid graph or the like [26,32,44].
Such grid-based models are quite restrictive and far from
satisfactory for modeling biological networks or collabo-
ration graphs, for example. On the other hand, random
power law graphs are good for modeling small distance,
but fail miserably for modeling the clustering effect. In
a way, the aspect of small distances is about neighborhood
expansion while the aspect of the clustering effect is about
neighborhood density. The related graph-theoretical pa-

rameters seem to be of an entirely different scale. For ex-
ample, while the clustering effect is quite sensitive to aver-
age degree, the small distance effect is not.

The heart of the problem can be quite simply stated:
For a given network, what is its true geometry? How can
we capture the geometry of the network (without invoking
too many parameters)?
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Glossary

Randommatrices Large matrices with randomly dis-
tributed elements obeying the given probability laws
and symmetry classes.

Orthogonal ensembles Real symmetric random matrix
ensembles which are invariant under all orthogonal
transformations. Majority of practical systems are de-
scribed by these ensembles.

Unitary ensembles Hermitian random matrix ensembles
which are invariant under all unitary transformations.

Symplectic ensembles Hermitian self-dual random ma-
trix ensembleswhich are invariant under all symplectic
transformations.

Definition of the Subject

Random Matrix Theory (RMT) is a method of studying
the statistical behavior of large complex systems, by defin-
ing an ensemble which considers all possible laws of in-
teractions within the system. The important question ad-
dressed by random matrix theory is: Given a random ma-
trix ensemble what are the probability laws which govern
its eigenvalues or eigenvectors. This question is pertinent

http://www.oakland.edu/enp
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to many areas in physics and mathematics, for instance
statistical behavior of compound nucleus, conductivity in
disordered metals, behavior of chaotic systems or zeros of
the Riemann zeta function. The success of random matri-
ces lies in the universality regime of the eigenvalue statis-
tics. There is compelling evidence that when the size of the
matrix is very large then the eigenvalue distribution tends,
in a certain sense, towards a limiting distribution. This
only depends on the symmetry properties of the matrix
and is independent of the initial probability law imposed
on the matrix entries. For example, in many-body systems,
the random matrix models are very successful in describ-
ing the spectral fluctuation properties of complex atoms,
molecules and atomic nuclei, despite the fact that the in-
teractions between the constitutes of these systems are very
different, and not at all random: The nuclei are bound by
short-range nuclear forces whereas atoms and molecules
are governed by the long-range Coulomb forces, but the
Hamiltonian of these models only considers the symmetry
properties without the detailed knowledge of the system
under consideration. The reason for such universality is
not so clear but may be an outcome of a law of large num-
bers operating in the background. In the proceeding sec-
tions after giving the history and development of the the-
ory, we will explore the random matrix ensembles, eigen-
value statistics as well as their pertinence to various com-
plex systems.

Introduction

Although, the RandomMatrix Theory was initiated in the
early 1900s by statisticians in their studies of the prod-
uct moment distribution [59], it made its progress in the
hands of physicists. It was EugeneWigner who introduced
the randommatrix idea to the theoretical physics commu-
nity in the mid 1950s. During the 1950s, due to the devel-
opment of nuclear weapons and nuclear power stations,
physicists of this era were involved in measuring fission
resonances in various nuclei. Wigner was predominantly
studying [53] the statistical properties of nuclear spectra
of heavy nuclei, but the large number of resonances was
making his analysis very difficult. It was clear that the res-
onance spectra were far too complex to be analyzed by ex-
isting models like the atomic shell model. This prompted
Wigner to look for statistical methods which would deal
with such complexity. Later, the realization that the statis-
tical distribution of the nuclear resonance energies shared
the same properties as the eigenvalues of randommatrices,
led him to study a randommatrix model [54], in which an
infinite real symmetric matrix with identically distributed
elements having the values zero in the diagonal and + 1 or

� 1 in the off diagonal was used, so that all sign interac-
tions were equally probable. In this model he showed that
the distribution of the characteristic values of the matrix
i. e., the density of states (DOS) was a semicircle, and it was
also obvious that the characteristic values were repelling
each other.1

During a number of conferences [55,56,57] in 1956–
1957, on the basis of eigenvalues of a 2 � 2 real sym-
metric matrix, Wigner gave an assumed formula for the
level spacing distribution, and he advocated Wishart’s
work [59], which was giving the joint probability distribu-
tion of eigenvalues, to confirm his findings. At about the
same time analysis of experimental data by Gurevich and
Pevsner [29] was also confirming that the nuclear levels
were repelling each other and the distribution of consec-
utive level spacings was not totally random, but showed
some regularities.

The interest in randommatrix hypothesis was becom-
ing wide spread, in [44] Porter and Rosenzweig sum-
marized the developments on the statistical properties
of atomic and nuclear spectra, by including experimen-
tal, theoretical, and numerical findings, which helped to
strengthen the applicability of such statistical laws to nu-
clear reactions. It was time to make these statistical the-
ories more mathematically rigorous; Wigner used the
method of moments to prove that the density of eigen-
values for large symmetric matrices distributed as a semi
circle [58]. Motivated by this, in 1960 Mehta and Gaudin
obtained the same distribution by integrating joint proba-
bility density function of eigenvalues, and simultaneously
Mehta analytically showed that the Wigner surmise was
a very good approximation for the large randommatrices.
Soon after that, Gaudin gave the exact expression for the
spacing distribution [26].

Dyson considered these statistical theories of random
matrices as a new kind of Statistical Mechanics [10] such
that one ignores the exact knowledge of the nature of the
system. That is to say, a compound nucleus can be viewed
as a black box, and one would need to define an ensem-
ble of systems in which all possible laws of interactions are
equally probable. In an attempt to explore this so-called
“new kind of statistical mechanics” Dyson presented a se-
ries of papers [10,11,12], and in these papers he showed
that all randommatrix ensembles fall into three universal-
ity classes called the orthogonal ensemble (OE), unitary en-
semble (UE) and symplectic ensemble (SE). These ensem-
bles account for the symmetry properties of the Hamil-
tonians as well as the mathematical rigor of all possible
interactions being equally likely. For matrices with Gaus-

1This was already known to Wigner and von Neuman [51].
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sian distributed entries they are referred to as GOE, GUE
and GSE, respectively. The random matrix theory (RMT)
was developed all through the 1960s by Wigner, Mehta,
Gaudin and Dyson. Most of the early work up to 1965 on
randommatrices is collected in Statistical Theories of spec-
tra by Porter.

The RMT took a new dimension in the 1980s when
Bohigas, Giannoni and Schmit (BGS) [5] conjectured that
it could be applied to describing the spectra of all chaotic
systems. This BGS statement not only renewed the inter-
est in random matrices but also started a surge of research
in different subject areas such as quantum chaos, quan-
tum graphs, mesoscopic systems etc., and now there ex-
ists an overwhelming evidence that the BGS proposition
may be true. There are several review articles which sum-
marize the RMT applied research up to 1980s by Brody
and up to more recent times by Bohigas, Guhr. A com-
prehensive book in this subject area is Random Matrices
by Mehta [38], however it is aimed at the more advanced
reader. As for the new comers, the pedagogical derivation
of most of the basic principles of RMT may be found in
Quantum Signatures of Chaos by Haake [30].

Nowadays, RMT is at the center of several areas of
mathematics, particularly number theory, combinatorics,
diffusion processes, probability and statistics. At the same
time it is used as a tool to understand many complex sys-
tems from biology, quantum chaos, wireless communica-
tion and finance.

In the following sections, first the most commonly
used random matrix ensembles, namely the Gaussian en-
sembles, will be presented. Then some of their central sta-
tistical properties such as the density of states and spacing
distribution will be discussed.

RandomMatrix Ensemble Classifications

Because of the broad use of RMT a variety of randomma-
trix ensembles have been studied. These ensembles can be
loosely divided into three types, Gaussian, circular and hy-
perbolic. In the next sections, although the emphasis will
be on the Gaussian ensembles, we also give very brief de-
scriptions of the circular and the hyperbolic ensembles.

Gaussian Ensembles

These ensembles are categorized into three universality
classes, which only take into account: (1) the time-rever-
sal invariance (more often referred to as the time-reversal
symmetry) and (2) the strong spin-orbit coupling of the
Hamiltonian of an underlying quantum system.

In Gaussian ensembles, the type of transformation
gives the classifying name to the ensemble. For quick ref-

erence these ensembles are grouped in the Table 1 with
consideration of the space-time symmetries and the values
of the angular momentum.

Circular Ensembles

Introduced byDyson [10] with an assumption that the sys-
tem is not characterized by its Hamiltonian but by a uni-
tary matrix S. The matrix is considered to be a scatter-
ing matrix (S-Matrix), whose elements give the transition
probabilities between various states and its eigenvalues be-
long to the unit circle in the complex plane. Because of
this compactness of the ensembles the universal distribu-
tion can be obtained with a uniform probability law. From
the point of view of the fundamental symmetries, these
ensembles can be categorized into three types as: Circu-
lar orthogonal ensembles (COE), circular unitary ensem-
bles (CUE), circular symplectic ensembles (CSE). In the
large N limit, the statistical properties of their eigenvalues
are identical to those of the Gaussian ensembles.

Hyperbolic Ensembles

These ensembles are appropriately described in terms of
Brownian motion in some matrix spaces. A seminal study
of such a system is Dyson’s Brownian motion model [9],
which applies the notion of the RMT to a new type of
Coulomb gas model so that the “Coulomb gas” could be
interpreted as a dynamical system.

The matrix defined is a transfer matrix (M-matrix),
which is a matrix used to give the relationship between the
fluxes at one edge of a conductor to fluxes at the other edge
(i. e., the number of ingoing electrons minus the outgoing
electrons should be the same on each side of a conduc-
tor). Unlike the S-matrix, the M-matrix does not belong to
a compact group. Also, it is not possible to define a nor-
malizable probability law, but instead a diffusion equation
as a function of a fictitious time. The term “time” can be
any property of the model such as the length of a conduc-
tor.

Construction of Gaussian Ensembles

In fixing the elements of randommatrices we are not com-
pletely free, since, first of all thematrix elementsmust obey
the class restrictions given in the previous section. In the
GOE case the Hamiltonian matrix is considered to be real
symmetric. This means that for an N � N real symmet-
ric matrix, there are N(N C 1)/2 elements i. e., Hi j with
i; j D 1; : : : ;N can be chosen independently and the rest
of them are determined by the symmetry. The ultimate
aim is to define a joint probability density P(H ) for the
matrix elements satisfying the conditions:
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RandomMatrix Theory, Table 1
The grouping of the quantum systems by the symmetry properties and the value of angular momentum. ˇ is an index of the classi-
fication

Gaussian Ensemble Classification
Symmetries Total angular mom. Hamiltonian Canonical group Ensemble ˇ

Time-reversal Integer
Real symmetric Orthogonal GOE 1

Time-reversal, Rotational Half-Integer
Time-reversal, No-rotational Half-Integer Quaternion real Symplectic GSE 4
None Any Hermitian Unitary GUE 2

1. The probability P(H ) must be invariant under any
transformation i. e. H !W�1H 0W with W is ei-
ther orthogonal (ˇ D 1), unitary (ˇ D 2), or symplec-
tic (ˇ D 4) matrix. Then, e. g. for ˇ D 1, whenW D O
is any real orthogonal matrix then we have

P(H )dH D P(H 0)dH 0 ;
O�1 D OT; and OOT D 1 : (1)

2. The matrix elements Hi j are statistically independent.
Thus, the joint probability density function must be the
product of the densities of these elements,

P(H ) D
Y

i j

Pi j(Hi j) : (2)

The first condition is absolutely essential, P(H ) must be
invariant under any transformation, because these trans-
forms determine the eigenvalues, but the second one is
only chosen to simplify the calculations. However, as will
be more apparent later in the derivations, the considera-
tion of these conditions necessitates the distribution of the
random matrix elements to be Gaussian.

To find P(H ) for the real symmetric Hamiltonian ma-
trices, we will consider a 2 � 2 real symmetric matrixH
and an orthogonal transformation matrix

O D
�

cos � sin �
� sin � cos �

�
; (3)

which is the two-dimensional rotation through � . The ro-
tation O acts as a transformation H D OTH 0O, from
which we get the relations

H11 D
H011 C H022

2
C

H011 � H022
2

cos 2� � H012 sin 2�

H12 D
H011 � H022

2
sin 2� C H012 cos 2�

H22 D
H011 C H022

2
�

H011 � H022
2

cos 2� C H012 sin 2� :

(4)

The joint probability density function is simply the prod-
uct of the three densities

P(H ) D P11(H11)P12(H12)P22(H22) ; (5)

and the orthogonal invariance of P(H ) implies that
dP(H )d� D 0. Therefore we have

dP11(H11)
P11(H11)

dH11

d�
P(H )C

dP12(H12)
P12(H12)

dH12

d�
P(H )

C
dP22(H22)
P22(H22)

dH22

d�
P(H ) D 0 : (6)

From the Eqs. (4) we can find equivalent expressions for
the three differentials of dH /d� as:

dH11

d�
D �2H12;

dH12

d�
D H11�H22 ;

dH22

d�
D 2H12:

(7)

Substituting these later relations into Eq. (6), and dividing
by �H12(H11 � H22) we get

d ln P11(H11)
dH11

2
H11 � H22

�
d ln P22(H22)

dH22

�
2

H11 � H22
D

d ln P12(H12)
dH12

1
H12
D �2a : (8)

The two sides of this equation depend on different vari-
ables, which means that each side must be equal to a con-
stant, hence the constant a is introduced. From Eq. (8) we
first find a solution for P12(H12) by simply integrating

d ln P12(H12) D �2aH12dH12

P12(H12) D C12 exp
�
�aH2

12

;

(9)
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in which the constant coefficient C12 is a consequence
of the integration. Then re-writing Eq. (8) as

d ln P11(H11)
dH11

CaH11 D
d ln P22(H22)

dH22
CaH22 D b (10)

where another constant b is introduced as the equation de-
pends on a different variable on each side, and following
the same sequence of steps as before, we get solutions of
P11 and P22,

P11(H11) D C11 exp
�
(�a/2)H2

11 C bH11
�

P22(H22) D C22 exp
�
(�a/2)H2

22 C bH22
�
:

(11)

These solutions have Gaussian distribution form, and the
product of them gives

P(H ) D C exp
�
(�a/2)(H2

11 C H2
22 C 2H2

12)
Cb(H11 C H22)

�
: (12)

If we fix the mean values of the diagonal elements to be
zero i. e., hHiii D 0 then the second constant b D 0. The
overall constant C is determined by the normalization

C1Z

�1

dH11dH22dH12P(H ) D 1 : (13)

A simple calculation gives C D 1/2(a/�)3/2. For the con-
vergence of Eq. (13) the constant amust be positive, also it
is related to the widths of the distributions of the diagonal
and off-diagonal elements. The variances of the diagonal
matrix elements

hH2
22i D hH

2
11i

D
p
a/2�

Z
H2

11 exp
�
(�a/2)H2

11
�
dH11

D 1/a ; (14)

whereas for the off-diagonal elements

hH2
12i D

p
a/�

Z
H2

12 exp(�aH
2
12)dH12 D 1/2a : (15)

By taking �2 as the variance of the off diagonal matrix ele-
ments, we obtain a D 1/2�2 for a 2 � 2 matrix.

Wemake a remark here that for large dimensional ma-
trices the off-diagonal elements greatly outnumber the di-
agonal ones so, for the purpose of numerical simulations it
does not matter much if the variances of the diagonal and
the off-diagonal elements are not the same.

Although we have only considered the 2 � 2 Hamilto-
nianmatrix in finding P(H ), this can easily be extended to

N � N dimension with a suitable transformation matrix.
In this way we find that a real symmetric random matrix
having a probability density

P(H ) D

 1
4�2�

�N/2
 1
2�2�

�N(N�1)/4

� exp
n
�

1
4�2

X

i; j

H2
i j

o
; (16)

defines the Gaussian orthogonal ensemble.
Analogously, we obtain the Gaussian unitary ensem-

ble (GUE) and the Gaussian symplectic ensemble (GSE),
with the consideration that the joint probability distribu-
tion of the matrix elements is invariant under unitary and
symplectic transformations, respectively. Thus, the gen-
eral form of the probability density of a randomHermitian
matrix is given by:

P(H ) D

 1
4�2�

�N/2
 1
2�2�

�N(N�1)/2

� exp

8
<

:
�

1
4�2

X

i; j

h
(HR)2i j C (HI)2i j

i
9
=

;
; (17)

where (HR)2i j and (HI)2i j are the real and the imaginary
parts of the off-diagonal matrix elementsHi j , respectively.
And the probability density of a random quaternion ma-
trix is:

P(H ) D

 1
4�2�

�N/2
 1
2�2�

�N(N�1)

�exp

8
<

:
�

1
4�2

X

i; j

�
(H0)2i jC (H1)2i jC (H2)2i jC (H3)2i j)

�
9
=

;
;

(18)

where (H0)i j , (H1)i j , (H2)i j and (H3)i j are the quater-
nionic components ofHi j .

Without loss of generality, the probability density
P(H ) with H of an arbitrary N � N dimension can be
written in a form common to all three ensembles as

PNˇ (H ) D CNˇ e
�

Nˇ
4�2 Tr[H 2]

; (19)

where Tr stands for the matrix trace: TrH DPi Hii,
ˇ D 1; 2; 4 is used as an index for the ensemble classifi-
cation, with �2 being the variance of the off diagonal ma-
trix elements and the factor N ensuring the moments of
the eigenvalues i ofH to be finite in the limit N !1,
while h2i i D 1.
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Eigenvalues of Gaussian Ensembles

Using the joint probability distribution of the matrix en-
tries in Eq. (19) we will write the joint probability distri-
bution of the eigenvalues for all three Gaussian ensembles.
Again, we consider the simplest case of a real symmetric
2 � 2 Hamiltonian matrixH, and the orthogonal transfor-
mation matrix O, as given in Eq. (3), such that

H D OTHDO ; (20)

where HD is the diagonal matrix containing the eigen-
values of H . In this case there are only two eigenvalues,
which are given by

1;2 D
1
2
(H11CH22)˙

q
(H11 � H22)2 C 4H2

12 : (21)

Writing out Eq. (20) explicitly

H11 D 1 cos2 � C 2 sin2 �

H22 D 1 sin2 � C 2 cos2 �
H12 D (1 � 2) cos � sin � ;

(22)

we can see that the elements ofH are linear functions of
the eigenvalues and a single angle � parameterwhich spec-
ifies the set of eigenvectors. The Jacobian of this transfor-
mation is simply

J D det
�
@(H11;H22;H12)
@(1; 2; �)

�
D (1 � 2) ; (23)

and since Tr[H 2] D (21 C 
2
2), we can just replace the

matrix elements Hi j with the eigenvalues of H and in-
tegrate over � to get

P(1; 2) D Cj1 � 2je
� Nˇ

4�2
(�21C�

2
2) ; (24)

which is the joint probability density of the eigenvalues for
the GOE of 2 � 2 dimension.

We follow the same procedure as above to find the
joint probability density of the eigenvalues for the GUE
case. Here we consider a 2 � 2 complex Hermitian ma-
trix H , and a simple 2 � 2 unitary transformation ma-
trixU to diagonalize it, where

U D
�

cos � �e�i� sin �
ei� sin � cos �

�
: (25)

However, we note that this unitary matrix is not the most
general 2 � 2 unitary transformation matrix, but rather an
element of the coset space V (2)/V (1)V(1). This is to en-
sure a one-to-one correspondenceH ! (1; 2;U) after
the ordering of the eigenvalues, which are given by

1;2 D
1
2
(H11CH22)˙

q
(H11 � H22)2 C 4H�12H12 : (26)

This expression is essentially the same as the one in
Eq. (21) with the only difference being H2

12 ! jH12j
2. In

complete analogy to Eq. (20) we write

H D U�HDU (27)

to represent the matrix elements ofH in terms of the two
eigenvalues 1;2 and the two angles � , �

H11 D 1 cos2 � C 2 sin2 �

H22 D 1 sin2 � C 2 cos2 �
H12 D (1 � 2)[cos � sin � cos � � i cos � sin � sin�] ;

(28)

from which the Jacobian is

J D det
�
@(H11;H22;HR

12;H
I
12)

@(1; 2; �; �)

�
D (1�2)2 cos � sin � :

(29)

Again, Tr[H 2] D 21 C 
2
2 thus Eq. (19) can be written for

GUE, in terms of the eigenvalues and the two parameters
namely angles as

P(1; 2; �; �) D Cj1 � 2j2e�
Nˇ
4�2 (�

2
1C�

2
2) cos � sin � ;

(30)

integrating this over the angles � and � we get

P(1; 2) D Cj1 � 2j2e
� Nˇ

4�2
(�21C�

2
2) : (31)

Although the constant C has been modified as a result of
the integration, we still call it C to avoid unnecessary com-
plication.

Nowwemove on to the GSE case, in which the smallest
HamiltonianmatrixH is 4 � 4 but the procedure for find-
ing the joint probability density of the eigenvalues is com-
pletely analogous to the preceding GOE and GUE cases.

Themost convenient way to writeH is the quaternion
notation, reducing the 2N � 2N matrix to an N � N by
representing each Hi j with a block of 2 � 2, superposition
of unity and the quaternion matrices. Then the degenerate
eigenvalues of quaternion realH are

1;2 D
1
2
�
H0

11 � H0
22


˙

2

4�H0
11 � H0

22
2
C 4

3X

�D0

�
H�12

2
3

5

1/2

; (32)

each of these s are double, so that we have 4 eigenval-
ues since the matrix is 4 � 4. The total number of freely
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picked real entries in a 2N � 2N quaternion real matrixH
is given by N(2N � 1), thus we have 6 real entries in this
case. To diagonalizeH , not the most general, but a con-
venient choice is a 2 � 2 symplectic matrix

S D
�

e���� cos � sin �
� sin � e��� cos �

�
; (33)

where � , � are the four real parameters provided by S. As
before using the notation H D S�HDS, we write the el-
ements ofH as a function of the eigenvalues and the pa-
rameters � , � ,

H0
11 D 1 cos

2 � C 2 sin2 �

H0
22 D 1 sin

2 � C 2 cos2 �

H0
12 D �(1 � 2) cos � sin � cos �

(34)

H�12 D �(1 � 2) cos � sin � sin � : (35)

The Jacobian of this transformation is

J D det
�
@(H0

11;H
0
22;H

�
12)

@(1; 2; �; �)

�
/ (1 � 2)4; (36)

where the coefficient of the proportionality is not specified
since it is independent of the eigenvalues, and will only
contribute to the constant C after integration over all four
parameters � and � . Thus, the joint probability distribu-
tion of the eigenvalues for the smallest GSE is

P(1; 2) D Cj1 � 2j4e
� Nˇ

4�2
(�21C�

2
2) : (37)

From the general form of the Eqs. (24,31,37), we
can guess the generic joint probability distribution of the
eigenvalues for all three Gaussian ensembles to be

PNˇ (1; : : : ; N )

D CNˇ
Y

i< j

ji �  j j
ˇ exp

 

�
Nˇ
4�2

NX

kD1

2k

!

; (38)

in which the constant CNˇ is an ensemble dependent con-
stant, and it is chosen such that the PNˇ is normalized to
unity.

Density of States: Semicircle Law

Having at our disposal the generalized joint probability
density of eigenvalues, nowwe can derive the famous semi-
circle law for the mean eigenvalue densities (see Fig. 1).
The essential step is integrating Eq. (38) in the previous
section i. e.,

N
1Z

�1

� � �

1Z

�1

1Z

�1

PNˇ (1; 2; : : : ; N )d2; : : : ; dN (39)

RandomMatrix Theory, Figure 1
Averaged density of states (DOS) for GOE (with a suitable scaling,
all three ensembles have the same formofDOSdistribution). The
solid line is the theoretical result superimposed over numerical
data values (circles)

over all variables accept one to determine the ensemble-
averaged eigenvalue or level density �(), and the semicir-
cle law arises asymptotically as N !1. This integration
is not at all trivial, and was first carried out by Mehta and
Gaudin [39], using some remarkable techniques. How-
ever, there are many ways to derive the semicircle law, but
the one that is perhaps the most elegant and up-to-date is
the representation of determinants by Gaussian integrals
over Grassmaninan variables, we will use this technique in
the following derivations of the semicircle law.

General Formalism

Consider an N � N Hermitian matrix H , which has
ordered eigenvalues k(k D 1; : : : ;N). The normalized
spectrum ofH can be expressed as sums of delta function,
which essentially picks out the positions of the eigenvalues,

�() D
1
N

NX

kD1

ı( � k) : (40)

By representing the delta function as a Lorentzian curve
with vanishing widths.

ı( � k) D lim
"!0

"

�

1
( � k )2 C "2

; (41)

and substituting this latter relation to the former we get

�() D
1
N�

ImTr
�

1
I �H

�
; (42)

where I is identity matrix and  is assumed to have a small
imaginary part but we will not write it explicitly for the
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sake of less cumbersome expressions. To proceed with the
supersymmetric calculations we need to represent this last
relation in terms of ratios of the determinants, for which
we introduce the following generating function

Z(;�) � det(I �H )
det(�I �H )

; (43)

where � � ˙ ix/2N. Thus, differentiating the generat-
ing function with respect x, i. e.,

@

@x
Z(;�)jx!0 D

1
N
ImTr

�
1

I �H

�
; (44)

and when x ! 0 we recover the expression for the density
of the eigenvalues we have defined previously. So that our
starting point will be

det(I �H )
det(�I �H )

: (45)

We are interested in averaging the expression in
Eq. (45) over all realization of H . For which we will use
the “supersymmetrization” method. In this method, the
denominator of the expression is represented by a general
Gaussian integral over a complex N dimensional vector
S D (S1; : : : ; SN )T, where T stands for the vector trans-
pose, and Si are commuting variables

(2�)det�1(�I�H ) D
1
iN

Z
dS� dSe

i
2�S

�S� i
2 S
�HS ; (46)

with the assumption that � has a small positive imaginary
part i. e. we choose � D C ix/N so that the integral is
convergent. For the determinant in the numerator, we use
Gaussian integrals over anticommuting (Grassmannian)
N components vectors �; ��, which gives

(2�)�1 det(I �H ) D
1
iN

Z
d�� d�e

i
2��

��� i
2�
�H� :

(47)

Thus, we write the expression in Eq. (45) as

h� � � iH D
Z

d2�

�

Z
d2Se

i
2 (��

��C�S�S)
D
e�

i
2 (S
�HSC��H�)

E

H
: (48)

The commuting and the anti commuting variables appear
symmetrically in this expression, which in fact gives the
name “supersymmetry” to the method. To perform the av-
erage over the GUEmatrixH we can decompose elements

ofH into its real and imaginary parts, Hkl D HR
kl C iHI

k l
and write

D
e�

i
2
P

k l Hkl Ak l
E

H
D
D
e
P

k �
i
2 Akk HR

kk

E

�
D
e
P

k>l �
i
2 (AklCAlk )HR

kl

E
�
D
e
P

k>l
1
2 (Akl�Alk )HI

k l

E
;

(49)

where Akl D S�k Sl C �
�
k�l . The explicit meaning of angle

brackets is the average over the joint probability density
for GUE, here we take

P(H ) D CNe�
N
2 Tr[H 2] dH ; (50)

where CN is a constant normalization factor and the prob-
ability distribution has zero mean and unity variance. By
means of this probability distribution we get

D
e�

i
2 AkkHR

kk

E
D exp

"

�
A2
kk

8N

#

;

D
e�

i
2 (AklCAlk )HR

kl

E
D exp

�
�
(Akl C Al k)2

16N

�
;

D
e
1
2 (Akl�Alk )HI

k l

E
D exp

�
(Akl � Al k)2

16N

�
:

(51)

Substitution of these equations into (49) yields
D
e�

i
2
P

k l Hkl Ak l
E

H
/ e�

1
8N
P

k l Ak l Al k ; (52)

it is easy to show that
P

k l Hkl Al k D Tr[HA] andP
k l Akl Al k D Tr[A2] then the expression in Eq. (52) is

just the identity
D
e�

i
2 Tr[HA]

E

GUE
/ e�

1
8N Tr[A2] : (53)

The far right exponent in Eq. (48) have the relations
��H� D �Tr[H�˝ ��] and S�HS D Tr[HS˝ S�].
These relations imply that the right hand side exponent
of the identity is:

Tr[A2] D Tr[S˝ S� � �˝ ��]2: (54)

Expanding the latter we get

Tr[A2] D (S�S)2 � 2(S��)(��S) � (���)2: (55)

The quartic term in the far right of Eq. (55) needs to be
“decoupled” before we can carry on with the integration,
we can do so by using the usual Hubbard–Stratonovich
transformation

e
1
8N (���)2 D

1Z

�1

dq
p
2�

e�
q2
2 �

q
p

2N
���

: (56)
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Thus, re-writing Eq. (48) with these new relations we have

h� � � iH D
Z

d2S exp
�
�

1
8N

(S�S)2 C
i
2
�S�S

�

�

1Z

�1

dq
p
2�

e�q
2/2
Z

d�� d�

� exp
n
��
h
1/2(i � q/N)I � S˝ S�/4N

i
�
o
: (57)

The last integral over the Grassmannian variables is the
familiar Gaussian integral in Eq. (47), which leads to

h� � � iH D
Z

d2Se�
1
8N (S�S)2C i

2�S
�S

�

1Z

�1

dq
p
2�

e�
q2
2 det

"
1
2



i�

q
N

�
I � S˝ S�

4N

#

:

(58)

Further manipulation can be made by introducing the
variable qF D i� q/

p
N and shifting the contour of in-

tegration in such away that, the integral over qF goes along
the real axis, thus, we rewrite the above expression as

h� � � iH /

1Z

�1

dqF
p
2�

e�
N
2 (qF�i�)

2

�

Z
d2Se

1
8N (S�S)2C i

2�S
�S det

�
qFI �

1
2N

S˝ S�
�
;

(59)

where we shifted the contour for qF 2 (�1;1) to be real.
Further simplification can bemade by noticing that the

N � N matrix S˝ S� is of rank unity, i. e., it has (N � 1)
zero eigenvalues, and only one nonzero eigenvalue equal
to (SS�). Then the determinant in the previous expression
is

det
�
qFI �

1
2N

S˝ S�
�
� qN�1F

�
qF �

1
2N

S�S
�
: (60)

Our next step is to introduce polar coordinates: S D rn
with n�n D 1 and

R
d2S D r2N�1drdn, where

R
dn D

˝N corresponds to the area of a 2N dimensional unit
sphere, which only produces a constant factor. Further in-
troducing p D r2 and changing p! 2Np and then fol-
lowing with the obvious manipulations we get:

�
det(I �H )
det(�I �H )

	

H
D CNe

N
2 �

2
1Z

�1

dqF
p
2�qF

� exp
�
�
N
2
�
q2F � 2iqF � 2 ln qF

�

�

1Z

0

dp(qF � p)
p
2�p

exp
�
�
N
2
�
p2 � 2i�p � 2 ln p

�
:

(61)

In this expression CN stands for the accumulated constant
factors such that when � D  the right hand side must
yield unity identically.

Up to now all the expressions were valid for finite-size
matrices, but for N !1 with appropriate scaling we ex-
pect the results to be universal. This means that in the
asymptotic limit the results will be broadly insensitive to
the details of the distribution of random matrices, thus
it can be applicable to complex or quantum chaotic sys-
tems. More over in such a limit the integrals in Eq. (61)
can be evaluated by the saddle-point method, or Laplace’s
method. To use the latter method we write the terms in the
exponent in Eq. (61) as

L(qF ) D [q2F � 2iqF � 2 ln qF ] and

L(p) D [p2 � 2i�p � 2 ln p] :
(62)

The first derivatives of these equations yield the sad-
dle-points: qs:pF D (i ˙

p
4 � 2)/2 and ps:p D

(i� C
p
4 � �2)/2 since Re(p) � 0, for  �

p
4 the

so called bulk of the spectrum. The imaginary part of
� here denoted as ix/N does not contribute, when N !
1 also for consistency we should put � D . Because of
the presence of the factor (qF � p) in the integrand, it is
easy to see that only the choice qs:pF D (i �

p
4 � 2)/2

yields the leading-order contribution. Substituting this
choice into the integrand in Eq. (61) and evaluating the
Gaussian fluctuations around the saddle-point values, fi-
nally yields

�
det(I �H )

det[(C ix/N)I �H ]

	

H

ˇ̌
ˇ̌
x>0
N!1

D exp
n
�
x
2
[iC

p
4 � 2]

o
; (63)

where we re-substituted � D C ix/N. To recover aver-
aged density of states h�()i from the expression above we
simply need to differentiate both sides with respect to x,
and let x ! 0, for which we write

@

@x
hdet( �H ) exp f�Tr ln[(C ix/N)�H ]gi

D
@

@x
exp

n
�
x
2
[iC

p
4 � 2]

o
: (64)
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Performing the differentiation and letting x ! 0 we get

� i
�
1
N

Tr
�

1
I �H

�	

H

ˇ̌
ˇ̌
x!0
N!1

D �
i
2
�

1
2

p
4 � 2

ˇ̌
ˇ̌
x!0

: (65)

Comparing this last relation with Eq. (42) we see that
the averaged density of states is given by

h�()i D
1
2�

p
4 � 2 : (66)

It is easy to repeat all the calculations for x < 0 and find
that for any real value of x the result in Eq. (63) can be
written as

�
det(I �H )

det[( � ix/N)I �H ]

	

H

ˇ̌
ˇ
ˇx<0
N!1

D exp
�
�
ix
2
� jxj��()

�
: (67)

Spacing Distribution:Wigner Surmise

The level repulsion phenomenon that the small spacings
between two neighboring levels are unlikely can be seen
from the expression ji �  j j

ˇ , which appeared as a result
of the Jacobian of the transformation in all three cases of
the Gaussian ensembles. Wigner in [56] conjectured that
the distribution of spacings between adjacent eigenvalues
may be given by

P(s) � Csˇ exp(�As2) : (68)

He simply guessed this probability law, and demonstrated
his argument by using a 2 � 2 real symmetric matrix.
Through the joint probability distribution of the eigenval-
ues, and utilizing many novel techniques Gaudin obtained
an exact expression for the spacing distribution. However,
the derivations are rather lengthy and beyond the scope of
this introductory section, hence we refer the reader to [26].
Here, only the simplest case of N D 2 dimensional ensem-
bles of random matrices will be considered by taking the
distribution of eigenvalues for N D 2. The spacing distri-
bution for a single pair of levels can be written as

P(s) D C
1Z

�1

d1

�

1Z

�1

d2ı(s � j1 � 2j)j1 � 2jˇ e�
A
2 (�

2
1C�

2
2) :

(69)

RandomMatrix Theory, Figure 2
Wigner Surmise; Nearest neighbor spacing distributions for Pois-
sonian random process, the orthogonal, unitary and symplectic
ensembles

Changing the variables as 1 D (
p
2
ı
2)(u C v) and 2 D

(
p
2
ı
2)(u�v), makes the integration easy to perform. The

constantsA andC are fixed by the following normalization
conditions:

1Z

0

P(s)ds D 1 and hsi �
1Z

0

sP(s)ds D 1 ; (70)

the latter implies that the units of eigenvalues are such that
the mean spacing is unity. Performing the elementary in-
tegrations for ˇ D 1; 2 and 4 gives

P(s) D

8
<̂

:̂

	
2 se
�s2	/4 ˇ D 1 (GOE)

32
	2 s2e�s

24/	 ˇ D 2 (GUE)
218

36	32 s
4e�s264/9	 ˇ D 4 (GSE)

(71)

which are referred to as the Wigner Surmise (see Fig. 2)
in the literature, and these are not very different from the
asymptotic i. e., N !1 derivations (see Fig. 3).

Two-Level Correlation Function
The two-level correlation function is a highly investigated
topic in RMT, because it is very useful for spectral data
analysis. A number of spectral correlations such as the
number variance (for historical reasons also called �3
statistics) are expressed in terms of it. It is defined as the
probability density to find two eigenvalues (or levels) 1
and 2 at two given positions regardless of the positions
of all the other eigenvalues. The more general form of this
definition is given by the n-level correlation function

Rn(1; : : : ; n) D
N!

(N � n)!

�

Z
PN (1; : : : ; N )dnC1 : : : dN ; (72)
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RandomMatrix Theory, Figure 3
Comparison of nearest neighbor spacing distributions for 2� 2
Wigner surmise (solid line) and numerical simulation (crosses) of
100� 100 GUE

where the coefficient on the right hand side takes into
account all combinations of selecting n eigenvalues out
of the total number N. The integration is taken over the
joint probability density PN of eigenvalues. First system-
atic derivations of n-level correlation function were given
by Dyson [12] and since then a number of other methods
have been developed, for example the method of orthog-
onal polynomials and the supersymmetry approach. The
detailed derivations of the n-level correlation and cluster
functions for all three Gaussian ensembles can be found in
Mehta’s book, where the essential step of derivations in-
volves the idea of expressing the joint probability density
of eigenvalues as a determinant. However, the calculations
are too lengthly, in particular the GOE case is rather com-
plicated, and for our purpose it is sufficient to give only
the following results of the two-level correlation functions
Rˇ;2(s) (see Fig. 4) for all Gaussian ensembles:
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� 1Z
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�
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�
sin 2� s
2� s

� sZ

0

sin 2� t
2� t
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3

5 :

(73)

RandomMatrix Theory, Figure 4
The two-level correlation functions Rˇ2(s) on the unfolded en-
ergy scale. The solid line is the GOE, the dashed line is the GUE
and the dotted line is the GSE, which overshoots the value one
due to strong oscillations

In these summarized results s is measured in the units of
mean spacing between neighboring eigenvalues.

RandomMatrix Theory and Complex Systems

In this section we will present several examples where
RMT is pertinent to complex systems ranging from com-
plex networks to finance.

Spectra of Graphs

Many complex systems whether technological, social or
biological have a network structure. The dynamics and the
growth of these networks play a major role in our daily
life. Spread of disease, information, traffic flow, electricity
distribution; all depend on the structure of their related
networks. Understandably, the complex network studies
are of great interest to researchers in a diverse range of
disciplines. From a mathematical point of view complex
networks are modeled as graphs [4,7,16,20,21,33] which
are sets of many interacting components namely vertices
(points) connected by edges (lines).

The eigenvalues of the adjacency matrices of graphs
are related to their topological structures and transport
properties. RandomMatrix Theory is popularly employed
to predict the spectral properties of various graphs. Recent
numerical studies show that the eigenvalue spectrum of
real-world networks, graphs with scale free links distribu-
tion, deviates from those of uncorrelated random graphs.
In the large N (number of vertices) limit spectral density
of random graphs (not sparse [47]) converge to a semi-
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RandomMatrix Theory, Figure 5
Two block diagonal random matrices with intra system interac-
tion � 1 and � 2 coupled via very sparse (c D 0:05 connections)
but strong�v couplings strength gives a triangular spectrum for
a 100� 100 system size

circle distribution, while the scale free networks develop
a triangle density distribution with a power-law tail, and
the small-world networks have a complex spectral density
with several sharp peaks [22,23,28]. In a block structured
random matrix model introduced by Ergun [17] to study
coupled systems or a system with modules, it was shown
that introduction of a few strong inter-couplings between
sub-systems gives a triangular shape spectrum (see Fig. 5).
This model can be thought of as a network with sub-net-
works with weighted links within and between subnet-
works.

Composite Materials

Electrical and optical properties of metal-dielectric mix-
tures (composites) are frequently investigated by employ-
ing randomly connected Resistor-Capacitor (R-C) net-
works or Inductor (in series with a resistor)-Capacitor
(RL-C) networks [1,2,6,8,34]. In such models one con-
siders a binary inhomogeneous media with a random
network of metallic bonds (conductance �0, concentra-
tion p) and dielectric bonds (conductance �1, concentra-
tion 1 � p). If the reactance network is large enough then
there will always be circuits of resonance type with purely
imaginary conductance showing poles at some frequen-
cies. These poles are a particular example of eigenvalues
of matrix pencilsH � W whereW is a positive definite
andH is a random real symmetric matrix.

Spectral studies of Kirchhoff or popularly known as
Laplacian [50] matrices and random bandedmatrices [41]
can be considered as the theoretical framework of the spec-
tra of such networks.

Protein–Protein Interactions

Protein–protein interactions (PPIs) are essential for every
living cell, information about these interactions helps to
understand diseases (e. g. cancer), and to develop effective
methodologies to treat them. There exists a vast amount
of data on human PPIs and more are being mined every
day. Currently, the use of network analogies [31,43] on
these data suggests that PPIs form an interacting network
of networks and have much in common with real world
networks such as the World Wide Web and the Internet.
In particular, the distribution of PPIs is scaled with power
laws; such a scaling is often associated with robustness to
random attacks. The underlying principles of power laws
in networks with human attributes are identified to be: (1)
continuous growth, and (2) preferential attachment pro-
cesses. These considerations cannot hold at a microscopic
level and therefore one must consider some other mech-
anisms such as spatial constraints and chemical reactions
to account for the hierarchical organizations at the cellular
level. In an empirical study of the yeast core protein in-
teraction network Luo et al. [35] showed that the Wigner
Surmise for the GOE case is a good candidate to see the
spectral correlation of the yeast interaction matrix. Their
study is essentially confirming that the yeast core protein
network is a network of sub networks, which share the
spectral properties of block-structured random networks.

To put their observation onto a theoretical footing
consider the following: If M is a block diagonal matrix
withH1 andH2 being its two blocks of N � N matrices
with the same statistics then the eigenvalues of the subma-
trices will form two uncorrelated sub sequences leading to
a spacing distribution with �(s) D 1/2 at s D 0.

M D
�
H1 ˛

˛ H2

�

H)

0

BBB
BBB
BBB
@

11
: : :

1N
21

: : :

2N

1

CCC
CCC
CCC
A

:

Further increasing the number of non-interacting sub
matrices eventually leads to a Poisson spacing distribution
where all eigenvalues are uncorrelated. Conversely, if we
introduce interactions betweenH1 andH2 via an off di-
agonal block matrix then the two sub sequences of eigen-
values will merge to a correlated single sequence getting
back to Wigner surmise spacing statistics.
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Ecological Webs

In general, interactions between ecological species are
highly non-linear and may obey a generalized Lotka–
Volterra competition relation:

ẋi D xi

0

@1 �
NX

jD1

ai jx j

1

A ;

where xi is a function of time giving the density of the ith
species, ai j represents the effect of inter-specific (if i ¤ j),
intra-specific (if i D j) interactions and ai j forms the
N � N interaction matrixA. The stability of the possible
equilibrium or time independent configurations of such
systems may be studied by linearization of this equation
around equilibrium. The linearized model can be written
as

ẋ D Jx ;

where J is the Jacobian matrix having Ji j D x�i ai j ele-
ments with x�i equilibrium value of species i, and bold
face x is the column vector of N species. In this formalism
an equilibrium is stable if the eigenvalues, of the Jacobian
matrix have negative real parts.

In the 1970s Gardner and Ashby [25] introduced
a similar linear model

ẋ DAx

to study how the stability of a systemwould change with its
size or if the connections within the system were incom-
plete, i. e., the elements of the matrix A are taken from
a specified distribution with probability C “connectance”
if there is connection (or interaction) between xi and x j
and set to zero with probability (1 � C) if no-interaction.
Their Monte Carlo-type study showed that large complex
systems which are assembled randomly would be stable
up to a critical level of connectance. May (1972) [36] fur-
thered these investigations by introducing a random ma-
trix model where the matrix

A D B � I ;

I is a unit matrix and B is a randommatrix. The elements
ofB are picked independently and identically from a prob-
ability distribution. From his analysis he linked the stabil-
ity of a complex system to its spectral radius namely, the
spectral radius of a random N � N matrix A with con-
nectance C and average interaction strength ˛ is given by

�(A) D ˛(NC)1/2 :

These investigations started a surge of research inter-
est to employ appropriate random matrices as ecological
interaction matrices (sometimes referred to as the com-
munity matrices) to study species stability and variability
in ecosystems.

Quasi-Species

The macromolecular evolution model was introduced in
the 1970s by Manfred Eigen [14] to describe the process of
selection in a collection of self-reproducing macromolec-
ular species by employing a set of non-linear equations.
Jones et al. [32] showed that in equilibrium, one can de-
termine the solutions of these equations via the spectrum
of a real positive matrix which represents the replication
rates and mutation probabilities of the macromolecules.
The largest real eigenvalue of this matrix gives the average
replication rates and mutation probabilities. The corre-
sponding eigenvector, also called Perron vector, describes
densities of the quasi-species and hence which can only
take real and positive values. This condition limits the
number of equilibrium solutions thus a particular interest
is to determine what values of a positive matrix guarantee
this selective behavior, see for instance the works of Rum-
schitzki [48] and McCaskill [37].

Financial Correlation Matrices

The study of correlation (or covariance) matrices has
a long history in finance dating back to the Markowitz’s
theory of optimal portfolios. The fundamental question is:
Given a set of financial assets characterized by their aver-
age return and risk, what is the optimal weight of each as-
set, such that the overall portfolio provides the best return
for a fixed level of risk, or conversely, the smallest risk for
a given overall return? This question becomes even more
difficult when the data is noisy or incomplete. Potters et
al. [46] has suggested using RMT statistics to clean the em-
pirical correlation matrices to minimize possible biases in
the estimation of future risk. They also showed that the
largest eigenvalue of the correlation matrices has a finan-
cial interpretation of being the “market mode”.

Summary

We have introduced a number of key concepts used in
random matrix theory and given several examples where
RMT is utilized. To summarize, this theory was developed
by physicists to describe the spectra of complex nuclei.
But, nowadays, it is applied to many diverse research ar-
eas from quantum chaos, disordered systems to finance.
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Below we give a short list of some of the frequently used
results which were covered in this article.

The Gaussian ensembles are categorized into three
universality classes: (1) Orthogonal ensembles, systems
that have time-reversal invariance; the majority of prac-
tical systems are described by these ensembles, (2) unitary
ensembles, which are used when the time-reversal invari-
ance is violated, and (3) symplectic ensembles apply only
to odd-spin systems without rotational symmetry.

The joint probability distribution for all Gaussian en-
sembles with N � N randommatrixH is given by the gen-
eral expression

PNˇ (H) D CNˇ e
�

Nˇ
4�2

Tr[H 2]
;

where Tr stands for the trace, and ˇ is used as an index
for the ensemble classification. Then the eigenvalues of the
Gaussian ensembles are distributed according to

PNˇ (1; : : : ; N )

D CNˇ
Y

i< j

ji �  jj
ˇ exp

 

�
Nˇ
4�2

NX

kD1

2k

!

;

where the constant CNˇ is an ensemble dependent con-
stant, and it is chosen such that the PNˇ is normalized to
unity. This expression is common for all Gaussian ensem-
bles and derived from the joint probability distribution
given above. Integrating this expression over all eigenval-
ues except one gives the semicircle law asymptotically,

h�()i

D

(
1

2	ˇ
2 (4Nˇ�2 � 2)1/2 ; jj < 2
p
ˇ�2N

0 ; jj > 2
p
ˇ�2N

;

where h�()i is normalized to N, and �2 is the variance of
the matrix elements.

The three Wigner laws (referred to as theWigner Sur-
mise) for the nearest neighbor spacing distributions for
2 � 2 matrices are

P(s) D

8
<̂

:̂

	
2 se
�s2	/4 ˇ D 1 (GOE)

32
	2 s2e�s
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218

36	32 s
4e�s264/9	 ˇ D 4 (GSE)

:

They are also found to be very good approximations in the
asymptotic limit i. e., N !1 derivations.

Future Directions

The use of random matrices in sub-atomic level interac-
tions has led to many great mathematical theorems and

shed new light on the understanding of nuclear spec-
tra. Other branches of physical and mathematical sciences
equally benefited from the resultant theorems yet biolog-
ical sciences haven’t had the same share despite an im-
portant link between random matrices and the field of bi-
ological complexity that was established in the 1970s by
Robert May. With recent technological advances massive
amounts of DNA data sets are being produced, however,
the understanding of protein–protein or gene interactions
still lags behind. Studies of structured sparse random ma-
trices in the context of DNA data sets may produce fruit-
ful results. Another area where random matrix theory is
not fully consulted is the interpretation of the spectra of
the adjacencymatrices of various graphs and the spectra of
the Laplacian of these graphs. There is no doubt that Ran-
domMatrix Theory is an effective tool to study a variety of
complex systems; one would also hope to see its usage in
the theory of machine learning and climate modeling.

Bibliography

Primary Literature

1. Almond DP, Bowen CR (2004) Anomalous power law disper-
sions in AC conductivity and permittivity shown to be char-
acteristics of microstructural electrical networks. Phy Rev Lett
92:1576011–1576014

2. Almond DP, Vainas B (1999) The dielectric properties of ran-
dom R-C networks as an explanation of the universal power
law dielectric response of solids. J Phys: Condensed Matter
11:9081–9093

3. Bak P, Sneppen K (1993) Punctuated equilibriumand criticality
in a simple model of evolution. Phys Rev Lett 71:4083

4. Barabási A-L, Albert R (1999) Emergence of scaling in random
networks. Science 286:509

5. Bohigas O, Giannoni M-J, Schmit C (1984) Characterization of
chaotic quantum spectra and universality of level fluctuation
laws. Phys Rev Lett 52:1

6. Clerc P, GiraudG, Laugier JM, Luck JM (1990) The electrical con-
ductivity of binary disordered systems, percolation clusters,
fractals and related models. Adv Phys 39:191–309

7. Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Structure
of Growing Networks: Exact Solution of the Barabási–Albert’s
Model. Phys Rev Lett 85:4633

8. Dykhne AM (1970) Anomalous resistance of a plasma in
a strong magnetic field. Zh Eksp Teor Fiz 59:641–647

9. Dyson FJ (1962) A Brownian-motionmodel for the eigenvalues
of a randommatrix. J Math Phys 3:1191

10. Dyson FJ (1962) Statistical theory of the energy levels of com-
plex systems, I. J Math Phys 3:140

11. Dyson FJ (1962) Statistical theory of the energy levels of com-
plex systems, II. J Math Phys 3:157

12. Dyson FJ (1962) Statistical theory of the energy levels of com-
plex systems, III. J Math Phys 3:166

13. Efetov KB (1983) Supersymmetry and theory of disordered
metals. Adv Phys 32:53



RandomMatrix Theory R 7519

14. Eigen M (1971) Selforganisation of sequence space and ten-
sor products of representation spaces. Naturwissenschaften
58:465–523
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Glossary

Aging A stochastic process Xt exhibits aging if for some
function f (x; y), the limit of E f (Xt ; XtCst ) as t!1
exists and is not trivial for a function st !t!1 1.

Annealed law Average of the quenched law, over all pos-
sible environments.

Brownian motion A continuous process fXtg with con-
tinuous sample paths, X0 D 0, with increments over
non-overlapping intervals independent and normally
distributed with zero mean and variance equal to the
length of the interval.

Convex A function f : X ! R, where X is a linear space,
is convex if for ˛ 2 [0; 1] and x; y 2 X, f (˛x C (1 �
˛)y) � ˛ f (x)C (1 � ˛) f (y).

Ergodic law If P is a law on a collection of random vari-
ables fX � zgz2Zd , then it is ergodic if for any event A
that is invariant under a transformation Xz 7! XzCe ,
with e 2 Zd , jej D 1, it holds that P(A) 2 f0; 1g.

Environment Collection of transition probabilities in-
dexed by the sites of the lattice Zd , that is a collection
of vectors belonging to the 2d-simplex.

i.i.d. Independent identically distributed.
Large deviations principle (LDP) A sequence of proba-

bility measures Pn on a common (topological) space X
satisfies the large deviations principle if for some non-
negative function I : X ! RC with closed level sets
fx 2 X : I(x) � ag, for any A � X,

� inf
x2Ao

I(x) � lim inf n�1 log Pn(A)

� lim sup n�1 log Pn(A) � � inf
x2Ā

I(x)

where Ā is the closure of A and Ao is its interior.
Law Probability distribution. When dealing with

a stochastic process fXtg, this is the collection of dis-
tribution functions P(Xt1 � x1; : : : ; Xtk � xk).

Law of large numbers (LLN) A sequence Xn satisfies the
LLN if Xn/n converges to a deterministic limit.

Lipschitz norm Given a function on a normed space X
with norm k � k, its Lipschitz norm is defined as
supx¤y j f (x)� f (y)j/kx � yk.

Martingale Let Fn denote a filtration, that is an in-
creasing sequence of �-algebras. A process fXng is
a (discrete time) martingale with respect to Fn if
E(XnC1jFn) D Xn .

Mixing environment An environment whose law satis-
fies a mixing condition, that is if A; B are events
that depend on a finite number of sites then P(A \
TzB) !jzj!1 P(A)P(B) where Tz is the shift of B by
z 2 Zd . For d D 1, the environment is strongly mix-
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ing if the convergence above is uniform in the choice
of A; B of the same local dependence.

P-a.s. A property holds P-a.s. if the probability of the
event that the property does not hold (under the law P)
vanishes.

Quenched law Law of the randomwalk, with the environ-
ment given.

Variational distance For two probability distributions
�; �, the variational distance is defined as supA j�(A)�
�(A)j.

2d-Simplex Collection of vectors of length 2d with non-
negative entries that sum to 1.

Definition of the Subject

The term random walks in random environments (abbre-
viated RWRE) refers to a class of Markov chains evolving
in Zd , where the transition mechanism itself is random,
and forms a stationary random field indexed by Zd . They
first appeared in the literature in the early 1970s, for d D 1,
modeling in a natural way transport properties of a tagged
particle in an inhomogeneous medium, as well as biologi-
cal systems. They can be naturally used to model complex
transport phenomena in any dimension.

The analysis of the case d D 1 during the 1970s and
early 1980s, revealed that the behavior of such random
walks can differ drastically from that of ordinary random
walks (that correspond to a homogeneous environment).
The extension to higher dimensions (d � 2) was proposed
and studied in [51], but it is only in the last decade, starting
with the work [102], that rapid progress has beenmade, al-
though several basic questions remain open.

Introduction

We recall that randomwalks and their scaling limits, diffu-
sion processes, provide a simple yet powerful description
of random processes, and are fundamental in the descrip-
tion of many fields, from biology through economics, en-
gineering, and statistical mechanics. A large body of work
has accumulated concerning the properties of such pro-
cesses, and very detailed information is available.We refer
to [61] and [93] for background on random walks and dif-
fusion processes.

In many situations, the medium in which the process
evolves is highly irregular. Without further modeling, this
results with spatially inhomogeneous Markov processes,
and not much can be said. Things are however different if
some degree of homogeneity is assumed on the law of the
environment. When the underlying state space on which
the walk moves with nearest neighbor steps is the lattice
Zd , d � 1, and the law of the environment is assumed sta-

tionary, we call the resulting random walk a random walks
in random environment (RWRE).

Informally, one starts with an environment, which is
a configuration of transition probabilities (one transition
probability for each site in Zd ). One then starts a ran-
dom walk that, when at location z 2 Zd , moves at the next
time step according to the transition probability associated
with z. In the one dimensional case, this model has been
thoroughly analyzed, and it is known that the behavior can
differ dramatically from the behavior of ordinary random
walk (in particular, the standard central limit theorem can
fail). In higher dimensions, it is expected that the RWRE
behavesmore like ordinary randomwalk, andmuch of the
available analysis points in this direction; however, gaps in
the understanding of the model still remain, and the law of
large numbers has not yet been proved in full generality.

A precise formulation of the RWRE model is as
follows. Let S denote the 2d-dimensional simplex, set
˝ D SZd , and let !(z; �) D f!(z; z C e)ge2Zd ;jejD1 de-
note the coordinate of ! 2 ˝ corresponding to z 2 Zd . !
is an “environment” for an inhomogeneous nearest neigh-
bor randomwalk (RWRE) started at xwith quenched tran-
sition probabilities P!(XnC1 D zCejXn D z) D !(x; xC
e) (e 2 Zd ; jej D 1), whose law is denoted Px

! . We write
Ex
! for expectations with respect to the law Px

! , and write
P! and E! for P0! and E0

! . In the RWRE model, the en-
vironment is random, of law P, which is always assumed
stationary and ergodic. We often assume that the envi-
ronment is uniformly elliptic, that is there exists an � > 0
such that P-a.s.,!(x; x C e) � � for all x; e 2 Zd ; jej D 1.
Finally, we denote by P the annealed law of the RWRE
started at 0, that is the law of fXng under the measure
P � P0! , and again we writeE for expectations with respect
to P and E for expectations with respect to P. Note that
under the law P! , the RWRE is a (space inhomogeneous)
Markov process, whereas under P , its law is space homo-
geneous but not Markovian, since the knowledge of the
path of the RWRE up to time n modifies the a-priori law
on the environment.

To get an idea of some of the unusual features of the
RWREmodel, we begin by discussing the one dimensional
case. (A further motivation is that the study of certain re-
inforced random walks can be reduced to that of one di-
mensional RWRE, a connection first described in [73]).
This model is fairly well understood, and we review the
results in Sect. “One Dimensional RWRE”, emphasizing
the points in which there are differences from walks in
a homogeneous environment.We then turn in Sect. “Multi
Dimensional RWRE – non Perturbative Regime” to the
multidimensional case, while Sect. “Multi Dimensional
RWRE – the Perturbative Regime” is devoted to the per-
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turbative regime. Sect. “Diffusions in Random Environ-
ments” quickly reviews the available results for the related
model of (non reversible) diffusions in random environ-
ments. In Sect. “Topics Left Out and Future Directions”,
we collect some information about related models. This
article borrows heavily from [101,107] and [108].

One Dimensional RWRE

When d D 1, we write !x D !(x; x C 1), �x D (1 � !x )/
!x , and u D E log �0. Because explicit recursions and
computations are possible in the one dimensional case, the
understanding of the RWRE is rather complete. We sum-
marize the main features below.

Ergodic Behavior, Limit Laws, and Traps

Recall that for a homogeneous environment (that is, when
the stationary measure P has a marginal which charges
a single value: !i D !̄ for all i), we have Xn/n ! v!̄ :D
2!̄�1 and (Xn � nv!̄ )/

p
4!̄(1 � !̄)n converges in distri-

bution to a standard Gaussian. We describe next the cor-
responding results for the RWRE model, emphasizing the
dramatic difference in behavior.

As it turns out, the sign of u determines the direction
of escape of the RWRE, while the limiting behavior de-
pends on an explicit function of the law of the environ-
ment. The following theorem is essentially due to [92], see
also [1,107].

Theorem 1 (Transience, recurrence, limit speed, d D 1)
(a) If u < 0 then Xn !n!1 1, P -a.s. If u > 0 then
Xn ! �1, P -a.s. Finally, if u D 0 then the RWRE oscil-
lates, that is, P -a.s.,

lim sup
n!1

Xn D1 ; lim inf
n!1

Xn D �1 :

Further, there is a deterministic v such that

lim
n!1

Xn

n
D v ; P � a.s. : (1)

If P is a product measure, then

v D

8
<

:

(1 � E(�0))/(1C E(�0)) ; E(�0) < 1 ;
� (1 � E(��10 ))/(1C E(��10 )) ; E(��10 ) < 1 ;
0 ; else :

(2)

The statement (1) that Xn/n converges to a deterministic
limit (under both the quenched and annealed measures) is
referred to as a law of large numbers (LLN).

Remark 2 The surprising features of the RWRE model
can be appreciated if one notes the following facts, all for
a product measure P.

� Suppose u < 0, that is Xn !1, P -a.s. By Jensen’s in-
equality, log E�0 � E log �0, but it is quite possible that
E�0 > 1. Thus, it is possible to construct i.i.d. environ-
ments in which the RWRE is transient, but the speed v
vanishes.

� Suppose v̄ D 2E!0 � 1 denotes the speed of a (biased)
simple random walk with probability of jump to the
right equal, at any site, to E!0. It is easy to con-
struct examples with v̄ > 0 but u > 0, which means
that Xn ! �1 even if the static speed v̄ points to
the right. However, by Jensen’s inequality, v < 0 im-
plies that v̄ < 0. Thus, if the static speed v̄ is positive,
the RWRE may be transient to the left but if so, only
with zero speed.We come back to this point in Subsub-
sect. “RWRE with Deterministic Components”, where
we show that the last property is not necessarily true in
high dimension.

� Another application of Jensen’s inequality reveals that
jvj � jv̄j, with examples of strict inequality readily
available. Thus, the effect of the random environment
is to force a slowdownwith respect to the (averaged, de-
terministic) environment.

Another aspect in which the RWRE differs from the stan-
dard model of random walk is in its fluctuations. Con-
sider product measures P with u :D E(log �0) < 0 (i. e.,
RWRE is transient to C1). Set s D supfr : E(�r0) < 1g
and note that because u < 0, necessarily s 2 (0;1]. When
s > 2, the behavior is similar to standard random walk,
and one has a central limit theorem of the following form.
For some deterministic strictly positive constant � , the
random variable Wn :D (Xn � nv)/�

p
n converges, un-

der the annealed law, to a standard Gaussian random vari-
able, that is

P (Wn > x)!n!1
1
p
2�

Z 1

x
e�y

2/2dy ;

see [46,55,75,107] for this statement and a similar one un-
der the quenched law (with random centering). On the
other hand, when s < 2, due to the existence of localized
pockets of environments (“traps”) where the walk spends
a large time, one gets stable limit laws. In particular, for
s 2 (0; 1), under mild assumptions on the law of �0, the
random variable Xn/ns converges, under the annealed law,
to a stable random variable with parameters (s; b), where b
is a deterministic constant, whose value has been identified
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in [39]. (A stable law with parameters (s; b) is the distribu-
tion of a random variable S with characteristic function

E(ei tS) D exp
�
�bjtjs

�
1 � i

t
jtj

tan(� s/2)
��

; t 2 R:)

We refer to the regime where s 2 (0; 2], in which the fluc-
tuations are not in the CLT scale, [55], as the sub-diffusive
regime. It is interesting to note that these statements do not
possess a quenched counterpart, and in fact a quenched
limit law is not possible for s < 2, see [75,76].

Remark 3 When P is a strongly mixing environment,
the parameter s has to be defined differently, by means
of the large deviations rate function for the variable
n�1

Pn
iD1 log �i . The Gaussian limit laws apply in such

situations when s > 2, see [20,75,107]. The stable limit
laws are more delicate, and are not known for general
ergodic environments with good mixing properties. For
a class of Markovian environments, such results are con-
tained in [67].

Limit Laws and Aging, Recurrent RWRE: Sinai’s Walk

When E(log �0) D 0, the traps alluded to in the previous
section stop being local, and the whole environment be-
comes a diffused trap. The walk spends most of its time “at
the bottom of the trap”, and as time evolves it is harder and
harder for the RWRE to move. This is the phenomenon of
aging, captured in the following theorem:

Theorem 4 There exists a random variable Bn, depending
on the environment only, such that for any � > 0,

P

�ˇ̌
ˇ̌ Xn

(log n)2
� Bn

ˇ̌
ˇ̌ > �

�
!

n!1
0 :

Further, for h > 1,

lim
�!0

lim
n!1

P

�
jXnh � Xnj

(log n)2
< �

�
D

1
h2

�
5
3
�

2
3
e�(h�1)

�
:

(3)

The first part of Theorem 4 is due to Sinai [91], with
Kesten [52] providing the evaluation of the limiting law of
Bn , see also [47]. It is actually not hard to understand the
anomalous scaling (log n)2: indeed, the time for the par-
ticle to overcome a stretch of the environment of length
c1 log n in which the drift points “backwards” is exponen-
tial in c1 log n, i. e. an appropriate c1 can be chosen such
that this time is of order n. Hence, the range of the RWRE
at time n cannot be larger than the distance in which there
exists such a stretch. Due to the scaling properties of ran-
dom walk, this distance is of order (log n)2.

The second part of Theorem 4 is implicit in [47], and
also follows from the analysis of the time spent by the
RWRE at “bottom of traps”. We refer to [62] for a detailed
study of aging in the Sinai model by renormalization tech-
niques, and to [24,30,107] for rigorous proofs that avoid
renormalization arguments. For information concerning
the time spent by the walk at the most visited site (which
can be of order n in the Sinai model), see [28,49,89],
and [43] for the transient case.

Tail Estimates and Large deviations

Another question of interest relates to the probability of
seeing a-typical behavior of the RWRE. These probabil-
ities turn out to depend on the measure discussed, that
is whether one considers the quenched or annealed mea-
sures.

Following Varadhan [105], we say that the sequence of
random variables Xn/n satisfies the large deviations prin-
ciple (LDP) with convex, continuous rate function I on
a compact set K , if for any measurable subset of K ,

lim
n!1

1
n
log P(Xn /n 2 A) D � inf

x2A
I(x) :

Cramér’s theorem (Theorem 2.2.3 in [29]) states that
rescaled random walk Xn/n in a homogeneous envi-
ronment with !i D !̄ for all i satisfies the LDP with
a strictly convex rate function I(x) that vanishes only on
v!̄ D 2!̄ � 1. The situation is different for the RWRE. The
following theorem combines results from [25,32,48].

Theorem 5 For P-a.e. realization of the environment !,
the sequence Xn/n satisfies, under P0! , a LDP on [�1; 1]
with a deterministic convex rate function IP(�). If P is an
i.i.d. measure, then under the annealed measure P , the
same sequence satisfies a LDP with convex rate function

I(x) D inf
Q2Me

1

(h(QjP)C IQ(x)) ; (4)

where h(QjP) is the specific entropy of Q with respect to P
and Me

1 denotes the space of stationary ergodic measures
on˝ . Always, I(x) � IP(x), and both I and IP may vanish
for x 2 [0; v], and only for such x. In particular, neither I
nor IP need be strictly convex.

The rate function for the RWRE thus differs from the case
of homogeneous environments in two important aspects:
it may vanish on the whole segment [0; v], indicating sub-
exponential behavior for the probability of slowdown, and
further the rate function is in general not strictly convex.
When I(x) vanishes for x 2 [0; v], it means that the prob-
ability of seeing an a-typical slowdown of the randomwalk
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decays at a speed less than exponentially. A precise char-
acterization of these is available in [33,44,77,78,107].

The specific entropy h(QjP) (see [29] for definition) ap-
pearing in Theorem 5 measures the rate of decay of the
probability that a block of the environment will look as if
it came from Q, when it was generated by P. Thus, one
may interpret Theorem 5 as follows: to create an annealed
large deviation, one may first “modify” the environment
(at a certain exponential cost measured by the specific en-
tropy h) and then apply the quenched LDP in the new en-
vironment.

Multi Dimensional RWRE – non Perturbative Regime

We turn our attention to RWRE in the lattice Zd with
d > 1. Unless stated otherwise explicitly, we only consider
in the sequel measures P that are i.i.d. and uniformly ellip-
tic.

Ergodic Properties and a 0–1 Law

A natural starting point for the discussion of ergodic prop-
erties of the RWRE (Xn) would have been an analogue of
Theorem 1. Unfortunately, obtaining such a statement has
been a major challenge since the early 1980’s, and is still
open. To explain the challenge, we need to digress and in-
troduce a certain conjectured 0–1 law.

Fix ` 2 Sd�1, i. e. ` is a unit vector in Rd . Define the
events

AC
`
D
n
lim
n!1

Xn � ` D 1
o
;

A�` D
n
lim
n!1

Xn � ` D �1
o
:

The following proposition is due to Kalikow [51].

Proposition 6 Assume P is i.i.d. and elliptic, i. e. P(!(0; e)
> 0) D 1 for all e with jej D 1, and that ` 2 Sd�1 . Then,
P (AC

`
[ A�

`
) 2 f0; 1g.

Note that for d D 1, Theorem 1 implies that P (AC
`
) 2

f0; 1g. If one ever hopes to obtain a LLN, then one should
be able to prove the following.

Conjecture 7 (Kalikow) Assume P is i.i.d. and uniformly
elliptic, and that ` 2 Sd�1 . Then, P (AC

`
) 2 f0; 1g.

Efforts to prove Conjecture 7 are ongoing. The following
summarizes its status at the current time, and combines
results from [19,111].

Theorem 8

(a) Conjecture 7 holds for d D 1; 2 and elliptic i.i.d. envi-
ronments.

(b) There exist ergodic environments that are elliptic (for
d D 2) and even uniformly elliptic and mixing (for
d � 3), for which a deterministic direction ` 2 Sd�1

exists such that P0!(A
C
`
) 2 (0; 1), for P-almost every !.

As mentioned above, part (a) of Theorem 8 for d D 1 is
a direct consequence of the LLN, Theorem 1.

As it turns out, the validity of Conjecture 7 is the only
obstruction to a LLN, as demonstrated in the following
theorem, which combines results from [4,102,106,110].

Theorem 9 Assume P is i.i.d. and uniformly elliptic.

(a) Fix ` 2 Sd�1 . Then,

lim
n!1

Xn � `

n
D vC1AC

`

C v�1A�
`
;P � a.s. : (5)

In particular, when d D 2 the LLN holds true.
(b) P -almost surely, there are at most two possible limit

points, denoted v1; v2, for the sequence Xn/n. Further,
v1; v2 are deterministic, and if v1 ¤ v2 then there exists
a constant a � 0 such that v2 D �av1.

(c) When d � 5, if v1 ¤ v2 then at least one of v1 and v2
equals 0.

Part (a) of the theorem implies that if Conjecture 7 is true,
then the LLN holds for P i.i.d. and uniformly elliptic.

The proof of Theorem 9, and of many of the other
results in this section, uses the machinery of regenera-
tion times, introduced in [102]. Roughly, a random time k
is a regeneration time relative to a direction ` 2 Sd�1 if
Xk � ` � Xn � ` for all k � n but Xk � ` < Xn � ` for all
k < n (i. e., Xn � ` sets a record at time k, and never moves
backward from that record). It turns out that the sequence
of inter-regeneration times and inter-regeneration dis-
tances is an i.i.d. sequence under the annealed measure P ,
if P is i.i.d. Once such an i.i.d. sequence has been identi-
fied, ergodic arguments yield the LLN, and the (annealed)
CLT involves studying tail behavior of the regeneration
times. In some ballistic cases, one may translate an an-
nealed CLT to a quenched one, see [7] and [82].We note in
passing that regeneration techniques have also been useful
for certain non-i.i.d. environments.We refer the interested
reader to [26,27,79].

So far, there is no known criterion that allows one to
decide the question of transience or recurrence for RWRE
in dimension d � 2, although one certainly expect tran-
sience as soon as d � 3.

Ballistic Behavior and Sznitman’s Conditions

Lacking an explicit expression for the speed of the RWRE
for d � 2, a natural goal is to identify a large family of
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models for which Xn/n! v ¤ 0. RWRE’s that satisfy
such a relation are called ballistic. As we saw in Theorem 1,
when d D 1 and Xn !1, and the environment is i.i.d.,
the RWRE is ballistic if and only if E�0 < 1.

Define d0 :D
P

[!(0; ei) � !(0;�ei)]ei as the drift at
the origin. If there exists a direction ` 2 Sd�1 such that
d0 � ` > 0 for P-a.e. environment, a simple martingale ar-
gument shows that Xn/n! v with v � ` > 0. Following
Zerner [109], we call such environments non-nestling. We
will be mainly interested in nestling environments, that is
environments in which the origin belongs to the closed
convex hull of the support of d0. (The source for the name
lies in the fact that when the walk is nestling, it is possi-
ble to construct localized regions, called traps, to which
the walk return many times, leading to the mental picture
of a bird that keeps returning to a nest. We note that as
we show in Remark 18 below, one should not confuse the
condition Ed0 ¤ 0 with ballistic behavior, as it does not
guarantee a limiting non-zero speed.)

Traps tend to slow down the particle. However, unlike
d D 1, all attempts to build explicit traps that slow down
the particle to a sub-diffusive scale quickly fail. One thus
suspects that a good control of trapping properties relates
to an analysis of the RWRE.With this motivation in mind,
Sznitman introduced conditions on the environment that
eventually lead to a good understanding of the ballis-
tic regime. Fix a direction ` 2 Sd�1, and for b > 0, de-
fine the region U`;b;L D fx 2 Zd : x � ` 2 (�bL; L)g. Let
T`;b;L D minfn > 0 : Xn 62 U`;b;Lg.

Definition 10 Let � 2 (0; 1) be given. Then, P satisfies
condition T� relative to ` if for all `0 in some neighbor-
hood of `, and all b > 0,

lim sup
L!1

1
L�

logP
�
XT`;b;L � ` < 0


< 0 : (6)

P satisfies condition T 0 relative to ` if it satisfies condition
T� relative to ` for all � 2 (0; 1). It satisfies condition T
relative to ` if it satisfies condition T1 relative to `.

In words, condition T relative to ` holds if the exit from
a slab that is contained between two hyperplanes perpen-
dicular to `, located respectively at distanceCL in the ` di-
rection and �bL in the opposite direction, occurs through
the “backward” direction with probability that is exponen-
tially small in L. Condition T 0 relaxes the exponential de-
cay to “almost” exponential decay (there is an alternative
description of condition T 0 in terms of regeneration dis-
tances, see Proposition 12 below). The power of condition
T 0 is the following.

Theorem 11 (Sznitman) Assume P is i.i.d. and uniformly
elliptic, and that condition T 0 relative to some direction `

holds. Then, the process (Xn) is ballistic, i. e. Xn/n! v ¤ 0
for some deterministic v with v � ` > 0, and there is a de-
terministic �2 > 0 such that, under the annealed measure
P , (Xn � nv)/�

p
n converges in distribution to a standard

Gaussian random variable.

(The convergence in distribution in Theorem 11 actually
extends to an invariance principle; The results in [7] yield
a quenched CLT as soon as d � 4.) The key to the useful-
ness of Condition T 0 is in the following result from [99],
where �1 denotes the first regeneration time.

Proposition 12 Let d � 2, ` 2 Sd�1 , and � 2 (0; 1]. The
following are equivalent:

(a) Condition T� holds.
(b) P (AC

`
) D 1 and, with X� :D sup0�n��1 jXnj, there ex-

ists a c > 0 such that

E
�
exp(c(X�)� )


<1 :

The proof is detailed in [99], see also the exposition
in [101]. From part (b) of Proposition 12, tail estimates on
�1 follow. We omit further details.

It can be checked (by a martingale argument) that con-
dition T (and hence T 0) holds for a certain direction `
when the environment is non-nestling. The first example
of a nestling environment that satisfies condition T was
provided by Sznitman, who showed that the class of envi-
ronments satisfying the Kalikow condition from [51] also
satisfy condition T (Kalikow himself had showed that his
condition implies the 0–1 law, and it was shown in [102]
to imply ballistic behavior). However, the verification of
condition T 0 seems a-priori not obvious. It is thus ex-
traordinary that an effective criterion for checking it exists,
see [98]. This criterion is used in [99] to construct an ex-
ample of a ballistic RWRE that does not satisfy Kalikow’s
condition but does satisfy T 0, relative to some `.

Sznitman’s Conjecture As noted in Proposition 12,
condition T 0 is equivalent to certain exponential moments
on the maximal distance from the origin the RWRE has
achieved before time �1. In [99], Sznitman actually proves
that condition T� relative to ` with any � 2 (1/2; 1) im-
plies condition T 0 relative to the same `. This led him to
the following conjecture, see [98]:

Conjecture 13 (Sznitman) Assume P is uniformly ellip-
tic and i.i.d. Then, condition T relative to ` is implied by
condition T� relative to ` for any � 2 (0; 1).

It is also reasonable to expect (“plausible”, in the language
of [98]) that in addition, ballistic behavior with speed v im-
plies condition T relative to ` D v/jvj, for d > 1.
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For d D 1, and i.i.d. environment, all the conditions
T� with respect to the direction ` D 1 are equivalent to
E log �0 < 0, see [96]. Hence, Conjecture 13 holds when
d D 1 (note that this is not the case for the conclusions
concerning ballistic behavior, which do not hold true for
d D 1).

In the ballistic situation, some information on the en-
vironment viewed from the point of view of the particle
can be deduced. We refer to [12] and [79] for details.

Large Deviations, Quenched and Annealed

In dimension d D 1, the large deviations for the se-
quence Xn/n were obtained by considering hitting times.
While this approach can be partially extended to obtain
quenched LDP’s for some RWRE’s, see [109], its scope is
limited, and in particular it does not apply to all i.i.d. mea-
sures P, nor to an annealed LDP.

A different approach was taken by Varadhan [106],
who obtained the following.

Theorem 14 Assume d � 2.

(a) Assume P is a uniformly elliptic, ergodic measure.
Then, for P-a.e. environment !, the sequence of vari-
ables Xn/n under P0! satisfies the (quenched) LDP (on
[�1; 1]d ) with speed n and deterministic, convex rate
function I.

(b) Assume further that P is i.i.d. Then, the sequence of ran-
dom variables Xn/n satisfies, under P , the (annealed)
LDP with speed n and convex rate function I .

(c) The rate functions I and I possess the same zero set.
Further, this (convex) set is either a single point or a seg-
ment of a line.

An alternative description of the quenched rate function,
that is more instructive than the sub-additivity argument,
has been developed for the related model of diffusions in
random environments in [54]. Part (b) of Theorem 14 was
extended to certain mixing environments in [80].

As for dimension d D 1, both I and I are in general
not strictly convex. The quenched statement is an applica-
tion of the ergodic subadditive theorem [64]. The annealed
LDP is obtained by noting that the process of histories of
the walk is a Markov chain, and applying the general large
deviations theory for such chains.

Remark 15 In the multi-dimensional case, a formula
like (4), with its intuitive description of the way an an-
nealed deviation is obtained, is not available, since the
modification of big chunks of the environment has proba-
bility which decays exponentially in volume order, i. e. nd ,
instead of n.

As for d D 1, it is natural to study slowdown estimates in
the region where the rate functions vanish, and in partic-
ular to study the probability of slowdown. This study is
closely related to the analysis of Condition T 0, and we re-
fer to [96,97] for details.

Non-ballistic Results

The analysis of RWRE for environments that do not ex-
hibit ballistic behavior is still limited. Still, two important
classes of models have been identified, for which the anal-
ysis could be carried out. We sketch those below.

Balanced Environment Balanced environments satisfy
the constraint !(0; ei) D !(0;�ei) for all i, in which case
the local drift vanishes everywhere. In that case, Xn it-
self is a martingale with bounded increments, and thus
Xn/n! 0, P -a.s. In fact, an invariance principle also
holds.

Theorem 16 Assume P is stationary and ergodic, bal-
anced, and uniformly elliptic Then Xn/n! 0, P -a.s., and
there exists a deterministic �2 > 0 such that Xn/�

p
n con-

verges in distribution (under the annealed measure P ) to
a Gaussian random variables. Further, Xn is recurrent if
d D 2 and transient if d � 3.

Theorem 16 is essentially due to [59] (the recurrence state-
ment is due to Kesten, and can be found in [107]). It is one
of the few instances where “classical” homogenization can
be applied to the study of multi-dimensional RWRE.

RWRE with Deterministic Components A key to the
analysis of the ballistic case is the existence of certain re-
generation times. Those were used to create an i.i.d. se-
quence under the measure P .

In the non-ballistic case, regeneration times as de-
fined above do not exist. However, if the dimension of
the space is large enough and some of the components
are deterministic, an alternative to regeneration times can
be found, based on cut times for simple random walk.
For a simple random walk fSng, a cut time k is such that
fSn ; n � kg \ fSn ; n > kg D ;. Such cut times exist for
d � 4 [40]. By considering the cut times induced by the
components of the RWRE evolving in the deterministic di-
rections, [14] proved the following.

Theorem 17 Assume d D d1 C d2 with d1 � 5. Assume P
is a uniformly elliptic i.i.d. measure, with !(x; x C e) D
q(e) for e D ˙ei ; i D 1; : : : ; d1 and a deterministic q.
Then, there exists a deterministic constant v such that
Xn/n! v, P -a.s.. Further, if d1 � 13, then the quenched
CLT holds, i. e. there exists a deterministic�2 > 0 such that,
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for P-almost every !, (Xn � nv)/�
p
n converges in distri-

bution, under P0! to a standard Gaussian variable.

Remark 18

(a) The convergence in distribution in Theorem 17 ex-
tends to a full invariance principle.

(b) An amusing consequence of Theorem 17 is that, for
d > 5, onemay construct P i.i.d. and uniformly elliptic
such that E(d0 � `) < 0 but the resulting RWRE is bal-
listic with v � ` > 0. Recall that this is impossible in di-
mension d D 1, see Remark 2b). Also, for d > 6, one
may construct for every � > 0 a P i.i.d. and uniformly
elliptic such that j!(x; x C e) � 1/2dj < �, E(d0) ¤ 0,
but Xn/n! 0, P -a.s., or such that E(d0) D 0 but the
walk is ballistic. We refer to [14] for the construction.

Multi Dimensional RWRE – the Perturbative Regime

We discuss in this section the perturbative analysis of the
RWRE. By P being a small perturbation from a kernel q
we mean that q(˙ei ) � 0,

P
i [q(ei )C q(�ei )] D 1, and

for some � small, j!(x; x C e)� q(e)j < � for e 2 f˙eig.
When q(e) D 1/2d for e D ˙ei , we say that P is a small
perturbation from simple random walk.

We already observed, see Remark 18, that in the per-
turbative regime for simple random walk, the RWRE can
exhibit behavior which is very different from the behavior
of simple random walk.

Ballistic Walks

Sznitman’s criterion [99] for condition T 0 to hold to-
gether with an renormalization analysis allowed him to
give in [99] sufficient conditions for ballistic behavior
when � is small. Set �0(3) D 5/2 and �0(d) D 3 for d � 4.

Theorem 17 Let d � 3 and � < �0(d). Then there exists
an �0 D �0(d; �) > 0 such that if P is i.i.d. and an � pertur-
bation from simple random walk, and Ed0 � e1 > �� , then
the T 0 condition relative to e1 holds.

Contrasting Theorem 19 with the examples in Remark 18
shows that some condition on the strength of the averaged
drift Ed0 as function of � is necessary for ballistic behav-
ior. Also, �0(d) > 2 is used in constructing the examples
in [99] that show that Kalikow’s condition is strictly in-
cluded in condition T 0. We note that the case d D 2 is still
open.

In another direction, if one writes !(x; x C e) D
q(e) C ��(x; x C e) with � i.i.d., and either

P
eq(e) ¤ 0

or
P

eq(e) D 0 but
P

eE�(0; e) ¤ 0, then for � small
enough, Kalikow’s condition holds. Expansions in � of the
speed of the RWRE are provided in [83].

BalancedWalks

Recall the balanced walks introduced in Subsect. “Non-
Ballistic Results”, c.f. Theorem 16. The existence of an in-
variancemeasure viewed from the point of view of the par-
ticle, and the control achieved on this measure by approxi-
mations with periodized environments, allow one to get an
expansion of the diffusivity matrix in terms of the strength
of the perturbation from simple random walk. We refer
the reader to [60] for details.

Isotropic RWRE

The existence of sub-diffusive behavior for the RWRE
model in d D 1 immediately raises the question as to
whether such sub-diffusive behavior is present in higher
dimension. As implied by Theorem 11, this is not the case
when the environment satisfies condition T 0. Since it may
be expected that condition T 0 characterizes ballistic behav-
ior for d > 1, it is reasonable to expect (but not proved!)
that for P i.i.d. and uniformly elliptic, and d > 1, no sub-
diffusive behavior is possible when the walk is transient in
direction ` (and further, in the ballistic regime, when re-
centering around the limiting velocity v, one expects fluc-
tuations in the diffusive scale).

Outside the ballistic regime, rigorous results are few.
Early attempts to address the question of existence of
a diffusive regime appeared in [35,41], using a formal
renormalization group analysis in the small perturbation
regime, with the conclusion that no sub-diffusive behav-
ior exists at d � 3 in the perturbative regime, and that
at most logarithmic corrections to diffusive behavior ex-
ist at d D 2. While this conclusion certainly conforms
with what one would expect, soon after it was pointed
out that counter-examples can be constructed (albeit not
with i.i.d., or even finite range dependent, environments),
see [15,17,18]. Further, some of the examples discussed in
this article, and in particular those of Subsect. “Non-Bal-
listic Results”, see Remark 18, do not seem to be consistent
with the formal renormalization analysis.

An attempt to put the analysis on a rigorous founda-
tion was made in [22]. Among other things, they intro-
duced the following isotropy condition:

Definition 20 The law P on the environment is isotropic
if, for any rotation matrix O acting on Rd that fixes Zd ,
the laws of (!(0;Oe))e :jejD1 and (!(0; e))e :jejD1 coincide.

In particular, if P is isotropic then Ed0 D 0. The main re-
sult of [22] is the following:

Theorem 21 (Bricmont–Kupiainen) Assume d � 3.
There exists an �0 D �0(d) such that if P is i.i.d. and
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isotropic, and an � perturbation of simple random walk
with � < �0, then for some deterministic �2 > 0 and for P
almost every !, the sequence Xn/�

p
n converges in distri-

bution, under P0! , to a standard Gaussian random variable.

The approach of [22] is to introduce a (diffusive) rescal-
ing in time and space, and propagate an estimate on both
the large scale behavior of the RWRE, as well as about
the existence of local traps that have the potential to de-
stroy, at the next level, the diffusivity properties. The re-
striction to d � 3 is useful because the underlying simple
randomwalk for d � 3 is transient, and hence Green func-
tion computations can be performed.

Several attempts have recently been made to provide
an rescaling argument (alternative to [22]) that is more
transparent. The first approach [103], which is closest to
Theorem 21, has been in the context of diffusions in ran-
dom environments. In the remainder of this section, we
describe another approach, due to [13], that yields a result
concerning the exit measure of (isotropic) RWRE from
large balls.

Let VL D fx 2 Zd : jxj � Lg be the ball of radius L in
Zd (where we recall that j � j is the euclidean norm), and
let @VL D fy 2 Zd : d(y;VL) D 1g denote the bound-
ary of VL. Let �L D minfn : Xn 62 VLg denote the exit
time of the RWRE from VL, and for x 2 VL ; z 2 @VL ,
let ˘L(x; z) D Px

! (X�L D z) denote the exit measure
of the RWRE from VL, and let �L(x; z) denote the cor-
responding quantity for simple random walk. Finally, let
˘ s

L;l (x; z) D ˘L ? �� l , where ? denotes convolution
and � is a random variable with smooth density supported
on (1; 2). ˘ s

L;l is a smoothed version of ˘L , where the
smoothing is at scale l.

One expects that for an isotropic environment that is
a small perturbation of simple random walk, the exit mea-
sure ˘L approaches that of simple random walk, except
for small nonvanishing correction that are due to localized
perturbations near the boundary, and that as soon as some
additional smoothing is applied, convergence occurs. Un-
der the assumptions of Theorem 21, this is indeed the case.
In what follows, for probability measures �; � we write
k� � �k for the variational distance between � and �.

Theorem 22 Assume d � 3. There exists a ı0 D ı0(d) >
0 with the following property: for each ı < ı0 there exists
an �0 D �0(d; ı) such that if � < �0 and P is an i.i.d. and
isotropic law which is an � perturbation of simple random
walk, then

lim sup
L!1

k˘L(0; �)� �L(0; �)k � ı : (7)

Further,

lim sup
L!1

k˘ s
L;l (0; �)��L ?�� l (0; �)k � cl !l!1 0 : (8)

Diffusions in Random Environments

The model of RWRE possesses a natural analogue in the
setup of diffusion processes.

One Dimensional Generators

For dimension d D 1, the study of analogues of the RWRE
model goes back to [23] and [86]. Formally, one looks at
solutions to the stochastic differential equation

dXt D �
1
2
V 0(Xt)dt C dˇt ; X0 D 0 ; (9)

where ˇ is a standard Brownian motion and V , the poten-
tial, is itself an (independent of ˇ) Brownian motion with
constant drift. Of course, (9) does not make sense as writ-
ten, but one can express the solution to (9) for smoothV in
a way that makes sense also when V is replaced by Brow-
nian motion, by saying that conditioned on the environ-
ment V , Xt is a diffusion with generator

1
2
eV (x) d

dx

�
e�V (x) d

dx

�
: (10)

The diffusion in (9) inherits many of the asymptotic prop-
erties of the RWRE model. Additional tools, borrowed
from stochastic calculus, are often needed to obtain sharp
statements. We refer to [89] for details and additional ref-
erences.

Multi Dimensional Diffusions:
Finite Range Dependence

Like the RWRE in dimension d D 1, the model (9) leads to
a reversible diffusion. A direct generalization of (9) via the
expression (10) for the generator, see for example [68,69],
preserves the reversibility of the process, and thus for our
purpose does not serve as a true analogue of the RWRE
model. Instead, we consider diffusions satisfying the equa-
tion inRd :

dXt D b(Xt ; !)dt C �(Xt ; !)dWt ; X0 D 0 ; (11)

with generator

L D
1
2
Pd

i; jD1 ai j(x; !) @
2
i j C

Pd
iD1 bi (x; !) @i ; (12)

where a D ��T is a d-by-dmatrix and the coefficients a; b
are assumed to satisfy the following:
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Assumption 23

(a) The functions a(�; !) and b(�; !) are uniformly (in !)
bounded by K, with Lipschitz norm bounded by K,
and a is uniformly elliptic, i. e. a(x; !)� �I is positive
definite for some � > 0 independent of x or !.

(b) The random field
�
a(x; !); b(x; !)


x2Rd is stationary

with respect to shifts in Rd .
(c) The collection of random variables

�
a(x; �); b(x; �)


x2A

and
�
a(y; �); b(y; �)


y2B are independent when

d(A; B) > R.

Part (a) of Assumption 23 ensures that (11) possesses
a unique strong solution. Part (c) of Assumption 23 is a “fi-
nite range dependence” condition. We continue to write
P! for the quenched law of the trajectories of the diffusion.

Many of the results described in Subsect. “Ergodic
Properties and a 0–1 Law” and Subsect. “Ballistic Behav-
ior and Sznitman’s Conditions” have been proved also in
the context of diffusions, when Assumption 23 holds. We
refer to [45,84,85,88] for details.

Isotropic Diffusions in the Perturbative Regime

The analogue of the isotropy condition Assumption 23 (b)
in the diffusion context is the following:

Assumption 24 (Isotropy) For any rotation matrix O
preserving the union of coordinate axes of Rd ,

�
a(Ox; !); b(Ox; !)


x2Rd has same law under P as
�
Oa(x; !)OT ;Ob(x; !)


x2Rd :

The analogue of Theorem 21 is the following theorem, due
to [103]. Its proof again uses multi-scale arguments, and
is based on controlling the (scaled) Hölder norm of the
operator associated with the transition probability of the
diffusion.

Theorem 25 Let Assumptions 23 and 24 hold. Then,
there exists a constant �0 D �0(d;K; R) such that if
ja(x; !)� Ij � �0 and jb(x; !)j � �0, for all x 2 Rd ; ! 2

˝ , then for some deterministic �2 > 0, for a.e. !, the se-
quence of random variables Xt/�

p
t converges in distribu-

tion to a standard Gaussian random variable.

(A full quenched invariance principle also holds under the
assumptions of Theorem 25.)

Topics Left Out and Future Directions

As pointed out in the text, many open problems remain in
the study of RWRE’s and motion in random media, with

the most important one being the general validity of the
law of large numbers, and the existence of diffusive limits
for dimensions d � 2. We briefly mention in the rest of
this section several topics that are related to this review but
that we have not covered in details.

Random Conductance Model

We have concentrated in this review on RWRE’s in i.i.d.
environments, which give rise in the multi-dimensional
case to non-reversible Markov processes. Although men-
tioned in several places, we did not discuss in details the re-
versible case, where homogenization techniques using the
environment viewed from the point of view of the particle
are very efficient (note that the reversible case is a very par-
ticular case of an environment which is not i.i.d. but rather
dependent with finite range dependence). The prototype
for such reversible models is the “random conductance
model”, where each edge (x; y) of Zd is associated a (ran-
dom, i.i.d.) conductance Cx;y , and the transition prob-
ability between x and y is Cx;y/(

P
z : jz�xjD1 Cx;z). An-

nealed CLT’s for the random conductance model are pro-
vided in [57,66]. See also [2] for a related model with sym-
metric transitions. The quenched CLT is obtained in [16]
and [90].

One of the motivations to consider the random con-
ductance model is the analysis of random walk on super-
critical percolation clusters. The annealed CLT is covered
by [66]. Several recent papers discuss the quenched case,
first in dimension d � 4 [90], and then in all dimensions,
see [5,70]. In another direction, when one discusses biased
walks on a percolation cluster, new phenomena occur, for
example the lack of monotonicity of the speed of the walk
in the strength of the bias, which is again a manifestation
of the trapping phenomenon. We refer to [6] and [100] for
details.

Brownian Motion in a Field of RandomObstacles

Another closely related (reversible) model is the model
of Brownian motion in a field of obstacles in Rd . Here,
one defines a potential V(x; !) D

P
i W(x � xi) where

the collection fxig is a (random) configuration of points
in Rd (usually, taken according to a Poisson law) and W
is a fixed nonnegative shape function. Of interest are the
properties of Brownian motion (Xt)t2[0;T], perturbed by
the change of measure

�T D
1

ZT(!)
exp

 

�

Z T

0
V(Xs ; !)ds

!

:
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It is common to distinguish between “soft traps”, with W
bounded and typically of compact support, and “hard
trap”, where W D 11C where C is a given compact set.
One is interested in understanding various path proper-
ties, as T gets large, or in understanding the quenched par-
tition function ZT(!) and its annealed counterpart EZT .
Due to reversibility, the problem is closely related to the
study of the bottom ! of the spectrum of ��/2C V ,
and the difficulty is in understanding the structure of
those traps that influence ! . A good overview of the
model and the techniques developed to analyze it, in-
cluding the “method of enlargement of obstacles”, can be
found in [95].

Time Dependent RWRE

An interesting variant of the RWRE model has been
proposed in [8]. In this model, the random environ-
ment is dynamic, i. e. changes with time, and so we
write !(x; x C e; n) where we wrote before !(x; x C e).
In the simplest version, the collection of random vectors
(!(x; x C �; n))x2Zd ;n2N is i.i.d. Annealed, the RWRE is
then a simple random walk in an averaged environment,
but the true interest lies in obtaining quenched statements.
Those were obtained in [8,10] by a perturbative approach.
An alternative, simpler proof is given by [94]. Another ap-
proach to the quenched CLT, that covers other cases of
random walk “with a forbidden direction”, is developed
in [81], based on a general pointwise CLT for additive
functionals of Markov chains due to [34].

An interpolation between the RWRE model and the
i.i.d. dynamical environment model is when the collec-
tion (!(x; x C �; n))x2Zd ;n2N is i.i.d. in x but Markovian
in n. This case has been analyzed by perturbative meth-
ods in [9], and by regeneration techniques in [3]. In both
cases, an annealed CLT holds in any dimension, but the
quenched CLT was obtained only in high dimension. Re-
cently, a dynamical approach was developed in [36], that
proves the quenched CLT in all dimensions, subject to fast
enough mixing of the Markov chain. It is still open to de-
termine whether in the Markovian setup, there are uni-
formly elliptic, exponentially mixing examples where the
quenched CLT fails.

RWRE on Trees and Other Graphs

We have already mentioned the interest in considering
random walks on random subgraphs of Zd , and in par-
ticular percolation clusters. Of course, one may consider
instead random walk (or biased random walk) on other
random graphs. A particularly important class of mod-
els treats random walks on random trees, and in particu-

lar Galton–Watson trees. We refer to [65] for an excellent
overview of the properties and ergodic theory of such ran-
dom walks, and to [74] for recent results concerning the
CLT. See also [50] for slowdown estimates for the analog
of the RWRE on the binary tree. We emphasize that these
models are all reversible.

Non Nearest Neighbor RWRE

Many of the techniques described in this survey have a nat-
ural generalization to non nearest neighbor walks. In par-
ticular, the results in [80,106] are already stated in terms of
compactly supported transition probabilities, and the de-
velopment of regeneration times can easily be extended,
following the techniques in [26,27], to the non-nearest
neighbor, finite range setup. However, to the best of my
knowledge, no systematic study of RWRE for non-nearest
neighbor RWRE’s in dimension d � 2 has appeared in the
literature.

The situation is different in dimension d D 1, where
the RWRE is not reversible anymore. It was early realized,
see [53,63], that ergodic theorems involve the study of cer-
tain Lyapounov exponents associated with the product of
random matrices. For some recent results, we refer to [11]
and [21].
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Glossary

Agent A system that uses its power to bring about a given
state in a physical, social, or mental environment.

Autonomy It is a property of a subset of agents, which
decide to act on the grounds of their internal criteria
(internal representations).

Computing agent An entity that executes the instruc-
tions contained in an algorithm running on a com-
puter.

Goal-directed agents are intelligent agents that have an
internal representation of the goals they achieve.

Goal-oriented agents are entities designed to achieve
a certain state of the world wanted by either the agent
itself, which in such a case is also a goal-directed sys-
tem, or the user/designer.

Intelligent agents are goal-oriented agents using their
knowledge to solve problems, including taking deci-
sions and planning actions.

Internal representation Knowledge stored into internal
agent structures or distributed over sets of intercon-
nected internal units.

Knowledge Information about the environment, which is
stored in agents’ memory (archives).

Rational agents are intelligent agents that use their (lim-
ited) knowledge to maximize the difference between
benefits and costs.

Definition of the Subject

In this article, goal-oriented agents, i. e. agents designed
to achieve a given goal, will be treated as a highly general
category within agent theory and application, and argued
to subsume both rational agents, which maximize the dis-
tance between benefits and costs, and goal-directed agents,
which have a representation of the goal they achieve. These
sub-types of agents exemplify two different but non-ex-
clusive approaches to agent theory, endogenous and ex-
ogenous. The endogenous approach is aimed at modeling
agents in terms of their internal mechanisms of regulation.
The exogenous approach is used to describe them from an
external point of view, in terms of the effects they achieve
in the world. In this article, these two approaches will be
combined with another important classification, weak and
strong agents. The resulting specific models and applica-
tions will be described. Finally, goal-directed and rational
agents will be compared and future directions of research
in the agent field will be discussed.
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The field of agent theory and technology is growing
fast. Suffice it to consider that the community of scien-
tists interested in multi agent systems, which counted at
most a few dozen people in the early nineties, is now one
of the largest in the area of computational and techno-
logical sciences (The 2008 AAMAS (Autonomous Agents
andMulti Agent Systems) conference received around 700
submissions.). Furthermore, a growing number of disci-
plines within the social and behavioral sciences, not to
speak of the science of complexity, are turning to agent-
based computational modeling in the aim to promote
explicit, controllable models of social and behavioral phe-
nomena, and to realize computational laboratories for vi-
sualizing such phenomena and conducting repeatable ex-
periments about them.

Despite, or perhaps because of such a fast develop-
ment, the field of agent theory and application did not re-
ceive an adequate scientific re-elaboration, nor commonly
shared views and definitions. Agent is still a controver-
sial notion, specified – as somebody observed in [81] – by
a growing number of adjectives, for example, autonomous,
goal-directed, rational, etc., rather than by explicit proper-
ties. Developed by different disciplines – physics, biology,
AI, psychology, computer science, economy, decision the-
ory, organization science, etc. – with their own conven-
tions and vocabulary, the notion of agent would neces-
sitate an explicit confrontation, which is underestimated
by the different communities. The result is an unpleasant
conceptual mix and consequent loss of scientific credibil-
ity of the field.

This article is therefore intended to offer a contribu-
tion of clarification concerning some properties of agency,
in order to compare at least a subset of models and theo-
ries currently insufficiently interacting, and help envisage
future trends.

Introduction

In the present contribution, rational agents are seen as
a subset of intelligent agents (see Fig. 1), and these in turn
as a subset of goal-oriented ones. Agents are said to be
goal-oriented when they exhibit a finalistic behavior [3,9],
i. e. when their behavior brings about a state of the world
that achieves somebody’s, not necessarily the user’s, goals.
To be noticed, goal-oriented systems need not be goal-
directed either. The latter are guided by a representation
of the goal they are oriented to [76]: a software agent de-
signed to bring about a given effect is goal-oriented. It be-
comes goal-directed if, for any reason, the effect needs to
be represented as an internal state of the agent.

Rational, Goal-Oriented Agents, Figure 1
Set relationships among some types of goal-oriented agents

The distinction between goal-oriented and goal-di-
rected action is crucial, since it allows two main compo-
nents of computational agents to be distinguished, the de-
sign-goals – i. e. the goals of the user/designer that need
not be represented into the agent although incorporated
in the way it operates and is constructed – and the inter-
nal goals, which are represented in the agent that achieves
them. Of course, goal-oriented modeling works as a filter
for the designer, which enables her to recognize important
properties of her domain of interest. It also tells her which
internal mechanisms the system ought to possess in order
to achieve its design-goal, and whether and which among
these goals ought to be internalized.

Within the broad category of goal-oriented agents, we
identify intelligent agents, as those entities that use their
own knowledge to bring about certain effects in the world.
Intelligent agents include goal-directed agents, achieving
their own goals, and rational agents, maximizing their own
utility.

Rational and goal-directed agents are here taken as
paradigmatic examples of two complementary approaches
in the agent field, endogenous and exogenous: the latter
describes agents’ behavior as perceived by an external ob-
server; the formermodels it in terms of the agent’s internal
mechanisms. Either approach will be characterized sepa-
rately.

In the final section, rational and goal-oriented agents
will be compared, their differences will be outlined and the
respective advantages for both theory and application will
be pointed out.

Agents

Agents are systems acting on some environment, includ-
ing their minds. In this case, their action consists of taking
decisions, manipulating information, etc. More generally,
they act on the physical or social environment producing
transitions from one state to another.
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They are modeled in more or less formal terms. In
general, agent models are abstract, formal, often compu-
tational. The latter describe agents as entities carrying out
the operations described in an algorithm, accepting inputs
from the environment, and performing actions that de-
pend upon the current inputs and produce outputs that
modify the environment.

By an abstract model of the agent, it is meant an ideal-
type entity endowed with defining properties as speci-
fied in the underlying theory. One such entity, which may
never be found in nature, facilitates general explanation of
real-world phenomena involving natural agents, and pro-
vides inspiring models for concrete applications to be de-
signed.

By a formal description, it is meant an abstract descrip-
tion that is also explicit, non-equivocal and sound. It is by
no means necessary that such a description be translated
into a standard logic language, although this is sometimes
the case. Strictly speaking, a formal model of the agent is
not necessarily transformed into a computational model
either, although this is often the case.

In this contribution, agent computational models will
mainly be addressed, although the discussion of rational
agents will involve mathematical notions, and that of BDI
agents – a special type of goal-directed systems – will
bring into play logic definitions of mental states. In all of
these cases, however, formal technicalities will not be pro-
vided, and the models will only be reported on in informal
terms.

Criteria for Classifying Agent Models

As shall be argued throughout the article, goal-di-
rected and rational agents represent two complementary
ways, endogenous and exogenous, to approach intelligent
agents, which in turn largely depends on whether agents
are instruments or objects of scientific inquiry.

Taken as scientific instruments, agents are modeled
and implemented on a computer in order to generate phe-
nomena [33] that are themselves the primary objects of
scientific investigation. This is the case with macro-social
phenomena grown in artificial societies, where agents are
specified only to the extent that is required to bring about
the (macroscopic) effects of interest. This usually consists
of an interesting dynamics at the aggregate level, such
as emergent macro-social effects like segregation, public
goods provision, opinion dynamics, etc.; or stylized social
facts, such as game theoretic scenarios, in order to explore
social or collective problems and dilemmas and account
for prosocial action, such as cooperation [6], altruism [34],
fairness and justice [10], etc.

As targets of scientific interest, agents – in particular
autonomous agents [41,96,100] – draw the scientist’s at-
tention on the mechanisms of regulation that activate and
rule the activity of any system of action. In this sense,
agents are studied and described in their internal mech-
anisms of regulation. Ideally, the language, the concepts,
and the formal instruments applied to them, describe
agents and their behaviors precisely in the same mecha-
nisms that operate when they behave. Such a description
of course corresponds to the real processes as suggested by
the current scientific standards.

Which consequences do these different ways of con-
ceptualizing agents bear? The distinction discussed above
leads to the emergence of two different approaches to
agent modeling, endogenous and exogenous, which have
not as yet been systematically analyzed.

Endogenous vs. ExogenousApproach Generally speak-
ing, endogenous variables are meant as properties origi-
nating into the system under study. Exogenous variables
instead are properties originating from outside the sys-
tem, which are not under its control nor are manipulated
by the system itself, but can be manipulated by the ob-
server/experimenter.

In computational models, exogenous variables are pa-
rameters set to defined values by the computer scientist.
It is interesting to observe that an extended parameters’
space poses a serious problem of computability to the an-
alyzer (see [99], for a recent review of alternatives and
prospects), who must arbitrarily choose which parameters
to analyze extensively. Therefore, attention is currently
paid to the so-called parameters’ “endogeneization” [19].

By endogenous models, it will be here meant to refer
to models describing agents and their behaviors in terms
of a special type of endogenous variable, i. e. their gener-
ative mechanisms. These are supposed to operate within
the agents when they exhibit any given behavior, includ-
ing responses to external stimuli. Exogenous models, in-
stead, describe agent’s behavior from the outside in terms
of its effects or functions (e. g., utility or fitness function).
An exogenous model is indifferent to how behavior is ac-
tually ruled; it is limited to apply a formal description that
accounts for the behavior under study as this is perceived
by the external observer.

Notice that the exogenous and endogenous ap-
proaches are not necessarily concurrent: they tackle
agency from two different perspectives. For example, on
the grounds of an exogenous model, one can assume
that a certain opinion and the corresponding behavior
spread over a population as an effect of the physical space
(see [68]). It is interesting to notice that so far, computa-
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tional models have adopted exclusively an exogenous ap-
proach to the study of opinion dynamics [30,51,71,73,90],
modeling the external dynamics of opinions, i. e. their dy-
namics in society, independent of the endogenous mech-
anisms allowing agents to accept [84], update [58], re-
vise [12], transmit [72], retreat and finally drop their opin-
ions. However, at least in principle, an endogenous model
of opinion dynamics is necessary to unfold the social dy-
namics: to understand how physical or social distance im-
pacts on opinion dynamics, we ought to understand how
opinions gain ground, agent by agent, mind by mind. In
other words, we ought to model the process by means of
which agents influence one other and accept others’ opin-
ions.

One might say that these two approaches tackle differ-
ent aspects of the same phenomena, or different steps of
the same processes, the exogenousmodel being focused on
the so called distal causes, the endogenous model address-
ing the proximal. At a more careful sight, however, this
does not seem to be the case. Indeed, it should be noticed
that proximal causes are sometimes exogenously modeled.
This is the case with game-theoretic models that describe
decision-making (proximal cause of behavior) by means
of a utility function taking into account wealth distribution
and risk sensitivity [42,67]. This can hardly be conceived of
as an internal mechanism ruling agents’ decision-making.
While taking what frequently proves to be an intelligent,
adaptive decision, agents haven’t the faintest idea that the
process they have gone through might well be described
by means of a mathematical function. Far from identifying
themechanisms generating the agent’s choice fromwithin,
this function describes behavior from the outside.

Game-theoretic models have often been charged with
the accusation of proceeding from implausible assump-
tions. This accusation is warranted from the point of view
of an endogenous model, not from an exogenous stand-
point. That agents maximize their expected utility is prob-
ably a truism, at least if utility is not meant to coincide
with self-interest [39]. If utility is meant to coincide with
own desires or goals [5], the rational assumption is per-
haps too obvious, even tautological, but not implausible.
What makes it implausible is the description in which it is
conveyed: agents do not calculate mathematically their ex-
pected utility, although many times they act as if they were
doing so. The utility function is a valid exogenous model,
of course, but is an implausible endogenous explanation.

The problem is, what is a good endogenous explana-
tion? What are the internal mechanisms that allow agents
to maximize their utility? This contribution does not, nor
is intended to provide an answer to this question. How-
ever, a good step forward in the direction to “endogenize”

factors of regulation, is to turn to current scientific theories
that aim explicitly at elaborating an endogenous model.

Analogously, we should refrain from the common fal-
lacy that distal explanations can easily do without en-
dogenous models. Things are not so simple. If one aims
at generating the behavioral effect starting from a far re-
moved cause, one needs to construct the whole chain be-
tween distal causes and wanted effects. Without an en-
dogenous model, one can get nothing better than a par-
tial and non-generative explanation. This is not equal to
saying that this explanation has no right of its own. On
the contrary, and somewhat in contrast with latest gener-
ativists [33], the present writer’s claim is that exogenous
models are non-generative statements that may have ex-
planatory value [22].

As Nwana [81] argued in his overview of the field of
computational agents, one of the symptoms of the onto-
logical deficiency characterizing this field is the number
of adjectives often accompanying the word agent. Rather
than adequate definitions of these adjectives, which are
easily accessible both in Nwana’s or in Wooldridge and
Jennings’ papers [101], the present contribution attempts
at discussing major criteria for categorizing agents and
combining them with the epistemological approaches dis-
cussed above.

Weak vs. Strong Agents Wooldridge and Jennings
[101] distinguished between a weak and a strong form
of computing agents. Weak agents are characterized by
a number of properties.

Autonomy Computing agents operate without the di-
rect intervention of humans or others, and have some
kind of control over their actions and internal state.
Agents can be placed on a continuous dimension of
autonomy, as several intermediate cases occur between
full autonomy and full slavery. Indeed, limited auton-
omy [23] is the paradigmatic case of humans. Sources
of limited autonomy can be found both in resource
scarcity and in agents’ sharing a common environ-
ment. Due to resource scarcity agents may not pos-
sess all of the means needed for achieving their goals
(limited self-sufficiency). In a common environment,
agents interfere with one another positively and nega-
tively. Both factors make them liable to all sorts of mu-
tual influences.

Social ability Agents interact with other agents (and pos-
sibly humans) via some kind of agent-communication
language [44].

Reactivity Agents perceive and respond to their environ-
ment, including other agents.
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Rational, Goal-Oriented Agents, Table 1
Set relationships among types of goal-oriented agents

Goal-Oriented
Endogenous
approach

Exogenous
approach

Sub-
Agents

Reflex Spin glasses
Cellular automata

I
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E
L
L
I
G
E
N
T

Weak-
Agents

Learning
Evolutionary
Neural nets
Goal-directed

Strong-
Agents

Bounded rational
Deliberative
(BDI, Cognitive)

Rational

Pro-activeness Agents act in response to their environ-
ment, but also take the initiative [101].

In addition to these properties, strong agents are com-
puter systems characterized by mentalistic notions, such
as knowledge, belief, intention, and obligation [93] as well
as emotions [7,8].

What happens if we combine the dimension of weak
and strong agency, with the endogenous and exogenous
approaches?

In Tab. 1, goal-oriented agents are classified. In the
first row, sub-agents appear, i. e. those lacking one or an-
other of the minimal properties for weak agency identified
above. In particular, none of the systems classified as sub-
agents are proactive. Below, intelligent agents are shown:
they include weak and strong agents, endogenously and
exogenously modeled.

Overview: Weak Agents

Weak agents are essentially autonomous, interconnected
and communicating systems that effectuate state tran-
sitions. Unlike simpler and stronger models, no exoge-
nous examples of weak agents are found. They are all
described in terms of their internal mechanisms. Verisimi-
larly, simpler models lend themselves to be described with
mathematical formalisms, which are also applied to model
some complex capacities, like rational choice (see rational
agents). Instead, weak agents are not modeled to describe
the effects they produce in the world, but to find out al-
gorithms generating them. The interest of these systems is
intrinsically computational, even technological, and they
gave a strong impulse to endogenous modeling.

Endogenous Weak endogenous agents are described in
their internal mechanisms, essentially rules or subsym-
bolic representations. However simplified, these enable the
agents to behave autonomously, react to external stimuli,
and show also some kind of proactive behavior.

Evolutionary In their early time, agents were modeled as
rigid machines, which might assume a fairly limited set of
states on the grounds of a number of fixed rules. This was
the case with cellular automata, which at the origin were
fixed to given locations on a toroidal grid and could as-
sume either an active or a nonactive state depending on the
states of neighbors. Action was taken according to a fixed
set of rules [26].

Several factors contributed to promote flexibility, the
principal of which probably was the growing interest in
evolutionary phenomena and the capacity of agents to
modify and adapt to a changing environment. Fitness
function was designed as a function measuring how good
a given property or trait is in a pool of traits (for exam-
ple a gene in a population): the agents performing above
a given value would survive and reproduce whereas those
performing below would extinguish.

Let us look more closely to computational models
based on a fitness function. In these models, agents’ be-
havior is the expression of a vector in which given traits
are represented. As the metaphor is clearly the evolution-
ary mechanism, mutations in the vector may occur with
a probability that is established offline. Mutations that
contribute to the reproductive success of the agent will be
transmitted to the future generations after a recombina-
tion with the partner’s traits.

Genetic algorithms (GAs) are a particular class of algo-
rithms inspired by evolutionary biology, and implement-
ing evolutionary mechanisms and processes, such as in-
heritance, mutation, selection, and crossover (also called
recombination). Starting from a population of randomly
generated individuals, at every generation the fitness of ev-
ery individual in the population is evaluated, the current
population genotype is modified (recombined and possi-
bly randomly mutated) and the new population is then
used in the next iteration of the algorithm. The fitness
function is problem dependent and in some problems,
hard to define.

A GA proceeds through iterated executions of muta-
tion, crossover, and selection operators. Whereas selec-
tion is an important genetic operator, the importance of
crossover versus mutation is more debatable (references
in Fogel [36] support the importance of mutation-based
search). To be noticed, for specific problems, other opti-
mization algorithms may do better than GAs with equal
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speed, for example simulated annealing. (Simulated an-
nealing (SA) is an algorithm for locating a good approxi-
mation to the global optimum of a given function in a large
search space. It is often used when the search space is dis-
crete (e. g., all tours that visit a given set of cities). In favor-
able cases, simulated annealingmay be more effective than
exhaustive enumeration of the search space [59].)

As with other computational models, one main prob-
lem is the parameters’ space search (mutation probabil-
ity, recombination probability, etc.) Towhich value should
one set the mutation rate, when no reference is made to
evolutionary phenomena known in nature? A very small
mutation rate may lead to genetic drift. On the other hand,
a high mutation rate may lead to loss of good solutions.

GAs are an invaluable means for optimizing fitness.
A fascinating explanation, the so-called building block
hypothesis (BBH), has been proposed to explain this
effect [46]. Although heavily criticized (see [102]) and
poorly supported by experimental evidence, BBH pro-
vides an intuitive reason for the mechanism of adapta-
tion, which is said to result from iterated recombination
of “building blocks”, or low order elements: at any recom-
bination (or generation), past solutions that proved fit-
ter than their own building blocks are recombined to in-
crease the optimality of new solutions. By this means, ge-
netic algorithm achieves step-wisely optimal performance
through the iterated recombination of building blocks.

If GAs aremeant to optimize the genotype of any given
population, genetic programming (GP) is used to optimize
ability to perform computational tasks. After some pio-
neer computer scientists, and especially John Holland in
the early 1970s, John R. Koza ([62,63,64,65,66]) has pio-
neered the application of genetic programming in various
contexts. Results obtained by the application of GP include
innovations in hardware as well as computer programs.

Learning Learning algorithms used in agent based mod-
els include classifier systems, reinforcement learning,
Q-learning, and neural nets.

Classifier Systems Classifier systems (CSs) are
strongly related to genetic algorithms. Introduced by John
Holland [52], CSs consist of sets of rules optimized thanks
to a genetic algorithm that operates on reinforcement
rather than on a fitness function. There are twomain types
of CSs. In one case, the genetic algorithm recombines dif-
ferent sets of rules; in the other, the genetic algorithm op-
erates within one set only.

Reinforcement Learning Inspired to behavioral sci-
ence, reinforcement has been applied to machine learning

as a reward mechanism (see [54]). Reinforcement based
algorithms have been applied in economics and game the-
ory as a boundedly rational interpretation of how agents
endowed with the same learning mechanisms may con-
verge on one equilibrium. Given a set of world-states, a set
of actions A, and a set of “rewards”, at each time the agent
chooses an action and receives a certain reward. Reinforce-
ment will cause agent to maximize the quantity of reward
obtained.

Recently, reinforcement learning has been used in cog-
nitive models of human problem solving (e. g., [43,47])
and error-processing [53].

Neural Nets Borrowed from neuroscience, where they
are identified as groups of neurons performing a specific
physiological function, neural nets currently refer to artifi-
cial neural networks [50]. These are made up of intercon-
necting artificial neurons, and used either to study biologi-
cal circuits – a simplified view of artificial neural networks
may be used to simulate properties of neural networks –
or to solve artificial intelligence problems, such as speech
recognition, in order to construct software agents or au-
tonomous robots.

Neural networks have been viewed as simplified mod-
els of the brain, but the relation between this model and
the brain architecture is far from obvious. After all, com-
puters entail sequential processing and are based on ex-
plicit instructions, whereas neural networks model biolog-
ical systems as performing parallel processing on implicit
instructions.

An artificial neural network is an adaptive system. Its
structure gets modified based on information spreading
through the network.

Neural nets are based on sub-symbolic representa-
tions. These are physical sets of interconnected units, with
variable weighs on connections. The resulting networks
are said to take inspiration from the organization and
structure of neuronal synapses. As they stand for noth-
ing, they hardly fit the notion of “representation” as such.
Nonetheless, they effectively play a number of impor-
tant functionalities of representations, especially pattern-
recognition. Given a certain input, a given set of internal
units may be gradually “taught” to “recognize” it by con-
trast with other inputs, thanks to a suitable modification of
the weighs of given connections. Subsymbolic representa-
tions are

� Quantifiable, whereas symbolic representations vary,
and can be compared on, a qualitative base.

� Gracefully degradable, whereas symbolic representa-
tions are none-or-all. Hence, unlike these latter, they al-
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low for partial and reparable damages of the long-term
memory.

� Compatible with non-decided upon and non-con-
trolled activity.

Applications of artificial neural networks include pattern
and sequence recognition [87] (radar systems, face iden-
tification, object recognition, etc.), sequence recognition
(gesture, speech, text recognition), medical diagnosis [39],
data mining, etc.

Goal-Directed Agents Goal-directed agents are systems
ruled by, and described in terms of, their goals.

In a psychological-behavioral sense, a goal is a moti-
vational factor defined on the grounds of a number of ob-
servable features, among which vigorous attainment, per-
sistence in the face of obstacles, resumption after disrup-
tion ([69], etc.).

Another notion of goal derives from the theory of sys-
tems and cybernetic circuits. Control theory introduced
the notion of feedback [15] to control states or outputs of
a dynamical system [40]. Its name comes from the infor-
mation processed in the system: inputs (e. g. a given state
of the world) have an effect on the outputs (for example,
elicit a given action) that is measured with sensors, and
the result of which (the worldstate brought about by the
action) is used as input to the process.

On the grounds of such a notion of goal, a theory of
behavior as planning activity [78] has been constructed,
which has played a foundational role in the development
of cognitive science.

Building on control theory, cognitive scientists define
a goal as a wanted state of the world that, if discrepant from
the currently perceived worldstate, activates the agent and
rules its action. A goal is therefore both a trigger and
a regulatory state: actions are activated and ruled by their
goals [23].

Further analysis allowed several categories of goals to
be identified.

End- and sub-goals. A goal can either be the final end
of activity – f.i., survival is probably the supreme finality of
natural systems – or a condition for its execution, which
may not be verified in real matters. In such a case, in terms
of AI planning, the initial end-goal gives rise to further
sub-goals, i. e. to verify the necessary conditions for action
execution.

Innate vs.learned. Whereas end-goals are usually in-
nate (but examples of subgoals that become ends in them-
selves exist), subgoals are formed and dropped after suc-
cessful execution.

Side-goals. Goals may guide the action they trigger, or
they may rule actions triggered by others goals. The latter
are side-goals. A typical example is utility-maximization,
which rules a number of activities, especially economic,
triggered by other goals.

Achievement and maintenance goals. Goals may be
already verified in real matters, i. e. coincide with cur-
rently perceived worldstates. In this case, they are usually
dropped – as is the case with purchasing a new car, or find-
ing a job. However, in many cases, these fortunate circum-
stances may suggest a new goal, i. e. to keep one’s job or
car. In the BDI language (see below), the goal to main-
tain a current worldstate is a maintenance goal, whereas
the goal to realize a given worldstate is an achievement
goal [20].

Realizable vs. unrealizable goals. In the logic-based
treatment of goals, these must be consistent and realizable.
Unrealizable goals are treated as a subset of desires that are
never chosen for action.

The first application of goal-directed agents goes back
to the AI planning systems [89,97], which soon gave im-
pulse to a Copernican revolution in planning and plan ex-
ecution, i. e. Distributed Artificial Intelligence (DAI) sys-
tems [11]. In the early nineties, the first studies and scien-
tific events [31] on Multi Agent Systems (MAS) took their
moves from the necessity to increase effective autonomy of
distributed systems and their interactive capacity. Both of
these requirements, in turn, necessitated developments of
mental capacities, especially in the direction of social intel-
ligence [21], what soon led to the appearance of stronger
models of agency.

Overview: Strong Agents

Below, we will review the main approaches to account for
complex tasks, like deliberative choice. As was premised
above, both the endogenous and the exogenous ap-
proaches concurred to this aim. Let us examine them in
turn.

Exogenous Here, rational agents are shown to repre-
sent the paradigmatic case of exogenous models of strong
agents, whereas BDI and cognitive agents examplify strong
agents endogenously modeled.

Rational Agents One way of conceptualizing rational ac-
tion describes it as reason-based action. Hence rational
agents are sometimes identified with intelligent agents at
large [88,100].

In this contribution we go back to the classic notion
of rationality as utility-maximization, and define rational
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agents as a subset of intelligent agents that act so as to
maximize their utility [2,80]. In this more specific sense,
a rational agent takes actions expected to maximize its
chances of success [4]. Its action is said to bring about
this effect no matter how. In other words, a rational agent
model is indifferent to the mechanisms that effectively op-
erate within the agent to ensure the hypothesized effect [1].
At most, what is attributed to a rational agent is (limited)
knowledge of its environment, consisting of (a memory
of) past experience, current information about the envi-
ronment (possibly including other agents and their ex-
pectations [70]), as well as the estimated benefits and the
chances of success of own actions [88].

The classic conceptualization of rational agents derives
from the abstract model of homo oeconomicus defined by
John Stuart Mill [77] as an entity which aims at possess-
ing wealth and is able to evaluate and adopt the means
for achieving it. On these assumptions, rational choice
took on the specific meaning of self-interested action. Thus
meant, the term “rational” implies a utility function: inde-
pendent of the benefits themselves, what is said to be ratio-
nal is the choice that maximizes the distance between the
benefits obtained and the costs sustained to obtain them.

Rational action theory provides a formal model of
practical behavior, mainly applied to social and economic
domains. We might consider it as the still dominant
paradigm in economy, but its hegemony extends to all of
the social sciences and to the computational field of agent
theory and technology. Essentially, it assumes individuals
to choose the best action according to stable utility func-
tions. Rather than describing reality, rational choice theory
aims at supporting reasoning (prescriptive use) and mod-
eling social behavior in highly stylized scenarios.

Requirements of Rational Action Let us examine the
view of the agent implied by the rationality assumptions.
Choosing an action rationally requires individual prefer-
ences, a set of options or alternatives for actions, and a set
of expectations about their outcomes. Two important as-
sumptions concern preferences:
Completeness All actions are ranked in an order of pref-

erence.
Transitivity If any given action a1 is preferred to ac-

tion a2, and the latter is preferred over a third op-
tion a3, then a1 is preferred to a3.

Consequently, an individual can always order the available
options on the grounds of its preferences, which will al-
ways be consistent. This gives rise to a utility function, i. e.
an ordinal number assigned to alternative actions – such
as: u(ai ) > u(a j) – with preferences being defined as rela-
tions between these assignments. Unrealistic assumptions

are often made, such as full or perfect information and the
ability and time to weigh every choice against every other
choice. Relaxations of these assumptions are included in
theories of bounded rationality, which will be examined
later.

Although empirical support to rational choice theory
is far from satisfactory [48], this paradigm presents two
main advantages for the social sciences.

First, precisely because it proceeds from stylized facts
and abstract phenomena, it proves a powerful instrument
for the scientific study of social action.

Secondly, and consequently, rational action theory in
principle allows future actions to be predicted. Compared
to stochastic modeling, the predictive power of social sci-
entific explanation is expected to increase. However, it
should be observed that the tautological and a posteriori
explanation of behavior deriving from the principle of util-
ity maximization strongly reduces the predictive potential
of the theory. As preferences and goals are subjective, any
choice results in the maximization of utility, whatever its
outcome is and can be said to be rational (tautology), once
it has been made (a posteriori).

Third, the abstract and strong nature of the theory al-
lows testable hypotheses to be formulated and data to be
collected. The experimental potential of social scientific
explanation is therefore bound to increase.

However, rationality theory has been criticized on em-
pirical grounds. In traditional societies, people’s social ac-
tion, for example the way they exchange goods, follows
rules that could not be expected on the grounds of ratio-
nality assumptions and which, thanks to the famous work
byMauss [75], seemed to point to a regime of “gift”, rather
than market, economy. In addition, according to experi-
mental scientists (cf. the wide literature cited in [82]), peo-
ple are much more cooperative than expected by the ratio-
nal choice theory. Finally, the rationality assumptions are
commonly said to necessitate too much understanding of
macroeconomics and economic forecasting for people to
take rational decision. We will get back on this argument
later in the next section.

Theoretical critiques are no less strong. Among oth-
ers, it has been observed that the role of intrinsic motiva-
tions [29], for example that of altruism, is under-estimated
to the advantage of extrinsic, incentive-based,motivations,
an objection that is not entirely warranted in consideration
of the indetermined nature of preferences: rational agents
can be subjectively inclined to altruism. In such a case,
even one’s extreme sacrifice to the benefit of others’ is per-
fectly “rational”.

Rather, the inadequate account of preferences dynam-
ics poses a twofold problem to the social scientist. On one
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hand, totally indeterminate preferences reduce the predic-
tive potential of the rationality paradigm. On the other, if
intrinsic motivations are acknowledged, little is said about
how they can be acquired. As a consequence, the origin of
altruistic motivations, like that of any other taste and in-
clination, and the effects of social influence, training, edu-
cation, and the like on the utility function are overlooked.

Another consequence of rational agents’ poor internal
dynamics is the insufficient account of inner conflicts like
that between motivations and goals (for example, passing
the exam and playing around) or that between types of
motivations or finally between individual goals and soci-
etal values, which may strongly affect and impair individ-
uals’ decision-making.

Substantially, these critiques converge on arguing
against a purely exogenous approach, which ignores
the acquisition, modification and integration of internal
states. To say that agents’ choices proceed from their pref-
erences is neither particularly interesting nor informative,
but to make the model more realistic does not help much
and may render it tautological. The missed point here is
a theory of the internal dynamics of preferences. However,
this requires an endogenous approach to rationality.

Endogenous Strong models of the agent aiming at mod-
eling internal states and mechanisms include a variant of
the rational choice theory, i. e. bounded rationality, as well
as theories and architectures of cognitive agents, including
but not reduced to BDI agents.

Bounded Rationality Bounded rationality is a variant of
rational choice theory that took its move from the obvi-
ous consideration that perfect knowledge is never avail-
able, and that agents, even investors, deal with uncertainty
and risk in business. Far from regretting the special atten-
tion paid to economic behavior and the homo oeconomicus
model, the proposers of bounded rationality questioned
the utility of full rationality as a paradigm for the study
of economic behavior itself. As Fox and Tversky [37] ob-
served, the very notion of uncertainty was first questioned
by theoretical economists. In [61], Knight distinguished
between measurable uncertainty or risk, and unmeasur-
able uncertainty, suggesting that entrepreneurs deal with
unmeasurable uncertainty, rather than risk. At the same
time, Keynes [59] distinguished between probability of oc-
currence of a given event and the weight of the evidence
supporting it. Nonetheless, game theorists showed little in-
terest in the issue of vagueness of probability [91].

When one considers it carefully, bounded rationality is
situated at the borderline between endogenous and exoge-
nous approaches. Prospect Theory [56], one of the main

theoretical contributions of bounded rationality, was pro-
posed as a psychologically realistic alternative to rational-
ity theory, in particular to expected utility theory. The au-
thors meant to account for empirical evidence showing
that when people evaluate potential losses and gains under
risk, e. g. in financial decisions, the probability of occur-
rence acts differently on the values of alternative options
depending on whether agents are gaining utility or avoid-
ing losses. Rather than constructing a model that shows
how this happens in the minds of the agents, the authors
expressed this evidence in an asymmetric utility function.
This shows a bigger impact of losses than of gains (loss
aversion) and expresses that people tend to overreact to
small probability events, but underreact to medium and
large probabilities. The theory, meant as an endogenous
development of full rationality, is expressed into an exoge-
nous formalism.

Nonetheless, bounded rationality has done a great job
in revising the assumptions of full rational theory. What
is more, Herbert Simon [94] did actually argue for an en-
dogenousmodel, when he claimed that in order to account
for rational action, it is necessary to study the mental pro-
cesses and mechanisms allowing agents to formulate and
solve complex problems and process (receive, store, re-
trieve, transmit) information (see also [98], p. 553, quot-
ing Simon). One important aspect of the mental endow-
ment is represented by heuristics [57,83], i. e. powerful in-
formal methods to solve problems in complex situations.
In psychology, heuristics are simple, efficient rules, rules
of thumb, which either evolve or are learned and sup-
port people in taking decisions, coming to judgments, and
solving complex problems under incomplete information.
When agents cannot compute the expected utility of every
alternative action, they resort to heuristics, which are ap-
plied in different contexts and might have been acquired
over the course of life, through repeated decision-mak-
ing processes. These rules work well under most circum-
stances, but in certain cases lead to systematic cognitive bi-
ases, i. e. very basic statistical and memory errors that are
common to all human beings.

To be noticed, most models of bounded rationality did
not strictly follow Simon’s ideas. Some authors preferred
to model people’s decisions as a sub-optimal version of ra-
tionality [32] or to study how people cope with their in-
ability to optimize. For others [45], alternatives to full ra-
tionality in decision making frequently lead to better deci-
sions.

Deliberative Agents Let us now turn our attention to
fully endogenous models of complex agents, such as BDI
architectures and more generally cognitive agents. Both
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are goal-directed systems, not incompatible with util-
ity maximization but actually implementing it. However,
goal-directed agents do not necessarily imply neither ex-
plicit computation of utility maximization, nor heuristics
achieving it.

Cognitive systems. These are goal-directed agents en-
dowed withmentalistic notions, such as beliefs, intentions,
obligations and the capacity tomanipulate mental symbols
and accomplish a number of operations on them, includ-
ing inference, reasoning, problem-solving, planning, etc.
Symbolic representations stand for the states of the world
they refer to in such a manner that these world states can
be:

� Compared: a given representation of a worldstate ws1
can be compared with another to check whether they
are equal or not. This is fundamental in goal-directed
action.

� Manipulated, e. g. asserted or denied, evaluated and
possibly selected along common criteria, modified and
revised and therefore used as instruments for reason-
ing, action planning, etc.

� Embedded into one another, thereby giving rise to
meta-beliefs. Among other reasons, meta-beliefs are
useful for the representation of others’ beliefs (the so
called “theory of mind”), which is of vital importance
in social life [16,85]. Of late, theory of mind has been
used to refer to a specific cognitive capacity: the ability
to attribute mental states – beliefs, intents, desires, pre-
tending, knowledge, etc. – to oneself and others and to
understand that others have beliefs, desires and inten-
tions that are different from one’s own [27,49].

BDI agents. A BDI agent is an architecture for a spe-
cial type of cognitive agent, more specifically for intention-
driven agents, endowed with particular mental attitudes,
viz: Beliefs, Desires and Intentions (BDI).

The philosophical bases of BDI agents is Bratman’s
theory of practical reasoning, but has been formally de-
scribed by Anand Rao and Michael Georgeff’s [86], which
combine temporal logic with a modal logic enriched with
beliefs, desires and intentions.

Beliefs Beliefs represent the agent’s representations about
the world (including itself and other agents), which are
neither necessarily true nor complete. Inference rules
generating new beliefs allow to enrich the agent belief
base.

Desires Desires represent the motivational state of the
agent. Goals are a subset of desires, i. e. consistent and
achievable ones.

Intentions Intentions are executable goals, i. e. goals that
the agent has chosen for action, to which the agent has
to some extent committed (in implemented systems,
this means the agent has begun executing a plan).

Aimed to represent the future as an epistemic tree, allow-
ing agents to reason upon alternative courses of action,
BDI architectures lend themselves to model the interplay
among different mentalistic notions. In particular, an ex-
tension of BDI, the BOID architecture, concerns the rep-
resentation of the interaction among beliefs, obligations,
intentions, and desires, and has been used to support rea-
soning and deliberative choice on legal norms [14].

Mental Representations and Their Dynamics An endoge-
nous approach to the computational model of intelli-
gent agents revolves around the main question as to how
agents represent their goals and the information needed
to achieve them [28,74,95]. This issue, called knowledge
representation, arises at the intersection between cognitive
science and Artificial Intelligence: AI scientists have bor-
rowed methods of knowledge representation from cogni-
tive scientists, since it was of primary importance for them
to design programs that could store knowledge and re-ap-
ply it to analogous problems.

Knowledge Representation techniques – such as
frames, scripts, etc. – stem from theories of human infor-
mation processing. The main goal is to represent knowl-
edge in such a way as to facilitate reasoning, planning,
problem solving and the like.

The main questions posed by AI researchers concern-
ing knowledge representation focuses on the format of
representations, the nature of knowledge, the preferabil-
ity of general purpose vs. domain-specific representation
schemata, the degree of expressiveness and detail of such
schemata, whether it should be declarative or procedural
etc.

In AI, many methods of knowledge representations
have been tried since the early seventies, e. g. theorem
proving and expert systems, with variable degree of suc-
cess. Themajor knowledge representation systems go back
to the eighties when for example large databases of lan-
guage information were built, rendering knowledge repre-
sentations more feasible. Several programming languages
were developed, such as Prolog, KL-ONE and XML, facil-
itating information retrieval and data mining.

The necessity to store and manipulate knowledge in
a formal way so that it may be used by mechanisms to ac-
complish a given task has drawn the attention of knowl-
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edge representation scientists. Expert systems, machine
translation, and information retrieval are good examples
of applications.

Probably the most extensively used structure for
knowledge representation from the 1960s, is the knowl-
edge frame [35,79], with its own name and set of attributes,
or slots that contain values. Frames have been used for ex-
pert systems in object-oriented programming, with inher-
itance of features described by an IS-A link, a type of re-
lation that has posed a number of problems of semantic
interpretation [13]. However, in an endogenous perspec-
tive, it should probably be observed that frame structures
are well-suited for the representation of stereotypes and
other socio-cognitive patterns.

A script [92] is a frame that describes events, especially
behavioral events. The usual example is going to a restau-
rant, with steps including waiting to be seated, receiving
a menu, ordering, etc.

Goals Typologies of goals are not limited to those ex-
amined in Sect. “Goal-Directed Agents”, but include other
sub-categories, which are based on the interplay among
goals and other mental notions, such as beliefs and obli-
gations.

Active vs. inactive goals. Maintenance goals are not al-
ways active. A goal is active when it rules the system’s be-
havior. When a goal is represented in the agent’s mind but
does not rule its behavior is inactive. A maintenance goal
may be activated when it is likely to be thwarted. An inac-
tive goal may be a maintenance or side-goal, or an achieve-
ment goal that becomes (momentarily) inactive because
incompatible with a more important one (emergency or
conflict).

Executed vs. waiting. An active goal may be chosen
for action, or may be interrupted during its execution and
kept waiting in a queue, because the conditions for its ex-
ecution turn out to be false, and must be realized for the
goal to be achieved.

Chosen. An active goal may be chosen for action and
transformed into an intention when (a) it is not realized,
but it is (b) realizable and (c) more important than other
active goals, if any. These clauses are conjunctive: in case
the goal is realized, or outcompeted, it becomes inactive.
In case it is unrealizable, it is dropped (or retrocedes to the
status of a simple desire).

Individual vs. social. Goals are individual when men-
tioning no-one else except the hosting agent. Otherwise,
they are weak or strong social goals. Weak social goals
mention others as models to imitate or as sources of in-
fluence – for example their future actions are perceived
as either obstacles or favoring events. Strong social goals

mention others as targets of influence (simple request or
persuasion or manipulation or coercion).

Prosocial vs. aggressive. A goal is prosocial when it aims
at realizing a worldstate as long as and why this is wanted
by another agent. The process by means of which an agent
comes to have another’s goal as its own is called goal-adop-
tion. This may be either an end in itself (benevolence) or
a sub-goal for an individual goal (e. g., exchange).

An aggressive goal is a goal that aims at thwarting an-
other’s goal, as long as and why this is wanted by the latter.
Again, an aggressive goal may be an end-goal (hate), or
a sub-goal, and in the latter case it may be instrumental to
a selfish or a pro-social goal (prevent crime), even to the
benefit of the victim (surgery, education, etc.).

Shared vs. collective. Finally, a goal may be shared by
a set of agents. It is collective [25] when it mentions a set
of agents in which any one is necessary, but none is suf-
ficient to achieve the goal shared by them all (an orches-
tra or a football team are typical examples of collective
goals).

Cognitive Dynamics In a rather generic sense, an
autonomous agent is a self-interested agent. In a more spe-
cific sense, an autonomous agent is one, which has inter-
nal criteria to select among inputs. Inputs might generate
beliefs and goals. An autonomous agent is therefore char-
acterized by a “double filter architecture”, allowing both
beliefs and goals to be selected (cf. [17]). These two filters
are sequential, but at the same time they allow for an inte-
grated processing of mental representations.

Filtering beliefs. Thanks to this filter, agents have con-
trol over the beliefs they form. This filter is rather com-
plex and implies that a number of tests be executed over
a candidate belief against several distinct criteria. These are
pragmatic or epistemic criteria. Epistemic criteria include

� Credibility, with agents controlling, among other prop-
erties, the coherence of candidate beliefs with previ-
ous beliefs, the reliability of the source of the candidate
belief: agents accept information from other agents
(Gricean principles) provided they have no reasons to
doubt their sincerity or competence.

� Non-negotiability, or the Pascal law. To believe or
not is a “decision”. However, it cannot be made in
view of one’s pragmatic utility, but only in view of
one’s epistemic utility. In social interaction, we cannot
use threats (“Argumentum ad baculum”) or promise
to make people believe something. The difference be-
tween persuading to do and persuading to believe is
crucial. Since beliefs control goals, this represents a fur-
ther protection of agents’ autonomy.
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Pragmatic criteria concern the reasons for believing
something. Typologies of beliefs generally concern the for-
mat of their representation (declarative, procedural); the
degrees of certainty; the levels of nesting (one can believe
something, without believing that one believes . . . ). These
typologies are known too well. Perhaps it is less obvious
that beliefs may have a different “status” in the mind ac-
cording to the motives for acceptance. The language pro-
vides a rich vocabulary: superstitious belief, creed, faith,
credence, doctrine, postulate, axiom, principle, concep-
tion, idea, view, opinion, and many others. These beliefs
vary on several, often quantitative, dimensions, such as
certitude (subjective truth value), retractability (how likely
it will be modified), connectivity (how much a belief is
connected with other beliefs). One interesting quantita-
tive dimension is the “force” of beliefs (cf. the role of
this dimension in the Social Impact Theory, cf. [68]): be-
liefs vary on how strongly they are held. This is related
to certitude, but also to the motives of acceptance, which
may lead the agent to ignore the belief’s truth-value; for
example,

� Self-protection and self-enhancement, agents may be
led to accept one among several competing beliefs be-
cause of the belief’s positive effect on their self-esteem
or self-concept.

� Commitment to a given (set of) belief(s) provides one
important reason for accepting further, consistent be-
liefs, despite or independent of incompatible evidence:
agents that accept beliefs out of commitment don’t
check their truth value.

� Hypothetical and counter-factual reasoning, beliefs
may be (transitorily) held as means to reason and carry
out operations (demonstrations, proofs, experiments).
A god example is the priest accepting the atheist’s point
of view to dismantle it.

� Communication: A psychotherapist may “accept” the
delusions of her patient in order to communicate with
him and give a clinical sense to his fantasies; here the
goal is not to carry out a counterfactual argumentation,
but to understand the meaning of delusions.

� Empathy: agents may want to share the views of their
close connections.

� Risk-taking or gambling: agents may participate in lot-
teries, accepting one alternative and investing (money)
in it; in such a case, agents will hold an uncertain belief
but behave as if it were certain.

� Prudence, agents may accept uncertain information
(for example, rumours, gossip, even calumnies) and be-
have as if they were certain: unlike the preceding situa-
tion, a risk-minimization strategy applies.

Rational, Goal-Oriented Agents, Figure 2
The “double filter” architecture

Filtering goals. There are at least two fundamental tests
which are performed on goals: self-interested goal-gen-
eration (an agent is autonomous if whatever new goal it
comes to have, there is at least another goal of that agent,
for which, in the agent’s beliefs, the former is a means),
and belief-driven goal-processing (any modification of an
autonomous agent’s goals can only be allowed by a modi-
fication of its beliefs) (cf. Fig. 2).

Both these filters bear interesting social and cultural
consequences. First, agents’ minds are modified thanks to
a process of belief-formation or belief-revision. Secondly,
belief-formation and -revision are decision-based and se-
lective processes. With Cavalli-Sforza and Feldman [18],
we will speak of beliefs’ “acceptance”. A cultural process is
a process interspersed with decisions taken by the agents
involved. But a decision-based process is not necessar-
ily explicit and reflected upon: mental filters do not nec-
essarily operate consciously: agents may not be able to
report on them. Thirdly, agents will never accept beliefs
under threat, or in order to obtain a benefit in return (non-
negotiability). Fourth, agents may accept beliefs for dif-
ferent reasons, and these will affect the probability that
such beliefs are held, their strength, and their transmis-
sion. The social mechanisms of influence and transmis-
sion are strongly intertwined with criteria and motives of
acceptance. This leads us to the question of limited auton-
omy.

Limited autonomy. The model of agent outlined above
appears rather abstract and unrealistic. In the real life,
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agents appear liable to external influence, prone to ac-
cept and transmit prejudices, victim of superstition, prey
to false doctrines and creeds. Indeed, autonomy is limited
both at the belief and at the goal level: agents are liable to
being influenced by external (including social) inputs.

Both at the level of goals and beliefs, autonomy is lim-
ited in a very elementary sense: agents are designed to
take into account external inputs, if only to discard them
later. If an input is received, the filter processing is acti-
vated (cf. [17]). At the goal level, agents cannot avoid ac-
cept very elementary requests: if somebody asks a passer-
by the time, this will not keep on ignoring the request. At
most, the passer-by can pretend that she did not perceive
it. But if this perception cannot be concealed, an answer
whatsoever will be given, if only to say that one has no idea
what the time is (minimal level of adoption). Of course,
this type of influence is rather superficial and ephemeral.
But it paves the way for other more relevant types of in-
fluence. Obviously, agents’ autonomy is limited because
they are not always self-sufficient. They may need the help
of other agents to achieve their goals (social dependence),
and this causes agents to adopt others’ goals and to accept
their requests. However, one adoption of others’ goals will
always be a means for the achievement of one’s goals for
example through social exchange or cooperation. In turn,
these social actions favor the transmission of beliefs, in-
cluding action plans, techniques, procedures, rules, con-
ventions, social beliefs. Finally, agents’ autonomy is lim-
ited by norms, which are aimed to regulate agents’ behav-
iors. But agents may accept or reject norms, comply with
or violate them, always according to their internal criteria
for acceptance.

At the level of beliefs, agents’ liability varies depend-
ing upon the type of beliefs. For example, social agents are
strongly permeable to social evaluations, rumors, gossip,
even calumnies (cf. [24]). Rumors and gossip are accepted
for prudence, and, as we will see, this favors their spread-
ing. Indeed, these are important phenomena of memetic
transmission, which spread social labels, stigmas, and prej-
udices, but also reputation, social hierarchies and other
institutions.

Concluding Remarks and Future Directions

Which are the similarities and different advantages of
these different paradigms in agent modeling, especially
among rational and goal-directed agents? As initially
stated, these should not be viewed as mutually exclusive.
Hence, the question arises as to when, for which scientific
objectives, and how they could be integrated. But first, let
us see what they have in common and where they differ.

Rational and goal-directed agents have three major
common properties: autonomy, (limited) knowledge, and
strategic action. These attributes characterize the funda-
mental endowment of intelligent agents, allowing them to
act on their own criteria, reasons, and current beliefs.

To be noticed, however, these properties are differently
characterized within the two approaches.

Autonomy. Whereas rational agents are self-interested
systems – with self-interest being closely related to the
notion of adaptation and fitness in a biological sense –
goal-directed agents are systems pursuing their own goals,
whether these aremeans for own fitness or not. A suicide is
a goal-directed agent, which autonomously decides to take
out its life. As this example shows, goal-directed agency is
an abstract and general category that can easily be applied
to natural systems, which not always pursue their self-in-
terest.

Limited knowledge. Both approaches model agents’ be-
liefs as limited and uncertain. However, the rational ap-
proach does not account for the internal dynamics of be-
liefs, their acquisition, revision, and eventual dropping.
Even adaptive views of agents fail to account for the inter-
nal dynamics of their motivations, and for the role these
have in the management, update, and decay of their be-
liefs. However, the double filter architecture allows cogni-
tive dynamics of goals and beliefs to be accounted for.

Strategic action. As to this aspect, i. e. the social appli-
cation of rational action, one should acknowledge a su-
periority of the rational agents, paradigm, as this is in-
herently devoted to the solution of social and collective
dilemmas. However, in the rationality paradigm, strate-
gic action is meant exclusively in the weak social sense
meant above, i. e. as the ability to take into account what
other agents know, can do and will do. The strong mean-
ing instead is essentially overlooked, since rational agents
are not modeled as goal-directed: they cannot be said to
pursue the goal to modify others’ beliefs, goals, and ac-
tions. This is one of the main reasons why it is diffi-
cult to integrate social influence, training, education, and
the other phenomena of social change in the rationality
paradigm.

Despite the aforesaid shortcomings, the rationality
paradigm is undeniably influential not only in the social,
but also in the computational field. In comparison, the im-
pact of goal-directed agents is far from satisfactory.

There are multiple reasons for such a state of affairs.
First, a persistent cultural hegemony of Homo Oeco-

nomicus should not be ignored. However indeterminate
subjective preferences are in principle declared to be, in-
vestment and economic business are tacitly assumed to be
the master domains of application of rationality.
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Secondly, rationality paradigm has all the advantages
of an exogenous, in particular a mathematical, approach:
(a) quantitative data, (b) theorem-proving, and (c) the re-
duction of computational complexity, as the rational agent
architecture is rather simplified.

Thirdly, and most importantly, the rationality para-
digm enjoys the powerful simplicity of abstraction, the in-
valuable scientific appeal of stylized facts. No other para-
digm, so far, has been able to design such simple, highly
abstract scenarios, characterized by the same heuristic
power, as those represented by the games worked out by
rational choice theory for the study of strategic action.

Making a difficult but fascinating exercise, let us en-
deavor to envisage the future of these paradigms. Whilst
the rationality paradigm can reasonably be expect tomain-
tain its hegemony in the short term, what can we expect to
happen in the middle and long run? The growing success
of the neuroscientific approach (think of mirror neurons)
leads us but to foresee a dominance of the neural nets ap-
proach not only within the behavioral sciences (e. g., psy-
chology), but also – and thanks to embodied agents and
robotics – within the computational sciences. How and to
what extent can this model answer the questions currently
answered by rational agents, on one hand, and by goal-di-
rected agents, on the other?

Largely, the answer depends onwhether or not the pre-
dictable advances of the neuroscientific approach will em-
power agent technologies, for example, in the direction of
social and collective intelligence, acquisition of norms and
social values, formation and recognition of institutions etc.
However, the answer might also depend on the poten-
tial cross-over between the neuroscientific approach and
the complexity one. To what extent can embodied agents
and neural nets be combined with sociophysical models?
The future status of the rationality paradigm depends on
the probability of this cross-fertilization. More generally,
the future of the agent paradigms depends on the proba-
bility of integration between endogenous and exogenous
paradigms.
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Glossary

Belousov–Zhabotinsky (BZ) reaction is a chemical reac-
tion where the organic substrate is oxidized by bro-
mate ions in the presence of acid and a one electron
transfer redox catalyst. The reaction produces oscil-
lations in well-stirred reactors and traveling waves in
thin layers.

Cellular automaton is an array of locally connected finite
automata, which update their discrete states in discrete
time depending on the states of their neighbors; all au-
tomata of the array update their states in parallel.

Collision-based computer is a uniform homogeneous
medium which employs mobile compact patterns
(particles, wave fragments) which travel in space and
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perform computation (e. g. implement logical gates)
when they collide with each other. Truth values of logi-
cal variables are given by either the absence or presence
of a localization or by various types of localizations.

Excitable medium is spatially distributed assembly of
coupled excitable systems; spatial distribution and
coupling allow for propagation of excitation waves.

Excitable system is a system with a single steady quies-
cent state that is stable to small perturbations, but
responds with an excursion from its quiescent state
(excitation event) if the perturbation is above a criti-
cal threshold level. After excitation the system enters
a refractory period during which time it is insensi-
tive to further excitation before returning to its steady
state.

Glider as related to cellular automata, is a compact (nei-
ther infinitely expanding nor collapsing) pattern of
non-quiescent states that travels along the cellular-au-
tomaton lattice.

Image processing is a transformation of an input image
to an output image with desirable properties, using
manipulation of images to enhance or extract informa-
tion.

Logical gate is an elementary building block of a digi-
tal, or logical, circuit, which represents (mostly) binary
logical operations, e. g. AND, OR, XOR, with two input
terminals and one output terminal. In Boolean logic
terminals are in one of two binary conditions (e. g. low
voltage and high voltage) corresponding to TRUE and
FALSE values of logical variables.

Logically universal processor is a system which can real-
ize a functionally complete set of logical operations in
its development, e. g. conjunction and negation.

Oregonator is a system of three (or two in amodified ver-
sion) coupled differential equations aimed to simulate
oscillatory phenomena in the Belousov–Zhabotinsky
reaction.

Shortest-path problem is the problem of finding a path
between two sites (e. g. vertices of the graph, locations
in space) such that the length (sum of the weights of
the graph edges or travel distances) of the path is min-
imized.

Skeleton of a planar contour is a set of centers of bi-tan-
gent circles lying inside the contour.

Subexcitable medium is amediumwhose steady state lies
between the excitable and the unexcitable domains.
In excitable media waves initiated by perturbations of
a sufficient size propagate throughout the media. In an
unexcitable medium no perturbation is large enough
to trigger a wave. In a subexcitable mediumwave frag-
ments with open ends are formed.

Voronoi diagram of a planar set P of planar points is
a partition of the plane into regions, each for any
element of P, such that a region corresponding to
a unique point p contains all those points of the plane
that are closer to p than to any other node of P.

Wave fragment is an excitation wave formed in a subex-
citable medium; this is a segment with free ends, which
either expand or contract, depending on their size and
the medium’s excitability.

Definition of the Subject

A reaction-diffusion computer is a spatially extended
chemical system, which processes information using in-
teracting growing patterns, excitable and diffusive waves.
In reaction-diffusion processors, both the data and the
results of the computation are encoded as concentration
profiles of the reagents. The computation is performed via
the spreading and interaction of wave fronts.

A reaction-diffusion computer is a thin layer of
a reagent mixture which reacts to changes of one reagent’s
concentration—data configuration—in a predictable way
to form a stationary pattern corresponding to the con-
centration of the reagent—result configuration. A compu-
tation in the chemical processor is implemented via the
spreading and interaction of diffusive or phase waves [1,7].

The reaction-diffusion computers are parallel because
myriads of their micro-volumes update their states simul-
taneously, and molecules diffuse and react in parallel. Liq-
uid-phase chemical media are wet-analogs of massive-par-
allel (millions of elementary processors in a small chemical
reactor) and locally connected (every micro-volume of the
medium changes its state depending on states of its closest
neighbors) processors. They have parallel input and out-
puts, e. g. optical input—control of initial excitation dy-
namics by illumination masks, output is parallel because
the concentration profile representing the results of com-
putation is visualized by indicators. The reaction-diffusion
computers show fault-tolerance and are capable of auto-
matic reconfiguration, namely if we remove some quantity
of the computing substrate, the topology is restored almost
immediately.

Introduction

Reaction-diffusion computers are based on three princi-
ples of physics-inspired computing. First, physical action
measures amount of information: we exploit active pro-
cesses in non-linear systems and interpret dynamics of
the systems as computation. Second, physical information
travels only a finite distance: this means that computa-
tion is local and we can assume the non-linear medium is
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a spatial arrangement of elementary processing units con-
nected locally, i. e. each unit interacts with closest neigh-
bors. Third, nature is governed by waves and spreading
patterns: computation is therefore spatial.

Surface tension, propagating waves, electricity and
chemical reactions have been principal “engines” of na-
ture-inspired computers for over two centuries [1]. How-
ever, only reaction-diffusion computers utilize all these
phenomena at once, to solve large-scale NP-complete
problems in a parallel and stable manner. Experimen-
tal studies and designs of reaction-diffusion computers
could be traced back to the pioneer discovery of Kuh-
nert [28]. In 1986 he demonstrated that some very ba-
sic image transformations can be implemented in a light-
sensitive Belousov–Zhabotinsky system [28]. The ideas by
Kuhnert, Krinsky and Agladze [29] on image and pla-
nar shape transformations in two-dimensional excitable
chemical medium were further developed and modified
by Rambidi with colleagues, see e. g. [42,43]. At that time,
mid and late 1990s, a range of chemical logical gates was
experimentally built in the Showalter [52] and Yoshikawa
laboratories [30]. Computation of shorter, one of clas-
sical optimization problems, has also been implemented
in these laboratories using the Belousov–Zhabotinsky
medium [7,10,51].

Reaction-diffusion computers give us the best ex-
amples of unconventional computers, they feature, fol-
lowing Jonathan Mills’ classification of conventional vs.
unconventional [34]: wet-ware, non-silicon computing
substrate; parallel processing; computation occurring ev-
erywhere in substrate space; computation is based on
analogies; spatial increase in precision; holistic and spatial
programming; visual structure; implicit error correcting.
A theory of reaction-diffusion computing was established
and a range of practical applications outlined in [1]. Recent
discoveries were published in a collective monograph [7].

Herein we will provide an account of achievements
in reaction-computing obtained in the latter 1990s and
early 2000s. Our present article in no way serves as a sub-
stitute for these books but rather an introduction to the
field and case study of several characteristic examples. We
give a case-study introduction to the novel paradigm of
wave-based computing in chemical systems.We show how
selected problems and tasks of computational geometry,
robotics and logics can be solved by encoding data in con-
figuration of chemical medium’s disturbances and pro-
gramming wave dynamics and interaction. We describe
and analyze working reaction-diffusion algorithms for im-
age processing, computational geometry, logical and arith-
metical circuits, memory devices, path planning and robot
navigation, and control of massive parallel actuators.

Computational Geometry

The Voronoi diagram, or plane subdivision, is our most
favorable NP-complete problem, for demonstrating “me-
chanics” and computational complexity of reaction-diffu-
sion computers.

Let P be a nonempty finite set of planar points. A pla-
nar Voronoi diagram of the set P is a partition of the plane
onto such regions, that for any element of P, a region cor-
responding to a unique point p contains all those points
of the plane which are closer to p than to any other node
of P. A unique region vor(p) D fz 2 R2 : d(p; z) <

d(p;m) 8 m 2 R2; m ¤ zg assigned to point p is
called a Voronoi cell of the point p. The boundary of
the Voronoi cell of a point p is built of segments of bi-
sectors separating pairs of geographically closest points
of the given planar set P. A union of all boundaries of
the Voronoi cells determines the planar Voronoi diagram:
VD(P) D [p2P@vor(p). A variety of Voronoi diagrams
and algorithms of their construction can be found in [27].

The basic concept of constructing Voronoi diagrams
with reaction-diffusion systems is based on a very simple
intuitive technique for detecting the bisector points sepa-
rating two given points of the set P. If we drop reagents
at the two data points the diffusive waves, or phase waves
if the computing substrate is active, spread outwards from
the drops with the same speed. The waves travel the same
distance from the sites of origination before they meet one
another. The points, where the waves meet, are the bisec-
tor points. This idea of a Voronoi diagram computation
was originally implemented in cellular automata models
and in experimental parallel chemical processors, see the
extensive bibliography in [1,7].

Assuming that the computational space is homoge-
neous and locally connected, and every site (micro-volume
of the chemical medium or cell of the automaton array)
is coupled to its closest neighbors by the same diffusive
links, we can easily draw a parallel between distance and
time, and thus put our wave-based approach into action.
In a cellular-automaton representation of the physical re-
ality cell neighborhood u determines that all processes in
the cellular automatamodel are constrained to the discrete
metric L1. So, when studying automatamodels we should
think rather about the discrete Voronoi diagram than its
Euclidean representation. Chemical laboratory prototypes
of reaction-diffusion computers do approximate a contin-
uous Voronoi diagram as we will see further.

A discrete Voronoi diagram can be defined on lat-
tices or arrays of cells where, e. g. a two-dimensional lat-
tice Z2. The distance d(�; �) is calculated not in Euclidean
but in one of the discrete metrics, e. g. L1 and L1. A dis-
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Reaction-Diffusion Computing, Figure 1
Computation of a Voronoi diagram in a cellular-automaton
model of a chemical processor with O(n) reagents. Precipitate is
shown in black

crete bisector of nodes x and y of Z2 is determined as
B(x; y) D fz 2 Z2 : d(x; z) D d(y; z)g. However, fol-
lowing such definition we sometimes generate bisectors
that fill a quarter of the lattices or produce no bisector at
all [1]. If we want the constructed diagrams to be closer to
the real-world then we could re-define the discrete bisec-
tor as follows B(x; y) D fz 2 Z2 : jd(x; z) � d(y; z)j � 1g.
The redefined bisector will comprise edges of Voronoi dia-
grams constructed in discrete, cellular-automaton models
of reaction-diffusion and excitable media.

Now we will discuss several versions of reaction-diffu-
sion wave-based constructions of Voronoi diagrams, from
a naïvemodel, where the number of reagents grow propor-
tionally to the number of data points, to a minimalist im-
plementation with just one reagent and one substrate [1].

Let us start with the O(n)-reagent model. In a naïve
version of reaction-diffusion computation of a Voronoi di-
agram one needs two reagents and a precipitate to mark
a bisector separating two points. Therefore nC 2 reagents,
including precipitate and substrate, are required to ap-
proximate a Voronoi diagram of n points. We place n
unique reagents on n points of the given data set P, waves
of these reagents spread around the space and interact with
each other where they meet. When at least two different
reagents meet at the same or adjacent sites of the space,
they react and form a precipitate—sites that contain the

precipitate represent edges of the Voronoi cell, and there-
fore constitute the Voronoi diagram. In “chemical reac-
tion” equations the idea looks as follows, ˛ and ˇ are dif-
ferent reagents and # is a precipitate: ˛ C ˇ ! #. This
can be converted to a cellular-automaton interpretation as
follows:

xtC1 D

8
<̂

:̂

� ; if xt D � and � (x)t � f�; �g
# ; if xt ¤ # and j� (x)t/#j > 1
xt ; otherwise

where � is a resting state (cell in this state does not con-
tain any reagents), � 2 R is a reagent from the set R of
n reagents, and � (x)t D fyt : y 2 u(x)g characterizes
what reagents are present in the local neighborhood u(x)
of the cell x at time step t.

The first transition of the above rule symbolizes diffu-
sion. A resting cell takes the state � if only this reagent is
present in the cell’s neighborhood. If there are two differ-
ent reagents in the cells neighborhood then the cell takes
the precipitate state #. Diffusing reagents halt because for-
mation of precipitate reduces the number of “vacant” rest-
ing cells. The precipitate does not diffuse. Cell in state #
remain in this state indefinitely. An example of a cellular-
automaton simulation ofO(n)-reagent chemical processor
is shown in Fig. 3.

The O(n)-reagent model is demonstrative, however,
computationally inefficient. Clearly we can reduce the
number of reagents to four—using map coloring theo-
rems—but pre-processing time will be unfeasibly high.
The number of participating reagents can be sufficiently
reduced to O(1) when the topology of the spreading waves
is taken into account [1].

Now we go from one extreme to another and consider
a model with just one reagent, and a substrate. The reagent
˛ diffuses from sites corresponding to points of a planar
data set P. When two diffusing wave fronts meet a super-
threshold concentration of reagents they do not spread
further. A cellular-automatonmodel represents this as fol-
lows.

Every cell has two possible states: resting or substrate
state � and reagent state ˛. If the cell is in state ˛ it re-
mains in this state indefinitely. If the cell is in state � and
between one and four of its neighbors are in state ˛, then
the cell takes the state ˛. Otherwise, the cell remains in the
state �—this reflects the “super-threshold inhibition” idea.
A cell state transition rule is as follows:

xtC1 D

(
˛ ; if xt D � and 1 � �(x)t � 4
xt ; otherwise

where �(x)t D jy 2 u(x) : yt D ˛j.
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Reaction-Diffusion Computing, Figure 2
An example of Voronoi diagram computing in an automaton
model of reaction-diffusion medium with one reagent and one
substrate. Reactive parts of wave fronts are shown in black. The
precipitate is gray and the edges of the Voronoi diagram are
white

Increasing the number of reagents to two (one reagent
and one precipitate) would make life easy. A reagent ˇ
diffuses on a substrate, from the initial points (drop of
reagent) of P, and forms a precipitate in the reaction
mˇ ! ˛, where 1 � m � 4.

Every cell takes three states: � (resting cell, no
reagents), ˛ (e. g. colored precipitate) and ˇ (reagent). The
cell updates its states by the rule:

xtC1 D

8
<̂

:̂

ˇ ; if xt D � and 1 � �(x)t � 4
˛ ; if xt D ˇ and 1 � �(x)t � 4
xt ; otherwise

where �(x)t D jy 2 u(x) : yt D ˇj.
An example of a Voronoi diagram computed in an au-

tomaton model of a reaction-diffusion medium with one
reagent and one substrate is shown in Fig. 2.

By increasing the number of cell-state and enlarging
cell neighborhood in the cellular automaton model we can
produce more realistic—almost perfectly matching out-
comes of chemical laboratory experiments—Voronoi di-
agrams (Fig. 3).

Let us consider the following model. Cells of the au-
tomaton take their state from interval [�; ˛], where � is
a minimum refractory value, and ˛ is a maximum excita-
tion value; � D �2 and ˛ D 5 in our experiments. Cell x’s
state transitions are strongly determined by normalized lo-
cal excitation � t

x D
P

y2ux
yt/
p
(jux j). Every cell x up-

dates its state at time t C 1, depending on its state xt and
state ut

x of its neighborhood ux—in experiments we used
15 � 15 cell neighborhood—as follows:

xtC1 D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

˛ ; if xt D 0 and � t
x � ˛

0; if xt D 0 and � t
x < ˛

xt C 1 ; if xt < 0
xt � 1 ; if xt > 1
�; if xt D 1 :

This rule represents spreading of “excitation”, or sim-
ply phase wave-fronts, in computational space, interaction
and annihilation of the wave-fronts. To allow the reaction-
diffusion computer to “memorize” sites of wave collision
we add a precipitate state ptx . Concentration ptx of precip-
itate at site x at moment t is calculated as ptC1

x � jfy 2
ux : yt D ˛gj.

As shown in Fig. 4 the model represents cellular-au-
tomaton Voronoi diagrams in “unlike phase” with exper-
imental chemical representation of the diagram. Sites of
higher concentration of precipitate in cellular-automaton
configurations correspond to sites with lowest precipitate
concentration in experimental processors.

Logical Universality

Certain families of thin-layer reaction-diffusion chemi-
cal media can implement sensible transformation of ini-
tial (data) spatial distribution of chemical species concen-
trations to a final (result) concentration profile [1,50]. In
these reaction-diffusion computers a computation is re-
alized via spreading and interaction of diffusive or phase
waves. Specialized, intended to solve a particular problem,
experimental chemical processors implement basic opera-
tions of image processing [7,29,42,43], computation of op-
timal paths [7,10,51] and control of mobile robots [7].

A device is called computationally universal if it im-
plements a functionally complete system of logical gates,
e. g. a tuple of negation and conjunction, in its space-time
dynamics. A number of computationally universal reac-
tion-diffusion devices were implemented, the findings in-
clude logical gates [49,52] and diodes [18,30,35] in the Be-
lousov–Zhabotinsky (BZ) medium, and the XOR gate in
the palladium processor [4].
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Reaction-Diffusion Computing, Figure 3
Planar Voronoi diagram computed in cellular automaton (left) and palladium reaction-diffusion chemical processor (right) [7]

Reaction-Diffusion Computing, Figure 4
Skeleton (internal Voronoi diagram) of planar T-shape con-
structed in multi-state cellular-automaton model (a) and chemi-
cal laboratory Prussian blue reaction-diffusion processor (b) [11]

The most known so far experimental prototypes of
reaction-diffusion processors exploit interaction of wave
fronts in a geometrically constrained chemical medium,
i. e. the computation is based on a stationary architecture
of a medium’s inhomogeneities. Constrained by station-
ary wires and gates reaction-diffusion chemical universal
processors pose a little computational novelty and no dy-
namical reconfiguration ability because they simply imi-
tate architectures of conventional silicon computing de-
vices. To appreciate in full massive-parallelism of thin-
layer chemical media and to free the chemical proces-
sors from limitations of fixed computing architectures we
adopt an unconventional paradigm of architecture-less, or
collision-based, computing. An architecture-based, or sta-
tionary, computation implies that a logical circuit is em-
bedded into the system in such a manner that all elements
of the circuit are represented by the system’s stationary
states. The architecture is static. If there is any kind of “ar-
tificial” or “natural” compartmentalization the medium is
classified as an architecture-based computing device. Per-
sonal computers, living neural networks, cells, and net-
works of chemical reactors are typical examples of archi-
tecture-based computers.

A collision-based, or dynamical, computation em-
ploys mobile compact finite patterns, mobile self-local-
ized excitations or simply localizations, in active non-lin-
ear medium. Essentials of collision-based computing are
as follows. Information values (e. g. truth values of logical
variables) are given by either absence or presence of the lo-
calizations or other parameters of the localizations. The lo-
calizations travel in space and do computation when they
collide with each other. There are no predetermined sta-
tionary wires, a trajectory of the traveling pattern is a mo-
mentary wire. Almost any part of themedium space can be
used as a wire. Localizations can collide anywhere within
a space sample, there are no fixed positions at which spe-
cific operations occur, nor location specified gates with
fixed operations. The localizations undergo transforma-
tions, form bound states, annihilate or fuse when they in-
teract with other mobile patterns. Information values of
localizations are transformed as a result of collision and
thus a computation is implemented [2].

The paradigm of collision-based computing originates
from the technique of proving computational universality
of the Game of Life [14], conservative logic and billiard-
ball model [21] and their cellular-automaton implementa-
tions [32].

Solitons, defects in tubulin microtubules, excitons in
Scheibe aggregates and breather in polymer chains are the
most frequently considered candidates for a role of infor-
mation carrier in nature-inspired collision-based comput-
ers, see overview in [1]. It is experimentally difficult to re-
produce all these artifacts in natural systems, therefore the
existence of mobile localizations in an experiment-friendly
chemical media would open new horizons for fabrication
of collision-based computers.

The basis for material implementation of collision-
based universality of reaction-diffusion chemical media
was discovered by Sendin̋a-Nadal et al. [48]. They ex-
perimentally proved the existence of localized excita-
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tions—traveling wave fragments which behave like quasi-
particles—in a photosensitive sub-excitable Belousov–
Zhabotinsky medium.

We show how logical circuits can be fabricated in
a sub-excitable BZ medium via collisions between trav-
eling wave fragments. While implementation collision-
based logical operations is relatively straightforward [7],
more attention should be paid to control of signal propa-
gation in the homogeneous medium. It has been demon-
strated that applying light of varying intensity we can con-
trol the excitation dynamic in a Belousov–Zhabotinsky
medium [13,23,39], wave velocity [46], and pattern for-
mation [55]. Of particular interest are experimental ev-
idences of light-induced back propagating waves, wave-
front splitting and phase shifting [63]; we can also manip-
ulate a medium’s excitability by varying the intensity of
the medium’s illumination [16]. On the basis of these facts
we show how to control signal-wave fragments by varying
geometric configuration of excitatory and inhibitory seg-
ments of impurity-reflectors.

We built our model on a two-variable Oregonator
equation [19,53] adapted to a light-sensitive BZ reaction
with applied illumination [13]:
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where variables u and v represent local concentrations of
bromous acid HBrO2 and the oxidized form of the cat-
alyst ruthenium Ru(III), � sets up a ratio of time scale
of variables u and v, q is a scaling parameter depend-
ing on reaction rates, f is a stoichiometric coefficient,
� is a light-induced bromide production rate propor-
tional to intensity of illumination (an excitability param-
eter—moderate intensity of light will facilitate the exci-
tation process, a higher intensity will produce excessive
quantities of bromide which suppresses the reaction). We
assumed that the catalyst is immobilized in a thin-layer
of gel, therefore there is no diffusion term for v. To in-
tegrate the system we used the Euler method with a five-
node Laplasian operator, time step M t D 10�3 and grid
point spacing M x D 0:15, with the following parameters:
� D �0 C A/2, A D 0:0011109, �0 D 0:0766, � D 0:03,
f D 1:4, q D 0:002.

The chosen parameters correspond to a region of
“higher excitability of the sub-excitability regime” outlined
in [48] (see also how to adjust f and q in [41]) that sup-
ports propagation of sustained wave fragments (Fig. 5a).
These wave fragments are used as quanta of information
in our design of collision-based logical circuits. The waves

Reaction-Diffusion Computing, Figure 5
Basic operations with signals. Overlay of images taken every 0.5
time units. Exciting domains of impurities are shown in black,
inhibiting domains of impurities are shown in gray. a Wave
fragment traveling north. b Signal branching without impuri-
ties: a wave fragment traveling east splits into two wave frag-
ments (traveling south-east andnorth-east) when it collideswith
a smaller wave fragment traveling west. c Signal branching with
impurity: wave fragment traveling west is split by impurity (d)
into two waves traveling north-west and south-west. e Signal
routing (U-turn) with impurities: wave fragment traveling east is
routed north and thenwest by two impurities (f). An impurity-re-
flector consists of inhibitory (gray) and excitatory (black) chains
of grid sites

were initiated by locally disturbing initial concentrations
of species, e. g. ten grid sites in a chain are given the
value u D 1:0 each, this generated two or more localized
wave fragments, similarly to counter-propagating waves
induced by temporary illumination in experiments [63].
The traveling wave fragments keep their shape for around
4 � 103–104 steps of simulation (4–10 time units), then de-
crease in size and vanish. The wave’s life-time is sufficient
however to implement logical gates; this also allows us not
to worry about “garbage collection” in the computational
medium.

Wemodel signals by traveling wave fragments [13,48]:
a relatively stable propagating wave fragment (Fig. 5a) rep-
resents a TRUE value of a logical variable corresponding to
the wave’s trajectory (momentarily wire).

To demonstrate that a physical system is logically uni-
versal it is enough to implement negation and conjunction
or disjunction in space-time dynamics of the system. To
realize a fully functional logical circuit we must also know
how to operate input and output signals in the system’s dy-
namics, namely to implement signal branching and rout-
ing; delay can be realized via appropriate routing.
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Reaction-Diffusion Computing, Figure 6
Implementation of conservative gate in Belousov–Zhabotinsky system. a Elastic collision of twowave-fragments, one travelingWest
another East. The fragments change the direction of their motion to North-West and South-East, respectively, as a result of the
collision. b Scheme of the gate. In a logical variables are represented as x D 1 and y D 1

We can branch a signal using two techniques. Firstly,
we can collide a smaller auxiliary wave to a wave fragment
representing the signal, the signal-wave will split then into
two signals (these daughter waves shrink slightly down to
stable size and then travel with constant shape further 4 �
103 time steps of the simulation) and the auxiliary wave
will annihilate (Fig. 5b).

Secondly, we can temporarily and locally apply illumi-
nation impurities on a signal’s way to change properties of
the medium and thus cause the signal to split (Fig. 5c,d).
We must mention, it was already demonstrated in [63],
that a wave front influenced by strong illumination (in-
hibitory segments of the impurity) splits and its ends do
not form spirals, as in typical situations of excitable media.

A control impurity, or reflector, consists of a few seg-
ments of sites where the illumination level is slightly above
or below the overall illumination level of the medium.
Combining excitatory and inhibitory segments we can
precisely control the wave’s trajectory, e. g. realize aU-turn
of a signal (Fig. 5e,f).

A typical billiard-ball model interaction gate [21,32]
has two inputs—x and y, and four outputs—xy (ball x
moves undisturbed in the absence of ball y), xy (ball y
moves undisturbed in the absence of ball x), and twice xy
(balls x and y change their trajectories when they collide
with each other). Such a conservative interaction gate can
be implemented via elastic collision of the wave-fragment,
see Fig. 6.

The elastic collision is not particularly common in lab-
oratory prototypes of chemical systems, more often inter-
acting waves either fuse or one of the waves annihilates
as a result of the collision with another wave. This leads to
a non-conservative version of the interaction gate with two
inputs and three outputs, i. e. just one xy output instead of
two. Such a collision gate is shown in Fig. 7.

Reaction-Diffusion Computing, Figure 7
Two wave fragments undergo angle collision and implement in-
teraction gate hx; yi ! hxy; xy; xyi. a In this example x D 1 and
y D 1, both wave fragments are present initially. Overlay of im-
ages taken every 0.5 time units. b Scheme of the gate. In upper
left and bottom left corners of a we see domains of wave gener-
ation, two echo wave fragments are also generated, they travel
outwards from the gate area and thus do not interfere with com-
putation

The rich dynamic of a sub-excitable Belousov–
Zhabotinsky medium allows us also to implement compli-
cated logical operations just in a single interaction event,
for details see [7].

Memory

Memory in chemical computers can be represented in sev-
eral ways as follows. In precipitating systems any site with
precipitate is a memory element. However, they are not re-
writable. In “classical” excitable chemical systems, like Be-
lousov–Zhabotinsky dynamics one can construct memory
as a configuration of sources of spiral or target waves. We
used this technique to program movement of a wheeled
robot controlled by an on-board chemical reactor with
the Belousov–Zhabotinsky system [7]. Themethod has the
same drawback as precipitating memory—as soon as reac-
tion space is divided by spiral or target waves, it is quite
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difficult if not impossible to sensibly move the source of
the waves. This is only possible with external inhibition or
complete reset of the medium.

In geometrically constrained excitable chemical
medium, as demonstrated in [36], we can employ old-
time techniques of storing information in induction coils
and other types of electrical circuits, i. e. dynamical mem-
ory. A ring with an input channel is prepared from the
reaction substrate. The ring is broken by a small gap and
the input is also separated from the ring with a gap of sim-
ilar width [36], the gaps play the role of one-way gates to
prevent excitation from spreading backwards. The waves
enter the ring via the input channel and travel along the
ring “indefinitely” (as long as the substrate lasts) [36]. The
approach aims to split the reaction-diffusion system into
many compartments, and thus does not fit our paradigm
of computing in a uniform medium.

In our search for real-life chemical systems exhibit-
ing both mobile and stationary localizations we discov-
ered a cellular-automatonmodel [58] of an abstract activa-
tor-inhibitor reaction-diffusion system, which ideally fits
the framework of the collision-based computing paradigm
and reaction-diffusion computing. The phenomenology
of the automaton was discussed in detail in our previ-
ous work [58], therefore in the present paper we draw to-
gether the computational properties of the reaction-diffu-
sion cellular hexagonal automaton. The automaton imi-
tates spatio-temporal dynamics of the following reaction
equations:

AC 6S ! A AC I ! I AC 3I! I
AC 2I ! S 2A! I

3A! A ˇA! I
I! S :

Each cell of the automaton takes three states – sub-
strate S, activator A and inhibitor I. Adopting formalism
from [9], we represent the cell-state transition rule as ama-
trix M D (mi j), where 0 � i � j � 7, 0 � i C j � 7, and
mi j 2 fI;A; Sg. The output state of each neighborhood
is given by the row-index i, the number of neighbors in
cell-state I, and column-index j (the number of neighbors
in cell-state A). We do not have to count the number of
neighbors in cell-state S, because it is given by 7 � (i C j).
A cell with a neighborhood represented by indexes i and
j will update to cell-state Mij which can be read off the
matrix. In terms of the cell-state transition function this
can be presented as follows: xtC1 D M
2(x)t
1(x)t , where
�i (x)t is a sum of cell x’s neighbors in state i, i D 1; 2, at
time step t. The exact matrix structure, which corresponds

to matrixM3 in [58], is as follows:
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The cell-state transition rule reflects the nonlinearity of ac-
tivator-inhibitor interactions for sub-threshold concentra-
tions of the activator. Namely, for a small concentration of
the inhibitor and for threshold concentrations, the activa-
tor is suppressed by the inhibitor, while for critical concen-
trations of the inhibitor both inhibitor and activator disso-
ciate producing the substrate. In exact words, M01 D A
symbolizes the diffusion of activator A, M11 D I rep-
resents the suppression of activator A by the inhibitor I,
Mz2 D I (z D 0; : : : ; 5) can be interpreted as self-inhibi-
tion of the activator in particular concentrations.Mz3 D A
(z D 0; : : : ; 4) means a sustained excitation under par-
ticular concentrations of the activator. Mz0 D S (z D
1; : : : ; 7) means that the inhibitor is dissociated in absence
of the activator, and that the activator does not diffuse
in sub-threshold concentrations. And, finally, Mzp D I,
p � 4 is an upper-threshold self-inhibition.

Amongst non-trivial localizations, see full “catalog”
in [5], found in the medium we selected eaters gliders G4
and G34, mobile localizations with activator head and in-
hibitor tail, and eaters E6, stationary localizations trans-
forming gliders colliding with them, as components of the
memory unit.

The eater E6 can play the role of a 6-bit flip-flop
memory device. The substrate-sites (bit-down) between
inhibitor-sites (Fig. 8) can be switched to an inhibitor-

Reaction-Diffusion Computing, Figure 8
Localizations in reaction-diffusion hexagonal cellular-automa-
ton. Cells with inhibitor I are empty circles, cells with activator A
are black disks. a Stationary localization eater E6, b–c two forms
of glider G34, d glider G4 [5]
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Reaction-Diffusion Computing, Figure 9
Write bit [5]

Reaction-Diffusion Computing, Figure 10
Read and erase bit [5]

state (bit-up) by a colliding glider. An example of writing
one bit of information in E6 is shown in Fig. 9. Initially
E6 stores no information. We aim to write one bit in the
substrate-site between the northern and north-western in-
hibitor-sites (Fig. 9a). We generate a glider G34 (Fig. 9b,c)
traveling West. G34 collides with (or brushes past) the
North edge of E6 resulting in G34 being transformed to
a different type of glider, G4 (Fig. 9g,h). There is now
a record of the collision—evidence that writing was suc-
cessful. The structure of E6 now has one site (between the
northern and north-western inhibitor-sites) changed to an
inhibitor-state (Fig. 9j) —a bit was saved [5].

To read a bit from the E6 memory device with one bit-
up (Fig. 10a), we collide (or brush past) with glider G34

(Fig. 10b). Following the collision, the glider G34 is trans-
formed into a different type of basic glider, G34 (Fig. 10g),
and the bit is erased (Fig. 10j).

Programmability

In the chemical laboratory the term programmabilty
means controllability. How real chemical systems can be
controlled? The majority of the literature, related to theo-
retical and experimental studies concerning the controlla-
bility of the reaction-diffusion medium, deals with appli-
cation of an electric field. For example, in a thin-layer Be-
lousov–Zhabotinsky reactor stimulated by an electric field
the following phenomena are observed: the velocity of ex-
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Reaction-Diffusion Computing, Figure 11
Cell state transition diagrams: amodel of precipitating reaction-
diffusion medium, bmodel of excitable system

citation waves is increased by a negative and decreased by
a positive electric field, a wave is split into two waves that
move in opposite directions if a very high electric field is
applied across the evolving medium, crescent waves are
formed not commonly observed in the field absent evo-
lution of the BZ reaction, stabilization and destabilization
of wave fronts, see [7].

Other control parameters may include temperature
(to e. g. program transitions between periodic and chaotic
oscillations), substrate’s structure (controlling formation,
annihilation and propagation of waves), and illumina-
tion (inputting data and routing signals in light-sensitive
chemical systems).

Let us demonstrate a concept of control-based pro-
grammability in models of reaction-diffusion processors.
Firstly, we show how to adjust reaction rates in chemical
medium to make it perform a computation of a Voronoi
diagram over a set of given points. Secondly, we show how
to switch an excitable system between specialized-proces-
sor and universal-processor modes, see [7] for additional
examples and details.

Let a cell x of a two-dimensional lattice take four states:
resting ı, excited (C), refractory (�) and precipitate F,
and update their states in discrete time t depending on the
number � t(x) of excited neighbors in its eight-cell neigh-
borhood as follows (Fig. 11a).

A resting cell x becomes excited if 0 < � t(x) � �2 and
precipitates if �2 < � t(x).

An excited cell “precipitates” if �1 < � t(x) or other-
wise becomes refractory.

A refractory cell recovers to the resting state uncondi-
tionally, and the precipitate cell does not change its state.

Initially we perturb the medium, excite it in several
sites, thus inputting data. Waves of excitation are gener-
ated, they grow, collide with each other and annihilate as
a result of the collision. They may form a stationary in-
active concentration profile of a precipitate, which repre-

sents the result of the computation. Thus, we can only be
concerned with reactions of precipitation: C !k1 ? and
ıC !k2 ?; where k1 and k2 are inversely proportional
to �1 and �2, respectively. Varying �1 and �2 from 1 to 8,
and thus changing precipitation rates from the maximum
possible to the minimum, we obtain various kinds of pre-
cipitate patterns, as shown in Fig. 12.

Precipitate patterns developed for relatively high
ranges of reaction rates (3 � �1; �2 � 4) represent discrete
Voronoi diagrams (a given “planar” set, represented by
sites of initial excitation, is visible in pattern �1 D �2 D 3
as white dots inside the Voronoi cells) derived from the
set of initially excited sites, see Fig. 13a and b. This exam-
ple demonstrates that by externally controlling precipita-
tion rates we can force the reaction-diffusion medium to
compute a Voronoi diagram.

When dealing with excitable media excitability is the
key parameter for tuning spatio-temporal dynamics. In [1]
we demonstrated that by varying excitability we can force
the medium to exhibit almost all possible types of excita-
tion dynamics.

Let each cell of the 2D automaton take three states:
resting (�), exciting (C) and refractory (�), and update
its state depending on number �C of excited neighbors
in its 8-cell neighborhood (Fig. 11a). A cell goes from ex-
cited to refractory and from refractory to resting states un-
conditionally, and a resting cell excites if �C 2 [�1; �2],
1 � �1 � �2 � 8. By changing �1 and �2 we can move
the medium dynamics in a domain of “conventional” ex-
citation waves, useful for image processing and robot nav-
igation [7] (Fig. 14a), as well as to make it exhibit mo-
bile localized excitations (Fig. 14b), quasi-particles, dis-
crete analogs of dissipative solitons, employed in collision-
based computing [1].

Robot Navigation andMassiveManipulation

As we have seen in previous sections, reaction-diffusion
chemical systems can solve complex problems and imple-
ment logical circuits. Embedded controllers for non-tradi-
tional robotics architectures would be yet another poten-
tially huge field of application of reaction-diffusion com-
puters. The physico-chemical artifacts are well-known to
be capable of sensible motion. Most famous are Belousov–
Zhabotinsky vesicles [26], self-propulsive chemo-sensitive
drops [25,37] and ciliar arrays. Their motion is directional
but somewhere lacks sophisticated control mechanisms.

At the present stage of reaction-diffusion computing
research it seems to be difficult to provide effective solu-
tions for experimental prototyping of combined sensing,
decision-making and actuating. However, as a proof-of-
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Reaction-Diffusion Computing, Figure 12
Final configurations of reaction-diffusionmedium for 1 � �1 � �2 � 2. Resting sites are black, precipitate iswhite [3]

Reaction-Diffusion Computing, Figure 13
Exemplary configurations of reaction-diffusion medium for
a �1 D 3 and �2 D 3, b �1 D 4 and �2 D 3. Resting sites are
black, precipitate iswhite [7]

concept we can always consider hybrid “wetware + hard-
ware” systems. For example, to fabricate a chemical con-
troller for a robot (Fig. 15a), we can place a reactor with
Belousov–Zhabotinsky solution on-board of a wheeled
robot, and allow the robot to observe excitation wave dy-
namics in the reactor. When the medium is stimulated at

Reaction-Diffusion Computing, Figure 14
Snapshots of space-time excitation dynamics for excitability
�C 2 [1; 8] (a) and �C 2 [2;2] (b)

one point, target waves are formed. The robot becomes
aware of the direction toward source of stimulation from
the topology of the wave-fronts [7].

A set of remarkable experiments were undertaken by
Hiroshi Yokoi and Ben De Lacy Costello. They built an
interface (Fig. 15b) between a robotic hand and Belousov–
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Reaction-Diffusion Computing, Figure 15
Robots controlled by BZ chemical medium: a mobile robot,
b robotic hand (courtesy of Hiroshi Yokoi)

Zhabotinsky chemical reactor [62]. Excitation waves prop-
agating in the reactor were sensed by photo-diodes, which
triggered finger motion. Bending fingers touched the
chemical medium with their glass nails filled with colloid
silver, which triggered circular waves in the medium [7].
Starting from any initial configuration, the chemical-
robotic system does always reach a coherent activity mode,
where fingers move in regular, somewhat melodic pat-
terns, and few generators of target waves govern dynamics
of excitation in the reactor [62].

The chemical processors for navigating the wheeled
robot and for controlling, and actively interacting with,
a robotic hand are well discussed in our recent mono-
graph [7], therefore we will not go into detail in herein. In-
stead we will concentrate on rather novel findings on cou-
pling of a reaction-diffusion system with a massive parallel
array of virtual actuators.

How a reaction-diffusion medium can manipulate ob-
jects? To find out we couple a simulated abstract parallel
manipulator with an experimental Belousov–Zhabotinsky
(BZ) chemical medium, so the excitation dynamics in the
chemical system are reflected in changing the OFF-ON
mode of elementary actuating units. In this case, we con-
vert experimental snapshots of the spatially distributed
chemical system to a force vector field and then simu-
late the motion of manipulated objects in the force field,
thus achieving reaction-diffusion medium controlled ac-
tuation. To build an interface between the recordings of
space-time snapshots of the excitation dynamics in the BZ
medium and simulated physical objects we calculate force
fields generated by mobile excitation patterns and then
simulate the behavior of an object in this force field.

The chemical medium to perform actuation is pre-
pared following the typical recipe1, see [8,20], based on
a ferroin catalyzed BZ reaction. A silica gel plate is cut
and soaked in a ferroin solution. The gel sheet is placed in
a Petri dish and BZ solution added. The dynamics of the
chemical system are recorded at 30-second intervals using
a digital camera.

The cross-section profile of the BZ wave-front
recorded on a digital snapshot shows a steep rise of red
color values in the pixels at the wave-front’s head and
a gradual descent in the pixels along the wave-front’s tail.
Assuming that excitation waves push the object local force
vectors generated at each site—pixel of the digitized im-
age—of the medium should be oriented along local gradi-
ents of the red color values. From the digitized snapshot
of the BZ medium we extract an array of red components
from the snapshot’s pixels and then calculate the projec-
tion of a virtual vector force at the pixel. Force fields gen-
erated by the excitation patterns in a BZ system Fig. 16
result in tangential forces being applied to a manipulated
object, thus causing translational and rotational motions
of the object [8].

Non-linear medium controlled actuators can be used
for sorting andmanipulating both small objects, compara-
ble in size to the elementary actuating unit, and larger ob-
jects, with lengths of tens or hundreds of actuating units.
Therefore, we demonstrate here two types of experiments
with BZ-based manipulation: of pixel-sized objects and of
planar convex shapes.

Pixel-objects, due to their small size, are subjected
to random forces, caused by impurities of the physical
medium and imprecision of the actuating units. In this
case, no averaging of forces is allowed and the pixel-ob-

1Chemical laboratory experiments are undertaken by Dr. Ben De
Lacy Costello (UWE, Bristol, UK).
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Reaction-Diffusion Computing, Figure 16
Force vector field (b) calculated from BZ medium’s image (a) [8]

Reaction-Diffusion Computing, Figure 17
Examples of manipulating five pixel-objects using the BZmedium: a trajectories of pixel-objects, b jump-trajectories of pixel-objects
recorded every 100th time step. Initial positions of the pixel-objects are shown by circles [8]

jects themselves sensitively react to a single force vector.
Therefore, we adopt the following model of manipulating
a pixel-object: if all force vectors at the 8-pixel neighbor-
hood of the current site of the pixel-object are nil then
the pixel-object jumps to a randomly chosen neighbor-
ing pixel of its neighborhood, otherwise the pixel-object
is translated by the maximum force vector in its neighbor-
hood.

When placed on the simulated manipulating surface,
pixel-objects move at random in the domains of the resting
medium, however by randomly drifting each pixel-object
does eventually encounter a domain of co-aligned vectors
(representing the excitation wave front in the BZmedium)
and is translated along the vectors. An example of sev-
eral pixel-objects transported on a “frozen” snapshot of the
chemicalmedium is shown in Fig. 17. Trajectories of pixel-
objects (Fig. 17a) show distinctive intermittent modes of
random motion separated by modes of directed “jumps”
guided by traveling wave fronts. Smoothed trajectories of
pixel-objects (Fig. 17b) demonstrate that despite a very

strong chaotic component in manipulation, pixel-objects
are transported to the sites of the medium where two or
more excitation wave-fronts meet.

The overall speed of pixel-object transportation de-
pends on the frequency of wave generations by sources of
target waves. As a rule, the higher the frequency the faster
the objects are transported. This is because in parts of the
medium spanned by low frequency target waves there are
lengthy domains of resting system, where no force vectors
are formed. Therefore, pixel-sized objects can wander ran-
domly for a long time till climbing the next wave front [8].

To calculate the contribution of each force we parti-
tioned the object into fragments, using a square grid, in
which each cell of the grid corresponds to one pixel of the
image. We assume that the magnitude of the force applied
to each fragment above a given pixel is proportional to the
area of the fragment, and is co-directional with a force vec-
tor. A momentum of inertia of the whole object with re-
spect to the axis normal to the object and passing through
the object’s center of mass is calculated from the position
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Reaction-Diffusion Computing, Figure 18
Manipulating planar object in BZmedium. a Right-angled trianglemoved by fronts of target waves. b Square objectmoved by fronts
of fragmented waves in sub-excitable BZ medium. Trajectories of center of mass of the square are shown by the dotted line. Exact
orientation of the objects is displayed every 20 steps. Initial position of the object is shown by� and the final position by˝ [8]

of the center of mass and the mass of every fragment. Since
the object’s shape and size are constant it is enough to cal-
culate themoment of inertia only at the beginning of simu-
lation. We are also taking into account principal rotational
momentum created by forces and angular acceleration of
the object around its center of mass. Therefore, object mo-
tion in our case can be sufficiently described by the coordi-
nates of its center of mass and its rotation at everymoment
of time [8].

Spatially extended objects follow the general pattern of
motion observed for the pixel-sized objects. However, due
to integration of many force vectors the motion of planar
objects is smoother and less sensitive to the orientation of
any particular force-vector.

Outcome of manipulation depends on the size of the
object, with increasing size of the object—due to larger
numbers of local vector-forces acting on the object—the
objects become more controllable by the excitation wave-
fronts (Fig. 18).

Future Directions

The field of reaction-diffusion computing started 20 years
ago [28] as a sub-field of physics and chemistry dealing
with image processing operations in uniform thin-layer
excitable chemical media. The basic idea was to apply in-
put data as a two-dimensional profile of heterogeneous il-
lumination, then allow excitation waves to spread and in-
teract with each, and then optically record the result of
the computation. The first reaction-diffusion computers

were already massively parallel, with parallel optical in-
put and outputs. Later computer engineers entered the
field, and started to exploit traditional techniques—wires
were implemented by channels where wave-pulses travel,
and specifically shaped junctions acted as logical valves. In
this manner, the most “famous” chemical computing de-
vices were implemented, including Boolean gates, coinci-
dence detectors, memory units andmore. The idea of reac-
tion-diffusion computation was if not ruined then forced
into a cul-de-sac of non-classical computation. The break-
through happened when paradigms and solutions from
the field of dynamical, collision-based computing and con-
servative logic, were mapped onto realms of spatially ex-
tended chemical systems. The computers became uniform
and homogeneous.

Over several examples we demonstrated that reaction-
diffusion chemical systems are capable of solving combi-
natorial problems with natural parallelism. In spatially dis-
tributed chemical processors, the data and the results of
the computation are encoded as concentration profiles of
the chemical species. The computation per se is performed
via the spreading and interaction of wave fronts.

The reaction-diffusion computers are parallel because
the chemical medium’s micro-volumes update their states
simultaneously, andmolecules diffuse and react in parallel.
During the last decades a wide range of experimental pro-
totypes of reaction-diffusion computing devices have been
fabricated and applied to solve various problems of com-
puter science, including: image processing, pattern recog-
nition, path planning, robot navigation, computational ge-
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ometry, logical gates in spatially distributed chemical me-
dia, arithmetical and memory units.

These important—but scattered across many scientific
fields— results convince us that reaction-diffusion systems
can do a lot. Are they capable enough to be intelligent?
Yes, reaction-diffusion systems are smart—showing a state
of readiness to respond, able to cope with difficult situ-
ations, capable of determining something by mathemat-
ical and logical methods—and endowed with the capac-
ity to reason. Reaction-diffusion computers allow for mas-
sive parallel input of data. Equivalently, reaction-diffusion
robots would need no dedicated sensors, each micro-vol-
ume of the medium, each site of the matrix gel, is sensi-
tive to changes in one or another physical characteristic of
the environment. Electric field, temperature and illumina-
tion are “sensed” by reaction-diffusion devices, and these
are the three principle parameters in controlling and pro-
gramming reaction-diffusion robots.

Hard computational problems of geometry, image
processing and optimization on graphs are resource-effi-
ciently solved in reaction-diffusion media due to intrin-
sic natural parallelism of the problems [1]. Herein we
demonstrated the efficiency of reaction-diffusion comput-
ers with the example of constructing Voronoi diagrams.
The Voronoi diagram is a subdivision of plane by data pla-
nar set. Each point of the data set is represented by a drop
of a reagent. The reagent diffuses and produces a color
precipitate when reacting with the substrate. When two or
more diffusive fronts of the “data” chemical species meet,
no precipitate is produced (due to concentration-depen-
dent inhibition). Thus, uncolored domains of the com-
puting medium represent bisectors of the Voronoi dia-
gram. The precipitating chemical processor can also com-
pute a skeleton. The skeleton of a planar shape is com-
puted in a similar manner. A contour of the shape is
applied to the computing substrate as a disturbance in
reagent concentrations. The contour concentration pro-
file induces diffusive waves. A reagent diffusing from the
data-contour reacts with the substrate and the precipi-
tate is formed. The precipitate is not produced at the
sites of collision of diffusive waves. The uncolored do-
mains correspond to the skeleton of the data shape. To
compute a collision-free shortest path in a space with ob-
stacles, we can couple two reaction-diffusion media. Ob-
stacles are represented by local disturbances of concen-
tration profiles in one of the media. The disturbances
induce circular waves traveling in the medium and ap-
proximating a scalar distance-to-obstacle field. This field
is mapped onto the second medium, which calculates
a tree of “many-sources-one-destination” shortest paths
by spreading wave-fronts [7].

Just few words of warning—when thinking about
chemical algorithms some of you may realize that diffu-
sive and phase waves are pretty slow in physical time. The
sluggishness of computation is the only point that may
attract criticism to reaction-diffusion chemical comput-
ers. There is however a cure—to speed up we are imple-
menting the chemical medium in silicon, micro-proces-
sor LSI analogs of reaction-diffusion computers [12]. Fur-
ther miniaturization of the reaction-diffusion computers
can be reached when the system is implemented as a two-
dimensional array of single-electron nonlinear oscillators
diffusively coupled to each other [38]. Yet another point
of developing reaction-diffusion computers—is to design
embedded controllers for soft-bodied robots, where usage
of conventional silicon materials seem to be inappropriate.
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Glossary

Fractals Fractal geometry is a mathematical tool well
suited to treating complex systems that exhibit scale
invariance or, equivalently, the absence of any charac-
teristic length scale. Scale invariance implies that ob-
jects are self-similar: if we take a part of the object and
magnify it by the same magnification factor in all di-
rections, the obtained object cannot be distinguished
from the original one. Self-similar objects are often
characterized by non-integer dimensions, a fact that
led B. Mandelbrot, early in the 1980s, to coin the name
“fractal dimension”. Also, all objects described by frac-
tal dimensions are generically called fractals. Within
the context of the present work, fractals are the under-
lying media where the reaction kinetics among atoms,
molecules, or particles in general, is studied.

Reaction kinetics The description of the time evolu-
tion of the concentration of reacting particles (�i,
where i D 1; 2; : : : ;N identifies the type of particle)
is achieved, far from a stationary regime, by formulat-
ing a kinetic rate equation �̇i (t) D F[�i(t)], where F is
a function. This description, known in physical chem-
istry as the law of mass action, states that the rate of
a chemical reaction is proportional to the concentra-
tion of reacting species and was formulated by Waage
and Guldberg in 1864. Often, especially when dealing
with reactions occurring in homogeneous media, F in-
volves integer powers (also known as the reaction or-
ders) of the concentrations, leading to classical reaction
kinetics. However, as in most cases treated in this arti-
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cle, if a reaction takes place in a fractal, one may also
have kinetic rate equations involving non-integer pow-
ers of the concentration that lead to fractal reaction ki-
netics. Furthermore, it is usual to find that the slow-
est step involved in a kinetic reaction determines its
rate, leading to a process-limited reaction, where e. g.
the process could be diffusion or mass transport, ad-
sorption, reaction, etc.

Heterogeneously catalyzed reactions A reaction limited
by at least one rate-limiting step could be prohibitively
slow for practical purposes when, e. g., it occurs in
a homogeneous media. The role of a good solid-state
catalyst in contact with the reactants – in the gas or
fluid phase – is to obtain an acceptable output rate
of the products. Reactions occurring in this way are
known as heterogeneously catalyzed. This type of re-
action involves at least the following steps: (i) the first
one comprises trapping, sticking and adsorption of the
reactants on the catalytic surface. Particularly impor-
tant, from the catalytic point of view, is that molecules
that are stable in the homogeneous phase, e. g. H2, N2,
O2, etc., frequently undergo dissociation on the cata-
lyst surface. This process is essential in order to speed
up the reaction rate. (ii) After adsorption, species may
diffuse or remain immobile (chemisorbed) on the sur-
face. The actual reaction step occurs between neigh-
boring adsorbed species of different kinds. The result
of the reaction is the formation of products that can
either be intermediates of the reaction or its final out-
put. (iii) The final step is the desorption of the prod-
ucts, which is essential not only for the practical pur-
pose of collecting and storing the desired output, but
also in order to regenerate the catalytically active sur-
face sites.

Definition of the Subject

Processes involving reaction among atoms, molecules,
and particles in general, are ubiquitous both in nature
and in laboratories. After the introduction of the con-
cept of fractals by B. Mandelbrot [89] in the 1980s, it has
been realized that a wide variety of reactions take place
in fractal media, leading to the observation of anoma-
lous behavior, i. e. the so called “fractal reaction kinet-
ics” [33,67,81]. The study of this subject has received
considerable theoretical attention [38,43,76,77,103] and
a huge numerical effort has been made to improve its un-
derstanding [13,17,18,20,34,80,92]. Furthermore, among
the practical examples of fractal reaction kinetics one
can quote exciton annihilation in composite materials,
chemical reactions in membranes pores, charge recom-

bination in colloids and clouds, coagulation, polymeriza-
tion and growth of dendrites, [15,79,83,94] etc. Another
scenery for the study of reaction kinetics in fractals is
in the field of heterogeneous catalysis. In fact, it is well
known that most catalysts are composed of small, catalyt-
ically active particles, supported by highly porous (frac-
tal) substrates [21,22,23,30,75,95,106]. So, it is not surpris-
ing that this field of research has become particularly ac-
tive due not only to its practical and technological rele-
vance, but also to the occurrence of quite interesting and
challenging phenomena such as irreversible phase tran-
sitions, oscillatory behavior, chaos and stochastic reso-
nance, propagation and interference of chemical waves,
interface coarsening, metastability and hysteretic effects,
etc. [9,10,52,68,70,71,84,85,90,109].

Introduction

The description of the kinetic behavior of reaction pro-
cesses occurring in homogeneous media can be found in
most textbooks on chemical physics. However, care must
be taken considering reaction kinetics in fractals because
conventional textbook equations are based on mean-field
approaches that neglect not only the fractal structure of
the underlying media, but also fluctuations in the concen-
tration of the reactants, many-particle effects, etc. that may
lead to the observation of anomalous behavior [81]. In fact,
soon after the recognition of the relevance of the concept
of fractals for the description of the structure and prop-
erties of physical objects by Mandelbrot [89], more than
three decades ago, it was realized that random transport
in low-dimensional and disordered media may be anoma-
lous [33,67,105], as are diffusion-limited reactions oc-
curring in those media [13,15,17,18,20,34,43,79,80,81,83,
92,94]. Therefore, the classical reaction kinetic approach
becomes unsatisfactory in a wide variety of situations, such
as when the reactants are spatially constrained by walls,
phase boundaries or force fields. Due to these studies, early
in the 1980s, it was realized that even elementary reac-
tions (e. g. AC A! inert, AC B! products, etc.) can
no longer be described by classical rate equations with in-
teger exponents (the so-called “reaction order”) but in-
stead, fractal orders were identified leading to fractal re-
action kinetics [89]. The emerging new theory also pre-
dicts the occurrence of self-ordering and self-unmixing of
reactants [38,76,77,103], as well as time-dependent rate
“constants”, i. e. rate coefficients with temporal “memo-
ries” [89].

On the other hand, after the exhaustive study and char-
acterization of the fractal nature of a wide variety of sub-
strates used as support in most catalysts, due to Avnir et
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al. [21,22,23,95], the study of heterogeneously catalyzed
reactions in fractal media has also attracted growing at-
tention [1,2,5,7,41,72,86,87]. These studies are focused on
the understanding of irreversible phase transitions occur-
ring between an active state with reaction and an inactive
state where the reaction ceases irreversibly. This latter state
is due to the poisoning of the catalyst, by the reactants
and/or their subproducts, and is known as the absorbing
state: a system trapped in the absorbing state can never es-
cape from it [9,10,68,85,90].

In order to cover those topics, this article is orga-
nized as follows: in Sect. “Fractals and Some of Their Rel-
evant Properties”, the basic properties of fractals are pre-
sented and discussed. Section “RandomWalks” is devoted
to the description of the behavior of random walks in
fractal media, while in Sect. “Diffusion-limited Reactions”
archetypical cases of diffusion limited reactions among
random walks are considered. Irreversible phase transi-
tions occurring in heterogeneously catalyzed reactions are
addressed in Sect. “Irreversible Phase Transitions in Het-
erogeneously Catalyzed Reactions”. Finally, in Sect. “Fu-
ture Directions” promising directions for future works are
briefly outlined.

Fractals and Some of Their Relevant Properties

Classical Euclidean geometry is useful for describing the
properties of regular objects such as circles, spheres, cones,
etc. However, disordered objects such as clouds, dielectric
breakdown patterns, coastlines, mountains, landscapes,
etc., have not been so far satisfactorily described by us-
ing the Euclidean geometry. B. Mandelbrot overcome this
shortcoming by introducing the fractal geometry as a suit-
able tool for the treatment of disordered or fractal me-
dia [89]. Along this article, fractals will be used as media
where reactions of interest take place. A relevant prop-
erty of fractal media is self-similarity or symmetry un-
der dilatation [27,33,40,61,67]. Here, it is worth noting the
main difference between regular Euclidean space and frac-
tal geometry: whereas the former has translation symme-
try, this type of symmetry is violated in the latter, which
exhibits a new symmetry known as scale invariance or in-
variance under dilatation. Since these concepts may ap-
pear to be obscure, it is convenient to develop an intuitive
understanding and outline some basic definitions. Frac-
tals can either be deterministic or non-deterministic (of-
ten called random fractals). However, it is worth mention-
ing that many non-deterministic fractals may be obtained
as a result of complex dynamic (non-stochastic) processes.
From the large variety of known deterministic fractals, e. g.
the Koch curve, the Julia set, Sierpinski gaskets, carpets,

and sponges, etc., let us focus our attention on the con-
struction of a Sierpinski Carpet (SC). In order to build up
a generic SC(a,c), a square in d D 2 dimensions is seg-
mented into ad subsquares and c of them are then re-
moved. This square, of side a, is known as the generat-
ing cell. The segmentation process is then iterated on the
remaining squares a number k of segmentation steps. Fig-
ure 1 shows the SC(4,4) obtained after k D 4 segmentation
steps. These kinds of fractals have a lower cutoff length
given by the side of the generating cell, but, in principle,
they lack an upper cutoff length for k !1. However,
in practice one performs a finite number of segmentation
steps.

Let us now remind the reader about the concept of di-
mension in regular systems. In this case, the dimension d
characterizes the dependence of the mass M(L) as a func-
tion of the linear size L of the system. If we now consider
a smaller part of the system of size bL(a < 1), thenM(aL)
will be decreased by a factor of ad, so that

M̃(a; L) D �(a)M(aL) D adM(L) : (1)

The solution of Eq. (1) gives M(L) D ALd , where A is
a constant. So, for a wire one has d D 1, while for a thin
plate d D 2 is obtained, etc. Intuitively, the SC(4,4) shown
in Fig. 1 seems to be “denser” than a wire but also “sparser”
than a thin plate. So, Eq. (1) has to be generalized for frac-
tals, leading to

M(aL) D adfM(L) ; (2)

Reaction Kinetics in Fractals, Figure 1
Sierpinski carpet obtained after k D 4 iterations on the gener-
ating cell shown in the top-left corner, i. e. the SC(4,4). The lat-
tice side is L D 64 and the fractal dimension of this object is
Df D log(12)/log(4)' 1:7925
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which yields the following solution

M(L) D BLdf ; (3)

where B is a constant, and df is a non-integer dimen-
sion known, after Mandelbrot, as the fractal dimension.
By applying Eq. (2) to the SC(4,4) shown in Fig. 1, one
has M(1/4 L) D1/12M(L), so that df Dlog(12)/ log(4) '
1:7925. In general, for an SC one has M(1/aL) D
1/(a2 � c)M(L), which yields df Dlog(a2 � c)/ log(a).

The factor a in Eqs. (1) and (3) could be an ar-
bitrary real number, leading to continuous scale invari-
ance. However, many fractals exhibit discrete scale invari-
ance (DSI) [99], which is a weak kind of scale invariance
such that a is no longer an arbitrary real number, but it can
only take specific discrete values of the form an D (a1)n ,
where a1 is a fundamental scaling ratio. Then, for the case
of DSI, the solution of Eq. (1) yields

M(L) D LdfF
�
log(L)
log(a1)

�
; (4)

where F is a periodic function of period one. Themeasure-
ment of soft oscillations in spatial domain [99] is a sig-
nature of spatial DSI. For instance, the SC(4; 4) shown in
Fig. 1 exhibits DSI with a1 D 4.

Deterministic fractals can be finitely ramified or in-
finitely ramified objects. A fractal is classified as finitely
ramified if any bounded set of the fractal can be separated
from the whole structure just by removing a finite num-
ber of bonds between the individual constituting entities.
This is not possible for the case of the SC(4,4) shown in
Fig. 1, so that it is an infinitely ramified fractal. However,
other fractals such as the Sierpinski Gasket and the Koch
curve are finitely ramified. One advantage of finitely rami-
fied clusters is that various physical properties, such as the
conductivity and the vibrational excitations, can be calcu-
lated exactly helping to understand the anomalous behav-
ior of some observables. However, it is worth mentioning
that classical critical phenomena, e. g. the Ising model, are
not observed in finitely ramified fractals [58,59,60]. This
is not the case of irreversible critical phenomena (e. g. the
contact process [68]), criticality occurring at a trivial value
of the control parameter, e. g. the coarsening without sur-
face tension observed in the voter model at T D 0 [48],
which is still present in finitely ramified fractals [102], etc.

For a careful description of the building rules and
relevant properties of various deterministic fractals see
e. g. [40].

In the large variety of non-deterministic fractals, there
are many examples of random fractals such as diffu-
sion-limited aggregates [27,40,107], cluster-cluster aggre-
gates [101], the incipient percolation cluster [101], etc. So,

Reaction Kinetics in Fractals, Figure 2
Percolating cluster obtained at the critical threshold. The lattice
side is L D 64 and the cluster contains 2100 particles. The fractal
dimension of the infinite percolation cluster is Df ' 1:89

in order to acquaint the reader with this subject, let us
briefly describe the percolation model in d D 2 dimen-
sions. Considering the square lattice, one has that each site
can be occupied randomly with probability p or left empty
with probability (1 � p). This model mimics, for example,
the deposition of conducting metallic particles in an isolat-
ing substrate, so that p is the surface density of deposited
particles. At lower densities, one has isolated clusters of
particles and the films do not conduct electrical current
between the edges of the sample. However, by properly
increasing the concentration, the onset of electrical con-
ductivity is abruptly observed at a certain critical value pc,
known as the percolation threshold [101]. So, at criticality
one has a spanning cluster that connects opposite edges of
the sample, which is known as the Incipient Percolation
Cluster (IPC), see Fig. 2. Equations (2) and (3) also hold
for random fractals, but the mass M has to be averaged
over different realizations of the fractal in order to achieve
reliable statistics. The IPC is composed of several fractal
substructures such as the backbone, blobs, red bonds, dan-
gling ends, etc., so that one needs to define different fractal
dimensions in order to achieve a better description.

Several methods have been developed in order to mea-
sure the fractal dimension of non-deterministic fractals,
the “sandbox” and the “box counting” methods being
among the most extensively used, for further details see
e. g., [40].

RandomWalks

The properties of random walks are useful for the under-
standing of a great variety of phenomena in virtually all
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sciences, e. g. in Physics, Chemistry, Astronomy, Biology,
Ecology, and even in Economics [105].

Throughout this article, we will focus our attention on
simple random walks on lattices, either regular or fractal,
as a model for diffusion. The simple discrete random walk
is a stochastic process, such that the walk advances one
step in unit time. The walker steps from its present po-
sition to another site of the lattice according to a specified
random rule. Since the rule is independent of the history of
the walk, the process is Markovian. Along this article, we
will consider cases where the step is performed, with the
same probability, to one of the nearest neighbor sites of the
lattice. While that choice is always possible in regular lat-
tices, it is no longer the case for random walks in fractals,
because all nearest neighbor sites may not belong to the
substrate. In this situation one often considers steps per-
formed with equal probability to any of the nearest neigh-
bor sites belonging to the substrate.

Let us now consider the displacement of the random
walk. After n steps (since one has discrete time scale, n D t
holds) the net displacement (R(t)) is given by [33,67,105]

R(t) D
nX

jD1

u j ; (5)

where u j is a unitary vector pointing to a nearest-neigh-
bor site, so that it represents the jth step of the walk. Due
to the fact that hu ji D 0, the displacement averaged over
a large number of realizations of the walk vanishes, i. e.
hR(t)i D 0. So, a more interesting and useful kinetic ob-
servable of randomwalks is the rms displacement from the
origin (R2), given by

hR2(t)i D

*� nX

jD1

u j

�2
+

D t C 2
nX

j>i

hu j :ui i D t ; (6)

since hu j :u ji D 1 and hu j :ui i D 0 for i ¤ j because the
steps are independent. So, the classical result for Euclidean
space is obtained.

A distinctive feature of transport in fractal media is
that the linear time dependence of the rms displacement
of the walk given by Eq. (6) has to be replaced by

R2 / t2/dw ; (7)

where dw is the anomalous diffusion exponent. In most
studied models the fractal dimension dw exceeds 2, due to
the fact that disorder tends, on average, to slow down the
diffusion of the walk moving on those media.

Another interesting observable of a walk is the average
number of distinct sites visited by a single random walk

after N steps (SN), which is also known as the exploration
space of the walk [17,19,67,105] and references therein.
Assuming that N / t, one has [96]

SN / tds/2 ; t!1 ; (8)

where ds is the spectral dimension and Eq. (8) holds
for ds < 2 [14,96], which corresponds to low-dimensional
and fractal media, leading to the so-called “anomalous dif-
fusion” behavior [19,33,67]. Furthermore, d D 2 is the up-
per critical dimension, such as for a d-dimensional regu-
lar space one has ds D d > 2 and Eq. (8) becomes SN / t,
leading to classical diffusion (for further details see also
Eq. (17) below).

Diffusion, or randomwalks, are also related to the den-
sity of states for harmonic excitations of the media [78]
(h(�)) through the probability that the random walk re-
turns to the origin. So, one has

h(�) / �
df
dw�1 � �

ds
2 �1 ; (9)

where the energy and vibrational density of states are re-
lated through h(�)d� D g(!)d!. The relationship (9) is
similar to the well-known density of states in Euclidean
space, except that d has to be replaced by

ds D 2
df
dw

; (10)

which is also known as the fracton dimensionality,
since the vibration modes are called fractons instead of
phonons.

Very recently we have found evidence of discrete scale
invariance in the time domain by measuring the relax-
ation of themagnetization in the Ising model on Sierpinski
Carpets [25,26]. Subsequently, we have conjectured that
physical processes characterized by an observable O(t),
occurring in fractal media with DSI, and that develop
a monotonically increasing time-dependent characteristic
length �(t), may also exhibit timeDSI. In fact, by assuming
� / t1/z , where z is a dynamic exponent, it can be shown
that O(t) has to obey time DSI according to [53]

O(t) D Ct˛/z F
�
� C

log(t)
log(az1)

�
; (11)

where C and � are constants. So, the conjecture given by
Eq. (11) implies the existence of a logarithmic periodic
modulation of time observables characterized by a time-
scaling ratio � given by

� D az1 ; (12)

see also Eq. (4). So, in the case of random walks on fractal
media with DSI, Eqs. (7) and (8) have to be generalized
according to Eq. (11) with dw D z.
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Diffusion-limited Reactions

Reaction kinetics is influenced by the characteristic time of
the processes involved. The rate of a heterogeneous reac-
tion is often determined by the adsorption of the reactants
from a fluid phase on the catalyst surface. For reactions
occurring in a single phase the transport of the reactants
and the time of reaction influence the overall reaction rate.
Here, we focus on diffusion-limited reaction processes for
which the transport time, given by the typical time re-
quired for the reactants to meet, is much longer than the
reaction time. Since the diffusion of particles in fractals is
often anomalous, it is expected that this behaviorwill affect
diffusion-limited reactions. Furthermore, one also needs
to account for density fluctuations of the reactants occur-
ring at all length scales. For these reasons, as well as for the
occurrence of many particle effects, the study of diffusion-
limited reactions is difficult and often eludes straightfor-
ward mean-field approaches.

In this section, simple and archetypical reactions oc-
curring in fractal media will be discussed. For a more gen-
eral overview of diffusion-limited reactions in homoge-
neous and disordered media, see e. g. [33,67].

One-Species Reactions

So far, the most studied case is the one-species annihila-
tion process, where species A diffuse and annihilate upon
encounter [33,67], according to the reaction scheme

AC A! 0 ; (13)

such that the reaction is instantaneous. This example also
includes the case in which the product 0 is some in-
ert particle that does not influence the overall kinetics.
A closely related reaction is the one-species coalescence
process given by [33,67]

AC A! A : (14)

In the mean-field limit, which holds for the reaction-
limited case, the rate equation for both reactions (13)
and (14) is given by

d�A(t)
dt

D �K�XA (t) ; (15)

where �A(t) is the concentration of A-particles at time t
andK is the reaction constant. Eq. (15), where X D 2 is the
reaction order, is the typical second-order rate equation
that can be solved yielding

�A(t) D
1

kt C 1
�A(0)

; (16)

so that in the long-time limit one has �A(t) � t�1. On the
other hand, for the diffusion-controlled regime, it can be
proved rigorously that the concentration decays, for both
processes (13) and (14) according to [33,67]

�A(t) /
1
td/2

; d < dc D 2 ; (17)

where dc D 2 is the upper critical dimension, such that for
d > dc the density decays according to the mean-field pre-
diction, given by Eq. (16). So, for d < 2 the kinetics of the
diffusion-controlled process is anomalous and just at dc
one has logarithmic corrections to Eq. (17).

So, let us focus our attention on heterogeneous chemi-
cal reactions occurring in media having a fractal structure
with df < dc D 2. Typical examples for these structures
are catalysts, porous glass [12], diffusion-limited aggre-
gates [107], percolation clusters [79], zeolites, etc. Since,
as already discussed, diffusion in such media is anoma-
lous [14,96], so are expected to be diffusion-limited chem-
ical reactions [13,15,17,18,45,80,92,103]. Then, the simple
textbook elementary reaction given by Eq. (15) has to be
modified. A straightforward way to understand the nature
of the modifications can be envisioned just by considering
that SN (see Eq. (8)) is the exploration space of the random
walk, so that the rate constant K can be written in terms of
the visitation efficiency � [80] as follows

K / � �
dSN
dt
/ tds/2�1 : (18)

Of course, for standard diffusion one has ds D 2, K
is actually a constant and the classical reaction order
X D 2 is recovered. However, it should be noticed that for
anomalous diffusion one has ds < 2, so that K is no longer
a constant but depends on time. In fact, by inserting Eq. (8)
into Eq. (18) it follows that

d�
dt
/ �tds/2�1�2 ; t !1 ; (19)

and the integrated rate equation that is obtained by using
Eq. (19) reads

��1 � ��1o D ktds/2 ; (20)

where �o � �(t D 0) is the initial density of randomwalks
and, of course, Eqs. (19) and (20) are expected to hold
in the low density limit since they are derived from the
behavior of a single walker. Now, by comparing Eqs. (8)
and (20), it follows that both the asymptotic (low-density)
regime of the density of species in the diffusion-limited re-
action and the exploration space of the random walk are
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governed by the same exponent, given by the spectral di-
mension of the media where the physical process actu-
ally takes place. Furthermore, by replacing Eq. (20) into
Eq. (19), it follows that

d�
dt
D �k�1C2/ds ; t !1; (21)

and the reaction order for the elementary reaction given
by Eq. (15) can be written as [15,17,45,81,92]

X D 1C
2
ds
; (22)

which yields the textbook result (X D 2) for classical dif-
fusion, but one has X > 2 for anomalous diffusion that is
expected to occur in low-dimensional and fractal media
for ds < 2, e. g. for d D 1 one has ds D 1 and the reaction
order is X D 3. This relationship for the reaction order,
based on the conjecture on the time dependence of the ef-
fective rate constant given by Eq. (18), was later derived
rigorously by Clément et al. [16] based on calculations of
the pair-correlation function and the macroscopic reac-
tion law for Euclidean dimensions d � 3 and self-similar
fractal structures with spectral dimensions 1 � ds � 2.

Figure 3a shows the time dependence of the decay
of the density of random walks as a result of the reac-

Reaction Kinetics in Fractals, Figure 3
a Log-log plots of the decay of the density of reacting species as
obtained by means of Monte Carlo simulations in the SG(5,10)
whose generating cell is shown in the upper-right corner. b Lin-
ear-log plot of the raw data shown in a but after proper sub-
traction and subsequent normalization by the corresponding
power-law behavior fitted in a. In both panels, the dashed and
full lines correspond to the reactions AC B! 0 and AC A! 0,
respectively. More details in the text

tion given by Eq. (20). The results correspond to the Sier-
pinski Gasket SG(5,10). A power-law decay with expo-
nent ds/2 D 0:661˙ 0:003 is observed in agreement with
Eq. (20). However, a careful inspection of the curve al-
lows us to distinguish soft log-periodic oscillations modu-
lating the power-law behavior. These oscillations become
even more evident in Fig. 3b, which was obtained from
the original data already shown in Fig. 3a after subtraction
and subsequent normalization by the fitted power law. The
presence of log-periodic oscillations is the signature of the
occurrence of time DSI (see Eq. (11)) due to the coupling
of the reaction kinetics and the spatialDSI of the substrate
(see Eq. (4)), as discussed in Sect. “Fractals and Some of
Their Relevant Properties” and “RandomWalks”.

Two-Species Annihilation

The study of the two-species diffusion-limited reaction of
the type

AC B! 0 (23)

has received considerable attention due to the fact that,
most likely, it is the simplest case where fluctuations in
the local concentration of the reactants play a prevail-
ing role in the emerging kinetic behavior [33,38,43,67,
76,103]. According to Eq. (23) the concentration differ-
ence of both species is conserved, so that �A(t) � �B(t) D
�A(0) � �B(0) � const. If the initial concentrations are
different, the mean-field approach predicts an exponen-
tial decrease of the minority species [33,67]. However, for
�A(0) D �B(0) one expects an algebraic decay of the form
� / 1/t.

Let us now briefly review the effect caused by spatial
fluctuations in the concentrations [33,38,43,67,76,103].
For the sake of simplicity, let us assume that both species
have the same diffusion constant (D) and that the initial
concentrations are equal. For a random initial distribution
of particles, a region of the space of linear size l would ini-
tially have NA D �A(0)l d ˙

p
�A(0)l d particles of type A,

and equivalently for B-particles. The second term accounts
for the local fluctuation, at a scale of the order of l, in the
number of particles. By assuming classical diffusion, one
has that for a time t, such as Dt ' l1/2, all the particles
within the considered region would have time enough to
react with each other. In the absence of fluctuations, the
concentrations of both species will vanish. However, at the
end of the reaction process one still has of the order ofp
�(0)l d particles of the majority species. Then, the con-

centration of either A- or B-particles at time t is actually
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given by

�A;B /

q�
�A;B(0)l d



l d
/

p
(�A;B(0))
Dtd/4

; (24)

and the decay exponent is twice as small than in the case
of the one-species processes (Eq. (17)). According to the
above scaling reasoning, one would expect the formation
of alternating domains of A- and B-particles. This segre-
gation of the reactants, known as the Toussaint–Wilczek
effect [103], causes the slowdown of the kinetics since the
reaction actually takes place along the boundary between
domains. A careful analysis reveals that for d � 4, the do-
mains are unstable, so that dc D 4 is the upper critical
dimension above which the mean-field approach holds.
So, Eq. (24) holds for d � 4, and segregation has quali-
tatively been observed, e. g. in d D 2, by means of simu-
lations [103] (see also Fig. 3). In order to gain a quantita-
tive insight into the segregation of the reactants, it is use-
ful to evaluate the excess density of either A- or B-particles
within spatial domains of size ld, defined as


�A;B(l) D
jNA � NBj

l d
; (25)

where NA(NB) is the number of A- (B-) particles within
the domain.

Figure 4 shows log-log plots of the time dependence of
the decay of the density of particles, as well as that of the
excess density, as measured for different values of l. Re-
sults are obtained by means of Monte Carlo simulations

Reaction Kinetics in Fractals, Figure 4
Log-log plots of the density of species (o) and the excess den-
sity measured for different length scales as indicated. Results
obtained for the AC B! 0 reaction (Eq. (23)) in d D 2 dimen-
sions by using a lattice of side L D 4096. Results are averaged
over 100 different realizations. The double-arrow lines at the top
indicate the three different time regimes discussed in the text.
The length scales used to measure the excess density are iden-
tified by the corresponding symbols. The dashed line, with slope
d/4 D 1/2 shows the expected behavior according to Eq. (24)

in d D 2 dimensions. Three different regimes can be ob-
served, namely: (i) For the short-time behavior (t � 103 in
Fig. 4) one observes deviations from Eq. (24), which are in
agreement with the fact that at early times the segregation
of the reactants, as evidenced by the measurements of the
excess density, is almost negligible. (ii) During an interme-
diate time regime (103 < t � 106 in Fig. 4) the Toussaint–
Wilczek effect becomes dominant – the excess densities
are maxima in all measured length scales – and the den-
sity decays according to Eq. (24) with exponent d/4 D 1/2.
(iii) Finally, for long times (t > 106 in Fig. 4) one observes
the fast decay of both the density and the excess density
due to the finite size of the sample used.

Let us now analyze the expected behavior for the case
of reactions occurring in fractals. Here one has that the
characteristic scaling time is of the order of t / l1/dw , and
according to Eq. (24) the residual concentration can be
written as

�A;B(t) /
l df/2

l df
/

tdf/2dw

tdf/dw
/

1
tds/4

; (26)

where Eq. (10) has been used. Therefore, for fractals one
has to replace d by the spectral dimension ds of the fractal
in Eq. (24).

Figure 5 shows log-log plots of the time dependence
of the decay of the density of particles and the excess
density, as in the case of Fig. 4, but obtained by means
of Monte Carlo simulations on random-fractal substrates
given by percolation clusters at the critical threshold (see

Reaction Kinetics in Fractals, Figure 5
Log-log plots of the density of species (o) and the excess den-
sity measured for different length scales as indicated. Results
obtained for the AC B! 0 reaction (Eq. (23)) in incipient per-
colation clusters in d D 2 dimensions by using a lattice of side
L D 4096. Results are averaged over 100 different realizations.
The length scales used to measure the excess density are identi-
fied by the corresponding symbols. The full line (slightly shifted
up for the sake of clarity), with slope ds/4 D 0:3344, is the best
fit of the data according to Eq. (26)
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Fig. 2). In contrast to the d D 2 dimensional case dis-
cussed within the context of Fig. 4, the disordered nature
of the fractal causes the occurrence of density fluctuations
at all the spatial scales even for the initial configuration.
So, the Toussaint–Wilczek effect starts to play a domi-
nant role from the very beginning of the reaction. Con-
sequently, the density decays according to Eq. (26) along
the whole time interval measured. The best fit of the data
yields ds/4 D 0:3344, in excellent agreementwith reported
values [20]. Of course, finite-size effects, which are not ob-
served in Fig. 5, could be expected to occur at later times. It
is also worth mentioning that Fig. 5 confirms that the ex-
cess density also decays with the same power-law behavior
as the density, in agreement with the arguments outlined
in order to obtain Eqs. (24) and (26).

Figure 3a also shows the time dependence of the de-
cay of the density of particles for the AC B! 0 re-
action given by Eq. (26). These results were obtained
in the SG(5,10). The best fit of the data gives ds/4 D
0:331 ˙ 0:003, in excellent agreement with the value ob-
tained for the annihilation reaction (Eq. (20)) given by
ds/2 D 0:663˙ 0:003 (see also Fig. 3a). The soft log-pe-
riodic oscillation of the density that can be observed in
Fig. 3a is enhanced in Fig. 3b. Again, this behavior is the
fingerprint of the occurrence of time DSI, as discussed
in Sect. “Fractals and Some of Their Relevant Properties”
and “RandomWalks” (see Eqs. (4) and (11), respectively).

Summing up, for the simplest example of a bimolec-
ular irreversible decay of the form AC B! 0 the ob-
tained universal kinetic law depends on the dimensional-
ity, the initial concentration and the particle-conservation
law that holds for the system.

So far, the transient AC B! 0 reaction is fundamen-
tally different from the AC A! 0 reaction due to the
Toussaint–Wilczek effect. This effect represents a quite
delicate balance that may become elusive to be properly
identified, as discussed for the case of d D 2 dimensions
(Fig. 4). Therefore, it is interesting to study its persistence
under tiny perturbations, e. g. the steady feeding of reac-
tants. Early simulations by Anacker et al. [93] have re-
vealed that, in a cubic lattice, the Toussaint–Wilczek effect
is destroyed by the addition of a steady source of walkers.
Furthermore, in contrast to the transient result where the
reaction order is X D 3, the steady-state AC B! 0 re-
action gives X D 2:00˙ 0:02, for steady-state densities as
low as 0.001. Since in d D 2 and for the transient regime,
the occurrence of the effect is confined to a narrow density
window (see Fig. 4) careful measurements will be needed
in order to test if segregation still remains relevant in
d D 2 under steady-state conditions. Segregation of the
reactants under steady-state conditions has also been ob-

served to occur in percolation clusters [93,100]. Further-
more, dramatic segregation effects are observed in the
Sierpinski Gasket under steady-state conditions [93,100].
In this case the value X D 2:00˙ 0:2 has been reported for
the reaction order. All these results point out that steady-
state segregation cannot simply be due to the Toussaint–
Wilczek effect and the understanding of this behavior re-
mains elusive, even after more than 20 years.

Irreversible Phase Transitions
in Heterogeneously Catalyzed Reactions

Classical phase transitions, such as those observed in mag-
nets, fluids, alloys, etc., which take place under equilib-
rium conditions, are reversible [28,35,111]. For example,
one can change the phase of a magnet, from the ferro-
magnetic to the paramagnetic one, just by properly tun-
ing the temperature. In contrast, irreversible phase tran-
sitions (IPTs) [9,10,68,85,90] occurring in reaction sys-
tems take place between an active state, characterized by
a steady reaction among the reactants and the output of
the products, and an inactive – also called poisoned or ab-
sorbing – state, where the reaction stops irreversibly. The
inactive state is absorbing in the sense that after undergo-
ing trapping, the system can never escape from it. Conse-
quently, it is impossible to change from the absorbing state
to the active one, just by tuning the control parameter, and
the transition is irreversible.

IPTs are typically studied by using lattice-gas re-
action models of heterogeneously catalyzed reactions.
Within this context IPTs observed upon the catalytic
oxidation of CO, H2 and NO have extensively been
studied [42,85,88,108]. Further studies of IPTs com-
prise the generic monomer-monomer (AC B! 0) re-
action [90], as well as a wide variety of reaction pro-
cesses such as epidemic propagation [84], forest-fire mod-
els [8,97], prey-predator systems [51], etc., for reviews
see e. g. [68]. Since a wide variety of catalysts are com-
posed by a solid-state fractal support containing catalyt-
ically active particles [21,22,23,95], most of the above-
mentioned reactions have also been studied in fractal me-
dia [1,2,5,7,41,72,86,87]. A brief overview of the state of
the art in the characterization of IPTs in fractal substrates
will be presented below.

The ZGBModel for the Catalytic Oxidation
of Carbon Monoxide

It is well known that the catalytic oxidation of carbon
monoxide, namely 2COCO2 ! 2CO2, which is likely
the most studied reaction system, proceeds according to
the Langmuir–Hinshelwood mechanism [50,65], i.e with
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both reactants adsorbed on the catalyst surface

CO(g)C S ! CO(a) ; (27)

O2(g)C 2S ! 2O(a) ; (28)

CO(a)CO(a)! CO2(g) ; (29)

where S is an empty site on the surface, while (a) and (g)
refer to the adsorbed and gas phase, respectively. The re-
action takes place with the catalyst, e. g. a transition metal
surface such as Pt, in contact with a reservoir of CO and
O2 whose partial pressures are PCO and PO2 , respectively.

Equation (27) describes the irreversible molecular ad-
sorption of CO on a single site of the catalyst surface. It is
known that under suitable temperature and pressure re-
action conditions, CO molecules diffuse on the surface.
Furthermore, there is a small probability of CO desorp-
tion that increases as the temperature is raised [71]. Equa-
tion (28) corresponds to the irreversible adsorption of O2
molecules that involves the dissociation of such species
and the resulting O atoms occupy two sites of the catalytic
surface. Under reaction conditions, both the diffusion and
the desorption of oxygen are negligible. Due to the high
stability of the O2 molecule, the whole reaction does not
occur in the homogeneous phase due to the lack of O2 dis-
sociation. So, Eq. (28) dramatically shows the role of the
catalyst that makes the rate-limiting step of the reaction
feasible. Finally, Eq. (29) describes the formation of the
product (CO2) that desorbs from the catalyst surface. This
final step is essential for the regeneration of the catalyti-
cally active surface.

For the practical implementation of the Ziff–Gulari–
Barshad (ZGB) model [108], the catalyst surface is re-
placed by a lattice, so a lattice-gas reaction model is ac-
tually considered. The catalyst is assumed to be in contact
with an infinitely large reservoir containing the reactants
in the gas phase. Adsorption events are treated stochasti-
cally neglecting energetic interactions. Furthermore, dif-
fusion and desorption of CO are also neglected. Then, on
the two-dimensional square lattice the Monte Carlo simu-
lation algorithm for the ZGB model is as follows:

(i) CO or O2 molecules are selected at randomwith rel-
ative probabilities PCO and PO, respectively. These proba-
bilities are the relative impingement rates of both species,
which are proportional to their partial pressures in the gas
phase in contact with the catalyst. Due to the normaliza-
tion, PCO C PO D 1, the model has a single parameter, i. e.
PCO. If the selected species is CO, one surface site is se-
lected at random, and if that site is vacant, CO is adsorbed
on it according to Eq. (27). Otherwise, if that site is occu-
pied, the trial ends and a new molecule is selected. If the

selected species is O2, a pair of nearest-neighbor sites is se-
lected at random and the molecule is adsorbed on them
only if they are both vacant, as required by Eq. (28).

(ii) After each adsorption event, the nearest-neigh-
bors of the added molecule are examined in order to ac-
count for the reaction given by Eq. (29). If more than one
[CO(a);O(a)] pair is identified, a single one is selected at
random and removed from the surface.

Assuming irreversible adsorption-reaction steps, as in
the case of Eqs. (28)–(29), it may be expected that in the
limit of large PCO and small PO2 (small PCO and large
PO2 ) values, the catalyst surface would become saturated
by CO- (O2-) species and the reaction would stop. In
fact, the catalyst surface fully covered by a single type of
species, where further adsorption of the other species is
no longer possible, corresponds to an inactive state of the
system. This state is known as ‘poisoned’, in the sense
that adsorbed species on the catalyst surface are the poi-
son that causes the reaction to stop. Physicists used to call
such a state (or configuration) ‘absorbing’ because a sys-
tem becomes trapped by it forever, with no possibility
of escape [49]. These concepts are clearly illustrated in
Fig. 6a and b, which show plots of the rate of CO2 pro-
duction (RCO2) and the surface coverage with CO and
O2 (�CO and �O, respectively), versus the partial pres-
sure of CO (PCO), as obtained by simulating the ZGB
model [108]. Figure 6a corresponds to simulations per-
formed in homogeneous, two-dimensional lattices. In this
case, for PCO � P1CO ' 0:38975 the surface becomes ir-
reversibly poisoned by O species with �CO D 0, �O D 1
and RCO2 D 0. In contrast, for PCO � P2CO ' 0:525 the
catalyst is irreversibly poisoned by CO molecules with
�CO D 1, �O D 0 and RCO2 D 0. However, as shown in
Fig. 6a, between these absorbing states there is a reac-
tion window, namely for P1CO < PCO < P2CO, such that
a steady state with sustained production of CO2 is ob-
served.

As follows from Fig. 6a, when approaching the oxy-
gen absorbing state from the reactive phase, all quantities
of interest change smoothly until they adopt the values
corresponding to the absorbing state. This behavior typ-
ically corresponds to a second-order IPT [9,10,68,85,90].
Remarkably, the behavior of the system is quite different
upon approaching the CO absorbing state from the reac-
tive regime (see Fig. 6a). In this case, all quantities of inter-
est exhibit a marked discontinuity close to P2CO ' 0:525.
This is a typical first-order IPT and P2CO is the coexistence
point.

Experimental results for the catalytic oxidation of car-
bon monoxide on Pt(210) and Pt(111) [3,36] are in qual-
itative agreement with simulation results of the ZGB
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Reaction Kinetics in Fractals, Figure 6
Phase diagrams of the ZGB model showing the dependence of the surface coverage with CO (�CO,

�
) and Oxygen (�O, �), and the

rate of CO2 production (RCO2 , ˘) on the partial pressure of CO (PCO) in the gas phase. (a) Results obtained in d D 2 homogeneous lat-
tices. The irreversible phase transition (IPT) occurring at P1CO ' 0:38975 (second-order) is shown by an arrow, while at P2CO ' 0:525
one has a sharp (first-order) IPT. (b) Results obtained by performing simulations in incipient percolation clusters of fractal dimension
df ' 1:89 in d D 2 dimensions. Second-order IPTs occurring at P1CO ' 0:325 and P2CO ' 0:400 can clearly be observed. Notice that
the rate of CO2 production has been amplified by a factor 25 for the sake of clarity

model. A remarkable agreement is the (almost) linear in-
crease in the reaction rate observed when the CO pressure
is raised and the abrupt drop of the reactivity when a cer-
tain ‘critical’ pressure is reached. However, two essential
differences are worth discussing: (i) the oxygen-poisoned
phase exhibited by the ZGB model within the CO low-
pressure regime is not observed experimentally. (ii) The
CO-rich phase exhibiting low reactivity found experimen-
tally resembles the CO-poisoned state predicted by the
ZGBmodel. However, in the experiments the non-vanish-
ing CO-desorption probability prevents the system from
entering into a truly absorbing state and the abrupt, ‘first-
order-like’ transition, observed in the experiments is ac-
tually reversible. Of course, these and other disagreements
are not surprising since the lattice gas reactionmodel, with
a single parameter, is a simplified approach to the actual
catalytic reaction that is far more complex.

In order to observe the influence caused by the frac-
tal nature of the substrate on the phase diagram of the
ZGB model, Fig. 6b shows results obtained by means
of simulations performed in incipient percolating clus-
ters at the critical threshold in two dimensions (see also
Fig. 2). In this case, for PCO � P1CO ' 0:325 the sur-
face becomes irreversibly poisoned by O species, while for
PCO � P2CO ' 0:400 the catalyst is irreversibly poisoned
by CO molecules [2]. Also, a reaction window between
these absorbing states is found. So, by comparing Fig. 6a
and b at least three main differences can be identified [2]:
(i) The IPT observed at a low CO pressure in homoge-
neous lattices becomes largely shifted towards lower pres-
sures in the case of the IPC. This effect is due to the con-
straint imposed by the disordered cluster on the adsorp-

tion of oxygen molecules that need two adjacent sites for
deposition. (ii) The sharp first-order IPT characteristic of
the homogeneous lattice becomes of second-order for the
case of the fractal. (iii) The reaction window, which is of
the order of 
PCO D P2CO � P1CO ' 0:135 in the homo-
geneous lattice, becomes narrowed up to 
PCO ' 0:085
for the case of the fractal. These results are in agreement
with the findings of Casties et al. [41], who also studied
the influence of CO diffusion on the location of the critical
points. In particular, it is found that P2CO increases when
the rate of CO-diffusion also increases.

On the other hand, simulations of the ZGBmodel per-
formed in disordered clusters below the critical thresh-
old, i. e. in the so-called ‘lattice animals’ in percola-
tion [101], show that poisoning can be caused either by
CO- or O-species [41,91] and that due to finite-size ef-
fects the finite-width reaction window vanishes for lattices
of side L ' 20 [41,91]. These observations are consistent
with the fact that the characteristic lengths of the fluc-
tuations in the coverages are larger than the sizes of the
animals, playing a dominant role in the catalytic behav-
ior of small aggregates, such as those used in actual cata-
lysts [21,75,106].

The common feature of Monte Carlo simulations of
the ZGB model performed in Sierpinski Carpets is that
the first-order IPT characteristic of the homogeneous lat-
tice is no longer observed, so that transition becomes of
second-order [5,41]. In fact, even for the SC(5; 1) with
fractal dimension df D log(24)/ log(25) ' 1:975 one ob-
serves a second-order IPT at high CO pressures [5]. Sim-
ulations performed in the SC(3; 1) with a fractal dimen-
sion df ' 1:89, which is very close to that of the IPC ran-
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dom fractal, yield P1CO ' 0:397 and P2CO ' 0:52 [41], i. e.
two critical points that are very close to those measured in
d D 2 homogeneous media (see e. g. Fig. 6a) but far from
the results obtained for the IPC (see e. g. Fig. 6b). These
findings point out that the location of the critical points
depends on topological properties of the fractals that are
not fully accounted for a single fractal dimension. Also,
the finite-width reaction window, which lies between both
second-order IPTs, becomes narrowed when decreasing
df [5,41]. It has even been suggested that for Sierpinski
Carpets the reaction window may become of zero width
close to df � 1:6 [5]. This statement is in agreement with
the fact that Casties et al. [41] have reported that the reac-
tion window of the ZGB model in an SC with df D 1:59 is
very narrow, i. e.
PCO ' 0:02 It is also worth mentioning
that, in d D 1, the ZGBmodel lacks a finite-width reaction
window.

For second-order IPTs, as in the case of their reversible
counterparts, it is possible to define an order parameter,
which for the former is given by the concentration of mi-
nority species (�CO, in the case of the second-order IPT of
the catalytic oxidation of CO). Furthermore, it is known
that �CO vanishes according to a power law upon ap-
proaching the critical point [64], so that

�CO / (PCO � P1CO)ˇ ; (30)

where ˇ is the order parameter critical exponent and P1CO
is the critical point. Careful studies performed in the d D 2
homogeneous lattice [63,73,104] have confirmed that this
IPT belongs to the universality class of directed percola-
tion [62,82] in d C 1 dimensions.

Generic Lattice-Gas Reaction Models
of Catalyzed Reactions

The simplest reaction system studied proceeding accord-
ing to the Langmuir–Hinshelwood mechanism [50,65]
is the monomer-monomer (MM) model. In the MM
model A- and B-species adsorb, react and desorb accord-
ing to the following scheme
Adsorption:

A(g)C S ! A(a) ; (31)

B(g)C S ! B(a) ; (32)

Reaction:
A(a)C B(a)! AB(g)C 2S ; (33)

Desorption:
A(a)! A(g)C S ; (34)

B(a)! B(g)C S ; (35)

where S is an empty site on the surface, while (a) and (g)
refer to the adsorbed and gas phase, respectively. Adsorp-
tion of A- and B-species takes place with probability pA
and pB, respectively. So, by taking pA C pB D 1 one has
a single parameter for the adsorption process, given by
pad � pA D 1 � pB . Also the rates of reaction and desorp-
tion of A- and B-species are kR, PdA and PdB, respectively.

By properly selecting the parameters one can study dif-
ferent regimes of the MM model. Let us first consider the
adsorption-limited regime that corresponds to kR � 1
and PdA D PdB � 0. Here, for pad ¤ 1/2 one has that
any sample becomes irreversibly poisoned by the majority
species and the final states are always absorbing. However,
for pad D 1/2 a slow coarsening process with the forma-
tion of solid domains of A- and B-species on the surface of
the catalyst is observed. By mapping the MM model into
a kinetic Ising model, it can be proved that any finite sam-
ple ofNs sites will ultimately become irreversibly poisoned
due to fluctuations in the coverages after a time TP of the
order of TP / Ns ln(Ns) [32]. This exact result has early
been predicted by means of numerical simulations by ben-
Avraham et al. [4].

On the other hand, by considering desorption of a sin-
gle species, say PdA � 0 and PdB > 0, one has that the
MM model exhibits a second-order IPT between an ac-
tive state and a single poisoned state with A-species [6].
The critical points are found to be PdB D 0:5099˙ 0:0003,
PdB D 0:6150˙ 0:0003 and PdB D 0:5562˙ 0:0003 for
the case of d D 2, d D 1 homogeneous substrates and the
IPC in d D 2 [54], respectively.

Interesting results are also obtained by taking Pd �
PdA D PdB , as proposed by Fichthorn et al. [46]. In fact, by
means of numerical simulations, they have shown that for
that choice of parameters theMMwith desorption exhibits
a noise-induced transition from monostability to bistabil-
ity. This result was subsequently also obtained by means of
a mean-field approach [44]. Later on, the occurrence of the
transition was proved rigorously [32]. On the other hand,
for a fractal lattice and in the limit of Pd ! 0 it has been
conjectured that any finite sample of Ns sites would be-
come saturated by either A- or B-species when

� � Pds/2
d Ns ' 1 (36)

where ds is the spectral dimension of the underlying fractal
and � is a reduced parameter [55]. Furthermore, for an
intermediate rate of desorption, a simple scaling behavior,
which depends on the spectral dimension, is expected. In
fact, for �	 1, a segregation regime with a reaction rate
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per site R(Pd) given by

R(Pd) ' P1�ds/2d (37)

has been predicted [55]. Also, for �
 1, one expects the
saturation of any finite cluster due to a fluctuation-dom-
inated regime, and the rate of reaction is expected to de-
pend on the cluster size according to

R(Pd) D NsPd : (38)

All these analytical results, namely equations (36), (37)
and (38), have been validated by means of numerical sim-
ulations by using IPCs in d D 2 and d D 3 Euclidean di-
mensions [55] as fractal substrates.

Another interesting generic system is the dimer-
dimer (DD) lattice-gas reaction model, which is described
by the following Langmuir–Hinshelwood scheme

Adsorption:
A2(g)C 2S ! 2A(a) ; (39)

B2(g)C 2S ! 2B(a) ; (40)

Reaction:
A(a)C B(a)! AB(g)C 2S ; (41)

where S is an empty site on the surface, while (a) and (g)
refer to the adsorbed and gas phase, respectively. In this
case we are interested in the reaction-controlled regime,
so that the adsorption of either A2- or B2-species (see e. g.
Eqs. (39) and (40)) takes place with the same probability
and proceeds instantaneously on every pair of empty sites
left behind by the reaction (Eq. (41)) [37]. It is worth men-
tioning that the DD model can be exactly mapped onto
the so-called “voter” model [37]. The voter model is a spin
systemwith two possible orientations, namely spin-up and
spin-down. In the voter model, a randomly selected spin
adopts the orientation of a randomly selected neighbor. Of
course, if a spin is surrounded by equally oriented spins, it
does not change its orientation. So, the voter dynamics is
zero-temperature in nature. In fact, the voter model de-
fines a broad universality class that describes coarsening
without surface tension [48]. The votermodel is also a sim-
ple model for opinion formation [57]: individuals with dif-
ferent opinions, labeled by A and B, respectively, change
their opinions according to the voter dynamics. A remark-
able feature of the DD model, or equivalently the voter
model, is that it is one of the very few models that can be
solved exactly in any integer dimension d.

The order parameter of the voter model is the density
of interfaces with different states of opinion (CAB), which

corresponds to the density of A-B interfaces in the DD
model. Starting form a fully disordered configuration that
maximizes the interfaces, it has been found that the the
density of interface evolves according to [37]

CAB(t) D

8
<

:

t�˛ ; d < 2
(ln(t))�1 ; d D 2
1 ; d > 2

(42)

where ˛ D 1 � d/2. So, in the long-time regime on has
that CAB ! 0 when d < 2, and the coarsening of domains
is observed. However, for d > 2 single-species domains do
not appear. The borderline is the two-dimensional case
where coarsening proceeds logarithmically, so that dc D 2
is the upper critical dimension of the voter model.

Monte Carlo simulations of the voter model per-
formed in both Sierpinski Gaskets andCarpets with df < 2
have confirmed the coarsening of the domains. An inter-
esting feature observed in the plots of CAB(t) versus t, as
obtained for various fractals, is the presence of soft log-
periodic modulations of the power-law decay predicted
by Eq. (42) [53,102]. As already discussed in Sect. “Frac-
tals and Some of Their Relevant Properties” and “Random
Walks” (see Eqs. (4) and (11), respectively), these oscil-
lations are the signature of time discrete scale invariance
caused by the coupling of the voter dynamics with the spa-
tial discrete scale invariance of the underlying fractal.

Epidemic Simulations for the Characterization of IPTs

The study of second-order IPTs by using standard simula-
tion methods is hindered by the fact that, due to large fluc-
tuations occurring close to critical points, any finite system
will ultimately become irreversibly trapped by the absorb-
ing state. So, the measurements are actually performed
within metastable states facing two competing constraints:
on the one hand, the measurement time has to be long
enough in order to allow the system to develop the cor-
responding correlations and, on the other hand, such time
must be short enough to prevent poisoning of the sam-
ple. In view of these shortcomings, experience indicates
that the best approach to second-order IPTs is to com-
plement the standard approach, consisting in performing
finite-size scaling studies of stationary quantities, with epi-
demic simulations. In fact, the application of the Epidemic
Method (EM) to the study of IPTs has become a useful tool
for the evaluation of critical points, dynamic critical expo-
nents and eventually for the identification of universality
classes [62,82,104]. The idea behind the EM is to initial-
ize the simulation using a configuration very close to the
absorbing state. Such a configuration can be achieved by
removing some species from the center of an otherwise
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fully poisoned sample. Then a small patch of empty sites
is left. In the case of the ZGB model, this can be done by
filling the whole lattice with O, except for a small patch.
Patches consisting of 3–6 neighboring empty sites are fre-
quently employed, but it is known that the asymptotic re-
sults are independent of the size of the initial patch. Such
patch is the kernel of the subsequent epidemic.

After the generation of the starting configuration, the
time evolution of the system is followed, and during this
dynamic process the following quantities are recorded:
(i) the average number of empty sites (N(t)), (ii) the sur-
vival probability P(t), which is the probability that the epi-
demic is still alive at time t, and (iii) the average mean
square distance, R2(t), over which the empty sites have
spread. Of course, each single epidemic stops if the sample
is trapped in the poisoned state with N(t) D 0 and, since
these eventsmay happen after very short times (depending
on the patch size), results have to be averaged over many
different epidemics. It should be noticed that N(t) (R2(t))
is averaged over all (surviving) epidemics.

If the epidemic is performed just at criticality, a power-
law behavior (scaling invariance) can be assumed and the
following Ansätze are expected to hold,

N(t) / t� ; (43)

P(t) / t�ı ; (44)

and

R2(t) / tzepi ; (45)

where �, ı and zepi are dynamic critical exponents. Thus, at
the critical point log-log plots of N(t), P(t) and R2(t) will
asymptotically show a straight line behavior, while off-crit-
ical points will exhibit curvature. This behavior allows the
determination of the critical point, and from the slopes of
the plots the critical exponents can also be evaluated quite
accurately [62].

The validity of Eqs. (43), (44) and (45) for second-
order IPTs taking place in substrates of integer dimen-
sions (1 � d � 3) is very well established. Furthermore,
the observation of a power-law behavior for second-or-
der IPTs is in agreement with the ideas developed in the
study of equilibrium (reversible) phase transitions: scale
invariance reflects the existence of a diverging correla-
tion length at criticality. For the ZGB model in d D 2
dimensions the best reported values of the exponents
are [63]: � D 0:2295˙ 0:001; ı D 0:4505˙ 0:001 and
zepi D 1:1325˙ 0:001. These values confirm that the IPT
belongs to the universality class of directed percolation in

d C 1 dimensions, where the values reported by Grass-
berger [82] are � D 0:229˙ 0:003; ı D 0:451˙ 0:003 and
zepi D 1:133˙ 0:002.

Early epidemic studies of the ZGB model performed
in both the IPC and the SC(3,1), with almost the same
fractal dimension of df ' 1:89, confirmed that the IPTs
are of second-order [7]. The values of the critical expo-
nents obtained for both types of fractals are almost the
same, within error bars, and are given by � � 0:23 and
ı ' 0:41. These values are also in agreement with epi-
demic calculations of the contact process [84] performed
by Jensen [72], who has reported � D 0:235˙ 0:010 and
ı ' 0:40˙ 0:01. Subsequently, Gao and Yang [110] have
studied the influence of the lacunarity of the SC on the
epidemic behavior of the ZGBmodel. The epidemic expo-
nents are very different for lattices of the same fractal di-
mension but different lacunarity, suggesting that a single
fractal dimension is not enough to fully specify the criti-
cal points and exponents of the critical process. This find-
ing is in qualitative agreement with the same conclusion
obtained by means of stationary measurements and dis-
cussed in the previous section.

It is worth mentioning that the better statistics and the
longer measurement time achieved by Gao et al. [110],
as compared e. g. to references [7,72], allow us to observe
a subtle log-periodic modulation of the power-law behav-
ior of some dynamic observables. This effect is particularly
clear for the case of the time dependence of N(t) and it
is the signature of time discrete-scale invariance (DSI). In
fact, since the underlying fractals used by Gao et al. [110]
exhibit spatialDSI with a fundamental scaling ratio a1 D 4
(see also the discussion on Eq. (4)), we expect that the dy-
namics of any critical process occurring in those fractals
would become coupled to the spatial DSI [53] through the
growing correlation length � / t1/z , where z is a dynamic
exponent. This coupling would ultimately lead to time
DSI characterized by a soft log-periodic modulation of the
power laws, according to Eq. (11). Then the characteristic
time-scaling ratio � is given by Eq. (12) with z D 2/zepi. Of
course, the accurate evaluation of � by fitting the reported
epidemic measurements is no longer possible because it
will require a careful fit of the data. However, based on the
fact that zepi ' 1 [110], we predict � ' 42 ' 16.

The Constant Coverage Ensemble Applied to the Study
of First-Order IPTs

It is well known that first-order transitions are character-
ized by hysteresis effects, long-lived metastabilities, etc.,
which make difficult their study by means of conventional
simulationmethods. In order to avoid these shortcomings,
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Brosilow and Ziff [39] have proposed the constant cover-
age (CC) ensemble for the study of first-order IPTs. The
method has early been applied to the ZGBmodel [39], and
subsequently the same authors [11] have also performed
CC simulations of the model proposed by Yaldran and
Khan [88] for the NOC CO catalyzed reaction.

For the case of the ZGB model, the CC method can
be implemented by means of the following procedure.
First, a stationary configuration of the system is achieved
using the standard algorithm, as described in Sect. “The
ZGBModel for the Catalytic Oxidation of CarbonMonox-
ide”. For this purpose, one selects a value of the param-
eter close to the coexistence point, e. g. PCO D 0:51. Af-
ter achieving the stationary state the simulation is actu-
ally switched to the CC method. So, in order to maintain
the CO coverage as constant as possible around a pre-
fixed value �CCCO, only oxygen (CO) adsorption attempts
take place whenever �CO > �CCCO, (�CO < �CCCO). LetNCO
and NOX be the number of carbon monoxide and oxy-
gen attempts respectively. Then, the value of the “pres-
sure” of CO in the CC ensemble (PCCCO) is determined just
as the ratio PCCCO D NCO/(NCO C NOX). Subsequently,
the coverage is increased by an small amount, say 
�CCCO.
A transient period �P is then disregarded for the proper
relaxation of the system to the new �CCCO value, and fi-
nally averages of PCCCO are taken over a certain measure-
ment time �M. The CC ensemble allows to determine spin-
odal points and investigate hysteresis effects at first-order
IPTs [11,29,39], which are expected to be relevant as com-
pared with their counterpart in equilibrium (reversible)
conditions [9,10,85].

Future Directions

In spite of the large effort involved in the study of the ki-
netics of reactions occurring in low-dimensional and frac-
tal media, the subject still poses both theoretical and ex-
perimental challenges whose understanding would be of
a wide interdisciplinary interest.

It is largely recognized that the development and char-
acterization of new materials and nanostructures is es-
sential in order to boost the technology of the present
century. Within this context, one has that reaction ki-
netics in nanosystems and confined materials exhibits
a quite interesting physical behavior that is very differ-
ent from that of the bulk. The average number of reac-
tants in a nanosystem is typically very small and even-
tually it may be of the order of the fluctuations. So,
mean-field-like treatments are far from being useful and
new analytical tools, often guided by numerical simula-
tions, need to be developed. Relevant experiments in this

field are the study of the relaxation dynamics of pho-
toexited charge carriers in semiconducting nanotubes and
nanoparticles [56]. Also, the presence of catalytically ac-
tive micro- and nanoparticles could lead to a considerable
enhancement of the reaction rate of heterogeneously cat-
alyzed reactions, the exhaustive understanding of this phe-
nomena being an open challenge [30,75,106].

During the 1990s physicists and mathematicians
started the study of the properties of complex networks
opening a new interdisciplinary branch of science that also
involves biology, ecology, economics, social and computer
sciences, and others. Early studies in the science of com-
plex networks were aimed to discover general laws gov-
erning the creation and growth of such structures. Subse-
quently, growing interest has been addressed to the un-
derstanding of processes taking place in networks, such as
e. g. the description of the behavior of randomwalkers, the
characterization of qualitatively new critical phenomena,
the study of the kinetics of reaction-diffusion processes,
the discovery of the emergency of complex social behavior,
etc. Due to the unique properties of the networks, which
involve, among others, the combination of the compact-
ness, their inherent inhomogeneity, their complex archi-
tectures, etc., reaction-diffusion processes in those media
are essentially different from both classical and anomalous
results already discussed. In fact, annihilation rates are ab-
normally high, no segregation is observed in the archetypi-
cal AC B! 0 reaction, and depletion zones are absent in
the annihilation AC A! 0 reaction [69]. So, we expect
that this will be an active field of interdisciplinary research
in the study of reaction kinetics in complex media.

The recently formulated conjecture that the coupling
between the spatial discrete scale invariance of fractal me-
dia and the dynamics and kinetics of physical processes
occurring in those media may lead to the observation of
time discrete scale invariance [53], opens new theoreti-
cal perspectives for the study of diffusion-limited reac-
tions. This kind of study is further stimulated by recent
reports suggesting that spatial discrete scale invariance is
no longer restricted to deterministic fractals, but it may
also emerge as a consequence of different growing mech-
anisms in some disordered fractals, such as e. g. diffusion-
limited aggregates, animals in percolation, etc. [66,74]. In
order to achieve some progress in this subject, of course,
extensive simulations and careful measurements would be
necessary because the phenomenon is quite subtle and the
standard averaging methods may destroy it as if was sim-
ple noise [66].

The propagation of fronts has attracted considerable
attention since its understanding is relevant in many areas
of research and technology. Among others, some examples
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of front propagation include: material growth and inter-
faces, forest-fire and epidemic propagation, particle-diffu-
sion fronts, chemical pattern formation, biological inva-
sion problems, displacement of an unstable phase by a sta-
ble one close to first-order phase transitions, etc. Within
this context, the properties of reaction-diffusion fronts in
simple reactions where the reactants are initially segre-
gated, such as AC B! O, have extensively been stud-
ied [31,47]. However, most of the studies addressed re-
action-diffusion fronts occurring in homogeneous media
while less attention has been devoted to the case of, in-
creasingly important inhomogeneous media [98]. Inho-
mogeneities can have different origin: i. e. physical, chem-
ical, geometrical, etc. It is expected that the study of front
propagation generated by diffusion-limited reactions in
fractal media would also be a promising field of future re-
search, where anomalous diffusion may lead to the occur-
rence of very interesting phenomena. In a related context,
theoretical studies of the diffusion of A- and B-species in
the bulk of a confined (homogeneous) media, leading to
reaction at the surface with desorption of the product, pre-
dict the development of an annihilation catastrophe [98].
This phenomenon is due to the self-organized explosive
growth of the surface concentration of species leading to
an abrupt desorption peak. The influence of anomalous
diffusion in fractal media leading to surface reaction will
certainly be addressed in the near future, hopefully deserv-
ing the observation of interesting physical phenomena.
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Glossary

Aging The slow time evolution of a class of complex sys-
tems, which are brought into a far-from-equilibrium
state by the sudden change of an external parameter,
e. g. the temperature.

Complex dynamics The collective or emergent time de-
pendent properties of interacting multi-component
and multi agent systems.

Marginal stability A metastable state is marginally stable
if it can be destroyed by slight perturbations.

Metastability The ability of a non-equilibrium system to
remain in, or close to, the same state for a certain char-
acteristic time.

Record In a time ordered series of random numbers,
a record is an entry larger than all preceding entries.

Scale invariant process A scale invariant process looks
the same under re-scaling of time and/or space vari-
ables.

Stationary process A stationary process is time homoge-
neous, i. e. it is invariant under time translations.

Definition of the Subject

The term record statistics covers the statistical proper-
ties of records within an ordered series of numerical data
obtained from observations or measurements. A record
within such series is simply a value larger (or smaller)
than all preceding values. The mathematical properties

of records strongly depend on the properties of the se-
ries from which they are extracted. These properties have
been investigated for many different cases, the simplest
cases perhaps being series of independent random num-
bers drawn from the same (arbitrary) distribution, and se-
ries produced by a diffusion process with independent ran-
dom increments.

The term record dynamics covers the rather new idea
that records may, in special situations, have measurable
dynamical consequences. The approach applies to the ag-
ing dynamics of glasses and other systems with multiple
metastable states. The basic idea is that record sizes fluctu-
ations of e. g. the energy are able to push the system past
some sort of ‘edge of stability’, inducing irreversible con-
figurational changes, whose statistics then closely follows
the statistics of record fluctuations.

Introduction

Floods, droughts and earth-quakes are spectacular, poten-
tially disastrous, and routinely monitored extremal events.
Yet, even with no large scale effects involved, record per-
formances of all kinds attract great interest, as witnessed
by the famous Guinness Book of Records. Aside from their
popular appeal, extremes and their properties are an im-
portant topic of mathematical statistics [16,28].

Formally, a value larger (or smaller) than all its prede-
cessors within a time ordered series of numerical data con-
stitutes a record. The number of records in a series encodes
information on how the data are produced. E. g. measur-
ing every second the velocity of a steadily accelerating ob-
ject produces a time series where each entry is a record.
Conversely, with data generated by a random process, e. g.
the coordinates of a drunkard taking a step in any direc-
tion with equal probability, considerably fewer records oc-
cur. An intermediate case, which is indicative of a climatic
warming trend, are temperature records more frequent
than expected for fluctuations around a constant [35].
More generally, record-sized events in spatio-temporal se-
ries of data, such as seismic shocks, are indicative of corre-
lations and causal relationships [14].

In some contexts, record sized events have important
implications: e. g. in population dynamics, mutants sur-
passing the current standard for highest reproductive suc-
cess contribute disproportionately to the genetic pool of
the next generation, a bias which automatically raises the
bar for future improvements. This naturally leads to the
expectation that record events be of significance to bio-
logical evolution, as perhaps in particular suggested by the
catch-phrase ‘survival of the fittest’. Darwinism’s impact
on biology – and human culture at large – can hardly
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be exaggerated. In recent years computer optimization
methods have appeared, e. g. Genetic Algorithms [17] and
Extremal Optimization [5], which are inspired by evolu-
tion dynamics and which, implicitly or explicitly, utilize
records.

In a computer program, or in a social context, the
function, entity or organization in charge of memorizing
the existing record and detecting its eventual obliteration
is clearly distinct from the process being monitored. By
contrast, record keeping in biological evolution is fully in-
tegrated in the dynamics, and we will see in examples be-
low that record dynamics can emerge as a collective prop-
erty of a collection of co-evolving organisms.

In cases where records act as seeds for an amplifying
dynamical process, the magnitude of the seed bears no
direct relation to the magnitude of the final outcome of
the amplification. E. g. a snow avalanche can be triggered
by sound vibrations above a certain threshold. However,
its impact is more related to the amount of snow on the
ground and to the slope and shape of the valley than to the
intensity of the sound.

Two important and related characteristic of record-
induced dynamics are: i) its temporal non-homogeneity,
meaning that record fluctuations and any induced effects
occur at a decreasing rate and ii) the presence of an em-
beddedmemorymechanism. Not coincidentally, the same
properties are present in a large class of systems known as
glassy. In the sequel, we focus on the significance of record
sized fluctuations for glassy dynamics, expanding on the
observation that record fluctuations induce transitions be-
tween metastable states [43], leaving a so-called intermit-
tent signal as a fingerprint [44].

Complex Dynamics

Systems of many interacting components and with a cou-
pling to an external reservoir of e. g. energy and/or parti-
cles, are usually described usingMaster- or Fokker–Planck
equations [57]. These equations combine external and in-
ternal deterministic forces with a randomizing influence of
the reservoir, and determine the probability flow between
a set of allowed configurations or states. A simple yet illus-
trative example is the Brownianmotion of a grain of pollen
immersed in a fluid. The collisions with the surrounding
molecules exert random forces on the molecules. Further-
more, an external force may be applied to the pollen by
means of e. g. an electric field. If the motion of the grain
is constrained by the walls of a container, the probability
distribution of its position reaches on a certain time scale –
called the relaxation time – a stationary form which only
depends on the geometry of the container. In this case, all

memory of the initial condition is lost. Master equations or
other dynamical equations often lead to a stationary state.
The latter can be unique, or it can be one out of many, each
state draining a basin of attraction in configuration space.
An interesting situation arises when the stationarity is only
approximate, i. e. when, given enough time, it is possible to
escape from a basin of attraction and enter a different one.
Each attraction basin then becomes a metastable region of
configuration space, which is characterized by a certain es-
cape time: the time typically needed for a trajectory to exit
the basin.

Gases, liquids and crystalline solids are mostly found
in a stationary state where relevant physical observables,
e. g. the local density, fluctuate reversibly around fixed val-
ues. A stationary fluctuation signal is invariant under time
translations, its average is a constant and its autocorre-
lation function only depends on the difference between
its two time arguments. In some cases, e. g. for equilib-
rium systems fluctuating near a critical temperature, cor-
relations decay algebraically and may lack an associated
time-scale. Interestingly, a similar situation arises in cer-
tain slowly driven systems, epitomized by the famous ‘sand
pile’ model [4,22], which self-organizes into marginally
stable configurations lacking characteristic space and time
scales. Friction dominated granular systems, e. g. rice piles,
are experimental realizations of this behavior, which is
known as Self Organized Critical, or SOC.

In SOC and some other driven dissipative systems the
initial state is statistically equivalent to the states subse-
quently visited. In contrast, complex materials such as
glasses, polymers, colloids and disordered magnetic ma-
terials, undergo a slow but systematic physical aging fol-
lowing a rapid quench of e. g. the temperature or the
particle density. Typically, these materials get trapped in
metastable basins, where physical variables appear to fluc-
tuate reversibly on observation time scales shorter than the
age. During this pseudo-equilibrium regime, fluctuations
have Gaussian distributions with zero averages [44]. On
longer time scales, intermittent events add an asymmet-
ric, and typically exponential, tail to the Probability Den-
sity Function (PDF) of the fluctuations. The tail is caused
by the non-equilibrium drift which, through a sequence of
metastable basins of subtly different nature, slowly erases
the memory of the initial state and changes physical prop-
erties. e. g. the linear response to a small perturbation.

The Distribution of Records
in Stationary Time Series

Record-sized entries within a stationary series of indepen-
dent and identically distributed random numbers form
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a sub-series whose interesting statistical properties follow
from simple arguments [16,42,45]. E. g., as the magnitude
required to qualify as the next record, increases with each
new entry, records appear at a decreasing rate. For suffi-
ciently long time series, the number of records found be-
tween the first and the tth draw can be shown to have
a Poisson distribution, with average ln t. Equivalently, if
the kth record appears at times tk , the ratios ln(tk/tk�1) are
independent random numbers with an exponential distri-
bution.

Consider a sequence of independent random numbers
drawn from the same distribution at times 1; 2; 3; : : : ; t.
We exclude distributions supported on a finite set, be-
cause these eventually produce a record which cannot be
beaten1. The first number drawn is by definition a record.
Subsequent trials lead to a record if their outcome is
larger than the previous record. We seek the probability
Pn(t) of finding precisely n records in t successive trials,
where 1 � n � t. In the derivation we need the auxiliary
function P(1;m1;:::mk�1)(t), which is the joint probability
that k records happen at times 1 < m1; � � � < mk�1, with
mk�1 � t. P1(t) is simply the probability that the first out-
come be largest among t. As each outcome has, by sym-
metry, the same probability of being the largest, it follows
that P1(t) D 1/t. In order to obtain two records at times 1
andm, the largest of the firstm � 1 random numbersmust
be drawn at the very first trial. This happens with proba-
bility 1/(m � 1). Secondly, the mth outcome must be the
largest among t. This happens with probability 1/t, inde-
pendently of the position of the largest outcome in the first
m � 1 trials. Accordingly,

P(1;m)(t) D
1

(m � 1)t
: (1)

Summing the above over all possible values of m we then
obtain

P2(t) D
tX

mD2

1
(m � 1)t

� ln(t)/t ; (2)

and, in the more general case of n events, we similarly ob-
tain

P(1;m1;:::;mn�1)(t) D
1

Qn�1
iD1 (mi � 1)t

: (3)

We now take qi D mi � 1 and sum over all possible values
of the qi’s, leading to

Pn(t) D
t�nC1X

q1D1

1
q1
� � �

t�1X

qn�1Dqn�2C1

1
qn�1

1
t
: (4)

1Apart from this constraint, the form of the distribution is imma-
terial.

An approximate closed form expression can now be ob-
tained by replacing the sums by integrals, which is reason-
able for t 	 n	 1. The integrals can then be evaluated,
finally yielding

Pn(t) D
(ln t)n�1

(n � 1)!
1
t
: (5)

As anticipated, Eq. 5 is a Poisson distribution, with ln t re-
placing the usual time argument t. Clearly, the number of
records between extractions tw and t > tw is the difference
of two Poisson process, and hence itself a Poisson process
with average ln(t)� ln(tw) D ln(t/tw). The discrete series
of random numbers can be replaced by stationary random
white noise, in which case t becomes a continuous time
variable, and the restriction on the asymptotic validity of
Eq. 5 for t	 n can be lifted.

Let n(t) and �2n(t) be the average and variance of the
number of events in time t. As an immediate consequence
of Eq. 5 we note that

n(t) D �2n(t) D ln t : (6)

Furthermore, the ‘current’, i. e. the average number of
events per unit of time decays as

dn
dt
D

1
t
: (7)

A third consequence of Eq. 5 is the following: Let
t1 D 1 < t2 < � � � < tk < � � � be the times at which the
record breaking events occur, and let �1 D ln t1 D 0 <
�2 � � � < �k D ln tk < � � � be the corresponding natural
logarithms. The stochastic variables �k D �kC1 � �k D

ln(tkC1/tk) are independent and identically distributed.
Their common distribution is an exponential with unit av-
erage. By writing: �k D �k�1 C �k�2 C � � ��1 we have
that (�kC1 � k)/

p
k approaches a standard Gaussian dis-

tribution for large k. Hence, the waiting time tk for the kth
event is approximately log-normal, and the average of its
logarithm grows linearly in k. By Jensen’s inequality [37]
we also find

ln(tk) � ln(tk) D k : (8)

We see that the average waiting time from the kth to the
(k C 1)th event grows at least exponentially in k.

Consider finally the case in which a system is made
up of ˛ independent parts. The total number of records
is the sum of contributions from each part, and hence
remains Poisson distributed. For the most general case
where records between times tw and t > tw are of inter-
est, the Poisson process has average

hni(tw; t) D ˛ ln(t/tw) : (9)
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The cumulative distribution of the ’logarithmic waiting
times’ ık D ln(tk/tk�1) is correspondingly

P(ık < x) D 1�exp(�˛x); x > 0; k D 2; 3; : : : (10)

In glassy dynamics, noise fluctuations are drawn from
a (quasi-) equilibrium distribution characterizing the cur-
rent metastable region. This distribution heavily penalizes
large excursions from the metastable configuration, mak-
ing record events rare and uncorrelated.

Importantly, spatially extended systems with short
range interactions may break down into a set of weakly
interacting subsystems, or domains, which are localized in
space and which have independent fluctuations and inde-
pendent metastable states. E. g. spin glasses are character-
ized by a thermal correlation length, corresponding to the
linear size of the equilibrated domains. The latter grows
slowly and remains at all times rather small compared to
the linear size of the sample. Each independently ther-
malized domain evolves in parallel with other domains,
from which it is shielded by a backbone of mainly inac-
tive degrees of freedom. In accord with observations dis-
cussed below, fluctuation spectra of physical quantities
have a Gaussian component with zero average, and a non-
Gaussian tail. The former describes the sum of indepen-
dent equilibrium-like fluctuations, and the latter describes
the rare non-equilibrium large events, or quakes, which
carry the drift. In this situation, the parameter ˛ of Eq. 9
can be identifiedwith the number of domains. Its value en-
ters the width of the Gaussian, which grows as the square
root of ˛, as well as the statistical weight of the tail, which
grows linearly with ˛.

Aging andMetastability

The term glassy dynamics usually refers to the extremely
slow relaxation observed in complex systems with many
interacting components, where reaching a steady, time in-
dependent, state is typically far beyond experimentally ac-
cessible time scales. E. g., when melted alloys are cooled
down rapidly, they do not enter a crystalline ordered
state. Instead the atoms retain the amorphous arrange-
ment characteristic of the liquid phase while the mobil-
ity of the molecules decreases by many orders of magni-
tude. This colossal change in the characteristic dynami-
cal time scales hinders a structural glass at low tempera-
ture to reach thermodynamic equilibrium. Nevertheless,
the properties of glasses over short observation time scales
may appear to be time independent as in thermal equilib-
rium.

The low temperature out-of-equilibrium behavior of
structural glasses and of a host of other complex mate-

rials is intriguingly similar. E. g. spin glasses [29] a class
of disordered magnetic alloys, polymers [53], colloids and
gels [10] and type II superconductors [31,32] all remain
out of equilibrium, with their macroscopic physical prop-
erties changing algebraically or logarithmically as a func-
tion of the time elapsed since the initial quench. Small
temperature and field variations applied during the ag-
ing process uncover many fascinating ‘memory’ effects see
e. g. [19,23,59], which indicate the presence of a hierarchy
of time scales for relaxation in configuration space, a hier-
archy which is also explicitly uncovered in numerical stud-
ies [49,50].

The topography of complex energy landscapes has
been thoroughly investigated, see e. g. [2,30,38,51,52], and
various heuristic approaches have been proposed in or-
der to link topography and dynamics. For glassy dynam-
ics, heuristic ideas such as hierarchical mesoscopic mod-
els [20,58], and the highly popular trap model [6] have
been considered. While many aspects of aging in glassy
systems are known and partly understood, important open
questions remain. E. g. how are configuration space prop-
erties and real space morphology to be combined in
a seamless fashion? How should one weigh thermodynam-
ical versus dynamical properties, and, more specifically
what is the rôle of equilibrium statistical properties, a rôle
initially strongly advocated from different camps [7,15,33],
and hotly debated ever since [24,25,34]. In retrospect,
knowing that systems with similar aging behavior have
completely different equilibrium properties, e. g. vibrated
granular matter versus thermalizing polymers, the con-
nection between aging and equilibrium properties appears
rather tenuous.

A radically different approach was initiated by Cop-
persmith and Littlewood who studied memory effects in
Charge Density Waves [12] using a simple model with
multiple attractors. The focus is there on the mecha-
nism for attractor selection, and the suggestion is that the
least stable attractors, are those typically selected following
a quench, in spite of having little statistical weight. One de-
velopment of the idea [45] points to fluctuations records,
which are likewise statistically insignificant, as key events
in aging dynamics.

The focus of both experiments and theory has recently
shifted from macroscopic averages to the fluctuations
around these averages (Buisson et al. [8]), which are ob-
servable in meso- and nanoscaled systems. As mentioned,
the fluctuation spectra have a Gaussian part, pertaining
to pseudo-equilibrium fluctuations around the ‘current’
metastable value of the macroscopic average of the quan-
tity of interest, and an asymmetric exponential tail, de-
scribing rare and irreversible jumps from one metastable
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configuration to the next. Such ‘quakes’ carry the full
macroscopic evolution of the system. Their decreasing rate
is indicative of an entrenchment into gradually more sta-
ble configurations.

Marginal Stability

Broadly speaking, marginal stability relates to how
metastable attractor basins are selected during the off-
equilibrium evolution of metastable complex systems. Di-
verse applications include driven systems, e. g. charge den-
sity waves [12,45] and the sand-pile model [4] and its
conceptual ancestor [3,41,56], thermal aging of e. g. spin-
glasses [44] and type II superconductors [32]. The rele-
vance to biological evolution is suggested by a number
of model studies, some where a fitness function is ex-
plicitly defined and drives the dynamics [46,48] and oth-
ers based on co-evolutionary interactions without fitness
function [1].

Record size fluctuations are irrelevant in stationary
processes, where the possibility of triggering permanent
changes simply does not exist. They are likewise irrele-
vant in processes characterized by one or few time scales,
e. g. thermal equilibration between two metastable basins:
A record has a rank, but lacks an inherent magnitude
which could match the scale of the process. For record
fluctuations to trigger irreversible changes, many inequiv-
alent meta-stable basins must be accessible to the dynam-
ics. We envisage that each metastable basin is associated to
a finite characteristic escape time � , the typical time it takes
to leave the basin. For thermal dynamics, the relevant time
scale is the Arrhenius time corresponding to a free energy
barrier b D TkB ln(�), where T is the temperature and kB
is the Boltzmann constant.

Assuming that attractor basins have a broad range of
stability, with the more fickle basins out-numbering the
more stable ones, a quench from a random initial condi-
tion typically leads to very fickle basins. At any stage of the
subsequent evolution, all moves leading from the less to
the more fickle can be reversed on the time scale at which
they first happen. Irreversible moves into more stable at-
tractors, the quakes, are important for the aging dynamics,
and typically entail a tiny, or marginal, increase of stabil-
ity. The marginal increase implies that a random fluctu-
ation slightly larger than the previous largest fluctuation,
i. e. a record fluctuation, can trigger the next quake. De-
facto irreversibility of the quakes can be strengthened by
a thermodynamic mechanism, i. e. the basin change may
entail a large decrease in energy, and/or a large increase of
entropy.

Record Statistics and Dynamics, Figure 1
The cartoon, taken from [43], illustrates the link between
marginal stability and record dynamics: the wedges represent
metastable region of a complex system, with any reference to
their internal hierarchical structure omitted for simplicity. The
vertical axis is the energy. Jumps from one metastable region
to the next (quakes) are indicated by unidirectional arrows. The
thermal stability of each metastable region is represented by
the vertical distance from the bottom to the boundary of the
wedge, i. e. the energy barrier for the corresponding region.
Importantly, the barrier of the current attractor only changes
minutely through each quake

The record dynamics scenario sketched above implies
that, as the systems age, the metastable basins successively
explored develop a nested hierarchical substructure, each
layer composed of basins of greater and greater stability.
If all metastable regions maintain a similar structure, the
noise distribution from which the records are drawn does
not itself change during the aging process.

The temporal statistics of record fluctuations and
quakes has universal properties which are disconnected
from the physical changes associated to the quakes. These
effects may e. g. depend on the physical quantity being
measured and on the noise strength. Using the subordi-
nation principle [32,39,47] briefly discussed in the next
Section, the changes can be described mathematically in
a general, albeit approximate, fashion.

Record Statistics and Intermittency
in Glassy Dynamics

The left panel of Fig. 2 (taken from [32]) illustrates impor-
tant qualitative features of intermittency in complex sys-
tems. The figure depicts the time evolution of the number
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Record Statistics and Dynamics, Figure 2
The figure is taken from [32]. Left panel: The time variation of the total number of vortices N(t) in the system for a single realization
of the pinning potential and the thermal noise in a 8� 8� 8 lattice for T D 0:1. Themonotonous step function character of the time
series, and the fact that the steps are approximately the same duration on a logarithmic time scale indicates the decelerating nature
of the dynamics. Right panel: Numerical results for the creep rate versus T for the time interval between t D 1000 and t D 10000.
In the low temperature region the creep rate is constant within our numerical precision for about two orders of magnitude – we
observe a nonzero creep rate in the T ! 0 limit. Insets: experimental results for the creep rate versus T. The right inset shows data
from Keller et al. [26,27] for melt processed YBCO crystals with the magnetic field applied along the c-axis (squares) and ab plane
(circles). The left inset shows data from Civale et al. [11] for un-irradiated (squares) and 3 MeV proton-irradiated (circles) YBCO flux
grown crystals with a 1 T magnetic Field applied parallel to the c-axis

of vortices in the Random Occupancy Model for magnetic
flux creep in type II superconductors [31].

The number n(t) of vortices inside the system changes
in a step-wise fashion. Each horizontal plateau corre-
sponds to the time spent in a metastable configuration.
The plateaus appear to have the same average duration on
a logarithmic time scale, showing that the dynamics en-
trenches itself into gradually more stable basins. Each ver-
tical jump corresponds to a quake, leading from one basin
to the next. The size of the quake is the height of the cor-
responding jump.

In a record-dynamics scenario the rate of quakes is in-
dependent of the statistical properties of the noise. Specif-
ically for thermally activated dynamics, it is independent
of the temperature. The rate of change of a physical ob-
servable may have a temperature dependence, which en-
ters through the quake size distribution, i. e. the statistical
distribution of the vertical jumps. The right panel of Fig. 2,
also taken from [32], shows the striking temperature in-
dependence of the creep rate in the ROM model, and the
insert shows its experimental counterpart.

Quenching a glassy system from a high temperature
invariably leads to a configuration with an energy far
above the equilibrium value at the low temperature. It
is then of interest to understand how the excess energy
leaves the system during the aging process. The release
in a spin-glass [44] occurs through sporadic, intermittent
quakes, and the average rate of energy flow (nearly) de-
creases with the inverse of the system age. The p-spin
model [54], an Ising spin model with plaquette interac-

tions, has this type of behavior as well. The left panel of
Fig. 3 (taken from [39]) shows the Probability Density
Function (PDF) of the amount of heat given off by the sys-
tem over short intervals of length ıt, for several values of
the system age tw. The Gaussian part of the PDF, which is
nearly independent of tw, describe reversible energy fluc-
tuations of zero average. The exponential tail describes the
out-flow of heat. As tw increases, all other parameters be-
ing constant, the tail becomes less prominent. The right
panel shows, for a number of low temperatures, that the
rate of energy flow decays as the reciprocal of the age.

Experimental probes of glassy dynamics often involve
applying a small perturbing field at a certain age tw
and measuring the linear response, R(t; tw), for t > tw.
The glassy response depends on both tw and t, while
in a stationary situation the only dependence is on the
difference t � tw. There is a large and growing body
of experimental and numerical results concerning lin-
ear response functions in aging systems and their many
facets[23,36,47,55,58].

Attempts to describe the off-equilibrium response as
analogous to equilibrium response lead to the idea of effec-
tive temperature [13]. Being defined in the limits tw !1
and t !1, with t/tw finite, the latter quantity is, in prac-
tice, difficult to measure [21]. At a more basic level, one
may ask whether a glassy system is mainly responding
to the applied field, or rather mainly responding to the
initial quench. In the latter case, the field has the auxil-
iary rôle of biasing the course of the quakes, but no in-
fluence on their temporal statistics. Technically, the re-
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Record Statistics and Dynamics, Figure 3
The figure is taken from [39]. Left panel: The PDF of the heat exchanged between system and thermal bath over a time ıt D 5.
Negative values correspond to an energy outflow. The data are based on 200 independent runs, taken at temperature T D 1 in the
intervals [tw; tw C 500] for tw D 1000 (diamonds), tw D 2000 (squares) tw D 4000 (polygons) tw D 8000 (hexagons) and tw D 16000
(circles). Right panel: The average rate of flow of the energy is plotted versus the age for the five temperatures shown. The full line
has the form y D ct�1

w , with the proportionality constant c estimated as the mean of twrE . Since data sets for different temperatures
are almost overlapping, they are vertically shifted in the plot for the sake of typographical clarity

sponse is then subordinated to the quakes, which are them-
selves subordinated to record-sized fluctuations. Follow-
ing this approach [39,47], physical observables are treated
as (stochastic) functions of the number of quakes k occur-
ring during the observation interval. Generic eigenvalue
expansions in the variable k are available, and the time
and age dependence are extracted by averaging them over
all possible values of k according to the Poisson distribu-
tion with the average given in Eq. 9. The subordination
approach is not limited to linear response functions, e. g.
it can be applied to a calculation of the configurational au-
tocorrelation function [40] or indeed any other quantity
which can be argued to be (mainly) a function of k [32].

The potential relevance of records for the evolution of
ecosystems has been investigated using the Tangled Na-
turemodel of evolutionary ecology [9,18]. Themodel deals
with a population of individuals undergoing mutation-
prone reproduction in a type space. All individuals are
equally likely to be removed or killed. Their reproduction,
however, depends on the interactions among subsets of in-
dividuals: The reproduction probability of an individual of
type, say, A will change through interactions with a type B
individual which comes into being through a mutation of
another existing type. Depending on whether the interac-
tion is cooperative or antagonistic, the reproduction rate
of A will increase, respectively decrease.

Metastable ecosystems spontaneously arise as sets of
types for which the reproduction and death probability of
the individuals are balanced. Such metastable configura-
tions last for periods of varying duration, and are eventu-
ally replaced by newmetastable configurations. The model

does not assume a fitness function, and no optimization
procedure is explicitly invoked at the level of the micro-
scopic dynamics. Interestingly, the times spent in consec-
utive metastable configurations have a statistics in qual-
itative agreement with the predictions of record dynam-
ics [1]. This illustrates how record dynamics can be identi-
fied by a relatively straightforward analysis of time series,
and how it can emerge at the level of collective evolution
evenwhen the precise nature of the observable undergoing
records is not known.

Future Directions

Metastable systems are ubiquitous in nature, and their
interaction with an external noisy environment affects
their dynamics in significant ways. When the system
evolves irreversibly through metastable configurations of
marginally increasing stability, fluctuation records deter-
mine the course of the dynamics. The temporal statistics
of records is an in-road to an approximate analytical de-
scription of the time evolution of complex systems, rang-
ing from physical material to biological systems. It is an
open challenge to test and develop these idea on the large
variety of model and observational data where irreversibil-
ity and marginal stability appear in different guises.
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Glossary

Climate models They are mathematical representations
of the Earth system, in which physical and biogeo-
chemical processes are described numerically. Climate
models can be of a global scale or focus on a sub-region
(regional climate model).

Downscaling Dynamical and statistical techniques to in-
terpret global climatic changes in specific regions.

IPCC emission scenario Description of possible devel-
opments of the socio-economic system expressed in
terms of emissions into the atmosphere.

Projection Simulation of possible climatic changes in
the future, dependent on emission scenarios, land-use
changes and natural variability in the climate system.

Validation Comparison of observed data against model
result for quality assessment of the model.

Definition of the Subject

A variety of observations demonstrates that during the last
decades the climate has changed. As reported by the In-
tergovernmental Panel on Climate Change (IPCC, 2001,
2007), a mean increase of temperature by 0.09 K per
decade was observed globally from 1951 to 1989. Up to
now, 2007, this trend has continued. Europe experienced
an extraordinary heat wave in summer 2003, with daily
mean temperatures being about 10° warmer locally than
the long term mean. The increase of temperature varies
depending on the region and season.

The temperature change seems to be accompanied by
changes in several meteorological and hydrological quan-
tities, like number and duration of heat waves, frost pe-
riods, storminess or monthly mean precipitation. In Ger-
many, for example, winter precipitation has increased in
parts by more than 30% within the last four decades. In
addition, very intense precipitation was observed in sum-
mer 2002 in parts of the Elbe drainage basin, which faced
a severe flooding.

It can be expected that extreme weather situations will
occur more often in a warming world. Therefore, a grow-
ing demand from decision-makers and the general public
for detailed information on possible future climate devel-
opment is evident, worldwide. The quantification of risks
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associated with changing climates is a prerequisite for the
formulation and implementation of realistic adaptation
and mitigation strategies [1].

Global climate models (GCM) have been developed to
study the Earth’s climate system in the past and future.
Unfortunately, even today, global climate models provide
information only at a relatively coarse spatial scale, which
is often not suitable for regional climate change assess-
ments. To fill this gap, two different principles to transfer
the information from a global model to the region of in-
terest have been developed accordingly: statistical down-
scaling and dynamical downscaling. Statistical downscal-
ing techniques connect the climate change signal provided
by the GCMwith observations frommeasurement stations
in the region to achieve higher resolved climate change sig-
nals.

Dynamical downscaling uses high resolution three-
dimensional regional climate models (RCM), which are
nested into GCMs. RCMs are similar to numerical weather
forecasting models, which are taken into account non-lin-
ear processes in the climate system. The results of both
downscaling methods depend on both the quality of the
global and regional models. In the following, the focus will
be on dynamical downscaling, in order to be able to also
detect more easily new extremes, which have not been ob-
served so far, and to take into account possible feedback
mechanisms, which might appear under climate change
conditions, and which influence the extent of regional cli-
matic changes. Regional feedback mechanisms are, for ex-
ample, snow-albedo/temperature feedbacks or soil mois-
ture-temperature feedbacks. If snow melts the reflectivity
of the surface changes from bright (white snow) to dark
(vegetation or soil). This enhances the absorption of in-
coming radiation and leads to warming of the surface,
which in turn accelerates the snow melt nearby. Evapo-
ration from soils and vegetation increases with tempera-
ture and decreases soil moisture. Dryer soils evaporate less,
so that cooling due to evaporation is decreasing, which in
turn increases temperatures regionally.

Introduction

The climate on Earth varies from region to region, and
is characterized by sequences of weather events. These
events are determined by the atmospheric flow, estab-
lished through a wide range of interacting scales. The in-
teracting scales cover large-scale features of the order of
thousands to hundreds of km, mostly determined by the
distribution of the continents and oceans, solar radiation
and the composition of the atmosphere, regional features
of the order of a few hundred km to a few km, forced

through complex topography and vegetation distribution,
and small scale features, like convection. The description
of the Earth’s climate needs to consider all scales, respec-
tively. Therefore global climate models (GCMs) have been
developed. They are mathematical representations of the
Earth system (Fig. 1), in which physical and biogeochem-
ical processes are described numerically to simulate the
climate system as realistically as possible. Today GCMs
develop into Earth system models (ESM), which are not
only coupled atmosphere-ocean general circulation mod-
els (AOGCM), but also take into account some biogeo-
chemical feedbacks, like the carbon cycle or dynamical
vegetation. They are the most advanced numerical tools
for climate modeling and describe changes due to large
scale forcing.

Increasing greenhouse gas (GHG) concentration,
changing aerosol composition and load as well as land
surface changes are influencing the climate of the Earth,
globally and regionally. Therefore the demands for fine
scale regional climate information were growing and in re-
sponse to this the development of regional climate models
started about 20 years ago. It is obvious that the simula-
tions of regional climate changes requires the simulations
of processes from global to local scales, so that very high
resolution AOGCMs with grid sizes of about 10 km could
be seen as the best solution. However, until today the hor-
izontal resolution is still relatively coarse (100 to 250 km
grid size) due to limitations in computer resources. Hence
AOGCMs cannot provide regional details.

To overcome the deficiency two different approaches
are used: statistical downscaling and dynamical down-
scaling. Both translate the information from the global
model to the region of interest. Statistical downscaling
techniques connect the climate change signal provided by
the GCMwith observations frommeasurement stations in
the region to achieve higher resolved climate change sig-
nals. Dynamical downscaling uses high resolution three-
dimensional regional climate models (RCM), which are
nested into GCMs (Fig. 2). RCMs are similar to numeri-
cal weather prediction models, in which non-linear pro-
cesses in the climate system are taken into account. The
results of both methods depend on both the quality of the
global and regional models. In the following, the focus will
be on dynamical downscaling, to be able to detect more
easily new extremes, which have not been observed so far,
and to take into account possible feedback mechanisms,
which might appear under climate change conditions, like
the snow-albedo/temperature feedback or the soil mois-
ture-temperature feedback.

Regional climate models are limited area models. They
only cover the area of interest, which can be resolved to
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Regional Climate Models: Linking Global Climate Change to Local Impacts, Figure 1
The physical climate system

Regional Climate Models: Linking Global Climate Change to Local Impacts, Figure 2
Nesting technique

a much higher degree than GCMs. Therefore RCMs de-
scribe the effects of regional and small scale processes
within the simulation domain and are connected to the
global flow using the nesting technique. This technique
was developed to get higher resolution climate informa-
tion on regional scales, and it is very similar to the nest-
ing procedure in NWP. For initialization and at the lat-

eral boundaries the GCM, in which the RCM is nested,
provides information about the state of the atmosphere
and the surface conditions. Usually atmospheric fields like
wind, pressure, temperature and humidity are provided
as well as sea surface temperatures [14,17]. Soil temper-
ature and soil moisture are initialized once, but calculated
within the RCMs during the simulation.
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The development of regional climate models started in
the USA. Filippo Giorgi at NCAR was the first one run-
ning the MM4 model in a so-called climate mode [10],
which means simulations longer than a few days, as it was
common for numerical weather prediction (NWP). For
many years RCMs were applied to simulations covering
one month. The extension of NWPmodels to month-long
simulations required changes in the formulation of phys-
ical processes which were taken into account within the
model. In NWP models processes acting on time scales
longer than weeks are not important and so not included.

The development of longer-term climate simulations
happened very fast and simultaneously in several model-
ing centers of the world. In the early 1990s, the first multi-
year simulations were carried out by Giorgi et al. [11,12],
whereas Jones et al. [21,22] and McGregor et al. [27]
succeeded in ten-year simulations. Nowadays regional
climate simulations stretch from several decades, first
achieved by Machenhauer et al. [25], up to more than
a century in transient climate changemode [20]. Currently
RCMs are widely used for regional climate studies for al-
most all regions of the world, with horizontal grid spacing
ranging frommore than 100 km to 10 km. Amore detailed
overview can be found in Giorgi [9] and for example in [7]
focusing on regional climate modeling in the Arctic.

The basic features of RCMs will be explained in
Sect. “Basic Features and Model Characteristics” and ex-
amples of applications will be presented in Sect. “Val-
idation”, climate scenarios in Sect. “IPCC-Scenarios”,
and examples of applications in Sects. “Regional Climate
Change” and “Regional Extremes”. A discussion of future
perspectives and concluding remarks follow in Sect. “Fu-
ture Directions”.

Basic Features andModel Characteristics

Until today, most RCMs are three-dimensional hydro-
static circulation models, solving the discretized primitive
equations of the atmosphericmotion. Summaries ofmodel
characteristics can be found in many publications, e. g.
Jacob et al. [18,19]. As an example for the development
and characteristics of many RCMs, the standard set-up of
REMO, the regional climate model developed and used at
the Max-Planck-Institute for Meteorology is described in
more detail below.

The development of REMO started in 1994 uti-
lizing the existing NWP model (EM) of the German
Weather Service DWD [26]. Additionally, the physical
parametrization package of the general circulation model
ECHAM4 [33] has been implemented. During the last
decade it could be shown in several applications that the

combination of the EM dynamical core plus the ECHAM4
physical parametrization scheme is able to realistically re-
produce regional climatic features and therefore became
the standard setup.

The atmospheric prognostic variables of REMO are
the horizontal wind components, surface pressure, tem-
perature and specific humidity, as well as cloud liquid wa-
ter. The temporal integration is accomplished by a leap-
frog scheme with semi-implicit correction and time filter-
ing after Asselin [2]. REMO is a grid box model, with grid
box centers defined on a rotated latitude–longitude coor-
dinate system. For horizontal discretization themodel uses
a spherical Arakawa-C grid in which all variables except
the wind components are defined in the center of the re-
spective grid box. In the vertical, a hybrid vertical coor-
dinate system is applied [35]. Details about the physical
parameterizations can be found in Jacob 2001 [16], but
will not be explained here in more detail, since they vary
slightly from RCM to RCM (see for example [18,19]).

The resolution of the horizontal grids in RCMs varies
from about 100 km to 10 km and has increased con-
stantly. For many years 1/2° grid size could be seen as
a standard horizontal resolution, which was used in many
experiments, even for model inter-comparison studies
(e. g. [4,18,25,32]).

REMO uses horizontal grids with 1/12°, 1/6° or 1/2°,
corresponding to horizontal resolutions of about 10 km,
18 km and 55 km. In the vertical 20 to 40 levels are applied.

Applying the nesting technique for regional climate
models requires large scale atmospheric flow fields to drive
the RCMs at their lateral boundaries. These fields can be
derived from different sources depending on the applica-
tion. Regional climate simulations require climate change
information from AOGCMs, whereas the simulations of
the last decades are driven by global analyzes of obser-
vations. The analyzes consist of observations, which have
been interpolated in space and time using global models.
They can be interpreted as the best available representa-
tion of the observed atmospheric flow conditions; how-
ever, systematic biases cannot be excluded due to the uti-
lization of numerical models for interpolation. In regional
climate modeling the use of driving data from analyzes or
re-analyzes products are referred to as simulations with
perfect boundary conditions (PBC). These experiments
have the clear advantage to be directly comparable to ob-
servations for the actual time periods and they build the
basis for model validation experiments.

In all cases, the relaxation scheme according to
Davies [5] is applied in REMO, meaning that the prognos-
tic variables are adjusted towards the large-scale forcing in
a lateral sponge zone of 8 grid boxes. Within this zone the
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influence of the lateral boundary conditions decreases ex-
ponentially towards the inner model domain.

At the lower boundary, RCMs are determined through
the interaction with the land surface and, over sea, by the
sea surface temperature (SST) and sea ice distribution. The
SST can either be interpolated from the large-scale forc-
ing or from observational datasets, or it can be calculated
online by a regional ocean model coupled to the RCM,
e. g. [23]. The same is true for the sea ice extent, which
can as a further option also be diagnosed from the SST.
The land surface with its ongoing changes plays a major
role in the climate system. Therefore, in all RCMs the ex-
change between surface and atmosphere is realized by the
implementation of a land surface scheme [30]. Generally,
one surface grid box can either be covered by water, sea
ice or land or can include fractions of land and water ar-
eas, all characterized by their own roughness length and
albedo. The land fraction of the surface can be covered by
bare soil or by vegetation of different type. Depending on
the complexity of the land surface scheme the exchange
between the atmosphere and the underlying surface is re-
alized through turbulent surface fluxes and the surface ra-
diation flux, which are calculated separately for each frac-
tion and weighted averages of the fluxes are used within
the lowest atmospheric model level. Physical properties of
the soil and vegetation control the exchange of heat, mois-
ture and momentum over land. In REMO these proper-
ties include for example the surface roughness length, the
soil field capacity, the water holding capacity of the veg-
etation, the background albedo, the fractional vegetation
cover and the leaf area index (LAI). Some of these param-
eters strongly depend on the physiological state of the veg-
etation and are variable between the growing and the dor-
mancy season [31].

There are two options to use the nesting technique.
Within the one-way mode a GCM drives a RCM at the
lateral boundaries, but no information is given back to the
GCM. This method is the standard one used until today
in regional climate modeling. It is relatively easy to imple-
ment and allows the use of RCMs without running a GCM.
The RCM adds information on scales smaller than the
driving GCM (e. g. topographical forcing), but is strongly
dependent on the superimposed large scale flow. Hence
RCMs cannot correct large scale flows originating from
GCMs, which might have large errors. However, Giorgi
et al. [13], showed that some modulation of the large scale
flow is possible within the RCM simulation, stimulated by
regional scale forcing.

In the two-way mode, both models GCM and RCM
run simultaneously and the RCM feeds back informa-
tion to the GCM every GCM time step. This method has

recently been established for regional climate modeling
studies [24]; it has the clear advantage that the atmospheric
flow generated within the RCM domain can modulate the
large scale flow in areas with strong energetic input from
the surface to the atmosphere (e. g. the maritime conti-
nent).

If RCM experiments are carried out with high horizon-
tal resolution, like 10 or 20 km, it can be required to use
the so-called double nesting technique to avoid mismatch
in scales along the lateral boundaries due to the coarse res-
olution of the driving GCMs. Double nesting means that
first a RCM simulation will be carried out with a relatively
coarse resolution to generate lateral boundary conditions
for further nesting. For REMO, sometimes a sequence of
nests is calculated [20].

Finally there are two independent options to run a re-
gional climate model with PBC: the forecast mode and the
climate mode. In climate mode the RCM simulation is ini-
tialized once from analyzes, and then it is continuously
calculated forward in time, driven by regularly up-dated
lateral boundaries. In forecast mode, a sequence of short
runs (e. g. 30 hours), each initialized every 30 hours from
analyzes, is carried out. The forecast mode has the advan-
tage to force the RCM flow to be very close to the observed
one, but it has the disadvantage to suppress mesoscale flow
features. These mesoscale processes can be excited within
the RCMdomain by land–sea contrasts or topography and
are too small to be taken into account in the GCM.

Validation

The quality of the RCM simulations depends strongly on
the performance of the driving model due to the one-way
nesting procedure. Therefore, it is extremely important
to validate the driving large scale fields before applying
RCMs. The model quality, however, can only be judged
in comparison with independent observations. Therefore,
time periods of the past are simulated and the model re-
sults are compared against measurements before the mod-
els are used for climate change studies. These comparisons
are also part of model development and testing.

As an example, Fig. 3 shows time series of observed
and simulated global mean near surface temperatures for
the period 1860 to 2000. The simulated results from the
global coupled climate model ECHAM5/MPI-OM (Max-
Planck-Institute for Meteorology) are in good agreement
with ERA40 data, but about 0.5° warmer than the recon-
structed observations. The observed increase during the
last decades is clearly visible.

As for GCMs, the model quality of RCMs needs to
be analyzed. Therefore RCMs are nested into re-analyzed
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Regional Climate Models: Linking Global Climate Change to Lo-
cal Impacts, Figure 3
Time series of the global mean near surface air temperature (K):
observed (black), from reanalyzes (red), and from the MPIM
global climate model simulations (green)

data, which can be seen as close to reality as possible (see
above). The results of the RCM simulations of the last
decades are compared against independent observations,
means as well as extremes are considered. As an exam-
ple, simulated precipitation climatologies calculated with
REMO with two different horizontal grid sizes are com-
pared against observations [8].

Regional Climate Models: Linking Global Climate Change to Local Impacts, Figure 4
Annual total precipitation (mm), observed (1971–1990, upper panel) and simulated with about 50 km grid size (left) and 10km grid
size (right)

The total amount of precipitation and the horizontal
pattern are much better resolved using the very high hor-
izontal resolution of about 10 km (Fig. 4). Regional max-
ima, like the one in the Black Forest, and minima, like in
the central valleys of the Alps, are detectable. However,
the resolution is still too coarse for climate change studies
in individual alpine valleys. The 50 km grid is much finer
than standardGCM grids (about 150 to 250 km), but is still
insufficient for studying regional details if the regions are
too small.

IPCC-Scenarios

The investigation of possible future climate changes re-
quires information about possible changes in the drivers of
climate change. So-called drivers are for example, amount
and distribution of aerosols and green house gases (GHG)
in the atmosphere, which depend directly on natural
and man-made emissions. The IPCC emissions scenar-
ios (Fig. 5) follow so-called story lines, describing possible
developments of the socioeconomic system [29].

The emissions are directly used within GCMs and
RCMs and they initiate changes in global and regional
climates through numerous non-linear feedback mecha-
nisms. As an example, Fig. 6 shows possible developments
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Regional Climate Models: Linking Global Climate Change to Local Impacts, Figure 5
SRES Scenarios, which shows the four major storylines together with the associated developments of CO2 and SO2 emissions from
2000 until 2100

Regional Climate Models: Linking Global Climate Change to Local Impacts, Figure 6
Changes in global mean near surface air temperature as calculated by several GCMs under seven emissions scenarios until 2100

of global mean near surface temperatures calculated by
several models for different scenarios.

The global mean changes in near surface temperature
until 2050 is about 1.5°C, whereas until the end of the cen-
tury a wide spread appears from 1.5°C to 5.5°C.

Regional Climate Change

In order to achieve information about the probability, e. g.
for the intensification of the hydrological cycle over Eu-
rope, several models from different European climate re-
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Regional Climate Models: Linking Global Climate Change to Local Impacts, Figure 7
Simulated and observed river run-off (precipitation P – evaporation E) for 1961 to 1990 [15] in the Baltic Sea, Danube, Elbe and Rhine
catchments

Regional Climate Models: Linking Global Climate Change to Local Impacts, Figure 8
Simulated and observed change in river run-off (precipitation P – evaporation E) for the period 2071 to 2100 compared to
1961 to 1990 [15]. Baltic Sea, Danube, Elbe and Rhine catchments

search institutes are used, as it was done in the EU project
PRUDENCE [4].

Following the climate change scenario A2 projecting
a strong future increase of greenhouse gases until the
year 2100 (IPCC, 2001) and a subsequent global mean
temperature increase of about 3.5°, numerous simulations
were conducted within PRUDENCE [19]. An analysis of
their results for different river catchments [15] shows sig-
nificant differences between the projected changes over
northern and central Europe for the time period 2070–
2100 compared to the current climate (1961–1990, Fig. 7).

For the Baltic Sea catchment, a precipitation increase
of about +10% for the annual mean is projected, with the

largest increase of up to +40% in winter, while a slight re-
duction of precipitation is calculated for the late summer.
Evapotranspiration will increase during the entire year
with a maximum increase in winter. These rises in precip-
itation and evapotranspiration would lead to an increase
of river discharge into the Baltic Sea of more than 20%
in winter and early spring. Here, the seasonal distribution
of discharge is largely influenced by the onset of spring
snowmelt.

For the catchments of Rhine, Elbe and Danube, a dif-
ferent change in the water balance components is pro-
jected. While the annual mean precipitation will remain
almost unchanged, it will increase in late winter (January–
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March) and decrease significantly in summer. The evap-
otranspiration will rise during the entire year, except for
the summer, with a maximum increase in winter. These
changes lead to a large reduction of 10 to 20% in the an-
nual mean discharge (Fig. 8). Especially for the Danube,
the projected summer drying has a strong impact on the
discharge that is reduced up to 20% throughout the year
except for the late winter (February/March) when the in-
creased winter precipitation causes a discharge increase of
about 10%. These projected changes in themean discharge
will have significant impacts on water availability and us-
ability in the affected regions.

Under climate change conditions not only the absolute
amounts of precipitation may change but also the precip-
itation intensities, i. e. the amount of precipitation within
a certain time period. The simulation of precipitation in-
tensities or extreme precipitation events requires however
a considerably higher resolution than the A2 results pre-
sented above so that for example the influence of the to-
pography of the Alps on the formation of precipitation
over the Rhine catchment could be adequately calculated.
High resolution RCM results show that the global warm-
ing until 2050 will lead to an increase of high precipita-
tion events over the Alpine part of the Rhine catchment,
especially in summer. This climate change signal becomes
clearly visible in the Pre-Alps, but a similar trend is also
seen in the high resolution simulations over large parts of
Europe.

A major breakthrough was possible with the re-
gional climate change simulations on 10 km grid scale.
Within a co-operation with the national environmental

Regional Climate Models: Linking Global Climate Change to Local Impacts, Figure 9
Changes in annual mean near surface temperature (°C) from 1950 to 2100 for three different IPCC SRES scenarios

agency (UBA), REMO was used for a control simulation
from 1950 to 2000 and three transient run for the IPCC
SRES scenarios A2, A1B and B1. The simulation domain
covers Germany, Austria and Switzerland [20]. As an ex-
ample the most important results for Germany at the end
of this century are summarized as follows:

The simulated annual mean near surface temperature
is increasing up to 3.5°C depending on the emission sce-
nario (Fig. 9). The regional pattern of temperature changes
shows that the south and southeast warm more than all
other areas in the simulation domain. The warming is as-
sociated with a decrease of precipitation amount in wide
areas of Germany during summer and an increase of pre-
cipitation in south and southwest regions during the win-
ter (Fig. 10). The winter precipitation is mostly rain and
less precipitation falls as snow.

Regional Extremes

The calculated rapid and strong changes of climate pa-
rameters can have severe impacts on humans and the en-
vironment. As an example, REMO results for the Rhine
basin are presented for a B2 scenario until 2050. Between
1960 and 2050 the near surface temperature will rise by
about 3°C and the number of summer days and hot days
will increase (Fig. 11). In addition, the number of peri-
ods with summer days, this is the period of consecutive
days with a daily maximum temperature above 25°C (not
shown), will be higher in the future decades. Winter tem-
perature also increases, leading to a decrease in frost and
ice days.
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Regional Climate Models: Linking Global Climate Change to Local Impacts, Figure 10
Climate change signals for summer (left) and winter (right) precipitation (%) in scenario A1B for 2071 to 2100 compared to
1961 to 1990

Regional Climate Models: Linking Global Climate Change to Local Impacts, Figure 11
REMO B2 scenario for the Rhine catchment: frost days (upper left), ice days (lower left), summer days (upper right) and hot days (lower
right)
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The investigation of probability distribution functions
for temperature and precipitation using the 10 km hori-
zontal resolutions simulations for Germany shows possi-
ble monthly mean temperature of more than 30°C for July
and >10°C for January appearing in the Rhine valley un-
der the assumption of A1B scenario until the end of this
century. In addition, possible increases in monthly mean
precipitations are projected for A1B until 2100 in the area
of Leipzig (Elbe drainage basin) for January as well as for
July (Bülow, PhD thesis, in preparation).

The projected changes in extremes are coherent with
findings of Schär et al. [34] who studied the occurrence of
summer heat waves in Europe today and in the future. He
showed that the summer 2003 heat wave was extraordi-
nary but can appear much more often in the future.

Another robust finding is the increase of heavy precip-
itation events in summer, which goes together with a de-
crease in monthly mean summer precipitation in central
Europe [3]. Such short-term, strong convective summer
precipitation events have the potential of causing damages,
e. g. for agriculture, but also in cities, when sewage systems
might be flooded.

Future Directions

Regional climate modeling has made major progress dur-
ing the last decades and it could be shown that the added
value lies mainly in the provision of details in space and
time, which is demanded for impact assessments as well as
by the public. RCMs are ready for operational use as pow-
erful tools to simulate regional climatic features and their
changes in all regions of the world, for time periods from
today until the end of this century.

Now, further research on regional climate changes
should focus on the reliability in projected regional and
local climate change pattern. This can be done by ensem-
ble calculations of GCMs-RCMs, which are also needed
for the establishment of probability distribution functions
to analyze extreme situations. Here special focus will be
on the use of RCMs for regional climate prediction for
the next 10 to 30 years, for which it is unclear if weather
and climate extremes may change, where it might happen
and if regionas will face extreme situations in the future,
in which this never happened before. The dissemination
of regional climate “change information“ can efficiently be
done with the establishment of climate information sys-
tems in individual regions of the World.

The use of RCMs as intelligent interpolators of ob-
served data in data sparse regions need to be proven,
but RCMs have a great potential for this. In addition,
the added value of RCMs compared to GCMs needs to

be proven by applying the two-way nesting technique. In
mountainous regions like the Alps an impact on the large
scale flow can be expected.

The extension of regional climatemodels (RCM) to re-
gional system models (RSM) is a major challenge for the
next years. The coupling to regional ocean models, land
use and hydrological models has recently started. Along
with this the carbon and nitrogen cycles will be imple-
mented on a regional scale. This allows a much better sim-
ulation of additional regional feedbacks as mentioned in
Sect. “Definition of the Subject”, which might have the po-
tential to modulate the regional climate signal projected by
GCMs for the region of interest.

Finally, it must be stated that along with improvements
of RCMs, the development of GCMs has to be contin-
ued. Their performance in individual regions can be quite
poor and an improvement is urgently needed. Here RCMs
can deliver important information about regional climatic
details and help advancing global climate change simula-
tions.
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Glossary

Dynamical system At any time t the state of a n-dimen-
sional dynamical system is determined by the state
variables forming a vector x(t) in Rn. The change in
time of this vector is given by the vector differential
equation dx

ı
dt D f (x). In the state space Rn solu-

tions of this equation are the trajectories or orbits of
the system. If the right-hand side of the equation also
depends directly on t, dx

ı
dt D f (t; x), then the sys-

tem is forced and called nonautonomous.
Oscillator An oscillator is a time periodic solution of the

system forming a closed orbit in state space. If trajec-
tories, close to a periodic solution, tend to this peri-
odic solution for t !˙1, then the oscillator is called
a limit cycle. If a nonautonomous system is period-
ically forced, f (t; x) D f (t C T; x), then the system
may get entrained: Periodic solutions with the same
period T or a period kT with some integer larger than
1 (subharmonic solution) may occur.

Singular perturbations If a dynamical system contains
a small parameter " and we let "! 0 then the system
may become degenerate meaning that it cannot satisfy
generic initial- or periodicity conditions. In fact such
a system has two time scales: The fast variables vector x
and the slow variables vector y : "dx

ı
dt D f (x; y),

dy
ı
dt D g(x; y). For " D 0 initial values outside the

manifold M(0) : f (x0; y0) D 0 cannot be satisfied. For
small positive " we see that in the initial phase x
changes rapidly until a manifold M(") near M(0) is
reached at a part where the points (x0; y0) are sta-
ble equilibria of "dx

ı
dt D f (x; y0). Next the sys-

tem will enter a quasi-stationary state and changes
slowly within M("). With singular perturbations sepa-
rate approximate solutions are constructed for the two
phases. They have the form of power series expansions
in ". Integration constants are determined by a match-
ing procedure.

Relaxation oscillation A relaxation oscillation is a limit
cycle of a singularly perturbed dynamical system.
Within a cycle at least once the system leaves and re-
turns to the manifold M(").

Canard If within a cycle the relaxation oscillation comes
near a part of M(0) with unstable equilibrium points
of "dx

ı
dt D f (x; y0) then we have a so-called canard

type of oscillation. In addition to the parameter " a sec-
ond parameter a can be identified that passes a Hopf
bifurcation point, where a stable equilibrium changes
into a stable relaxation oscillation. Then just before the
regular relaxation oscillation arises a canard appears.
For very small " a canard is not easily detected.

Definition of the Subject

A relaxation oscillation is a type of periodic behavior that
occurs in physical, chemical and biological processes. To
describe it mathematically, a system of coupled nonlinear
differential equations is formulated. Such a system is stud-
ied with qualitative and quantitative methods of mathe-
matical analysis. The well-known linear pendulum (har-
monic oscillator) is not the appropriate system to model
real life oscillations. Characteristic for a relaxation oscil-
lator is its nonlinearity and the presence of phases in the
cycle with different time scales: A phase of slow change
is followed by a short phase of rapid change in which the
system jumps to the next stage of slow variation. These os-
cillations belong to the class of nonlinear systems that give
rise to a self-sustained oscillation meaning that the system
goes alternately through phases in which energy dissipates
and is taken up again.

Van der Pol [66] studied such a type of oscillation in
a triode circuit. For small values of a system parameter
he found an almost sinusoidal oscillation, while for larger
values the system exhibited the type of slow-fast dynamics
described above. In the last case the period of the oscilla-
tion is almost proportional to that parameter. The name
relaxation oscillation, introduced by Van der Pol, refers to
this characteristic time constant of the system. In a next
publication Van der Pol [67] points out that not only in
electronics but in far more fields of science relaxation os-
cillations may be present. In this respect the physiology
of nerve excitation and, more specifically, the heart beat
was given special attention by him. In new generations
of electronic and electromagnetic systems, such as tran-
sistor circuits, Josephson junctions and laser systems, re-
laxation oscillations are prominently present. Applications
are also found in chemistry such as the Zhabotinskii reac-
tion [56], and in geophysics with e. g. the irregular pattern
of earthquakes at folds [70]. It is noted that the stick-slip
model [71] in the form of a Brownian relaxation oscilla-
tor is often brought up in these earthquake studies. In ad-
dition to the physiological applications, relaxation oscilla-
tions are found in the biology of interacting populations
such as in epidemiology [39] and in prey-predator sys-
tems, see [12,53,54]. Also in the humanities comparable
phenomena are met such as business cycles in economics,
see e. g. [31,69].

One way to handle mathematically relaxation oscilla-
tions is to exploit the presence of a small number. Dy-
namical systems with a small parameter " multiplying the
time derivative of some of the state variables degenerate
when this parameter is set to zero, as it is not possible any-
more to satisfy all initial- or periodicity conditions. In the
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theory of singular perturbations the limit process "! 0
is followed and the nonuniform convergence of the solu-
tion to some limit function is taken in consideration. At
the point in time, where this limit solution is discontinu-
ous, a new time scale is introduced by a stretching trans-
formation. Then again the limit "! 0 is taken leading to
a new (locally valid) limit solution. Integration constants
in both limit solutions are found from a matching pro-
cedure [15]. In a second approach, based on nonstandard
analysis [55], it is not necessary to consider at each step of
the computational process this limit procedure. The set of
real numbers is extended with infinitesimal numbers be-
ing numbers that are nonzero and have an absolute value
that is smaller than any real number. Then a solution of
a differential equation with an infinitesimally small param-
eter lies infinitely close to the limit solution in an appropri-
ate function space, see [58,79]. The nonstandard approach
of a type of relaxation oscillations known as canards or
“French ducks” [6] has given the method an important
place in the literature. In a third type of approach the at-
tention fully goes into the analysis of the vector field re-
lated to the dynamical system. The onset of a phase of fast
change in the period is marked by the passage of a special
point in state space (the fold point). By a blow up of the
vector field at this point [14] the periodic trajectory can be
rigorously described over a time interval containing this
point and therefore a full description over the entire pe-
riod is at hand. It has been worked out for relaxation os-
cillations [38] and is connected to the dynamical systems
theory known as geometrical singular perturbations [19].

Introduction

Periodic processes control our daily life. External influ-
ences such as the dynamics of sun, earth and moon play
an important role in e. g. the seasons, the tides and our
day–night rhythm. However, internally we also have our
circadian clock as well as other autonomous periodic pro-
cesses such as the regulation of our metabolic functions.
Periodic electric activities in our brain and heart play a key
role in the functioning of these organs. Through the work
of Hodgkin and Huxley [34] we have a good understand-
ing of the transport of electric pulses in nerve cells. Look-
ing back we notice that the result of Balthasar van der Pol
on periodicity in electric circuits is one of the scientific
achievements forming the basis of this breakthrough.

In Fig. 1 Van der Pol’s triode circuit is depicted. It pro-
duces a self-sustained oscillation due to the nonlinearity
in the triode characteristic given by Ia D V � 1

ı
3V3. Re-

placing V by a scaled potential x and scaling also the time
variable we obtain from circuit theory the following differ-

Relaxation Oscillations, Figure 1
Triode circuit giving rise to a self-sustained oscillation. L is a self-
inductance, M a mutual inductance and R a resistance. I and V
are, respectively, the current and the grid voltage

ential equation

d2x
d�2
C�(x2�1)

dx
d�
Cx D 0; � D M

ıp
LC�R

q
C
ı
L:

(1)

For � small a nearly sinusoidal oscillation is found with
amplitude close to 2 and a period close to 2� . For �	 1
an almost discontinuous solution appears for which the
period is nearly proportional with this parameter, see
Fig. 2. The best way to study this last type of oscillation
is to rewrite the second-order differential Eq. (1) as a sys-
tem of two coupled first-order differential equations and
to introduce the small parameter " D 1

ı
�2. Furthermore,

a new time scale is introduced t D �
ı
�. It leads to the so-

Relaxation Oscillations, Figure 2
Periodic solution of Eq. (1) for a� D 0:1, b�D 1, c� D 10
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called Lienard-type of representation of the system [41]:

"
dx
dt
D y�F(x); F(x) D 1

ı
3 x3�x ; 0 < "
 1; (2)

dy
dt
D �x C a ; a D 0 : (3)

Discontinuous Limit Solution

In Fig. 3a it is seen how the periodic solution of (2) be-
haves in the limit "! 0. It has the form of a discontinu-
ous solution consisting of two time intervals in which the
system follows alternately in state space two branches (DA
and BC) of the graph of y D F(x) with jxj > 1, see Fig. 3b.
These are the stable branches; they are rapidly approached
because of a fast changing variable x if y ¤ F(x). In be-
tween the two branches there is the unstable branch AC at
which two trajectories move away from the unstable equi-
librium at the origin. At the point where a stable branch
becomes unstable the system jumps to the opposite stable
branch. Clearly the amplitude of the discontinuous oscil-
lation has the value 2 in the x variable. The period follows
from

T0 D 2
2/3Z

�2/3

dt
dy

dy D 2
�1Z

�2

1
�x

F 0(x)dx D 3� 2 ln 2 : (4)

This discontinuous solution can be seen as a zero-order
asymptotic approximation of the solution with respect to
the small parameter ". In Sect. “Asymptotic Solution of the
Van der Pol Oscillator” we will deal with higher-order ap-
proximations using the theory of singular perturbations.

Canards

If in formula (2) the parameter a is varied an intriguing
type of Hopf bifurcation arises. When passing the values

Relaxation Oscillations, Figure 3
The discontinuous approximation of the solution of the Van der Pol equation for "! 0. The parts AB and DC of the orbit are taken
infinitely fast. a The function x(t) for "! 0. b The closed orbit in the x; y-plane

a D ˙1 for decreasing absolute value of a, a stable equi-
librium turns unstable and a relaxation oscillation arises.
The scenario of a common Hopf bifurcation is that a sta-
ble equilibrium changes into an unstable one at the bi-
furcation point and that a periodic solution branches off
with an amplitude that grows in the beginning quadrati-
cally as a function of the distance of the parameter to the
just passed bifurcation point. However, the above discon-
tinuous periodic solution suggests that directly after the
bifurcation point a fully developed relaxation oscillation
arises. Using concepts of nonstandard analysis [55] French
mathematicians [6] explain how the curious emergence of
a relaxation type of oscillation at a Hopf bifurcation can
be understood. Also by an intricate asymptotic analysis the
phenomenon can be described with singular perturbation
theory [16]. In Sect. “Canards” we sketch the result. Fi-
nally, as part of a dynamical systems approach (Sect. “Dy-
namical Systems Approach”) a geometrical singular per-
turbation analysis can be carried out as well [38].

Bonhoeffer–Van der Pol Equation
or FitzHugh–Nagumo Equation

When we take in (3) a D �1 � ı; 0 < ı 
 1 with ı in-
dependent of ", a stable equilibrium (x, y) arises with
x D �1 � ı. A small perturbation of the x-component of
the system, causing a deviation that stays below 2ı, will
damp out quickly. A positive perturbation just above this
threshold (dotted line) will trigger a cycle of the system
as depicted in Fig. 4. FitzHugh [21] constructed a similar
variant of the Van der Pol Equation (2) providing a math-
ematical model of a nerve excitation as described by Bon-
hoeffer [3]. Firing of a neuron occurs when an electric
stimulation of a dendrite is above some threshold value
triggering an electric pulse in the neuron itself which is
passed through the axon to other neurons. Also the pres-
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Relaxation Oscillations, Figure 4
A perturbation (dotted line) of the equilibrium (
) above thresh-
old triggers a cycle. During the cycle perturbations do not have
a large effect (refractory period)

ence of a so-called refractory period can be understood
from the above system. The refractory period is the time
directly after an above threshold stimulation. During this
time the neuron is insensitive to perturbations. Later on
more refined models evolved [57]. The introduction of
spatial structure and diffusion made it possible to consider
traveling pulses [1,34].

Orbital Stability, Entrainment, Chaos,
Quenching, and Noise

In applications we typically meet nonlinear oscillations
that are orbitally highly stable but rather easily speeded up
or slowed down in their cycle. In a biological context or-
ganisms are provided in this way with a mechanism that
helps them to adapt to external circumstances. Also in
physics we meet such behavior in systems with strong en-
ergy exchange with the environment (lasers), as opposed
to conservative systems without dissipation such as in ce-
lestial systems.

In (2) entrainment is found if we let the parameter a
depend periodically on time with a period say T. If the
period T(0) of the autonomous system with a D 0 in (2)
is sufficiently close to the forcing period T or if the am-
plitude of the forcing is sufficiently large, then the sys-
tem will take over this period T. If T(0) is near a value
nT, n D 2; 3; : : : a subharmonic solution with period nT
may arise. It also may occur that two stable subharmon-
ics with different n values co-exist. Then the starting value
determines which one is chosen. Van der Pol and Van der
Mark [68] and Littlewood [43,44] already concluded on
respectively, experimental and theoretical grounds that in
such a case also other “strange” (chaotic) solutions may
be present in the Van der Pol-type oscillator with periodic

forcing, see [4,40,42]. For autonomous systems chaotic dy-
namics can be found in systems consisting of at least three
components [23]. A system with one fast and two slow
variables already exhibits a wealth of interesting dynamical
features, including chaos. Quenching of an oscillation can
be achieved by extending the system with a set of differ-
ential equations including a feedback to the original sys-
tem such that the amplitude of the oscillation is reduced
by choosing appropriate values for the parameters. For an
application to relaxation oscillations see [72,74].

Relaxation oscillations are met in a wide range of ap-
plications. Since in practice the action of random forces
mostly cannot be excluded, stochastic oscillation forms
an essential part of the theory of periodic phenomena in
the description of natural processes as well as in the engi-
neering sciences, see [27,33]. An additional reason to take
stochasticity in account comes from the fact that the phase
velocity of the relaxation oscillator is easily influenced.

Higher-Order Systems and Coupling of Oscillators

Making a generalization we consider the periodic solution
of a system of differential equations of the form

"
dx
dt
D f (x; y; ") ;

dy
dt
D g(x; y; ") ; 0 < "
 1 ; (5)

where x and y are respectively k- and l-dimensional vec-
tor functions of time. The vector functions f and g remain
bounded for "! 0. Then the (slow) dynamics is governed
by y0(t) D g(x; y; 0) with constraint 0 D f (x; y; 0) and for
the fast dynamics we have "x0(t) D f (x; y; 0) with y con-
stant. An extension of the Van der Pol-type dynamics to
such a higher-dimensional system is not difficult to con-
ceive. However, formulating precisely the conditions for
the system (5) to have a periodic solution and to work out
a full proof for the existence of such a solution is a rather
complex task [46]. As we mentioned before, chaotic solu-
tions may occur too.

Another way to arrive at higher-order systems is to
couple relaxation oscillators [76]. For relaxation oscillators
of type (2) with different autonomous periods we take

"
dxi
dt
D yi � F(xi) ;

dyi
dt
D �ci xi C

nX

jD0 j¤i

ıpi jx j ; 0 < "
 ı 
 1 :
(6)

For a system of n D 100 oscillators with a high degree of
coupling, e. g. pi j ¤ 0 for all j ¤ i, and widely different
frequencies, e. g. ci D 0:5C i

ı
n, we will observe (after

a spin up) a spectrum of frequencies with distinct peaks.
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These peaks are related by a simple ratio of their frequen-
cies such as 1:2 or 3:2 and so on, see [17,25]. Consider-
ing spatially distributed oscillators with nearest neighbor
coupling we meet interesting phenomena such as trav-
eling phase waves. The corresponding fronts may have
a preferred direction given by the gradient in the au-
tonomous periods (inherently faster oscillators are likely
ahead in phase). Locally, oscillators tend to have an equal
actual period (phase velocity) although their intrinsic peri-
ods are different. This phenomenon, called plateau behav-
ior, has been investigated by Ermentrout and Kopell [18].
Wave fronts may also move in spirals or travel randomly
breaking down when meeting each other as we see in
the Zhabotinskii reaction [20] or during fibrillation of the
heart [62].

Asymptotic Analysis with Respect
to the Small Parameter

By letting "! 0 the Van der Pol oscillator (2) reduces to
the system:

(x20 � 1)
dx0
dt
C x0 D 0 (7)

having a discontinuous solution

t D ln(x0) � 1
2 (x

2
0 � 1) for � 1

2T0 < t < 0 ; (8)

t D ln(�x0)� 1
2 (x

2
0 � 1)C 1

2T0 for 0 < t < 1
2T0 (9)

with T0 given by (4). This approximation, see Fig. 3a, is
improved in Sect. “Asymptotic Solution of the Van der Pol
Oscillator” by the construction of higher-order terms with
respect to the small parameter ". Contrary to regular per-
turbation problems, where a power series expansion with
respect to " holds over the entire period, we have to con-
sider here separate power series expansions for the stable
branches. Moreover, we have to exclude a small neighbor-
hood of the point t D 0 where the discontinuity occurs.
Near (t; x) D (0; 1) a local approximation is made based
on fractional powers of ". It is followed by an internal layer
solution approximating the fast change in x from the value
1 to the starting value � 2 at the next stable branch. Un-
known (integration) constants are determined by match-
ing the local solutions at t D 0 to the regular solutions at
the two stable branches, see Sect. “Asymptotic Solution of
the Van der Pol Oscillator”. Matching of local asymptotic
solutions typically applies to differential equations with
a small parameter multiplying the highest derivative such
as in (1) with � and � replaced by t and ", see [15,50]. In
the literature on relaxation oscillations the procedure has
been carried out in different ways depending on whether

one chooses to solve the problem in the x; t-plane [8], the
x; ẋ-plane [13], or the Lienard plane. For a survey of this
literature see [25]. For higher-order systems the construc-
tion of matched local asymptotic solutions that involve
higher-order terms with respect to " turns out to be rather
complicated, see [46].

A different type of approximation, based on power se-
ries expansion with respect to the parameter � D 1

ıp
",

was made possible by the use of computerized formula
manipulation packages. In this way elements of a periodic
solution such as period and amplitude are approximated
also for large values of the parameter �, see [2,10].

Topological Methods, Mappings
and the Dynamical Systems Approach

The existence of a periodic solution for (2) has been
proved with the Poincaré–Bendixson theorem. This
method, based on topological arguments, only applies to
two-dimensional systems. If in the x; y-plane we can con-
struct a domain that does not contain equilibrium points
and all trajectories crossing the boundary are entering the
domain, then the domain contains a limit cycle. If the do-
main is a narrow annulus enclosing the limit cycle the
method also produces an approximation of the solution
together with its period and amplitude [52].

Another important tool in the dynamical systems ap-
proach is the Poincaré map or transition map. For au-
tonomous n-dimensional systems we may consider start-
ing values at a bounded transversal (n � 1)-dimensional
surface and analyze how the trajectories intersect some
other surface in the state space or the same surface (re-
turnmap). In periodically forced systems we may consider
the mapping of the full state space into itself after a time
interval equal to the forcing period. Such a type of map-
ping may also apply to the phase of an oscillator or to the
phases of a system of coupled oscillators. A periodic solu-
tion corresponds with a fixed point of the returnmap or, in
the case of a forced system, with a fixed point of the map
of the state space into itself after one or more periods of
the forcing term. Chaotic solutions may occur due to the
presence of a so-called horse-shoe map [61]. Levi [40] used
a map of this type to describe chaotic solutions of a piece-
wise linear Van der Pol equation with a sinusoidal forcing
term.

Presently, relaxation oscillations are also analyzed with
geometrical singular perturbation theory [64]. Geometri-
cal singular perturbations deal with the structure of the
slow manifold f (x; y; 0) D 0 containing trajectories of (5)
with " D 0 that vary slowly in time [19]. A point of the
slow manifold is an equilibrium of the fast system in the
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time scale � D t
ı
" : dx

ı
d� D f (x; y(0); 0). It is assumed

that the eigenvalues of this system linearized at the equi-
librium have real parts that are bounded away from zero
(hyperbolicity condition). For relaxation oscillations this
condition is not satisfied [73]. More details are given in
Sect. “Dynamical Systems Approach”.

Asymptotic Solution of the Van der Pol Oscillator

From the different methods to approximate asymptoti-
cally the solution of (2) we choose the approach of Carrier
and Lewis [8], who consider the solution in the t; x-plane,
see Fig. 5. Writing (2) again as a second-order differential
equation

"
d2x
dt2
C (x2 � 1)

dx
dt
C x D 0 ; (10)

we can expand the solution valid for the stable branch as

x(t; ") D x0(t)C "x1(t)C "2x2(t)C � � � : (11)

Substitution of (11) in (10) gives, after equating terms
with equal powers in ", a recurrent system of differential
equations for the coefficients xi(t) of (11) with x0(t) given
by (7) when taking the branch for t < 0. We see from (8)
that for t " 0 this first term behaves as x0 � 1C

p
�t, so

the second-order derivative cannot be neglected near the
origin. To analyze the local behavior of the solution in
more detail we apply a stretching transformation

t D �"2/3 ; x D 1C "1/3v(�) : (12)

Substitution in (10) yields for the leading terms the equa-
tion

d2v0
d�2
C2v0

dv0
d�
C1 D 0 or

dv0
d�
C v20C � D B : (13)

Relaxation Oscillations, Figure 5
The solution in the t; x-planewith the fast change just after t D 0
starting with a specific local behavior near the point (0,1)

In order tomatch x0 for � ! �1 the solutionmust satisfy
v0(�) �

p
�� when taking this limit. The solution

v0(�) D �
Ai0(��)
Ai(��)

(14)

with Ai(z) the Airy function complies with this matching
condition. As �� approaches ˛ D �2:33811 : : :, being the
first zero of the Airy function, the solution will behave
as v0(�) � 1

ı
(� � ˛). Consequently, the first two terms

of (10) will be leading in the left hand side of the equa-
tion and make the solution enter the phase of fast change
for which we choose the appropriate time variable � using
the transformation

t D ˛"2/3 C �" ; (15)

so

d2w0

d�2
C (w2

0�1)
dw0

d�
D 0 or

dw0

d�
D w0�

1
3
w3
0CD :

(16)

Matching with v0 for �! �1 yields D D �2
ı
3 � ˛"2/3

and integrating Eq. (16) we obtain

� � D
1

1 � w0
C

1
3
ln

 
w0 C 2C 1

ı
3˛"2/3

1 � w0

!

: (17)

For �!1 the solution behaves asw0 D �2�1
ı
3˛"2/3C

O(exp(�3�)). This must match the regular asymptotic so-
lution at the stable branch for t > 0 for which the zero-
order approximation satisfies

t D ln(�x0)� 1
2 (x

2
0 � 1)C E (18)

giving E D 3
ı
2 � ln(2)C 3

ı
2˛"2/3. At x0 D �1 the vari-

able t is at the value 1
2T0, so

T0 � 3 � 2 ln(2)C 3˛"2/3 : (19)

The amplitude A follows from the minimal value of w0
which is approached in (17) for �!1:

A� 2C 1/3˛"2/3 : (20)

For a higher-order approximation of both the period and
the amplitude we refer to Grasman [25]. In Grasman
et al. [30] the Lyapunov exponents are approximated in
a similar way.
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Relaxation Oscillations, Figure 6
Numerical solutions of period 2�mwithm depending on� and b

Sinusoidal Forcing

We next consider the Van der Pol oscillator with a sinu-
soidal forcing term

d2x
d�2
C�(x2�1)

dx
d�
C x D (bC c�) cos(k�) ; �	 1 :

(21)

A first mathematical investigation of this problem was
made by Cartwright and Littlewood [9] followed by Lit-
tlewood [43,44]. Subharmonic solutions were constructed.
Solutions with different periods may coexist and also so-
lutions that behave chaotically may turn up. Following
the method of Carrier and Lewis for this nonautonomous
Eq. (21) with c D 0 and k D 1 we go through the same
sequence of asymptotic solutions: The regular approxima-
tion of the type (11), the local solution when the trajec-
tory crosses the lines x D ˙1, giving rise to an expression
with Airy functions, and a fast changing part directly af-
ter with a local approximation similar to (17), see [29].
We may construct various periodic solutions. The most
prominent ones have period 2�m with m an odd num-
ber. The value of m depends on �. In Fig. 6 we depicted
the domains in the parameter plane where these solutions
are found. Their boundaries follow from the construction
of the asymptotic solution. The result is compared with
the numerical solution of the system. Notice the over-
lap of these domains and the coexistence of different nu-
merical solutions. Also chaotic solutions can be approxi-
mated asymptotically. They come with the phenomenon
of dips and slices which also occurs in the general case for
c ¤ 0 [28]. The main difference with the previous case is
that instead of Airy functions parabolic cylinder functions
turn up. In Fig. 7 we see how dips and slices arise. They oc-
cur when the trajectory stays close to the regular solution

Relaxation Oscillations, Figure 7
A dip and a slice for slightly different initial values chosen such
that upon arrival at the line x D 1 a point is passedwhere stable
(x > 1) and unstable (x < 1) regular solutions meet

below the line x D 1, while switching from a stable branch
(x > 1) to an unstable branch (x < 1) of this regular so-
lution. It can be seen as a canard type of phenomenon as
noted by Smolyan andWechselberger [63].

Coupled Van der Pol-Type Oscillators

The discontinuous periodic solution of (2) for "! 0 is
given by (7) and has the form of the vector fx0(t); y0(t)g.
We next consider (2) with the parameter a replaced by
a small amplitude piecewise continuous periodic function
ıh(t) with period T:

"
dx
dt
D y � F(x) ;

dy
dt
D �cx C ıh(t) ; c D 1 ;

0 < "
 ı 
 1 : (22)

For "! 0 and ı sufficiently small the solution will take the
same orbit as for ı D 0; only the velocity on the limit cycle
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is influenced. Consequently, a solution of Eq. (22) can be
approximated by

fx0(�(t)); y0(�(t))g : (23)

Substitution in the Eq. (7) yields

dy0
d�

d�
dt
D �x0(�(t))Cıh(t) or

d�
dt
D 1�

ıh(t)
x0(�(t))

:

(24)

Starting with a phase �(0) D ˛0 and integrating over one
period T gives a phase shift

ı (˛0) D
TZ

0

ıh(t)
x0(�(t))

dt : (25)

Thus, the dynamics of the oscillator is described in a stro-
boscopic way by the iteration map

˛kC1 D ˛k C T C ı (˛k)(mod)T0 : (26)

Besides a periodic solution of period T different types of
subharmonic solutions can be found as well as chaotic
solutions depending on the function  (˛). An entrained
solution corresponds with a stationary point ˛s of the
map (26). Such a point exists if for some m D 1; 2; : : :

fı (˛)gmin < mT0 � T < fı (˛)gmax : (27)

Mapping of the phase in the above way is a well-known
approach of modeling entrainment by the use of circle
maps [51]. It is noted that here we go back further and
relate this map to an oscillator given by a differential equa-
tion.

If we consider a system of identical oscillators
fx0(�i(t)); y0(�i(t))g, i D 1; 2; : : :, n with a forcing of os-
cillator i by the others of the form ı˙hi j(x j; y j), we are in
the position to analyze different forms of mutual entrain-
ment such as wave phenomena in systems of spatially dis-
tributed oscillators with nearest neighbor coupling as de-
scribed in Sect. “Introduction”. A system of spatially dis-
tributed oscillators with nearest neighbor coupling can be
seen as a discrete representation of a nonlinear diffusion
problemwith oscillatory behavior. A time delay in the cou-
pling can be handled as well, see [7,26].

It is also allowed that the orbits and the autonomous
period of the oscillators are different. As an example we
take 25 piecewise linear oscillators with in (22)

F(x) D x C 2 for x < �1 ;
F(x) D x � 2 for x > 1 ;
F(x) D x for jxj � 1

and ı D 0:0025. For this example an analytic expression
for  (˛) can be derived. For oscillator i the parameter c
is in (6) replaced by ci (ı) D 1 � qiı with qi being a ran-
dom number generated by the normal distribution with
expected value zero and standard deviation, so that the
autonomous period is T(i)

0 D T0(1C ıqi ). As the forcing
function of oscillator i we choose h D ˙hi j(x j) D ˙x j
with j ¤ i. The evolution of the dynamics with the oscilla-
tors starting in a uniformly distributed random phase has
the form of an iteration map of the type (26) and is de-
picted in Fig. 8. It is observed that by the type of coupling
the oscillators are slowed down considerably and that in
the almost fully entrained state (t D 50T0) the inherently
faster oscillators are slightly ahead in phase.

Canards

We return to the Van der Pol equation in the Lienard-
form (2–3) and apply a translation of the state variables x
and y as well as the parameter a such that (x; y; a) D
(1;�2

ı
3; 1) moves to the origin (0; 0; 0):

"
dx
dt
D y�F(x); F(x) D 1

ı
3x3Cx2 ; 0 < "
 1;

(28)

dy
dt
D �x C a : (29)

For �2 < a < 0 with a fixed and "! 0 a relaxation os-
cillation is found as we analyzed in Sect. “Asymptotic So-
lution of the Van der Pol Oscillator” using the asymp-
totic method of Carrier and Lewis [8]. The computation
was done for a D �1, but any value at this interval would
have given the same result. For a < �2 or a > 0 a sta-
ble equilibrium turns up. In a small interval near either
the point � 2 or the point 0 the solution exhibits a dras-
tic change. Eckhaus [16] analyzes that more explicitly near
these values critical points exist, where in a small inter-
val the solution rapidly changes from an equilibrium into
a full grown relaxation oscillation. Near a D 0 we have the
critical point

˛c(")g D �1
ı
8"C � � � ; (30)

where such a change takes place. The following stretching
transformation reveals the continuous change of the limit
solution as a function of the parameter a:

a D ˛c(")C �"3/2 exp(�k2/") : (31)

In Fig. 9 we sketch two periodic limit solutions with � hav-
ing different signs. First notice that for � D o(1) a solution
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Relaxation Oscillations, Figure 8
A system of coupled piecewise linear Van der Pol relaxation oscillators with autonomous period T (i)0 D T0(1C ıqi), i D 1; : : : ; 25.
The phase of each oscillator runs from � 1

2T0 D � ln(3) to � 1
2 T0. The actual phase and period at times t D nT0 are depicted. The

actual period Ti(n) is given by its deviation from T0 : ri D (Ti(n)� T0)
ı
ı. This expression compares with qi (for n D 0, the points are

situated at the diagonal)

that is on the stable branch (x > 0) will keep following the
unstable branch until the point where it meets the other
stable branch (x D �2) and will jump then back to the sta-
ble branch where it started. For � > 0 we have a periodic
solution that in the limit for � !1 transforms into an
equilibrium solution (Fig. 9a). For � < 0 we have a peri-
odic solution having the shape of a duck that in the limit
for � ! �1 takes the form of a fully developed relaxation
oscillation (Fig. 9b).

The phenomenon, that is revealed here, is called a “ca-
nard explosion”. It is basically due to the fact that a tra-
jectory is very close to a stable branch and that at the

moment the branch becomes unstable it keeps on going
close to the unstable branch because the deviation from
this branch does not grow rapidly, see also [24,60]. A sim-
ilar phenomenon is met in “slow passage through bifurca-
tion” [45].

Dynamical Systems Approach

We start from the system (5) with vector functions x(t) and
y(t) and consider the fast dynamics by making a transfor-
mation to the fast time scale � D t

ı
" and keeping y D y(0)
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Relaxation Oscillations, Figure 9
Two stages in the canard explosion with parameter values given by (31)

fixed:

dx
d�
D f (x; y(0); 0) : (32)

In the dynamical systems approach trajectories of (5) with
" D 0 exist, called fibers having y D y(0) for all t andwith x
given by (32). Let them move to the point (x(0); y(0)) at
the smooth manifold M(0) given by f (x; y; 0) D 0. Thus,
the point (x(0), y(0)) at M(0) is a stable equilibrium of the
fast system (32). The equilibria are the base points of the
fibers. Then next at the manifold M(0) the slow dynamics
is governed by

dy
dt
D g(x; y; 0) with constraint f (x; y; 0) D 0 : (33)

In the geometrical singular perturbation theory of
Fenichel [19] a condition for the equilibrium (x(0); y(0))
of (32) is formulated. Fenichel only considers parts of
M(0) for which at all points (x(0); y(0)) the Jacobian
@ f (x; y; 0)

ı
@x has eigenvalues with a real part that is

bounded away from zero. This is called the hyperbolicity
condition. It is noted that eigenvalues with positive real
parts are allowed. Then the corresponding eigenvectors
span a subspace V (u) for which in the system (32) lin-
earized at (x(0); y(0)) all trajectories move away from the
equilibrium. For (32) itself a manifoldW (u) is defined with
V (u) tangent to this manifold at (x(0); y(0)). The manifold
W (u) consists of the set of unstable fibers. Similarly the
manifoldW (s) is defined containing the set of stable fibers.
It is proved that, for " positive and sufficiently small, near
M(0) a slowmanifoldM(") exists satisfying (5). The fast dy-
namics is governed by the fibers keeping in mind that we
move from one fiber to its neighboring one as described by
the slow change of the fiber base point at M("). When ap-
proximating asymptotically the solution, a transformation
is preferred that differs slightly from the matched asymp-
totic expansions approach. We illustrate it with the follow-
ing simple system with scalar functions x(t) and y(t):

"
dx
dt
D y � x ;

dy
dt
D 1 : (34)

Then for " D 0 we have fast fibers with y D constant mov-
ing towards the slow manifold M(0) : y D x, see Fig. 10.
For small positive " the slow manifold is defined by
M(") : y D x C ". The motion at this manifold (and the
change of the base point of the actual fiber) is governed
by dy

ı
dt D 1. For the fast motion parallel to the fibers we

make the transformation x D y � "C v, so that the new
variable v represents the distance to the base point of the
fiber. In the fast time scale we then obtain for the motion
parallel to the fibers dv

ı
d� D �v. For more complex sys-

tems the expressions for M(") and for the solutions of the
slow and fast systems take the form of power series expan-
sions with respect to ". Formore details we refer to [36,37].

For relaxation oscillations the hyperbolicity condition
is not satisfied. This is easily verified from the Van der
Pol Eq. (2) where M(0) : y D 1

ı
3x3 � x, because at the

fold points x D ˙1 the eigenvalue of the Eq. (2) linearized
at these x values equals zero. To restore hyperbolicity
a blow up technique [14] is used. It applies to the sys-
tem (2) extended with the differential equation d"

ı
dt D 0

for which the fold point (x; y; ") D (1;�2
ı
3; 0) as well as

(�1; 2
ı
3; 0) and their direct neighborhoods are put under

a magnifying glass.We follow the exposition by Krupa and
Szmolyan [38] and consider the neighborhood of a fold
point situated at the origin for the following system in the
fast time scale

dx
d�
D �y C x2 C a(x; y; ") ;

dy
d�
D �"C b(x; y; ") ;

d"
d�
D 0 ;

(35)

where the terms a(x; y; ") and b(x; y; ") can be neglected
if we are sufficiently close to the origin, see Fig. 11a for the
dynamics near the fold point. The blow up transformation
(x; y; ")! (x̄; ȳ; "̄; r̄) takes the form

x D r̄ x̄ ; y D r̄2 ȳ ; " D r̄3"̄ : (36)
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Relaxation Oscillations, Figure 10
The dynamics of (34) for "D 0 (left) with the fast flow represented by the lines y is constant (fibers) and the slow dynamics by the
line y D x being the manifoldM(0). For small positive " (right) the trajectories cross the fibers (given for "D 0) until they arrive at an
exponentially small neighborhood of the slowmanifoldM(")

Relaxation Oscillations, Figure 11
Dynamics near and in a fold point, see the text for a detailed description

It is such that in R3 a ball B D S2 � [0; �] with � suf-
ficiently small is mapped onto R3. By this transformation
the new coordinates x̄; ȳ and "̄ indicate a point at a spher-
ical surface S2. In Fig. 11b a circle is depicted that corre-
sponds with the fold point (r̄ D 0) in a blow up. Inside the
circle, where "̄ is positive and r̄ D 0, we are in S2 above
the equator, while at the circle we are at the equator where
"̄ D 0. Outside the circle we have "̄ D " D 0 but now with
r̄ > 0. There transformed fibers of the limit system near
the fold point are drawn. Note that the slowmanifold con-
sists of equilibria because of the fast time scale. The bold
lines indicate the path of the orbit as it passes the fold
point. Away from the equator the dynamics near the fold
point is described by taking the fixed value "̄ D 1. We in-
troduce a new time scale �̄ D r̄� and let r̄! 0. In that way

we arrive at the system

dx̄
d�̄
D �ȳ C x̄2 ;

d ȳ
d�̄
D �1 ; (37)

having the same solution as (13). For more details we refer
to Krupa and Szmolyan [38], who proceed with a similar
analysis of a canard explosion. Furthermore, the method
has been extended to relaxation oscillations in R3 [64], in-
cluding canards, see [5,11,63]. In [75] the method is ap-
plied to a prey-predator system.

Future Directions

Over more than 75 years studies on relaxation oscilla-
tions have appeared in the literature. It is noticed that each
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time a new development takes place in physics or mathe-
matics, relaxation oscillations turn out to be an interest-
ing subject to be investigated with such a novel theory.
In electronics we find the use of nonlinear devices start-
ing with triodes in electric circuits [66]. In mathematics
we see that relaxation oscillation is a rewarding subject to
which many new theories can be applied. In chronolog-
ical order we mention: Rigorous theories for estimating
solutions of differential equations [9], singular perturba-
tion theory and matched asymptotic expansions [8], non-
standard analysis [6], catastrophe theory [69], chaos the-
ory [40], and geometrical singular perturbations [38]. The
reason for this lies in the fact that a relaxation oscillation
is a highly nonlinear phenomenon with internal mecha-
nisms that are close to real life functions like adaptation
by entrainment and threshold behavior in case of trigger-
ing. Possible new topics in the field of nonlinear oscilla-
tion can, in particular, be found in biology. Literature in
which models of biological processes are formulated may
function as a source of inspiration. In particular we men-
tionWinfree [78] andMurray [47,48]. To be more explicit
about new opportunities we bring up the following cases.

The study of the dynamics of oscillations by circle
maps or phase equations turned out to be very useful in
particular for the description of entrainment of biologi-
cal oscillators. In Sect. “Coupled Van der Pol-Type Os-
cillators” we made the connection between a differential
equationmodel for state variables and the phase equations,
see (22)–(26), see also [35]. However, the result only holds
for the discontinuous solution as we see from (25), where
the denominator of the integrand jumps over the value
zero. How in the limit for "! 0 we arrive at this result has
not yet been worked out. We furthermore mention that
spatial distribution of oscillators and the way they are cou-
pled may give rise to interesting entrainment phenomena.
In the first place there is the nearest neighbor coupling.
Taking an appropriate limit in case of diffusive coupling
wemaymodel the dynamics by a nonlinear diffusion equa-
tion. Although studies in this direction exist, see e. g. [49],
still a lot of work can be done. Furthermore, observations
of rhythms in neural networks with long distance coupling
show special forms of entrainment, see [65]. Mathematical
analysis of such a network of coupled relaxation oscillators
may help to understandmore from these phenomena. Not
only the distance can be varied also the type of coupling;
we may consider excitatory and inhibitory forcing refer-
ring to the effect they have on an oscillator of the Bonho-
effer–Van der Pol-type, see [77]. Besides easy entrainment
of coupled relaxation oscillators there is a second form of
adaptation which is comparable with that of neural com-
puting. The coupling between two oscillators in a network

may increase if they are entrained for a longer period of
time and decrease if they are not. In this way the network
is structured by the input and if the input changes the net-
work will follow. The neural theory of cell assemblies [32]
is based on such a mechanism known as plasticity of the
network, see [22,59]. Effects due to a combination of long
range coupling and plasticity may occur as well [79].

Studies on systems with complex interactions between
many oscillators as we sketched above may take different
directions. On one hand large-scale computer simulations
may offer a wealth of results, but models that are more
conceptual and are investigated (partly) analytically may
give more insight into the fundamental properties of such
systems. However, it is not easy to see at forehand that
a study of the second type will lead to a meaningful result
and is for that reason a more risky enterprise.
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Glossary

Repeated game A model of repeated interaction between
agents.

Behavioral strategy A decision rule that prescribes a ran-
domized choice of actions for every possible history.

Nash equilibrium A strategy profile from which no uni-
lateral deviation is profitable.

Sequential equilibrium A strategy profile and Bayesian
beliefs on past histories such that after every history,
every agent is acting optimally given his beliefs.

Monitoring structure A description of player’s observa-
tion of each other’s strategic choices. It specifies, for
every profile of actions, the probability distribution
over the profiles of individual signals received by the
agents.

Definition of the Subject

Repeated interactions arise in several domains such as
Economics, Computer Science, and Biology.

The theory of repeated games models situations in
which a group of agents engage in a strategic interac-
tion over and over. The data of the strategic interaction
is fixed over time and is known by all the players. This is
in contrast with stochastic games, for which the data of the
strategic interaction is controlled by player’s choices, and
repeated games with incomplete information, where the
stage game is not common knowledge among players (the
reader is referred to the corresponding chapters of this En-
cyclopedia). Early studies of repeated games include Luce
and Raiffa [48] and Aumann [4]. In the context of produc-
tion games, Friedman [25] shows that, while the compet-
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itive outcome is the only one compatible with individual
profit maximization under a static interaction, collusion is
sustainable at an equilibrium when the interaction is re-
peated.

Generally, repeated games provide a framework in
which individual utility maximization by selfish agents is
compatible with welfare maximization (common good),
while this is known to fail for many classes of static
interactions.

Introduction

The discussion of an example shows the importance of re-
peated games and introduces the questions studied.

Consider the following game referred to as the Pris-
oner’s Dilemma:

C
D

C D
4; 4 5; 5
5; 0 1; 1

The Prisoner’s Dilemma

Player 1 chooses the row, player 2 chooses the column, and
the pair of numbers in the corresponding cell are the pay-
offs to players 1 and 2 respectively.

In a one-shot interaction, the only outcome consistent
with game theory predictions is (D;D). In fact, each player
is better off playing D whatever the other player does.

On the other hand, if players engage in a repeated Pris-
oner’s Dilemma, if they value sufficiently future payoffs
compared to present ones, and if past actions are observ-
able, then (C;C) is a sustainable outcome. Indeed, if each
player plays C as long as the other one has always done
so in the past, and plays D otherwise, both player have an
incentive to always play C, since the short term gain that
can be obtained by playing D is more than offset by the fu-
ture losses entailed by the opponent playing D at all future
stages.

Hence, a game theoretical analysis predicts signifi-
cantly different outcomes from a repeated game than from
static interaction. In particular, in the Prisoner’s Dilemma,
the cooperative outcome (C;C) can be sustained in the
repeated game, while only the non-cooperative outcome
(D;D) can be sustained in one-shot interactions.

In general, what are the equilibrium payoffs of a re-
peated game and how can they be computed from the
data of the static game? Is there a significant difference
between games repeated a finite number of times and in-
finitely repeated ones? What is the role played by the de-
gree of impatience of players? Do the conclusions obtained
for the Prisoner’s Dilemma game and for other games rely
crucially on the assumption that each player perfectly ob-
serves other player’s past choices, or would imperfect ob-

servation be sufficient? The theory of repeated games aims
at answering these questions, and many more.

Gameswith Observable Actions

This section focuses on repeated games with perfect mon-
itoring in which, after every period of the repeated game,
all strategic choices of all the players are publicly revealed.

Data of the Game, Strategies, Payoffs

Data of the Stage Game There is a finite set I of players.
A stage game is repeated over and over. Each player i’s ac-
tion set in this stage game is denoted Ai, and Si D �(Ai )
is the set of player i’s mixed actions (for any finite set X,
�(X) denotes the set of probabilities over X). Every de-
generate lottery in Si (which puts probability 1 to one par-
ticular action in Ai) is associated to the corresponding el-
ement in Ai. A choice of action for every player i deter-
mines an outcome a 2

Q
i Ai . The payoff function of the

stage game is g : A! RI . Payoffs are naturally associated
to profiles of mixed actions s 2 S D

Q
i Si using the ex-

pectation: g(s) D Es g(a).

Repeated Game After every repetition of the stage game,
the action profile previously chosen by the players is pub-
licly revealed. After the t first repetitions of the game,
a player’s information consists of the publicly known his-
tory at stage t, which is an element of Ht D At (H0 D f;g

by convention). A strategy in the repeated game specifies
the choice of a mixed action at every stage, as a function of
the past observed history. More specifically, a behavioral
strategy for player i is of the form �i : [t Ht ! Si . When
all the strategy choices belong to Ai (�i : [t Ht ! Ai ), � i
is called a pure strategy.

Other Strategy Specifications A behavioral strategy al-
lows the player to randomize his action depending on
past history. If, at the start of the repeated game, the
player was to randomize over the set of behavioral strate-
gies, the result would be equivalent to a particular be-
havioral strategy choice. This result is a consequence of
Kuhn’s theorem [5,41]. Furthermore, behavioral strategies
are also equivalent to randomizations over the set of pure
strategies.

Induced Plays Every choice of pure strategies � D (�i )i
by all the players induces a play h D (a1; a2; : : : ) 2 A1 in
the repeated game, defined inductively by a1 D (�i;0(;))
and at D (�i;t�1(a1; : : : ; at�1)). A profile of behavioral
strategies � defines a probability distribution P
 over
plays.
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Preferences To complete the definition of the repeated
game, it remains to define player’s preferences over plays.
The literature commonly distinguishes infinitely repeated
games with or without discounting, and finitely repeated
games.

In infinitely repeated games with no discounting, the
players care about their long-run stream of stage payoffs.
In particular, the payoff in the repeated game associated to
a play h D (a1; a2; : : : ) 2 A1 coincides with the limit of
the Cesaro means of stage payoffs when this limit exists.
When this limit does not exist, the most common evalua-
tion of the stream of payoffs is defined through a Banach
limit of the Cesaro means (a Banach limit is a linear form
on the set of bounded sequences that lies always between
the liminf and the limsup).

In infinitely repeated games with discounting, a dis-
count factor 0 < ı < 1 characterizes the player’s degree of
impatience. A payoff of 1 at stage t C 1 is equivalent to
a payoff of ı at stage t. Player i’s payoff in the repeated
game for the play h D (a1; a2; : : : ) 2 A1 is the normal-
ized sum of discounted payoffs: (1 � ı)

P
t�1 ı

t�1gi (at).
In finitely repeated games, the game ends after some

stage T. Payoffs induced by the play after stage T are ir-
relevant (and a strategy needs not specify choices after
stage T). The payoff for a player is the average of the stage
payoffs during stages 1 up to T: 1

T
PT

tD1 gi (at).

Equilibrium Notions What plays can be expected to be
observed in repeated interactions of players who observe
each other’s choices? Non-cooperative Game Theory fo-
cuses mainly on the idea of stable convention, i. e. of strat-
egy profiles fromwhich no player has incentives to deviate,
knowing the strategies adopted by the other players.

A strategy profile forms a Nash Equilibrium
(Nash [55]) when no player can improve his payoff by
choosing an alternative strategy, as long as other players
follow the prescribed strategies.

In some cases, the observation of past play may not be
consistent with the prescribed strategies. When, for every
possible history, each player’s strategy maximizes the con-
tinuation stream of payoffs, assuming that other players
abide with their prescribed strategies at all future stages,
the strategy profile forms a subgame perfect equilibrium
(Selten [66]).

Perfect equilibrium is a more robust and often consid-
ered a more satisfactory solution concept than Nash equi-
librium. The construction of perfect equilibria is in gen-
eral also more demanding than the construction of Nash
equilibria.

The main objective of the theory of repeated games is
to characterize the set of payoff vectors that can be sus-

tained by someNash or perfect equilibrium of the repeated
game.

Necessary Conditions on Equilibrium Payoffs

Some properties are common to all equilibrium payoffs.
First, under the common assumption that all players eval-
uate the payoff associated to a play in the same way, the
resulting payoff vector in the repeated game is a convex
combination of stage payoffs. That is, the payoff vector in
the repeated game is an element of the convex closure of
g(A), called the set of feasible payoffs and denoted F.

A notable exception is the work of Lehrer and
Pauzner [47] who study repeated games where players
have heterogeneous time preferences. The payoff vector
resulting from a play does not necessarily belong to F if
players have different evaluations of payoff streams. For
instance, in a repetition of the Prisoner’s Dilemma, if
player 1 cares only about the payoff in stage 1 and player 2
cares only about the payoff in stage 2, it is possible for both
players to obtain a payoff of 4 in the repeated game.

Now consider a strategy profile � , and let � i be a strat-
egy of player i that plays after every history (a1; : : : ; at)
a best response to the profile of mixed actions chosen by
the other players in the next stage. At any stage of the re-
peated game, the expected payoff for player i using � i is no
less than

vi D min
s�i2S�i

max
ai2Ai

gi (s�i ; ai) (1)

where s�i D (s j) j¤i (we use similar notations throughout
the paper: for a family of sets (Ei )i2I , e�i denotes an ele-
ment of E�i D ˘ j¤i E j and a profile e 2 ˘ jE j is denoted
e D (ei ; e�i ) when the ith component is stressed).

The payoff vi is referred to as player i’s minmax pay-
off. A payoff vector that provides each player i with at least
[resp. strictly more than] vi is called individually rational
[resp. strictly individually rational], and IR [resp. IR�] de-
notes the set of such payoff vectors. Since for any strategy
profile, there exists a strategy of player i that yields a payoff
no less than vi, all equilibrium payoffs have to be individ-
ually rational.

Also note that players j ¤ i collectively have a strategy
profile in the repeated game that forces player i’s payoff
down to vi: they play repeatedly a mixed strategy profile
that achieves the minimum in the definition of vi. Such
a strategy profile in the one-shot game is referred to as
punishing strategy, or minmax strategy against player i.

For the Prisoner’s Dilemma game, F is the convex hull
of (1; 1), (5; 0), (0; 5) and (4; 4). Both player’s minmax lev-
els are equal to 1. Figure 1 illustrates the set of feasible and
individually rational payoff vectors (hatched area):
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Repeated Games with Complete Information, Figure 1
F and IR for the Prisoner’s Dilemma

The set of feasible and individually rational payoffs can
be directly computed from the stage game data.

Infinitely Patient Players

The following result has been part of the folklore of Game
Theory at least since the mid 1960s. Its authorship is ob-
scure (see the introduction of Aumann [7]). For this rea-
son, it is commonly referred to as the “Folk Theorem”. By
extension, characterization of sets of equilibrium payoffs
in repeated games are also referred to as “Folk Theorems”.

Theorem 1 The set of equilibrium payoffs of the repeated
game with no discounting coincides with the set of feasible
and individually rational payoffs.

Aumann and Shapley [8,9] and Rubinstein [62,64] show
that restricting attention to perfect equilibria does not nar-
row down the set of equilibrium payoffs. They prove that:

Theorem 2 The set of perfect equilibrium payoffs of the
repeated game with no discounting coincides with the set of
feasible and individually rational payoffs.

We outline a proof of Theorem 2. It is established that any
equilibrium payoff is in F \ IR. We need only to prove
that every element of F \ IR is a subgame perfect equi-
librium payoff. Let x 2 F \ IR, and let h D a1; : : : ; at ; : : :
be a play inducing x. Consider the strategies that play at in
stage t; if player i does not respect this prescription at stage
t0, the other players punish player i for t0 stages by repeat-
edly playing the minmax strategy profile against player i.
After the punishment phase is over, players revert to the
play of h, hence playing a2t0C1; : : :.

Now we explain why these strategies form a subgame
perfect equilibrium. Consider a strategy of player i start-
ing after any history. The induced play by this strategy
for player i and by other player’s prescribed strategies is,
up to a subset of stages of null density, defined by the
sequence h with interweaved periods of punishment for

player i. Hence the induced long-run payoff for player i
is a convex combination of his punishment payoff and of
the payoff induced by h. The result follows since the payoff
for player i induced by h is no worse than the punishment
payoff.

Impatient Players

The strategies constructed in the proof of the Folk The-
orem for repeated games with infinitely patient players
(Theorem 1) do not necessarily constitute a subgame per-
fect equilibrium if players are impatient. Indeed, during
a punishment phase, the punishing players may be receiv-
ing low stage payoffs, and these stage payoffs matter in the
evaluation of their stream of payoffs. When constructing
subgame perfect equilibria of discounted games, one must
make sure that after a deviation of player i, players j ¤ i
have incentives to implement player i’s punishment.

Nash Reversion Friedman [25] shows that every feasible
payoff that Pareto dominates a Nash equilibrium payoff
of the static game is a subgame perfect equilibrium pay-
off of the repeated game provided that players are patient
enough. In Friedman’s proof, punishments take the simple
form of reversion to the repeated play of the static Nash
equilibrium forever. In the Prisoner’s Dilemma, (D;D) is
the only static Nash equilibrium payoff, and thus (4; 4) is
a subgame perfect Nash equilibrium payoff of the repeated
game if players are patient enough. Note however that in
some games, the set of payoffs that Pareto dominate some
equilibrium payoff may be empty. Also, Friedman’s result
constitutes a partial Folk Theorem only in that it does not
characterize the full set of equilibrium payoffs.

The Recursive Structure Repeated games with dis-
counting possess a structure similar to dynamic program-
ming problems. At any stage in time, players choose ac-
tions that maximize the sum of the current payoff and
the payoff at the subsequent stages. When strategies form
a subgame perfect equilibrium, the payoff vector at sub-
sequent stages must be an equilibrium payoff, and play-
ers must have incentives to follow the prescribed strate-
gies at the current stage. This implies that subgame perfect
equilibrium payoffs have a recursive structure, first studied
by Abreu [1]. Subsection “A Recursive Structure” presents
the recursive structure inmore details for themore general
model of games with public monitoring.

The Folk Theorem for Discounted Games Relying on
Abreu’s recursive results, Fudenberg and Maskin [20]
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prove the following Folk Theorem for subgame perfect
equilibria with discounting:

Theorem 3 If the number of players is 2 or if the set fea-
sible payoff vectors has non-empty interior, then any pay-
off vector that is feasible and strictly individually rational
is a subgame perfect equilibrium of the discounted repeated
game, provided that players are sufficiently patient.

Forges, Mertens and Neyman [24] provide an example
for which a payoff which is individually rational but not
strictly individually rational is not an equilibrium payoff
of the discounted game.

Abreu, Dutta and Smith [2] show that the non-empty
interior condition of the theorem can be replaced by
a weaker condition of “non equivalent utilities”: no pair
of players have the same preferences over outcomes.
Wen [73] and Fudenberg, Levine and Takahashi [22] show
that a Folk Theorem still holds when the condition of non
equivalent utilities fails if one replaces the minmax level
defining individually rational payoffs by some “effective
minmax” payoffs.

An alternative representation of impatience to dis-
counted payoffs in infinitely repeated games is the over-
taking criterion, introduced by Rubinstein [63]: the
play (a1; a2; : : : ) is strictly preferred by player i to
the play (a01; a

0
2; : : : ) if the inferior limit of the differ-

ence of the corresponding streams of payoffs is positive,
i. e. if lim infT

PT
tD1 gi (at) � gi (a0t) > 0. Rubinstein [63]

proves a Folk Theorem with the overtaking criterion.

Finitely Repeated Games

Strikingly, equilibrium payoffs in finitely repeated games
and in infinitely repeated games can be drastically differ-
ent. This effect is best exemplified in repetitions of the Pris-
oner’s Dilemma.

The Prisoner’s Dilemma Recall that in an infinitely re-
peated Prisoner’s Dilemma, cooperation at all stages is
achieved at a subgame perfect equilibrium if players are
patient enough. By contrast, at every Nash equilibrium of
any finite repetition of the Prisoner’s Dilemma, both play-
ers play D at every stage with probability 1.

Now we present a short proof of this result. Con-
sider any Nash equilibrium of the Prisoner’s Dilemma
repeated T times. Let a1; : : : ; aT be a sequence of ac-
tion profiles played with positive probability at the Nash
equilibrium. Since each player can play D at the last
stage of the repetition, and D is a dominating action,
aT D (D;D). We now prove by induction on � that for
any such � , aT�� ; : : : ; aT D (D;D); : : : ; (D;D). Assume

the induction hypothesis valid for � � 1. Consider a strat-
egy for player i that follows the equilibrium strategy up to
stage T � � � 1, then plays D from stage T � � on. This
strategy obtains the same payoff as the equilibrium strat-
egy at stages 1; : : : ; T � � � 1, and as least as much as
the equilibrium strategy at stages T � � C 1; : : : ; T � � .
Hence, this strategy cannot obtain more than the equilib-
rium strategy at stage T � � , and therefore the equilibrium
strategy plays D at stage T � � with probability 1 as well.

Sorin [68] proves the more general result:

Theorem 4 Assume that in every Nash equilibrium of G,
all players are receiving their individually rational levels.
Then, at every Nash equilibrium of any finitely repeated
version of G, all players are receiving their individually ra-
tional levels.

The proof of Theorem 4 relies on a backwards induction
type of argument, but it is striking that the result applies
for all Nash equilibria and not only for subgame perfect
Nash equilibria. This result shows that, unless some addi-
tional assumptions are made on the one-shot game, a Folk
Theorem cannot obtain for finitely repeated games.

Games with Unique Nash Payoff Using a proof by
backwards induction, Benoît and Krishna [10] obtain the
following result.

Theorem 5 Assume that G admits x as unique Nash equi-
librium payoff. Then every finite repetition of G admits x as
unique subgame perfect equilibrium payoff.

Theorems 4 and 5 rely on the assumption that the last
stage of repetition,T, is common knowledge between play-
ers. Neyman [56] shows that a Folk Theorem obtains for
the finitely repeated Prisoner’s Dilemma (and for other
games) if there is lack of common knowledge on the last
stage of repetition.

Folk Theorems for Finitely Repeated Games A Folk
Theorem can be obtained when there are two Nash equi-
librium payoffs for each player. The following result is due
to Benoît and Krishna [10] and Gossner [27].

Theorem 6 Assume that each player has two distinct Nash
equilibrium payoffs in G and that the set of feasible pay-
offs has non-empty interior. Then, the set of subgame perfect
equilibrium payoffs of the T times repetition of G converges
to the set of feasible and individually rational payoffs as T
goes to infinity.

Hence, with at least two equilibrium payoffs per player, the
sets of equilibrium payoffs of finitely repeated games and
infinitely repeated games are asymptotically the same.
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The condition that each player has two distinct Nash
equilibrium payoffs in the stage game can be weakened,
see Smith [67]. Assume for simplicity that one player has
two distinct Nash payoffs. By playing one of the two Nash
equilibria in the last stages of the repeated game, it is pos-
sible to provide incentives for this player to play actions
that are not part of Nash equilibria of the one-shot game in
previous stages. If this construction leads to perfect equi-
libria in which a player j ¤ i has distinct payoffs, we can
now provide incentives for both players i and j. If suc-
cessive iterations of this procedure yield distinct subgame
perfect equilibrium payoffs for all players, a Folk Theorem
applies.

Gameswith Non-observable Actions

For infinitely repeated games with perfect monitoring,
a complete and simple characterization of the set of equi-
librium payoffs is obtained: feasible and individually ratio-
nal payoff vectors. In particular, cooperation can be sus-
tained at equilibrium. How equilibrium payoffs of the re-
peated game depend on the quality of player’s monitoring
of each other’s actions is the subject of a very active area of
research.

Repeated games with imperfect monitoring, in which
players observe imperfectly other player’s action choices,
were first motivated by economic applications. In Stig-
ler [69], two firms are repeatedly engaged in price compe-
tition over market shares. Each firm observes its own sales,
but not the price set by the rival. While it is in the best in-
terest for both firms to set a collusive price, each firm has
incentives to secretly undercut the rival’s price. Upon ob-
serving plunging sales, should a firm deduce that the rival
firm is undercutting prices, and retaliate by setting lower
prices, or should lower sales be interpreted as a result of
an exogenous shock on market demand? Whether collu-
sive behavior is sustainable or not at equilibrium is one of
the motivating questions in the theory of repeated games
with imperfect monitoring.

It is interesting to compare repeated games with im-
perfect monitoring with their perfect monitoring counter-
parts.

The structure of equilibria used to prove the Folk The-
oremwith perfect monitoring and no discounting is rather
simple: if a player deviates from the prescribed strategies,
the deviation is detected and the deviating player is identi-
fied, all other players can then punish the deviator. With
imperfect monitoring, not all deviations are detectable,
and when a deviation is detected, deviators are not neces-
sarily identifiable. The notions of detection and identifica-
tion allow fairly general Folk Theorems for undiscounted

games.We present these results in Subsect. “Detection and
Identification”.

With discounting, repeated games with perfect mon-
itoring possess a recursive structure that facilitates their
study. Recursive methods can also be successfully applied
to discounted games with public monitoring. We review
the major results of this branch of the literature in Sub-
sect. “Public Equilibria”.

Almost-perfect monitoring is the natural framework
to study the effect of small departures from the perfect or
public monitoring assumptions. We review this literature
in Subsect. “Almost Perfect Monitoring”.

Little is known about general discounted games with
imperfect private monitoring.We present themain known
results in Subsect. “General Stochastic Signals”.

With perfect monitoring, the worst equilibrium payoff
for a player is given by the minmax of the one-shot game,
where punishing (minimizing) players choose an indepen-
dent profile of mixed strategies. With imperfect monitor-
ing, correlation past signals for the punishing players may
lead to more efficient punishments. We present results on
punishment levels in Subsect. “Punishment Levels”.

Model

In this section we define repeated games with imperfect
monitoring, and describe several classes of monitoring
structures of particular interest.

Data of the Game Recall that the one-shot strategic in-
teraction is described by a finite set I of players, a fi-
nite action set Ai for each player i, and a payoff function
g : A! RI . Player’s observation of each other’s actions is
described by a monitoring structure given by a finite set of
signals Yi for each player i and by a transition probabil-
ity Q : A! �(Y) (with A D

Q
i2I Ai and Y D

Q
i2I Yi ).

When the action profile chosen is a D (ai )i2I , a profile of
signals y D (yi )i2I is drawn with probability Q(yja) and
yi is observed by player i.

Perfect Monitoring Perfect monitoring is the particu-
lar case in which each player observes the action pro-
file chosen: for each player i, Yi D A and Q((yi )i2Ija) D
1f8i; yiDag.

Almost Perfect Monitoring The monitoring structure
is "-perfect (see Mailath and Morris [52]) when each
player can identify the other player’s action with a proba-
bility of error less than ". This is the case if there exist func-
tions fi : Ai � Yi ! A�i for all i such that, for all a 2 A:

Q(8i; fi(ai ; yi ) D a�i ja) � 1 � " :
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Almost-perfect monitoring refers to "-perfect monitoring
for small values of ".

Canonical Structure The monitoring structure is canon-
ical when each player’s observation corresponds to an ac-
tion profile of the opponents, that is, when Yi D A�i .

Public and Almost Public Signals Signals are public when
all the players observe the same signal, i. e., Q(8i; j; yi D
y jja) D 1, for every action profile a. For instance, in Green
and Porter [33], firms compete over quantities, and the
public signal is the realization of the price. Firms can then
make inferences on rival’s quantities based on their own
quantity and market price.

The case in which Q(8i; j; yi D y jja) is close to 1
for every a is referred to as almost public monitoring (see
Mailath and Morris [52]).

Private signals refer to the case when these signals are
not public.

Deterministic Signals Signals are deterministic when the
signal profile is uniquely determined by the action profile.
When a is played, the signal profile y is given by y D f (a),
where f is called the signaling function.

Observable Payoffs Payoffs are observable when each
player i can deduce his payoff from his action and his sig-
nal. This is the case if there exists a mapping ' : Ai �Yi !
R such that for every action profile a, Q(8i; gi (a) D
'(ai ; yi )ja) D 1.

The Repeated Game The game is played repeatedly and
after every stage t, the profile of signals yt received by the
players is drawn according to the distribution Q(yt jat),
where at is the profile of action chosen at stage t. A player’s
information consists of his past actions and signals. We
let Hi;t D (Ai � Yi )t be the set of player i’s histories of
length t. A strategy for player i now consists of a mapping
�i : [t�0 Hi;t ! Si . The set of complete histories of the
game after t stages is Ht D (A� Y)t , it describes chosen
actions and received signals for all the players at all past
stages. A strategy profile � D (�i )i2I induces a probability
distribution P
 on the set of plays H1 D (A� Y)1.

Equilibrium Notions

Nash Equilibria Player’s preferences over game plays are
defined according to the same criteria as for perfect mon-
itoring. We focus on infinitely repeated games, both dis-
counted and undiscounted. A choice of players’ prefer-
ences defines a set of Nash equilibrium payoffs in the re-
peated game.

Sequential Equilibria The most commonly used refine-
ment of Nash equilibrium for repeated games with im-
perfect monitoring is the sequential equilibrium concept
(Kreps andWilson, [42]), which we recall here.

A belief assessment is a sequence � D (�i;t)t�1; i2I
with �i;t : Hi;t ! �(Ht), i. e., given the private history hi
of player i, �i;t(hi ) is the probability distribution repre-
senting the belief that player i holds on the full history.

A sequential equilibrium of the repeated game is a pair
(�;�) where � is a strategy profile and � is a belief assess-
ment such that: 1) for each player i and every history hi, � i
is a best reply in the continuation game, given the strate-
gies of the other players and the belief that player i holds
regarding the past; 2) the beliefs must be consistent in the
sense that (�;�) is the limit of a sequence (� n ; �n) where
for every n, �n is a completely mixed strategy (it assigns
positive probability to every action after every history) and
�n is the unique belief derived from Bayes’ law under P
 n .

Sequential equilibria are defined both on the dis-
counted game and the undiscounted versions of the re-
peated game.

For undiscounted games, the set of Nash equilibrium
payoffs and sequential equilibrium payoffs coincide. The
two notions also coincide for discounted games when the
monitoring has full support (i. e. under every action pro-
file, all signal profiles have positive probability). The re-
sults presented in this survey all hold for sequential equi-
libria, both for discounted and undiscounted games.

Extensions of theRepeatedGame Whenplayers receive
correlated inputs or may communicate between stages of
the repeated game, the relevant concepts are correlated
and communication equilibria.

Correlated Equilibria A correlated equilibrium (Au-
mann [6]) of the repeated game is an equilibrium of an
extended game in which: at a preliminary stage, a medi-
ator chooses a profile of correlated random inputs and
informs each player of his own input; then the repeated
game is played. A characterization of the set of correlated
equilibrium payoffs for two-player games is obtained by
Lehrer [45].

Correlation arises endogenously in repeated games
with imperfect monitoring, as the signals received by
the players can serve as correlated inputs that influ-
ence player’s continuation strategies. This phenomenon is
called internal correlation, and was studied by Lehrer, [44],
Gossner and Tomala, [29,30].

Communication Equilibria An (extensive form) com-
munication equilibrium (Myerson [54], Forges [23]) of
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a repeated game is an equilibrium of an extension of the
repeated game in which after every stage, players send
messages to a mediator, and the mediator sends back pri-
vate outputs to the players. Characterizations of the set
of communication equilibrium payoffs are obtained un-
der weak conditions on the monitoring structure, see e. g.
Kandori and Matsushima [38], Compte [15], and Renault
and Tomala [61].

Detection and Identification

Equivalent Actions A player’s deviation is detectable
when it induces a different distribution of signals for other
players. When two actions induce the same distribution
of actions for other players, they are called equivalent
(Lehrer [43,44,45,46]):

Definition 1 Two actions ai and bi of player i are equiv-
alent, and we note ai � bi , if they induce the same distri-
bution of other players’ signals:

Q(y�i jai ; a�i) D Q(y�i jbi ; a�i) ; 8a�i :

Example 1 Consider the two-player repeated Prisoner’s
Dilemmawhere player 2 receives no information about the
actions of player 1 (e. g. Y2 is a singleton). The two actions
of player 1 are thus equivalent. The actions of player 2 are
independent of the actions of player 1: player 1 has no im-
pact on the behavior of player 2. Player 2 has no power to
threat player 1 and in any equilibrium, player 1 defects at
every stage. Player 2 also defects at every stage: since player
1 always defects, he also loses his threatening power. The
only equilibrium payoff in this repeated game is thus (1; 1).

Example 1 suggests that between two equivalent actions,
a player chooses at equilibrium the one that yields the
highest stage payoff. This is indeed the case when the in-
formation received by a player does not depend on his own
action. Lehrer [43] studies particular monitoring struc-
tures satisfying this requirement. Recall from Lehrer [43]
the definition of semi-standard monitoring structures:
each action set Ai is endowed with a partition Āi , when
player i plays ai, the corresponding partition cell āi is pub-
licly announced. In the semi-standard case, two actions
are equivalent if and only if they belong to the same cell:
ai � bi () āi D b̄i and the information received by
a player on other player’s action does not depend on his
own action.

If player i deviates from ai to bi, the deviation is un-
detected if and only if ai � bi . Otherwise it is detected
by all other players. A profile of mixed actions is called
immune to undetectable deviations if no player can profit

by a unilateral deviation that maintains the same distribu-
tion of other players’ signals. The following result, due to
Lehrer [43], characterizes equilibrium payoffs for undis-
counted games with semi-standard signals:

Theorem 7 In an undiscounted repeated game with semi-
standard signals, the equilibrium payoffs are the individu-
ally rational payoffs that belong to the convex hull of payoffs
generated by mixed action profiles that are immune to un-
detectable deviations.

More Informative Actions When the information of
player i depends on his own action, some deviations may
be detected in the course of the repeated game even though
they are undetectable in the stage game.

Example 2 Consider the following modification of the
Prisoner’s Dilemma. The action set of player 1 is A1 D

fC1;D1g � fC2;D2g and the action set of player 2 is
fC2;D2g. An action for player 1 is thus a pair a1 D
(ã1; ã2). When the action profile (ã1; ã2; a2) is played, the
payoff to player i is gi (ã1; a2). We can interpret the com-
ponent ã1 as a real action (it impacts payoffs) and the com-
ponent ã2 as amessage sent to player 2 (it does not impact
payoffs). The monitoring structure is as follows:

� player 2 only observes themessage component ã2 of the
action of player 1 and,

� player 1 perfectly observes the action of player 2 if
he chooses the cooperative real action (ã1 D C1), and
gets no information on player 2’s action if he defects
(ã1 D D1).

Note that the actions (C1;C2) and (D1;C2) of player 1 are
equivalent, and so are the actions (C1;D2) and (D1;D2).
However, it is possible to construct an equilibrium that
implements the cooperative payoff along the following
lines:

i) Using his message component, player 1 reports at every
stage t > 1 the previous action of player 2. Player 1 is
punished in case of a non matching report.

ii) Player 2 randomizes between both actions, so that
player 1 needs to play the cooperative action in order
to report player 2’s action accurately. The weight on
the defective action of player 2 goes to 0 as t goes to
infinity to ensure efficiency.

Player 2 has incentives to play C2 most of the time, since
player 1 can statistically detect if player 2 uses the action
D2 more frequently than prescribed. Player 1 also has in-
centives to play the real action C1, as this is the only way to
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observe player 2’s action, which needs to be reported later
on.

The key point in the example above is that the two real
actions C1 and D1 of player 1 are equivalent but D1 is less
informative than C1 for player 1. For general monitoring
structures an action ai is more informative than an action
bi if: whenever player i plays aii, he can reconstitute the sig-
nal he would have observed, had he played bi. The precise
definition of themore informative relation relies on Black-
well’s ordering of stochastic experiments [11]:

Definition 2 The action ai of player i is more informa-
tive than the action bi if there exists a transition probability
f : Yi ! �(Yi ) such that for every a�i and every profile of
signals y,
X

yi

f (y0i jyi)Q(yi ; y�i jai ; a�i ) D Q(y0i ; y�i jbi ; a�i) :

We denote ai � bi if ai � bi and ai is more informative
than bi.

Assume that prescribed strategies require player i to
play bi at stage t, and let ai � bi . Consider the following
deviation from player i: play ai at stage t, and reconstruct
a signal at stage t that could have arisen from the play of
bi. In all subsequent stages, play as if no deviation took
place at stage t, and as if the reconstructed signal had been
observed at stage t. Not only such a deviation would be
undetectable at stage t, since ai � bi , but it would also be
undetectable at all subsequent stages, as it would induce
the same probability distribution over plays as under the
prescribed strategy. This argument shows that, if an equi-
librium strategy specifies that player i plays ai, there is no
bi � ai that yields a higher expected stage payoff than ai.

Definition 3 A distribution of actions profiles p 2 �(A)
is immune to undetectable deviations if for each player i
and pair of actions ai ; bi such that bi � ai :
X

a�i

p(ai ; a�i )gi (ai ; a�i) �
X

a�i

p(ai ; a�i )gi (bi ; a�i)

If p is immune to undetectable deviations, and if player i
is supposed to play ai, any alternative action bi that yields
a greater expected payoff can not be such that bi � ai .

The following proposition gives a necessary condition
on equilibrium payoffs that holds both in the discounted
and in the undiscounted cases.

Proposition 1 Every equilibrium payoff of the repeated
game is induced by a distribution that is immune to un-
detectable deviations.

The condition of Proposition 1 is tight for some specific
classes of games, all of them assuming two players and no
discounting.

Following Lehrer [45], signals are non-trivial if, for
each player i, there exist an action ai for player i and
two actions aj, bj for i’s opponent such that the signal for
player i is different under (ai ; a j) and (ai ; bj). Lehrer [45]
proves:

Theorem 8 The set of correlated equilibrium payoffs of the
undiscounted game with deterministic and non-trivial sig-
nals is the set of individually rational payoffs induced by
distributions that are immune to undetectable deviations.

Lehrer [46] assumes that payoffs are observable, and ob-
tains the following result:

Theorem 9 In a two-player repeated game with no dis-
counting, non-trivial signals and observable payoffs, the set
of equilibrium payoffs is the set of individually rational
payoffs induced by distributions that are immune to unde-
tectable deviations.

Finally, Lehrer [44] shows that in some cases, one may dis-
pense with the correlation device of Theorem 8, as all nec-
essary correlation can be generated endogenously through
the signals of the repeated game:

Proposition 2 In two-player games with non-trivial sig-
nals such that either the action profile is publicly announced
or a blank signal is publicly announced, the set of equilib-
rium payoffs coincides with the set of correlated equilibrium
payoffs.

Identification of Deviators A deviation is identifiable
when every player can infer the identity of the deviating
player from his observations. For instance, in a game with
public signals, if separate deviations from players i and j
induce the same distribution of public signals, these devi-
ations from i or j are not identifiable. In order to be able
to punish the deviating player, it is sometimes necessary to
know his identity. Detectability and identifiability are two
separate issues, as shown by the following example.

Example 3 Consider the following 3-player game where
player 1 chooses the row, player 2 chooses the column and
player 3 chooses the matrix.

T
B

L R
1; 1; 1 4; 4; 0
4; 4; 0 4; 4; 0

W

L R
0; 3; 0 0; 3; 0
0; 3; 0 0; 3; 0

M

L R
3; 0; 0 3; 0; 0
3; 0; 0 3; 0; 0

E
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Consider the monitoring structure in which actions are
not observable and the payoff vector is publicly an-
nounced.

The payoff (1; 1; 1) is feasible and individually rational.
The associated action profile (T; L;W) is immune to un-
detectable deviations since any individual deviation from
(T; L;W) changes the payoff.

However, (1; 1; 1) is not an equilibrium payoff. The
reason is that, player 3, who has the power to punish either
player 1 or player 2, cannot punish both players simul-
taneously: punishing player 1 rewards player 2 and vice-
versa. More precisely, whatever weights player 3 puts on
the action M and E, the sum of player 1 and player 2’s
payoffs is greater than 3. Any equilibrium payoff vector
v D (v1; v2; v3) must thus satisfy v1 C v2 � 3. In fact, it is
possible to prove that the set of equilibrium payoffs of this
repeated game is the set of feasible and individually ratio-
nal payoffs that satisfy this constraint.

Approachability When the deviating player cannot be
identified, it may be necessary to punish a group of sus-
pects altogether. The notion of a payoff that is enforceable
under group punishments is captured by the definition of
approachable payoffs:

Definition 4 A payoff vector v is approachable if there ex-
ists a strategy profile � such that, for every player i and uni-
lateral deviation � i of player i, the average payoff of player i
under (�i ; ��i ) is asymptotically less than or equal to vi.

Blackwell’s [12] approachability theorem and its general-
ization by Kohlberg [40] provide simple geometric char-
acterizations of approachable payoffs. It is straightforward
that approachability is a necessary condition on equilib-
rium payoffs:

Proposition 3 Every equilibrium payoff of the repeated
game is approachable.

Renault and Tomala [61] show that the conditions of
Proposition 1 and 3 are tight for communication equilib-
ria:

Theorem 10 For every game with imperfect monitoring,
the set of communication equilibrium payoffs of the re-
peated game with no discounting is the set of approachable
payoffs induced by distributions which are immune to un-
detectable deviations.

Tomala [70] shows that pure strategy equilibrium payoffs
of undiscounted repeated games with public signals are
also characterized through identifiability and approacha-
bility conditions (the approachability definition then uses
pure strategies). Tomala [71] provides a similar character-

ization in mixed strategies for a restricted class of public
signals.

Identification Through Endogenous Communication
A deviation may be identified in the repeated game even
though it cannot be identified in the stage game. In a net-
work game, players are located at nodes of a graph, and
each player monitors his neighbors’ actions. Each player
can use his actions as messages that are broadcasted to all
the neighbors in the graph. The graph is called 2-connected
if no single node deletion disconnects the graph. Renault
and Tomala [60] show that when the graph is 2-connected,
there exists a communication protocol among the play-
ers that ensures that the identity of any deviating player
becomes common knowledge among all players in finite
time. In this case, identification takes place through com-
munication over the graph.

Public Equilibria

In a seminal paper, Green and Porter [33] introduce
a model in which firms are engaged in a production game
and publicly observe market prices, which depend both
on quantities produced and on non-observable exogenous
market shocks. Can collusion be sustained at equilibrium
even if prices convey imperfect information on quantities
produced? This motivates the study of public equilibria for
which sharp characterizations of equilibrium payoffs are
obtained.

Signals are public when all sets of signals are identi-
cal, i. e. Yi D Ypub for each i and Q(8i; j; yi D y jja) D 1
for every a. A public history of length t is a record of t
public signals, i. e. an element of Hpub;t D (Ypub)t . A strat-
egy � i for player i is a public strategy if it depends on
the public history only: if hi D (ai;1; y1; : : : ; ai;t; yt) and
h0i D (a0i;1; y

0
1; : : : ; a

0
i;t; y

0
t) are two histories for player i

such that y1 D y01; : : : ; yt D y0t , then �i (hi ) D �i (h0i ).

Definition 5 A perfect public equilibrium is a profile of
public strategies such that after every public history, each
player’s continuation strategy is a best reply to the oppo-
nents’ continuation strategy profile.

The repetition of a Nash equilibrium of the stage game is
a perfect public equilibrium, so that perfect public equilib-
ria exist. Every perfect public equilibrium is a sequential
equilibrium: any consistent belief assigns probability one
to the realized public history and thus correctly forecasts
future opponents’ choices.

A Recursive Structure A perfect public equilibrium
(PPE henceforth) is a profile of public strategies that forms
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an equilibrium of the repeated game and such that, after
every public history, the continuation strategy profile is
also a PPE. The set of PPEs and of induced payoffs there-
fore possesses a recursive structure, as shown by Abreu,
Pearce and Stachetti [3]. The argument is based on a dy-
namic programming principle. To state the main result,
we first introduce some definitions.

Given a mapping f : Ypub ! RI , G(ı; f ) represents
the one-shot game where each player i choose actions in
Ai and where payoffs are given by:

(1 � ı)gi (a)C ı
X

y2Ypub

Q(yja) fi(y) :

In G(ı; f ), the stage game is played, and players receive
f (y) as an additional payoff if y is the realized public signal.
The weights 1 � ı and ı are the relative weights of present
payoffs versus all future payoffs in the repeated game.

Definition 6 A payoff vector v 2 RI is decomposable
with respect to the set W � RI if there exists a mapping
f : Ypub ! W such that v is a Nash equilibrium payoff of
G(ı; f ). Fı(W) denotes the set of payoff vectors which are
decomposable with respect toW.

Let E(ı) be the set of perfect public equilibrium payoffs of
the repeated game discounted at the rate ı. The following
result is due to Abreu et al. [3]:

Theorem 11 E(ı) is the largest bounded set W such that
W � Fı (W).

Fudenberg and Levine [19] derive an asymptotic charac-
terization of the set of PPE payoffs when the discount fac-
tor goes to 1 as follows. Given a vector  2 RI , define the
score in the direction  as:

k() D sup h; vi

where the supremum is taken over the set of payoff vec-
tors v that are Nash equilibrium payoffs ofG(ı; f ), where f
is any mapping such that,

h; vi � h; f (y)i ; 8y 2 Ypub :

Scores are independent of the discount factor. The follow-
ing theorem is due to Fudenberg and Levine [19]:

Theorem 12 Let C be the set of vectors v such that for ev-
ery  2 RI , h; vi � k(). If the interior of C is non-empty,
E(ı) converges to C (for the Hausdorff topology) as ı goes
to 1.

Fudenberg, Levine and Takahashi [22] relax the non-
empty interior assumption. They provide an algorithm
for computing the affine hull of limı!1 E(ı) and provide
a corresponding characterization of the set C with contin-
uation payoffs belonging to this affine hull.

Folk Theorems for Public Equilibria The recursive
structure of Theorem 11 and the asymptotic characteri-
zation of PPE payoffs given by Theorem 12 are essential
tools for finding sufficient conditions under which every
feasible and individually rational payoff is an equilibrium
payoff, i. e. conditions under which a Folk Theorem holds.

The two conditions under which a Folk Theorem in
PPEs holds are a 1) a condition of detectability of de-
viations and 2) a condition of identifiability of deviating
players.

Definition 7 A profile of mixed actions s D (si ; s�i ) has
individual full rank if for each player i, the probability vec-
tors (in the vector spaceRYpub )

fQ(�jai ; s�i ) : ai 2 Aig

are linearly independent.

If s has individual full rank, no player can change the dis-
tribution of his actions without affecting the distribution
of public signals. Individual full rank is thus a condition
on detectability of deviations.

Definition 8 A profile of mixed actions s has pairwise full
rank if for every pair of players i ¤ j, the family of proba-
bility vectors

fQ(�jai ; s�i ) : ai 2 Aig [ fQ(�ja j; s� j) : a j 2 Ajg

has rank jAi j C
ˇ
ˇAj

ˇ
ˇ � 1.

Under the condition of pairwise full rank, deviations from
two distinct players induce distinct distributions of public
signals. Pairwise full rank is therefore a condition of iden-
tifiability of deviating players.

Fudenberg et al. [21] prove the following theorem:

Theorem 13 Assume the set of feasible and individually
rational payoff vectors F has non-empty interior. If every
pure action profile has individual full rank and if there ex-
ists a mixed action profile with pairwise full rank, then every
convex and compact subset of the interior of F is a subset of
E(ı) for ı large enough.

In particular, under the conditions of the theorem, every
feasible and individually rational payoff vector is arbitrar-
ily close to a PPE payoff for large enough discount factors.
Variations of this result can be found in [21] and [19].

Extensions

The Public Part of a Signal The definition of perfect pub-
lic equilibria extends to the case in which each player’s sig-
nals consists of two components: a public component and
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a private component. The public components of all play-
ers’ signals are the same with probability one. A public
strategy is then a strategy that depends only on the pub-
lic components of past signals, and all the analysis carries
through.

Public Communication In the public communication ex-
tension of the repeated game, players make public an-
nouncements between any two stages of the repeated
game. The profile of public announcements then forms
a public signal, and recursive methods can be successfully
applied. The fact that public communication is a power-
ful instrument to overcome the difficulties arising from
private signals was first observed by Matsushima [49,50].
Ben Porath and Kahneman [14], Kandori and Matsu-
shima [38], and Compte [15] prove Folk Theorems in
games with private signals and public communication.
Kandori [37] shows that in games with public monitor-
ing, public communication allows to relax the conditions
for the Folk Theorem of Fudenberg et al. [21].

Private Strategies in Games with Public Monitoring PPE
payoffs do not cover the full set of sequential equilibrium
payoffs, even when signals are public, as some equilibria
may rely on players using private strategies, i. e. strategies
that depend on past chosen actions and past private sig-
nals. See [53] and [39] for examples. In a minority game,
there is an odd number of players, each player chooses be-
tween actions A and B. Players choosing the least chosen
(minority) action get a payoffs of 1, other players get 0. The
public signal is the minority action. Renault et al. [58,59]
show that, for minority games, a Folk Theorem holds in
private strategies but not in public strategies. Only few re-
sults are known concerning the set of sequential equilib-
rium payoffs in privates strategies of games with public
monitoring. A monotonicity property is obtained by Kan-
dori [36] who shows that the set of payoffs associated to
sequential equilibria in pure strategies is increasing with
respect to the quality of the public signal.

Almost Public Monitoring Some PPEs are robust to small
perturbations of public signals. Considering strategies
with finite memory, Mailath and Morris [52] identify
a class of public strategies which are sequential equilibria
of the repeated game with imperfect private monitoring,
provided that the monitoring structure is close enough
to a public one. They derive a Folk Theorem for games
with almost public and almost perfect monitoring. Hörner
and Olszewski [35] strengthen this result and prove a Folk
Theorem for games with almost public monitoring. Under
detectability and identifiability conditions, they prove that

feasible and individually rational payoffs can be achieved
by sequential equilibria with finite memory.

Almost Perfect Monitoring

Monitoring is almost perfect when each player can identify
the action profile of his opponents with near certainty. Al-
most perfect monitoring is the natural framework to study
the robustness of the Folk Theorem to small departures
from the assumption that actions are perfectly observed.

The first results were obtained for the Prisoner’s
Dilemma. Sekiguchi [65] shows that the cooperative out-
come can be approximated at equilibrium when players
are sufficiently patient and monitoring is almost perfect.
Under the same assumptions, Bhaskar and Obara [13],
Piccione [57] and Ely and Valimaki [16] show that a Folk
Theorem obtains.

Piccione [57] and Ely and Valimaki [16] study a par-
ticular class of equilibria called belief free. Strategies form
a belief free equilibrium if, whatever player i’s belief on
the opponent’s private history, the action prescribed by i’s
strategy is a best response to the opponent’s continuation
strategy.

Ely, Hörner and Olszewski [17] extend the belief free
approach to general games. However, they show that, in
general, belief free strategies are not enough to reconstruct
a Folk Theorem, even when monitoring is almost perfect.

For general games and with any number of players,
Hörner and Olszewski [34] prove a Folk Theorem with
almost perfect monitoring. The strategies that implement
the equilibrium payoffs are defined on successive blocks of
a fixed length, and are block-belief-free in the sense that,
at the beginning of every block, every player is indifferent
between several continuation strategies, independently on
his belief as to which continuation strategies are used by
the opponents. This result closes the almost perfect mon-
itoring case by showing that equilibrium payoffs in the
Folk Theorem are robust to a small amount of imperfect
monitoring.

General Stochastic Signals

Besides the case of public (or almost public) monitor-
ing, little is known about equilibrium payoffs of repeated
games with discounting and imperfect signals.

The Prisoner’s Dilemma game is particularly impor-
tant for economic applications. In particular, it captures
the essential features of collusion with the possibility of se-
cret price cutting, as in Stigler [69].

When signals are imperfect, but independent condi-
tionally on the pair of actions chosen (a condition called
conditional independence), Matsushima [51] shows that
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the efficient outcome of the repeated Prisoner’s Dilemma
game is an equilibrium outcome if players are sufficiently
patient. In the equilibrium construction, every player’s ac-
tion is constant in every block. The conditional indepen-
dence assumption is crucial in that it implies that, during
every block, a player has no feedback as to what signals the
other player has received. The conditional independence
assumption is non-generic: it holds for a set of monitoring
structures of empty interior.

Fong, Gossner, Hörner, and Sannikov [18] prove that
efficiency can be obtained at equilibrium without condi-
tional independence. Their main assumption is that there
exists a sufficiently informative signal, but this signal needs
not be almost perfectly informative. Their result holds for
a family of monitoring structures of non empty interior.
It is the first result that establishes cooperation in the Pris-
oner’s Dilemmawith impatient players for truly imperfect,
private and correlated signals.

Punishment Levels

Individual rationality is a key concept for Folk Theorems
and equilibrium payoff characterizations. Given a repeated
game, define the individually rational (IR) level of player i
as the lowest payoff down to which this playermay be pun-
ished in the repeated game.

Definition 9 The individual rational level of player i is:

lim
ı!1

min

�i

max

i

E
i ;
�i

"
X

t
(1 � ı)ı t�1gi;t

#

where the min runs over profiles of behavior strategies for
player�i, and the max over behavior strategies of player i.

That is, the individually rational level is the limit (as the
discount factor goes to one) of the minmax value of
the discounted game (other approaches, through undis-
counted games or limits of finitely repeated games, yield
equivalent definitions, see [29]).

Comparison of the IR Level with the minmax With
perfect monitoring, the IR level of player i is player i’s
minmax in the one-shot game, as defined by equation (1).
With imperfect monitoring, the IR level for player i is
never larger than vi since player i’s opponents can force
down player i to v�i by repeatedly playing the minmax
strategy against player i.

With two players, it is a consequence of von-Neu-
mann’s minmax theorem [72] that vi is the IR level for
player i.

For any number of players, Gossner and Hörner [28]
show that vi is equal to the minmax in the one-shot
game whenever there exists a garbling of player i’s signal
such that, conditionally on i’s garbled signal, the signals
of i’s opponents are independent. Furthermore, the con-
dition in [28] is also a necessary condition in normal form
games extended by correlation devices (as in Aumann [6]).
A continuity result in the IR level also applies for moni-
toring structure close to those that satisfy the conditional
independence condition.

The following example shows that, in general, the IR
level can be lower than vi:

Example 4 Consider the following three-player game.
Player 1 chooses the row, player 2 the column and player
3 the matrix. Players 1 and 2 perfectly observe the action
profile while player 3 observes player 2’s action only. As
we deal with the IR level of player 3, we specify the payoff
for this player only.

T
B

L R
0 0
0 �1

W

L R
�1 0
0 0

E

A simple computation shows that v3 D � 1
4 and that the

minmax strategies of players 1 and 2 are uniform. Con-
sider the following strategies of players 1 and 2 in the
repeated game: randomize uniformly at odd stages, play
(T; L) or (B; R) depending on player 1’s previous action at
even stages. Against these strategies, player 3 cannot ob-
tain better than � 1

4 at odd stages and � 1
2 at even stages,

resulting in an average payoff of � 3
8 .

Entropy Characterizations The exact computation of
the IR level in games with imperfect monitoring requires
to analyze the optimal trade-off for punishing players be-
tween the production of correlated and private signals and
the use of these signals for effective punishment. Gossner
and Vieille, [31] and Gossner and Tomala [29] develop
tools based on information theory to analyze this trade-
off. At any stage, the amount of correlation generated (or
spent) by the punishing players is measured using the en-
tropy function. Gossner and Tomala [30] derive a char-
acterization of the IR level for some classes of monitor-
ing structures. Gossner, Laraki, and Tomala [32] provide
methods explicit computations of the IR level. In partic-
ular, for the above example, the IR level computed and is
about � .401. Explicit computations of IR levels for other
games are derived by Goldberg [26].
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Glossary

Repeated game with incomplete information A situa-
tion where several players repeat the same stage game,
the players having different knowledge of the stage
game which is repeated.

Strategy of a player A rule, or program, describing the
action taken by the player in any possible situation
which may happen, depending on the information
available to this player in that situation.

Strategy profile A vector containing a strategy for each
player.

Lack of information on one side Particular case where
all the players but one perfectly know the stage game
which is repeated.

Zero-sum games 2-player games where the players have
opposite payoffs.
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Value Solution (or price) of a zero-sum game, in the sense
of the fair amount that player 1 should give to player 2
to be entitled to play the game.

Equilibrium Strategy profile where each player’s strategy
is in best reply against the strategy of the other players.

Completely revealing strategy Strategy of a player which
eventually reveals to the other players everything
known by this player on the selected state.

Non revealing strategy Strategy of a player which reveals
nothing on the selected state.

The simplex of probabilities over a finite set For a finite
set S, we denote by �(S) the set of probabilities over
S, and we identify �(S) to fp D (ps )s2S 2 RS ;8s 2
S ps � 0 and

P
s2S ps D 1g. Given s in S, the Dirac

measure on s will be denoted by ıs. For p D (ps )s2S
and q D (qs )s2S in RS , we will use, unless otherwise
specified, kp � qk D

P
s2S jps � qs j.

Definition of the Subject

Introduction

In a repeated game with incomplete information, there is
a basic interaction called stage gamewhich is repeated over
and over by several participants called players. The point
is that the players do not perfectly know the stage game
which is repeated, but rather have different knowledge
about it. As illustrative examples, one may think of the
following situations: an oligopolistic competition where
firms don’t know the production costs of their opponents,
a financial market where traders bargain over units of an
asset which terminal value is imperfectly known, a cryp-
tographic model where some participants want to trans-
mit some information (e. g., a credit card number) without
being understood by other participants, a conflict when
a particular side may be able to understand the commu-
nications inside the opponent side (or might have a par-
ticular type of weapons), . . .

Natural questions arising in this context are as follows.
What is the optimal behavior of a player with a perfect
knowledge of the stage game? Can we determine which
part of the information such a player should use? Can
we price the value of possessing a particular information?
How should one player behave while having only a partial
information?

Foundations of games with incomplete information
have been studied in [28] and [56]. Repeated games with
incomplete information have been introduced in the six-
ties by Aumann andMaschler [6], and we present here the
basic and fundamental results of the domain. Let us start
with a few well known elementary examples [6,91].

Basic Examples In each example, there are two players,
and the game is zero-sum, i. e. player 2’s payoff always is
the opposite of player 1’s payoff. There are two states a and
b, and the possible stage games are given by two real matri-
cesGa andGb with identical size. Initially a true state of na-
ture k 2 fa; bg is selected with even probability between a
and b, and k is announced to player 1 only. Then thematrix
game Gk is repeated over and over: at every stage, simulta-
neously player 1 chooses a row i, whereas player 2 chooses
a column j, the stage payoff for player 1 is thenGk (i; j) but
only i and j are publicly announced before proceeding to
the next stage. Players are patient and want to maximize
their long-run average expected payoffs.

Example 1

Ga D

�
0 0
0 �1

�
and Gb D

�
�1 0
0 0

�
:

This example is very simple. In order to maximize his pay-
off, player 1 just has to play, at any stage, the Top row if the
state is a and the Bottom row if the state is b. This corre-
sponds to playing optimally in each possible matrix game.

Example 2

Ga D

�
1 0
0 0

�
and Gb D

�
0 0
0 1

�
:

A naive strategy for player 1 would be to play at stage 1:
Top if the state is a, and Bottom if the state is b. Such a strat-
egy is called completely revealing, or CR, because it allows
player 2 to deduce the selected state from the observation
of the actions played by player 1. This strategy of player 1
would be optimal here if a single stage was to be played,
but it is a very weak strategy on the long run and does
not guarantee more than zero at each stage t � 2 (because
player 2 can play Left or Right depending on player 1’s first
action).

On the opposite, player 1 may not use his information
and play a non revealing, or NR, strategy, i. e. a strategy
which is independent of the selected state. He can consider
the average matrix

1
2
Ga C

1
2
Gb D

�
1/2 0
0 1/2

�
;

and play independently at each stage an optimal mixed
action in this matrix, i. e. here the unique mixed action
1
2TopC

1
2Bottom. It will turn out that this is here the op-

timal behavior for player 1, and the value of the repeated
game is the value of the average matrix, i. e. 1/4.

Example 3

Ga D

�
4 0 2
4 0 �2

�
and Gb D

�
0 4 �2
0 4 2

�
:
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Playing a CR strategy for player 1 does not guaranteemore
than zero in the long-run, because player 2 will eventually
be able to playMiddle if the state is a, and Left if the state is
b. But a NR strategy will not do better, because the average
matrix

1
2
Ga C

1
2
Gb is

�
2 2 0
2 2 0

�
;

hence has value 0.
We will see later that an optimal strategy for player 1

in this game is to play as follows. Initially, player 1 chooses
an element s in fT; Bg as follows: if k D a, then s D T with
probability 3/4, and thus s D B with probability 1/4; and if
k D b, then s D T with probability 1/4, and s D B with
probability 3/4. Then at each stage player 1 plays row s,
independently of the actions taken by player 2. The con-
ditional probabilities satisfy: P(k D ajs D T) D 3/4, and
P(k D ajs D B) D 1/4. At the end of stage 1, player 2 will
have learned, from the action played by his opponent,
something about the selected state: his belief on the state
will move from 1

2 aC
1
2b to 3

4 aC
1
4b or to 1

4 aC
3
4b. But

player 2 still does not know perfectly the selected state.
Such a strategy of player 1 is called partially revealing.

General Definition

Formally, a repeated game with incomplete information is
given by the following data. There is a set of playersN, and
a set of states K . Each player i in N has a set of actions Ai

and a set of signalsUi, and we denote by AD
Q

i2N Ai the
set of action profiles and byU D

Q
i2N Ui the set of signal

profiles. Every player i has a payoff function g i : K�A �!
R. There is a signaling function q : K � A �! �(U), and
an initial probability � 2 �(K � U). In what follows, we
will always assume the sets of players, states, actions and
signals to be non empty and finite.

A repeated game with incomplete information
can thus be denoted by � D (N;K; (Ai )i2N ;(Ui )i2N ;
(g i )i2N ; q; �). The progress of the game is the following.

� Initially, an element (k; (ui
0)i) is selected according to

� : k is the realized state of nature and will remain
fixed, and each player i learns ui

0 (and nothing more
than ui

0).
� At each integer stage t � 1, simultaneously every player

i chooses an action ait in Ai, and we denote by at D
(ait)i the action profile played at stage t. The stage pay-
off of a player i is then given by g i (k; at). A signal
profile (ut

i )i is selected according to q(k; at), and each
player i learns ui

t (and nothing more than ut
i ) before

proceeding to the next stage.

Remark
1. We will always assume that during the play, each player

remembers the past actions he has chosen, as well as the
past signals he has received. And players will be allowed
to select their action independently at random.

2. The players do not necessarily know their stage payoff
after each stage (as an illustration, imagine the players
bargaining over units of an asset which terminal value
will only be known “at the end” of the game). This is
without loss of generality, because it is possible to add
hypotheses on q so that each player will be able to de-
duce his stage payoff from his realized stage signal.

3. Repeated games with complete information are a par-
ticular case, corresponding to the situation where each
initial signal ui

0 reveals the selected state. Such games
are studied in the chapter “Repeated games with com-
plete information”.

4. Games where the state variable k evolve from stage
to stage, according to the actions played, are called
stochastic games. These games are not covered here,
but in a specific chapter entitled “Stochastic games”.

5. The most standard case of signaling function is when
each player exactly learns, at the end of each stage t, the
whole action profile at. Such games are usually called
games with “perfect monitoring”, “full monitoring”,
“perfect observation” or with “observable actions”.

Strategies, Payoffs, Value and Equilibria
Strategies
A (behavior) strategy for player i is a rule, or program, de-
scribing the action taken by this player in any possible case
which may happen. These actions may be chosen at ran-
dom, so a strategy for player i is an element � i D (� i

t )t�1,
where for each t, � i

t is a mapping from Ui � (Ui � Ai )t�1

to �(Ai ) giving the lottery played by player i at stage t as
a function of the past signals and actions of player i. The
set of strategies for player i is denoted by˙ i.

A history of length t in � is a sequence (k; u0; a1;
u1; : : : ; at; ut), and the set of such histories is the finite set
K � U � (A� U)t . An infinite history is called a play, the
set of plays is denoted by ˝ D K � U � (A � U)1 and
is endowed with the product �-algebra. A strategy profile
� D (� i )i naturally induces, togetherwith the initial prob-
ability � , a probability distribution over the set of histories
of length t. This probability uniquely extends to a proba-
bility over plays, and is denoted by P	;
 .

Payoffs
Given a time horizon T, the average expected payoff of
player i, up to stage T, if the strategy profile � is played



Repeated Games with Incomplete Information R 7633

is denoted by:

� i
T(�) D EP
;�

 
1
T

TX

tD1

g i (k; at)

!

:

The T-stage game is the game � T where simultaneously,
each player i chooses a strategy � i in˙ i , then receives the
payoff � i

T ((�
j) j2N ).

Given a discount factor  in (0; 1], the -discounted
payoff of player i is denoted by:

� i
�(�) D EP
;�

 



1X

tD1

(1 � )t�1g i (k; at)

!

:

The -discounted game is the game � � where simultane-
ously, each player i chooses a strategy � i in ˙ i, then re-
ceives the payoff � i

�
((� j) j2N ).

Remark A strategy for player i is called pure if it al-
ways plays in a deterministic way. A mixed strategy for
player i is defined as a probability distribution over the set
of pure strategies (endowed with the product �-algebra).
Kuhn’s theorem (see [3,38] or [85] for a modern presenta-
tion) states that mixed strategies or behavior strategies are
equivalent, in the following sense: for each behavior strat-
egy � i, there exists a mixed strategy � i of the same player
such that P	;
 i ;
�i D P	;� i ;
�i for any strategy profile
��i of the other players, and vice-versa if we exchange the
words “behavior” and “mixed”. Unless otherwise specified,
the word strategy will refer here to a behavior strategy, but
we will also sometimes equivalently use mixed strategies,
or even mixtures of behavior strategies.

Value of Zero-SumGames

By definition the game is zero-sum if there are two play-
ers, say player 1 and player 2, with opposite payoffs. The
T-stage game � T can then be seen as a matrix game,
hence by the minmax theorem it has a value vT D sup
1

inf
2 � 1T (�
1; �2) D inf
2 sup
1 � 1T(�

1; �2). Similarly, one
can use Sion’s theorem [74] to show that the -dis-
counted game has a value v� D sup
1 inf
2 � 1

�
(�1; �2) D

inf
2 sup
1 � 1�(�
1; �2).

To study long term strategic aspects, it is also impor-
tant to consider the following notion of uniform value.
Players are asked to play well uniformly in the time hori-
zon, i. e. simultaneously in all game � T with T sufficiently
large (or similarly uniformly in the discount factor, i. e. si-
multaneously in all game � � with  sufficiently low).

Definition 1 Player 1 can guarantee the real number v in
the repeated game � if: 8" > 0; 9�1 2 ˙1; 9T0;8T �

T0;8�2 2 ˙2; � 1T (�
1; �2) � v � ". Similarly, Player 2

can guarantee v in � if 8" > 0; 9�2 2 ˙2; 9T0;8T �
T0;8�1 2 ˙1; � 1T (�

1; �2) � v C ". If both player 1 and
player 2 can guarantee v, then v is called the uniform value
of the repeated game. A strategy �1 of player 1 satisfy-
ing 9T0;8T � T0;8�2 2 ˙2; � 1T(�

1; �2) � v is then
called an optimal strategy of player 1 (optimal strategies of
player 2 are defined similarly).

The uniform value, whenever it exists, is necessarily
unique. Its existence is a strong property, which implies
that both vT , as T goes to infinity, and v�, as  goes to
zero, converge to the uniform value.

Equilibria of General-Sum Games

In the general case, the T-stage game� T can be seen as the
mixed extension of a finite game, and consequently pos-
sesses a Nash equilibrium. Similarly, the discounted game
� � always has, by the Nash Glicksberg theorem, a Nash
equilibrium. Concerning uniform notions, couples of op-
timal strategies are generalized as follows.

Definition 2 A strategy profile � D (� i)i2N is a uniform
Nash equilibrium of � if: 1) 8" > 0; � is an "-Nash equi-
librium in every finitely repeated game sufficiently long,
that is: 9T0;8T � T0;8i 2 N;8� i 2 ˙ i ; � i

T(�
i ; ��i ) �

� i
T (�)C ", and 2) the sequence of payoffs

�
(� i

T(�))i2N

T

converges to a limit payoff (� i (�))i2N inRN .

Remark The initial probability � will play a great role in
the following analyzes, so we will often write � i;	

T (�) for
� i
T (�); vT (�) for the value vT , etc.

The StandardModel of Aumann andMaschler

This famous model has been introduced in the sixties by
Aumann andMaschler (see the reedition [6]). It deals with
zero-sum games with lack of information on one side and
observable actions, as in the basic examples previously pre-
sented. There is a finite set of states K , an initial probabil-
ity p D (pk )k2K on K , and a family of matrix games Gk

with identical size I � J. Initially, a state k in K is selected
according to p, and announced to player 1 (called the in-
formed player) only. Then the matrix game Gk is repeated
over and over: at every stage, simultaneously player 1
chooses a row i in I, whereas player 2 chooses a column
j in J, the stage payoff for player 1 is then Gk(i; j) but only
i and j are publicly announced before proceeding to the
next stage. Denote byM the constant maxk;i; j jGk(i; j)j.
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Repeated Games with Incomplete Information, Figure 1
Splitting

Basic Tools: Splitting, Martingale, Concavification,
and the Recursive Formula

The following aspects are simple but fundamental. The ini-
tial probability p D (pk )k2K represents the initial belief,
or a priori, of player 2 on the selected state of nature. As-
sume that player 1 chooses his first action (or more gener-
ally a message or signal s from a finite set S) according to
a probability distribution depending on the state, i. e. ac-
cording to a transition probability x D (xk)k2K 2 �(S)K .
For each signal s, the probability that s is chosen is denoted
(x; s) D

P
k p

kxk(s), and given s such that (x; s) >

0 the conditional probability on K , or a posteriori of
player 2, is p̂(x; s) D

�
(pkxk(s))/((x; s))


k2K . We clearly

have:

p D
X

s2S

(x; s)p̂(x; s) : (1)

So the a priori p lies in the convex hull of the a posteri-
ori. The following lemma expresses a reciprocal: player 1
is able to induce any family of a posteriori containing p in
its convex hull.

Lemma 1 (Splitting) Assume that p is written as a con-
vex combination p D

P
s2S s ps with positive coefficients.

There exists a transition probability x 2 �(S)K such that
8s 2 S; s D (x; s) and ps D p̂(x; s).

Proof Just put xk(s) D �s pks
pk if pk > 0. �

Equation (1) not only tells that the a posteriori contains
p in their convex hull, but also that the expectation of the
a posteriori is the a priori. We are here in a repeated con-
text, and for every strategy profile � one can define the
process (pt(�))t�0 of the a posteriori of player 2. We have
p0 D p, and pt(�) is the random variable of player 2’s be-
lief on the state after the first t stages. More precisely, we
define for any t � 0, ht D (i1; j1; : : : ; it ; jt) 2 (I � J)t and
k in K :

pkt (�; ht) D Pp;
 (kjht) D
pkPı k ;
 (ht)
Pp;
 (ht)

:

pt(�; ht) D (pkt (�; ht))k2K 2 �(K) (arbitrarily defined if
Pp;
 (ht) D 0) is the conditional probability on the state
of nature given that � is played and ht has occurred
in the first t stages. It is easy to see that as soon as
Pp;
 (ht) > 0; pt(�; ht) does not depend on player 2’s
strategy �2, nor on player 2’s last action jt. It is fundamen-
tal to notice that:

Lemma 2 (Martingale of a posteriori) (pt(�))t�0 is
a Pp;
 -martingale with values in�(K).

This is indeed a general property of Bayesian learning of
a fixed unknown parameter: the expectation of what I will
know tomorrow is what I know today. This martingale is
controlled by the informed player, and the splitting lemma
shows that this player can essentially induce any martingale
issued from the a priori p. Notice that, to be able to compute
the realizations of the martingale, player 2 needs to know
the strategy �1 used by player 1.

The splitting lemma also easily gives the following concav-
ification result. Let f be a continuous mapping from�(K)
to R. The smallest concave function above f is denoted by
cav f , and we have:

cav f (p) D max
� X

s2S

s f (ps ); S finite;

8ss � 0; ps 2 �(K);
X

s2S

s D 1;
X

s2S

s ps D p
�
:

Lemma 3 (Concavification) If for any initial probabil-
ity p, the informed player can guarantee f (p) in the game
� (p), then for any p this player can also guarantee cav f (p)
in � (p).

Non Revealing Games

As soon as player 1 uses a strategy which depends on the
selected state, the martingale of a posteriori will move and
player 2 will have learned something on the state. This is
the dilemma of the informed player: he can not use the
information on the state without revealing information.
Imagine now that player 1 decides to reveal no informa-
tion on the selected state, and plays independently of it.
Since payoffs are defined via expectations, it is as if the
players were repeating the average matrix game G(p) DP

k2K pkGk . Its value is:

u(p) D max
x2#(I)

min
y2#(J)

X

i; j

x(i)y( j)G(p)(i; j)

D min
y2#(J)

max
x2#(I)

X

i; j

x(i)y( j)G(p)(i; j) :
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Repeated Games with Incomplete Information, Figure 2
u and cavu

u is a Lispchitz function, with constant M, from �(K) to
R. Clearly, player 1 can guarantee u(p) in the game � (p)
by playing i. i. d. at each stage an optimal strategy in G(p).
By the concavification lemma, we obtain:

Proposition 1 Player 1 can guarantee cavu(p) in the game
� (p).

Let us come back to the examples. In example 1, we have

u(p) D Val
�
�(1 � p) 0

0 �p

�
D �p(1 � p) ;

where p 2 [0; 1] stands here for the probability of state a.
This is a convex function of p, and cavu(p) D 0 for all p.
In example 2, u(p) D p(1 � p) for all p, hence u is already
concave and cavu D u. Regarding example 3, the follow-
ing picture show the functions u (regular line), and cavu
(dashed line).

Let us consider again the partially revealing strategy
previously described. With probability 1/2, the a posteri-
ori will be 3/4aC 1/4b, and player 1 will play Top which

is optimal in 3/4Ga C 1/4Gb D

�
3 1 1
3 1 �1

�
. Similarly

with probability 1/2, the a posteriori will be 1/4a C 3/4b
and player 1 will play an optimal strategy in 1/4Ga C

3/4Gb . Consequently, this strategy guarantees 1/2u(3/4)C
1/2u(1/4) D cavu(1/2) D 1 to player 1.

Player 2 can Guarantee the Limit Value

In the infinitely repeated game with initial probability p,
player 2 can play as follows: T being fixed, he can play an
optimal strategy in theT-stage game�T (p), then forget ev-
erything and play again an optimal strategy in the T-stage
game �T (p), etc.. . . By doing so, he guarantees vT (p) in
the game � (p). So he can guarantee infT vT (p) in this
game, and this implies that lim supT vT (p) � infT vT (p).
As a consequence, we obtain:

Proposition 2 The sequence (vT (p))T converges to
infT vT(p), and this limit can be guaranteed by player 2 in
the game � (p).

Uniform Value: cav u Theorem

We will see here that limT vT (p) is nothing but cavu(p),
and since this quantity can be guaranteed by both play-
ers this is the uniform value of the game � (p). The idea
of the proof is the following. The martingale (pt(�))t�0
is bounded, hence will converge almost surely, and we
have a bound on its L1 variation (see Lemma 4 below).
This means that after a certain stage the martingale will
essentially remain constant, so approximately player 1
will play in a non revealing way, so will not be able to
have a stage payoff greater than u(q), where q if a “limit
a posteriori”. Since the expectation of the a posteriori
is the a priori p, player 1 can not guarantee more than
maxf

P
s2S su(ps ); S finite;8s 2 Ss � 0; ps 2 �(K);P

s2S s D 1;
P

s2S s ps D pg, that is more than cavu(p).
Let us now proceed to the formal proof.

Fix a strategy �1 of player 1, and define the strategy �2

of player 2 as follows: play at each stage an optimal strategy
in the matrix gameG(pt), where pt is the current a posteri-
ori in�(K). Assume that � D (�1; �2) is played in the re-
peated game � (p). To simplify notations, we write P for
Pp;
 , pt(ht) for pt(�; ht), etc. We use everywhere norms
k:k1. To avoid confusion between variables and random
variables in the following computations, we will use tildes
to denote random variables, e. g. k̃ will denote the random
variable of the selected state.

Lemma 4

8T � 1;
1
T

T�1X

tD0

E(kptC1�ptk) �
P

k2K
p
pk(1 � pk)
p
T

:

Proof This is a property of martingales with values in
�(K) and expectation p. We have for each state k and
t � 0 : E

�
(pktC1 � pkt )2


D E(E((pktC1 � pkt )2jHt)),

whereHt is the �-algebra on plays generated by the first
t action profiles. So E

�
(pktC1 � pkt )2


D E(E((pktC1)

2 C

(pkt )2 � 2pktC1p
k
t jHt)) D E((pktC1)

2) � E((pkt )2). So

E

PT�1

tD0 (p
k
tC1�p

k
t )2
�
D E

�
(pkT )

2�(pk)2 � pk(1�pk ).
By Cauchy- Schwartz inequality, we also have for each k,

E

 
1
T

T�1X

tD0

ˇ̌
ˇpktC1 � pkt

ˇ̌
ˇ

!

�

vuut 1
T
E

 T�1X

tD0

(pktC1 � pkt )2
!

and the result follows. �

For ht in (I � J)t; �1tC1(k; ht) is the mixed action in �(I)
played by player 1 at stage t C 1 if the state is k and ht has
previously occurred, and we write �̄1tC1(ht) for the law of
the action of player 1 of stage t C 1 after ht : �̄1tC1(ht) D
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P
k2K pkt (ht)�1tC1(k; ht) 2 �(I). �̄tC1(ht) can be seen as

the average action played by player 1 after ht , and will be
used as a non revealing approximation for (�1tC1(k; ht))k .
The next lemma precisely links the variation of themartin-
gale (pt(�))t�0, i. e. the information revealed by player 1,
and the dependence of player 1’s action on the selected
state, i. e. the information used by player 1.

Lemma 5

8t � 0;8ht 2 (I � J)t;E
�
kptC1 � ptk jht



D E

���� k̃

tC1(ht) � �̄tC1(ht)
��� jht

�
:

Proof Fix t � 0 and ht in (I � J)t s.t. Pp;
 (ht) > 0. For
(itC1; jtC1) in I � J, one has:

pktC1(ht ; itC1; jtC1) D P (k̃ D kjht; itC1)

D
P (k̃ D kjht)P (itC1jk; ht)

P (itC1jht)

D
pkt (ht)�1tC1(k; ht)(itC1)

�̄1tC1(ht)(itC1)
:

Consequently,

E
�
kptC1 � ptkjht



D
X

i tC12I

�̄1tC1(ht)(itC1)
X

k2K

jpktC1(ht ; itC1) � pkt (ht)j

D
X

i tC12I

X

k2K

jpkt (ht)�
1
tC1(k; ht)(itC1)

� �̄1tC1(ht)(itC1)pkt (ht)j

D
X

k2K

pkt (ht)k�
1
tC1(k; ht) � �̄

1
tC1(ht)k

D E
�
k�1tC1(k̃; ht) � �̄

1
tC1(ht)kjht


:

�

We can now control payoffs. For t � 0 and ht in (I � J)t :

E


Gk̃ ( ĩ tC1; j̃tC1)jht

�

D
X

k2K

pkt (ht)G
k (�1tC1(k; ht); �

2
tC1(ht))

�
X

k2K

pkt (ht)G
k (�̄1tC1(ht); �

2
tC1(ht))

CM
X

k2K

pkt (ht)k�
1
tC1(k; ht) � �̄

1
tC1(ht)k

� u(pt(ht))CM
X

k2K

pkt (ht)k�
1
tC1(k; ht) � �̄

1
tC1(ht)k;

where u(pt(ht)) comes from the definition of �2. By
Lemma 5, we get:

E


Gk̃( ĩ tC1; j̃tC1)jht

�

� u(pt(ht))CME
�
kptC1 � ptkjht


:

Applying Jensen’s inequality yields:

E


Gk̃( ĩ tC1; j̃tC1)

�
� cavu(p)C ME

�
kptC1 � ptk


:

We now apply Lemma 4 and obtain:

�
1;p
T (�1; �2) D E

 
1
T

T�1X

tD0

Gk̃ ( ĩ tC1; j̃tC1)

!

� cavu(p)C
M
p
T

X

k2K

q
pk(1 � pk) :

This is true for any strategy �1 of player 1. Considering the
case of an optimal strategy for player 1 in the T-stage game
�T (p), we have shown:

Proposition 3 For p in�(K) and T � 1,

vT (p) � cavu(p)C
M
P

k2K

p
pk(1 � pk)

p
T

:

It remains to conclude about the existence of the uni-
form value. We have seen that player 1 can guaran-
tee cavu(p), that player 2 can guarantee limT vT(p), and
we obtain from proposition 3 that limT vT (p) � cavu(p).
This is enough to deduce Aumann and Maschler’s cele-
brated “cavu” theorem.

Theorem 1 (Aumann andMaschler [6]) The game � (p)
has a uniform value which is cavu(p).

T-Stage Values and the Recursive Formula

As the T-stage game is a zero-sum game with incomplete
information where player 1 is informed, we can write:

vT (p) D inf

22˙2

sup

12˙1

�
1;p
T (�) ;

D inf

22˙2

sup

12˙1

X

k2K

pk� 1;ıkT (�) ;

D inf

22˙2

X

k2K

pk
 

sup

12˙1

�
1;ık
T (�)

!

:

This shows that vT is the infimum of a family of
affine functions of p, hence is a concave function of p.
This concavity represents the advantage of player 1 to
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possess the information on the selected state. Clearly,
we have vT(p) � u(p), hence we get the inequalities:
8T � 1; cavu(p) � vT (p) � cavu(p) C (M

P
k2Kp

pk(1 � pk))/
p
T .

It is also easy to prove that the T-stage value functions
satisfy the following recursive formula:

vTC1(p) D
1

T C 1
max

x2#(I)K
min
y2#(J)

�

 

G(p; x; y)C T
X

i2I

x(p)(i)vT (p̂(x; i))

!

D
1

T C 1
min
y2#(J)

max
x2#(I)K

�

 

G(p; x; y)C T
X

i2I

x(p)(i)vT (p̂(x; i))

!

;

where x D (xk(i))i2I;k2K , with xk the mixed action used
at stage 1 by player 1 if the state is k;G(p; x; y) DP

k;i; j p
kGk (xk(i); y( j)) is the expected payoff of stage 1,

x(p)(i) D
P

k2K pkxk(i) is the probability that action i is
played at stage 1, and p̂(x; i) is the conditional probability
on K given i.

The recursive formula simply is a generalization of
the dynamic programming principle. The following prop-
erty interprets easily: the advantage of the informed player
can only decrease as the number of stages increases (for
a proof, one can show that vTC1 � vT by induction on T,
using the concavity of vT).

Lemma 6 The T-stage value vT (p) is non increasing in T.

Optimal Strategies

In order to determine the optimal behavior of the players,
it is important to be able to compute optimal strategies.

The recursive formula enables to compute, by induc-
tion on T, an optimal strategy for player 1 in the T-stage
game �T (p). But it can not be used to compute an opti-
mal strategy for player 2 in the finitely repeated games,
because such a strategy should not depend on player 1’s
strategy, and consequently on the a posteriori of player 2.
Constructing such an optimal strategy for player 2 can be
done via the recursive formula of a dual game, see Sub-
sect. “Zero-Sum Games”.

These strategies of player 2 may afterwards be used
to construct an optimal strategy in the infinitely re-
peated game (see Subsect. “Player 2 can Guarantee the
Limit Value”): define consecutive blocks of stages B1; : : : ;

BT ; : : : of respective cardinalities 1; : : : ; T , and play in-

dependently at each block BT an optimal strategy for
player 2 in the T-stage game �T (p). This strategy guaran-
tees lim sup vT (p) D cavu(p) for the uninformed player,
hence is optimal for player 2, in � (p). In the next section
we will also see how to directly construct an explicit opti-
mal strategy for player 2 in � (p), taking care simultane-
ously of all possible states k.

It is much more simpler to construct an optimal strat-
egy for player 1 in the infinitely repeated game: since
player 1 has to guarantee cavu(p), this can be done using
the concavification lemma, see proposition 1.

Vector Payoffs and Approachability

The following model has been introduced by D. Black-
well [8] and is, strictly speaking, not part of the general
definition given in Sect. “Definition of the Subject”. We
still have a family of I � J matrices (Gk )k2K , where K is
a finite set of parameters. At each stage t, simultaneously
player 1 chooses it 2 I and player 2 chooses jt 2 J, and the
stage “payoff” is the full vector G(it ; jt) D (Gk (it; jt))k2K
in RK . Notice that there is no initial probability or true
state of nature here, and both players have a symmet-
ric role. We assume here that after each stage both play-
ers observe exactly the stage vector payoff (but one can
check that assuming that the action profiles are observed
wouldn’t change the results). A natural question is then to
determine the sets C in RK such that player 1 (for exam-
ple) can force the average long term payoff to belong to C?
Such sets will be called approachable by player 1.

In Sect. “Vector Payoffs and Approachability”, we
use Euclidean distances and norms. Denote by F D

f(Gk (i; j))k2K ; i 2 I; j 2 Jg the finite set of possible stage
payoffs, and by M a constant such that kuk � M for each
u in F. A strategy for player 1, resp. player 2, is an ele-
ment � D (�t)t�1, where � t maps Ft�1 into �(I), resp.
�(J). Strategy spaces for player 1 and 2 are respectively
denoted by ˙ and T . A strategy profile (�; �) naturally
induces a unique probability on (I � J � F)1 denoted by
P
;� . Let C be a “target” set, that will always be assumed,
without loss of generality, a closed subset of RK . We de-
note by gt the random variable, with value in F, of the pay-
off of stage t, and we use ḡt D 1

t
Pt

t0D1 gt0 2 conv(F), and
finally dt D d(ḡt ;C) for the distance from ḡt to C.

Definition 3 C is approachable by player 1 if: 8" >

0; 9� 2 ˙; 9T;8� 2 T ;8t � T;E
;� (dt) � ". C
is excludable by player 1 if there exist ı > 0 such that
fz 2 RK ; d(z;C) � ıg is approachable by player 1.

Approachability and excludability for player 2 are de-
fined similarly. C is approachable by player 1 if for each
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" > 0, this player can force that for t large we have
E
;� (dt) � ", so the average payoff will be "-close to C
with high probability. A set cannot be approachable by
a player as well as excludable by the other player. In the
usual case where K is a singleton, we are in dimension 1
and the Minmax theorem implies that for each t, the in-
terval [t;C1[ is either approachable by player 1, or ex-
cludable by player 2, depending on the comparison be-
tween t and the value maxx2#(I) miny2#(J) G(x; y) D
miny2#(J) maxx2#(I) G(x; y).

Necessary and Sufficient Conditions
for Approachability

Given a mixed action x in �(I), we write xG for the
set of possible vector payoffs when player 1 uses x, i. e.
xG D fG(x; y); y 2 �(J)g D convf

P
i2I xiG(i; j); j 2 Jg.

Similarly, we write Gy D fG(x; y); x 2 �(I)g for y in
�(J).

Definition 4 The set C is a B(lackwell)-set for player 1 if
for every z … C, there exists z0 2 C and x 2 �(I) such that:
(i) kz0 � zk D d(z;C), and (ii) the hyperplane containing
z0 and orthogonal to [z; z0] separates z from xG.

For example, any set xG, with x in �(I), is a B-set for
player 1. Given a B-set for player 1, we now construct
a strategy � adapted to C as follows. At each positive stage
t C 1, player 1 considers the current average payoff ḡt . If
ḡt 2 C, or if t D 0; � plays arbitrarily at stage t C 1. Oth-
erwise, � plays at stage t C 1 a mixed action x satisfying
the previous definition for z D ḡt .

Theorem 2 If C is a B-set for player 1, a strategy � adapted
to C satisfies:

8� 2 T ;8t � 1; E
;� (dt) �
2M
p
t

and dt �!t!1 0P
;� a:s:

As an illustration, in dimension 1 and for C D f0g, this
theorem implies that a bounded sequence (xt)t of reals,
such that the product xTC1



1
T
PT

tD1 xT
�
is non-positive

for each T, Cesaro converges to zero.

Proof Assume that player 1 plays � adapted toC, whereas
player 2 plays some strategy � . Fix t � 1, and assume
that ḡt … C. Consider z0 2 C and x 2 �(I) satisfying (i)
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The Blackwell property

and (ii) of definition 4 for z D ḡt . We have:

d2tC1 D d(ḡtC1;C)2 � kḡtC1 � z0k2

D k
1

t C 1

tC1X

lD1

gl � z0k
2

D k
1

t C 1
(gtC1 � z0)C

t
t C 1

(ḡt � z0)k
2

D

�
1

t C 1

�2
kgtC1 � z0k2 C

�
t

t C 1

�2
dt2

C
2t

(t C 1)2
˝
gtC1 � z0; ḡt � z0

˛
:

By hypothesis, the expectation, given the first t action pro-
files ht 2 (I � J)t , of the above scalar product is non-
positive, so E

�
d2tC1jht


� (t/(t C 1))2dt2 C (1/(t C 1))2

E
�
kgtC1 � z0k2jht


. Since E

�
kgtC1 � z0k2jht


�

E
�
kgtC1 � ḡtk2jht


� (2M)2, we have:

E
�
d2tC1jht


� (

t
t C 1

)2dt2 C (
1

t C 1
)
2
4M2 : (2)

Taking the expectation, we get, whether ḡt … C or not:
8t � 1;E

�
d2tC1


� (t/(t C 1))2E(dt2)C(1/(t C 1))24M2.

By induction, we obtain that for each t � 1;E(d2t ) �
(4M2)/t, and E(dt) � (2M)/

p
t.

Put now, as in Sorin 2002 [85], et D d2t C
P

t0>t
4M2

t02
.

Inequality (2) gives E(etC1jht) � et , so (et) is a non-
negative supermartingale which expectation goes to
zero. By a standard probability result (see, e. g., Meyer
1966 [58]), we obtain et �!t!1 0P
;� a.s., and finally
dt �!t!1 0P
;� a.s. �

This theorem implies that any B-set for player 1 is ap-
proachable by this player. The converse is true for convex
sets.
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Theorem 3 Let C be a closed convex subset of RK.

(i) C is a B-set for player 1 ;
, (i i) 8y 2 �(J);Gy \ C ¤ ; ;
, (i i i) C is approachable by player 1 ;

, (iv) 8q 2 RK ;

max
x2#(I)

min
y2#(J)

X

k2K

qkGk(x; y) � inf
c2C
hq; ci :

Proof The implication (i) H) (i i i) comes from The-
orem 2. Proof of (i i i) H) (i i): assume there exists
y 2 �(J) such that Gy \ C D ;. Since Gy is approach-
able by player 2, then C is excludable by player 2 and thus
C is not approachable by player 1. Proof of (i i) H) (i):
Assume that Gy \ C ¤ ;8y 2 �(J). Consider z … C and
define z0 as its projection onto C. Define the matrix game
where payoffs are projected towards the direction z0 � z,
i. e. the matrix game

P
k2K(z

0k � zk)Gk . By assumption,
one has: 8y 2 �(J); 9x 2 �(I) such that G(x; y) 2 C,
hence such that:

hz0 � z;G(x; y)i � min
c2C
hz0 � z; ci D hz0 � z; z0i :

So miny2#(J) maxx2#(I)hz0 � z;G(x; y)i � hz0 � z; z0i. By
the minmax theorem, there exists x in�(I) such that8y 2
�(J); hz0 � z;G(x; y)i � hz0 � z; z0i, that is hz0 � z; z0 �
G(x; y)i � 0.

(iv) means that any half-space containing C is ap-
proachable by player 1. (i i i) H) (iv) is thus clear.
(iv) H) (i) is similar to (i i) H) (i). �

Up to minor formulation differences, Theorems 2 and 3
are due to Blackwell [8]. More recently, X. Spinat [86] has
proved the following characterization.

Theorem 4 A closed set is approachable for player 1 if and
only if it contains a B-set for player 1.

As a consequence, it shows that adding the condition
dt �!t!1 0P
;� a.s. in the definition of approachability
does not modify the notion.

Approachability for Player 1 Versus
Excludability for Player 2

As a corollary of Theorem 3, we obtain that: A closed con-
vex set in RK is either approachable by player 1, or exclud-
able by player 2.

One can show that when K is a singleton, then any
set is either approachable by player 1, or excludable by
player 2. A simple example of a set which is neither ap-
proachable for player 1 nor excludable by player 2 is given

in dimension 2 by:

G D
�

(0; 0) (0; 0)
(1; 0) (1; 1)

�
; and

C D f(1/2; v); 0 � v � 1/4g
[
f(1; v); 1/4 � v � 1g

(see [85]).

Weak Approachability

On can weaken the definition of approachability by giving
up time uniformity.

Definition 5 C is weakly approachable by player 1 if:
8" > 0; 9T;8t � T; 9� 2 ˙;8� 2 T ;E
;� (dt) � ". C is
weakly excludable by player 1 if there exists ı > 0 such that
fz 2 RK ; d(z;C) � ıg is weakly approachable by player 1.

N. Vieille [87] has proved, via the consideration of certain
differential games:

Theorem 5 A subset of RK is either weakly approachable
by player 1 or weakly excludable by player 2.

Back to the StandardModel

Let us come back to Aumann and Maschler’s model with
a finite family of matrices (Gk )k2K , and an initial proba-
bility p on �(K). By Theorem 1, the repeated game � (p)
has a uniform value which is cavu(p), and Blackwell ap-
proachability will allow for the construction of an explicit
optimal strategy for the uninformed player. Considering
a hyperplane which is tangent to cavu at p, we can find
a vector l inRK such that

hl ; pi D cavu(p)
and 8q 2 �(K); hl ; qi � cavu(q) � u(q) :

Define now the orthant C D fz 2 RK ; zk � l k8k 2 Kg.
Recall that player 2 does not know the selected state, and
an optimal strategy for him can not depend on player 1’
strategy, and consequently on a martingale of a posteriori.
He will play in a way such that player 1’s long term payoff
is, simultaneously for each k in K, not greater than lk if the
state is k.

Fix q D (qk )k in RK . If there exists k with qk > 0,
we clearly have infc2C hq; ci D �1 � maxy2#(J)
minx2#(I)

P
k2K qkGk (x; y). Assume now that qk � 0 for
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each k, with q ¤ 0. Write s D
P

k(�q
k ).

inf
c2C
hq; ci D

X

k2K

qk l k

D �s
D
l ;
�q
s

E

� �su(
�q
s
)

� �s max
x2#(I)

min
y2#(J)

X

k2K

�qk

s
Gk(x; y)

D max
y2#(J)

min
x2#(I)

X

k2K

qkGk (x; y)

This is condition (iv) of Theorem 3, adapted to player 2.
So C is a B-set for player 2, and a strategy � adapted to C
satisfies by Theorem 2: 8� 2 ˙;8k 2 K,

E
;�

 
1
T

TX

tD1

Gk( ĩ t ; j̃t) � l k
!

� E
;�

 

d

 
1
T

TX

tD1

Gk ( ĩ t; j̃t);C

!!

�
2M
p
T
;

(whereM is here an upper bound for the Euclidean norms
of the vectors (Gk (i; j))k2K , with i 2 I and j 2 J.) And this
holds as well for any strategy � of player 1 in the repeated
game with incomplete information. So for any such strat-
egy � ,

�
1;p
T (�; �) D

X

k2K

pk
 
1
T

TX

tD1

E
;� (Gk ( ĩ t; j̃t))

!

� hp; li C
2M
p
T
D cavu(p)C

2M
p
T
:

As shown by Kohlberg [35], the approachability strategy
� is thus an optimal strategy for player 2 in the repeated
game � (p).

Zero-SumGameswith Lack
of Information on Both Sides

The following model has also been introduced by Aumann
and Maschler [6]. We are still in the context of zero-sum
repeated games with observable actions, but it is no longer
assumed that one of the players is fully informed. The set
of states is here a product K � L of finite sets, and we have
a family of matrices (Gk;l )(k;l )2K�Lwith size I � J, as well
as initial probabilities p on K , and q on L. In the game

� (p; q), a state of nature (k; l) is first selected according to
the product probability p˝ q, then k, resp. l, is announced
to player 1, resp. player 2 only. Then the matrix game Gk;l

is repeated over and over: at every stage, simultaneously
player 1 chooses a row i in I, whereas player 2 chooses
a column j in J, the stage payoff for player 1 is Gk;l (i; j)
but only i and j are publicly announced before proceeding
to the next stage.

The average payoff for player 1 in the T-stage game
is written: � 1;p;qT (�1; �2) D E

p;q

1;
2

� 1
T
PT

tD1 G
k̃; l̃ ( ĩ t ; j̃t)


,

and the T-stage value is written vT (p; q). Similarly, the
-discounted value of the game will be written v�(p; q)

The non revealing game now corresponds to the case
where player 1 plays independently of k and player 2 plays
independently of l. Its value is denoted by:

u(p; q) D max
x2#(I)

min
y2#(J)

X

k;l

pkqlGk;l (x; y) : (3)

Given a continuous function f : �(K) ��(L) �! R,
we denote by cavI f the concavification of f with re-
spect to the first variable: for each (p; q) in �(K) ��(L),
cavI f (p; q) is the value at p of the smallest concave func-
tion from �(K) to R which is above f (:; q). Similarly,
we denote by vexII f the convexification of f with respect
to the second variable. It can be shown that cavI f and
vexII f are continuous, and we can compose cavIvexII f and
vexIIcavI f . These functions are both concave in the first
variable and convex in the second variable, and they sat-
isfy cavIvexII f (p; q) � vexIIcavI f (p; q).

Maxmin andMinmax of the Repeated Game

Theorem 1 generalizes as follows.

Theorem 6 ([6]) In the repeated game � (p; q), the
greatest quantity which can be guaranteed by player 1 is
cavIvexIIu(p; q), and the smallest quantity which can be
guaranteed by player 2 is vexIIcavIu(p; q).

Aumann, Maschler and Stearns also showed that
cavIvexIIu(p; q) can be defended by player 2, uniformly in
time, i. e. that 8" > 0;8�1; 9T0; 9�2;8T � T0; �

p;q
T (�1;

�2) � cavIvexIIu(p; q)v C ". Similarly, vexIIcavIu(p; q)
can be defended by player 1.

The proof uses the martingales of a posteriori of each
player, and a useful notion is that of the informational
content of a strategy: for a strategy �1 of the first player,
it is defined as: I(�1) D sup
2 E

p;q

1;
2

�P
k2K

P1
tD0

(pktC1(�
1) � pkt (�1))2


, where pt(�1) is the a posteriori

on K of player 2 after stage t given that player 1 uses �1.
By linearity of the expectation, the supremum can be re-
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stricted to strategies of player 2 which are both pure and
independent of l.

Theorem 6 implies that cavIvexIIu(p; q) D sup
12˙1

lim infT
�
inf
22˙2 �

1;p;q
T (�1; �2)


, and cavIvexIIu(p; q) is

called the maxmin of the repeated game � (p; q). Sim-
ilarly, vexIIcavIu(p; q) D inf
22˙2 lim supT

�
sup
12˙1

� 1T(�
1; �2)


is called the minmax of � (p; q). As a corol-

lary, we obtain that the repeated game � (p; q) has a uni-
form value if and only if: cavIvexIIu(p; q) D vexII
cavIu(p; q). This is not always the case, and there exist
counter-examples to the existence of the uniform value.

Example 4 K D fa; a0g, and L D fb; b0g, with p and q
uniform.

Ga;b D

�
0 0 0 0
�1 1 1 �1

�
Ga;b0 D

�
1 �1 1 �1
0 0 0 0

�

Ga0;b D

�
�1 1 �1 1
0 0 0 0

�
Ga0;b0 D

�
0 0 0 0
1 �1 �1 1

�

Mertens and Zamir [52] have shown that here, cavI
vexIIu(p; q) D � 1

4 < 0 D vexIIcavIu(p; q).

Limit Values

It is easy to see that for eachT and, the value functions vT
and v� are concave in the first variable, and convex in the
second variable. They are all Lipschitz functions, with the
same constant M D maxi; j;k;l jGk;l (i; j)j, and here also,
recursive formula can be given. In the following result, vT
and v� are viewed as elements of the set C of continuous
mappings from�(K) ��(L) toR.

Theorem 7 (Mertens and Zamir [52]) (vT )T , as T goes to
infinity, and (v�)�, as  goes to zero, both uniformly con-
verge to the unique solution f of the following system:
(
f D vexII maxfu; f g
f D cavI minfu; f g

Besides, the above system can also be fruitfully studied
without reference to repeated games (see [39,40,55,81]).
For a proof of Theorem 7, one can also see Zamir [91] or
Sorin [85]. Mertens and Zamir notably consider responses
of a player, to a given strategy of his opponent, which are
of the following type: play non revealing up to a particu-
lar stopping time, and then start using the information by
playing optimally in the remaining subgame.

Remark Let U be the set of all non revealing value func-
tions, i. e. of functions from �(K) ��(L) to R satisfying
Eq. (3) for some family of matrices (Gk;l )k;l . One can eas-
ily show that any mapping in C is a uniform limit of ele-
ments in U.

Correlated Initial Information

Amore general model can be written, where it is no longer
assumed that the initial information of the players are in-
dependent. The set of states is now denoted by R (instead
of K � L), initially a state r in R is chosen according to
a known probability p D (pr)r2R , and each player receives
a deterministic signal depending on r. Equivalently, each
player i has a partition Ri of R and observes the element of
his partition which contains the selected state.

After the first stage, player 1 will play an action
x D (xr)r2R which is measurable with respect to R1, i. e.
(r �! xr) is constant on each atom of R1. After having
observed player 1’s action at the first stage, the conditional
probability on R necessarily belongs to the set:

…I(p) D
� �
˛r pr


r2R ;8r˛

r � 0;
X

r
˛r pr D 1

and (˛r )r is R1-measurable
�
:

…I(p) contains p, and is a convex compact subset of�(R).
A mapping f from�(R) toR is now said to be I-concave if
for each p in�(R), the restriction of f to…I(p) is concave.
And given g : �(R) �! R which is bounded from above,
we define the concavification cavIg as the smallest func-
tion above g which is I-concave. Similarly one can define
the set…II(p) and the notions of II-convexity and II-con-
vexification. With these generalized definitions, the results
of Theorem 6 and 7 perfectly extend [52].

Non Zero-SumGameswith Lack of Information
on One Side

We now consider the generalization of the standardmodel
of Sect. “The Standard Model of Aumann and Maschler”
to the non-zero sum case. Hence two players infinitely re-
peat the same bimatrix game, with player 1 only know-
ing the bimatrix. Formally, we have a finite set of states
K , an initial probability p on K , and families of I � J-
payoff matrices (Ak )k2K and (Bk)k2K . Initially, a state k
in K is selected according to p, and announced to player 1
only. Then the bimatrix game (Ak ; Bk) is repeated over
and over: at every stage, simultaneously player 1 chooses
a row i in I, whereas player 2 chooses a column j in J, the
stage payoff for player 1 is then Ak(i; j), the stage payoff
for player 2 is Bk(i; j), but only i and j are publicly an-
nounced before proceeding to the next stage. Without loss
of generality, we assume that pk > 0 for each k, and that
each player has at least two actions.
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Given a strategy pair (�1; �2), it is here convenient to
denote the expected payoffs up to stage T by:

˛
p
T(�

1; �2) D Ep;
1;
2

 
1
T

TX

tD1

Ak̃( ĩ t ; j̃t)

!

D
X

k2K

pk˛k
T (�

1; �2) :

ˇ
p
T(�

1; �2) D Ep;
1;
2

 
1
T

TX

tD1

Bk̃( ĩ t; j̃t)

!

D
X

k2K

pkˇk
T(�

1; �2) :

Given a probability q on K , we write A(q) D
P

k q
k

Ak ; B(q) D
P

k q
kBk ; u(q) D maxx2#(I) miny2#(J) A(q)

(x; y) and v(q) D maxy2#(J) minx2#(I) B(q)(x; y). If � D
(� (i; j))(i; j)2I�J 2 �(I � J), we put A(q)(� ) D

P
(i; j)2I�J

� (i; j)A(q)(i; j) and similarly B(q)(� ) D
P

(i; j)2I�J � (i; j)
B(q)(i; j).

Existence of Equilibria

The question of existence of an equilibrium has remained
unsolved for long. Sorin [79] proved the existence of an
equilibrium for two states of nature, and the general case
has been solved by Simon et al. [76].

Exactly as in the zero-sum case, a strategy pair �
induces a sequence of a posteriori (pt(�))t�0 which is
a Pp;
 - martingale with values in �(K). We will concen-
trate on the cases where this martingale moves only once.

Definition 6 A joint plan is a triple (S; ; � ), where:

� S is a finite non empty set (of messages),
�  D (k )k2K (signaling strategy) with for each

k; k 2 �(S) and for each s; s Ddef
P

k2K pkks > 0,
� � D (�s)s2S (contract) with for each s; �s 2 �(I � J).

The idea is due to Aumann,Maschler and Stearns. Player 1
observes k, then chooses s 2 S according to k and an-
nounces s to player 2. Then the players play pure actions
corresponding to the frequencies �s(i; j), for i in I and j
in J. Given a joint plan (S; ; � ), we define:

� 8s 2 S; ps D (pks )k2K 2 �(K), with pks D
pk�k

s
�s

for
each k. ps is the a posteriori on K given s.

� ' D ('k)k2K 2 RK , with for each k, 'k D maxs2S Ak

(�s).
� 8s 2 S;  s D B(ps )(�s ) and  D

P
k2K pk

P
s2S 

k
s

Bk(�s) D
P

s2S s s .

Definition 7 A joint plan (S; ; � ) is an equilibrium joint
plan if:

(i) 8s 2 S;  s � vexv(ps ),
(ii) 8k 2 K;8s 2 S s.t. pks > 0;Ak(�s) D 'k , and
(iii) 8q 2 �(K); h'; qi � u(q).

Condition (ii) can be seen as an incentive condition for
player 1 to choose s according to k. Given an equilibrium
joint plan (S; ; � ), one define a strategy pair (�1�; �2�)
adapted to it. For each message s, first fix a sequence
(ist ; jst)t�1 of elements in I � J such that for each (i; j),
the empirical frequencies converge to the corresponding
probability: 1

T jft; 1 � t � T; (ist ; jst) D (i; j)gj �!T!1
�s(i; j). We also fix an injective mapping f from S to Il,
where l is large enough, corresponding to a code between
the players to announce an element in S. �1� is precisely
defined as follows. Player 1 observes the selected state k,
then chooses s according to k, and announces s to player 2
by playing f (s) at the first l stages. Finally, �1� plays ist at
each stage t > l as long as player 2 plays jst . If at some stage
t > l player 2 does not play jst then player 1 punishes his
opponent by playing an optimal strategy in the zero-sum
game with initial probability ps and payoffs for player 1
given by (�Bk)k2K . We now define �2�. Player 2 arbitrar-
ily plays at the beginning of the game, then compute at
the end of stage l the message s sent by player 1. Next he
plays at each stage t > l the action jst as long as player 1
plays ist . If at some stage t > l , player 1 does not play ist ,
or if the first l actions of player 1 correspond to no mes-
sage, then player 2 plays a punishing strategy �̄2 such that:
8" > 0; 9T0;8T � T0;8�1 2 ˙1;8k 2 K; ˛k

T (�
1; �̄2) �

'k C ". Such a strategy �̄2 exists because of condition
(iii): it is an approachability strategy for player 2 of the
orthant fx 2 RK ;8k 2 K xk � 'kg (see Subsect. “Back to
the Standard Model”).

Lemma 7 ([79]) A strategy pair adapted to an equilibrium
joint plan is a uniform equilibrium of the repeated game.

Proof The payoffs induced by (�1�; �2�) can be eas-
ily computed: 8k; ˛k

T (�
1�; �2�) �!T!1

P
s2S 

k
s Ak

(�s ) D 'k because of (ii), and ˇp
T(�

1�; �2�) �!T!1P
k2K pk

P
s2S 

k
s Bk(�s ) D  . Assume that player 2

plays �2�. The existence of �̄2 implies that no detectable
deviation of player 1 is profitable, so if the state is k,
player 1 will gain no more than maxs02S Ak(�s0 ). But this
is just 'k . The proof can be made uniform in �1 and
we obtain: 8" > 0 9T0 8T � T0;8k 2 K;8�1 2
˙1; ˛k

T (�
1; �2�) � 'k C ". Finally assume that player 1

plays �1�. Condition (i) implies that if player 2 uses �2�,
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the payoff of this player will be at least vexv(ps ) if the mes-
sage is s. Since vex v(ps )(D �cav(�v(ps ))) is the value,
from the point of view of player 2 with payoffs (Bk)k , of the
zero-sum gamewith initial probability ps, player 2 fears the
punition by player 1, and 8" > 0; 9T0;8T � T0;8�2 2
˙2; ˇ

p
T (�

1�; �2) �
P

s2S s s C " D  C ". �

To prove the existence of equilibria, we then look for equi-
librium joint plans. The first idea is to consider, for each
probability r on K , the set of payoff vectors ' compatible
with r being an a posteriori. This leads to the considera-
tion of the following correspondence (for each r; ˚(r) is
a subset ofRK ):

˚ : �(K) � RK

r 7! f(Ak(� ))k2K ; where � 2 �(I � J)
satisfies B(r)(� ) � vex v(r)g

It is easy to see that the graph of ˚ , i. e. the set f(r; ') 2
�(K)�RK ; ' 2 ˚(r)g, is compact, that˚ has non empty
convex values, and satisfies:8r 2 �(K);8q 2 �(K); 9' 2
˚(r); h'; qi � u(q).

Assume now that one can find a finite family (ps )s2S
of probabilities on K , as well as vectors ' and, for
each s; 's in RK such that: 1) p 2 convfps ; s 2 Sg,
2) h'; qi � u(q)8q 2 �(K), 3) 8s 2 S; 's 2 ˚(ps), and
4) 8s 2 S;8k 2 K; 'k

s � '
k with equality if pks > 0. It is

then easy to construct an equilibrium joint plan. Thus we
get interested in proving the following result.

Proposition 4 Let p be in�(K); u : �(K) �! R be a con-
tinuous mapping, and ˚ : �(K) � RK be a correspon-
dence with compact graph and non empty convex values
such that: 8r 2 �(K); 8q 2 �(K); 9' 2 ˚(r); h'; qi �
u(q). Then there exists a finite family (ps )s2S of elements of
�(K), as well as vectors ' and, for each s, 's in RK such
that:

� p 2 convfps ; s 2 Sg,
� h'; qi � u(q)8q 2 �(K),
� 8s 2 S; 's 2 ˚(ps ),
� 8s 2 S;8k 2 K; 'k

s � '
k with equality if pks > 0.

The proof of proposition 4 relies, as explained in [62]
or [75], on a fixed point theorem of Borsuk–Ulam type
proved by Simon, Spież and Toruńczyk [76] via tools from
algebraic geometry. A simplified version of this fixed point
theorem can be written as follows:

Theorem 8 ([76]) Let C be a compact subset of an n-di-
mensional Euclidean space, x 2 C and Y be a finite union
of affine subspaces of dimension n � 1 of an Euclidean

Repeated Games with Incomplete Information, Figure 4
A Borsuk–Ulam type theorem by Simon, Spież and Toruńczyk

space. Let F be a correspondence from C to Y with com-
pact graph and non empty convex values. Then there ex-
ists L � @C and y 2 Y such that: 8l 2 L; y 2 F(l) and
x 2 conv(L).

Notice that for n D 1 (corresponding to 2 states of nature),
the image by F of the connected component of C contain-
ing x necessarily is a singleton, hence the result is clear. In
the general case, one finally obtains:

Theorem 9 ([76]) There exists an equilibrium joint plan.
Thus there exists a uniform equilibrium in the repeated
game � (p).

Characterization of Equilibrium Payoffs

Characterizing equilibrium payoffs, as the Folk theorem
does for repeated games with complete information, has
been a challenging problem. We denote here by p0 the ini-
tial probability in the interior of �(K). We are interested
in the set of equilibrium payoffs, in the convenient follow-
ing sense:

Definition 8 A vector (a; b) inRK �R is called an equi-
librium payoff of the repeated game � (p0) if there exists
a strategy pair (�1�; �2�) satisfying:

(i) 8" > 0 9T0 8T � T0;8k 2 K;8�1 2 ˙1; ˛k
T (�

1;

�2�) � ˛k
T (�

1�; �2�) C "; and 8" > 0 9T08T �
T0;8�2 2 ˙2; ˇ

p0
T (�1�; �2) � ˇp

T (�
1�; �2�)C ", and

(ii) (˛k
T (�

1�; �2�))k;T and (ˇp0
T (�1�; �2�))T respectively

converge to a and b.

Since p lies in the interior of �(K), the first line of (i) is
equivalent to: 8" > 0 9T0 8T � T0;8�1 2 ˙1; ˛

p
T (�

1;

�2�) � ˛
p
T (�

1�; �2�) C ". The strategy pair (�1�; �2�)
is thus a uniform equilibrium of the repeated game, with
the additional requirement that expected average payoffs
of player 1 converge in each state k. In some sense, player 1
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is viewed here as jKj different types or players, and we re-
quire the existence of the limit payoff of each type. We will
only consider such uniform equilibria in the sequel.

Notice that the above definition implies: 8k 2 K;
8" > 0; 9T0;8T � T0;8�1 2 ˙1; ˛k

T (�
1; �2�) � ak C ".

So the orthant fx 2 RK ; xk � ak8k 2 Kg is approachable
by player 2, and by Theorem 3 and Subsect. “Back to the
Standard Model” one can obtain that:

ha; qi � u(q) 8q 2 �(K) (4)

Condition (4) is called the individual rationality condition
for player 1, and does not depend on the initial probabil-
ity in the interior of �(K). Regarding player 2, we have:
8" > 0 9T0 8T � T0;8�2 2 ˙2; ˇ

p0
T (�1�; �2) � ˇ C ",

so by Theorem 1:

ˇ � vex v(p0) : (5)

Condition (5) is the individual rationality condition for
player 2: at equilibrium, this player should have at least
the value of the game where player 1’s plays in order to
minimize player 2’s payoffs.

Imagine now that �1� is a non revealing strategy for
player 1, and that the players play actions with empirical
frequencies corresponding to a given probability distribu-
tion � D (�i; j)(i; j)2I�J 2 �(I � J). We will have:8k 2 K,
ak D

P
i; j �i; jAk(i; j) and ˇ D

P
k p

k
0
P

i; j �i; jBk(i; j),
and if the individual rationality conditions are satisfied,
no detectable deviation of a player can be profitable. This
leads to the definition of the following set, where M is
the constant maxfjAk(i; j)j; jBk(i; j)j; (i; j) 2 I � Jg, and
RM D [�M;M].

Definition 9 Let G be the set of triples
(a; ˇ; p) 2 RK

M �RM ��(K) satisfying:

1. 8q 2 �(K); ha; qi � u(q),
2. ˇ � vexv(p),
3. 9� 2 �(I � J) s.t. ˇ D

P
k p

k P
i; j �i; jBk(i; j) and

8k 2 K; ak �
P

i; j �i; jAk(i; j) with equality if pk > 0.

We need to considerate every possible initial probability
because the main state variable of the model is, here also,
the belief, or a posteriori, of player 2 on the state of nature.
f(a; ˇ); (a; ˇ; p0) 2 Gg is the set of payoffs of non reveal-
ing equilibria of � (p0). The importance of the following
definition will appear with Theorem 10 below (which un-
fortunately has not led to a proof of existence of equilib-
rium payoffs).

Definition 10 G� is defined as the set of elements
g D (a; ˇ; p) 2 RK

M �RM ��(K) such that there exist

a probability space (˝;A;Q), an increasing sequence
(Fn)n�1 of finite sub-�-algebras of A, and a sequence
of random variables (gn)n�1 D (an ; ˇn ; pn)n�1 defined
on (˝;A) with values in RK

M �RM ��(K) satisfying:
(i) g1 D g a.s., (ii) (gn)n�1 is a martingale adapted to
(Fn)n�1, (iii) 8n � 1; anC1 D an a.s. or pnC1 D pn a.s.,
and (iv) (gn)n converges a.s. to a random variable g1 with
values in G.

Let us forget for a while the component of player 2’s payoff.
A process (gn)n satisfying (ii) and (iii) may be called a bi-
martingale, it is a martingale such that at every stage, one
of the two components remains a.s. constant. So the setG�

can be seen as the set of starting points of converging bi-
martingales with limit points in G.

Theorem 10 (Hart [29]) Let (a; ˇ) be inRK �R.

(a; ˇ) is an equilibrium payoff of � (p0)
() (a; ˇ; p0) 2 G� :

Theorem 10 is too elaborate to be proved here, but let us
give a few ideas about the proof. First consider the im-
plication H), and fix an equilibrium �� D (�1�; �2�) of
� (p0) with payoff (a; ˇ). The sequence of a posteriori
(pt(��))t�0 is a Pp0;
�- martingale. Modify now slightly
the time structure so that at each stage, player 1 plays first,
and then player 2 plays without knowing the action cho-
sen by player 1. At each half-stage where player 2 plays,
his a posteriori remains constant. At each half-stage where
player 1 plays, the “expectation of player 1’s future pay-
off” (which can be properly defined) remains constant.
Hence, the heuristic apparition of the bimartingale. And
since boundedmartingale converge, for large stages every-
thing will be fixed and the players will approximately play
a non revealing equilibrium at a “limit a posteriori”, so the
convergence will be towards elements of G.

Consider now the converse implication(H. Let (a; ˇ)
be such that (a; ˇ; p0) 2 G�, and assume for simplification
that the associated bi-martingale (an; ˇn ; pn) converges
in a fixed number N of stages: 8n � N; (an; ˇn ; pn) D
(aN ; ˇN ; pN ) 2 G. One can construct an equilibrium
(�1�; �2�) of � (p0) with payoff (a; ˇ) along the follow-
ing lines. For each index n, (an ; ˇn) will be an equilib-
rium payoff of the repeated game with initial probability
pn. Eventually, player 1will play independently of the state,
the a posteriori of player 2 will be pN , and the players will
end up playing a non revealing equilibrium of the repeated
game � (pN ) with payoff (aN ; ˇN ). What should be played
before? Since we are in an undiscounted setup, any finite
number of stages can be used for communication without
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influencing payoffs. Let n < N be such that anC1 D an .
To move from (an ; ˇn ; pn) to (an ; ˇnC1; pnC1), player 1
can simply use the splitting lemma (Lemma 1) in order
to signal part of the state to player 2. Let now n < N be
such that pnC1 D pn , so that we want to move from
(an ; ˇn ; pn) to (anC1; ˇnC1; pn). Player 1 will play inde-
pendently of the state, and both players will act so as
to convexify their future payoffs. This convexification is
done through procedures called “jointly controlled lot-
teries” and introduced in the sixties by Aumann and
Maschler [6], with the following simple and brilliant idea.
Imagine that the players have to decide with evenprobabil-
ity whether to play the equilibrium E1 with payoff (a1; ˇ1)
or to play the equilibrium E2 with payoff (a2; ˇ2). The
players may not be indifferent between E1 and E2, e. g.
player 1 may prefer E1 whereas player 2 prefers E2. They
will proceed as follows, with i and i0, respectively j and j0,
denoting two distinct actions of player 1, resp. player 2. Si-
multaneously and independently, player 1 will select i or i0

with probability 1/2, whereas player 2 will behave similarly
with j and j0.

j j0

i
i0

�
�

�

�
:

Then the equilibrium E1 will be played if the diagonal has
been reached, i. e. if (i; j) or (i0; j0) has been played, and
otherwise the equilibrium E2 will be played. This proce-
dure is robust to unilateral deviations: none of the play-
ers can deviate and prevent E1 and E2 to be chosen with
probability 1/2. In general, jointly controlled lotteries are
procedures allowing to select an alternative among a finite
set according to a given probability (think of binary ex-
pansions if necessary), in a way which is robust to devia-
tions by a single player. S. Hart has precisely shown how to
combine steps of signaling and jointly controlled lotteries
to construct an equilibrium of �1(p0) with payoff (a; ˇ).

Biconvexity and Bimartingales

The previous analysis has lead to the introduction and
study of biconvexity phenomena. The reference here is [4].
Let X and Y be compact convex subsets of Euclidean
spaces, and let (˝;F ;P) be an atomless probability space.

Definition 11 A subset B of X � Y is biconvex if for every
x in X and y in Y , the sections Bx: D fy0 2 Y ; (x; y0) 2 Bg
and B:y D fx0 2 X; (x0; y) 2 Bg are convex. If B is bicon-
vex, a mapping f : B �! R is called biconvex if for each
(x; y) 2 X � Y , f (:; y) and f (x; :) are convex.

As in the usual convexity case, we have that if f is biconvex,
then for each ˛ in R, the set f(x; y) 2 B; f (x; y) � ˛g is
biconvex.

Definition 12 A sequence of random variables Zn D

(Xn ;Yn)n�1 with values in X � Y is called a bimartingale
if:

(1) there exists an increasing sequence (Fn)n�1 of finite
sub-�-algebra of F such that (Zn)n is a (Fn)n�1-mar-
tingale.

(2) 8n � 1; Xn D XnC1 a.s. or Yn D YnC1 a.s.
(3) Z1 is a.s. constant.

Notice that (Zn)n�1 being a bounded martingale, it con-
verges almost surely to a limit Z1.

Definition 13 Let A be a measurable subset of X � Y .

A� D fz 2 X � Y ; there exists a bimartingale (Zn)n�1
converging to a limit Z1 such that Z1 2 A a.s.

and Z1 D z a.s.g :

One can show that any atomless probability space (˝;
F ;P), or any product of convex compact spaces X � Y
containing A, induce the same set A�. One can also
substitute condition (2) by: 8n � 1; (Xn D XnC1 or
Yn D YnC1) a.s. Notice that without condition (2), the set
A� would just be the convex hull of A.

We always have A � A� � conv(A), and these in-
clusions can be strict. For example, if X D Y D [0; 1]
and AD f(0; 0); (1; 0); (0; 1)g, it is possible to show that
A� D f(x; y) 2 [0; 1] � [0; 1]; x D 0 or y D 0g. A� always
is biconvex and thus contains biconv(A), which is defined
as the smallest biconvex set which contains A. The inclu-
sion biconv(A) � A� can also be strict, as shown by the
following example:

Example 5 Put X D Y D [0; 1], v1 D (1/3; 0), v2 D (0;
2/3), v3 D (2/3; 1), v4 D (1; 1/3), w1 D (1/3; 1/3), w2 D

(1/3; 2/3), w3 D (2/3; 2/3) et w4 D (2/3; 1/3), and A D
fv1; v2; v3; v4g.

A is biconvex, so AD biconv(A). Consider now the
following Markov process (Zn)n�1, with Z1 D w1. If
Zn 2 A, then ZnC1 D Zn . If Zn D wi for some i, then
ZnC1 D wiC1(mod 4) with probability 1/2, and ZnC1 D vi
with probability 1/2. (Zn)n is a bimartingale converging
a.s. to a point in A, hence w1 2 A�nbiconv(A).

We now present a geometric characterization of the set
A�, and assume here that A is closed. For each biconvex
subset B of X � Y containing A, we denote by nsc(B) the
set of elements of B which can not be separated from A by
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a continuous bounded biconvex function on A. More pre-
cisely, nsc(B) D fz 2 B;8 f : B �! R bounded biconvex,
and continuous on A; f (z) � supf f (z0); z0 2 Agg.

Theorem 11 ([4]) A� is the largest biconvex set B contain-
ing A such that nsc(B) D B.

Let us now come back to repeated games and to the
notations of Subsect. “Approachability for Player 1 Ver-
sus Excludability for Player 2”. To be precise, we need
to add the component of player 2’s payoff, and conse-
quently to slightly modify the definitions. G is closed in
RK

M �RM ��(K). For B � RK
M �RM ��(K), B is bi-

convex if for each a inRK
M and for each p in�(K), the sec-

tions f(ˇ; p0); (a; ˇ; p0) 2 Bg and f(a0; ˇ); (a0; ˇ; p) 2 Bg
are convex. A real function f defined on a biconvex set B
is said to be biconvex if 8a, 8p, f (a; :; :) and f (:; :; p) are
convex.

Theorem 12 ([4]) G� is the largest biconvex set B contain-
ing G such that: 8z 2 B;8 f : B �! R bounded biconvex,
and continuous on A; f (z) � supf f (z0); z0 2 Gg.

Non-observable Actions

We now consider the case where, as in the general defini-
tion of Sect. “Definition of the Subject”, there is a signal-
ing function q : K � A �! �(U) giving the distributions
of the signals received by the players as a function of the
state of nature and the action profile just played. The par-
ticular case where q(k; a) does not depend on k is called
state independent signaling. The previous models corre-
spond to the particular case of perfect observation, where
the signals received by the players exactly reveal the action
profile played.

Theorem 1 has been generalized [6] to the general
case of signaling function. We keep the notations of Sect.
“The Standard Model of Aumann and Maschler”. Given
a mixed action x 2 �(I), an action j in J and a state k, we
denote by Q(k; x; j) the marginal distribution onU2 of the
law

P
i2I x(i)q(k; i; j), i. e. Q(k; x; j) is the law of the sig-

nal received by player 2 if the state is k, player 1 uses x
and player 2 plays j. The set of non revealing strategies of
player 1 is then defined as:

NR(p) D fx D (xk)k2K 2 �(I)K ;

8k 2 K;8k0 2 K s.t. pk pk
0

> 0;

8 j 2 J;Q(k; xk ; j) D Q(k0; xk
0

; j)g :

If the initial probability is p and player 1 plays a strategy x
in NR(p) (i. e. plays xk if the state is k), the a posteriori of
player 2 will remain a.s. constant: player 2 can deduce no

Repeated Games with Incomplete Information, Figure 5
The “four frogs” example of Aumann and Hart: A� ¤ biconv(A)

information on the selected state k. The value of the non
revealing game becomes:

u(p) D max
x2NR(p)

min
y2#(J)

X

k2K

pkGk(xk ; y)

D min
y2#(J)

max
x2NR(p)

X

k2K

pkGk(xk ; y) ;

where Gk(xk ; y) D
P

i; j x
k(i)y( j)Gk (i; j), and the con-

vention u(p) D �1 if NR(p) D ;. Theorem 1 perfectly
extends here: The repeated game with initial probability p
has a uniform value given by cavu(p).

The explicit construction of an optimal strategy of
player 2 (see Subsect. “Back to the Standard Model”)
has also been generalized to the general signaling case
(see [35], and part B, p. 234 [57] for random signals).

Regarding zero-sum games with lack of information
on both sides, the results of Sect. “Zero-Sum Games with
Lack of Information on Both Sides” have been general-
ized to the case of state independent signaling (see [50,52]
and [55]). Attention has been paid to the speed of conver-
gence of the value function (vT )T , and bounds are identical
for both models of lack of information on one side and on
both sides, if we assume state independent signaling: this
speed is of order 1/T1/2 for gameswith perfect observation,
and of order 1/T1/3 for gameswith signals (these orders are
optimal, both for lack of information on one side and lack
of information on both sides, see [89,90]). For state depen-
dent signaling and lack of information on one side, it was
shown by Mertens [51] that the convergence occurs with
worst case error � (ln n/n)1/3.

A particular class of zero-sum repeated games with
state dependent signaling has been studied (games with
no signals, see [54,88] and [82]). In these games, the state
k is first selected according to a known probability and is
not announced to the players; then after each stage both
players receive the same signal which is either “nothing”
or “the state is k”. It is not possible to obtain here a stan-
dard recursive formula with state space �(K), or even
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�(K) ��(K), because even when the strategies are given,
during the play none of the players can compute the a pos-
teriori of the other player. It was shown that the maxmin
and the minmax may differ, although limT vT always ex-
ists.

In non zero-sum repeated games with lack of informa-
tion on one side, the existence of “joint plan” equilibria
have been generalized to the case of state independent sig-
naling [62], andmore generally to the case where “player 1
can send non revealing signals to player 2” [77]. The ex-
istence of a uniform equilibrium in the general signaling
case is still an open question see [78].

Miscellaneous

Zero-Sum Games

In games with lack of information on one side, it is im-
portant that player 1 knows not only the selected state k,
but also the a priori p. [84] provides an example of a game
with lack of information on “one and a half” side with no
uniform value. More precisely, in this example nature first
chooses p in fp1; p2g according to a known probability,
and announces p to player 2 only; then k is selected ac-
cording to p, and announced to player 1 only; finally the
matrix game Gk is played.

For games with lack of information on one side, the
value function vT is a concave piecewise linear function
of the initial probability p (see [61] for more generality).
On the contrary, the discounted value v� can be quite
a complex function of p: in example 2 of Sect. “Defini-
tion of the Subject”, Mayberry [49] has proved that for
2/3 <  < 1; v� is, at each rational value of p, non differ-
entiable.

Convergence of the value functions (vT )T and (v�)�
have been widely studied. We have already discussed the
speed of convergence in Sect. “Non-observable Actions”,
but much more can be said.

Example 6 Standard model of lack of information on one
side and observable actions.

K D fa; bg ;

Ga D

�
3 �1
�3 1

�
and Gb D

�
2 �2
�2 2

�
:

One can show [53] that for each p 2 [0; 1], viewed as the
initial probability of state a, the sequence

p
TvT (p) con-

verges to '(p), where '(p) D 1/
p
2�e�x

2
p /2, and xp satis-

fies 1/
p
2�
R xp
�1 e�x2/2dx D p. So the limit of

p
TvT (p)

is the standard normal density function evaluated at its
p-quantile.

The apparition of the normal distribution is by no way
an isolated phenomenon, but rather an important prop-
erty of some repeated games ([12,13,14,15,18], . . . ).

B. de Meyer introduced the notion of “dual game” (see
the previous references and also [17,19,41,69]). Let us now
illustrate this on the standardmodel of Sect. “The Standard
Model of Aumann and Maschler”.

Let z be a parameter in RK . In the dual game � �T (z),
player 1 first secretly chooses the state k. Then at each
stage t � T , the players choose as usual actions it and
jt which are announced before proceeding to the next
stage. With time horizon T, player 1’s payoff finally is
1
T
PT

tD1 G
k(it ; jt) � zk . This player is thus now able to fix

the state equal to k, but has to pay zk for it. It can be shown
that the T-stage dual game � �T (z) has a value wT (z). wT is
convex, and is linked to the value of the primal game by
the conjugate formula:

wT(z) D max
p2#(K)

(vT (p) � hp; zi); and

vT (p) D inf
z2RK

(wT(z)C hp; zi) :

And (wT )T satisfies the dual recursive formula:

wTC1(z) D min
y2#(J)

max
i2I

T
T C 1

wT

�

0

@T C 1
T

z �
1
T

X

j2J

y j


Gk (i; j)

�

k

1

A :

There are also strong relations between the optimal strate-
gies of the players in the primal and dual games, and this
gives a way to compute recursively optimal strategies of
the uninformed player in the finite game (see also [32] on
this topic).

Repeated games with incomplete information, as well
as stochastic games, can also be studied in a functional
analysis setup called the operator approach. This gen-
eral approach is based on the study of the recursive for-
mula [40,70,85].

In [65], the standardmodel, as well as the proof of The-
orem 1, is generalized to the case where the state is not
fixed at the beginning of the game, but evolves accord-
ing to a Markov chain uniquely observed by player 1 (see
also [59] for non observable actions, [48] and [33] for the
difficulty of computing the value, [67] for the generaliza-
tion to a state process controlled and observed by player 1,
and [71] for several kinds of stochastic games with lack
of information on one side). It is known since [80] that
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the uniform value may not exist in general for stochas-
tic games with lack of information on one side (where the
stochastic game to be played is first randomly selected and
announced to player 1 only).

Blackwell’s approachability theorem has been ex-
tended to infinite dimensional spaces by Lehrer [43].
Approachability theory has strong links with the exis-
tence of no-regret strategies (first studied in [31], see
also [10,26,30,44,72] and the recent book [9]), conver-
gence of simple procedures to the set of correlated equilib-
ria [31], and calibration [25,42]. The links between merg-
ing, reputation phenomena and repeated games with in-
complete information have been studied in [83], where
several existing results are unified. Finally, no-regret and
approachability have also been studied when the players
have bounded computational capacities (finite automata,
bounded recall strategies) [45,46].

Let us mention also that de Meyer and Moussa Saley
studied the modelization via Brownian motions in finan-
cial models [18]. They introduced amarked game based on
a repeated game with lack of information on one side, and
showed the endogenous apparition of a Brownian motion
(see [16] for incomplete information on both sides).

Non Zero-SumGames

In the setup of Sect. “Non Zero-Sum Games with Lack
of Information on One Side”, it is interesting to study
the number of communication stages which is needed to
construct the different equilibria. This number is linked
with the convergence of the associated bimartingales
(see [4,6,21,24]). Let us mention also that F. Forges [23]
gave a similar characterization of equilibrium payoffs, for
a larger notion of equilibria called communication equi-
libria (see also [22] for correlated equilibria). Amitai [2]
studied the set of equilibrium payoffs in case of lack of in-
formation on both sides. Aumann and Hart [5] character-
ized the equilibrium payoffs in two player games with lack
of information on one side when long, payoff-irrelevant,
preplay communication is allowed (see [1] for incomplete
information on both sides).

The particular case where each player knows his own
payoffs is particularly worthwhile studying (known own
payoffs). In the two-player case with lack of information
on one side, this amounts to say that player 2’s payoffs do
not depend on the selected state. In this case, Shalev [73]
showed that any equilibrium payoff can be obtained as
the payoff of an equilibrium which is completely reveal-
ing. This result generalizes to the non zero-sum case of
lack of information of both sides (see the unpublished
manuscript [37]), but unfortunately uniform equilibria

may fail to exist even though both players known their
own payoffs.

Another model deals with the symmetric case, where
the players have an incomplete, but identical, knowledge
of the selected state. After each stage they receive the same
signal, which may depend on the state. A. Neyman and S.
Sorin have proved the existence of equilibrium payoffs in
the case of two players (see [60], the zero-sum case being
solved in [36] and [20]).

Few papers study the case of more than 2 players. The
existence of uniform equilibrium has been studied for 3
players and lack of information on one side [63], and in
the case of two states of nature it appears that a com-
pletely revealing equilibria, or a joint plan equilibria by
one of the informed players, always exists. Concerning
n-player repeated games with incomplete information and
signals, several papers study how the initial information
can be strategically transmitted, independently of the pay-
offs ([64,66], and [68] for an application to a cryptographic
model). As an application, the existence of completely re-
vealing equilibria is obtained in particular cases.

Repeated games with incomplete information have
been used to study perturbations of repeated games with
complete information (see [27] and [11] for Folk theo-
rem-like results, [7] for enforcing cooperation in games
with a Pareto-dominant outcome, and [34] for a pertur-
bation with known own payoffs). The case where the play-
ers have different discount factors has also been investi-
gated [11,47].

Future Directions

Several open problems are well formulated and deserve at-
tention. Does a uniform equilibrium always exist in two-
player repeated gameswith lack of information on one side
and general signaling, or in n-player repeated games with
lack of information on one side? More conceptually, one
should look for classes of n-player repeated games with
incomplete information which allow for the existence of
equilibria, and/or for a tractable description of equilibrium
payoffs (or at least of some of these payoffs). Regarding ap-
plications, there is certainly a lot of room in the vast fields
of financial markets, cryptology, and sequential decision
problems.
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Glossary

Action type A type of player who is committed to playing
a particular action, also called a commitment type or
behavioral type.

Complete information Characteristics of all players are
common knowledge.

Flow payoff Stage game payoff.
Imperfect monitoring Past actions of all players are not

public information.
Incomplete information Characteristics of some player

are not common knowledge.
Long-lived player Player subject to intertemporal incen-

tives, typically has the same horizon as length of the
game.

Myopic optimum An action maximizing stage game pay-
offs.

Nash equilibrium A strategy profile from which no
player has a profitable unilateral deviation (i. e., it is
self-enforcing).

Nash reversion In a repeated game, permanent play of
a stage game Nash equilibrium.

Normalized discounted value The discounted sum of
an infinite sequence fatgt�0, calculated as (1 � ı)P

t�0 ı
t at , where ı 2 (0; 1) is the discount value.

Perfect monitoring Past actions of all players are public
information.

Repeated game The finite or infinite repetition of a stage
game.

Reputation bound The lower bound on equilibrium pay-
offs of a player that the other player(s) believe may be
a simple action type (typically the Stackelberg type).

Short-lived player Player not subject to intertemporal in-
centives, having a one-period horizon and so is myopi-
cally optimizing.

Simple action type An action who plays the same (pure
or mixed) stage-game action in every period, regard-
less of history.

Stage game A game played in one period.
Stackelberg action In a stage game, the action a player

would commit to, if that player had the chance to do
so, i. e., the optimal commitment action.

Stackelberg type A simple action type that plays the
Stackelberg action.

Subgame In a repeated gamewith perfect monitoring, the
game following any history.

Subgame perfect equilibrium A strategy profile that in-
duces a Nash equilibrium on every subgame of the
original game.

Type The characteristic of a player that is not common
knowledge.

Definition of the Subject

Repeated games have many equilibria, including the rep-
etition of stage game Nash equilibria. At the same time,
particularly when monitoring is imperfect, certain plausi-
ble outcomes are not consistent with equilibrium. Repu-
tation effects is the term used for the impact upon the set
of equilibria (typically of a repeated game) of perturbing
the game by introducing incomplete information of a par-
ticular kind. Specifically, the characteristics of a player are
not public information, and the other players believe it is
possible that the distinguished player is a type that nec-
essarily plays some action (typically the Stackelberg ac-
tion). Reputation effects fall into two classes: “Plausible”
phenomena that are not equilibria of the original repeated
game are equilibrium phenomena in the presence of in-
complete information, and “implausible” equilibria of the
original game are not equilibria of the incomplete infor-
mation game. As such, reputation effects provide an im-
portant qualification to the general indeterminacy of equi-
libria.

Introduction

Repeating play of a stage game often allows for equilib-
rium behavior inconsistent with equilibrium of that stage
game. If the stage game has multiple Nash equilibrium
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Reputation Effects, Figure 1
The prisoners’ dilemma. The cooperative action is labeled C,
while defect is labeled D

payoffs, a large finite number of repetitions provide suf-
ficient intertemporal incentives for behavior inconsistent
with stage-game Nash equilibria to arise in some subgame
perfect equilibria. However, many classic games do not
have multiple Nash equilibria. For example, mutual defec-
tion DD is the unique Nash equilibrium of the prisoners’
dilemma, illustrated in Fig. 1.

A standard argument shows that the finitely repeated
prisoner’s dilemma has a unique subgame perfect equilib-
rium, and in this equilibrium, DD is played in every pe-
riod: In any subgame perfect equilibrium, in the last pe-
riod, DD must be played independently of history, since
the stage game has a unique Nash equilibrium. Then, since
play in the last period is independent of history, there are
no intertemporal incentives in the penultimate period, and
soDDmust again be played independently of history. Pro-
ceeding recursively,DDmust be played in every period in-
dependently of history. (In fact, the finitely repeated pris-
oners’ dilemma has a unique Nash equilibrium outcome,
given by DD in every period.)

This contrasts with intuition, which suggests that if
the prisoners’ dilemma were repeated a sufficiently large
(though finite) number of times, the two players would
find a way to play cooperatively (C) at least in the ini-
tial stages. In response, Kreps, Milgrom, Roberts andWil-
son [15] argued that intuition can be rescued in the finitely
repeated prisoners’ dilemma by introducing incomplete
information. In particular, suppose each player assigns
some probability to their opponent being a behavioral type
who mechanistically plays tit-for-tat (i. e., plays C in the
first period or if the opponent had played C in the previ-
ous period, and plays D if the opponent had played D in
the previous period) rather than being a rational player.
Nomatter how small the probability, if the number of rep-
etitions is large enough, the rational players will play C in
early periods, and the fraction of periods in which CC is
played is close to one.

This is the first example of a reputation effect: a small
degree of incomplete information (of the right kind) both
rescues the intuitive CC for many periods as an equilib-
rium outcome, and eliminates the unintuitive always DD
as one. In the same issue of the Journal of Economic The-
ory containing Kreps, Milgrom, Roberts and Wilson [15],

Kreps and Wilson[14] and Milgrom and Roberts [18] ex-
plored reputation effects in the finite chain store of Sel-
ten [22], showing that intuition is again rescued, this
time by introducing the possibility that the chain store is
a “tough” type who always fights entry.

Reputation effects describe the impact upon the set of
equilibria of the introduction of small amounts of incom-
plete information of a particular form into repeated games
(and other dynamic games). Reputation effects fall into
two classes: “Plausible” phenomena that are not equilibria
of the complete information game are equilibrium phe-
nomena in the presence of incomplete information, and
“implausible” equilibria of the complete information game
are not equilibria of the incomplete information game.

Reputation effects are distinct from the equilibrium
phenomenon in complete information repeated games
that are sometimes described as capturing reputations. In
this latter use, an equilibrium of the complete information
repeated game is selected, involving actions along the equi-
librium path that are not Nash equilibria of the stage game.
As usual, incentives to choose these actions are created by
attaching less favorable continuation paths to deviations.
Players who choose the equilibrium actions are then in-
terpreted as maintaining a reputation for doing so, with
a punishment-triggering deviation interpreted as causing
the loss of one’s reputation. For example, players who co-
operate in the infinitely repeated prisoners’ dilemma are
interpreted as having (or maintaining) a cooperative rep-
utation, with any defection destroying that reputation. In
this usage, the link between past behavior and expectations
of future behavior is an equilibrium phenomenon, holding
in some equilibria, but not in others. The notion of repu-
tation is used to interpret an equilibrium strategy profile,
but otherwise adds nothing to the formal analysis.

In contrast, the approach underlying reputation effects
begins with the assumption that a player is uncertain about
key aspects of her opponent. For example, player 2 may
not know player 1’s payoffs, or may be uncertain about
what constraints player 1 faces on his ability to choose var-
ious actions. This incomplete information is a device that
introduces an intrinsic connection between past behavior
and expectations of future behavior. Since incomplete in-
formation about players’ characteristics can have dramatic
effects on the set of equilibrium payoffs, reputations in
this approach do not describe certain equilibria, but rather
place constraints on the set of possible equilibria.

An Example

While reputation effects were first studied in a symmet-
ric example with two long-lived players, they arise in their
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H 2; 3 0; 2
L 3; 0 1; 1

Reputation Effects, Figure 2
The product-choice game

purest form in infinitely repeated games with one long-
lived player playing against a sequence of short-lived play-
ers. The chain store game of Selten [22] is a finitely re-
peated game in which a chain store (the long-lived player)
faces a finite sequence of potential entrants in its different
markets. Since each entrant only cares about its own deci-
sion, it is short-lived.

Consider the “product-choice” game of Fig. 2. The
row player (player 1), who is long-lived, is a firm choos-
ing between high (H) and low (L) effort, while the col-
umn player (player 2), who is short-lived, is a customer
choosing between a high (h) or low (`) priced product.
(Mailath and Samuelson [17] illustrate various aspects of
repeated games and reputation effects using this example.)
Player 2 prefers the high-priced product if the firm has ex-
erted high effort, but prefers the low-priced product if the
firm has not. The firm prefers that customers purchase the
high-priced product and is willing to commit to high effort
to induce that choice by the customer. In a simultaneous
move game, however, the firm cannot observably choose
effort before the customer chooses the product. Since high
effort is costly, the firm prefers low effort, no matter the
choice of the customer.

The stage game has a unique Nash equilibrium, in
which the firm exerts low effort and the customer pur-
chases the low-priced product. Suppose the game is played
infinitely often, with perfect monitoring (i. e., the history of
play is public information). The firm is long-lived and dis-
counts flow profits by the discount factor ı 2 (0; 1), and is
patient if ı is close to 1. The role of the customer is taken by
a succession of short-lived players, each of whom plays the
game only once (and so myopically optimizes). It is stan-
dard to abuse language by treating the collection of short-
lived players as a single myopically optimizing player.

When the firm is sufficiently patient, there is an equi-
librium outcome in the repeated game in which the firm
always exerts high effort and customers always purchase
the high-priced product. The firm is deterred from tak-
ing the immediate myopically optimal action of low ef-
fort by the prospect of future customers then purchasing
the low-priced product. Purchasing the high-priced prod-
uct is a best response for the customer to high effort, so
that no incentive issues arise concerning the customer’s

behavior. In this equilibrium, the long-lived player’s pay-
off is 2 (the firm’s payoffs are calculated as the normalized
discounted sum, i. e., as the discounted sum of flow pay-
offs normalized by (1 � ı), so that payoffs in the infinite
horizon game are comparable to flow payoffs). However,
there are many other equilibria, including one in which
low effort is exerted and low price purchased in every pe-
riod, leading to a payoff of 1 for the long-lived player. In-
deed, for ı � 1/2, the set of pure-strategy subgame-per-
fect-equilibrium player 1 payoffs is given by the entire in-
terval [1; 2].

Reputation effects effectively rule out any payoff less
than 2 as an equilibrium payoff for player 1. Suppose cus-
tomers are not entirely certain of the characteristics of the
firm. More specifically, suppose they attach high probabil-
ity to the firm’s being “normal,” that is, having the payoffs
given above, but they also entertain some (possibly very
small) probability that they face a firm who fortuitously
has a technology or some other characteristic that ensures
high effort. Refer to the latter as the “H-action” type of
firm. Since such a type necessarily playsH in every period,
it is a type described by behavior (not payoffs), and such
a type is often called a behavioral or commitment type.

This is now a game of incomplete information, with
the customers uncertain of the firm’s type. Since the cus-
tomers assign high probability to the firm being “normal,”
the game is in some sense close to the game of complete
information. None the less, reputation effects are present:
For a sufficiently patient firm, in any Nash equilibrium of
the repeated game, the firm’s payoff cannot be significantly
less than 2. This result holds no matter how unlikely cus-
tomers think the H-action type to be, though increasing
patience is required from the normal firm as the action
type becomes less likely.

The intuition behind this result is most easily seen by
considering pure strategy Nash equilibria of the incom-
plete information game where the customers believe the
firm is either the normal or theH-action type. In that case,
there is no pure strategy Nash equilibrium with a payoff
less than 2ı (which is clearly close to 2 for ı close to 1).
In the pure strategy Nash equilibrium, either the firm al-
ways plays H, (in which case, the customers always play h
and the firm’s payoff is 2), or there is a first period (say t)
in which the firm plays L, revealing to future customers
that he is the normal type (since the action type plays H
in every period). In such an equilibrium, customers play h
before t (since both types of firm are choosing H). After
observing H in period t, customers conclude the firm is
the H-action type. Consequently, as long as H is always
chosen thereafter, customers subsequently play h (since
they continue to believe the firm is the H-action type, and
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so necessarily plays H). An easy lower bound on the nor-
mal firm’s equilibrium payoff is then obtained by observ-
ing that the normal firm’s payoffmust be at least the payoff
from mimicking the action type in every period. The pay-
off from such behavior is at least as large as

(1 � ı)
t�1X

�D0

ı�2

„ ƒ‚ …
payoff in � < t from pooling

withH-action type

C (1 � ı)ı t � 0„ ƒ‚ …
payoff in t from playingH when
Lmay be myopically optimal

C (1 � ı)
1X

�DtC1

ı�2

„ ƒ‚ …
payoff in � > t from playing like

and being treated as theH-action type

D (1 � ı t)2C ı tC12
D 2 � 2ı t(1 � ı)

� 2 � 2(1 � ı) D 2ı :

The outcome in which the stage game Nash equilibrium
L` is played in every period is thus eliminated.

Since reputation effects are motivated by the hypoth-
esis that the short-lived players are uncertain about some
aspect of the long-lived player’s characteristics, it is impor-
tant that the results are not sensitive to the precise nature
of that uncertainty. In particular, the lower bound on pay-
offs should not require that the short-lived players only as-
sign positive probability to the normal and the H-action
type (as in the game just analyzed). And it does not: The
customers in the example may assign positive probability
to the firm being an action type that plays H on even peri-
ods, and L on odd periods, as well as to an action type that
plays H in every period before some period t0 (that can
depend on history), and then always plays L. Yet, as long
as the customers assign positive probability to the H-ac-
tion type, for a sufficiently patient firm, in any Nash equi-
librium of the repeated game, the firm’s payoff cannot be
significantly less than 2.

Reputation effects are more powerful in the presence
of imperfect monitoring. Suppose that the firm’s choice
of H or L is not observed by the customers. Instead, the
customers observe a public signal y 2 fy; ȳg at the end of
each period, where the signal ȳ is realized with probability
p 2 (0; 1) if the firm chose H, and with the smaller prob-
ability q 2 (0; p) if the firm chose L. Interpret ȳ as a good
meal: while customers do not observe effort, they do ob-
serve a noisy signal (the quality of the meal) of that effort,
with high effort leading to a good meal with higher proba-

bility. In the game with complete information, the largest
equilibrium payoff to the firm is now given by

v̄1 � 2 �
1 � p
p � q

; (1)

reflecting the imperfect monitoring of the firm’s actions
(the firm is said to be subject to binding moral hazard, see
Sect. 7.6 in [17]). Since deviations from H cannot be de-
tected for sure, there are no equilibria with the determin-
istic outcome path of Hh in every period. In some periods
after some histories, L`must be played in order to provide
the appropriate intertemporal incentives to the firm.

As under perfect monitoring, as long as customers as-
sign positive probability to the H-action type in the in-
complete information game with imperfect monitoring,
for a sufficiently patient firm, in any Nash equilibrium of
the repeated game, the firm’s payoff cannot be significantly
less than 2 (in particular, this lower bound exceeds v̄1).
Thus, in this case, reputation effects provide an intuitive
lower bound on equilibrium payoffs that both rules out
“bad” equilibrium payoffs, as well as rescues outcomes in
which Hh occurs in most periods.

Proving that a reputation bound holds in the imperfect
monitoring case is considerably more involved than in the
perfect monitoring case. In perfect-monitoring games, it is
only necessary to analyze the evolution of the customers’
beliefs when always observing H, the action of the H-ac-
tion type. In contrast, imperfect monitoring requires con-
sideration of belief evolution on all histories that arise with
positive probability.

None the less, the intuition is the same: Consider a pu-
tative equilibrium in which the normal firm receives a pay-
off less than 2� ". Then the normal and action types must
be making different choices over the course of the repeated
game, since an equilibrium in which they behave identi-
cally would induce customers to choose h and would yield
a payoff of 2. As in the perfect monitoring case, the normal
firm has the option of mimicking the behavior of theH-ac-
tion type. Suppose the normal firm does so. Since the cus-
tomers expect the normal type of firm to behave differently
from theH-action type, they will more often see signals in-
dicative of theH-action type (rather than the normal type),
and so must eventually become convinced that the firm
is the H-action type. Hence, in response to this deviation,
the customers will eventually play their best response to H
of h.While “eventually”may take a while, that time is inde-
pendent of the equilibrium (indeed of the discount factor),
depending only on the imperfection in themonitoring and
the prior probability assigned to the H-action type. Then,
if the firm is sufficiently patient, the payoff from mimick-
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ing theH-action type is arbitrarily close to 2, contradicting
the existence of an equilibrium in which the firm’s payoff
fell short of 2� ".

At the same time, because monitoring is imperfect,
as discussed in Sect. “Temporary Reputation Effects”, the
reputation effects are necessarily transient. Under gen-
eral conditions in imperfect-monitoring games, the in-
complete information that is at the core of reputation ef-
fects is a short-run phenomenon. Player 2 must eventually
come to learn player 1’s type and continuation play must
converge to an equilibrium of the complete information
game.

Reputation effects arise for very general specifications
of the incomplete information as long as the customers as-
sign strictly positive probability to the H-action type. It is
critical, however, that the customers do assign strictly pos-
itive probability to the H-action type. For example, in the
product-choice game, the set of Nash equilibria of the re-
peated game is not significantly impacted by the possibil-
ity that the firm is either normal or the L-action type only.
While reputation effects per se do not arise from the L-ac-
tion type, it is still of interest to investigate the impact
of such uncertainty on behavior using stronger equilib-
rium notions, such as Markov perfection (see Mailath and
Samuelson [16]).

A CanonicalModel

The Stage Game

The stage game is a two-player simultaneous-move fi-
nite game of public monitoring. Player i has action set
Ai, i D 1; 2. Pure actions for player i are denoted by
ai 2 Ai , and mixed actions are denoted by ˛i 2 �(Ai ),
where�(Ai ) is the set of probability distributions overAi.
Player 2’s actions are public, while player 1’s are poten-
tially private. The public signal of player 1’s action, de-
noted by y is drawn from a finite set Y , with the prob-
ability that y is realized under the pure action profile
a 2 A� A1 � A2 denoted by �(y j a). Player 1’s ex post
payoff from the action profile a and signal realization y
is r1(y; a), and so the ex ante (or expected) flow pay-
off is u1(a) �

P
y r1(y; a)�(y j a). Player 2’s ex post pay-

off from the action profile a and signal realization y is
r2(y; a2), and so the ex ante (or expected) flow payoff is
u2(a) �

P
y r2(y; a2)�(y j a). Since player 2’s ex post pay-

off is independent of player 1’s actions, player 1’s actions
only affect player 2’s payoffs through the impact on the dis-
tribution of the signals and so on ex ante payoffs.While the
ex post payoffs ri play no explicit role in the analysis, they
justify the informational assumptions to be made. In par-

ticular, themodel requires that histories of signals and past
actions are the only information players receive, and so it
is important that stage game payoffs ui are not informa-
tive about the action choice (and this is the critical feature
delivered by the assumptions that ex ante payoffs are not
observable and that payer 2’s ex post payoffs do not depend
on a1).

Perfect monitoring is the special case where Y D A1
and �(y j a) D 1 if y D a1, and 0 otherwise.

The results in this section hold under significantly
weaker monitoring assumptions. In particular, it is not
necessary that the actions of player 2 be public. If these
are also imperfectly monitored, then the ex post payoff for
player 1 is independent of player 2 actions. Since player 2
is short-lived, when player 2’s actions are not public, it is
then natural to also assume that the period t player 2 does
not know earlier player 2’s actions.

The Complete Information Repeated Game

The stage game is infinitely repeated. Player 1 is long-lived,
with payoffs given by the normalized discounted value
(1 � ı)

P1
tD0 ı

tut
1, where ı 2 (0; 1) is the discount factor

and ut
1 is player 1’s period t flow payoff. Player 1 is pa-

tient if ı is close to 1. As in our example, the role of player
2 is taken by a succession of short-lived players, each of
whom plays the game only once (and so myopically opti-
mizes).

Player 1’s set of private histories is H1 � [
1
tD0(Y �

A)t and the set of public histories (which coincides with
the set of player 2’s histories) is H � [1tD0(Y � A2)t .
If the game has perfect monitoring, histories h D

(y0; a0; y1; a1; : : : ; yt�1; at�1) in which y� ¤ a�1 for some
� � t � 1 arise with zero probability, independently of be-
havior, and so can be ignored. A strategy �1 for player 1
specifies a probability distribution over 1’s pure action set
for each possible private history, i. e., �1 : H1 ! �(A1).
A strategy �2 for player 2 specifies a probability distribu-
tion over 2’s pure action set for each possible public his-
tory, i. e., �2 : H ! �(A2).

Definition 1 The strategy profile (��1 ; �
�
2 ) is aNash equi-

librium if

1. there does not exist a strategy �1 yielding a strictly
higher payoff for player 1 when player 2 plays ��2 , and

2. in all periods t, after any history ht 2H arising with
positive probability under (��1 ; �

�
2 ), �

�
2 (h

t) maximizes
E[u2(��1 (h

t
1); a1) j h

t], where the expectation is taken
over the period t-private histories that player 1 may
have observed.
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The Incomplete Information Repeated Game

In the incomplete information game, the type of player 1 is
unknown to player 2. A possible type of player 1 is denoted
by � 2 � , where � is a finite or countable set (see Fuden-
berg and Levine [12] for the uncountable case). Player 2’s
prior belief about 1’s type is given by the distribution �,
with support� . The set of types is partitioned into a set of
payoff types�1, and a set of action types�2 � �n�1. Pay-
off typesmaximize the average discounted value of payoffs,
which depend on their type and which may be nonstation-
ary,

u1 : A1 � A2 ��1 �N0 ! R :

Type �0 2 �1 is the normal type of player 1, who happens
to have a stationary payoff function, given by the stage
game in the benchmark game of complete information,

u1(a; �0; t) D u1(a) 8a 2 A;8t 2 N0 :

It is standard to think of the prior probability �(�0) as be-
ing relatively large, so the games of incomplete informa-
tion are a seemingly small departure from the underlying
game of complete information, though there is no require-
ment that this be the case.

Action types (also called commitment or behavioral
types) do not have payoffs, and simply play a specified
repeated game strategy. For any repeated-game strategy
from the complete information game, �̂1 : H1 ! �(A1),
denote by �(�̂1) the action type committed to the strategy
�̂1. In general, a commitment type of player 1 can be com-
mitted to any strategy in the repeated game. If the strat-
egy in question plays the same (pure or mixed) stage-game
action in every period, regardless of history, that type is
called a simple action type. For example, theH-action type
in the product-choice game is a simple action type. The
(simple action) type that plays the pure action a1 in every
period is denoted by �(a1) and similarly the simple action
type committed to ˛1 2 �(A1) is denoted by �(˛1). As will
be seen soon, allowing for mixed action types is an impor-
tant generalization from simple pure types.

A strategy for player 1, also denoted by �1 : H1�� !

�(A1), specifies for each type � 2 � a repeated game strat-
egy such that for all �(�̂1) 2 �2, the strategy �̂1 is specified.
A strategy �2 for player 2 is as in the complete information
game, i. e., �2 : H ! �(A2).

Definition 2 The strategy profile (��1 ; �
�
2 ) is aNash equi-

librium of the incomplete information game if

1. for all � 2 �1, there does not exist a repeated game
strategy �1 yielding a strictly higher payoff for payoff
type � of player 1 when player 2 plays ��2 , and

2. in all periods t, after any history ht 2H arising with
positive probability under (��1 ; �

�
2 ) and�, �

�
2 (h

t) max-
imizes E[u2(��1 (h

t
1; �); a1) j h

t], where the expectation
is taken over both the period t-private histories that
player 1 may have observed and player 1’s type.

Example 1 Consider the product-choice game (Fig. 2)
under perfect monitoring. The firm is willing to commit
to H to induce h from customers. This incentive to com-
mit is best illustrated by considering a sequential version
of the product-choice game: The firm first publicly com-
mits to an effort, and then the customer chooses between h
and `, knowing the firm’s choice. In this sequential game,
the firm choosesH in the unique subgame perfect equilib-
rium. Since Stackelberg [23] was the first investigation of
such leader-follower interactions, it is traditional to call H
the Stackelberg action, and the H-action type of player 1
the Stackelberg type, with associated Stackelberg payoff 2.
Suppose � D f�0; �(H); �(L)g. For ı � 1/2, the grim trig-
ger strategy profile of always playing Hh, with deviations
punished by Nash reversion, is a subgame perfect equi-
librium of the complete information game. Consider the
following adaptation of this profile in the incomplete in-
formation game:

�1(ht ; �) D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

H; if � D �(H);
or � D �0 and a� D Hh

for all � < t;
L; otherwise;

and

�2(ht) D

(
h; if a� D Hh for all � < t;
`; otherwise :

In other words, player 2 and the normal type of player 1
follow the strategies from the Nash-reversion equilibrium
in the complete information game, and the action types
�(H) and �(L) play their actions.

This is a Nash equilibrium for ı � 1/2 and �(�(L)) <
1/2. The restriction on �(�(L)) ensures that player 2
finds h optimal in period 0. Should player 2 ever observe L,
then Bayes’ rule causes her to place probability 1 on type
�(L) (if L is observed in the first period) or the normal
type (if L is first played in a subsequent period), making
her participation in Nash reversion optimal. The restric-
tion on ı ensures that Nash reversion provides sufficient
incentive to make H optimal for the normal player 1. Af-
ter observing a01 D H in period 0, player 2 assigns zero
probability to � D �(L). However, the posterior proba-
bility that 2 assigns to the Stackelberg type does not con-
verge to 1. In period 0, the prior probability is �(�(H)).
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After one observation of H, the posterior increases to
�(��)/[�(��)C�(�0)], after which it is constant. By stipu-
lating that an observation of H in a history in which L has
previously been observed causes player 2 to place proba-
bility one on the normal type of player 1, a specification
of player 2’s beliefs that is consistent with sequentiality is
obtained.

As seen in the introduction, for ı close to 1,
�1(ht ; �0) D L for all ht is not part of any Nash equilib-
rium.

The Reputation Bound

Which type would the normal type most like to be treated
as? Player 1’s pure-action Stackelberg payoff is defined as

v�1 D sup
a12A1

min
˛22B(a1)

u1 (a1; ˛2) ; (2)

where B(a1) D argmaxa2 u2(a1; a2) is the set of player 2
myopic best replies to a1. If the supremum is achieved by
some action a�1 , that action is an associated Stackelberg ac-
tion,

a�1 2 arg max
a12A1

min
˛22B(a1)

u1 (a1; ˛2) :

This is a pure action to which player 1 would commit, if
player 1 had the chance to do so (and hence the name
“Stackelberg” action, see the discussion in Example 1),
given that such a commitment induces a best response
from player 2. If there is more than one such action for
player 1, the action can be chosen arbitrarily.

However, player 1 would typically prefer to commit to
a mixed action. In the product-choice game, for example,
a commitment by player 1 to mixing between H and L,
with slightly larger probability on H, still induces player 2
to choose h and gives player 1 a larger payoff than a com-
mitment to H. Define the mixed-action Stackelberg payoff
as

v��1 � sup
˛12#(A1)

min
˛22B(˛1)

u1(˛1; ˛2) ; (3)

where B(˛1) D argmaxa2 u2(˛1; a2) is the set of player 2’s
best responses to ˛1. In the product-choice game, v�1 D 2,
while v��1 D 5/2. Typically, the supremum is not achieved
by any mixed action, and so there is no mixed-action
Stackelberg type. However, there are mixed action types
that, if player 2 is convinced she is facing such a type, will
yield payoffs arbitrarily close to the mixed-action Stackel-
berg payoff.

As with imperfect monitoring, simple mixed action
types under perfect monitoring raise issues of monitoring,

since a deviation by the normal type from the distribution
˛1 of a mixed action type �(˛1), to some action in the sup-
port cannot be detected.However, whenmonitoring of the
pure actions is perfect, it is possible to statistically detect
deviations, and this will be enough to imply the appropri-
ate reputation lower bound.

When monitoring is imperfect, the public signals are
statistically informative about the actions of the long-lived
player under the next assumption (Lemma 1).

Assumption 1 For all a2 2 A2, the collection of probabil-
ity distributions f�(y j (a1; a2) : a1 2 A1g is linearly inde-
pendent.

This assumption is trivially satisfied in the perfect moni-
toring case. Reputation effects still exist when this assump-
tion fails, but the bounds are more complicated to calcu-
late (see [12] or Sect. 15.4.1 in [17]).

Fixing an action for player 2, a2, the mixed action ˛1
implies the signal distribution

P
a1 �(y j (a1; a2))˛1(a1).

Lemma 1 Suppose � satisfies Assumption 1. Then, if for
some a2,

X

a1

�(y j (a1; a2))˛1(a1) D
X

a1

�(y j (a1; a2))˛01(a1);

8y ; (4)

then ˛1 D ˛01.

Proof Suppose (4) holds for some a2. Let R denote
the jY j � jA1j matrix whose y-a1 element is given by
�(y j (a1; a2)) (so that the a1-column is the probability
distribution on Y implied by the action profile a1a2).
Then, (4) can be written as R˛1 D R˛01, or more simply
as R(˛1 � ˛01) D 0. By Assumption 1, R has full column
rank, and so x D 0 is the only vector x 2 RjA1 j solving
Rx D 0. �

Consequently, if player 2 believes that the long-lived
player’s behavior implies a distribution over the signals
close to the distribution implied by some particular action
˛01, then player 2 must believe that the long-lived player’s
action is also close to ˛01. Since A2 is finite, this then im-
plies that when player 2 is best responding to some belief
about the long-lived player’s behavior implying a distribu-
tion over signals sufficiently close to the distribution im-
plied by ˛01, then player 2 is in fact best responding to ˛01.

We are now in a position to state the main reputation
bound result. Let v1(�0; �; ı) be the infimum over the set
of the normal player 1’s payoffs in any (pure or mixed)
Nash equilibrium in the incomplete information repeated
game, given the distribution� over types and the discount
factor ı.
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Proposition 1 (Fudenberg and Levine [11,12]) Sup-
pose � satisfies Assumption 1 and let �̂ denote the simple
action type that always plays ˆ̨1 2 �(A1). Suppose �(�0),
�(�̂) > 0. For every � > 0, there is a value K such that for
all ı,

v1(�0; �; ı) � (1 � �)ıK min
˛22B( ˆ̨1)

u1( ˆ̨1; ˛2)

C (1 � (1 � �)ıK )min
a2A

u1(a) : (5)

This immediately yields the pure action Stackelberg repu-
tation bound. Fix " > 0. Taking ˆ̨1 in the proposition as
the degenerate mixture that plays the Stackelberg action
a�1 with probability 1, Eq. (5) becomes

v1(�0; �; ı) � (1 � �)ıKv�1 C (1 � (1 � �)ıK )min
a2A

u1(a)

� v�1 � (1 � (1 � �)ıK)2M ;

whereM � maxa ju1(a)j. This last expression is at least as
large as v�1 � " when � < "/(2M) and ı is sufficiently close
to 1.

The mixed action Stackelberg reputation bound is also
covered:

Corollary 1 Suppose � satisfies Assumption 1 and � as-
signs positive probability to some sequence of simple types
f�(˛k

1 )g
1
kD1 with each ˛

k
1 in�(A1) satisfying

v��1 D lim
k!1

min
˛22B(˛k

1 )
u1(˛k

1 ; ˛2) :

For all "0 > 0, there exists ı < 1 such that for all ı 2 (ı; 1),

v1(�0; �; ı) � v��1 � "
0 :

The remainder of this subsection outlines a proof of
Proposition 1. Fix a strategy profile (�1; �2) (which may
be Nash, but at this point of the discussion, need not
be). The beliefs � then induce a probability distribu-
tion P on the set of outcomes, which is the set of possi-
ble infinite histories (denoted by h1) and realized types,
(Y � A)1 �� � ˝. The probability measure P describes
how the short-lived players believe the game will evolve,
given their prior beliefs � about the types of the long-
lived player. Let P̂ denote the probability distribution on
the set of outcomes induced by (�1; �2) and the action
type �̂ . The probability measure P̂ describes how the short-
lived players believe the game will evolve if the long-
lived player’s type is �̂ . Finally, let P̃ denote the prob-
ability distribution on the set of outcomes induced by
(�1; �2) conditioning on the long-lived player’s type not

being the action type �̂ . Then, P � �̂P̂C (1 � �̂)P̃, where
�̂ � �(�̂).

The discussion after Lemma 1 implies that the opti-
mal behavior of the short-lived player in period t is deter-
mined by that player’s beliefs over the signal realizations
in that period. These beliefs can be viewed as a one-step
ahead prediction of the signal y that will be realized condi-
tional on the history ht , P(y j ht). Let �̂t(ht) D P(�̂ j ht)
denote the posterior probability after observing ht that the
short-lived player assigns to the long-lived player having
type �̂ . Note also that if the long-lived player is the ac-
tion type �̂ , then the true probability of the signal y is
P̂(y j ht) D �

�
y j (H; �2(ht))


. Then,

P(y j ht) D �̂t(ht)P̂(y j ht)C (1 � �̂t(ht))P̃(y j ht) :

The key step in the proof of Proposition 1 is a statistical
result on merging. The following lemma essentially says
that the short-lived players cannot be surprised too many
times. Note first that an infinite public history h1 can be
thought of as a sequence of ever longer finite public histo-
ries ht . Consider the collection of infinite public histories
with the property that player 2 often sees histories ht that
lead to very different one-step ahead predictions about the
signals under P̃ and under P̂ and have a “low” posterior
that the long-lived player is �̂ . The lemma asserts that if
the long-lived player is in fact the action type �̂ , this collec-
tion of infinite public histories has low probability. Seeing
the signals more likely under �̂ leads the short-lived play-
ers to increase the posterior probability on �̂ . The posterior
probability fails to converge to 1 under P̂ only if the play
of the types different from �̂ leads, on average, to a signal
distribution similar to that implied by �̂ . For the purely sta-
tistical statement and its proof, see Section 15.4.2 in [17].

Lemma 2 For all �; > 0 and �� 2 (0; 1], there exists
a positive integer K such that for all �(�̂) 2 [��; 1), for ev-
ery strategy �1 : H1 �� ! �(A1) and �2 : H ! �(A2),

P̂
�
h1 :

ˇ
ˇ˚t � 1 : (1 � �̂t(ht))

max
y

ˇ̌
P̃(y j ht) � P̂(y j ht)

ˇ̌
�  

�ˇ̌
� K


� � : (6)

Note that the bound K holds for all strategy profiles
(�1; �2) and all prior probabilities �(�̂) 2 [��; 1). This al-
lows us to bound equilibrium payoffs.

Proof of Proposition 1 Fix � > 0. From Lemma 1, by
choosing  sufficiently small in Lemma 2, with P̂-prob-
ability at least 1� �, there are at most K periods in which
the short-lived players are not best responding to ˆ̨1.
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Since a deviation by the long-lived player to the simple
strategy of always playing ˆ̨1 induces the same distribution
on public histories as P̂, the long-lived player’s expected
payoff from such a deviation is bounded below by the right
side of (5). �

Temporary Reputation Effects

Under perfect monitoring, there are often pooling equilib-
ria in which the normal and some action type of player 1
behave identically on the equilibrium path (as in Exam-
ple 1). Deviations on the part of the normal player 1 are
deterred by the prospect of the resulting punishment. Un-
der imperfect monitoring, such pooling equilibria do not
exist. The normal and action types may play identically for
a long period of time, but the normal type always eventu-
ally has an incentive to cheat at least a little on the commit-
ment strategy, contradicting player 2’s belief that player
1 will exhibit commitment behavior. Player 2 must then
eventually learn player 1’s type.

In addition to Assumption 1, disappearing reputation
effects require full support monitoring.

Assumption 2 For all a 2 A, y 2 Y, �(y j a) > 0.

This assumption implies that Bayes’ rule determines the
beliefs of player 2 about the type of player 1 after all histo-
ries.

Suppose there are only two types of player 1, the nor-
mal type �0 and a simple action type �̂ , where �̂ D �( ˆ̨1)
for some ˆ̨1 2 �(A1). The analysis is extended to many
commitment types in Section 6.1 in Cripps et al. [8]. It is
convenient to denote a strategy for player 1 as a pair of
functions �̃1 and �̂1 (so �̂1(ht1) D ˆ̨1 for all ht1 2H1), the
former for the normal type and the latter for the action
type.

Recall that P 2 �(˝) is the unconditional probability
measure induced by the prior �, and the strategy profile
(�̂1; �̃1; �2), while P̂ is the measure induced by condition-
ing on �̂ . Since f�0g D � n f�̂g, P̃ is the measure induced
by conditioning on �0. That is, P̂ is induced by the strategy
profile �̂ D (�̂1; �2) and P̃ by �̃ D (�̃1; �2), describing how
play evolves when player 1 is the commitment and normal
type, respectively.

The action of the commitment type satisfies the follow-
ing assumption.

Assumption 3 Player 2 has a unique stage-game best re-
sponse to ˆ̨1 (denoted by â2) and ˆ̨ � ( ˆ̨1; â2) is not a stage-
game Nash equilibrium.

Let �̂2 denote the strategy of playing the unique best re-
sponse â2 to ˆ̨1 in each period independently of history.

Since ˆ̨ is not a stage-game Nash equilibrium, (�̂1; �̂2) is
not a Nash equilibrium of the complete information infi-
nite horizon game.

Proposition 2 (Cripps, Mailath and Samuelson [8])
Suppose the monitoring distribution � satisfies Assump-
tions 1 and 2, and the commitment action ˆ̨1 satisfies As-
sumption 3. In any Nash equilibrium of the game with in-
complete information, the posterior probability assigned by
player 2 to the commitment type, �̂t , converges to zero un-
der P̃, i. e.,

�̂t(ht)! 0; P̃-a.s.

The intuition is straightforward: Suppose there is a Nash
equilibrium of the incomplete information game in which
both the normal and the action type receive positive prob-
ability in the limit (on a positive probability set of his-
tories). On this set of histories, player 2 cannot distin-
guish between signals generated by the two types (other-
wise player 2 could ascertain which type she is facing), and
hence must believe that the normal and action types are
playing the same strategies on average. But then player 2
must play a best response to this strategy, and hence to the
action type. Since the action type’s behavior is not a best
response for the normal type (to this player 2 behavior),
player 1 must eventually find it optimal to not play the ac-
tion-type strategy, contradicting player 2’s beliefs.

Assumption 3 requires a unique best response to ˆ̨1.
For example, in the product-choice game, every action for
player 2 is a best response to player 1’s mixture ˛01 that as-
signs equal probability toH and L. This indifference can be
exploited to construct an equilibrium in which (the nor-
mal) player 1 plays ˛01 after every history (Section 7.6.2
in [17]). This will still be an equilibrium in the game of
incomplete information in which the commitment type
plays ˛01, with the identical play of the normal and com-
mitment types ensuring that player 2 never learns player
1’s type. In contrast, player 2 has a unique best response
to any other mixture on the part of player 1. Therefore,
if the commitment type is committed to any mixed ac-
tion other than ˛01, player 2 will eventually learn player 1’s
type.

As in Proposition 1, a key step in the proof of Propo-
sition 2 is a purely statistical result on updating. Either
player 2’s expectation (given her history) of the strategy
played by the normal type (Ẽ[�̃ t

1 j h
t], where Ẽ denotes

expectation with respect to P̃) is in the limit identical
to the strategy played by the action type ( ˆ̨1), or player
2’s posterior probability that player 1 is the action type
(�̂t(ht)) converges to zero (given that player 1 is indeed
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normal). This is a merging argument and closely related to
Lemma 2. If the distributions generating player 2’s signals
are different for the normal and action type, then these sig-
nals provide information that player 2 will use in updating
her posterior beliefs about the type she faces. This (con-
verging, since beliefs are a martingale) belief can converge
to an interior probability only if the distributions gener-
ating the signals are asymptotically uninformative, which
requires that they be asymptotically identical.

Lemma 3 Suppose the monitoring distribution � satisfies
Assumptions 1 and 2. Then in any Nash equilibrium,

lim
t!1

�̂t max
a1

ˇ̌
ˆ̨1(a1) � Ẽ[ �̃ t

1(a1) j h
t ]
ˇ̌
D 0;

P̃-a.s. (7)

Given Proposition 2, it should be expected that contin-
uation play converges to an equilibrium of the complete
information game, and this is indeed the case. See Theo-
rem 2 [8] for the formal statement.

Proposition 2 leaves open the possibility that for any
period T, there may be equilibria in which uncertainty
about player 1’s type survives beyond T, even though such
uncertainty asymptotically disappears in any equilibrium.
This possibility cannot arise. The existence of a sequence
of Nash equilibria with uncertainty about player 1’s type
persisting beyond period T !1 would imply the (con-
tradictory) existence of a limiting Nash equilibrium in
which uncertainty about player 1’s type persists.

Proposition 3 (Cripps, Mailath and Samuelson [9])
Suppose the monitoring distribution � satisfies Assump-
tions 1 and 2, and the commitment action ˆ̨1 satisfies As-
sumption 3. For all " > 0, there exists T such that for any
Nash equilibrium of the game with incomplete information,

P̃(�̂t < "; 8t > T) > 1 � " :

Example 2 Recall that in the product-choice game, the
unique player 2 best response to H is to play h, and Hh is
not a stage-game Nash equilibrium. Proposition 1 ensures
that the normal player 1’s expected value in the repeated
game of incomplete information with the H-action type is
arbitrarily close to 2, when player 1 is very patient. In par-
ticular, if the normal player 1 playsH in every period, then
player 2 will at least eventually play her best response of h.
If the normal player 1 persisted in mimicking the action
type by playingH in each period, this behavior would per-
sist indefinitely. It is the feasibility of such a strategy that
lies at the heart of the reputation bounds on expected pay-

offs. However, this strategy is not optimal. Instead, player
1 does even better by attaching some probability to L, oc-
casionally reaping the rewards of his reputation by earning
a stage-game payoff even larger than 2. The result of such
equilibrium behavior, however, is that player 2 must even-
tually learn player 1’s type. The continuation payoff is then
bounded below 2 (recall (1)).

Reputation effects arise when player 2 is uncertain about
player 1’s type, and there may well be a long period of time
during which player 2 is sufficiently uncertain of player 1’s
type (relative to the discount factor), and in which play
does not resemble an equilibrium of the complete infor-
mation game. Eventually, however, such behavior must
give way to a regime in which player 2 is (correctly) con-
vinced of player 1’s type.

For any prior probability �̂ that the long-lived player is
the commitment type and for any " > 0, there is a discount
factor ı sufficiently large that player 1’s expected payoff is
close to the commitment-type payoff. This holds no mat-
ter how small �̂. However, for any fixed ı and in any equi-
librium, there is a time at which the posterior probability
attached to the commitment type has dropped below the
corresponding critical value of �̂, becoming too small (rel-
ative to ı) for reputation effects to operate.

A reasonable response to the results on disappearing
reputation effects is that a model of long-run reputations
should incorporate some mechanism by which the uncer-
tainty about types is continually replenished. For example,
Holmström [13], Cole, Dow and English [6], Mailath and
Samuelson [16], and Phelan [19] assume that the type of
the long-lived player is governed by a stochastic process
rather than being determined once and for all at the be-
ginning of the game. In such a situation, reputation effects
can indeed have long-run implications.

Reputation as a State

The posterior probability that short-lived players assign to
player 1 being �̂ is sometimes interpreted as player 1’s rep-
utation, particularly if �̂ is the Stackelberg type. When �
contains only the normal type and �̂ , the posterior belief �̂t

is a state variable of the game, and attention is sometimes
restricted toMarkov strategies (i. e., strategies that only de-
pend on histories through their impact on the posterior
beliefs of the short-lived players). An informative example
is Benabou and Laroque [2], who study the Markov per-
fect equilibria of a game in which the uninformed players
respond continuously to their beliefs. They show that the
informed player eventually reveals his type in any Markov
perfect equilibrium. On the other hand, Markov equilibria
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need not exist in finitely repeated reputation games (Sec-
tion 17.3 in [17]).

The literature on reputation effects has typically not re-
stricted attention toMarkov strategies, since the results do
not require the restriction.

Two Long-Lived Players

The introduction of nontrivial intertemporal incentives
for the uninformed player significantly reduces reputation
effects. For example, when only simple Stackelberg types
are considered, the Stackelberg payoff may not bound
equilibrium payoffs. The situation is further complicated
by the possibility of non-simple commitment types (i. e.,
types that follow nonstationary strategies).

Consider applying the logic from Sect. “The Reputa-
tion Bound” to obtain the Stackelberg reputation bound
when both players are long-lived and player 1’s charac-
teristics are unknown, under perfect monitoring. The first
step is to demonstrate that, if the normal player 1 persis-
tently plays the Stackelberg action and there exists a type
committed to that action, then player 2 must eventually
attach high probability to the event that the Stackelberg
action is played in the future. This argument, a simple
version of Lemma 2, depends only upon the properties
of Bayesian belief revision, independently of whether the
person holding the beliefs is a long-lived or short-lived
player.

When player 2 is short-lived, the next step is to note
that if she expects the Stackelberg action, then she will play
a best response to this action. If player 2 is instead a long-
lived player, she may have an incentive to play something
other than a best response to the Stackelberg type.

The key step when working with two long-lived play-
ers is thus to establish conditions under which, as player
2 becomes increasingly convinced that the Stackelberg ac-
tion will appear, player 2 must eventually play a best re-
sponse to that action. One might begin such an argument
by observing that, as long as player 2 discounts, any losses
from not playing a current best responsemust be recouped
within a finite length of time. But if player 2 is “very” con-
vinced that the Stackelberg action will be played not only
now but for sufficiently many periods to come, there will
be no opportunity to accumulate subsequent gains, and
hence player 2 might just as well play a stage-game best
response.

Once it is shown that player 2 is best responding to
the Stackelberg action, the remainder of the argument pro-
ceeds as in the case of a short-lived player 2. The nor-
mal player 1 must eventually receive very nearly the Stack-
elberg payoff in each period of the repeated game. By

making player 1 sufficiently patient (relative to player 2,
so that discount factors differ), this consideration dom-
inates player 1’s payoffs, putting a lower bound on the
latter. Hence, the obvious handling of discount factors is
to fix player 2’s discount factor ı2, and to consider the
limit as player 1 becomes patient, i. e., ı1 approaching
one.

This intuition misses the following possibility. Player
2 may be choosing something other than a best response
to the Stackelberg action out of fear that a current best re-
sponse may trigger a disastrous future punishment. This
punishment would not appear if player 2 faced the Stack-
elberg type, but player 2 can be made confident only that
she faces the Stackelberg action, not the Stackelberg type.
The fact that the punishment lies off the equilibrium path
makes it difficult to assuage player 2’s fear of such punish-
ments. Short-lived players in the same situation are sim-
ilarly uncertain about the future ramifications of best re-
sponding, but being short-lived, this uncertainty does not
affect their behavior.

Consequently, reputation effects are typically weak
with two long-lived players under perfect monitoring: Ce-
lentani, Fudenberg, Levine and Pesendorfer [3] andCripps
and Thomas [7], describe examples with only the normal
and the Stackelberg types of player 1, in which the fu-
ture play of the normal player 1 is used to punish player
2 for choosing a best response to the Stackelberg action
when she is not supposed to, and player 1’s payoff is sig-
nificantly below the Stackelberg payoff. Moreover, the ro-
bustness of reputation effects to additional types beyond
the Stackelberg type, a crucial feature of settings with one
long-lived player, does not hold with two long-lived play-
ers. Schmidt [21] showed that the possibility of a “pun-
ishment” type can prevent player 2 best responding to the
Stackelberg action, while Evans and Thomas [10] showed
that the Stackelberg bound is valid if in addition to the
Stackelberg type, there is an action type who punishes
player 2 for not behaving appropriately (see Sections 16.1
and 16.5 in [17]).

Imperfect monitoring (of both players’ actions), on the
other hand, rescues reputation effects. With a sufficiently
rich set of commitment types, player 1 can be assured of
at least his Stackelberg payoff. Indeed, player 1 can often
be assured of an even higher payoff, in the presence of
commitment types who play nonstationary strategies [3].
At the same time, these reputation effects are temporary
(Theorem 2 in [9]).

Finally, there is a literature on reputation effects in bar-
gaining games (see [1,4,5,20]), where the issues described
above are further complicated by the need to deal with the
bargaining model itself.
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Future Directions

The detailed structure of equilibria of the incomplete
information game is not well understood, even for the
canonical game of Sect. “A Canonical Model”. A more
complete description of the structure of equilibria is
needed.

While much of the discussion was phrased in terms
of the Stackelberg type, Proposition 1 provides a reputa-
tion bound for any action type. While in some settings, it
is natural that the uninformed players assign strictly posi-
tive probability to the Stackelberg type, it is not natural in
other settings. A model endogenizing the nature of action
types would be an important addition to the reputation lit-
erature.

Finally, while the results on reputation effects with two
long-lived players are discouraging, there is still the possi-
bility that some modification of the model will rescue rep-
utation effects in this important setting.
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Glossary

Scattering Scattering is a general physical process
whereby some forms of radiation, such as light, sound
or moving particles, for example, are forced to deviate
from a straight trajectory by one or more localized
non-uniformities in the medium through which it
passes. These non-uniformities are, sometimes, known
as scatterers or scattering centers. In quantum trans-
port, a scattering center may be provided by an impu-
rity potential.

Transmission probability The transmission probability,
denoted by T, for a quantum mechanical particle to
pass through a scattering potential is the ratio between
the flux of particles that emerges from the potential
and the flux that arrives at it. Equivalently, T is the
fraction of incident particles that succeed in passing
through the scattering potential.

Transmission resonance Transmission resonance in
electronic transport of quantum wires is an abrupt
variation of the transmission probability that occurs
over a very small interval the incident electron’s en-
ergy.

Mode In a low-dimensional system where the electrons
are confined in one or more directions, the energy
eigenstates in the confinement direction(s) represent
the modes of the system.

Evanescent mode When the electrons are free to prop-
agate in one direction but are confined in the other
directions, a mode whose energy is greater than the
Fermi energy cannot propagate. This is called an
evanescent mode.

Conductance quantization To measure the conductance
of a sample (such as, a constriction) we divide the cur-
rent through the sample by the electric potential dif-
ference between the reservoirs which are connected to
the sample. If Nc is the number of occupied subbands,
the expression for the conductivity pertaining to the
two-terminal measurement is G D 2e2Nc/h. Accord-
ing to this description, the conductance is quantized
such that it increases in steps by an amount equal to the
quantum of conductance 2e2/h whenever a new sub-
band opens. This can be achieved either by widening
of the constriction (and thus by lowering the subband
energies) or by increasing the density of electrons (and
thus by raising the Fermi energy).

Definition of the Subject

Since the 1980s advances in the growth techniques and
new electronic materials developed therefrom have pro-
vided almost defect-free electronic devices, which have

dimensions in one or more directions on the quantum
scale. New quantum regimes governing such systems of
lower dimensionality have led to novel electronic prop-
erties with potential applications. Quantum wells, wires,
and dots, which have been implemented in the terminol-
ogy of condensed-matter physics, indicate not only differ-
ent dimensionality but also exhibit dramatically different
electronic properties. Particularly, the electronic transport
properties in lower dimensionality have several important
features, which have stimulated a great deal of theoretical
and experimental research. In electronic transport stud-
ies, if the size of the sample (or device) is smaller than the
phase breaking length, the transport is phase coherent. In
this case, electrons have a well-defined phase throughout
the device, even though they may experience elastic scat-
tering. Numerous publications on this type of transport
have appeared, thus contributing to a field called meso-
scopic physics, a term that indicates a new length scale for
physical events between macroscopic and microscopic.

Phase coherent electronic transport through meso-
scopic systems has been shown to exhibit resonant behav-
ior as a function of the incident electron energy. This type
of resonant behavior is of great interest both as a basis for
the creation of new resonant nanoelectronic devices and
for revealing a fundamental aspect of quantum mechan-
ics. In various model calculations on electronic transport
of microstructures, transmission resonances have been
found to exhibit two types of resonance behavior: i) sym-
metric resonances (Breit–Wigner type), and ii) asymmet-
ric resonances (Fano type). In particular, one often en-
counters points of vanishing transmission or reflection as
a resonance is crossed. The interference effects that give
rise to these resonances in the above-mentioned nanos-
tructures are reviewed here, with emphasis given to the
more recent interesting effects. This article is intended for
those who are familiar with the field but the somewhat de-
tailed derivations and explanations make it also accessible
to beginners or researchers from similar disciplines.

Introduction

Since the early 1990s, resonances of the Fano type have
been treated theoretically in various condensedmatter sys-
tems including transport through quantum wires with at-
tractive impurities or quantum dots [4,6,22,23,30,31,35,
36,37,38,39,40]. In these systems, the coupling between
a bound state of the impurity and the continuum leads
to a quasibound (resonant) state. The interference be-
tween the direct (nonresonant) transmission pathway and
the transmission via the quasibound state gives rise to an
asymmetric Fano resonance. The Fano effect is a ubiqui-
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tous phenomenon and has been observed in a large vari-
ety of experiments including atomic photoionization [13],
neutron scattering [1], Raman scattering [8], optical ab-
sorption [11], and transport through mesoscopic systems
with embedded quantum dots [5,16,19,24,26].

The purpose of this article is to review the resonance
phenomena in the electronic transport of non-interacting
electrons through: i) infinite rectilinear quantum wires
with impurities, and ii) one-dimensional rings with im-
purities connected to current leads. In Sect. “Electronic
Transport Through Quantum Wires”, I will review the
coupled-channel Feshbach theory, which is particularly
suitable for describing the resonant behavior in ballistic
electronic transport of quantum wires, and apply it to the
case of an impurity with finite-range and smooth profile
along the propagation direction. In Sect. “Resonances in
the Transmission Probability of a Quantum Wire”, it will
be shown that varying the strength and size of the im-
purity causes the transformation of an asymmetric Fano
resonance into a symmetric antiresonance (Breit–Wigner
dip) and subsequently to an “inverted” Fano resonance.
Thermal effects will also be considered. In Sect. “Elec-
tronic Transport Through Mesoscopic Open Rings”, af-
ter reviewing the scattering matrix approach, I will dis-
cuss the Fano resonances in electronic transport of one-
dimensional (abbreviated, 1D) open rings with a short-
range (abbreviated, SR) impurity in one arm and the ef-
fects of the ring-lead coupling on the resonance struc-
ture. In this Section, an interesting feature of the Fano
line shape will also be discussed; namely, the systematic
collapse of certain Fano resonances for special impurity
positions. The effect of an Aharonov–Bohm (abbreviated,
AB) magnetic flux will also briefly be considered as well as
the temperature dependence of the Fano effect. Finally, in
Sect. “Future Directions”, some thoughts on future direc-
tions will be given.

Electronic Transport Through QuantumWires

A relatively new view was established for the quantum
theory of scattering since it became clear that the electri-
cal linear response of open conductors could be related to
its transmission and reflection properties [2,28]. In addi-
tion, experiments performed at that time independently
by van Wees et al. [49] and Wharam et al. [44] have been
a breakthrough in the field of quantum ballistic trans-
port in a quantum point contact (abbreviated, QPC) in
a two-dimensional electron gas (abbreviated, 2D EG). Us-
ing high-mobility GaAs � Al1�xGaxAs heterojunctions
and the split-gate technique, they imposed a small con-
striction on the sample. A channel was obtained from this

constriction by applying a negative bias to the split gate,
and thus by causing the depletion of electrons beneath the
gate. Thus, the portion of the 2D EG lying below the gap
of the split-gate electrode remains conducting. In their ex-
periments the width of the constriction is in the range of
the Fermi wavelength F , whereby quantum size effects
become relevant.

In the theoretical models [44,49] initially used to ex-
plain the electron conduction and the quantization of con-
ductance, the QPC was perceived as a uniform waveguide,
and only the events in this waveguide were taken into
account. Here, the word uniform refers to the confining
potential, which is the same throughout the constriction.
The current-transporting states are laterally confined in
the waveguide, the width of which is in the range of the
Fermi wavelength. Then, the transverse momenta of these
states are quantized, resulting in a subband structure. In
the following we confine ourselves to such uniform, infi-
nite long waveguide (or quantum wire) at zero tempera-
ture.

Feshbach Coupled-Channel Theory

We consider a uniform 2D quantum wire as shown in
Fig. 1, in which electrons are confined along the y direction
(transverse direction) but are free to move along the x di-
rection (propagation direction). In the presence of a scat-
tering potential the Schrödinger equation describing the
electron motion in the wire is
�
�
„2

2m
r2 C Vc (y)C V(x; y)

�
� (x; y) D E� (x; y); (1)

where Vc(y) is the confining potential, V(x, y) is a scat-
tering potential, and m is the effective mass of the elec-
tron. The transverse potential Vc(y), providing confine-
ment of the electron motion along the y direction, gives
rise to channel modes �n(y) which satisfy

�
�
„2

2m
@2

@y2
C Vc (y)

�
�n(y) D En�n(y) ; (2)

where En is the threshold energy for the nth mode. The
wave propagation (or transport) in subband n takes place,
as long as the threshold En (i. e., the bottom of the nth sub-
band) is smaller than the Fermi level E (see Fig. 2). We
expand the wave function � (x; y) of Eq. (1) in terms of
the channel modes as

� (x; y) D
1X

nD1

 n(x)�n(y) : (3)
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Resonances in Electronic Transport ThroughQuantumWires and
Rings, Figure 1
A uniform quantum wire of widthW. An incident electron wave
is partially reflected and transmitted through a Pöschl–Teller at-
tractive impurity V(x; y) D („2�/2m) sech2(˛x)�(y), where ˛�1

is the decay length and�(y) is arbitrary function. Larger values of
˛�1 represent impurities of larger size, as shown by the dashed
lines

Substituting Eq. (3) into Eq. (1) we obtain the following
coupled-channel equations for  n(x):

(E � En � K̂) n(x) D
1X

lD1

Vnl (x) l (x) ; (4)

where K̂ D �(„2/2m)d2/dx2 and the coupling matrix ele-
ments Vnl (x) are given as

Vnl (x) D
Z

dy�n(y)V (x; y)�l (y) : (5)

We confine ourselves now to a single-subband regime,
i. e., E1 � E � E2 where only the first mode n D 1 can
propagate along the wire while the higher (evanescent)
modes can only contribute to electron propagation due
to their coupling with the first by the scattering potential.
Thus all coupling matrix elements Vnl (x) for the higher
modes vanish away from the scattering region (x !˙1)
and therefore only the first mode n D 1 can actually be
scattered and, therefore, be found in some scattering state.
It can be seen from Eq. (4) that the scattering states for the
first mode are given as solutions of the equation

�
K̂ C V11(x)

�
�˙k (x) D (E � E1)�˙k (x) ; (6)

where we denoted by �Ck (x) and �
�
k (x) the wave functions

that correspond to scattering states for which the incident
wave comes from �1 andC1, respectively. These wave
functions describe the background (nonresonant) scatter-
ing, which is the scattering in a hypothetical system in
which there is no coupling to a bound state [14,30,37] of

Resonances in Electronic Transport ThroughQuantumWires and
Rings, Figure 2
Dispersion relation of propagating (solid) and evanescent
(dashed) states in a 2Dquantumwire E D En C („2k2n/2m), where
En define the threshold energies (bottom of subbands). Modes
with energy En such that En < E, where n D 1;2; : : :, are propa-
gating along thewirewhilemodes with En > E (that is, kn D i�n)
are evanescent

the impurity. In Eq. (6) the wave vector of the propagating
mode is given as k D [2m(E � E1)]1/2/„ while V11(x) is an
effective 1D potential for scattering of the first mode. The
scattering wave functions in the asymptotic region can be
expressed as

�˙k (x) D

(
tb ge˙i kx (x !˙1)
e˙i kx C rbg

˙
e�i kx (x !�1)

: (7)

In Eq. (7) the upper signs correspond to incident wave
from�1, while tbg and rbg˙ correspond to the background
transmission and reflection amplitudes in the quantum
wire. Let E be close to the energy Ẽ0 of the bound state
˚0(x) in the potential V22(x) of the uncoupled channel
n D 2. This bound state is found as the solution of

�
K̂ C V22(x)

�
˚0(x) D (Ẽ0 � E2)˚0(x) : (8)

Assuming no other channels exhibit bound states close to
Ẽ0, we can make the approximation of truncating the sum
of Eq. (4) at n D 2. We then obtain the following system
of equations

�
E � E1 � K̂ � V11(x)

�
 1(x) D V12(x) 2(x) ; (9)

�
E � E2 � K̂ � V22(x)

�
 2(x) D V21(x) 1(x) : (10)

The system of coupled-channel equations [i. e., Eqs. (9)
and (10)] is solved using the ansatz [15]

 2(x) D A˚0(x) : (11)
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Inserting this ansatz into Eq. (9) we obtain an inhomo-
geneous equation for  1(x), which can then be solved by
employing the retarded Green’s operator

Ĝ1 D (E � E1 � K̂ � V11 C i0C)�1 : (12)

When Ĝ1 acts on Eq. (9), the general solution to the inho-
mogeneous equation can be found as

j 1i D j�
C
k i C AĜ1V12j˚0i : (13)

Then, Eq. (10) can be written as

A(E�E2� K̂�V22)j˚0i D V21j�Ck iCAV21Ĝ1V12j˚0i :

(14)

We can rewrite Eq. (14) with the help of Eq. (8) as

A(E � Ẽ0)j˚0i D V21j�Ck i C AV21Ĝ1V12j˚0i : (15)

Multiplying Eq. (15) by h˚0j allows us to determine A in
Eq. (11) as

AD
h˚0jV21j�Ck i

E � Ẽ0 � h˚0jV21G1V12j˚0i
: (16)

Using the scattering states �˙k (x), we can write the explicit
form of the retarded Green’s function in 1D as

G1(x; x0) D
m

i„2ktbg
�

(
�Ck (x)�

�
k (x
0) (x > x0)

�Ck (x
0)��k (x) (x < x0)

(17)

We then finally obtain from Eq. (13) the solution for
x !1 as

 1(x) D �Ck (x)C
m

i„2ktbg
�Ck (x)

�
h(��k )

�jV12j˚0ih˚0jV21j�Ck i
E � Ẽ0 � h˚0jV21G1V12j˚0i

: (18)

In Eq. (18) the matrix element h˚0jV21G1V12j˚0i is the
self-energy due to the coupling of the bound state with the
continuum and has in general both a real and an imaginary
part.

The above formalism applies to a general scattering
potential. In the following subsection we will examine
a particular potential with finite range and smooth profile;
namely, the Pöschl–Teller potential.

Pöschl–Teller Scattering Potential

We consider now a scattering potential of the Pöschl–
Teller (abbreviated, PT) type

V(x; y) D
„2�

2m
sech2(˛x)((y) ; (19)

where ((y) is an arbitrary function of the coordinate y,
˛�1 is the decay length, and � sets the magnitude of the
potential which is taken to be attractive (� < 0). The lon-
gitudinal part of this potential has smooth profile as shown
in Fig. 1. The matrix elements of Eq. (5) take the form

Vnl (x) D
„2�

2m
sech2(˛x)(nl ; (20)

where (nl D h�n j((y)j�l i. In order to find the scattering
states �˙k (x) we must solve Eq. (6) in the presence of an
attractive potential

V11(x) D �U11 sech2(˛x) ; (21)

whereU11 D �(„2� /2m)(11. The solution proceeds in the
same way as in a 1D scattering problem [27] and the
asymptotic form of the wave function, as x ! �1, is
written in terms of Gamma functions as

�Ck (x) � e�i kx
� (ik/˛)� (1 � ik/˛)
� (��)� (1C �)

C ei kx
� (�ik/˛)� (1 � ik/˛)

� (�ik/˛ � �)� (�ik/˛ C �C 1)
; (22)

where � D (1/2)
h
�1C

p
1C (8m�U11/˛2„2)

i
. In

Eq. (22) � is the Gamma function. The reflection ampli-
tude rbgC is the ratio of coefficients of the function �Ck (x)
in Eq. (22) and due to symmetry rbg� D rbgC holds. Having
found the scattering states we now proceed to find the
bound state of the 1D potential V22(x) D �U22 sech2(˛x)
by solving Eq. (8), where U22 D �(„2� /2m)(22. Employ-
ing the notation � D [�2m(Ẽ0 � E2)]1/2/„˛ and s D (1/2)h
�1C

p
1C (8mU22/˛2„2)

i
, we can bring Eq. (8) into

a form that has solutions the associated Legendre polyno-
mials P�s (�), where � D tanh(˛x). The energy levels are
then obtained from the condition � D s � p as

Ẽp D E2�
„2˛2

8m

"

�(1C 2p)C
r

1C
8mU22

˛2„2

#2
; (23)

where p D 0; 1; 2; : : : The number of levels is determined
by the condition � > 0 (or p < s) and generally depends
on the depth U22 of the potential as well as on the in-
verse decay length ˛. In the following we will assume that
U22 and ˛ are such that s � 1, which implies that there
is only one bound state with energy Ẽ0. When this bound
state lies in the continuum of the first subband it is trans-
formed to a quasibound state and acquires a finite width.
The normalized bound state wave function is given as
˚0(x) D (˛/2)1/2 sech(˛x).
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Having found the scattering states �˙k (x) as well as the
bound state, Ẽ0 and ˚0, we now proceed to calculate the
matrix elements that occur in Eq. (18) and thus find the
transmission amplitude. We then have

h(��k )
�jV12j˚0i D

„2

2m
�(12

r
˛

2

�

Z
dx


e�i kx C rbg� ei kx

�
sech3(˛x)

D
„2

2m
�(12

r
˛

2



I�1 C rbg� I1

�
;

(24)

where

I1 D
Z 1

�1

dxei kx sech3(˛x) ;

I�1 D
Z 1

�1

dxe�i kx sech3(˛x) :
(25)

It can be verified that I1 D I�1 D [(˛2 C k2)� � sech(k�/
2˛)]/2˛3. Also,

h˚0jV21j�Ck i D
„2

2m
�(21

r
˛

2
tb g I1 : (26)

We calculate now the matrix element that occurs in the
denominator of Eq. (18). We have

h˚0jV21G1V12j˚0i

D
m

i„2ktbg

Z 1

�1

dx
Z 1

�1

dx0˚0(x)V12(x)

� ˚0(x0)V12(x0)��k (x)�
C
k (x
0)

C
m

i„2ktbg

Z 1

�1

dx
Z x

�1

dx0˚0(x)V12(x)˚0(x0)

� V12(x0)[�Ck (x)�
�
k (x
0) � ��k (x)�

C
k (x
0)]

D Q1 C Q2 � Q3 :

(27)

Inserting the explicit expressions for the bound state ˚0,
the coupling V12, and the scattering states�˙k into Eq. (27)
we obtain

Q1 D
m
i„2k

�
„2

2m

�2

� 2(212


˛
2

� h
I�1 I1 C rbg� (I1)2

i
; (28)

and

Q2 D
m
i„2k

�
„2

2m

�2

� 2(212


˛
2

� h
I2 C rbg� I3

i
; (29)

where

I2 D
Z 1

�1

dxei kx sech3(˛x)
Z x

�1

dx0e�i kx
0

sech3(˛x0) ;

(30)

and

I3 D
Z 1

�1

dxei kx sech3(˛x)
Z x

�1

dx0ei kx
0

sech3(˛x0) :

(31)

For Q3 we get the same expression as for Q2 and there-
fore Q2 � Q3 D 0. Thus h˚0jV21G1V12j˚0i D Q1. Using
Eq. (28) and the results of the integrals I1 and I�1 we can
finally write the matrix element as

h˚0jV21G1V12j˚0i D ı � i� ; (32)

with

ı D �
„2� 2(212(˛

2 C k2)2�2 sech2(k�/2˛)
32mk˛5

�
cos

h
(�/2)

p
1C (8mU11/„2˛2)

i
sinh(�k/˛)

sinh2(�k/˛)C cos2
h
(�/2)

p
1C (8mU11/„2˛2)

i ;

(33)

and

� D
„2� 2(212(˛

2 C k2)2�2 sech2(k�/2˛)
32mk˛5

�
sinh2(�k/˛)

sinh2(�k/˛)Ccos2
h
(�/2)

p
1C (8mU11/„2˛2)

i :

(34)

Equations (33) and (34) for ı and � give the shift and
width respectively, that the bound state acquires. Further-
more, using Eqs. (24) and (26) we can write the numerator
of Eq. (18) as

m
i„2ktbg

h(��k )
�jV12j˚0ih˚0jV21j�Ck i D ı � i� : (35)

Equation (18) can then finally be written for x !1 as

 1(x) D tb gei kx
E � Ẽ0

E � Ẽ0 � ı C i�
: (36)

From Eq. (36) we can extract the transmission probability
of the quantum wire as

T D jtb gj2
�
E � Ẽ0

2

(E � ER)2 C � 2
: (37)

Due to the real part ı of the self-energy acquired by the
bound state, a shifted quasibound state energy ER D Ẽ0Cı
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appears in Eq. (37). The background transmission coeffi-
cient, which enters Eq. (37), is found as

jtb g j2 D
sinh2(�k/˛)

sinh2(�k/˛)Ccos2
h
(�/2)

p
1C(8mU11/„2˛2)

i :

(38)

Equation (37) can be transformed into the asymmetric
Fano function [12] if we define reduced variables � D
(E � ER)/� and q D (ER � Ẽ0)/� D ı/� , where Ẽ0 is the
energy of the transmission zero and q is the asymmetry pa-
rameter of the resonance line shape. An interesting feature
of Fano resonances in scattering from impurities in quan-
tum wires is that the asymmetry parameter depends only
on the characteristics of the impurity potential and not on
the coupling of the quasibound state. In addition, the limit
q! 0 leads to a symmetric antiresonance (Breit–Wigner
dip) while the opposite limit q!1 leads to a resonance
peak. We now define units as follows. For GaAs the value
of „2/2m � 0:57 eVnm2. We take „2/2m equal to unity
and therefore the unit of the matrix element (nl can be
taken to be 0.1 eVnm which then yields an energy unit of
� 17:7meV and a length unit of � 5:7 nm. Then, we can
write the asymmetry parameter with the help of Eqs. (33)
and (34) as

q D
ı

�
D �

cos
h
(�/2)

p
1C (4U11/˛2)

i

sinh(�k/˛)
: (39)

The asymmetry parameter is a particularly important
quantity in the detailed structure of the line shape and
has been investigated experimentally [16,24] and theoreti-
cally [9].

Resonances in the Transmission Probability
of a QuantumWire

In this section we will discuss the influence of the funda-
mental parameters of the impurity discussed in Sect. “Elec-
tronic Transport Through Quantum Wires” on the res-
onance line shape. In the numerical calculations we take
the electron mass to be the effective mass for GaAs which
is 0.067 of the free electron mass.

Inversion of the Resonance Level

An important feature of Eq. (39) is that for certain ranges
of values of U11/˛2 the quantity ı (which is the difference
between the resonance energy ER and the energy Ẽ0 of
the transmission zero) can be negative, positive, or zero.
This means that the resonance energy may occur before,

after, or be equal to the energy of the transmission zero,
which leads to an oscillatory behavior of the asymme-
try parameter q. In particular, when 0 < U11/˛2 < 2 we
have ER > Ẽ0 and in this case the peak follows the dip.
We call this a 0! 1 type Fano resonance. However, for
2 < U11/˛2 < 6 we have ER < Ẽ0 and the dip follows the
peak.We call this a 1! 0 type Fano resonance and, in this
case, the resonance level appears inverted, which means
that the the location of the pole is switched with the zero
energy. For the interval 6 < U11/˛2 < 12we have ER > Ẽ0
and the Fano resonance is again of the 0! 1 type. Exactly
at the values of U11/˛2, for which inversion of the reso-
nance level occurs (i. e., atU11/˛2 D 2; 6; : : :), ı and there-
fore q become zero. The special values, for which ı D 0,
are given as

U11

˛2
D

1
4
[(2nC 1)2 � 1] ; (40)

where n D 1; 2; : : : Since q D 0 at these special values, the
transmission exhibits symmetric Breit–Wigner dips.

These effects are illustrated in Fig. 3 where we show
the transmission probability through the attractive po-
tential of Eq. (19) plotted versus the Fermi energy over
the first subband, i. e., E1 < E < E2. In Fig. 3a we have
chosen U11 D 1:5, U22 D 1:4, (12 D 0:09, and ˛ D 1:6.
The transmission exhibits an asymmetric Fano resonance
(solid line) of the 0! 1 type while the dashed line in
Fig. 3a represents the direct (nonresonant) transmission,
which occurs in the decoupling limit (12 D 0 (i. e., in the
limit in which there is no coupling of the bound state with
the continuum of states of the first subband) for which
ı D � D 0. In this limit there are two scattering mech-
anisms: a direct scattering from the first subband and
a resonant scattering from the quasibound state. When
the coupling to the quasibound level becomes nonzero
the interference between direct and nonresonant trans-
mission pathways produces the asymmetric Fano line
shape [23,30,37,39]. The resonance width is proportional
to the square of the coupling, i. e., � � (212, as can be seen
from Eq. (34).

In Fig. 3b we have chosen, for both solid and dashed
lines, ˛ D 1, U11 D 2, and U22 D 1 but (12 D 0:095 has
been chosen for plotting the solid line and (12 D 0:14
for the dashed line. These give U11/˛2 D 2, which is one
of the special values of Eq. (40), and it can be seen that
the transmission exhibits a completely symmetric antires-
onance (Breit–Wigner dip). This is due to the fact that the
transmission zero coincides with the energy of the reso-
nance level. Furthermore, as mentioned above, the width
of the resonance increases as the intersubband coupling
(12 increases, which is shown by the dashed line. It’s also
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Resonances in Electronic Transport ThroughQuantumWires and
Rings, Figure 3
Transmission probability T versus Fermi energy E through an at-
tractive impurity potential of the Pöschl–Teller type, in a 2D uni-
form quantum wire (see text for the numerical values of the pa-
rameters used). a An asymmetric Fano resonance of the 0! 1
type (solid) and the background transmission (dashed). b sym-
metric Breit–Wigner antiresonance for one of the special val-
ues given in the text, at which the resonance energy coincides
with the energy of the transmission zero. The dashed line corre-
sponds to larger coupling parameter which gives rise to larger
resonance width. c A 1! 0 type Fano resonance indicating in-
version of the resonance level

interesting to note that there is perfect transmission over
the whole energy window, except for the very small en-
ergy interval where the antiresonance occurs. This is due
to the fact that the scattering potential of Eq. (19) varies
smoothly and the direct transmission jtb g j2 becomes unity
[see Eq. (38)] whenever U11/˛2 assumes the special val-
ues given in Eq. (40). In Fig. 3c, we have chosen ˛ D 1:4,
U11 D 6:3, U22 D 1:2, and (12 D 0:8. The resonance line
shape is now of the 1! 0 type. The inversion of the res-
onance level indicates that the roles of destructive and
constructive interference between the direct and resonant
channels have been reversed.

The resonance level inversion discussed in the con-
text of Fig. 3, has also been predicted in References [23]
and [22] where the scattering potential was modeled by
a rectangular square well. Increasing the longitudinal size
of the impurity, it was found that there are some critical
values of the impurity size for which the Fano resonance
disappears. This occurs over an energy interval around
a critical value Ec where a transformation of the quasi-
bound state into a true bound state (for which � ! 0)
occurs, giving rise to unity transmission in this interval.

We alsomention that the Fano asymmetry parameter q
is a particularly important quantity for the detailed struc-
ture of the line shape, and has been investigated experi-
mentally and theoretically in the context of various types
of mesoscopic systems [9,14,16,24]. In our case, q can be
evaluated at the resonance energy from Eq. (39). The cal-
culated values are q D 0:47, 0, and -0.43 in Figs. 3a, b, and
c, respectively. Furthermore, we note that resonance phe-
nomena in quantum wires with impurities can also lead to
a connection between the line shape and the fundamen-
tal parameters of the impurity, such as its strength and
size.

Temperature Dependence of the Fano Effect

So far we have considered the zero-temperature case. At fi-
nite temperatures the resonances are rapidly smeared out.
It will be shown that the effect of temperature (due to ther-
mal broadening) becomes gradually weaker with increas-
ing size of the PT impurity given in Eq. (19).

In order to consider thermal effects, we employ the
finite-temperature conductance formula

G(�; T) D G0

Z
dE
�
@ f
@�

�
G(E; 0) ; (41)

where G(E; 0) is the zero-temperature conductance and f
is the Fermi distribution function given by

f (E) D
1

e(E��)/kBT C 1
: (42)
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For comparison, we also consider the case of an attractive
short-range (SR) impurity. The SR impurity is modeled by
the Dirac ı function along the propagation direction

V(x; y) D
„2�

2m
ı(x)((y) ; (43)

where, as in the case of the PT impurity, ((y) is an ar-
bitrary function of the coordinate y, and � < 0. For this
scattering potential, the bound-state energy is found to be
Ẽ0 D E2 � (U2

22/4). The shift and width that the bound
state acquires can also be found analytically as

ı D
U11U22U2

12
8k2 C 2U2

11
; (44)

and

� D
kU2

12U22

4k2 C U2
11
: (45)

In our energy unit (� 17:7meV) that we employ in
this article, kBT D 0:001 corresponds to 205mK. The
temperature dependence of the Fano resonance for the SR
impurity is shown in Fig. 4a. The corresponding plot in
the case of a PT impurity is similar. In Fig. 4a we have cho-
sen U11 D 1, U22 D 0:9, and (12 D 0:08. We note that the
resonance structure is rapidly smeared out with increasing
temperature. That is, the Fano resonance becomes gradu-
ally broader while its amplitude, �G D Gmax � Gmin, de-
creases. However, this amplitude is influenced by the type
and size of the impurity in a significant way. The ampli-
tude versus kBT is plotted in Fig. 4b for both a SR and
a PT impurity for two values of ˛, i. e., for ˛ D 1:5 and
1.35. The fastest decrease of the amplitude with increasing
temperature occurs for a SR impurity for which�G ' 0:1
at kBT ' 0:012 (or T ' 2:5 K). However, depending on
the size ˛�1 of the PT impurity, the Fano resonance per-
sists for higher temperatures. That is, the effect of tempera-
ture becomes progressively weaker as the size of the finite-
range PT impurity increases.

The above-mentioned smearing of the Fano resonance
can be explained in terms of the thermal broadening, via
the smooth peak in @ f /@�, which obscures the resonance
as kBT becomes comparable to the resonance width. In the
case of a SR impurity [solid line of Fig. 4b], the amplitude
of the resonance becomes half its zero-temperature value
as soon as kBT ' 0:0018 (or, equivalently, T ' 380mK),
which is comparable to the calculated resonance width
� ' 0:0022. However, as has been shown elsewhere [40],
in the case of a PT impurity the resonance width increases
with decreasing ˛ (i. e., with increasing size), resulting in
a gradually broader resonance. Therefore, for gradually

Resonances in Electronic Transport ThroughQuantumWires and
Rings, Figure 4
The temperature dependence of the transmission probability T
versus Fermi energy E through an attractive ı function poten-
tial, V(x; y) D („2�/2m)ı(x)�(y), in a uniform 2D quantum wire
is shown in a. In our energy unit (see text) kBT D 0:001 corre-
sponds to 205mK. Note the smearing of the Fano resonance as
the temperature increases. b Amplitude,�GD Gmax � Gmin, of
the Fano resonance versus kBT for the ı function (solid line) and
the PT (dashed lines) impurities. Note the progressively weaker
effect of temperature for PT impurities with gradually larger size
(i. e., gradually smaller ˛)

larger PT impurities, the Fano resonance requires higher
temperatures in order to diminish [see dashed lines of
Fig. 4b]. For a PT impurity with ˛ D 1:5, the amplitude
becomes half its zero-temperature value at kBT ' 0:0024
(which corresponds to T ' 480mK), while the resonance
width is� ' 0:0026. The above-mentioned broadening of
the Fano resonance is reflected in an almost linear increase
of the resonance width [31].

Electronic Transport
ThroughMesoscopicOpen Rings

As mentioned above, resonances of the Fano type have
been treated theoretically and observed experimentally in
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various mesoscopic systems. One particular class of meso-
scopic systems in which the Fano effect shows up, is the
1D ring connected to current leads with [41,43] or with-
out [18] an impurity in one of its arms. In such a sys-
tem, the electron motion between the junctions is treated
as purely one-dimensional, i. e., no subband structure is
taken into account and therefore no intersubband inter-
action occurs. Thus, the usual interpretation of the Fano
effect as being due to quasibound states splitting off from
nonpropagating subbands and the subsequent coupling
with the continuum of states, does not apply in this system.
Fano resonances have also been studied in various other
ring geometries, such as a ring with coupling between the
leads [47], and an ideal 1D double ring [48], to name a few.

The presence of an Aharonov–Bohm flux leads to fur-
ther interesting effects in mesoscopic open rings. The ap-
plication of an AB magnetic flux between the two elec-
tronic paths leads to the interference of the electronic wave
functions, giving rise to a circulating (or persistent) cur-
rent which is periodic in the magnetic flux with period
˚0, where ˚0 D hc/e is the flux quantum. Great effort has
been devoted to the description of this effect in various
open ring geometries [7,10,17,18,33,47,48]. The persistent
current has also been related to the collapse of Fano reso-
nances in Reference [41].

Most of the investigations on electronic transport in
1D open rings employ the Griffith’s boundary condition
(conservation of current) and continuity of wave func-
tions at the junctions. Even though useful, the Griffith’s
boundary condition constitutes a significant limitation on
the possible scattering effects at the junctions on the trans-
mission probability. The reason is that all the scattering ef-
fects are included in the calculation via a single value of the
ring-lead coupling strength, whereas the actual coupling
strength may vary, in a continuous manner, from weak
to strong. Therefore, the imposition of Griffith’s bound-
ary condition is insufficient to fully describe electron scat-
tering at the junctions and important aspects of electronic
transport are neglected [41]. After reviewing in the next
section the more general S-matrix approach, which is suit-
able for variable coupling strength, we will illustrate the
effect of this coupling on the transmission resonances.
We point out that the existence of Fano resonances in
1D mesoscopic rings has been known for a long time [3].
However, recently [41,43] the dependence of the Fano res-
onance on the system parameters has been studied, in the
zero-flux case, and revealed an important feature; namely,
the collapse of a Fano resonance when the system param-
eters are commensurate. Particularly, there are special im-
purity positions for which certain Fano resonances col-
lapse.

S-Matrix Approach

We consider the electronic transport through a ring con-
nected to current leads in the presence of an AB magnetic
flux, as shown in Fig. 5. The leads and the ring are taken
to be strictly 1D, i. e., no subband structure is taken into
account. We consider the current flow to be from left to
right. At a junction of a lead with the ring, the three out-
going waves with amplitudes (˛0; ˇ0; � 0) are related by an
Smatrix to the three incoming waves (˛; ˇ; � ) as

O D SI ; (46)

where O represents the outgoing and I the incoming
waves. Current conservation and time-reversal invariance
imply that S is unitary and symmetric [3], and given as

S D

0

@
� (aC b)

p
"
p
"

p
" a b
p
" b a

1

A : (47)

Due to current conservation,

a D
1
2


p
1 � 2" � 1

�
; (48)

b D
1
2


p
1 � 2"C 1

�
: (49)

Therefore, the coefficients a and b are expressed as func-
tions of the single parameter ", where 0 � " � 1/2. For
" D 0, electrons from the current lead are totally reflected
and thus there is no coupling between the current leads
and the ring. For " D 1/2, the junction is completely trans-
parent for incoming electrons and the current lead is
strongly coupled to the ring. It can be verified that the Grif-
fith’s boundary condition corresponds to " D 4/9.

In the presence of an impurity and a magnetic flux ˚ ,
the Schrödinger equation that describes the electron mo-
tion in the ring is

"

�
„2

2m

�
@

@y
� i

2�
L
˚

˚0

�2
C Vi (y)

#

 (y) D E (y) ;

(50)

where y is the coordinate along the ring, ˚0 D hc/e is the
flux quantum associated with a single charge e, L is the cir-
cumference of the ring, and Vi(y) is the impurity poten-
tial in the upper arm (at point D of Fig. 5). The lengths
of the two arms, L1 and L2, are taken to be equal, i. e.,
L1 D L2 D L/2. We consider an impurity potential mod-
eled by a Dirac ı function

Vi (y) D �ı(y � yi ) ; (51)
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where yi is the impurity position in the arm, and � sets the
magnitude of the impurity potential, which is taken to be
repulsive (i. e., � > 0). The wave functions in both leads
are written as

 l (x) D ˛ jei kx C ˛0je
�i kx ; (52)

where j D 1(2) for the left(right) leads, respectively, x is
the coordinate along the leads, and k D (2mE)1/2/„ is the
wave vector. In the ring the wave functions are expressed
as

 2(y) D e2	 i(˚/˚0)(y/L)


ˇ01e

i k y C ˇ1e�i k y
�
; (53)

 3(y) D e2	 i(˚/˚0)(y/L)e�i	(˚/˚0)
�
ˇ2e�i k(L1�y)

C ˇ02e
i k(L1�y)


;

(54)

 4(y) D e�2	 i(˚/˚0)(y/L)


� 01e

i k y C �1e�i k y
�
; (55)

where  2(y) and  3(y) are the wave functions before and
after the impurity, respectively, in the upper arm while
 4(y) is the wave function in the lower arm (see Fig. 5).
With the help of a transfer matrix, the amplitudes ˇ2 and
ˇ02 to the right of the impurity are expressed in terms of
the amplitudes ˇ01 and ˇ1 to the left of the impurity. The
transfer matrix is found using a standard procedure, i. e.,
by applying the boundary conditions at the impurity. We
then get

�
ˇ2
ˇ02

�
D ei	(˚/˚0)Ti

�
ˇ01
ˇ1

�
; (56)

where the transfer matrix Ti is given as

Ti D
�

(1/t�) ei q (r/t) ei qe�2i qs i
(r�/t�) e�i qe2i qs i (1/t) e�i q

�
: (57)

In Eq. (57), we have used a dimensionless wave vector de-
fined as q D kL1 and the dimensionless impurity position
si D yi /L1. Note that q has also been used previously to
denote the Fano asymmetry parameter but its meaning
becomes clear from the particular context. With this no-
tation, the transmission and reflection amplitudes of the
impurity potential are expressed as

t D
2iq

2iq � V
; (58)

and

r D
V

2iq � V
; (59)

where we have used the dimensionless parameter V D
2m�L1/„2 to characterize the impurity strength. We note

Resonances in Electronic Transport ThroughQuantumWires and
Rings, Figure 5
A one-dimensional ring connected to current leads with an im-
purity at point D (in the upper arm) and an Aharonov–Bohm
flux ˚ . The ˛0s, ˇ0s, and �0s represent the amplitudes of the
wave functions (see text)

that an impurity with a small spatial extension d and
a magnitude of �̄ can be approximated by a ı func-
tion with � D d�̄ and therefore V D 2m�̄dL1/„2. If we
choose an experimentally realizable [20,21,24] arm length
L1 D 1 μm, the effective mass for GaAs (m D 0:067m0),
and d D 0:01 μm, the unit of the impurity parameter
V D 1 corresponds to �̄ D 0:12me.

We consider now a wave of unit amplitude ˛1 D 1, in-
cident from the left. To find the transmission probability
T D j˛02j

2 of the ring we have to find the amplitudes ˇ01,
ˇ02, �

0
1, �
0
2 under the condition ˛2 D 0. Therefore, we em-

ploy the S-matrix at the two junctions. Applying Eqs. (46)
and (47) at the right junction we can express the � 0s in
terms of the ˇ0s as

�
� 02
�2

�
D Tj

�
ˇ2
ˇ02

�
; (60)

where Tj is a matrix given as

Tj D
1
b

� �
b2 � a2


a

�a 1

�
: (61)

Applying Eqs. (46) and (47) at the left junction and using
˛1 D 1, we are able to express ˇ1, ˇ01 in terms of �1, � 01 as

�
ˇ01
ˇ1

�
D

p
"

b

�
b � a
�1

�
C Tj

�
�1
� 01

�
: (62)

In the lower arm we insert y D L2 into  4(y) of Eq. (55)
which then yields two terms, the first being �2 and the sec-
ond � 02. Eliminating �2 and � 02 from these two terms by
employing Eq. (60) yields a relation between �1, � 01 and ˇ2,
ˇ02 with the help of a matrix T 0j given as

T 0j D
1
b

� �
b2 � a2


ei q aei q

�ae�i q e�i q

�
: (63)
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Using the matrix˘ defined as

˘ D Tjei	(˚/˚0)T 0je
i	(˚/˚0)Ti � 1 ; (64)

and employing the relation b � a D 1, the transmission
amplitude can finally be expressed as

˛02 D �
"

b2
ei	(˚/˚0) p

det(˘ )
; (65)

where

p D det(˘ )[( 1 0 )C( 0 1 )]Ti˘�1
�

1
�1

�
: (66)

The poles of the transmission amplitude, i. e., the solu-
tions of det(˘ ) D 0, determine the resonant behavior of
the transmission probability. The transmission probabil-
ity of the ring can then be written as

T D j˛02j
2 D

"2

b4
jpj2

j det(˘ )j2
: (67)

Fano Resonances in the Transmission Probability

In the numerical calculations we take the impurity posi-
tion at si D 0:42 and its scattering strength to be V D 11.
We first consider the zero-flux case.

We show by the solid lines in Fig. 6 the transmission
probability T versus the (dimensionless) wave vector q
through a ring with an impurity in its upper arm, for three
values of the coupling parameter ". The dashed lines show
the transmission probability of a ring with no impurity. In
the weak coupling regime of Fig. 6a, we note that for the no
impurity case sharp Breit–Wigner peaks occur at q D n� ,
where n D 1; 2; : : : These resonances are the result of con-
structive interference of the electron waves in the two arms
and they become gradually broader with increasing cou-
pling. In the strong coupling regime of Fig. 6c, the ring be-
comes completely transparent for incoming electrons re-
sulting in unity transmission.

In the presence of an impurity and in the weak cou-
pling regime of Fig. 6a we identify two types of transmis-
sion resonances; Breit–Wigner and Fano type. Most of the
Breit–Wigner peaks are similar to those of the no impu-
rity case, but note that they occur at different positions on
the q axis from those of the no impurity case and their
amplitudes can be less than unity. These resonances are
attributed to the constructive scatterings from the junc-
tions and the impurity. Thus, in the weak coupling regime,
it’s possible for electrons entering the ring to spend en-
hanced periods of time in the ring before being transmit-

Resonances in Electronic Transport ThroughQuantumWires and
Rings, Figure 6
Transmission probability T versus dimensionless wave vector
q/2� , where qD kL1, through a one-dimensional ring with
equal arms (L1 D L2) connected to current leads, for three values
of the coupling parameter ". The dashed lines represent the case
in which there is no impurity. The solid lines represent the case
in which there is an impurity, Vi(y) D („2V/2mL1)ı(y � yi), in the
upper arm (see Fig. 5). We have employed the value V D 11
for the impurity strength, where V is defined in the text, and
si D 0:42, where si D yi/L1 and L1 D 1�m. Depending on the
coupling, there may be both Breit–Wigner and Fano line shapes.
In the strong coupling regime, " D 0:5, only the Fano reso-
nances survive. Note that while varying the coupling the posi-
tions of the transmission zeros and ones remain fixed
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ted. For these electrons the interference is constructive and
the Breit–Wigner resonances are narrow.

When the coupling increases to " D 0:3, scattering ef-
fects at the junctions become weaker, resulting in larger
transmissivity and larger widths of the Breit–Wigner reso-
nances. The larger resonance widths correspond to larger
imaginary parts of the associated poles. In addition, in
the limit "! 0:5 the poles move away from the real axis
resulting in the disappearance of the Breit–Wigner reso-
nances [41], as shown in Fig. 6c.

The Fano resonances occur at q � n� , and in fact
their transmission ones occur exactly at q D n� . These
resonances are not much sensitive to the perturbation
caused by the junctions, and the transmission probabil-
ity exhibits Fano line shapes even in the strong coupling
regime, as shown in Fig. 6c. Furthermore, increasing the
coupling does not affect the positions of the transmis-
sion zeros and ones, but note that the asymmetry pa-
rameters change. This is reflected in a modification of
the resonance width qi, where qi is the imaginary part
of the associated pole in the complex q plane, with in-
creasing coupling. For example, for the Fano resonance at
q � 2� , the difference � between the transmission zero q0
and one q1, i. e., � D q0 � q1, has the value � D 0:06782
and remains constant for any value of the coupling pa-
rameter ". However, the values of the associated pole are
q D 6:291 � i0:0182 for " D 0:1, whereas for " D 0:3 the
pole location is at q D 6:312 � i0:039 and for " D 0:5
at q D 6:351 � i0:0302. To further describe this in the
framework of Fano’s asymmetric function [12] written in
terms of the wave vector q [see Eq. (69)], we note that �
can be expressed [41] as � D qi

�
jq̃j C 1/jq̃j


, where qi is

the resonance width and q̃ the asymmetry parameter. We
see that, as the asymmetry parameter q̃ varies, the width qi
also varies in such a way that � remains constant.

Thus, in the absence of impurity, the transmission
exhibits Breit–Wigner resonances in the weak coupling
regime. However, increasing V from zero in this regime,
leads to shifting of the Breit–Wigner resonances on the q
axis, but also results in a transmission zero, thus giving rise
also to a Fano line shape.

Tuning of the Fano Resonance

Recently [41] am interesting feature of the Fano line shape
in 1D open rings was discovered; namely, when the impu-
rity is located at some special positions in the arm, certain
Fano resonances collapse. Even though it is independent
of the ring-lead coupling, we will illustrate this feature in
the strong coupling regime " D 0:54. In this regime, an
analytic expression for the transmission amplitude can be

found,

˛02 D �e
�i	˚/˚0

�
4iq(e�i q�ei q) � V(ei qCe�i q)C V(eiDi qCe�iDi q)
4iq � 4iqe�2i q � Ve�2iQi q � Ve�2i s i q C 2Ve�2i q

;

(68)

where Di D 1 � 2si , Qi D 1 � si and we have also em-
ployed the relation t/r D 2iq/V . In the vicinity of a Fano
resonance, the transmission amplitude ˛02 can be ex-
pressed in the asymmetric Fano form [30]. Expanding the
numerator and denominator of Eq. (68) in a Taylor series
around a transmission zero, q0, and keeping only linear
terms we get

˛02 D td
q � q0 � Re(˙)C ı

q � q0 �˙
; (69)

where td D �1/�2, ı D 1/�1 Deqqi , and ˙ D 2/�2 D
� � iqi with

�1 D 8q cos q0 C 2V sin q0 � 2VDi sin(q0Di) ; (70)

�2 D 8qe�2i q0 � 2iVQie�2i q0Qi � 2isiVe�2i q0s i

C 4iVe�2i q0 ; (71)

1 D 8q sin q0 � 2V cos q0 C 2V cos(q0Di ) ; (72)

2 D 4iq�4iqe�2i q0�Ve�2i q0Qi�Ve�2i q0s iC2Ve�2i q0 :
(73)

In Eq. (69), ı and ˙ can be decomposed as ı D q̃qi and
˙ D � � iqi . Equation (69) will be used for the descrip-
tion of the collapse of Fano resonances. It will be shown
that, for particular impurity positions, the expression for
˙ vanishes which further indicates that the resonance
width shrinks to zero and the Fano line shape collapses.

Let us consider an impurity located at si, where si is the
ratio of two integers,

si D
r
n
; (74)

where n is fixed and r D 1; 2; : : : ; n: This means that
0 � si � 1. For an impurity located at one of the special
positions given by Eq. (74), the expression for ˙ takes the
form

˙ D

4iq � 4iqe�2i q0 � Ve�2i q0(1�s i )

� Ve�2i q0s i C 2Ve�2i q0

8qe�2i q0 � 2iV(1 � si )e�2i q0(1�s i )

� 2isiVe�2i q0s i C 4iVe�2i q0

: (75)
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Now let q0 ! �n� , where n is the same (fixed) integer
as that in Eq. (74) and � D 1; 2; : : : For these values of
q0, we note that the numerator of ˙ in Eq. (75) vanishes
which implies that the widths qi, of all Fano resonances
which occur at integer multiples of n� , that is at q '
n�; 2n�; 3n�; : : :, shrink to zero and therefore collapse.
Note that ı also vanishes. In this case, the transmission
amplitude ˛02 is equal to the nonresonant transmission
amplitude td and given as ˛02 D td D �[1 C (iV /4q)]�1.
To illustrate this behavior, we plot in Fig. 7 the exact trans-
mission probability from Eq. (68) versus the wave vector q,
for three values of the impurity position (i. e., for si D 1/2,
1/3, and 1/4). For comparison, we also plotted the approx-
imate transmission probability with ˛02 given by Eq. (69)
in Fig. 7c in the vicinity of q � 3� , for the same impurity
parameters as those used for plotting the exact expression.
We note that there is good agreement with the exact line
shape. In Fig. 7 the value of the impurity strength is taken
to be V D 12.

In agreement with the above discussion related to
Eqs. (74) and (75), we note in Fig. 7a that placing the
impurity at si D 1/2, which means n D 2 in Eq. (74),
causes simultaneous collapse of all Fano resonances at
q � 2�; 4�; 6�; : : : Furthermore, as shown in Fig. 7b,
an impurity placed at si D 1/3, which means n D 3 in
Eq. (74) causes simultaneous collapse of all Fano reso-
nances at q � 3�; 6�; : : : For si D 1/4, collapse of all Fano
resonances at q � 4�; 8�; : : : occurs, as shown in Fig. 7c.
The above-mentioned collapsing behavior has also been
described in terms of the pole structure of the transmis-
sion amplitude, in the complex q plane, as a function of
the impurity position. It has been shown [41] that as the
impurity approaches, for example si D 1/2, the pole asso-
ciated with q D 2� approaches the real axis and, exactly at
si D 1/2 the pole is located on the real axis of the q plane
implying that the resonance width becomes zero.

We also note that we can write Eq. (74) as si D
r�/n� D r�/qn , where qn D n� are the wave numbers at
which the Fano resonances occur. This means that, given
the impurity position si, enables us to find all Fano profiles
that collapse from

q D
r�
si
: (76)

For example, at si D 1/3, all Fano profiles that occur at

q D
r�
( 13 )
D 3r� D 0; 3�; 6�; : : : ; (77)

collapse. At the extreme positions si D 0 and 1, all Fano
resonances collapse. This tunability of the Fano reso-

Resonances in Electronic Transport ThroughQuantumWires and
Rings, Figure 7
Transmission probability T versus dimensionless wave vector
q/2� , where q D kL1, through a 1D ring with equal arms con-
nected to current leads with an impurity of strength V D 12
in the upper arm. For the impurity position we have chosen
si D 1/2, 1/3, and 1/4 in parts a, b, and c respectively. In a, all
Fano resonances at q � �2� D 2�;4�; 6�; : : :, collapse. In b
and c, the Fano resonances collapse at q � �3� and q� �4� ,
respectively, where � D 1;2;3; : : : The dashed line in c repre-
sents the approximate expression given in Eq. (69)
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nances with respect to the impurity position may pro-
vide useful means for the design of electronic nanode-
vices. In this context the impurity potential may be pro-
vided by a movable scanning tunneling microscope tip.
Note also that this tunability is independent of the scat-
tering strength V of the impurity.

Further interesting issues related to open 1D rings are
how the ring-lead coupling, impurity strength and posi-
tion affect the persistent current [18,32,34,41,45,46,47,48].
Even though we will not go into details here, we would
like to mention that the persistent current versus magnetic
flux increases dramatically whenever the impurity ap-
proaches one of the values given in Eq. (74), i. e., si ! r/n
and, exactly at these values, the persistent current di-
verges [41]. This behavior can be related to the motion
of the poles of the transmission amplitude in the com-
plex q plane as a function of magnetic flux, taking into ac-
count the fact that the persistent current arises near these
poles [32,33,34,41,48].

The effect of an AB magnetic flux on the Fano reso-
nance structure is also interesting. It has been shown [41]
that increasing the AB flux encircled by the ring results in
additional phase changes of the electron waves in the up-
per and lower arms, leading to modification of the Fano
interference pattern at the right junction. Applying gradu-
ally the magnetic flux causes weaker destructive and con-
structive interference and consequently transmission ze-
ros and ones do not exist anymore. As a result of these
interference effects, the amplitudes of the resonances usu-
ally decrease and become gradually distorted. These effects
repeat periodically with period˚0, where˚0 D hc/e is the
flux quantum.

Temperature Dependence of the Fano Resonances

Until now we discussed the transmission resonances at
zero temperature. As in the case of quantum wires dis-
cussed in Sect. “Temperature Dependence of the Fano Ef-
fect”, to consider thermal effects we should employ the
finite-temperature conductance formula, Eq. (41). In the
integral of this equation we first make a change of vari-
ables from energy E to the dimensionless wave vector q as

E D E?q2 ; (78)

where E? D „2/2mL21. In the following we define a dimen-
sionless parameter Td D kBT/E? which is a measure of
temperature. Then, the unit of this parameter Td D 1 cor-
responds to T D 6:59mK. After some manipulations, the

Resonances in Electronic Transport ThroughQuantumWires and
Rings, Figure 8
Temperature dependence of the transmission probability T ver-
sus dimensionless wave vector q/2� , where q D kL1, through
a 1D ring with equal arms connected to current leads. We have
chosen si D 0:47 and V D 11 for the impurity position and
strength, respectively. We have used the values Td D 0; 1;2;4,
where Td D kBT/E� and E� D „2/2mL21. The unit of the parame-
ter Td D 1 corresponds to 6.59mK. Note the rapid smearing of
the Fano resonances (especially of the narrow ones) as the tem-
perature increases

transmission probability of Eq. (41) can be written as

G(q; Td )
G0

D
1

2Td

Z
q0j˛02(q

0)j2 cosh�2
 
q02 � q2

2Td

!

dq0 :

(79)

Restricting ourselves to the strong coupling limit " D 0:5,
we plot in Fig. 8 the transmission probability versus the
wave vector q for several values of the parameter Td , i. e.,
for Td D 0; 1; 2; 4. In Fig. 8 we have taken the strength of
the impurity V D 11 and its position si D 0:47. Note the
strong temperature dependence of the narrower Fano res-
onances, especially of the resonance that occurs at q � 2� .
The effect of temperature is relatively weaker for the wider
resonances. For high enough temperatures the resonance
structure diminishes.

The origin of this rapid smearing of the resonances
is again the thermal broadening, via the smooth peak in
@ f /@�, which obscures the Fano resonance as kBT be-
comes comparable to the resonance width. For the pa-
rameters chosen in the plot of Fig. 8, the amplitude of
the Fano resonance at q � 2� becomes half its zero-
temperature value as soon as Td D 0:35, which cor-
responds to T ' 2:3mK while the resonance width is
qi ' 0:11 (which corresponds to T ' 0:27mK). This res-
onance diminishes at Td � 3:4. However, the first res-
onance at q � � , which is much broader than the sec-
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ond, as well as the third one at q � 3� require higher
temperatures in order to diminish. Particularly, the am-
plitude of the third resonance becomes half its zero-
temperature value as soon as Td D 1:6, which corre-
sponds to T ' 10mK, while the resonance width is
qi � 0:27 which corresponds to T ' 0:65mK. The above-
mentioned smearing of the Fano resonances has also been
discussed in the context of various other mesoscopic sys-
tems [16,24,25,26,29].

Future Directions

In the past two decades advances in microfabrication have
made possible the confinement of electrons in a conduc-
tor with lateral extension of 100 nm and less, resulting in
narrow quantum wires, constrictions, and quantum dots.
Consequently, it has been possible to engineer device po-
tentials which vary over the length scale such that the elec-
tron motion is ballistic or quasiballistic at low tempera-
tures. The ultrasmall size of these structures greatly elimi-
nates electron scattering by defects and therefore one can
obtain high mobility conducting channels. In these meso-
scopic systems, electronic transport is governed by quan-
tum mechanics rather than classical mechanics. At very
low temperatures, the scattering by phonons is suppressed
and the phase coherence length of the electron (i. e., the
length over which the electron can be considered to be in
a pure state) becomes larger than the system dimensions.
As a result, the mesoscopic system becomes essentially an
electron waveguide where the electronic transport proper-
ties are mainly determined by the impurity configuration,
the geometrical characteristics of the conductor, and the
principles of quantummechanics. Convincing demonstra-
tions of the quantum transport regime came from exper-
iments on thin-metal or semiconductor films. Given the
phase coherence of the electrons throughout the sample,
several ideas for active quantum devices (such as, transis-
tors, switches, etc.) have been proposed and are now under
investigation. These are the quantum analogs of optical or
microwave devices.

My intention in writing this article was to review cer-
tain important aspects of resonant electronic transport in
mesoscopic systems. The resonant behavior of the trans-
mission probability through such systems has actually
been an issue which stimulated a great deal of experi-
mental and theoretical research over the last two decades.
The Fano function has been shown to arise as the most
general resonance line shape, provided that two scatter-
ing channels – a resonant and a nonresonant one inter-
fere. One important aspect of resonant electronic trans-
port, which has actually been a problem common to many

branches of physics, is to extract lifetimes of quasibound
states from resonances in transmission coefficients or scat-
tering cross sections. This requires knowledge of the res-
onance widths, which have been discussed in this article
for two systems: i) a uniform quantum waveguide with
a “smooth” finite size impurity, and ii) a 1D ring connected
to current leads with an impurity in one arm. These res-
onances can also provide us with information about the
parameters of the impurity potential. An interesting fu-
ture experiment would be the determination of the im-
purity parameters from knowledge of the resonance line
shapes.

The effect of temperature is also important since it de-
stroys the Fano resonance structure. This depends on the
size of the impurity on the quantum wire and also on the
resonance width. The effect of temperature on the Fano
resonances becomes stronger for impurities with smaller
size while narrow resonances tend to diminish faster with
increasing temperature.

An interesting feature is also the systematic collapse of
certain Fano line shapes in electronic transport through
a 1D ring with a short-range impurity. The collapse occurs
for special values of the impurity position in the arm. As
mentioned in this article, the tunability of the Fano reso-
nances with respect to the impurity position could possibly
prove useful for the design and engineering of electronic
nanodevices. Even though it has not been discussed in this
article, this tunability could further be useful for the gen-
eration of strong persistent currents [41].
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Glossary

Cellular automaton A cellular automaton (CA) is a sys-
tem consisting of a large (theoretically, infinite) num-
ber of finite automata, called cells, which are connected
uniformly in a space. Each cell transits its state depend-
ing on the states of itself and the cells in its neighbor-
hood. Thus the state transition of a cell is specified
by a local function. Applying the local function to all
the cells in the space synchronously, the transition of
a configuration (i. e., a whole state of the cellular space)
is induced. Such a transition function is called a global
function. A CA is regarded as a kind of dynamical sys-
tem that can deal with various kinds of spatio-tempo-
ral phenomena.

Cellular automaton with block rules A CA with block
rules was proposed by Margolus [18], and it is often
called a CA withMargolus-neighborhood. The cellular
space is divided into infinitely many blocks of the same
size (in the two-dimensional case, e. g., 2 � 2). A local
transition function consisting of “block rules”, which is
a mapping from a block state to a block state, is applied
to all the blocks in parallel. At the next time step, the

block division pattern is shifted by some fixed amount
(e. g., to the north-east direction by one cell), and the
same local function is applied to them. This model of
CA is convenient to design a reversible CA. Because,
if the local transition function is injective, then the re-
sulting CA is reversible.

Partitioned cellular automaton A partitioned cellular
automaton (PCA) is a framework for designing a re-
versible CA. It is a subclass of a usual CA where each
cell is partitioned into several parts, whose number is
equal to the neighborhood size. Each part of a cell has
its own state set, and can be regarded as an output port
to a specified neighboring cell. Depending only on the
corresponding parts (not on the entire states) of the
neighboring cells, the next state of each cell is deter-
mined by a local function. We can see that if the lo-
cal function is injective, then the resulting PCA is re-
versible. Hence, a PCA makes it feasible to construct
a reversible CA.

Reversible cellular automaton A reversible cellular au-
tomaton (RCA) is defined as a one whose global func-
tion is injective (i. e., one-to-one). It can be regarded
as a kind of a discrete model of reversible physical
space. It is in general difficult to construct an RCA
with a desired property such as computation-univer-
sality. Therefore, the frameworks of a CA with Mar-
golus neighborhood, a partitioned cellular automaton,
and others are often used to design RCAs.

Universal cellular automaton A CA is called computa-
tionally universal, if it can compute any recursive func-
tion by giving an appropriate initial configuration.
Equivalently, it is also defined as a CA that can simu-
late a universal Turing machine. Universality of RCAs
can be proved by simulating other systems such as ar-
bitrary (irreversible) CAs, reversible Turing machines,
reversible counter machines, and reversible logic ele-
ments and circuits, which have already been known to
be universal.

Definition of the Subject

Reversible cellular automata (RCAs) are defined as cellu-
lar automata (CAs) with an injective global function. Every
configuration of an RCA has exactly one previous configu-
ration, and thus RCAs are “backward deterministic” CAs.
The notion of reversibility originally comes from physics.
It is one of the fundamental microscopic physical laws of
Nature. In this sense, an RCA is thought as an abstract
model of a physically reversible space as well as a comput-
ing model. It is very important to investigate how compu-
tation can be carried out efficiently and elegantly in a sys-
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tem having reversibility. This is because future computing
devices will surely become those of a nanoscale size.

In this article, we mainly discuss on the properties
of RCAs from the computational aspects. In spite of the
strong constraint of reversibility, RCAs have very rich abil-
ity of computing. We can see that even very simple RCAs
have universal computing ability. We can also recognize,
in some reversible cellular automata, computation is car-
ried out in a very different manner from conventional
computing systems, thus theymay give new ways and con-
cepts for future computing.

Introduction

Problems related to injectivity and surjectivity of global
functions of CAs were first studied by Moore [22] and
Myhill [33] in the Garden-of-Eden problem. A Garden-of-
Eden configuration is such that it can exist only at time 0.
Therefore, if a CA has such a configuration, then its global
function is not surjective, and vice versa. They proved the
following Garden-of-Eden theorem: A CA has a Garden-
of-Eden configuration, if and only if it has an “erasable
configuration”. After that, many researchers studied on
injectivity and surjectivity of global functions more gen-
erally [1,19,20,34]. In particular, Richardson [34] showed
that if a CA is injective, then it is surjective.

Toffoli [36] first studied reversible (i. e., injective) CAs
from the computational viewpoint. He showed that ev-
ery k-dimensional irreversible CA can be simulated by
a k C 1-dimensional RCA. Hence, a two-dimensional
RCA has universal computing ability. Since then, exten-
sive studies on RCAs have been done until now.

After the pioneering work of Bennett [3] on reversible
Turing machines, several models of reversible computing
were proposed besides RCAs. They are, for example, re-
versible logic circuits [8,26,37], Billiard Ball Model of com-
puting [8], and reversible counter machines [25]. Most
of these models have close relation to physical reversibil-
ity. In fact, reversible computing plays an important role
when considering inevitable power dissipation in comput-
ing [3,4,5,16,38]. It is also one of the basis of quantum
computing (see e. g., [9]) because an evolution of a quan-
tum system is a reversible process.

In this article, we discuss how RCAs can have univer-
sal computing ability, and how simple they can be. Since
reversibility is one of the fundamental microscopic prop-
erties of physical systems, it is important to investigate
whether we can use such physical mechanisms directly for
computation. An RCA is a useful framework to formal-
ize and investigate these problems. Since this article is not
an exhaustive survey, many interesting topics related to

RCAs, such as complexity of RCA [35], relations to quan-
tum CA (e. g., [41]), etc., are omitted.

An outline of the following sections is as follows. In
Sect. “Reversible Cellular Automata”, we give basic defini-
tions on RCAs, and design methods for obtaining RCAs.
In Sect. “Simulating Irreversible Cellular Automata by Re-
versible Ones”, it is shown how irreversible CAs are sim-
ulated by RCAs. In Sect. “1-D Universal Reversible Cellu-
lar Automata”, two kinds of computation-universal one-
dimensional RCAs are shown. In Sect. “2-D Universal Re-
versible Cellular Automata”, several universal two-dimen-
sional RCAs with simple local functions are shown. In
Sect. “Future Directions”, we discuss future directions and
open problems as well as some other problems on RCAs
not given in the previous sections.

Reversible Cellular Automata

Formal Definitions

We first give definitions on conventional cellular au-
tomata, and then their reversibility.

Definition 1 A deterministic k-dimensional (k-D)
m-neighbor cellular automaton (CA) is a system defined
by

AD (Zk ;Q; (n1; : : : ; nm); f ; #) ;

where Z is the set of all integers (hence Zk is the set
of all k-dimensional points with integer coordinates at
which cells are placed), Q is a non-empty finite set of
states of each cell, (n1; : : : ; nm) is an element of (Zk)m

called a neighborhood (m D 1; 2; : : :), f : Qm ! Q is a lo-
cal function, and # 2 Q is a quiescent state satisfying
f (#; : : : ; #) D #.

A k-dimensional configuration over the set Q is a map-
ping ˛ : Zk ! Q. Let Confk(Q) denote the set of all k-di-
mensional configurations over Q, i. e., Confk(Q) D
f˛ j˛ : Zk ! Qg. If k is understood, we write it by
Conf(Q). We say that a configuration ˛ is finite iff the set
fx j x 2 Zk ^ ˛(x) ¤ #g is finite. Otherwise, it is called in-
finite.

The global function F : Conf(Q)! Conf(Q) of A is
defined as the one that satisfies the following formula.

8˛ 2 Conf(Q); x 2 Zk :
F(˛)(x) D f (˛(x C n1) ; : : : ; ˛(x C nm))

Definition 2 Let A D (Zk ;Q; (n1; : : : ; nm); f ; #) be
a CA. (1) A is called an injective CA iff F is one-to-one.
(2) A is called an invertible CA iff there is a CA A0 D
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(Zk ;Q;N 0; f 0; #) that satisfies the following condition:

8˛; ˇ 2 Conf(Q) : F(˛) D ˇ iff F 0(ˇ) D ˛ ;

where F and F 0 are the global functions of A and A0,
respectively.

The following theorem can be derived from the results
independently proved by Hedlund [10], and Richard-
son [34].

Theorem 3 (Hedlund [10] and Richardson [34]) Let A
be a CA. A is injective iff it is invertible.

By the above theorem, we see the notions of injectivity and
invertibility are equivalent. Henceforth, we use the ter-
minology “reversible CA” (RCA) for such a CA, instead
of injective CA or invertible CA, because an RCA is re-
garded as an analog of physically reversible space. (Note
that, in some other computing models such as Turing ma-
chines, counter machines, and logic circuits, injectivity is
trivially equivalent to invertibility, if they are suitably de-
fined. Therefore, for these models, we can directly define
reversibility without introducing the notions of injectivity
and invertibility.)

How CanWe Find RCAs?

The class of RCAs is a special subclass of CAs. Therefore
there arises a problem how we can find or construct RCAs
with some desired property. It is in general hard to do so
if we use the conventional framework of CAs. Because,
the following result is shown by Kari [14] for the two-di-
mensional case (hence it also holds for higher dimensional
CAs).

Theorem 4 (Kari [14]) The problem whether a given two-
dimensional CA is reversible is undecidable.

For the case of one-dimensional CA, Amoroso and Patt [2]
showed it is decidable.

Theorem 5 (Amoroso and Patt [2]) There is an algo-
rithm to test whether a given one-dimensional CA is re-
versible or not.

There are also several studies on enumerating all reversible
one-dimensional CAs (e. g., [6,23]). But, it is generally dif-
ficult to find RCAs with specific properties such as com-
putation-universality, even for the one-dimensional case.

In order to make it feasible to design an RCA, several
methods have been proposed until now. They are, for ex-
ample, CAs with block rules [18,38], partitioned CAs [28],
CAs with second order rules [18,38,39], and others (see
e. g., [38]). Here, we describe the first twomethods in some
detail.

Reversible Cellular Automata, Figure 1
A cellular space with the Margolus neighborhood

Reversible Cellular Automata, Figure 2
Block rules for the Margolus RCA [18]. (Rotation-symmetry is as-
sumed here. Hence, rules obtained by rotating both sides of
a rule are also included.)

Cellular Automata with Block Rules Margolus [18]
proposed an interesting variant of a CA, by which he com-
posed a computation-universal two-dimensional two-state
reversible CA. In his model, all the cells are grouped into
“blocks” of size 2 � 2 as shown in Fig. 1. A specific example
of a transformation specified by “block rules” is shown in
Fig. 2. This CA evolves as follows: At time 0 the local trans-
formation is applied to every solid line block, then at time 1
to every dotted line block, and so on, alternately. Since this
local transformation is one-to-one, the global function of
the CA is also one-to-one. Such a neighborhood is called
Margolus neighborhood.

One can obtain reversible CAs, by giving one-to-one
block rules. However, CAs with Margolus neighborhood
are not conventional CAs, because each cell should know
the relative position in a block and the parity of time be-
sides its own state.

Related to this topic, Kari [15] showed that every one-
and two-dimensional RCA can be represented by a block
permutations and translations.

Partitioned Cellular Automata The method of using
partitioned cellular automata (PCA) has some similarity
to the one that uses block rules. However, resulting re-
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versible CAs are in the framework of conventional CA (in
other words, a PCA is a special case of a CA). In addition,
flexibility of neighborhood is rather high. Shortcomings of
PCA is that, in general, the number of states per cell be-
comes large.

Definition 6 A deterministic k-dimensional m-neighbor
partitioned cellular automaton (PCA) is a system defined
by

P D (Zk ; (Q1; : : : ;Qm); (n1; : : : ; nm); f ; (#1; : : : ; #m)) ;

where Z is the set of all integers, Qi (i D 1; : : : ;m) is
a non-empty finite set of states of the i-th part of each
cell (thus the state set of each cell is Q D Q1 � � � � � Qm),
(n1; : : : ; nm ) 2 (Zk)m is a neighborhood, f : Q ! Q is
a local function, and (#1; : : : ; #m) 2 Q is a quiescent state
satisfying f (#1; : : : ; #m) D (#1; : : : ; #m). (In general, the
states #1; : : : ; #m may be different from each other. How-
ever, by renaming the states in each part appropriately, we
can identify the states #1; : : : ; #m as representing the same
state #. In what follows, we often assume so, and write the
quiescent state by (#; : : : ; #).)

The notion of a finite (or infinite) configuration is
defined similarly as in CA. Let pi : Q ! Qi be the pro-
jection function such that pi (q1; : : : ; qm ) D qi for all
(q1; : : : ; qm) 2 Q. The global function F : Conf(Q) !
Conf(Q) of P is defined as the one that satisfies the fol-
lowing formula.

8˛ 2 Conf(Q); x 2 Zk :
F(˛)(x) D f (p1(˛(x C n1)); : : : ; pm(˛(x C nm)))

By the above definition, a one-dimensional radius 1
(3-neighbor) PCA P1d can be defined as follows.

P1d D (Z; (L;C; R); (1; 0;�1); f ; (#; #; #))

Each cell is divided into three parts, i. e., left, center, and
right parts, and their state sets are L, C, and R. The next
state of a cell is determined by the present states of the left
part of the right-neighbor cell, the center part of this cell,
and the right part of the left-neighbor cell (not depending
on the whole three parts of the three cells). Figure 3 shows
its cellular space, and how the local function f works.

Let (l ; c; r); (l 0; c0; r0) 2 L � C � R. If f (l ; c; r) D

(l 0; c0; r0), then this equation is called a local rule (or sim-
ply a rule) of the PCA P1d, and it is sometimes written in
a pictorial form as shown in Fig. 4. Note that, in the pic-
torial representation, the arguments of the lefthand side of
f (l ; c; r) D (l 0; c0; r0) appear in a reverse order.

Reversible Cellular Automata, Figure 3
Cellular space of a one-dimensional 3-neighbor PCA P1d, and its
local function f

Reversible Cellular Automata, Figure 4
A pictorial representation of a local rule f (l; c; r) D (l0; c0; r0) of
a one-dimensional 3-neighbor PCA P1d

Reversible Cellular Automata, Figure 5
Cellular space of a two-dimensional 5-neighbor PCA P2d, and its
local rule

Similarly, a two-dimensional PCA P2d with Neumann-
like neighborhood is defined as follows.

P2d D (Z2; (C;U; R;D; L);
((0; 0); (0;�1); (�1; 0); (0; 1); (1; 0));

f ; (#; #; #; #; #))

Figure 5 shows the cellular space of P2d, and a pictorial
representation of a rule f (c; u; r; d; l) D (c0; u0; r0; d0; l 0).

Let P D (Zk ; (Q1; : : : ;Qm); (n1; : : : ; nm); f ; (#1; : : : ;
#m)) be a k-dimensional PCA, and F be its global function.
It is easy to show the following proposition (a proof for
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the one-dimensional case given in [28] can be extended to
higher dimensions).

Proposition 7 The local function f is one-to-one, iff the
global function F is one-to-one.

It is also easy to see that the class of PCAs is a subclass of
CAs. More precisely, the following proposition is derived
by extending the domain of the local function of P.

Proposition 8 For any k-dimensional m-neighbor PCA
P, we can obtain a k-dimensional m-neighbor CA A whose
global function is identical with that of P.

By above, if we want to construct an RCA, it is sufficient
to give a PCA whose local function f is one-to-one. This
makes a design of an RCA feasible.

Simulating Irreversible Cellular Automata
by Reversible Ones

Toffoli [36] first showed that for every irreversible CA
there exists a reversible one that simulates the former by
increasing the dimension by one. From this result, com-
putation-universality of two-dimensional RCA is derived,
since it is easy to embed a Turing machine in a (irre-
versible) one-dimensional CA.

Theorem 9 (Toffoli [36]) For any k-dimensional (irre-
versible) CA A, we can construct a k C 1-dimensional RCA
A0 that simulates A in real time.

Although Toffoli’s proof is rather complex, the idea of the
proof is easily implemented by using a PCA. Here we ex-
plain it informally. Consider a one-dimensional 3-neigh-
bor irreversible CA A that evolves as in Fig. 6. Then, we
can construct a two-dimensional reversible PCA P that
simulates A as shown in Fig. 7. The configuration of A is
kept in some row of P. A state of each cell of A is stored
in left, center, and right parts of a cell in P in triplicate.
By this, each cell of P can compute the next state of the
corresponding cell of A correctly. At the same time, the

Reversible Cellular Automata, Figure 6
An example of an evolution in an irreversible one-dimensional
CA A

previous states of the cell and the left and right neighbor
cells (which were used to compute the next state) are put
downward as a “garbage” signal to keep P reversible. In
other words, the additional dimension is used to record all
the past history of the evolution of A. In this way, P can
simulate A reversibly.

As for one-dimensional CA with finite configuration,
reversible simulation is possible without increasing the di-
mension.

Theorem 10 (Morita [24]) For any one-dimensional (ir-
reversible) CAAwith finite configurations, we can construct
a one-dimensional RCA A0 that simulates A (but not in real
time).

1-D Universal Reversible Cellular Automata

Simulating Reversible TuringMachines by 1-D RCAs

It is possible to prove computation-universality of one-
dimensional RCAs by constructing RCAs that can simu-
late reversible Turingmachines directly. Here, we first give
definitions on reversible Turing machines, and then show
how they can be simulated by RCAs.

Bennett [3] showed a nice construction method of a re-
versible Turingmachine that simulates a given irreversible
Turing machine, and never leaves garbage signals on its
tape at the end of computation. We now give a definition
of a one-tape Turing machine and its reversible version
(a multi-tape reversible Turing machine can be also de-
fined similarly). It is convenient to use quadruple formal-
ism [3] of a Turing machine to define a reversible one.

Definition 11 A one-tape Turing machine (TM) is de-
fined by

T D (Q; S; q0; qa; qr; s0; ı) ;

where Q is a non-empty finite set of states, S is a non-
empty finite set of symbols, q0 is an initial state (q0 2 Q),
qa is an accepting state (qa 2 Q), qr is a rejecting state
(qr 2 Q), s0 is a special blank symbol (s0 2 S), and ı is
a move relation which is a subset of (Q�S�S�Q)[ (Q�
f/g � f�; 0;Cg�Q). Each element of ı is called a quadru-
ple, and either of the form [qi ; s; s0; qj] 2 (Q � S � S � Q)
or [qi ; /; d; qj ] 2 (Q � f/g � f�; 0;Cg � Q). The symbols
“�”, “0”, and “C” denote left-shift, zero-shift, and right-
shift, respectively. [qi ; s; s; qj] means that if T reads the
symbol s in the state qi, then write s0 and go to the state
qj. [qi ; /; d; qj ] means that if T is in the state qi, then shift
the head to the direction d and go to the state qj.

T is called deterministic iff the following statement
holds for any pair of distinct quadruples [p1; b1; c1; q1]
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Reversible Cellular Automata, Figure 7
Simulating the irreversible CA A in Fig. 6 by a two-dimensional reversible PCA P

and [p2; b2; c2; q2].

If p1 D p2 ; then b1 ¤ / ^ b2 ¤ / ^ b1 ¤ b2 :

On the other hand, T is called reversible iff the follow-
ing statement holds for any pair of distinct quadruples
[p1; b1; c1; q1] and [p2; b2; c2; q2].

If q1 D q2 ; then b1 ¤ / ^ b2 ¤ / ^ c1 ¤ c2 :

Hereafter, we consider only deterministic Turing ma-
chines. The next theorem shows computation-universality
of a reversible three-tape Turing machine.

Theorem 12 (Bennett [3]) For any (irreversible) one-tape
Turing machine, there is a reversible three-tape Turing ma-
chine which simulates the former.

It is also shown in [31] that for any irreversible one-tape
TM, there is a reversible one-tape two-symbol TM which
simulates the former. In fact, to prove computation-uni-
versality of a one-dimensional reversible PCA, it is conve-
nient to simulate a reversible one-tape TM.

Theorem 13 (Morita and Harao [28]) For any reversible
one-tape Turing machine T, there is a one-dimensional re-
versible PCA P that simulates the former.

We show how P simulates T (the method given below is
slightly modified from the one in [28]). Let T D (Q; S;
q0; qa; qr; s0; ı) be a reversible one-tape TM. We assume
that q0 does not appear as a fourth element in any quin-
tuple in ı (because we can always construct such a re-
versible TM from an irreversible one [31]). A reversible
PCA P D (Z; (L;C; R); (1; 0;�1); f ; (#; s0 ; #)) that simu-
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lates T is as follows. The state sets L;C, and R are:

L D R D Q [ f; #g ; C D S [ (Q � S) :

The local function f is as below. Note that, in (3)–(6), if
p 2 fq0g then x D , else x D #. Likewise, if q 2 fqa; qrg
then y D , else y D #.

(1) For every s 2 S,

f (#; s; #) D (#; s; #) ;
f (#; s;) D (#; s;) ;
f (; s; #) D (; s; #) :

(2) For every q 2 fq0; qa; qrg and s 2 S,

f (#; [q; s]; #) D (#; [q; s]; #) :

(3) For every p; q 2 Q and s; t 2 S, if [p; s; t; q] 2 ı,

f (#; [p; s]; x) D (y; [q; t]; #) :

(4) For every p; q 2 Q and s; t 2 S, if [p; /;�; q] 2 ı,

f (#; [p; s]; x) D (q; s; #) ;
f (q; t; #) D (y; [q; t]; #) :

(5) For every p; q 2 Q and s 2 S, if [p; /; 0; q] 2 ı,

f (#; [p; s]; x) D (y; [q; s]; #) :

(6) For every p; q 2 Q and s; t 2 S, if [p; /;C; q] 2 ı,

f (#; [p; s]; x) D (#; s; q) ;
f (#; t; q) D (y; [q; t]; #) :

We can see that the right-hand side of each rule differs
from that of any other rule, because T is deterministic and
reversible. The rules in (3)–(6) are for simulating T step by
step. If the initial computational configuration of T is

� � � s0t1 � � � q0ti � � � tns0 � � �

then set P to the following configuration.

: : : ; (#; s0; #); (#; t1; #); : : : ; (#; ti�2; #); (#; ti�1;);
(#; [q0; ti ]; #); (#; tiC1; #); : : : ; (#; tn ; #); (#; s0; #); : : :

The simulation process starts when a right-moving signal
 meets a center state of the form [q0; ti ]. It is easily seen
that, from this configuration, P can correctly simulates T
by the rules in (3)–(6). If T becomes a halting state qa or qr ,
then a left-moving signal  is emitted, and the final com-
putational configuration of T is kept in all the successive

configurations of P. Note that P itself cannot halt (i. e., it
cannot keep exactly the same configuration after reaching
it from a different configuration), because P is reversible.

Example 14 Consider a reversible TM Tparity D (Q;
f0; 1g; q0; qa; qr; 0; ı), where Q D fq0; q1; q2; q3; q4; qa;
qrg, and ı is as below.

ı D f[ q0; 0; 1; q1 ] ; [ q1; /;C; q2 ] ; [ q2; 0; 1; qa ] ;
[ q2; 1; 0; q3 ] ; [ q3; /;C; q4 ] ; [ q4; 0; 1; qr ] ;

[ q4; 1; 0; q1 ] g :

For a given unary number n on the tape, Tparity checks if n
is even or odd. If it is even, then Tparity halts in the accept-
ing state qa, otherwise halts in the rejecting state qr . All
the symbols read by Tparity are complemented. See Fig. 8.
A simulation process of Tparity by a reversible PCA Pparity,
which is constructed by the method described above, is
shown in Fig. 9.

Reversible Cellular Automata, Figure 8
The initial and the final computational configuration of Tparity for
a given unary input 11

Reversible Cellular Automata, Figure 9
Simulating Tparity by a one-dimensional reversible PCA Pparity.
The state # is indicated by a blank
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Reversible Cellular Automata, Figure 10
Simulating the CTAG C0 by the reversible PCA P36 [27]

Reversible Cellular Automata, Figure 11
A Fredkin gate [8]

Reversible Cellular Automata, Figure 12
A switch gate [8]

Simulating Cyclic Tag Systems by 1-D RCAs

From Theorem 12 we can see the existence of a universal
reversible TM, and thus from Theorem 13 there is a one-
dimensional universal RCA. Then the following problem
arises: How simple can it be? To get a universal RCA with
a small number (say several dozen) of states, we need an-
other useful framework of a universal system.

Reversible Cellular Automata, Figure 13
A switch gate realized in the Billiard Ball Model [8]

A cyclic tag system (CTAG) is proposed by Cook [7] to
show universality of the elementary cellular automaton of
rule 110. As we shall see, it is also useful for constructing
simple universal RCAs.
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Reversible Cellular Automata, Figure 14
Reflection of a ball by a reflector in the Margolus’ RCA [18]

Reversible Cellular Automata, Figure 15
The local function of the 24-state rotation-symmetric reversible PCA S1 [30]

Definition 15 A cyclic tag system (CTAG) is defined by
C D (k; fY ;Ng; (p0; : : : ; pk�1)), where k (k D 1; 2; : : :) is
the length of a cycle (i. e., period), fY ;Ng is the (fixed) al-
phabet, and (p0; : : : ; pk�1) 2 (fY ;Ng�)k is a k-tuple of
production rules.

A pair (v;m) is called an instantaneous description
(ID) of C, where v 2 fY ;Ng� and m 2 f0; : : : ; k � 1g.
m is called a phase of the ID. A transition rela-
tion ) on the set of IDs is defined as follows. For any
(v;m); (v0 ;m0) 2 fY ;Ng� � f0; : : : ; k � 1g,

(Yv;m)) (v0;m0)
iff [m0 D mC 1mod k] ^ [v0 D vpm];

(Nv;m)) (v0;m0)
iff [m0 D mC 1mod k] ^ [v0 D v] :

A sequence of IDs (v0;m0); (v1;m1); : : : is called a com-
putation starting from v 2 fY ;Ng� iff (v0;m0) D

(v; 0) and (vi ;mi )) (viC1;miC1)(i D 0; 1; : : : ). (In

what follows, we write a computation by (v0;m0) )
(v1;m1)) � � � .)

A CTAG is a variant of a classical tag system (see
e. g., [21]), where production rules are applied cyclically. If
the first symbol of a host (i. e., rewritten) string is Y , then it
is removed and a specified string at that phase is attached
to the end of the host string. If it is N, then it is simply
removed and no string is attached.

Example 16 Let us consider the following CTAG.

C0 D (3; fY ;Ng; (Y ;NN;YN)) :

If we give NYY to C0 as an initial string, then

(NYY ; 0)) (YY ; 1)) (YNN; 2)
) (NNYN; 0)) (NYN; 1)) (YN; 2)

is an initial segment of a computation starting from NYY .
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Reversible Cellular Automata, Figure 16
A switch gate realized in the reversible PCA S1 [30]

Minsky [21] proved that a 2-tag system, which is a special
class of classical tag systems, is universal. The following
theorem shows the universality of a CTAG.

Theorem 17 (Cook [7]) For any 2-tag system, there is
a CTAG that simulates the former.

It was shown by Morita [27] that there are universal one-
dimensional RCAs that can simulate any CTAG.

Theorem 18 (Morita [27]) There is a 36-state one-dimen-
sional reversible PCA P36 that can simulate any CTAG on
infinite (leftward-periodic) configurations.

Theorem 19 (Morita [27]) There is a 98-state one-dimen-
sional reversible PCA P98 that can simulate any CTAG on
finite configurations. (Note: it can also handle halting of
a CTAG.)

Reversible Cellular Automata, Figure 17
The local function of the 24-state rotation-symmetric reversible PCA S2 [30]

Reversible Cellular Automata, Figure 18
A switch gate realized in the reversible PCA S1 [30]

The reversible PCA P36 in Theorem 18 is given below.

P36 D (Z; (f#g; f#;Y ;N;C;�; �g; f#; y; n;C;�;g);
(1; 0;�1); f ; (#; #; #)) ;

where f is defined as follows.

f (#; c; #) D (#; c; #) for c 2 f#;Y ;N;C;�; �g
f (#; c; r) D (#; c; r) for c 2 f#;Y ;Ng;

and r 2 fy; n;C;�g
f (#;�; r) D (#;�; r) for r 2 fy; ng
f (#; �; r) D (#; �; r) for r 2 fy; n;g
f (#;Y ;) D (#; �;C)
f (#;N;) D (#; �;�)
f (#; c; r) D (#; r; c) for c; r 2 fC;�g

f (#;C; y) D (#;Y ;)
f (#;C; n) D (#;N;)
f (#; #;) D (#;C; y)
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Reversible Cellular Automata, Figure 19
The local function of the 23-state rotation-symmetric reversible
triangular PCA T1 [12]

It is easy to see that f is injective. Note that since the
state set of the left part of a cell of P36 has only one element
#, it is actually a two-neighbor PCA.

Consider the CTAG C0 in Example 16. The computa-
tion in C0 starting from NYY is simulated in P36 as shown
in Fig. 10. The initial string NYY is placed in the cen-
ter parts of some consecutive cells of P36. The produc-
tion rules (Y ;NN;YN) in C0 are given in the reverse or-
der in the right parts of consecutive cells. The state  is
used to delimit the production rules. Since the production
rules are applied cyclically, infinite copies of the state se-
quence “ny  nn  y” should be given to the left half of
the cellular space of P36. Figure 10 shows an initial segment
(NYY ; 0) ) (YY ; 1) ) (YNN; 2) ) (NNYN; 0) )
(NYN; 1)) (YN; 2) of the computation in C0.

2-D Universal Reversible Cellular Automata

Simulating Reversible Logic Gates by 2-D RCAs

A set of logic elements is called logically universal, if any
sequential machine (i. e., finite automaton with outputs)
can be composed using only elements in the set. Since a fi-
nite-state control and tape cells of a Turing machine are
in fact sequential machines, we can construct any Turing
machine by using these elements. In this section, we show
several computation-universal two-dimensional RCAs in
which universal reversible logic elements are embedded.

A Fredkin gate [8] is a reversible (i. e., its logical func-
tion is one-to-one) and bit-conserving (i. e., the number
of 1’s is conserved between inputs and outputs) logic gate
shown in Fig. 11. It has been known that any combina-
tional logic element (especially, AND, OR, NOT, and fan-
out elements) can be realized only with Fredkin gates [8].
Hence, we can construct any sequential machine with
Fredkin gate and delay elements.

It is also known that a Fredkin gate can be composed
of a much simpler gate called a switch gate and its in-
verse gate [8]. A switch gate is again a reversible and bit-
conserving logic gate (Fig. 12). Furthermore, a switch gate

Reversible Cellular Automata, Figure 20
A Fredkin gate realized in the 23-state reversible triangular PCA
T1 [12]



7690 R Reversible Cellular Automata

is realized by the Billiard Ball Model (BBM) of computa-
tion [8]. The BBM is a kind of physical model of computa-
tion where a signal “1” is represented by an ideal ball, and
logical operations and routing can be performed by their
elastic collisions and reflections by reflectors. Figure 13
shows a BBM realization of a switch gate.

The 2-state RCA with Margolus neighborhood The
BBM can be realized by the two-dimensional 2-state RCA
proposed byMargolus [18], which has a block rules shown
in Fig. 2. Figure 14 shows a reflection of a ball by a mirror
in the Margolus’ CA. Hence, Margolus’ CA is computa-
tionally universal.

A 16-State Reversible PCAModel S1 Themodel S1 [30]
is a 4-neighbor rotation- and reflection-symmetric re-
versible PCA model. A cell is divided into four parts, and
each part has the state set f0; 1g. Its local transition rules
are shown in Fig. 15. Rotated rules are omitted since it is
rotation-symmetric (hence each rule can be regarded as
a “rule scheme”). The states 0 and 1 are represented by
a blank and a dot, respectively. The set of these rules has
some similarity with that of Margolus’ CA, and in fact, it
can simulate the BBM in a similar manner. In S1, a ball of
the BBM is represented by two dots. Figure 16 gives a con-
figuration of a switch gate.

A 16-State Reversible PCAModel S2 The secondmodel
S2 [30] is also a 4-neighbor reversible PCA having the set
of transition rules shown in Fig. 17. It is rotation-symmet-
ric but not reflection-symmetric. In S2, the shape of a mir-

Reversible Cellular Automata, Figure 21
Two states of a rotary element (RE)

Reversible Cellular Automata, Figure 22
Operations of an RE: a the parallel case, and b the orthogonal
case

ror and reflection by it are different from those of S1, i. e.,
only a left-turn is possible. Hence a right-turn should be
realized by three left-turns. The other features are similar
to S1. Figure 18 shows a configuration of a switch gate.

An 8-State Triangular Reversible PCA Model T1 The
model T1 [12] is an 8-state reversible PCA on a triangu-
lar grid. It is rotation-symmetric but not reflection-sym-
metric. Its local function is extremely simple as shown in
Fig. 19. Signal routing, crossing, and delay are very com-
plex to realize, because a kind of “wall” is necessary to
make a signal go straight ahead. Thus the size of the con-
figuration of a Fredkin gate is very large (26 � 220) as
in Fig. 20.

Simulating Reversible Counter Machines by 2-D RCAs

Besides reversible logic gates like a Fredkin gate, there
are also universal reversible logic elements with memory.
A rotary element (RE) [26] is a typical one of such ele-
ments. An RE has four input lines fn; e; s;wg and four
output lines fn0; e0; s0;w0g, and two states called H-state
and V-state shown in Fig. 21 (hence it has a 1-bit mem-
ory). All the values of inputs and outputs are either 0 or 1.
Here, the input (and the output) are restricted as follows:
at most one “1” appears as an input (output) at a time. The
operation of an RE is undefined for the cases that signal 1s
are given to two or more input lines.

We employ the following intuitive interpretation for
the operation of an RE. Signals 1 and 0 are interpreted
as existence and non-existence of a particle. An RE has
a “rotating bar” to control the moving direction of a par-
ticle. When no particle exists, nothing happens on the RE.
If a particle comes from a direction parallel to the rotat-
ing bar, then it goes out from the output line of the op-
posite side (i. e., it goes straight ahead) without affecting
the direction of the bar (Fig. 22a). If a particle comes from
a direction orthogonal to the bar, then it makes a right

Reversible Cellular Automata, Figure 23
A counter machine with two counters
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Reversible Cellular Automata, Figure 24
The local function of the 34-state rotation-symmetric reversible PCA P3 [32]. The rule scheme (m) represents 33 rules not specified by
(a)–(l), wherew; x; y; z 2 fblank;ı;	g
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Reversible Cellular Automata, Figure 25
Basic elements realized in the reversible cellular space of P3 [32]

turn, and rotates the bar by 90 degrees counterclockwise
(Fig. 22b). It is clear its operation is reversible.

It has been shown that any reversible two-counter ma-
chine can be implemented in a quite simple way by using

Reversible Cellular Automata, Figure 26
Operations of an RE in the reversible PCA P3: a the parallel case, and b the orthogonal case

Reversible Cellular Automata, Figure 27
Pushing and pulling operations to a position marker in the re-
versible PCA P3

REs and some additional elements [32]. Since a reversible
two-counter machine is known to be universal [25], such
a reversible PCA is also universal. A counter machine
(CM) is a simple computation model consisting of a finite
number of counters and a finite-state control [21]. In [25]
a CM is defined as a kind of multi-tape Turing machine
whose heads are read-only ones and whose tapes are all
blank except the leftmost squares as shown in Fig. 23 (P is
a blank symbol). This definition is convenient for giving
the notion of reversibility on a CM.
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Reversible Cellular Automata, Figure 28
An example of a reversible counter machine, which computes the function 2xC 2, embedded in the reversible PCA P3 [32]

It is well known that a CM with two counters is com-
putation-universal [21]. This result also holds even if the
reversibility constraint is added.

Theorem 20 (Morita, [25]) For any Turing machine T,
there is a deterministic reversible CM with two counters M
that simulates T.

A 34-State Reversible PCA Model P3 Any reversible
CM with two counters is embeddable in the model P3 with
the local function shown in Fig. 24 [32]. In P3, five kinds

of signal processing elements shown in Fig. 25 can be re-
alized. Here, a single � acts as a signal. An LR-turn ele-
ment, an R-turn element, and a reflector are used for signal
routing. Figure 26 shows the operations of an RE in the P3
space. A position marker is used to keep a head position of
a CM, and realized by a single ı, which rotates clockwise
at a certain position by the rule (a) in Fig. 24. Figure 27
shows the pushing and pulling operations of a position
marker. Figure 28 shows an example of a whole configu-
ration for a reversible CM with two counters embedded in
the P3 space. In this model, no conventional logic elements
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like AND, OR and NOT is used. Computation is simply
carried out by a single signal that interacts with REs and
position markers.

Future Directions

In this section, we discuss future directions and open
problems as well as topics not dealt with in the previous
sections.

How Simple Can Universal RCAs Be?

We have seen that there are many kinds of simple RCAs
having computation-universality. These RCAs with least
number of states known so far are summed up as follows.

� One-dimensional case:
Finite configuration: 98-state reversible PCA [27].
Infinite configuration: 36-state reversible PCA [27].

� Two-dimensional case:
Finite configuration: 81-state reversible PCA [32].
Infinite configuration: 2-state RCA with Margolus

neighborhood [18].
8-state reversible PCA on tri-
angular grid [12].
16-state reversible PCA on
rectangular grid [30].

We think the number of states for universal RCA can be
reduced much more for each case of the above. Although
the framework of PCA is useful for designing an RCA of
a standard type, the number of states become relatively
large because the state set is the direct product of the sets
of the states of the parts. Hence we shall need some other
technique to find a universal RCA with a small number of
states.

How CanWe Realize RCAs
in Reversible Physical Systems?

This is a very difficult problem. At present there is no good
solution. The Billiard Ball Model [8] is an interesting idea,
but it is practically impossible to implement it perfectly.
Instead of using a mechanical collision of balls, at least
some quantum mechanical reversible phenomena should
be used.

Furthermore, if we want to implement a CA in a real
physical system, the following problem arises. In a CA,
both time and space are discrete, and all the cells operate
synchronously. On the other hand, in a real system, time
and space are continuous, and no synchronizing clock is
assumed beforehand. Hence, we need some novel theoret-
ical framework for dealing with such problems.

Reversible Cellular Automata, Figure 29
Self-reproduction of a pattern in a three-dimensional RCA [13]

Self-Reproduction in RCAs

Von Neumann first invented a self-reproducing cellular
automata by using his famous 29-state CA [40]. In his
model, the size of a self-reproducing pattern is quite huge,
because the pattern has both computing and self-repro-
ducing abilities. Later, Langton [17] created a very simple
self-reproducing CA by removing the condition that the
pattern need not have computation-universality.

It was shown that self-reproduction of the Langton’s
type is possible in two- or three-dimensional reversible
PCA [13,29]. Figure 29 shows a self-reproducing pattern
in a three-dimensional reversible PCA [13]. But, it is left
for the future study to design a simple and elegant RCA
in which objects with computation-universality can repro-
duce themselves.

Firing Squad Synchronization in RCAs

It is also possible to solve the firing squad synchronization
problem using RCAs. Imai andMorita [11] gave a 99-state
reversible PCA that synchronize an array of n cells in 3n
time steps. Though it seems possible to give an optimal
time solution, i. e., a (2n � 2)-step solution, its concrete
design has not yet done.
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Glossary

Billiard ball model The Billiard Ball Model (BBM) is
a physical model of computation proposed by Fred-
kin and Toffoli [19]. It consists of idealized balls and
reflectors. Balls can collide with other balls or reflec-
tors. It is a reversible dynamical system, since it is as-
sumed that collisions are elastic, and there is no fric-
tion. Fredkin and Toffoli showed that a reversible logic
gate called Fredkin gate, which is known to be logically
universal, can be embedded in BBM. Hence, a univer-
sal computer can be realized in the space of BBM.

Fredkin gate The Fredkin gate is a typical reversible logic
gate with 3 inputs and 3 outputs whose operation is de-
fined by the one-to-one mapping (c; p; q) 7! (c; cp C
c̄q; c̄ pC cq). It is known that any logic function (even
if it is not a one-to-one function) can be realized by us-
ing only Fredkin gates by allowing constant inputs and
garbage outputs (i. e., useless signals). Furthermore, it
is shown by Fredkin and Toffoli [19] that garbage sig-
nals can be reversibly erased, and hence any logic func-
tion is realized by a garbage-less circuit composed only
of Fredkin gates.

Reversible cellular automaton A cellular automaton
(CA) consists of a large number of finite automata
called cells interconnected uniformly, and each cell
changes its state depending on its neighboring cells.
A reversible cellular automaton (RCA) is a one whose
global function (i. e., a transition function from the
configurations to the configurations) is one-to-one.
RCAs can be thought as spatio-temporal models of
reversible physical systems as well as reversible com-
puting models. (See� Reversible Cellular Automata)

Reversible logic element A reversible logic element is
a primitive from which logic circuits can be composed,
and whose operation is defined by a one-to-one map-
ping. There are two kinds of such elements: those with-
out memory, and with memory. Reversible elements
without memory are nothing but reversible logic gates.
The Fredkin gate and the Toffoli gate are well-known
examples of them, which are universal. Reversible el-
ements with 1-bit memory are also useful when con-
structing reversible computing systems. The rotary el-
ement is a typical one of this type, which is also known
to be universal.

Reversible Turing machine A reversible Turing machine
(RTM) is a “backward deterministic” Turing machine,
and is a standard model of a reversible computing
system. Bennett [4] showed that for any (irreversible)
Turing machine there is an RTM that simulates the
former and leaves no garbage information on the
tape when it halts. Hence, Turing machines still have
computation-universality even if the constraint of re-
versibility is added. Furthermore, there is a rather
small universal reversible Turing machine.

Rotary element A rotary element (RE) is a reversible logic
element with 1-bit memory [36]. Conceptually, it is
square-shaped, and has a “rotating bar” inside. The
direction of the bar is either horizontal or vertical. It
has four input ports and four output ports on the four
edges. If a “particle” comes from the direction paral-
lel to the bar, then it goes straight ahead and does not
affect the direction of the bar. If it comes from the di-
rection orthogonal to the bar, then it turns rightward
and the bar rotates by 90 degrees. It is known that an
RE is universal, and reversible Turing machines can be
built very concisely by using only REs.

Definition of the Subject

A reversible computing system is defined as a “backward
deterministic” system, where every computational config-
uration (state of the whole system) has exactly one previ-
ous configuration. Hence, a backward computation can be
performed by its “inverse” computing system. Though its
definition is rather simple, it is closely related to physical
reversibility. The study of reversible computing originated
from an investigation of heat generation (or energy dissi-
pation) in computing systems. It deals with problems how
computation can be carried out efficiently and elegantly in
reversible computing models, and how such systems can
be implemented in reversible physical systems. Since re-
versibility is one of the fundamental microscopic physical
laws of Nature, and future computing systems will surely
become in a nano-scale size, it is very important to inves-
tigate these problems.

In this article, we discuss several models of reversible
computing from the viewpoint of computing theory
(hence, we do not discuss problems of physical implemen-
tation in detail). We deal with several reversible comput-
ing models of different levels: from an element level to
a system level. They are the Billiard Ball Model – an ide-
alized reversible physical model, reversible logic elements
and circuits, reversible Turing machines, and a few oth-
ers. We see these models are related each other, i. e., re-
versible Turing machines are composed of reversible logic
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elements, and reversible logic elements are implemented
in the Billiard BallModel.We can also see even very simple
reversible systems have very rich computing ability in spite
of the constraint of reversibility. Such computing models
will give new insights for the future computing systems.

Introduction

The definitions of reversible computing systems are rather
simple. They are the systems whose computation process
can be traced in the reverse direction in a unique way
from the end of the computation to the start of it. In
other words, they are “backward deterministic” comput-
ing models (of course, a more precise definition should be
given for each model of reversible computing). But, if we
explain reversible computing systems only in this way, it
is hard to understand why they are interesting. Their im-
portance lies in the fact that it is closely related to physical
reversibility.

In [24], Landauer argued the relation between logical
irreversibility and physical irreversibility. He pointed out
that any irreversible logical operation, such as a simple
erasure of an information from the memory, or a simple
merge of two paths of a program, is associated with physi-
cal irreversibility, and hence it necessarily causes heat gen-
eration. In particular, if 1 bit of information is erased, at
least kT ln 2 of energy will be dissipated, where k is the
Boltzmann constant, and T is the absolute temperature.
This is called “Landauer’s principle”. (Note that besides
simple erasure and simple merge, there are reversible era-
sure and reversible merge, which are not irreversible op-
erations, and are useful for constructing garbage-less re-
versible Turingmachine as we shall see in Sect. “Universal-
ity of RTMs and Garbage-Less Computation”). After the
work of Landauer, various studies related to “thermody-
namics of computation” appeared [4,5,6,7,9,22]. There is
also an argument on computation from the physical view-
point by Feynman [16], which contains an idea leading to
quantum computing (see e. g., [12,15,20]).

Bennett [4] studied reversible Turing machine from
the viewpoint of Landauer’s principle. He proved that
for any irreversible Turing machine there is a reversible
Turing machine that simulates the former and leaves
no garbage information on the tape. The notion of
garbage-less computation is important, because disposal
of a garbage information is actually equivalent to erasure
of the information, and hence leads to energy dissipation.
The result of Bennett suggests that any computation can
be performed efficiently in a physically reversible system.

Since then, various kinds of reversible computing
models have been proposed and investigated: reversible

logic elements and circuits [19,36,47,48], the Billiard Ball
Model [19] – an idealized physical model of computation,
reversible cellular automata [46,49], reversible counter
machines [34], and so on. It has been known that all
these models have computation-universality, i. e., any (ir-
reversible) Turing machine can be simulated in these
frameworks.

In this article, we discuss reversible computing from
the theoretical point of view (though there are also studies
on hardware implementation issues). We show how they
can have computation-universality, and how different they
are from conventional models. We can see that in some
cases, computation in reversible systems is carried out in
a very different fashion from that of traditional irreversible
computing models.

An outline of this article is as follows. In Sect. “Re-
versible Logic Gates and Circuits”, reversible logic gates
and circuits are discussed. In particular, the Fredkin gate,
its logical universality, garbage-less logic circuits, and its
realization in the Billiard Ball Model are explained. In Sect.
“Reversible Logic Elements withMemory”, reversible logic
elements with memory are discussed. A rotary element
(RE) is introduced, and its logical universality is shown.
In Sect. “Reversible Turing Machines”, reversible Turing
machines (RTMs) are discussed. A converting method to
a garbage-less RTM, a simple realization of an RTM by
REs, and a universal RTMare shown. In Sect. “OtherMod-
els of Reversible Computing”, other reversible models of
computing, which are not dealt with in the previous sec-
tions, are briefly discussed. In Sect. “Future Directions”,
future directions and open problems are given.

Reversible Logic Gates and Circuits

A reversible logic gate is a many-input many-output gate
that realizes a one-to-one logical (i. e., Boolean) function.
Early research on such gates is found in the study of
Petri [42]. Later, Toffoli [47,48], and Fredkin and Tof-
foli [19] studied them from the standpoint of reversible
computing, i. e., how they can be realized in a reversible
physical system, and how they are related to power dis-
sipation in computation. In this section, we discuss issues
of logical universality of reversible logic gates, garbage-less
logic circuits, and a relation to the Billiard Ball Model of
computation, along the line of the reference [19].

Reversible Logic Gates

Definition 1 An m-input n-output logic gate with a do-
main D is defined as an element that realizes a function
D! f0; 1gn , where D � f0; 1gm . When D D f0; 1gm , we
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Reversible Computing, Figure 1
The generalized AND/NAND gate of order 3 called the Toffoli
gate

simply call it an m-input n-output logic gate. It is called
a reversible logic gate, if the function D! f0; 1gn is one-
to-one.

It is easy to see that the traditional 1-input 1-output
logic gate NOT is reversible, and the 2-input 1-output
logic gates AND and OR are irreversible. An example
of an m-input n-output reversible logic gate with a do-
main D ¤ f0; 1gm will appear in Sect. “Billiard Ball Model
(BBM)”.

Definition 2 (Toffoli [47,48]) The generalized AND/
NAND gate of order n is a reversible logic gate that real-
izes the function

� (n) : (x1; : : : ; xn�1; xn)
7! (x1; : : : ; xn�1; (x1 : : : xn�1)˚ xn) :

We can easily verify that � (n) is one-to-one, and in fact
(� (n))�1 D � (n). The gate that realizes � (2) is sometimes
called the controlled NOT (CNOT), which is an important
gate in quantum computing (see e. g., [20]). In particu-
lar, it is shown that all unitary operations are expressed as
compositions of CNOT gates and 1-bit quantum gates [3].
The gate for � (3) is called the Toffoli gate (Fig. 1).

Definition 3 (Fredkin andToffoli [19]) The Fredkin gate
is a 3-input 3-output reversible logic gate that realizes the
function

' : (c; p; q) 7! (c; c � pC c̄ � q; c̄ � pC c � q) :

It is also easy to verify that ' is one-to-one and '�1 D '.
The operations of the Fredkin gate are depicted in Fig. 2.

Reversible Computing, Figure 2
The Fredkin gate and its operations

If c D 1 then the inputs p and q are connected to x and y
in parallel, while if c D 0 then the outputs are exchanged.

In addition to reversibility, the Fredkin gate has bit-
conserving property: the total number of 1’s in the out-
put lines is the same as that of the input lines (note that
the Toffoli gate is not so). This property is an analogue
of the conservation law of mass, energy, or momentum in
physics. Fredkin and Toffoli [19] proposed a design theory
of reversible logic circuits composed of Fredkin gates and
unit wires (which have unit-time delay) (Fig. 3). In their
theory, a circuit composed of these elements must satisfy
the following conditions: every output of a Fredkin gate
can be connected to an input of a unit wire (not directly to
another Fredkin gate), and every output of a Fredkin gate
or a unit wire can be connected to at most one input of
another element (i. e., fan-out is not allowed).

Definition 4 A set E of logic elements is called logically
universal, if any logic function can be realized by a circuit
composed only of the elements in E.

It is well known that, e. g., the set {AND, NOT} is logically
universal. If we add a delay element (i. e., a memory) to
a logically universal set, we can construct any sequential
machine, and thus build a universal computer from them
(as an infinite circuit).

We can see that AND, NOT, and fan-out can be real-
ized by Fredkin gates [19] as shown in Fig. 4, if we allow to
supply constant inputs 0’s and 1’s, and allow garbage (use-
less) outputs besides the true inputs and outputs. Hence,
the set {Fredkin gate} is logically universal. It is also pos-
sible to show logical universality of the set {Toffoli gate}
(this is left as an exercise for the reader).

Theorem 1 The sets {Fredkin gate} and {Toffoli gate} are
logically universal.

On the other hand, Toffoli [47] showed any 2-input 2-out-
put reversible gate is composed only of CNOTs andNOTs.
Since it is easy to see that {CNOT, NOT} is not logically
universal, we can conclude no 2-input 2-output reversible
gate is logically universal.
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Reversible Computing, Figure 3
A unit wire, which acts as a delay element (y(t) D x(t� 1))

Garbage-Less Logic Circuits Composed
of Fredkin Gates

As seen from Theorem 1, any logic function f : f0; 1gm !
f0; 1gn (even if it is not one-to-one) can be realized by
a circuit ˚ composed of Fredkin gates and unit wires, by
allowing constant inputs c and garbage outputs g (Fig. 5).
Disposing the garbage g outside of the circuit is, very
roughly speaking, analogous to heat generation in an ac-
tual circuit. Fredkin and Toffoli [19] showed a method to
obtain a garbage-less circuit to compute the function f .
This method is a logic circuit version of the garbage-less
reversible Turing machine by Bennett [4], which will be
discussed in Sect. “Universality of RTMs and Garbage–
Less Computation”.

First, the notion of an inverse circuit ˚�1 of a given
reversible logic circuit ˚ composed of Fredkin gates and
unit wires is introduced. ˚�1 is obtained as follows: first
take its mirror image, and then exchange inputs and out-
puts of each element. Figure 6 shows an example. We
assume, ˚ has no feedback loop (thus it realizes some
combinatorial logic function f ), and all the delays between
inputs and outputs are the same. Then,˚�1 computes the

Reversible Computing, Figure 4
Implementing AND, NOT, and fan-out by Fredkin gates

Reversible Computing, Figure 5
Embedding a logic function f in a reversible logic circuit˚

Reversible Computing, Figure 6
a A reversible logic circuit, and b its inverse circuit

inverse function f�1, because˚�1 “undoes” the computa-
tion performed by ˚ (note that the inverse of the Fredkin
gate is itself). If we connect˚ and˚�1 in series as in Fig. 7,
garbage signals are erased reversibly, and we get again con-
stants, which can be used in the next computation of the
logic function. However, the true outputs y are also con-
verted to the inputs x. By inserting fan-out (i. e., copying)
circuits between ˚ and ˚�1, we can obtain the outputs y
without producing the garbage signals g (Fig. 8).

Theorem 2 (Fredkin and Toffoli, [19]) For any logic
function f : x 7! y, there is a reversible logic circuit com-
posed of Fredkin gates and unit wires that computes the
mapping f 0 : (c; x; 0; 1) 7! (c; x; y; ȳ), and produces no
garbage signal.

Although the circuit in Fig. 8 does not give garbage signals
g, it produces x and ȳ besides the true output y, whichmay
be regarded as a kind of a garbage (though the amount
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Reversible Computing, Figure 7
Reversibly erasing garbage signals by the inverse circuit˚�1

Reversible Computing, Figure 8
A garbage-less reversible logic circuits that computes a logic
function

is generally smaller than that of g). Especially, when we
construct a circuit with memories (i. e., a sequential cir-
cuit), this kind of garbage is produced at every time step.
In this sense, the above circuit is an “almost” garbage-
less one. However, if we consider only “reversible” se-
quential machines (defined in Sect. “Definitions on Re-
versible Logic Elements with Memory”), then completely
garbage-less circuits can be obtained. This is discussed in
Sect. “Garbage-less Construction of RSMs by REs”.

Billiard Ball Model (BBM)

Fredkin andToffoli [19] proposed an interesting reversible
physical model of computing called the Billiard Ball Model
(BBM). It consists of idealized balls and reflectors (Fig. 9),
and balls can collide with other balls or reflectors. We as-
sume collisions are elastic, and there is no friction. Hence,
there is no energy dissipation inside of this model.

Fredkin and Toffoli showed that any circuit composed
of Fredkin gates and unit wires can be embedded in BBM.
Therefore, a universal computer can be constructed in the
space of BBM. To show the Fredkin gate is realizable in
BBM, we need other reversible logic gates called the switch
gate and its inverse. The switch gate is a 2-input 3-out-
put gate shown in Fig. 10a, which realizes the one-to one

Reversible Computing, Figure 9
The Billiard Ball Model (BBM)

logic function (c; x) 7! (c; cx; c̄x). The inverse switch gate
is a 3-input 2-output gate whose logical function is de-
fined only on the set f(0; 0; 0); (0; 0; 1); (1; 0; 0); (1; 1; 0)g
as shown in Fig. 10b, and is the inverse function of the
switch gate. Figure 11 shows how the Fredkin gate can be
built from switch gates and inverse switch gates (this cir-
cuit is due to R. Feynman and A. Ressler [19]). Finally, the
switch gate is realized in BBM as in Fig. 12. Therefore, the
Fredkin gate is also implemented in BBM.

Margolus showed that BBM can be realized in a re-
versible cellular automaton [28]. There are also studies re-
lated to BBM and cellular automata [14,35].

Reversible Logic Elements withMemory

In the classical design theory of logic circuits, generally
two sorts of logic elements are supposed. They are logic
gates (such as AND, OR, NOT, etc.) and a delay element
(i. e., a memory like a flip-flop). Its design technique is also
divided into two phases: implement Boolean functions as
combinatorial logic circuits consisting of gates, and then
construct sequential machines from combinatorial logic
circuits and delay elements. In this way, the entire process
of constructing digital circuits is systematized, and various
methods of circuit minimization can be applied (especially
for the first phase).

An approach of Sect. “Reversible Logic Gates and Cir-
cuits”, which uses reversible logic gates and delay ele-
ments, is also a method along this line. However, logic el-
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Reversible Computing, Figure 10
a The switch gate, and b the inverse switch gate

Reversible Computing, Figure 11
The Fredkin gate built from two switch gates and two inverse
switch gates

Reversible Computing, Figure 12
A realization of the switch gate in BBM

ements with memory are often more useful in reversible
computing. A rotary element (RE) [36] is a typical exam-
ple of such elements with 1-bit memory. It has 4 input lines
and 4 output lines (exactly stated, it has 4 input symbols
and 4 output symbols), and its operation is intuitively very
simple. In this section, we discuss logical universality of an
RE, and also show that any reversible sequential machine
can be realized by REs as a completely garbage-less circuit.

In Sect. “Constructing RTMs by REs”, we shall also see
that by appropriately designing circuits composed only of
REs, a clock signal can be eliminated. We should note that
a clock is necessary as far as we use “gates”, because two or
more incoming signals must be synchronized to perform
the gate operation. In particular, we shall see any reversible
sequential machines and Turing machines can be realized
very concisely by such circuits.

Definitions on Reversible Logic Elements with Memory

Since a reversible logic elements with memory is a kind of
a reversible sequential machine (RSM), we first give defi-
nitions on a sequential machine of Mealy type (i. e., a finite
automaton with an output), and its reversibility.

Definition 5 A sequential machine (SM) is defined by

M D (Q; ˙; �; q0; ı) ;

where Q is a finite non-empty set of states, ˙ and � are
finite non-empty sets of input and output symbols, respec-
tively, and q0 2 Q is an initial state. ı : Q �˙ ! Q � �
is a mapping called a move function. A variation of an SM
M D (Q; ˙; �; ı), where no initial state is specified, is also
called an SM for convenience.

M is called a reversible sequential machine (RSM) if ı is
one-to-one (hence j˙ j � j� j). An RSM is “reversible” in
the sense that, from the present state and the output ofM,
the previous state and the input are determined uniquely.

A reversible logic elements with memory (RLEM) is noth-
ing but an RSM with small numbers of states and in-
put/output symbols, from which reversible computers can
be built. However, since there are infinitely many RSMs,
we should restrict candidates of RLEMs somehow. Here,
we consider only RLEMs with 2 states (i. e., jQj D 2) and
with k input/output symbols (i. e., j˙ j D j� j D k) for
k D 2; 3; 4.

We consider, e. g., a 2-state 4-symbol RLEM M D

(Q; ˙; �; ı). Here, we fix the state set as Q D fq0; q1g, and
the input and output alphabets as ˙ D fa; b; c; dg and
� D fw; x; y; zg, respectively. The move function ı is as
follows.

ı : fq0; q1g � fa; b; c; dg ! fq0; q1g � fw; x; y; zg

Since ı is one-to-one, it is specified by a permutation from
the set

f(q0;w); (q0; x); (q0; y); (q0; z);
(q1;w); (q1; x); (q1; y); (q1; z)g :



7702 R Reversible Computing

Reversible Computing, Table 1
An example of a pair of equivalent 2-state 3-symbol RLEMs

Present state
Input
a b c

q0 q0x q1x q1y
q1 q0y q1z q0z
(a) RLEM No. 3-61

Present
state

Input
a’ b’ c’

q00 q00y
0 q01z

0 q01y
0

q01 q00x
0 q01x

0 q00z
0

(b) RLEM No. 3-235

Hence, there are 8! D 40320 RLEMs for k D 4. They are
numbered by 0; : : : ; 40 319 in the lexicographic order of
permutations. 2-state 2-symbol and 3-symbol RLEMs are
also numbered in this way [38]. To indicate k-symbol
RLEM, the prefix “k-” is attached to the serial number.

Example 1 Table 1 shows two RLEMsNo. 3-61 andNo. 3-
235 specified by the following permutations (in Table 1(b),
each symbol has a prime (0) for the convenience of the later
argument).

No. 3 � 61 :
((q0; x); (q1; x); (q1; y); (q0; y); (q1; z); (q0; z))

No. 3 � 235 :
((q0; y); (q1; z); (q1; y); (q0; x); (q1; x); (q0; z))

There are many kinds of 2-state RLEMs even if we limit
k D 2; 3; 4, but we can regard two RLEMs are “equivalent”
if one can be obtained by renaming the states and the in-
put/output symbols of the other. This is formalized as fol-
lows.

Definition 6 Let M1 D (Q1; ˙1; �1; ı1) and M2 D

(Q2; ˙2; �2; ı2) be two LEMs. M1 and M2 are called
equivalent (denoted by M1 � M2), if there exist one-
to-one onto mappings f : Q1 ! Q2; g : ˙1 ! ˙2, and
h : �1 ! �2 that satisfy

8 q 2 Q1; 8 s 2 ˙1 [ı1(q; s) D  (ı2( f (q); g(s)))] ;

where  : Q2 � �2 ! Q1 � �1 is defined as follows.

8 q 2 Q2; 8 t 2 �2 [ (q; t) D ( f�1(q); h�1(t))] :

We can see the two RLEMs No. 3-61 and No. 3-235 in
Example 1 are equivalent under the following one-to-one
onto mappings.

f (q0) D q01; f (q1) D q00
g(a) D b0; g(b) D a0; g(c) D c0

h(x) D x0; h(y) D z0; h(z) D y0

Reversible Computing, Table 2
The move function ıRE of a rotary element RE

Present state
Input
n e s w

H-state: w0 w0 e0 e0

V-state: s0 n0 n0 s0

The total numbers of 2-state 2-, 3-, and 4-symbol
RLEMs are 4! D 24, 6! D 720, and 8! D 40 320, respec-
tively. But, the numbers of essentially different RLEMs
are relatively few. It has been shown that the numbers of
equivalence classes of 2-state 2-, 3-, and 4-symbol RLEMs
are 8, 24 and 82, respectively [38].

A Rotary Element (RE) and Its Logical Universality

A rotary element (RE) [36] is a 2-state 4-symbol RLEM de-
fined as follows.

RE D (f ; g; fn; e; s;wg; fn0; e0; s0;w0g; ıRE)

The move function ıRE is shown in Table 2.
An RE can be understood by the following intuitive in-

terpretation. It has two states called H-state ( ) and V-
state ( ), and four input lines fn; e; s;wg and four output
lines fn0; e0; s0;w0g corresponding to the input and output
alphabets (Fig. 13). All the values of input and output lines
are either 0 or 1, i. e., (n; e; s;w); (n0 ; e0; s0;w0) 2 f0; 1g4.
However, we restrict the domain of their values as
f(1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1)g, i. e., exactly
one “1” appears among the four input (output, respec-
tively) lines at a time, when an input is given (an output
is produced). The operation of an RE is left undefined for
the cases that signal 1’s are given to two or more input
lines. Signals 1 and 0 are interpreted as existence and non-
existence of a particle. We can interpret that an RE has
a “rotating bar” to control the moving direction of a par-
ticle. When no particle exists, nothing happens on the RE.
If a particle comes from a direction parallel to the rotat-
ing bar, then it goes out from the output line of the op-
posite side (i. e., it goes straight ahead) without affecting
the direction of the bar (Fig. 14a). If a particle comes from
a direction orthogonal to the bar, then it makes a right
turn, and rotates the bar by 90 degrees counterclockwise
(Fig. 14b).

Theorem 3 (Morita [36]) The set {RE} is logically univer-
sal.

This theorem is proved by giving a circuit composed only
of REs that simulates a Fredkin gate. Figure 15 shows one
such circuit [38]. (A circuit given in [36] uses 16 REs to
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Reversible Computing, Figure 13
Two states of a rotary element (RE)

Reversible Computing, Figure 14
Operations of an RE: a the parallel case, and b the orthogonal
case

simulate a Fredkin gate.) In Fig. 15, small triangles repre-
sent delay elements, where the number written inside of
them indicates its delay time. In this circuit, we assume all
the elements works synchronously. Note that an RE itself
can operate as a delay element.

Garbage-Less Construction of RSMs by REs

We can show any RSM can be realized as a completely
garbage-less RE circuit. (We can also construct a circuit
of similar property from Fredkin gates [33].)

Theorem 4 (Morita [37]) For any reversible sequential
machine M, there is a garbage-less circuit C that realizesM,
and is composed only of REs. C is completely garbage-less in
the sense that it has no extra input/output lines other than

Reversible Computing, Figure 15
A realization of a Fredkin gate out of 8 REs and delay elements

Reversible Computing, Table 3
The move function of the RE-column

State x
Input
li ri

(marked) l0i l0i
(unmarked) r0i r0i

Reversible Computing, Table 4
Amove function ı1 of an RSMM1 (an example)

State
Input
a1 a2

q1 q2b1 q3b2
q2 q2b2 q1b1
q3 q1b2 q3b1

true input/output lines (hence it is a “closed” circuit except
the true input/output).

We show a construction method of a circuit C by an ex-
ample. First, we consider a circuit composed of k C 1 REs
shown in Fig. 16. It is called an RE-column. In a resting
state, each RE in the RE-column is in the vertical state ex-
cept the bottom one indicated by x. If x is in the horizontal
state, the RE-column is called in the marked state, other-
wise unmarked state. It can be regarded as if it is a 2-state
RSM with 2k input symbols fl1; : : : ; lk ; r1; : : : ; rkg and 2k
output symbols fl 01; : : : ; l

0
k ; r
0
1; : : : ; r

0
kg, though it hasmany

transient states. Its move function is shown in Table 3.
We now consider an example of an RSM M1 D

(fq1; q2; q3g; fa1; a2g; fb1; b2g; ı1), where its move func-
tion ı1 is shown in Table 4. Prepare three RE-columns
with k D 2, each of which corresponds to each state of
M1, and connect them as shown in Fig. 17. If M1 is in
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Reversible Computing, Figure 16
An RE-column

the state q1, then only the first RE-column is set to the
marked state. When an input signal comes from, e. g., the
input line a2, then the signal first goes out from the line
l 02 of the first RE-column, setting this column to the un-
marked state. Then, this signal enters the third column
from the line r2. This makes the third RE-column marked,
and finally goes out from the output line b2, which realizes
ı1(q1; a2) D (q3; b2).

In Fig. 17, the circuit is designed so that the delay be-
tween the inputs and outputs is constant. However, if there

Reversible Computing, Figure 17
A garbage-less circuit made of REs and delay elements that simulatesM1

is no need to do so, delay elements can be removed. In such
a case, even if each RE operates asynchronously, the circuit
works correctly.

Reversible Turing Machines

A reversible Turing machine (RTM) is a standard model
of reversible computing as in the case of traditional (i. e.,
irreversible) computation theory. The notion of an RTM
first appeared in the paper of Lecerf [25], where unsolv-
ability of the halting problem and some related problems
on RTMs are shown. Bennett [4] showed that every ir-
reversible Turing machine (TM) can be simulated by an
RTM with three tapes without leaving garbage informa-
tion on the tapes when it halts. He also pointed out the sig-
nificance of RTMs, since they are closely related to phys-
ical reversibility and the problem of energy dissipation in
computing process.

In this section, after giving definitions on RTMs, we
explain the method of Bennett for converting a given irre-
versible TM into an equivalent 3-tape RTM. We then dis-
cuss the problems how RTMs can be built by reversible
logic elements, and how a small universal RTM can be
constructed.

Definitions on Reversible TuringMachines (RTMs)

We first introduce a quadruple formulation of RTMs ac-
cording to Bennett [4]. This formulation makes it easy to
define an “inverse” Turing machine for a given RTM. The
inverse RTM, which “undoes” the computation performed
by the original RTM, plays a key role for garbage-less com-
putation. We also give a quintuple formulation of RTMs
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compatible with the quadruple formulation. This is be-
cause most classical TMs are defined in quadruple form,
and thus it makes convenient to compare with them.

Definition 7 A 1-tape Turing machine in the quadruple
form is defined by

T4 D (Q; S; q0; q f ; s0; ı) ;

where Q is a non-empty finite set of states, S is a non-
empty finite set of symbols, q0 is an initial state (q0 2 Q),
qf is a final (halting) state (q f 2 Q), s0 is a special blank
symbol (s0 2 S). ı is a move relation, which is a subset of
(Q� S� S�Q)[ (Q�f/g� f�; 0;Cg�Q). Each element
of ı is a quadruple, and either of the form [p; s; s0; q] 2
(Q � S� S�Q) or [p; /; d; q] 2 (Q �f/g� f�; 0;Cg�Q).
The symbols “�”, “0”, and “C” stand for “left-shift”, “zero-
shift”, and “right-shift”, respectively. [p; s; s0; q] means if
T4 reads the symbol s in the state p, then write s0 and go
to the state q. [p; /; d; q] means if T4 is in p, then shift the
head to the direction d and go to the state q.

T4 is called a deterministic Turing machine iff the fol-
lowing condition holds for any pair of distinct quadruples
[p1; b1; c1; q1] and [p2; b2; c2; q2] in ı.

If p1 D p2 ; then b1 ¤ / ^ b2 ¤ / ^ b1 ¤ b2 :

Note that, in what follows, we consider only determinis-
tic Turing machines. So, we omit the word “deterministic”
henceforth.

On the other hand, T4 is called a reversible Turing ma-
chine (RTM) iff the following condition holds for any pair
of distinct quadruples [p1; b1; c1; q1] and [p2; b2; c2; q2]
in ı.

If q1 D q2 ; then b1 ¤ / ^ b2 ¤ / ^ c1 ¤ c2 :

It is easy to extend the above definition to multi-tape
RTMs. For example, a 2-tape TM is defined by

T D (Q; (S1; S2); q0; q f ; (s1;0; s2;0); ı) :

A quadruple in ı is either of the form [p; [s1; s2];
[s01; s

0
2]; q] 2 (Q � (S1 � S2) � (S1 � S2) � Q) or of the

form [p; /; [d1; d2]; q] 2 (Q � f/g � f�; 0;Cg2 � Q). De-
terminism and reversibility are defined similarly as above,
namely,T is reversible iff the following condition holds for
any pair of distinct quadruples [p1; X1; [b1; b2]; q1] and
[p2; X2; [c1; c2]; q2] in ı.

If q1 D q2 ; then X1 ¤ /^ X2 ¤ /^ [b1; b2] ¤ [c1; c2] :

Definition 8 A 1-tape Turing machine in the quintuple
form is defined by

T5 D (Q; S; q0; q f ; s0; ı) ;

where Q; S; q0; q f ; s0 are the same as in Definition 7. ı is
a move relation, which is a subset of (Q � S � S �
f�; 0;Cg � Q). Each element of ı is a quintuple of the
form [p; s; s0; d; q]. It means if T5 reads the symbol s in
the state p, then write s0, shift the head to the direction d,
and go to the state q.

We say T5 is deterministic iff the following condition
holds for any pair of distinct quintuples [p1; s1; s01; d1; q1]
and [p2; s2; s02; d2; q2] in ı.

If p1 D p2 ; then s1 ¤ s2 :

We say T5 is reversible iff the following condition holds
for any pair of distinct quintuples [p1; s1; s01; d1; q1] and
[p2; s2; s02; d2; q2] in ı.

If q1 D q2 ; then s01 ¤ s02 ^ d1 D d2 :

Proposition 1 For any RTM T5 in the quintuple form,
there is an RTM T4 in the quadruple form that simulates
each step of the former in two steps.

Proof Let T5 D (Q; S; q0; q f ; s0; ı). We define T4 D
(Q0; S; q0; q f ; s0; ı0) as follows. Let Q0 D Q[fq0 j q 2 Qg.
The set ı0 is given by the next procedure.

First, set the initial value of ı0 to the empty set.
Next, for each q 2 Q do the following operation. Let
[p1; s1; s01; d1; q]; [p1; s2; s

0
2; d2; q]; : : : ; [pm ; sm ; s

0
m ; dm ; q]

be all the quintuples in ı whose fifth element is q. Note
that d1 D d2 D : : : D dm holds, and s01; s

0
2; : : : ; s

0
m are

pair-wise distinct, because T5 is reversible. Then, include
the mC 1 quadruples [p1; s1; s01; q

0]; [p1; s2; s02; q
0]; : : : ;

[pm ; sm ; s0m ; q0]; and [q0; /; d1; q] in ı0.
It is easy to see that T4 has the required property. �

By Proposition 1, we see the definition of an RTM in the
quintuple form is compatible with that in the quadruple
form.

The converse of Proposition 1 is also easy to show. It is
left for readers as an exercise. (Of course, it is very easy to
construct an RTM in the quintuple form so that it simu-
lates each quadruple of a given RTM by a single quintuple.
In addition, it is also possible to simulate a consecutive pair
of read/write and shift quadruples by one quintuple, and
thus we can reduce the numbers of states and quintuples.)

Universality of RTMs and Garbage-Less Computation

We now discuss computation-universality of RTMs. It is
actually easy to convert an irreversible TM to an RTM, be-
cause we can construct an RTM that simulates the former
and records all the information which quadruples were ex-
ecuted by the irreversible TM by using a special history
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tape. But, by this method a large amount of garbage infor-
mation will be left at the end of a computation. An impor-
tant point is that such a garbage can be reversibly erased,
hence a garbage-less computation is possible as shown in
the next theorem.

Theorem 5 (Bennett [4]) For any (irreversible) 1-tape
TM, we can construct a 3-tape RTM that simulates the for-
mer and leaves only an input string and an output string on
the tapes when it halts (hence, it leaves no garbage informa-
tion).

Proof Let T D (Q; S; q0; q f ; 0; ı) be a given irreversible
TM in the quadruple form. We assume T satisfies the fol-
lowing conditions (it is easy to modify a given TM so that
it meets the conditions).

(i) T has a rightward-infinite tape whose leftmost square
always keeps the blank symbol.

(ii) When T halts, it does so at the leftmost symbol in the
state qf .

(iii) The output is given from the second square of the
tape to the right when T halts.

(iv) The output string does not contain blank symbols.
(v) The initial state q0 does not appear as the fourth ele-

ment of any quadruple.
(vi) There is only one quadruple in ı whose fourth ele-

ment is qf .

Let m be the total number of quadruples contained
in ı, and we assume the numbers 1; : : : ;m are assigned
uniquely to these quadruples.

An RTM TR that simulates T has three tapes: a work-
ing tape (for simulating the tape of T), a history tape (for
recording the movement of T at each step), and an output
tape (for writing an output string). It is defined as follows:

TR D (Q0; (S; f0; 1; : : : ;mg; S); q0; p0; (0; 0; 0); ı0)
Q0 D fq0; q1; : : : ; q f g [ fq00; q

0
1; : : : ; q

0
f g [ fc1; c

0
1; c2; c

0
2g

[ fp0; p1; : : : ; p f g [ fp00; p
0
1; : : : ; p

0
f g

Computation of TR has three stages: (1) the forward com-
putation stage, (2) the copying stage, and (3) the backward
computation stage. The set ı0 of quintuples is defined as
the union ı1 [ ı2 [ ı3 of the sets of quintuples given be-
low. We assume when TR starts to move, an input string is
written in the working tape, and the history and the output
tapes contain only blank symbols.

(1) The quadruple set ı1 for the forward computation
stage: When TR simulates T step by step, it records on
the history tape which quadruple of T was used. By this

operation TR can be reversible. This is realized by giv-
ing the quadruple set ı1 as follows.
(i) If the hth quadruple (h D 1; : : : ;m) of T is

[qi ; s j; sk ; ql ] (qi ; ql 2 Q; s j; sk 2 S) ;

then include the following quadruples in ı1.

[qi ; /; [0;C; 0]; q0i ]
[q0i ; [s j; 0; 0]; [sk ; h; 0]; ql ]

(ii) If the hth quadruple (h D 1; : : : ;m) of T is

[qi ; /; d; ql ] (qi ; ql 2 Q; d 2 f�; 0;Cg)

then include the following quadruples in ı1.

[qi ; /; [d;C; 0]; q0i ]
[q0i ; [x; 0; 0]; [x; h; 0]; ql ] (x 2 S)

(2) The quadruple set ı2 for the copying stage: If the for-
ward computation stage is completed, andTR becomes
in the state qf , then copies the output string on the
working tape to the output tape. This is realized by giv-
ing the quadruple set ı2 as below. Here let n be the
number of the quadruple that contains qf as the fourth
element.

[q f ; [0; n; 0]; [0; n; 0]; c1]
[c1; /; [C; 0;C]; c2]
[c2; [y; n; 0]; [y; n; y]; c1] (y 2 S � f0g)
[c2; [0; n; 0]; [0; n; 0]; c02]
[c01; [y; n; y]; [y; n; y]; c02] (y 2 S � f0g)
[c02; /; [�; 0;�]; c01]
[c01; [0; n; 0]; [0; n; 0]; p f ]

(3) The quadruple set ı3 for the backward computation
stage: After the copying process, the backward compu-
tation stage starts in order to reversibly erase garbage
information left on the history tape. This is performed
by an inverse TM of the forward computing. The
quadruple set ı3 is as follows.
(i) If the hth quadruple (h D 1; : : : ;m) of T is

[qi ; s j; sk ; ql ] (qi ; ql 2 Q; s j; sk 2 S)

then include the following quadruples in ı3.

[p0i ; /; [0;�; 0]; pi ]
[pl ; [sk ; h; 0]; [s j ; 0; 0]; p0i ]
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(ii) If the hth quadruple (h D 1; : : : ;m) of T is

[qi ; /; d; ql ] (qi ; ql 2 Q; d 2 f�; 0;Cg)

then include the following quadruples in ı3. Note
that if d D � (0, C, respectively), then d0 D C (0,
�).

[p0i ; /; [d0;�; 0]; pi ]
[pl ; [x; h; 0]; [x; 0; 0]; p0i ] (x 2 S)

It is easy to see that TR simulates T correctly. Re-
versibility of TR is verified by checking the quadru-
ple set ı0. In particular, the set ı3 of quadruples is
reversible since T is deterministic. �

Example 2 We consider the following irreversible TM
Terase, and convert it into an RTM TR

erase by the method
of Theorem 5.

Terase D (fq0; q1; q2; q3; q4; q f g; f0; 1; 2g; q0; q f ; 0; ıerase)

ıerase D f1 : [q0; /;C; q1]; 2 : [q1; 0; 0; q4];
3 : [q1; 1; 1; q2]; 4 : [q1; 2; 1; q2];
5 : [q2; /;C; q1]; 6 : [q3; 0; 0; q f ];
7 : [q3; 1; 1; q4]; 8 : [q4; /;�; q3]g :

When given an input string consisting of 1’s and 2’s, Terase
rewrite all the occurrences of 2’s into 1’s, and halts (see
Fig. 18). The set of quadruples of the RTM TR

erase that sim-
ulate Terase is given below, and its computation process for
the input 122 is shown in Fig. 19.

[q0; /; [C;C; 0]; q00] [p00; /; [�;�; 0]; p0]

[q00; [x; 0; 0]; [x; 1; 0]; q1] [p1; [x; 1; 0]; [x; 0; 0]; p00]

[q1; /; [0;C; 0]; q01] [p01; /; [0;�; 0]; p1]

[q01; [0; 0; 0]; [0; 2; 0]; q4] [p4; [0; 2; 0]; [0; 0; 0]; p01]

[q01; [1; 0; 0]; [1; 3; 0]; q2] [p2; [1; 3; 0]; [1; 0; 0]; p01]

[q01; [2; 0; 0]; [1; 4; 0]; q2] [p2; [1; 4; 0]; [2; 0; 0]; p01]

[q2; /; [C;C; 0]; q02] [p02; /; [�;�; 0]; p2]

[q02; [x; 0; 0]; [x; 5; 0]; q1] [p1; [x; 5; 0]; [x; 0; 0]; p02]

[q3; /; [0;C; 0]; q03] [p03; /; [0;�; 0]; p3]

[q03; [0; 0; 0]; [0; 6; 0]; q f ] [p f ; [0; 6; 0]; [0; 0; 0]; p03]

[q03; [1; 0; 0]; [1; 7; 0]; q4] [p4; [1; 7; 0]; [1; 0; 0]; p03]

[q4; /; [�;C; 0]; q04] [p04; /; [C;�; 0]; p4]

[q04; [x; 0; 0]; [x; 8; 0]; q3] [p3; [x; 8; 0]; [x; 0; 0]; p04]

[q f ; [0; 6; 0]; [0; 6; 0]; c1] [c01; [0; 6; 0]; [0; 6; 0]; p f ]

[c1; /; [C; 0;C]; c2] [c02; /; [�; 0;�]; c01]

[c2; [y; 6; 0]; [y; 6; y]; c1] [c01; [y; 6; y]; [y; 6; y]; c02]

[c2; [0; 6; 0]; [0; 6; 0]; c02]

Reversible Computing, Figure 18
The initial and the final computational configuration of Terase for
the given input string 122

It is also possible to convert an arbitrary (irreversible)
TM into an equivalent 1-tape 2-symbol RTM [31].
There are studies related to computational complexity of
RTMs [8,10,21]. Bennett [8] showed the following space-
time trade-off theorem for RTMs, where an interesting
method of reducing space is given. Note that the RTM in
Theorem 5 uses large amount of space, which is propor-
tional to the time that the simulated TM uses.

Theorem 6 (Bennett [8]) For any " > 0 and any (irre-
versible) TM using time T and space S, we can construct
an RTM that simulates the former using time O(T1C") and
space O(S log T).

Constructing RTMs by REs

RTMs are related to many other models of reversible com-
puting. For example, for any given RTM, there is a one-di-
mensional reversible cellular automaton (RCA) that sim-
ulates the RTM directly [32]. Hence, a one-dimensional
RCA is computation-universal.

It is also possible to construct a garbage-less reversible
logic circuit that simulates a given RTM. We have already
seen that any reversible sequential machine can be realized
as a garbage-less reversible RE circuit (Theorem 4). In [36],
it is shown that an RTM can be decomposed into tape cell
modules and a finite state control module, each of which is
a reversible sequential machine. Therefore, any RTM can
be composed of REs as a garbage-less circuit.

Figure 20 shows an example of anRTMcomposed only
of REs [36]. There is a finite state control in the left half of
this figure. To the right of it, infinitely many copies of tape
cell modules are connected. (Note that, here, some ad hoc
techniques are used to reduce the number of REs rather
than to use the systematic method employed in Theo-
rem 4.)

Note that this circuit is closed except the Begin and the
End ports. This RTM computes the function f (n) D 2n
if n is given as a unary number [36]. Setting the initial
states of tape cell modules, and then giving a signal from
Begin port, a computing process starts. If the RTM halts,
a signal goes out from the End port, leaving an answer in
the tape cell modules.
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Reversible Computing, Figure 19
The computation process of the RTM Terase for the input string 122: the forward computation stage (from t D 0 to t D 32), the copy-
ing stage (from t D 33 to t D 48), and the backward computation stage (from t D 49 to t D 81)

Reversible Computing, Figure 20
A circuit composed only of REs that realizes an RTM [36]
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It is also possible to realize RTMs by Fredkin gates and
delay elements as a garbage-less circuit using the method
of composing RSMs by Fredkin gates shown in [33]. If we
do so, however, we need a larger number of Fredkin gates
than that of REs. In addition, when designing the circuit,
signal delays and timings should be very carefully adjusted,
because signals must be synchronized at each gate. On the
other hand, the circuit of Fig. 20 works correctly even if
each RE operates asynchronously, since only one signal is
moving in this circuit. In an RE, a single moving signal
interacts with a rotating bar, where the latter is thought
as a kind of stationary signal. Hence, its operation may be
performed at any time, and there is no need of synchroniz-
ing signals at each RE. Of course, if two ormore signals are
moving in a circuit, some control mechanism for timing is
required.

Universal RTMs

From Theorem 5, we can see the existence of a universal
RTM (URTM) that can compute any recursive function.
However, if we use the technique in the proof of Theo-
rem 5, the numbers of states and symbols of a URTM will
become very large.

As for classical (i. e., irreversible) universal Turing
machines (UTMs), the following UTMs have been pro-
posed so far, where UTM(m; n) denotes anm-state n-sym-
bol UTM: a UTM(7,4) by Minsky [30], a UTM(24,2),
a UTM(10,3), a UTM(7,4), a UTM(5,5), a UTM(4,6),
a UTM(3,10) and a UTM(2,18) by Rogozhin [44],
a UTM(19,2) by Baiocchi [2], a UTM(3,9) by Kudlek and
Rogozhin [23], etc. Most of these small UTMs simulates
a 2-tag system [30], which is a simple string rewriting sys-
tem having computation-universality.

In the following, we describe a 17-state 5-symbol
URTM (URTM(17,5)) proposed by Morita and Yam-
aguchi [39]. It simulates a cyclic tag system (CTAG) given
by Cook [11], which is also a very simple string rewriting
system with computation-universality. Since the notion of
halting was not defined explicitly in the original definition
of a CTAG, we use here a modified definition of a CTAG
with the halting property, which can simulate a 2-tag sys-
tem with the halting property [39].

Definition 9 A cyclic tag system (CTAG) is defined by

C D (k; fY ;Ng ; (halt; p1; : : : ; pk�1)) ;

where k (k D 1; 2; : : :) is the length of a cycle (i. e., pe-
riod), fY ;Ng is the (fixed) alphabet, and (p1; : : : ; pk�1) 2
(fY ;Ng�)k�1 is a (k � 1)-tuple of production rules. A pair
(v;m) is called an instantaneous description (ID) of C,

where v 2 fY ;Ng� and m 2 f0; : : : ; k � 1g. m is called
a phase of the ID. A halting ID is an ID of the form
(Yv; 0)(v 2 fY ;Ng�). The transition relation) is defined
as follows. For any (v;m); (v0 ;m0) 2 fY ;Ng� � f0; : : : ;
k � 1g,

(Yv;m)) (v0;m0) iff [m ¤ 0] ^ [m0 D mC 1 mod k]
^ [v0 D vpm ] ;

(Nv;m)) (v0;m0) iff [m0 D mC 1 mod k]
^ [v0 D v] :

A sequence of IDs ((v0;m0); : : : ; (vn ;mn)) is called a com-
plete computation starting from v 2 fY ;Ng� iff (v0;m0) D
(v; 0); (vi ;mi )) (viC1;miC1) (i D 0; 1; : : : ; n � 1), and
(vn ;mn) is a halting ID.

Example 3 Consider the CTAG C1 D (3; fY ;Ng; (halt;
YN;YY)). The complete computation starting from NYY
is (NYY ; 0)) (YY ; 1)) (YYN; 2)) (YNYY ; 0).

Theorem 7 (Morita and Yamaguchi, [39]) There is
a URTM(17,5).

A URTM(17,5) T17;5 in the quintuple form that simulates
any CTAG is as follows [39].

T17;5 D (fq0; : : : ; q16g ; fb;Y ;N;; $g; q0; b; ı) ;

where the set ı of quintuples is shown in Table 5. (Note
that, in a construction of a UTM, the final state is usually
omitted from the state set.) There are 67 quintuples in to-
tal. If a CTAG halts with a halting ID, then T17;5 halts in
the state q1. If the string becomes an empty string, then it
halts in the state q2. In Table 5, it is indicated by “null”.

Figure 21 shows how the CTAG C1 with the initial
string NYY in Example 3 is simulated by the URTM
T17;5. On the tape of the URTM, the production rules
(halt;NY ;YY) of C1 are expressed by the reversal se-
quence over fY ;N;g, i. e., YY  YN  , where  is used
as a delimiter between rules, and “halt” is represented by
the empty string. Note that in the initial tape of T17;5
(t D 0), the rightmost  is replaced by b. This indicates
that the phase is 0. In general, if the phase is i � 1, then
the ith  from the right is replaced by b. This symbol b is
called a “phase marker”. On the other hand, the given ini-
tial string for C1 is placed to the right of the rules, where $
is used as a delimiter.

The IDs in the complete computation (NYY ; 0) )
(YY ; 1) ) (YYN; 2) ) (YNYY ; 0) of C1 appear in
the computational configurations of T17;5 at t D 0; 6; 59
and 142, respectively. The symbol $ in the final string
(t D 148) should be regarded as Y .
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Reversible Computing, Figure 21
Simulating the CTAG C1 in Example 3 by the URTM T17;5

Reversible Computing, Table 5
The set of quintuples of the URTM T17;5 [39]

b Y N � $
q0 $� q2 $� q1 b� q13
q1 halt Y � q1 N� q1 �C q0 b� q1
q2 � � q3 Y � q2 N� q2 � � q2 null
q3 bC q12 bC q4 bC q7 bC q10
q4 Y C q5 Y C q4 NC q4 �C q4 $C q4
q5 b� q6
q6 Y � q3 Y � q6 N� q6 � � q6 $� q6
q7 NC q8 Y C q7 NC q7 �C q7 $C q7
q8 b� q9
q9 N � q3 Y � q9 N� q9 � � q9 $� q9
q10 Y C q10 NC q10 �C q10 $C q11
q11 Y C q11 NC q11 �C q11 Y C q0
q12 Y C q12 NC q12 �C q12 $� q3
q13 � � q14 Y � q13 N� q13 � � q13 $� q13
q14 bC q16 Y � q14 N� q14 bC q15
q15 NC q0 Y C q15 NC q15 �C q15 $C q15
q16 Y C q16 NC q16 �C q16 $� q14

It is easy to see that T17;5 is reversible by checking the
set of quintuples shown in Table 5 according to the defini-
tion of an RTM. Intuitively, its reversibility is guaranteed
from the fact that no information is erased in the whole
simulation process. Furthermore, every branch of the pro-
gram caused by reading the symbol Y or N is “merged re-
versibly” by writing the original symbol. For example, the
states q11 and q15 transit to the same state q0 by writing Y
and N, respectively, using the quintuples [q11; $;Y ;C; q0]
and [q15; b;N;C; q0].

Other Models of Reversible Computing

There are also several models of reversible computing that
are not dealt with in the previous sections. Here, we dis-
cuss a few of them briefly.

A reversible cellular automaton (RCA) is an important
model, because it can deal with reversible spatio-temporal
phenomena. In fact, it can be thought as an abstract model
of a reversible space. So far, a lot of interesting results and
properties on RCAs have been shown (see e. g., [35,49]).
Some of them are described in � Reversible Cellular Au-
tomata.

A counter machine (CM) is a simple model of a com-
puting consisting of a read-only input tape, a finite num-
ber of counters, and a finite state control. It is known that
a CM with only two counters has computation-universal-
ity [30]. A reversible counter machine (RCM) is a back-
ward deterministic version of a CM. An RCM with only
two counters is known to be computation-universal [34],
though it is a very simple model. This is useful to show
universality of other reversible systems.

A reversible finite automaton (RFA) is also a backward
deterministic version of a finite automaton. Pin [43] stud-
ied this model, and characterized its language accepting
ability from the formal language theory. Note that an RSM
in Sect. “Definitions on Reversible Logic Elements with
Memory” is an RFA augmented by an output mechanism.

Future Directions

How CanWe Realize Reversible Computers
as a Hardware?

Although we have discussed reversible computing mainly
from the standpoint of computation theory, it is a very
important problem how reversible computers can be re-
alized as a hardware. So far, there have been many
interesting attempts from engineering side: e. g., im-
plementing reversible logic as electrically controlled
switches [29], c-MOS implementation of reversible logic
gates and circuits [13], adiabatic circuits for reversible
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computer [17,18], and synthesis of reversible logic cir-
cuits [1,45]. However, ultimately, reversible logic ele-
ments and computers should be implemented in atomic or
molecular level. It is plausible that some nano-scale phe-
nomena can be used as primitives of reversible comput-
ing, because the microscopic physical law is reversible. Of
course, finding such solution is very difficult, but it is an
interesting and challenging problem left for future investi-
gations.

How Simple Can Reversible Computers Be?

To find very simple reversible logic elements with univer-
sality is an important problem from both theoretical and
practical viewpoints. We may assume, in general, hard-
ware implementation will become easier, if we can find
much simpler logical primitives from which reversible
computers can be built. As we have discussed in Sect. “Re-
versible Logic Gates”, the Fredkin gate and the Toffoli gate
are logically universal gates with minimum number of in-
puts and outputs. On the other hand, as for reversible logic
elements with memory (RLEMs) discussed in Sect. “Re-
versible Logic Elements withMemory”, there are 14 2-state
3-symbol logically universal RLEMS [38,40], which have
a less number of symbols than an RE. However, it is an
open problem whether there is a single 2-state 2-symbol
RLEM that is logically universal (but it is known that there
is a set of two 2-state 2-symbol RLEMs that is logically uni-
versal [27]). It is also an interesting problem to find much
smaller universal reversible Turing machines than T17;5 in
Sect. “Universal RTMs”.

Novel Architectures for Reversible Computers

If we try to construct more realistic computers from re-
versible logic primitives, we shall need new design the-
ories suited for it. For example, a circuit composed of
REs shown in Fig. 20 has a very different feature from
traditional logic circuits made of gates. There will surely
be many other possibilities of new design techniques that
cannot be imagined from the classical theory of logic cir-
cuits. To realize efficient reversible computers, develop-
ment of novel design methods and architectures are nec-
essary.

Asynchronous and Continuous Time Reversible Models

There are still other problems between reversible physical
systems and reversible computing systems. The first one
is asynchronous systems versus synchronous ones. When
building a computing system with a huge number of ele-
ments, it is preferable if it is realized as an asynchronous

system, because if a clock is eliminated, then power dis-
sipation is reduced, and each element can operate at any
time independent to other elements [26,41]. However, it is
a difficult problem to define reversibility in asynchronous
systems properly. The second problem is continuous time
versus discrete time. Natural physical systems are contin-
uous (at least they seem so), while most reversible com-
puting models are defined as discrete systems. To bridge
a gap between reversible physical systems and reversible
computing models, and to implement the latter in the for-
mer systems, we shall need further investigations on these
problems.
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Glossary

Cooperative control In recent years, the study of groups
of robots and multi-agent systems has received a lot
of attention. This interest has been driven by the en-
visioned applications of these systems in scientific and
commercial domains. From a systems and control the-
oretic perspective, the challenges in cooperative con-
trol revolve around the analysis and design of dis-
tributed coordination algorithms that integrate the in-
dividual capabilities of the agents to achieve a desired
coordination task.

Distributed algorithm In a network composed of mul-
tiple agents, a coordination algorithm specifies a set
of instructions for each agent that prescribe what to
sense, what to communicate and to whom, how to pro-
cess the information received, and how to move and
interact with the environment. In order to be scalable,
coordination algorithms need to rely as much as possi-
ble on local interactions between neighboring agents.

Complexity measures Coordination algorithms are de-
signed to enable networks of agents achieve a desired
task. Since different algorithms can be designed to
achieve the same task, performance metrics are nec-
essary to classify them. Complexity measures provide
a way to characterize the properties of coordination al-
gorithms such as completion time, cost of communica-
tion, energy consumption, and memory requirements.

Averaging algorithms Distributed coordination algo-
rithms that perform weighted averages of the infor-
mation received from neighboring agents are called
averaging algorithms. Under suitable connectivity as-
sumptions on the communication topology, averaging
algorithms achieve agreement, i. e., the state of all
agents approaches the same value. In certain cases,
the agreement value can be explicitly determined as
a function of the initial state of all agents.

Leader election In leader election problems, the objec-
tive of a network of processors is to elect a leader. All
processors have a variable “leader” initially set to un-
known. The leader-election task is solved when only
one processor has set the variable “leader” to true,
and all other processors have set it to false.

LCR algorithm The classic Le Lann–Chang–Roberts
(LCR) algorithm solves the leader election task on
a static network with the ring communication topol-
ogy. Initially, each agent transmits its unique identifier
to its neighbors. At each communication round, each
agent compares the largest identifier received from
other agents with its own identifier. If the received
identifier is larger than its own, the agent declares itself
a non-leader, and transmits it in the next communica-
tion round to its neighbors. If the received identifier is
smaller than its own, the agent does nothing. Finally,
if the received identifier is equal to its own, it declares
itself a leader. The LCR algorithm achieves leader elec-
tion with linear time complexity and quadratic total
communication complexity, respectively.

Agree-and-pursue algorithm Coordination algorithms
for robotic networks combine the features of dis-
tributed algorithms for networks of processors with
the sensing and control capabilities of the robots. The
agree-and-pursue motion coordination algorithm is
an example of this fusion. Multiple robotic agents
moving on a circle seek to agree on a common direc-
tion of motion while at the same achieving an equally-
spaced distribution along the circle. The agree-and-
pursue algorithm achieves both tasks combining ideas
from leader election on a changing communication
topology with basic control primitives such as “fol-
low your closest neighbor in your direction of mo-
tion.”

Definition of the Subject

The study of distributed algorithms for robotic networks is
motivated by the recent emergence of low-power, highly-
autonomous devices equipped with sensing, communica-
tion, processing, and control capabilities. In the near fu-
ture, cooperative robotic sensor networks will perform
critical tasks in disaster recovery, homeland security, and
environmental monitoring. Such networks will require ef-
ficient and robust distributed algorithms with guaranteed
quality-of-service. In order to design coordination algo-
rithms with these desirable capabilities, it is necessary to
develop new frameworks to design and formalize the op-
eration of robotic networks and novel tools to analyze their
behavior.

Introduction

Distributed algorithms are a classic subject of study for
networks composed of individual processors with com-
munication capabilities. Within the automata-theoretic
literature, important research topics on distributed algo-
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rithms include the introduction of mathematical models
and precise specifications for their behavior, the formal as-
sessment of their correctness, and the characterization of
their complexity.

Robotic networks have distinctive features that make
them unique when compared with networks of static
processors. These features include the operation under
ad-hoc dynamically changing communication topologies
and the complexity that results from the combination of
continuous- and discrete-time dynamics. The spatially-
distributed character of robotic networks and their dy-
namic interaction with the environment make the clas-
sic study of distributed algorithms, typically restricted to
static networks, not directly applicable.

This chapter brings together distributed algorithms
for networks of processors and for robotic networks. The
first part of the chapter is devoted to a formal discussion
about distributed algorithms for a synchronous network
of processors. This treatment serves as a brief introduc-
tion to important issues considered in the literature on dis-
tributed algorithms such as network evolution, task com-
pletion, and complexity notions. To illustrate the ideas,
we consider the classic Le Lann–Chang–Roberts (LCR) al-
gorithm, which solves the leader election task on a static
network with the ring communication topology. Next, we
present a class of distributed algorithms called averaging
algorithms, where each processor computes a weighted av-
erage of the messages received from its neighbors. These
algorithms can be described as linear dynamical systems,
and their correctness and complexity analysis has nice
connections with the fields of linear algebra and Markov
chains.

The second part of the chapter presents a formalmodel
for robotic networks that explicitly takes into account
communication, sensing, control, and processing. The no-
tions of time, communication, and space complexity in-
troduced here allow us to characterize the performance
of coordination algorithms, and rigorously compare the
performance of one algorithm versus another. In general,
the computation of these notions is a complex problem
that requires a combination of tools from dynamical sys-
tems, control theory, linear algebra, and distributed al-
gorithms. We illustrate these concepts in three different
scenarios: the agree-and-pursue algorithm for a group of
robots moving on a circle, aggregation algorithms that
steer robots to a common location, and deployment al-
gorithms that make robots optimally cover a region of
interest. In each case, we report results on the complex-
ity associated to the achievement of the desired task. The
chapter ends with a discussion about future research di-
rections.

Distributed Algorithms on Networks of Processors

Here we introduce a synchronous network as a group of
processors with the ability to exchange messages and per-
form local computations. What we present is a basic clas-
sic model studied extensively in the distributed algorithms
literature. Our treatment is directly adopted with minor
variations from the texts [57] and [74].

Physical Components and Computational Models

Loosely speaking, a synchronous network is a group of
processors, or nodes, that possess a local state, exchange
messages among neighbors, and compute an update to
their local state based on the received messages. Each pro-
cessor alternates the two tasks of exchanging messages
with its neighboring processors and of performing a com-
putation step.

Let us begin by providing some basic definitions. A di-
rected graph [22], in short digraph, of order n is a pair
G D (V ; E) where V is a set with n elements called ver-
tices (or sometimes nodes) and E is a set of ordered pair
of vertices called edges. In other words, E � V � V . We
call V and E the vertex set and edge set, respectively. For
u; v 2 V , the ordered pair (u; v) denotes an edge from u
to v. The vertex u is called an in-neighbor of v, and v is
called an out-neighbor of u. A directed path in a digraph
is an ordered sequence of vertices such that any two con-
secutive vertices in the sequence are a directed edge of the
digraph. A vertex of a digraph is globally reachable if it can
be reached from any other vertex by traversing a directed
path. A digraph is strongly connected if every vertex is glob-
ally reachable.

A cycle in a digraph is a non-trivial directed path that
starts and ends at the same vertex. A digraph is acyclic
if it contains no cycles. In an acyclic graph, every vertex
with no in-neighbors is named source, and every vertex
with no out-neighbors is named sink. A directed tree is
an acyclic digraph with the following property: there ex-
ists a vertex, called the root, such that any other vertex
of the digraph can be reached by one and only one path
starting at the root. A directed spanning tree, or simply
a spanning tree, of a digraph is a subgraph that is a di-
rected tree and has the same vertex set as the digraph.
A directed chain is a directed tree with exactly one source
and one sink. A directed ring digraph is the cycle ob-
tained by adding to the edge set of a chain a new edge
from its sink to its source. Figure 1 illustrates these no-
tions.

The physical component of a synchronous network S
is a digraph (I; Ecmm), where
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From left to right, directed tree, chain, and ring digraphs

(i) I D f1; : : : ; ng is called the set of unique identifiers
(UIDs), and

(ii) Ecmm is a set of directed edges over the vertices
f1; : : : ; ng, called the communication links.

The set Ecmm models the topology of the communication
service among the nodes: for i; j 2 f1; : : : ; ng, processor i
can send a message to processor j if the directed edge (i; j)
is present in Ecmm. Note that, unlike the standard treat-
ments in [57] and [74], we do not assume the digraph to
be strongly connected; the required connectivity assump-
tion is specified on a case by case basis.

Next, we discuss the state and the algorithms that each
processor possesses and executes, respectively. By conven-
tion, we let the superscript [i] denote any quantity associ-
ated with the node i. A distributed algorithmDA for a net-
work S consists of the sets:

(i) A, a set containing the null element, called the com-
munication alphabet; elements of A are called mes-
sages;

(ii) W [i], i 2 I, called the processor state sets;
(iii) W [i]

0 � W [i], i 2 I, sets of allowable initial values;

and of the maps:

(i) msg[i] : W [i] � I ! A, i 2 I, called message-genera-
tion functions;

(ii) stf [i] : W [i] �An ! W [i], i 2 I, called state-transi-
tion functions.

If W [i] D W , msg[i] D msg, and stf [i] D stf for all i 2 I,
thenDA is said to be uniform and is described by a tuple
(A;W; fW [i]

0 gi2I;msg; stf ).
Now, with all elements in place, we can explain in

more detail how a synchronous network executes a dis-
tributed algorithm. The state of processor i is a variable
w[i] 2W [i], initially set equal to an allowable value in
W [i]

0 . At each time instant ` 2 Z�0, processor i sends to
each of its out-neighbors j in the communication digraph

(I; Ecmm) a message (possibly the null message) com-
puted by applying the message-generation function msg[i]

to the current values of its state w[i] and to the identity j.
Subsequently, but still at time instant ` 2 Z�0, processor i
updates the value of its state w[i] by applying the state-
transition function stf[i] to the current value of its state
w[i] and to the messages it receives from its in-neighbors.
Note that, at each round, the first step is transmission and
the second one is computation.

We conclude this section with two sets of remarks. We
first discuss some aspects of our communication model
that have a large impact on subsequent development. We
then collect a few general comments about distributed al-
gorithms on networks.

Remark 1 (Aspects of the communication model)

(i) The network S and the algorithmDA are referred to
as synchronous because the communications between
all processors takes place at the same time for all pro-
cessors.

(ii) Communication is modeled as a so-called “point to
point” service: a processor can specify different mes-
sages for different out-neighbors and knows the pro-
cessor identity corresponding to any incoming mes-
sage.

(iii) Information is exchanged betweenprocessors asmes-
sages, i. e., elements of the alphabet A; the message
null indicates no communication. Messages might
encode logical expressions such astrue and false,
or finite-resolution quantized representations of inte-
ger and real numbers.

(iv) In some uniform algorithms, the messages be-
tween processors are the processors’ states. In such
cases, the corresponding communication alphabet is
A DW [fnullg and the message generation func-
tion msgstd(w; j) D w is referred to as the standard
message-generation function.
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Remark 2 (Advanced topics: Control structures and fail-
ures)

(i) Processors in a network have only partial information
about the network topology. In general, each proces-
sor only knows its ownUID, and theUID of its in- and
out-neighbors. Sometimes we assume that the proces-
sor knows the network diameter. In some cases [74],
actively running networks might depend upon “con-
trol structures,” i. e., structures that are computed at
initial time and are exploited in subsequent algo-
rithms. For example, routing tables might be com-
puted for routing problems, “leader” processors might
be elected and tree structures might be computed and
represented in a distributed manner for various tasks,
e. g., coloring or maximal independent set problems.
We present some sample algorithms to compute these
structures below.

(ii) A key issue in the study of distributed algorithms is the
possible occurrence of failures. A network might ex-
perience intermittent or permanent communication
failures: along given edges a null message or an ar-
bitrary message might be delivered instead of the in-
tended value. Alternatively, a network might experi-
ence various types of processor failures: a processor
might transmit only null messages (i. e., the msg
function returns null always), a processor might quit
updating its state (i. e., the stf function neglects in-
coming messages and returns the current state value),
or a processor might implement arbitrarily modified
msg and stf functions. The latter situation, in which
completely arbitrary and possibly malicious behavior
is adopted by faulty nodes, is referred to as a Byzantine
failure in the distributed algorithms literature.

Complexity Notions

Here we begin our analysis of the performance of dis-
tributed algorithms. We introduce a notion of algorithm
completion and, in turn, we introduce the classic notions
of time, space, and communication complexity.

We say that an algorithm terminates when only null
messages are transmitted and all processors states become
constants.

Remark 3 (Alternative termination notions)

(i) In the interest of simplicity, we have defined evolu-
tions to be unbounded in time and we do not explicitly
require algorithms to actually have termination condi-
tions, i. e., to be able to detect when termination takes
place.

(ii) It is also possible to define the termination time as the
first instant when a given problem or task is achieved,
independently of the fact that the algorithm might
continue to transmit data subsequently.

The notion of time complexity measures the time required
by a distributed algorithm to terminate. More specifically,
the (worst-case) time complexity of a distributed algorithm
DA on a network S, denoted TC(DA;S), is themaximum
number of rounds required by the execution of DA on S
among all allowable initial states until termination.

Next, we quantify memory and communication re-
quirements of distributed algorithms. From an informa-
tion theory viewpoint [35], the information content of
a memory variable or of a message is properly measured
in bits. On the other hand, it is convenient to use the al-
ternative notions of “basic memory unit” and “basic mes-
sage.” It is customary [74] to assume that a “basic mem-
ory unit” or a “basic message” contains log(n) bits so that,
for example, the information content of a robot identi-
fier i 2 f1; : : : ; ng is log(n) bits or, equivalently, one “basic
memory unit.” Note that elements of the processor state
set W or of the alphabet set A might amount to multi-
ple basic memory units or basic messages; the null mes-
sage has zero cost. Unless specified otherwise, the follow-
ing definitions and examples are stated in terms of basic
memory unit and basic messages.

(i) The (worst-case) space complexity of a distributed al-
gorithmDA on a network S, denoted by SC(DA;S),
is the maximum number of basic memory units re-
quired by a processor executing theDA on S among
all processors and among all allowable initial states
until termination.

(ii) The (worst-case) communication complexity of a dis-
tributed algorithm DA on a network S, denoted by
CC(DA;S), is the maximum number of basic mes-
sages transmitted over the entire network during the
execution ofDA among all allowable initial states un-
til termination.

Remark 4 (Space complexity conventions) By convention,
each processor knows its identity, i. e., it requires log(n)
bits to represent its unique identifier in a set with n distinct
elements. We do not count this cost in the space complex-
ity of an algorithm.

We conclude this section by discussing ways of quanti-
fying time, space, and communication complexity. The
idea, borrowed from combinatorial optimization, is to
adopt asymptotic “order of magnitude” measures. For-
mally, complexity bounds will be expressed with respect
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to the Bachman–Laundau symbols O, ˝ , and 	. Let us
be more specific. In the following definitions, f denotes
a function fromN toR.

(i) We say that an algorithmhas time complexity of order
˝( f (n)) over some network if, for all n, there exists
a network of order n and initial processor values such
that the time complexity of the algorithm is greater
than a constant factor times f (n).

(ii) We say that an algorithm has time complexity of or-
der O( f (n)) over arbitrary networks if, for all n, for all
networks of order n and for all initial processor val-
ues the time complexity of the algorithm is lower than
a constant factor times f (n).

(iii) We say that an algorithm has time complexity of or-
der	( f (n)) if its time complexity is of order˝( f (n))
over some network and O( f (n)) over arbitrary net-
works at the same time.

We use similar conventions for space and communication
complexity.

In many cases the complexity of an algorithm will typ-
ically depend upon the number of nodes of the network. It
is therefore useful to present a few simple facts about these
functions now. Over arbitrary digraphs S D (I; Ecmm) of
order n, we have

diam(S) 2 	(n); jEcmm(S)j 2 	(n2)
and radius(v;S) 2 	(diam(S)) ;

where v is any node of S.

Remark 5 Numerous variations of these definitions are
possible. Even though we will not pursue them here, let us
provide some pointers.

(i) In the definition of lower bound, consider the logic
quantifier describing the role of the network. The
lower bound statement is “existential” rather than
“global,” in the sense that the bound does not hold
for all graphs. As discussed in [74], it is possible to
define also “global” lower bounds, i. e., lower bounds
over all graphs, or lower bounds over specified classes
of graphs.

(ii) The complexity notions introduced above focus on
the worst-case situation. It is also possible to de-
fine expected or average complexity notions, where
one might be interested in characterizing, for exam-
ple, the average number of rounds required or the
average number of basic messages transmitted over

the entire network during the execution of an algo-
rithm among all allowable initial states until termina-
tion.

(iii) It is possible to define complexity notions for prob-
lems, rather than algorithms, by considering, for ex-
ample, the worst-case optimal performance among
all algorithms that solve the given problem, or over
classes of algorithms or classes of graphs.

Leader Election

We formulate here a classical problem in distributed net-
works and summarize its complexity measures.

Problem 6 (Leader election) Assume that all processors
of a network have a state variable, say leader, initially
set to unknown. We say that a leader is elected when one
and only one processor has the state variable set to true
and all others have it set to false. Elect a leader.

This is a task that is a bit more global in nature.We display
here a solution that requires individual processors to know
the diameter of the network, denoted by diam(S), or an
upper bound on it.

[Informal description] At each communication
round, each agent sends to all its neighbors the max-
imumUID it has received up to that time. This is re-
peated for diam(S) rounds. At the last round, each
agent compares themaximum receivedUIDwith its
own, and declares itself a leader if they coincide, or
a non-leader otherwise.

The algorithm is called FLOODMAX: the maximumUID in
the network is transmitted to other agents in an incremen-
tal fashion. At the first communication round, agents that
are neighbors of the agent with the maximumUID receive
the message from it. At the next communication round,
the neighbors of these agents receive the message with the
maximum UID. This process goes on for diam(S) rounds
to ensure that every agent receives the maximum UID.
Note that there are networks for which all agents receive
themessage with themaximumUID in fewer communica-
tion rounds than diam(S). The algorithm is formally stated
as follows.

Synchronous Network: S D (f1; : : : ; ng; Ecmm)

Distributed Algorithm: FLOODMAX

Alphabet: A D f1; : : : ; ng[fnullg

Processor State: w D (my-id, max-id,
leader, round), where
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Robotic Networks, Distributed Algorithms for, Figure 2
Execution of the FLOODMAX algorithm. The diameter of the network is 4. In the leftmost frame, the agent with the maximum UID is
colored in red. After 4 communication rounds, its message has been received by all agents

my-id 2 f1; : : : ; ng,
initially: my-id[i] D i for all i

max-id 2 f1; : : : ; ng,
initially: max-id[i] D i for all i

leader 2 ffalse;true;unknowng,
initially: leader[i] D unknown for all i

round 2 f0; 1; : : : ; diam(S)g,
initially: round[i] D 0 for all i

function msg(w; i)
1: if {round < diam(S)} then
2: return max-id
3: else
4: return null

function stf(w; y)
1: new-id :=maxfmax-id; largest identifier in yg
2: case
3: round < diam(S): new-lead :D

unknown
4: round D diam(S) ANDmax-id D my-id:

new-lead :D true
5: round D diam(S) ANDmax-id > my-id:

new-lead :D false
6: return (my-id, new-id, new-lead,

roundC 1)

Figure 2 shows an execution of the FLOODMAX algorithm.
The properties of the algorithm are characterized in

the following lemma. A complete analysis of this algo-
rithm, including modifications to improve the communi-
cation complexity, is discussed in [Section 4.1 in 1].

Lemma 7 (Complexity upper bounds for the FLOODMAX
algorithm) For a network S containing a spanning tree,
the FLOODMAX algorithm has communication complexity
in O(diam(S)jEcmmj), time complexity equal to diam(S),
and space complexity in	(1).

A simplification of the FLOODMAX algorithm leads to the
Le Lann–Chang–Roberts (LCR) algorithm for leader elec-

tion in rings, see [Chapter 3.3 in 1], that we describe next.1.
The LCR algorithm runs on a ring digraph and does not
require the agents to know the diameter of the network.

[Informal description] At each communication
round, if the agent receives from its in-neighbor
a UID that is larger than the UIDs received ear-
lier, then the agent records the received UID and
forwards it to the out-neighbor during the follow-
ing communication round. (Agents do not record
the number of communication rounds.) When the
agent with the maximumUID receives its own UID
from a neighbor, it declares itself the leader.

The algorithm is formally stated as follows.

Synchronous Network: ring digraph

Distributed Algorithm: LCR

Alphabet: A D f1; : : : ; ng[fnullg

Processor State: w D (my-id, max-id,
leader, snd-flag), where
my-id 2 f1; : : : ; ng,

initially: my-id[i] D i for all i
max-id 2 f1; : : : ; ng,

initially: max-id[i] D i for all i
leader 2 ftrue;false;unknowng,

initially: leader[i] D unknown for all i
snd-flag 2 ftrue;falseg,

initially: snd-flag[i] D true for all i

function msg(w; i)
1: if {snd-flag D true} then
2: return max-id
3: else
4: return null

function stf(w; y)
1: case

1Note that the description of the LCR algorithm given here is
slightly different from the classic one as presented in [57].
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Robotic Networks, Distributed Algorithms for, Figure 3
Execution of the LCR algorithm. In the leftmost frame, the agent with the maximum UID is colored in red. After 5 communication
rounds, this agent receives its own UID from its in-neighbor and declares itself the leader

2: (y contains only nullmsgs) OR
(largest identifier in y < my-id):

3: new-id :D max-id
4: new-lead :D leader
5: new-snd-flag :D false
6: (largest identifier in y D my-id):
7: new-id :D max-id
8: new-lead :D true
9: new-snd-flag :D false
10: (largest identifier in y > my-id):
11: new-id :D largest identifier in y
12: new-lead :D false
13: new-snd-flag :D true
14: return (my-id, new-id, new-lead,

new-snd-flag)

Figure 3 shows an execution of the LCR algorithm. The
properties of the LCR algorithm can be characterized as
follows [57].

Lemma 8 (Complexity upper bounds for the LCR algo-
rithm) For a ring network S of order n, the LCR algorithm
has communication complexity in 	(n2), time complexity
equal to n, and space complexity in	(1).

Averaging Algorithms

This section provides a brief introduction to a special class
of distributed algorithms called averaging algorithms. The
synchronous version of averaging algorithms can be mod-
eled within the framework of synchronous networks. In
an averaging algorithm, each processor updates its state by
computing a weighted linear combination of the state of its
neighbors. Computing linear combinations of the initial
states of the processors is one the most basic computations
that a network can implement. Averaging algorithms find
application in optimization, distributed decision-making,
e. g., collective synchronization, and have a long and rich
history, see e. g., [29,30,45,65,97,98]. The richness comes
from the vivid analogies with physical processes of diffu-
sion, with Markov chain models, and the theory of pos-

itive matrices developed by Perron and Frobenius, see
e. g., [19,20,44].

Averaging algorithms are defined by stochastic ma-
trices. For completeness, let us recall some basic linear
algebra definitions. A matrix A 2 Rn�n with entries aij,
i; j 2 f1; : : : ; ng, is

(i) nonnegative (resp., positive) if all its entries are non-
negative (resp., positive);

(ii) row-stochastic (or stochastic for brevity) if it is non-
negative and

Pn
jD1 ai j D 1, for all i 2 f1; : : : ; ng; in

other words, A is row-stochastic if

A1n D 1n ;

where 1n D (1; : : : ; 1)T 2 Rn .
(iii) doubly stochastic if it is row-stochastic and column-

stochastic, where we say that A is column-stochastic if
1Tn AD 1Tn ;

(iv) irreducible if, for any nontrivial partition J[K of the
index set f1; : : : ; ng, there exists j 2 J and k 2 K such
that a jk ¤ 0.

We are now ready to introduce the class of averaging algo-
rithms. The averaging algorithm associated to a sequence
of stochastic matrices fF(`) j ` 2 Z�0g � Rn�n is the dis-
crete-time dynamical system

w(`C 1) D F(`) � w(`) ; ` 2 Z�0 : (1)

In the literature, averaging algorithms are also often re-
ferred to as agreement algorithms or as consensus algo-
rithms.

Averaging algorithms are naturally associated with
weighted digraphs, i. e., digraphs whose edges have
weights. More precisely, a weighted digraph is a triplet
G D (V ; E;A) where V D fv1; : : : ; vng and E are a di-
graph and where A 2 Rn�n

�0 is a weighted adjacency ma-
trix with the following properties: for i; j 2 f1; : : : ; ng, the
entry ai j > 0 if (vi ; v j) is an edge of G, and ai j D 0 oth-
erwise. In other words, the scalars aij, for all (vi ; v j) 2 E,
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are a set of weights for the edges of G. Note that edge set
is uniquely determined by the weighted adjacency matrix
and it can be therefore omitted. The weighted out-degree
matrix Dout(G) and the weighted in-degree matrix Din(G)
are the diagonal matrices defined by

Dout(G) D diag (A1n) ; and Din(G) D diag
�
AT1n


:

The weighted digraph G is weight-balanced if Dout(G) D
Din(G). Given a nonnegative n � n matrix A, its associ-
ated weighted digraph is the weighted digraph with nodes
f1; : : : ; ng, and weighted adjacency matrix A. The un-
weighted version of this weighted digraph is called the as-
sociated digraph. The following statements can be proven:

(i) if A is stochastic, then its associated digraph has
weighted out-degree matrix equal to In;

(ii) if A is doubly stochastic, then its associated weighted
digraph is weight-balanced and additionally both in-
degree and out-degree matrices are equal to In;

(iii) A is irreducible if and only if its associated weighted
digraph is strongly connected.

Next, we characterize the convergence properties of av-
eraging algorithms. Let us introduce a useful property of
collections of stochastic matrices. Given ˛ 2 ]0; 1], the set
of non-degenerate matrices with respect to ˛ consists of all
stochastic matrices F with entries f ij, for i; j 2 f1; : : : ; ng,
satisfying

fi i 2 [˛; 1] ; and fi j 2 f0g[[˛; 1] for j ¤ i :

Additionally, the sequence of stochastic matrices fF(`) j
` 2 Z�0g is non-degenerate if these exists ˛ 2 ]0; 1]
such that F(`) is non-degenerate with respect to ˛ for all
` 2 Z�0.

We now state the following convergence result
from [65].

Theorem 9 (Convergence for time-dependent stochastic
matrices) Let fF(`) j ` 2 Z�0g � Rn�n be a non-degen-
erate sequence of stochastic matrices. For ` 2 Z�0, let G(`)
be the unweighted digraph associated to F(`). The following
statements are equivalent:

(i) the set diag(Rn) is uniformly globally attractive for the
associated averaging algorithm, that is, every evolution
of the averaging algorithm at any time `0, approaches
the set diag(Rn) in the following time-uniformmanner:

for all `0 2 Z�0, for all w0 2 Rn, and for
all neighborhoods W of diag(Rn), there exists
a single �0 2 Z�0 such that the evolution w :
[`0;C1[! Rn defined by w(`0) D w0, takes
value in W for all times ` � `0 C �0.

(ii) there exists a duration ı 2 N such that, for all
` 2 Z�0, the digraph

G(`C 1)[ � � � [G(`C ı)

contains a globally reachable vertex.

Distributed Algorithms for Robotic Networks

This section describes models and algorithms for groups
of robots that process information, sense, communicate,
and move. We refer to such systems as robotic networks.
In this section we review and survey a few modeling and
algorithmic topics in robotic coordination; earlier versions
of this material were originally presented in [15,59,60,61].

The section is organized as follows. First, we present
the physical components of a network, that is, the mobile
robots and the communication service connecting them.
We then present the notion of control and communica-
tion law, and how a law is executed by a robotic network.
We then discuss complexity notions for robotic networks.
As an example of these notions, we introduce a simple law,
called the agree-and-pursue law, which combines ideas
from leader election algorithms and from cyclic pursuit
(i. e., a game in which robots chase each other in a circular
environment).We then consider in some detail algorithms
for two basic motion coordination tasks, namely aggrega-
tion and deployment. We briefly formalize these problems
and provide some basic algorithms for these two tasks.

Robotic Networks and Complexity

The global behavior of a robotic network arises from the
combination of the local actions taken by its members.
Each robot in the network can perform a few basic tasks
such as sensing, communicating, processing information,
and moving according to it. The many ways in which
these capabilities can be integratedmake a robotic network
a versatile and, at the same time, complex system. The fol-
lowing robotic network model provides the framework to
formalize, analyze, and compare distinct distributed be-
haviors.

We consider uniform networks of robotic agents de-
fined by a tuple S D (I;R; Ecmm) consisting of a set
of unique identifiers I D f1; : : : ; ng, a collection of con-
trol systemsR D fR[i]gi2I , with R[i] D (X;U; X0; f ), and
a map Ecmm from Xn to the subsets of I � I called the
communication edge map. Here, (X;U; X0; f ) is a con-
trol system with state space X � Rd , input space U, set
of allowable initial states X0 � X, and system dynamics
f : X � U ! X. An edge between two identifiers in Ecmm
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implies the ability of the corresponding two robots to ex-
change messages. A control and communication law for S
consists of the sets:

(i) A, called the communication language, whose ele-
ments are calledmessages;

(ii) W, set of values of some processor variables w[i] 2 W ,
i 2 I, and W0 � W , subset of allowable initial values.
These sets correspond to the capability of robots to al-
locate additional variables and store sensor or com-
munication data;

and the maps:

(iii) msg : X �W � I ! A, called message-generation
function;

(iv) stf : X �W �An ! W , called state-transition func-
tion;

(v) ctl : X �W �An ! U , called control function.

To implement a control and communication law each
robot performs the following sequence or cycle of ac-
tions. At each instant ` 2 Z�0, each robot i com-
municates to each robot j such that (i; j) belongs to
Ecmm(x[1]; : : : ; x[n]). Each robot i sends a message com-
puted by applying the message-generation function to the
current values of x[i] and w[i]. After a negligible period of
time, robot i resets the value of its logic variables w[i] by
applying the state-transition function to the current value
of w[i], and to the messages y[i](`) received at `. Between
communication instants, i. e., for t 2 [`; `C 1), robot i ap-
plies a control action computed by applying the control
function to its state at the last sample time x[i](`), the cur-
rent value of w[i], and to the messages y[i](`) received at `.

Remark 10 (Algorithm properties and congestion models)

(i) In our present definition, all robots are identical and
implement the same algorithm; in this sense the con-
trol and communication law is called uniform (or
anonymous). If W D W0 D ;, then the control and
communication law is static (or memoryless) and no
state-transition function is defined. It is also possible
for a law to be time-independent if the three relevant
maps do not depend on time. Finally, let us also re-
mark that this is a synchronous model in which all
robots share a common clock.

(ii) Communication and physical congestion affect the
performance of robotic networks. These effects can be
modeled by characterizing how the network param-
eters vary as the number of robots becomes larger.
For example, in an ad hoc networks with n uni-
formly randomly placed nodes, it is known [42] that
the maximum-throughput communication range r(n)

of each node decreases as the density of nodes in-
creases; in d dimensions the appropriate scaling law
is r(n) 2 	((log(n)/n)1/d ). As a second example, it is
reasonable to assume that, as the number of robots in-
crease, so should the area available for their motion.
An alternative convenient approach is the one taken
by [88], where robots’ safety zones decrease with de-
creasing robots’ speed. This suggests that, in a fixed
environment, individual nodes of a large ensemble
have to move at a speed decreasing with n, and in par-
ticular, at a speed proportional to n�1/d .

Next, we establish the notion of coordination task and of
task achievement by a robotic network. Let S be a robotic
network and let W be a set. A coordination task for S is
a map T : Xn �W n ! ftrue;falseg. If W is a sin-
gleton, then the coordination task is said to be static and
can be described by a map T : Xn ! ftrue;falseg.
Additionally, let CC a control and communication law
for S.

(i) The law CC is compatible with the task
T : Xn �W n ! ftrue;falseg if its processor
state take values in W , that is, if W [i] DW , for all
i 2 I.

(ii) The law CC achieves the task T if it is compatible
with it and if, for all initial conditions x[i]0 2 X0 and
w[i]
0 2W0, i 2 I, there exists T 2 Z�0 such that the

network evolution ` 7! (x(`);w(`)) has the property
that T (x(`);w(`)) D true for all ` � T .

In control-theoretic terms, achieving a task means estab-
lishing a convergence or stability result. Beside this key ob-
jective, one might be interested in efficiency as measured
by required communication service, required control en-
ergy or by speed of completion. We focus on the latter no-
tion.

(i) The (worst-case) time complexity to achieveT withCC
from (x0;w0) 2 Xn

0 �Wn
0 is

TC (T ;CC; x0;w0) D inff` j T (x(k);w(k)) D true ;

for all k � `g ;

where ` 7! (x(`);w(`)) is the evolution of (S;CC)
from the initial condition (x0;w0);

(ii) The (worst-case) time complexity to achieveT withCC
is

TC (T ;CC) D sup
˚
TC (T ;CC; x0;w0) j

(x0;w0) 2 Xn
0 �Wn

0
�
:
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Some ideas on how to define meaningful notions of space
and communication complexity are discussed in [59].
In the following discussion, we describe three coordina-
tion algorithms, which have been cast into this model-
ing framework andwhose time complexity properties have
been analyzed.

Agree-and-Pursue Algorithm

We begin our list of distributed algorithms with a sim-
ple law that is related to leader election algorithms, see
Sect. “Leader Election”, and to cyclic pursuit algorithms
as studied in the control literature. Despite the apparent
simplicity, this example is remarkable in that it combines
a leader election task (in the processor states) with a uni-
form robotic deployment task (in the physical state), ar-
guably two of the most basic tasks in distributed algo-
rithms and cooperative control, respectively.

We consider n robots f� [1]; : : : ; � [n]g in S1, moving
along on the unit circle with angular velocity equal to
the control input. Each robot is described by the tuple
(S1; [�umax; umax];S1; (0; e)), where e is the vector field
on S1 describing unit-speed counterclockwise rotation.
We assume that each robot can sense its own position
and can communicate to any other robot within distance r
along the circle. These data define the uniform robotic net-
work Scircle.

[Informal description] The processor state consists
of dir (the robot’s direction of motion) taking val-
ues in fc;ccg (meaning clockwise and counter-
clockwise) and max-id (the largest UID received
by the robot, initially set to the robot’s UID) tak-
ing values in I. At each communication round, each
robot transmits its position and its processor state.
Among the messages received from the robots mov-
ing towards its position, each robot picks the mes-
sage with the largest value of max-id. If this value
is larger than its own value, the agent resets its
processor state with the selected message. Between
communication rounds, each robot moves in the
clockwise or counterclockwise direction depending
on whether its processor state dir is c or cc. Each
robot moves kprop times the distance to the immedi-
ately next neighbor in the chosen direction, or, if no
neighbors are detected, kprop times the communica-
tion range r.

For this network and this law there are two tasks
of interest. First, we define the direction agreement task

Tdir : (S1)n �Wn ! ftrue;falseg by

Tdir(�;w) D
(
true; if dir[1] D � � � D dir[n];

false; otherwise;

where � D (� [1]; : : : ; � [n]), w D (w[1]; : : : ;w[n]), and
w[i] D (dir[i];max-id[i]), for i 2 I. Furthermore, for
" > 0, we define the static equidistance task T"-eqdstnc :
(S1)n ! ftrue;falseg to be true if and only if

ˇ̌
min
j¤i

distc
�
� [i]; � [ j]


�min

j¤i
distcc

�
� [i]; � [ j]

ˇ̌
< ";

for all i 2 I:

In other words, T"-eqdstnc is true when, for every agent, the
distance to the closest clockwise neighbor and to the clos-
est counterclockwise neighbor are approximately equal.

An implementation of this control and communica-
tion law is shown in Fig. 4. As parameters we select
n D 45, r D 2�/40, umax D 1/4 and kprop D 7/16. Along
the evolution, all robots agree upon a common direction of
motion and, after suitable time, they reach a uniform dis-
tribution. A careful analysis based on invariance proper-
ties and Lyapunov functions allows us to establish that, un-
der appropriate conditions, indeed both tasks are achieved
by the agree-and-pursue law [59].

Theorem 11 (Time complexity of agree-and-pursue
law) For kprop 2 ]0; 12 [, in the limit as n!C1 and
"! 0C, the network Scircle with umax(n) � kpropr(n), the
law CCAGREE & PURSUE , and the tasks Tdir and T"-eqdstnc to-
gether satisfy:

(i) TC(Tdir;CCAGREE & PURSUE ) 2 	(r(n)�1);
(ii) if ı(n) is lower bounded by a positive constant as

n!C1, then

TC(T"-eqdstnc;CCAGREE & PURSUE ) 2 ˝(n2 log(n")�1) ;

TC(T"-eqdstnc;CCAGREE & PURSUE ) 2 O(n2 log(n"�1)) :

If ı(n) is upper bounded by a negative constant, then
CCAGREE & PURSUE does not achieve T"-eqdstnc in general.

Finally we compare these results with the complexity result
known for the leader election problem.

Remark 12 (Comparison with leader election) Let us com-
pare the agree-and-pursue control and communication
law with the classical Le Lann–Chang–Roberts (LCR) al-
gorithm for leader election discussed in Sect. “Leader Elec-
tion”. The leader election task consists of electing a unique
agent among all robots in the network; it is therefore
different from, but closely related to, the coordination
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The AGREE & PURSUE law. Disks and circles correspond to robots moving counterclockwise and clockwise, respectively. The initial
positions and the initial directions of motion are randomly generated. The five pictures depict the network state at times 0, 9, 20,
100, and 800

task Tdir. The LCR algorithm operates on a static net-
work with the ring communication topology, and achieves
leader election with time and total communication com-
plexity, respectively,	(n) and	(n2). The agree-and-pur-
sue law operates on a robotic network with the r(n)-
disk communication topology, and achieves Tdir with
time and total communication complexity, respectively,
	(r(n)�1) and O(n2r(n)�1). If wireless communication
congestion is modeled by r(n) of order 1/n as in Re-
mark 10, then the two algorithms have identical time com-
plexity and the LCR algorithm has better communication
complexity. Note that computations on a possibly dis-
connected, dynamic network are more complex than on
a static ring topology.

Aggregation Algorithms

The rendezvous objective (also referred to as the gathering
problem) is to achieve agreement over the location of the
robots, that is, to steer each agent to a common location.
An early reference on this problem is [2]; more recent ref-
erences include [26,32,52,53]. We consider two scenarios
which differ in the robots’ communication capabilities and
the environment in which the robots move. First [26], we
consider the problem of rendezvous for robots equipped
with range-limited communication in obstacle-free envi-
ronments. In this case, each robot is capable of sensing
its position in the Euclidean space Rd and can commu-
nicate it to any other robot within a given distance r. This
communication service is modeled by the r-disk graph, in
which two robots are neighbors if and only if their Eu-
clidean distance is less than or equal to r. Second [36],
we consider visually-guided robots. Here the robots are as-
sumed to move in a nonconvex simple polygonal environ-
ment Q. Each robot can sense, within line of sight, any
other robot as well as the distance to the boundary of the
environment. The relationship between the robots can be
characterized by the so-called visibility graph: two robots

are neighbors if and only if they are mutually visible to
each other.

In both scenarios, the rendezvous problem cannot be
solved with distributed information unless the robots’ ini-
tial positions form a connected communication graph. Ar-
guably, a good property of any rendezvous algorithm is
that ofmaintaining connectivity between robots. This con-
nectivity-maintenance objective is interesting on its own.
It turns out that this objective can be achieved through lo-
cal constraints on the robots’ motion. Motion constraint
sets that maintain connectivity are designed in [2,36] by
exploiting the geometric properties of disk and visibility
graphs.

These discussions lead to the following algorithm that
solves the rendezvous problems for both communication
scenarios. The robots execute what is known as the Cir-
cumcenter Algorithm; here is an informal description. Each
robot iteratively performs the following tasks:

1: acquire neighbors’ positions
2: compute connectivity constraint set
3: move toward the circumcenter of

the point set comprised of its
neighbors and of itself, while
remaining inside the connectivity
constraint set.

One can prove that, under technical conditions, the algo-
rithm does achieve the rendezvous task in both scenarios;
see [26,36]. Additionally, when d D 1, it can be shown that
the time complexity of this algorithm is	(n); see [60].

Deployment Algorithms

The problem of deploying a group of robots over a given
region of interest can be tackled with the following sim-
ple heuristic. Each robot iteratively performs the following
tasks:
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Deployment algorithm for the area-coverageproblem. Each of the 20 robotsmoves toward the centroid of its Voronoi cell. This strat-
egy corresponds to the network following the gradient ofHave. Areas of the polygon with greater importance are colored darker.
Figures a and c show, respectively, the initial and final locations, with the corresponding Voronoi partitions. Figure b illustrates the
gradient descent flow

1: acquire neighbors’ positions
2: compute own dominance region
3: move towards the center of own

dominance region

This short description can be made accurate by specifying
what notions of dominance region and of center are to be
adopted. In what follows we mention two examples and
refer to [24,25,27,37] for more details.

First, we consider the area-coverage deployment prob-
lem in a convex environment Q. The objective is to maxi-
mize the area within close range of the mobile nodes. This
models a scenario in which the nodes are equipped with
some sensors that take measurements of some physical
quantity in the environment, e. g., temperature or concen-
tration. Assume that certain regions in the environment
aremore important than others and describe this by a den-
sity function � . This problems leads to the coverage per-
formance metric

Have(p1; : : : ; pn) D
Z

Q
min

i2f1;:::;ng
f (kq � pik)�(q)dq

D

nX

iD1

Z

Vi

f (kq � pik)�(q)dq :

Here pi is the position of the ith node, f measures the
performance of an individual sensor, and fV1; : : : ;Vng is
the Voronoi partition of the environment Q generated by
the positions fp1; : : : ; png. If we assume that each node
obeys a first-order dynamical behavior, then a simple gra-
dient scheme can be easily implemented in a spatially-dis-
tributed manner. Figure 5 shows an implementation of
this gradient scheme. Following the gradient ofHave cor-
responds, in the algorithm described above, to defining
(1) the dominance regions to be the Voronoi cells gen-
erated by the robots, and (2) the center of a region to
be the centroid of the region (if f (x) D x2). Because the
closed-loop system is a gradient flow for the cost function,

performance is locally, continuously optimized. As a spe-
cial case, when the environment is a segment and � D 1,
the time complexity of the algorithm can be shown to be
O(n3 log(n"�1)), where " is an accuracy threshold below
which we consider the task accomplished.

Second, we consider the problem of deploying to max-
imize the likelihood of detecting a source. For example, con-
sider devices equipped with acoustic sensors attempting to
detect a sound-source (or, similarly, antennas detecting RF
signals, or chemical sensors localizing a pollutant source).
For a variety of criteria, when the source emits a known
signal and the noise is Gaussian, we know that the opti-
mal detection algorithm involves a matched filter, that de-
tection performance is a function of signal-to-noise-ratio,
and, in turn, that signal-to-noise ratio is inversely propor-
tional to the sensor-source distance. In this case, the ap-
propriate cost function is

Hworst
�
p1; : : : ; pn


D max

q2Q
min

i2f1;:::;ng
f (kq � pik)

D max
q2Vi

f (kq � pik) ;

and a greedy motion coordination algorithm is for each
node to move toward the circumcenter of its Voronoi cell.
A detailed analysis [24] shows that the detection likeli-
hood is inversely proportional to the circumradius of each
node’s Voronoi cell, and that, if the nodes follow the al-
gorithm described above, then the detection likelihood in-
creases monotonically as a function of time.

Bibliographical Notes

In this section we present a necessarily incomplete discus-
sion of some relevant literature that we have not yet men-
tioned in the previous sections.

First, we review some literature on emergent and
self-organized swarming behaviors in biological groups
with distributed agent-to-agent interactions. Interesting
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dynamical systems arise in biological networks at multiple
levels of resolution, all the way from interactions among
molecules and cells [62] to the behavioral ecology of an-
imal groups [66]. Flocks of birds and schools of fish can
travel in formation and act as one unit (see [72]), allow-
ing these animals to defend themselves against predators
and protect their territories. Wildebeest and other ani-
mals exhibit complex collective behaviors when migrat-
ing, such as obstacle avoiding, leader election, and forma-
tion keeping (see [41,89]). Certain foraging behaviors in-
clude individual animals partitioning their environment
into nonoverlapping zones (see [7]). Honey bees [85],
gorillas [93], and whitefaced capuchins [13] exhibit syn-
chronized group activities such as initiation of motion
and change of travel direction. These remarkable dy-
namic capabilities are achieved apparently without follow-
ing a group leader; see [7,13,41,66,72,85,93] for specific ex-
amples of animal species and [21,28] for general studies.

With regards to distributed motion coordination al-
gorithms, much progress has been made on pattern for-
mation [9,46,86,94], flocking [67,96], self-assembly [49],
swarm aggregation [38], gradient climbing [75], cyclic
pursuit [14,58,90], vehicle routing [56,87], and connectiv-
ity maintenance problems [83,103].

Much research has been devoted to distributed task al-
location problems. The work in [39] proposes a taxonomy
of task allocation problems. In papers such as [1,40,63,84],
advanced heuristicmethods are developed, and their effec-
tiveness is demonstrated through simulation or real world
implementation. Distributed auction algorithms are dis-
cussed in [18,63] building on the classic works in [10,11].
A distributed MILP solver is proposed in [1]. A spa-
tially distributed receding-horizon scheme is proposed
in [33,73]. There has also been prior work on target assign-
ment problems [6,91,102]. Target allocation for vehicles
with nonholonomic constraints is studied in [76,81,82].

References with a focus on robotic networks include
the survey in [99], the text [5] on behavior-based robotics,
and the recent special issue [4] of the IEEE Transaction
on Robotics and Automation. An important contribution
towards a network model of mobile interacting robots is
introduced in [94]. This model consists of a group of iden-
tical “distributed anonymousmobile robots” characterized
as follows: no explicit communication takes place between
them, and at each time instant of an “activation schedule,”
each robot senses the relative position of all other robots
and moves according to a pre-specified algorithm. Com-
munication complexity for control and communication
algorithms A related model is presented in [32], where as
few capabilities as possible are assumed on the agents, with
the objective of understanding the limitations of multi-

agent networks. A brief survey of models, algorithms, and
the need for appropriate complexity notions is presented
in [79]. Recently, a notion of communication complexity
for control and communication algorithms in multi-robot
systems is analyzed in [48], see also [50].

Finally, with regards to linear distributed algorithms
we mention the following references, on top of the ones
discussed in Sect. “Averaging Algorithms”. Various re-
sults are available on continuous-time consensus algo-
rithms [34,54,55,64,70,77], consensus over random net-
works [43,95,100], consensus algorithms for general func-
tions [8,23], connections with the heat equation and par-
tial difference equation [31], convergence in time-delayed
and asynchronous settings [3,12], quantized consensus
problems [47,80], applications to distributed signal pro-
cessing [69,92,101], characterization of the convergence
rates and time complexity [16,17,51,71]. Finally, two re-
cent surveys are [68,78].

Future Directions

Robotic networks incorporate numerous subsystems.
Their design is challenging because they integrate hetero-
geneous hardware and software components. Addition-
ally, the operation of robotic networks is subject to com-
puting, energy, cost, and safety constraints. The interac-
tion with the physical world and the uncertain response
from other members of the network are also integral parts
to consider in the management of robotic networks. Tra-
ditional centralized approaches are not valid to satisfy the
scalability requirements of these systems. Thus, in order
to successfully deploy robotic and communication net-
works, it is necessary to expand our present knowledge
about how to integrate and efficiently control them. The
present chapter has offered a glimpse into these problems.
We have presented verification and complexity tools to
evaluate the cost of cooperative strategies that achieve a va-
riety of tasks.

Networks of robotic agents are an example of the class
of complex, networked systems which pervades our world.
Understanding how to design robotic swarms requires the
development of new fundamental theories that can ex-
plain the behavior of general networks evolving with time.
Some of the desired properties of these systems are ro-
bustness, ease of control, predictability with time, guar-
anteed performance, and quality of service. Self-organi-
zation and distributed management would also allow for
the minimal supervision necessary for scalability. How-
ever, devising systems that meet all these criteria is not
an easy task. A small deviation by an agent or a change in
certain parameters may produce a dramatic change in the



7726 R Robotic Networks, Distributed Algorithms for

overall network behavior. Relevant questions that pertain
these aspects are currently being approached from a range
of disciplines such as systems and control, operations re-
search, random graph theory, statistical physics, and game
theory over networks. Future work will undoubtedly lead
to a cross-fertilization of these and other areas that will
help design efficient robotic sensor networks.
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Glossary

Rough sets Rough set theory is a technique for dealing
with uncertainty and for identifying cause-effect rela-
tionships in databases. It is based on a partitioning of
some domain into equivalence classes and the defin-
ing of lower and upper approximation regions based
on this partitioning to denote certain and possible in-
clusion in the rough set.

Fuzzy sets Fuzzy set theory is another technique for deal-
ing with uncertainty. It is based on the concept of mea-
suring the degree of inclusion in a set through the use
of a membership value.Where elements can either be-
long or not belong to a regular set, with fuzzy sets el-
ements can belong to the set to a certain degree with
zero indicating not an element, one indicating com-
plete membership, and values between zero and one
indicating partial or uncertain membership in the set.

Information theory Information theory involves the
study of measuring the information content of a sig-
nal. In databases information theoretic measures can
be used to measure the information content of data.
Entropy is one such measure.

Database A collection of data and the application pro-
grams that make use of this data for some enterprise
is a database.

Information system An information system is a database
enhanced with additional tools that can be used by
management for planning and decision making.

Data mining Data mining involves the discovery of pat-
terns or rules in a set of data. These patterns generate
some knowledge and information from the raw data
that can be used for making decisions. There are many
approaches to data mining, and uncertainty manage-
ment techniques play a vital role in knowledge dis-
covery.

Definition of the Subject

Databases and information systems are ubiquitous in this
age of information and technology. Computers have revo-
lutionized the way data can be manipulated and stored, al-
lowing for very large databases with sophisticated capabil-
ities. With so much money and manpower invested in the
design and daily use of these systems, it is imperative that
they be as correct, secure, and as adaptable to the changing
needs of the enterprise as possible. Therefore it is impor-
tant to understand the design and implementation of such
systems and to be able to utilize all their capabilities.

Scientists and business executives alike know the value
of information. The challenge has been to produce rel-
evant information for an ever changing uncertain world

from data and facts stored on computers and archival de-
vices. These data are considered to be exact, certain, factual
values. The real world, however, is uncertain, inexact, and
fraught with errors. It is a challenge, then, to extract use-
ful and relevant information from ordinary databases. Un-
certainty management techniques such as rough and fuzzy
sets can help.

Introduction

Databases are recognized for their ability to store and
update data in an efficient manner, providing reliability
and the elimination of data redundancy. The relational
database model, in particular, has well-established mech-
anisms built into the model for properly designing the
database and maintaining data integrity and consistency.
Data alone, however, are only facts. What is needed is in-
formation. Knowledge discovery attempts to derive infor-
mation from the pure facts, discovering high level regular-
ities in the data. It is defined as the nontrivial extraction
of implicit, previously unknown, and potentially useful in-
formation from data [24,27].

An innovative technique in the field of uncertainty
and knowledge discovery is based on rough sets. Rough
set theory, introduced and further developed mathemat-
ically by [39], provides a framework for the representa-
tion of uncertainty. It has been used in various applica-
tions such as the rough querying of crisp data [6], uncer-
tainty management in databases [11], the mining of spatial
data [8], and improved information retrieval [48]. These
techniques may readily be extended for use with object-
oriented, spatial, and other complex databases, and may
be integrated with additional data mining techniques for
a comprehensive knowledge discovery approach.

Rough Sets and Rough-Fuzzy Sets

Rough set theory, introduced by Pawlak [38], is a tech-
nique for dealing with uncertainty and for identifying
cause-effect relationships in databases. An extensive the-
ory for rough sets and their properties has been developed
and they have become a well established approach for the
management of uncertainty in a variety of applications.
Rough sets involve the following:
U is the universe, which cannot be empty,
R is the indiscernibility relation, or equivalence relation,
A D (U;R) an ordered pair, is called an approximation

space,
[x]R denotes the equivalence class of R containing x, for

any element x of U,
Elementary sets in A – the equivalence classes of R,
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Definable set in A – any finite union of elementary sets
in A.

Given an approximation space defined on some uni-
verse U that has an equivalence relation R imposed upon
it, U is partitioned into equivalence classes called elemen-
tary sets thatmay be used to define other sets inA. A rough
set X, where X � U , can be defined in terms of the defin-
able sets in A by the following:
Lower approximation of X in A is the set

RX D fx 2 U j [x]R � Xg
Upper approximation of X in A is the set

RX D fx 2 U j [x]R \ X ¤ ;g.
POSR(X) D RX denotes the R-positive region of X,

or those elements which certainly belong to the rough
set. The R-negative region of X, NEGR(X) D U � RX,
contains elements which do not belong to the rough
set, and the boundary or R-borderline region of X,
BNR(X) D RX � RX, contains those elements which may
or may not belong to the set. X is R-definable if and only
if RX D RX. Otherwise, RX ¤ RX and X is rough with
respect to R. A rough set in A is the group of subsets of
U with the same upper and lower approximations.

Fuzzy set theory [53] is another approach for manag-
ing uncertainty. It has been around for a few years longer
than rough sets, and also has well developed theory, prop-
erties, and applications. Applications involving fuzzy logic
are diverse and plentiful, ranging from fuzzy control sys-
tems in industry to fuzzy logic in databases.

Because there are advantages to both fuzzy set and
rough set theories, several researchers have studied vari-
ous ways of combining the two theories [22,30,36] Others
have investigated the interrelations between the two theo-
ries [19,40,52]. A similar approach to our rough-fuzzy set
is the fuzzy rough set in [31]. That approach is more in
the spirit of functional analysis, however. Fuzzy sets and
rough sets are not equivalent, but complementary.

It has been shown in [52] that rough sets can be ex-
pressed by a fuzzy membership function �! f0; 0:5; 1g
to represent the negative, boundary, and positive regions.
In this model, all elements of the lower approximation, or
positive region, have a membership value of one. Those
elements of the boundary region are assigned a member-
ship value of 0.5. Elements not belonging to the rough set
have a membership value of zero. Rough set definitions of
union and intersection can be modified so that the fuzzy
model satisfies all the properties of rough sets [7]. This al-
lows a rough set to be expressed as a fuzzy set.

We integrate fuzziness into the rough set model in or-
der to quantify levels of roughness in boundary region ar-
eas through the use of fuzzy membership values. There-
fore, we do not require membership values of elements of

the boundary region to equal 0.5, but allow them to range
from zero to one, noninclusive. Additionally, the union
and intersection operators for fuzzy rough sets are com-
parable to those for ordinary fuzzy sets, where MIN and
MAX are used to obtain membership values of redundant
elements.

Let U be a universe, X a rough set in U.

Definition A fuzzy rough set Y in U is a membership
function �Y (x) which associates a grade of membership
from the interval [0,1] with every element of U where

�Y (RX) D 1; �Y (U � RX) D 0; and

0 < �Y (RX � RX) < 1:

Definition The union of two fuzzy rough sets A and B is
a fuzzy rough set C where

C D fxjx 2 AOR x 2 Bg; where
�C (x) D MAX[�A(x); �B(x)]:

Definition The intersection of two fuzzy rough setsA and
B is a fuzzy rough set C where

C D fxjx 2 AAND x 2 Bg; where
�C (x) D MIN[�A(x); �B(x)]:

Rough Relational Database

The rough relational database model [13] is an extension
of the standard relational database model of Codd [23].
It captures all the essential features of rough sets theory
including indiscernibility of elements denoted by equiva-
lence classes and lower and upper approximation regions
for defining sets which are indefinable in terms of the in-
discernibility.

Every attribute domain is partitioned by some equiva-
lence relation designated by the database designer or user.
Within each domain, those values that are considered in-
discernible belong to an equivalence class. This informa-
tion is used by the query mechanism to retrieve informa-
tion based on equivalence with the class to which the value
belongs rather than equality, resulting in less critical word-
ing of queries.

Recall is also improved in the rough relational database
because rough relations provide possible matches to the
query in addition to the certain matches which are ob-
tained in the standard relational database. This is accom-
plished by using set containment in addition to equality of
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attributes in the calculation of lower and upper approxi-
mation regions of the query result.

The rough relational database has several features in
common with the ordinary relational database. Both mod-
els represent data as a collection of relations contain-
ing tuples. These relations are sets. The tuples of a rela-
tion are its elements, and like elements of sets in gen-
eral, are unordered and nonduplicated. A tuple ti takes
the form (di1; di2; : : : ; dim), where di j is a domain value
of a particular domain set Dj. In the ordinary relational
database, di j 2 Dj . In the rough database, however, as in
other non-first normal form extensions to the relational
model [34,44], di j � Dj , and although it is not required
that di j be a singleton, di j ¤ ;. Let P(Di ) denote the pow-
erset (Di ) � ;.

Definition A rough relation R is a subset of the set cross
product P(D1) � P(D2) � � � � � P(Dm).

A rough tuple t is any member of R, which implies that it
is also a member of P(D1) � P(D2) � � � � � P(Dm). If ti is
some arbitrary tuple, then ti D (di1; di2; : : : ; dim) where
di j � Dj. A tuple in this model differs from that of ordi-
nary databases in that the tuple components may be sets
of domain values rather than single values. The set braces
are omitted from singletons for notational simplicity.

Let [dx y ] denote the equivalence class to which dx y
belongs. When dx y is a set of values, the equivalence
class is formed by taking the union of equivalence classes
of members of the set; if dx y D fc1; c2; : : : ; cng, then
[dx y ] D [c1][ [c2][ � � � [ [cn].

Definition Tuples ti D (di1; di2; : : : ; dim) and tk D
(dk1; dk2; : : : ; dkm) are redundant if [di j] D [dk j] for all
j D 1; : : : ;m.

In the rough relational database, redundant tuples are re-
moved in the merging process since duplicates are not
allowed in sets, the structure upon which the relational
model is based.

There are two basic types of relational operators. The
first type arises from the fact that relations are considered
sets of tuples. Therefore, operations which can be applied
to sets also apply to relations. The most useful of these for
database purposes are set difference, union, and intersec-
tion. Operators which do not come from set theory, but
which are useful for retrieval of relational data are select,
project, and join.

In the rough relational database, relations are rough
sets as opposed to ordinary sets. Therefore, new rough op-
erators (—, [, \, � , � ,‰), which are comparable to the
standard relational operators, must be developed for the
rough relational database. Moreover, a mechanism must

exist within the database to mark tuples of a rough rela-
tion as belonging to the lower or upper approximation of
that rough relation. Properties of the rough relational op-
erators can be found in [13].

Information Theory

In communication theory, Shannon [45] introduced the
concept of entropy which was used to characterize the
information content of signals. Since then, variations of
these information theoretic measures have been success-
fully applied to applications in many diverse fields. In
particular, the representation of uncertain information
by entropy measures has been applied to all areas of
databases, including fuzzy database querying [17], data al-
location [25], classification in rule-based systems [42], and
measuring uncertainty in rough and fuzzy rough relational
databases [12].

In fuzzy set theory the representation of uncer-
tain information measures has been extensively stud-
ied [14,20,29]. So this paper relates the concepts of in-
formation theory to rough sets and compares these infor-
mation theoretic measures to established rough set met-
rics of uncertainty. The measures are then applied to the
rough relational databasemodel [13]. Information content
of both stored relational schemas and rough relations are
expressed as types of rough entropy.

Rough set theory [38] inherently models two types
of uncertainty. The first type of uncertainty arises from
the indiscernibility relation that is imposed on the uni-
verse, partitioning all values into a finite set of equivalence
classes. If every equivalence class contains only one value,
then there is no loss of information caused by the par-
titioning. In any coarser partitioning, however, there are
fewer classes, and each class will contain a larger number
of members. Our knowledge, or information, about a par-
ticular value decreases as the granularity of the partition-
ing becomes coarser.

Uncertainty is also modeled through the approxima-
tion regions of rough sets where elements of the lower ap-
proximation region have total participation in the rough
set and those of the upper approximation region have un-
certain participation in the rough set. Equivalently, the
lower approximation is the certain region and the bound-
ary area of the upper approximation region is the possible
region.

Pawlak [41] discusses two numerical characterizations
of imprecision of a rough set X: accuracy and roughness.
Accuracy, which is simply the ratio of the number of ele-
ments in the lower approximation of X, RX, to the num-
ber of elements in the upper approximation of the rough



7732 R Rough and Rough-Fuzzy Sets in Design of Information Systems

set X, RX, measures the degree of completeness of knowl-
edge about the given rough set X. It is defined as a ratio of
the two set cardinalities as follows:

˛R(X) D card(RX)/card(RX); where 0 � ˛R(X) � 1:

The second measure, roughness, represents the de-
gree of incompleteness of knowledge about the rough
set. It is calculated by subtracting the accuracy from 1:
�R(X) D 1 � ˛R(X).

These measures require knowledge of the number of
elements in each of the approximation regions and are
goodmetrics for uncertainty as it arises from the boundary
region, implicitly taking into account equivalence classes
as they belong wholly or partially to the set. However, ac-
curacy and roughness measures do not necessarily provide
us with information on the uncertainty related to the gran-
ularity of the indiscernibility relation for those values that
are totally included in the lower approximation region. For
example:

Let the rough set X be defined as follows: X D fA11;
A12;A21;A22; B11;C1g with lower and upper approxi-
mation regions defined as

RX D fA11;A12;A21;A22g and

RX D fA11;A12;A21;A22; B11; B12; B13;C1;C2g:

These approximation regions may result from one of sev-
eral partitionings. Consider, for example, the following in-
discernibility relations:

A1 D f[A11;A12;A21;A22]; [B11; B12; B13];
[C1;C2]g;

A2 D f[A11;A12]; [A21;A22]; [B11; B12; B13];
[C1;C2]g;

A3 D f[A11]; [A12]; [A21]; [A22]; [B11; B12; B13];
[C1;C2]g:

All three of the above partitionings result in the same up-
per and lower approximation regions for the given set X,
and hence the same accuracy measure (4/9 D :444) since
only those classes belonging to the lower approximation
region were re-partitioned. It is obvious, however, that
there is more uncertainty in A1 than in A2, and more un-
certainty in A2 than in A3. Therefore, a more comprehen-
sive measure of uncertainty is needed.

We derive such a measure from techniques used for
measuring entropy in classical information theory. Count-
less variations of the classical entropy have been devel-
oped, each tailored for a particular application domain or
for measuring a particular type of uncertainty. Our rough

entropy is defined such that we may apply it to rough
databases. We define the entropy of a rough set X as fol-
lows:

Definition The rough entropy Er(X) of a rough set X is
calculated by

Er(X) D �(�R (X))[˙Qi log(Pi )]
for i D 1; : : : n equivalence classes.

The term �R (X) denotes the roughness of the set X. The
second term is the summation of the probabilities for each
equivalence class belonging either wholly or in part to the
rough set X. There is no ordering associated with individ-
ual class members. Therefore the probability of any one
value of the class being named is the reciprocal of the num-
ber of elements in the class. If ci is the cardinality of, or
number of elements in, equivalence class i and all members
of a given equivalence class are equal, Pi D 1/ci represents
the probability of one of the values in class i. Qi denotes
the probability of equivalence class i within the universe.
Qi is computed by taking the number of elements in class i
and dividing by the total number of elements in all equiv-
alence classes combined. The entropy of the sample rough
set X, Er(X), is given below for each of the possible indis-
cernibility relations A1, A2, and A3.

Using A1 :� (5/9)[(4/9) log(1/4)C (3/9) log(1/3)
C (2/9) log(1/2)] D :274

Using A2 :� (5/9)[(2/9) log(1/2)C (2/9) log(1/2)
C (3/9) log(1/3)C (2/9) log(1/2)] D :20

Using A3 :� (5/9)[(1/9) log(1)C (1/9) log(1)
C (1/9) log(1)C (1/9) log(1)C (3/9) log(1/3)
C (2/9) log(1/2)] D :048

From the above calculations it is clear that although
each of the partitionings results in identical roughness
measures, the entropy decreases as the classes become
smaller through finer partitionings.

Entropy and the Rough Relational Database

The basic concepts of rough sets and their information-
theoretic measures carries over to the rough relational
database model [13]. Recall that in the rough relational
database all domains are partitioned into equivalence
classes and relations are not restricted to first normal form.
We therefore have a type of rough set for each attribute of
a relation. This results in a rough relation, since any tuple
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having a value for an attribute that belongs to the bound-
ary region of its domain is a tuple belonging to the bound-
ary region of the rough relation.

There are two things to consider when measuring un-
certainty in databases: uncertainty or entropy of a rough
relation that exists in a database at some given time and
the entropy of a relation schema for an existing relation or
query result. We must consider both since the approxima-
tion regions only come about by set values for attributes
in given tuples. Without the extension of a database con-
taining actual values, we only know about indiscernibility
of attributes. We cannot consider the approximation re-
gions.

We define the entropy for a rough relation schema as
follows:

Definition The rough schema entropy for a rough relation
schema S is

Es(S) D �˙ j[˙Qi log(Pi )] for i D 1; : : : n; j D 1; : : : ;m

where there are n equivalence classes of domain j, and m
attributes in the schema R(A1;A2; : : : ;Am).

This is similar to the definition of entropy for rough sets
without factoring in roughness since there are no elements
in the boundary region (lower approximation = upper ap-
proximation). However, because a relation is a cross prod-
uct among the domains, we must take the sum of all these
entropies to obtain the entropy of the schema. The schema
entropy provides a measure of the uncertainty inherent
in the definition of the rough relation schema taking into
account the partitioning of the domains on which the at-
tributes of the schema are defined.

We extend the schema entropy Es(S) to define the en-
tropy of an actual rough relation instance ER(R) of some
databaseD by multiplying each term in the product by the
roughness of the rough set of values for the domain of that
given attribute.

Definition The rough relation entropy of a particular ex-
tension of a schema is

ER(R) D �˙ jD� j(R)[˙DQi log(DPi )]
for i D 1; : : : n; j D 1; : : : ;m

where D� j(R) represents a type of database roughness for
the rough set of values of the domain for attribute j of the
relation,m is the number of attributes in the database rela-
tion, and n is the number of equivalence classes for a given
domain for the database.

We obtain the D� j(R) values by letting the non-singleton
domain values represent elements of the boundary region,

computing the original rough set accuracy and subtracting
it from one to obtain the roughness. DQi is the probabil-
ity of a tuple in the database relation having a value from
class i, and DPi is the probability of a value for class i oc-
curring in the database relation out of all the values which
are given.

Information theoretic measures again prove to be
a useful metric for quantifying information content. In
rough sets and the rough relational database, this is espe-
cially useful since in ordinary rough sets Pawlak’s measure
of roughness does not seem to capture the information
content as precisely as our rough entropy measure.

In rough relational databases, knowledge about en-
tropy can either guide the database user toward less un-
certain data or act as a measure of the uncertainty of a data
set or relation. As rough relations become larger in terms
of the number of tuples or attributes, the automatic cal-
culation of some measure of entropy becomes a necessity.
Our rough relation entropy measure fulfills this need.

Rough Fuzzy Relational Database

The fuzzy rough relational database, as in the ordinary re-
lational database, represents data as a collection of rela-
tions containing tuples. Because a relation is considered
a set having the tuples as its members, the tuples are un-
ordered. In addition, there can be no duplicate tuples in
a relation. A tuple ti takes the form (di1; di2; : : : ; dim ;
di�), where di j is a domain value of a particular domain
set Dj and di� 2 D�, where D� is the interval [0,1], the
domain for fuzzy membership values. In the ordinary re-
lational database, di j 2 Dj . In the fuzzy rough relational
database, except for the fuzzy membership value, however,
di j � Dj , and although di j is not restricted to be a single-
ton, di j ¤ ;. Let P(Di ) denote any non-null member of
the powerset of Di.

Definition A fuzzy rough relation R is a subset of the set
cross product P(D1) � P(D2) � � � � � P(Dm ) � D�.

For a specific relation, R, membership is determined se-
mantically. Given that D1 is the set of names of nu-
clear/chemical plants, D2 is the set of locations, and as-
suming that RIVERB is the only nuclear power plant that
is located in VENTRESS,

(RIVERB, VENTRESS, 1)
(RIVERB, OSCAR, .7)
(RIVERB, ADDIS, 1)
(CHEMO, VENTRESS, .3)

are all elements of P(D1) � P(D2) � D�. However,
only the element (RIVERB, VENTRESS, 1) of those
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listed above is a member of the relation R(PLANT,
LOCATION, �), which associates each plant with the
town or community in which it is located. A fuzzy rough
tuple t is any member of R. If ti is some arbitrary tu-
ple, then ti D (di1; di2; : : : ; dim ; di�) where di j � Dj and
di� 2 D�.

Definition An interpretation˛ D (a1; a2; : : : ; am; a�) of
a fuzzy rough tuple ti D (di1; di2; : : : ; dim ; di�) is any
value assignment such that a j 2 di j for all j.

The interpretation space is the cross product D1�D2�� � ��

Dm � D�, but is limited for a given relation R to the set of
those tuples which are valid according to the underlying
semantics of R. In an ordinary relational database, because
domain values are atomic, there is only one possible inter-
pretation for each tuple ti . Moreover, the interpretation of
ti is equivalent to the tuple ti . In the fuzzy rough relational
database, this is not always the case.

Let [dx y ] denote the equivalence class to which dx y
belongs. When dx y is a set of values, the equivalence
class is formed by taking the union of equivalence classes
of members of the set; if dx y D fc1; c2; : : : ; cng, then
[dx y ] D [c1] [ [c2] [ � � � [ [cn].

Definition Tuples ti D (di1; di2; : : : ; din ; di�) and tk D
(dk1; dk2; : : : ; dkn ; dk�) are redundant if [di j] D [dk j] for
all j D 1; : : : ; n.

If a relation contains only those tuples of a lower approxi-
mation, i. e., those tuples having a� value equal to one, the
interpretation ˛ of a tuple is unique. This follows imme-
diately from the definition of redundancy. In fuzzy rough
relations, there are no redundant tuples. The merging pro-
cess used in relational database operations removes du-
plicate tuples since duplicates are not allowed in sets, the
structure upon which the relational model is based.

Tuples may be redundant in all values except �. As in
the union of fuzzy rough sets where the maximum mem-
bership value of an element is retained, it is the convention
of the fuzzy rough relational database to retain the tuple
having the higher � value when removing redundant tu-
ples during merging. If we are supplied with identical data
from two sources, one certain and the other uncertain, we
would want to retain the data that is certain, avoiding loss
of information.

Recall that the rough relational database is in non-first
normal form; there are some attribute values that are sets.
Another definition, which will be used for upper approxi-
mation tuples, is necessary for some of the alternate defini-
tions of operators to be presented. This definition captures
redundancy between elements of attribute values that are
sets:

Definition Two sub-tuples X D (dx1; dx2; : : : ; dxm ) and
Y D (dy1; dy2; : : : ; dym ) are roughly-redundant, �R, if
for some [p] � [dx j] and [q] � [dy j], [p] D [q] for all
j D 1; : : : ;m.

In order for any database to be useful, a mechanism for
operating on the basic elements and retrieving specified
data must be provided. The concepts of redundancy and
merging play a key role in the operations defined.

We must first design our database using some type of
semantic model. We use a variation of the entity-relation-
ship diagram that we call a fuzzy-rough E-R diagram. This
diagram is similar to the standard E-R diagram in that en-
tity types are depicted in rectangles, relationships with di-
amonds, and attributes with ovals. However, in the fuzzy-
rough model, it is understood that membership values ex-
ist for all instances of entity types and relationships. At-
tributes which allow values where we want to be able to
define equivalences are denoted with an asterisk (*) above
the oval. These values are defined in the indiscernibility
relation, which is not actually part of the database design,
but inherent in the fuzzy-rough model.

Our fuzzy-rough E-R model [7] is similar to the sec-
ond and third levels of fuzziness defined by Zvieli and
Chen [54]. However, in our model, all entity and relation-
ship occurrences (second level) are of the fuzzy type so we
do not mark an ‘f ’ beside each one. Zvieli and Chen’s third
level considers attributes that may be fuzzy. They use tri-
angles instead of ovals to represent these attributes. We do
not introduce fuzziness at the attribute level of our model
in this paper, only roughness, or indiscernibility, and de-
note those attribute with the ‘*’. From the Fuzzy-Rough
E-R diagram, we design the structure of the fuzzy rough
relational database. If we have a priori information about
the types of queries that will be involved, we can make in-
telligent choices that will maximize computer resources.

We next formally define the fuzzy rough relational
database operators and discuss issues relating to the real-
world problems of data representation and modeling. We
may view indiscernibility as being modeled through the
use of the indiscernibility relation, imprecision through
the use of non-first normal form constructs, and degree of
uncertainty and fuzziness through the use of tuple mem-
bership values, which are given as the value for the � at-
tribute in every fuzzy rough relation.

Fuzzy Rough Relational Operators

In [13], we defined several operators for the rough rela-
tional algebra. We now define similar operators for the
fuzzy rough relational database as in [5]. Recall that for
all of these operators the indiscernibility relation is used
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for equivalence of attribute values rather than equality of
values.

Difference The fuzzy rough relational difference opera-
tor is very much like the ordinary difference operator in
relational databases and in sets in general. It is a binary
operator that returns those elements of the first argument
that are not contained in the second argument.

In the fuzzy rough relational database, the difference
operator is applied to two fuzzy rough relations and, as in
the rough relational database, indiscernibility, rather than
equality of attribute values, is used in the elimination of
redundant tuples. Hence, the difference operator is some-
what more complex. Let X and Y be two union compatible
fuzzy rough relations.

Definition The fuzzy rough difference, X - Y , between X
and Y is a fuzzy rough relation T where

T D ft(d1; : : : ; dn ; �i ) 2 Xjt(d1; : : : ; dn ; �i ) … Yg
[ ft(d1; : : : ; dn ; �i ) 2 Xjt(d1; : : : ; dn ; � j) 2 Y

and �i > � jg:

The resulting fuzzy rough relation contains all those tu-
ples which are in the lower approximation of X, but not
redundant with a tuple in the lower approximation of Y .
It also contains those tuples belonging to upper approxi-
mation regions of both X and Y , but which have a higher
� value in X than in Y . For example, let X contain the tu-
ple (MODERN, 1) and Y contain the tuple (MODERN,
.02). It would not be desirable to subtract out certain infor-
mation with possible information, so X - Y yields (MOD-
ERN, 1).

Union Because relations in databases are considered as
sets, the union operator can be applied to any two union-
compatible relations to result in a third relation which has
as its tuples all the tuples contained in either or both of the
two original relations. The union operator can be extended
to apply to fuzzy rough relations. LetX andY be two union
compatible fuzzy rough relations.

Definition The fuzzy rough union of X and Y , X [ Y is
a fuzzy rough relation T where

T D ftjt 2 X OR t 2 Yg and
�T (t) D MAX[�X (t); �Y (t)]:

The resulting relation T contains all tuples in either X or Y
or both, merged together and having redundant tuples re-
moved. If X contains a tuple that is redundant with a tuple
in Y except for the � value, the merging process will retain
only that tuple with the higher � value.

Intersection The fuzzy rough intersection, another bi-
nary operator on fuzzy rough relations, can be defined
similarly.

Definition The fuzzy rough intersection of X and Y ,
X \ Y is a fuzzy rough relation T where

T D ftjt 2 X AND t 2 Yg and
�T (t) D MIN[�X (t); �Y (t)]:

In intersection, theMIN operator is used in the merging of
equivalent tuples having different � values and the result
contains all tuples that are members of both of the original
fuzzy rough relations.

Definition The fuzzy rough intersection of X and Y ,
X \A Y is a fuzzy rough relation T where

T D ftjt 2 X; and 9s 2 Y jt �R sg
[ fsjs 2 Y ; and 9t 2 Xjs �R tg

and �T (t) D MIN[�X (t); �Y (t)]:

Select The select operator for the fuzzy rough relational
database model, 	 , is a unary operator which takes a fuzzy
rough relationX as its argument and returns a fuzzy rough
relation containing a subset of the tuples of X, selected on
the basis of values for a specified attribute. The operation
	ADa(X), for example, returns those tuples in X where at-
tribute A is equivalent to the class [a]. In general, select
returns a subset of the tuples that match some selection
criteria.

Let R be a relation schema,X a fuzzy rough relation on
that schema, A an attribute in R, a D faig and b D fbjg,
where ai, bj 2 dom(A), and[x is interpreted as “the union
over all x”.

Definition The fuzzy rough selection, 	ADa(X), of tuples
from X is a fuzzy rough relation Y having the same schema
as X and where

Y D ft 2 Xj [i [ai] � [ j[bj]g;

and ai 2 a, bj 2 t(A), and where membership values for
tuples are calculated by multiplying the original member-
ship value by

card(a)/card(b)

where card(x) returns the cardinality, or number of ele-
ments, in x.
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Assume we want to retrieve those elements where CITY =
“ADDIS” from the following fuzzy rough tuples:

(ADDIS 1)
({ADDIS, LOTTIE, BRUSLY} :7)
(OSCAR 1)
({ADDIS, JACKSON} :9):

The result of the selection is the following:

(ADDIS 1)
({ADDIS, LOTTIE, BRUSLY} :23)
({ADDIS, JACKSON} :45);

where the � for the second tuple is the product of the orig-
inal membership value .7 and 1/3.

Project Project is a unary fuzzy rough relational oper-
ator. It returns a relation that contains a subset of the
columns of the original relation. Let X be a fuzzy rough re-
lation with schema A, and let B be a subset of A. The fuzzy
rough projection of X onto B is a fuzzy rough relation Y
obtained by omitting the columns of X which correspond
to attributes in A - B, and removing redundant tuples. Re-
call the definition of redundancy accounts for indiscerni-
bility, which is central to the rough sets theory and that
higher � values have priority over lower ones.

Definition The fuzzy rough projection of X onto B,
�B(X), is a fuzzy rough relationY with schemaY(B) where

Y(B) D ft(B)jt 2 Xg:

Join Join is a binary operator that takes related tuples
from two relations and combines them into single tu-
ples of the resulting relation. It uses common attributes
to combine the two relations into one, usually larger, re-
lation. Let X(A1;A2; : : : ;Am) and Y(B1; B2; : : : ; Bn) be
fuzzy rough relations withm and n attributes, respectively,
and AB D C, the schema of the resulting fuzzy rough re-
lation T.

Definition The fuzzy rough join,X‰<JOIN CONDITION>Y,
of two relations X and Y , is a relation T(C1;

C2; : : : ;CmCn ) where

T D ftj9tX 2 X; tY 2 Y for tX D t(A); tY D t(B)g;

and where

tX(A\ B) D tY (A\ B); � D 1 (1)

tX(A\ B) � tY (A\ B) or tY (A\ B) � tX(A\ B);
� D MIN(�X ; �Y )

(2)

<JOIN CONDITION> is a conjunction of one or more
conditions of the form A D B.

Only those tuples which resulted from the “joining” of tu-
ples that were both in lower approximations in the orig-
inal relations belong to the lower approximation of the
resulting fuzzy rough relation. All other “joined” tuples
belong to the upper approximation only (the boundary
region), and have membership values less than one. The
fuzzy membership value of the resultant tuple is simply
calculated as in [18] by taking the minimum of the mem-
bership values of the original tuples. Taking the minimum
value also follows the logic of [37], where in joins of tuples
with different levels of information uncertainty, the resul-
tant tuple can have no greater certainty than that of its least
certain component.

Functional Dependencies

A functional dependency can be defined as in [23] through
the use of a universal database relation concept. Let
R D fA1;A2; : : :;Ang be a universal relation schema de-
scribing a database having n attributes. LetX andY be sub-
sets of R. A functional dependency between the attributes
of X and Y is denoted by X ! Y . This dependency spec-
ifies the constraint that for any two tuples of an instance r
of R, if they agree on the X attribute(s) they must agree on
their Y attributes(s): if t1[X] D t2[X], then it must be true
that t1[Y] D t2[Y]. Tuples that violate the constraint can-
not be inserted into the database. The rough functional de-
pendency is based on the rough relational databasemodel.
The classical notion of functional dependency for rela-
tional databases does not naturally apply to the rough re-
lational database, since all the “roughness” would be lost.
In the rough querying of crisp data [6], however, the data
is stored in the standard relational model having ordinary
functional dependencies imposed upon it and rough re-
lations result only from querying; they are not a part of
the database design in which the designer imposes con-
straint upon relation schemas. Rough functional depen-
dencies for the rough relational database model are de-
fined as follows [9]:

Definition A rough functional dependency, X ! Y , for
a relation schema R exists if for all instances T(R),

(1) for any two tuples t, t0 2 RT ,

redundant(t(X); t0(X))) redundant(t(Y); t0(Y))
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(2) for any two tuples s, s0 2 RT ,

roughly-redundant(s(X); s0(X))
) roughly-redundant(s(Y); s0(Y)):

Y is roughly functional dependent on X, or X roughly
functionally determines Y , whenever the above definition
holds. This implies that constraints can be imposed on
a rough relational database schema in a rough manner that
will aid in integrity maintenance and the reduction of up-
date anomalies without limiting the expressiveness of the
inherent rough set concepts.

It is obvious that the classical functional dependency
for the standard relational database is a special case of
the rough functional dependency; indiscernibility reduces
to simple equality and part (2) of the definition is un-
used since all tuples in relations in the standard relational
model belong to the lower approximation region of a sim-
ilar rough model.

The first part of the definition of rough functional de-
pendency compares with that of fuzzy functional depen-
dencies discussed in [46], where adherence to Armstrong’s
axioms was proven. The results apply directly in the case
of rough functional dependencies when only the lower ap-
proximation regions are considered. It is also necessary to
show that axioms hold for upper approximations.

Rough Functional Dependencies Satisfy Armstrong’s
Axioms
Proof

(1) Reflexive
If Y � X � U , then

redundant(t(X); t0(X))) redundant(t(Y); t0(Y));
and roughly-redundant(t(X); t0(X))

) roughly-redundant(t(Y); t0(Y)):

Hence,

X ! Y :

(2) Augmentation
If Z � U and the rough functional dependency
X ! Y holds, then

redundant(t(XZ); t0(XZ))
) redundant(t(YZ); t0(YZ));
and roughly-redundant(t(XZ); t0(XZ))

) roughly-redundant(t(YZ); t0(YZ)):

Hence,

XZ ! YZ:

(3) Transitive
If the rough functional dependencies X ! Y and
Y ! Z hold, then

redundant(t(X); t0(X))) redundant(t(Z); t0(Z));
and roughly-redundant(t(X); t0(X))

) roughly-redundant(t(Z); t0(Z)):

Hence,

X ! Z:

�

Hence, rough functional dependencies satisfy Armstrong’s
axioms. Given a set of rough functional dependencies, the
complete set of rough functional dependencies can be de-
rived using Armstrong’s axioms. The rough functional de-
pendency, therefore, is an important formalism for design
in the rough relational database.

Fuzzy and rough set techniques integrated into the
underlying data model result in databases that can more
accurately represent real world enterprises since they in-
corporate uncertainty management directly into the data
model itself. This is useful as is for obtaining greater
information through the querying of rough and fuzzy
databases. Additional benefits may be realized when they
are used in the process of data mining.

Rough SetModeling of Spatial Data

Many of the problems associated with data are prevalent
in all types of database systems. Spatial databases and GIS
contain descriptive as well as positional data. The various
forms of uncertainty occur in both types of data, so many
of the issues apply to ordinary databases as well, such as in-
tegration of data from multiple sources, time-variant data,
uncertain data, imprecision in measurement, inconsistent
wording of descriptive data, and “binning” or grouping of
data into fixed categories, also are employed in spatial con-
texts.

First consider an example of the use of rough sets in
representing spatially related data. Let U = {tower, stream,
creek, river, forest, woodland, pasture, meadow} and let
the equivalence relation R be defined as follows:

R� D f[tower]; [stream, creek, river];
[forest, woodland]; [pasture, meadow]g:

Given some setX = {tower, stream, creek, river, forest, pas-
ture}, we would like to define it in terms of its lower and
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upper approximations:

RX D ftower, stream, creek, riverg; and

RX D ftower, stream, creek, river, forest, woodland,
pasture, meadowg:

A rough set in A is the group of subsets of U with the same
upper and lower approximations. In the example given,
the rough set is

fftower, stream, creek, river, forest, pastureg
ftower, stream, creek, river, forest, meadowg
ftower, stream, creek, river, woodland, pastureg
ftower, stream, creek, river, woodland, meadowgg:

Often spatial data is associated with a particular grid. The
positions are set up in a regular matrix-like structure and
data is affiliated with point locations on the grid. This is
the case for raster data and for other types of non-vector
type data such as topography or sea surface temperature
data. There is a tradeoff between the resolution or the scale
of the grid and the amount of system resources necessary
to store and process the data. Higher resolutions provide
more information, but at a cost of memory space and exe-
cution time.

If we approach these data issues from a rough set point
of view, it can be seen that there is indiscernibility inher-
ent in the process of gridding or rasterizing data. A data
item at a particular grid point in essence may represent
data near the point as well. This is due to the fact that
often point data must be mapped to the grid using tech-
niques such as nearest-neighbor, averaging, or statistics.
The rough set indiscernibility relation may be set up so
that the entire spatial area is partitioned into equivalence
classes where each point on the grid belongs to an equiv-
alence class. If the resolution of the grid changes, then, in
fact, this is changing the granularity of the partitioning, re-
sulting in fewer, but larger classes.

The approximation regions of rough sets are beneficial
whenever information concerning spatial data regions is
accessed. Consider a region such as a forest. One can rea-
sonably conclude that any grid point identified as FOREST
that is surrounded on all sides by grid points also identified
as FOREST is, in fact, a point represented by the feature
FOREST. However, consider points identified as FOREST
that are adjacent to points identified as MEADOW. Is
it not possible that these points represent meadow area
as well as forest area but were identified as FOREST in
the classification process? Likewise, points identified as
MEADOW but adjacent to FOREST points may represent
areas that contain part of the forest. This uncertainty maps

naturally to the use of the approximation regions of the
rough set theory, where the lower approximation region
represents certain data and the boundary region of the up-
per approximation represents uncertain data. It applies to
spatial database querying and spatial database mining op-
erations.

If we force a finer granulation of the partitioning,
a smaller boundary region results. This occurs when the
resolution is increased. As the partitioning becomes finer
and finer, finally a point is reached where the boundary
region is non-existent. Then the upper and lower approxi-
mation regions are the same and there is no uncertainty in
the spatial data as can be determined by the representation
of the model.

In [50] Worboys models imprecision in spatial data
based on the resolution at which the data is represented,
and for issues related to the integration of such data. This
approach relies on the issue of indiscernibility – a core
concept for rough sets – but does not carry over the en-
tire framework and is just described as “reminiscent of the
theory of rough sets” [51]. Ahlqvist and colleagues [2] used
a rough set approach to define a rough classification of
spatial data and to represent spatial locations. They also
proposed a measure for quality of a rough classification
compared to a crisp classification and evaluated their tech-
nique on actual data from vegetation map layers. They
considered the combination of fuzzy and rough set ap-
proaches for reclassification as required by the integration
of geographic data. Another research group in a mapping
and GIS context [49] have developed an approach using
a rough raster space for the field representation of a spa-
tial entity and evaluated it on a classification case study for
remote sensing images. In [16] Bittner and Stell consider
K-labeled partitions, which can represent maps, and then
develop their relationship to rough sets to approximate
map objects with vague boundaries. Additionally they in-
vestigate stratified partitions, which can be used to capture
levels of details or granularity such as in consideration of
scale transformations in maps, and extend this approach
using the concepts of stratified rough sets.

DataMining in RoughDatabases

Association rules capture the idea of certain data items
commonly occurring together and have been often consid-
ered in the analysis of a “marketbasket” of purchases. For
example, a delicatessen retailer might analyze the previous
year’s sales and observe that of all purchases 30% were of
both cheese and crackers and, for any of the sales that in-
cluded cheese, 75% also included crackers. Then it is pos-
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sible to conclude a rule of the form:

Cheese! Crackers

This rule is said to have a 75% degree of confidence and
a 30% degree of support This particular form of data
is largely based on the a priori algorithm developed by
Agrawal [1]. Let a database of possible data items be [28]

D D fd1; d2; : : :dng

and the relevant set of transactions (sales, query results,
etc.) are

T D fT1; T2; : : :g

where Ti � D. We are interested in discovering if there
is a relationship between two sets of items (called item-
sets) Xj, Xk; Xj, Xk � D. For such a relationship to be de-
termined, the entire set of transactions in T must be ex-
amined and a count made of the number of transactions
containing these sets, where a transaction Ti contains Xm
if Xm � Ti . This count, called the support count of Xm,
SCT (Xm), will be appropriately modified in the case of
rough sets.

There are then two measures used in determining
rules: the percentage of Ti’s in T that

1. Contain both Xj and Xk (i. e. Xj [ Xk) – called the
support s

2. If Ti contains Xj then Ti also contains Xk – called the
confidence c.

The support and confidence can be interpreted as proba-
bilities:

1. s – Prob (Xj [ Xk) and
2. c – Prob (Xk jXj)

We assume the system user has provided minimum values
for these in order to generate only sufficiently interesting
rules. A rule whose support and confidence exceeds these
minimums is called a strong rule.

The result of a query is then:

T D fRT; RTg

and so we must take into account the lower approxima-
tion, RT , and upper approximation, RT , results of the
rough query in developing the association rules.

Recall that in order to generate frequent itemsets, we
must count the number of transactions Tj that support an
itemsetXj. In the ordinary datamining algorithm one sim-
ply counts the occurrence of a value as 1 if in the set, or

0 if not. But now since the query result T is a rough set,
we must modify the support count SCT . So we define the
rough support count, RSCT , for the set Xj, to count differ-
ently in the upper and lower approximations:

RSCT(Xj) D
X

i

WTi (Xj); Xj � Ti

where

W(Xj) D

(
1 if Ti 2 RT
a if Ti 2 RT; 0 < a < 1:

The value, a, can be a subjective value obtained from the
user depending on relative assessment of the roughness of
the query resultT. For the datamining example of the next
section we chose a neutral default value of a D 1

2 . Note
that W(Xj) is included in the summation only all of the
values of the itemsetXj are included in the transaction, i. e.
it is a subset of the transaction.

Finally to produce the association rules from the set
of relevant data T retrieved from the spatial database, we
must consider the frequent itemsets. For the purposes of
generating a rule such as Xj Xk we can now extend the ap-
proach to rough support and confidence as follows:

RS D RSCT (Xj [ Xk)/jTj
RC D RSCT (Xj [ Xk)/RSCT (Xj) :

In the spatial data mining area there have only been a few
efforts using rough sets. In the research described in [8] ap-
proaches for attribute induction knowledge discovery [43]
in rough spatial data are investigated. In [15] Bittner con-
siders rough sets for spatio-temporal data and how to dis-
cover characteristic configurations of spatial objects focus-
ing on the use of topological relationships for characteriza-
tions. In a survey of uncertainty-based spatial data mining
Shi et al. [47] provide a brief general comparison of fuzzy
and rough set approaches for spatial data mining.

Future Directions

There are several other approaches to uncertainty repre-
sentation that may be more suitable for certain applica-
tions. Type-2 fuzzy have been of considerable recent inter-
est [35]. In these as opposed to ordinary fuzzy sets in which
the underlying membership functions are crisp, here the
membership function are themselves fuzzy. Intuitionistic
sets introduced by Atanassov [3,4] are another generaliza-
tion of a fuzzy set. Two characteristic functions are used
for capturing both the ordinary idea of degree of mem-
bership in the intuitionistic set as well as the degree of



7740 R Rough and Rough-Fuzzy Sets in Design of Information Systems

non-membership of elements in the set and can be used in
database design [10]. Related to the concepts introduced
by rough sets is the idea of granularity for managing com-
plex data by abstraction using information granules as dis-
cussed by Lin [32,33]. A granular set approach has also
been introduced [30] which is a set and a number of dis-
joint subsets that constitute a semi-partition. Some prior
database research on ordered relations [26], although not
presented in the context of uncertainty of data, may pro-
vide some approaches to extend our work in this area.
A main emphasis for future work is the incorporation of
some of these research topics into mainstream database,
GIS commercial products and semi-structured data on the
semantic web.
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Introduction

Rule-induction methods are classified into two cate-
gories, induction of deterministic rules and of probabilistic
ones [4,5,7,10].

On one hand, deterministic rules are described as if-
then rules, which can be viewed as propositions. From the
set-theoretical point of view, a set of examples supporting
the conditional part of a deterministic rule, denoted by C,
is a subset of a set whose examples belong to the conse-
quence part, denoted by D. That is, the relation C � D
holds and deterministic rules are supported only by pos-
itive examples in a data set.

On the other hand, probabilistic rules are if-then rules
with probabilistic information [10].

When a classical proposition will not hold for C andD,
C is not a subset of D but closely overlapped with D. That
is, the relations C \ D ¤ � and jC \ Dj/jCj � ı will hold
in this case, where the threshold ı is the degree of closeness
of overlapping sets, which will be given by domain experts.
(For more information, see Sect. “Definition of Rules”)

Thus, probabilistic rules are supported by a large num-
ber of positive examples and a few negative examples.

The common feature of both deterministic and prob-
abilistic rules is that they deduce their consequence pos-
itively if an example satisfies their conditional parts. We
call the reasoning by these rules positive reasoning.

However, medical experts use not only positive rea-
soning but also negative reasoning for selection of candi-
dates, which is represented as if-then rules whose conse-
quences include negative terms.

For example, when a patient who complains of
headache does not have a throbbing pain, migraine should
not be suspected with a high probability. Thus, nega-
tive reasoning also plays an important role in cutting the
search space of a differential diagnosis process [10]. Thus,
medical reasoning includes both positive and negative rea-
soning, though conventional rule-induction methods do
not reflect this aspect. This is one of the reasons medical
experts have difficulty in interpreting induced rules, and
interpreting rules for a discovery procedure does not pro-
ceed easily. Therefore, negative rules should be induced
from databases in order not only to induce rules reflect-
ing experts’ decision processes, but also to induce rules
that will be easier for domain experts to interpret, both
of which are important to enhance the discovery process
done by the cooperation of medical experts and comput-
ers.

In this chapter, first the characteristics of medical rea-
soning are discussed and then two kinds of rules, posi-
tive rules and negative rules, are introduced as a model
of medical reasoning. Interestingly, from the set-theoretic
point of view, sets of examples supporting both rules cor-
respond to the lower and upper approximations in rough
sets [5]. On the other hand, from the viewpoint of propo-
sitional logic, both positive and negative rules are defined
as classical propositions or deterministic rules with two
probabilistic measures, classification accuracy, and cover-
age.

Second, two algorithms for induction of positive and
negative rules are introduced, defined as search proce-
dures using accuracy and coverage as evaluation indices.

Finally, the proposed method is evaluated on several
medical databases. The experimental results show that the
induced rules correctly represent experts’ knowledge. In
addition, several interesting patterns are discovered.

FocusingMechanism

One of the characteristics in medical reasoning is a focus-
ing mechanism, which is used to select the final diagno-
sis from many candidates [10,11]. For example, in differ-
ential diagnosis of headache, more than 60 diseases will
be checked by present history, physical examinations, and
laboratory examinations. In diagnostic procedures, a can-
didate is excluded if a symptom necessary to diagnose is
not observed.

This style of reasoning consists of the following two
processes: exclusive reasoning and inclusive reasoning.
Relations of this diagnostic model with another diagnos-
tic model are discussed in [12]. The diagnostic procedure
proceeds as follows (Fig. 2): First, exclusive reasoning ex-
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Rough Set Data Analysis, Figure 1
Illustration of focusingmechanism

cludes a disease from candidates when a patient does not
have a symptom that is necessary to diagnose that disease.

Second, inclusive reasoning suspects a disease in the
output of the exclusive process when a patient has symp-
toms specific to a disease.

These two steps aremodeled as two kinds of rules, neg-
ative rules (or exclusive rules) and positive rules; the for-
mer corresponds to exclusive reasoning, the latter to inclu-
sive reasoning.

In the next two sections, these two rules are repre-
sented as special kinds of probabilistic rules.

Definition of Rules

Rough Sets

In the following sections, we use the following notation in-
troduced by Grzymala–Busse and Skowron [8], based on
rough set theory [5].

These notations are illustrated by a small data set
shown in Table 1, which includes symptoms exhibited by
six patients who complained of headache.

Let U denote a nonempty finite set called the uni-
verse and A denote a nonempty, finite set of attributes,

Rough Set Data Analysis, Table 1
An example of a data set

No. Age Location Nature Prodrome Nausea M1 Class
1 50–59 occular persistent no no yes m.c.h.
2 40–49 whole persistent no no yes m.c.h.
3 40–49 lateral throbbing no yes no migra
4 40–49 whole throbbing yes yes no migra
5 40–49 whole radiating no no yes m.c.h.
6 50–59 whole persistent no yes yes psycho

M1: tenderness of M1; m.c.h.: muscle contraction headache;
migra: migraine; psycho: psychological pain

i. e., a : U ! Va for a 2 A, where Va is called the domain
of a, respectively. Then a decision table is defined as an
information system, A D (U;A[ fdg). For example, Ta-
ble 1 is an information system with U D f1; 2; 3; 4; 5; 6g
and A D fage, location, nature, prodrome, nausea;M1g
and d D class. For location 2 A, Vlocation is defined as
foccular, lateral, wholeg.

The atomic formulas over B � A[ fdg and V are ex-
pressions of the form [a D v], called descriptors over B,
where a 2 B and v 2 Va . The set F(B;V) of formulas over
B is the least set containing all atomic formulas over B
and closed with respect to disjunction, conjunction, and
negation. For example, [location D occular] is a descrip-
tor of B.

For each f 2 F(B;V), f A denotes the meaning of f
in A, i. e., the set of all objects in U with property f , de-
fined inductively as follows:

1. If f is of the form [a D v], then fA D fs 2 Uja(s) D vg
2. ( f ^ g)A D fA \ gA; ( f _ g)A D fA _ gA; (: f )A D

U � fa .

For example, f D [location D whole] and fA D f2; 4;
5; 6g. As an example of a conjunctive formula, g D
[location D whole] ^ [nausea D no] is a descriptor of U
and f A is equal to glocation, nausea D f2; 5g.

Classification Accuracy and Coverage

Definition of Accuracy andCoverage By use of the pre-
ceding framework, classification accuracy and coverage, or
true positive rate are defined as follows.

Definition 1 Let R and D denote a formula in F(B;V)
and a set of objects that belong to a decision d. Classifica-
tion accuracy and coverage (true positive rate) for R! d
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Rough Set Data Analysis, Figure 2
Venn diagram of accuracy and coverage

is defined as:

˛R(D) D
jRA \ Dj
jRAj

(D P(DjR)) and

�R(D) D
jRA \ Dj
jDj

(D P(RjD)) ;

where jSj, ˛R(D), �R(D), and P(S) denote the cardinality
of a set S, a classification accuracy of R as to classification
of D, and coverage (a true positive rate of R to D), and
probability of S, respectively.

Figure 2 depicts the Venn diagram of relations between
accuracy and coverage. Accuracy views the overlapped re-
gion jRA \ Dj from the meaning of a relation R. On the
other hand, coverage views the overlapped region from the
meaning of a concept D.

In the preceding example, when R and D are set to
[nau D yes] and [class D migraine], ˛R(D) D 2/3 D 0:67
and �R(D) D 2/2 D 1:0.

It is notable that ˛R(D) measures the degree of the suf-
ficiency of a proposition, R! D, and that �R(D) mea-
sures the degree of its necessity. For example, if ˛R(D) is
equal to 1.0, then R! D is true. On the other hand, if
�R(D) is equal to 1.0, then D! R is true. Thus, if both
measures are 1.0, then R$ D.

Probabilistic Rules

By use of accuracy and coverage, a probabilistic rule is de-
fined as:

R
˛;�
! d s.t. R D ^ j[a j D vk]; ˛R(D) � ı˛

and �R(D) � ı� :

If the thresholds for accuracy and coverage are set to
high values, the meaning of the conditional part of proba-
bilistic rules corresponds to the highly overlapped region.

Rough Set Data Analysis, Figure 3
Venn diagram for probabilistic rules

Figure 3 depicts the Venn diagram of probabilistic rules
with highly overlapped region.

This rule is a kind of probabilistic proposition with two
statistical measures, which is an extension of Ziarko’s vari-
able precision model (VPRS) [15].1

It is also notable that both a positive rule and a negative
rule are defined as special cases of this rule, as shown in the
next sections.

Positive Rules

A positive rule is defined as a rule supported by only posi-
tive examples, the classification accuracy of which is equal
to 1.0.

It is notable that the set supporting this rule corre-
sponds to a subset of the lower approximation of a tar-
get concept, which is introduced in rough sets [5]. Thus,
a positive rule is represented as:

R! d s.t. R D ^ j[a j D vk]; ˛R(D) D 1:0 :

Figure 4 shows the Venn diagram of a positive rule.
As shown in this figure, the meaning of R is a subset of
that of D. This diagram is exactly equivalent to the classic
proposition R! d.

In the preceding example, one positive rule of m.c.h.
(muscle contraction headache) is:

[nausea D no]! m.c.h. ˛ D 3/3 D 1:0 :

This positive rule is often called a deterministic rule.
However, we use the term, positive (deterministic) rules,
because a deterministic rule supported only by negative
examples, called a negative rule, is introduced in the next
section.

1This probabilistic rule is also a kind of rough modus ponens [6]
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Rough Set Data Analysis, Figure 4
Venn diagram of positive rules

Negative Rules

Before defining a negative rule, let us first introduce an ex-
clusive rule, the contrapositive of a negative rule [10]. An
exclusive rule is defined as a rule supported by all the pos-
itive examples, the coverage of which is equal to 1.0. That
is, an exclusive rule represents the necessity condition of
a decision.

It is notable that the set supporting an exclusive rule
corresponds to the upper approximation of a target con-
cept, which is introduced in rough sets [5]. Thus, an ex-
clusive rule is represented as:

R! d s.t. R D _ j[a j D vk] ; �R(D) D 1:0 :

Figure 5 shows the Venn diagram of an exclusive rule.
As shown in this figure, the meaning of R is a superset of
that of D. This diagram is exactly equivalent to the classic
proposition d ! R.

In the preceding example, the exclusive rule of m.c.h.
is:

[M1 D yes] _ [nau D no]! m.c.h. � D 1:0 ;

Rough Set Data Analysis, Figure 5
Venn diagram of exclusive rules

From the viewpoint of propositional logic, an exclusive
rule should be represented as:

d ! _ j[a j D vk] ;

because the condition of an exclusive rule corresponds to
the necessity condition of conclusion d. Thus, it is easy to
see that a negative rule is defined as the contrapositive of
an exclusive rule:

^ j:[a j D vk]! :d ;

which means that if a case does not satisfy any attribute
value pairs in the condition of a negative rule, then we can
exclude a decision d from candidates.

For example, the negative rule of m.c.h. is:

:[M1 D yes] ^ :[nausea D no]! :m.c.h.

In summary, a negative rule is defined as:

^ j :[a j D vk]! :d s.t.
8[a j D vk]�[a jDvk ](D) D 1:0 ;

where D denotes a set of samples that belong to a class d.
Figure 6 shows the Venn diagram of a negative rule. As
shown in this figure, it is notable that this negative region
is the “positive region” of “negative concept.”

Negative rules should also be included in a category of
deterministic rules, because their coverage, a measure of
negative concepts, is equal to 1.0. It is also notable that the
set supporting a negative rule corresponds to a subset of
negative region, which is introduced in rough sets [5].

In summary, positive and negative rules correspond to
positive and negative regions defined in rough sets. Fig-
ure 7 shows the Venn diagram of those rules.

Rough Set Data Analysis, Figure 6
Venn diagram of negative rules
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Rough Set Data Analysis, Figure 7
Venn diagram of defined rules

Algorithms for Rule Induction

The contrapositive of a negative rule, an exclusive rule, is
induced as an exclusive rule by the modification of the al-
gorithm introduced in PRIMEROSE-REX [10], as shown
in Fig. 8. This algorithm works as follows.

(1) First it selects a descriptor [ai D v j] from the list of
attribute-value pairs, denoted by L.

procedure Exclusive and Negative Rules;
var

L : List;
/* A list of elementary attribute-value pairs */

begin
L :D P0;
/* P0: A list of elementary attribute-value pairs given in a database */
while (L ¤ fg) do

begin
Select one pair [ai D v j] from L;
if ([ai D v j]A \ D ¤ �) then do /* D: positive examples of a target class d */

begin
Lir :D Lir C [ai D v j]; /* Candidates for Positive Rules */
if (�[aiDv j](D) D 1:0)
then Rer :D Rer ^ [ai D v j];
/* Include [ai D v j] into the formula of Exclusive Rule */

end
L :D L � [ai D v j];
end

Construct Negative Rules:
Take the contrapositive of Rer.

end {Exclusive and Negative Rules};

Rough Set Data Analysis, Figure 8
Induction of exclusive and negative rules

(2) Then it checks whether this descriptor overlaps with
a set of positive examples, denoted by D.

(3) If so, this descriptor is included in a list of candidates
for positive rules and the algorithm checks whether its
coverage is equal to 1.0. If the coverage is equal to 1.0,
then this descriptor is added to Rer, the formula for
the conditional part of the exclusive rule of D.

(4) Then [ai D v j] is deleted from the list L. This proce-
dure, from (1) to (4), will continue unless L is empty.

(5) Finally, when L is empty, this algorithm generates neg-
ative rules by taking the contrapositive of induced ex-
clusive rules.

On the other hand, positive rules are induced as inclu-
sive rules by the algorithm introduced in PRIMEROSE-
REX [10], as shown in Fig. 9. For induction of positive
rules, the threshold of accuracy and coverage is set to 1.0
and 0.0, respectively.

This algorithm works in the following way.

(1) First it substitutes L1, which denotes a list of formu-
las composed of only one descriptor, with the list Ler
generated by the former algorithm shown in Fig. 9.
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procedure Positive Rules;
var

i : integer; M; Li : List;
begin

L1 :D Lir ;
/* Lir : A list of candidates generated by induction of exclusive rules */
i :D 1; M :D fg;
for i :D 1 to n do
/* n: Total number of attributes given

in a database */
begin

while ( Li ¤ fg ) do
begin
Select one pair R D ^[ai D v j] from Li ;
Li :D Li � fRg;
if (˛R(D) > ı˛)

then do Sir :D Sir C fRg;
/* Include R in a list of the Positive Rules */
else M :D M C fRg;

end
LiC1 :D (A list of the whole combination of the conjunction formulae in M);

end
end {Positive Rules};

Rough Set Data Analysis, Figure 9
Induction of positive rules

(2) Then until L1 becomes empty, the following steps will
continue: (a) A formula [ai D v j] is removed from
L1. (b) Then the algorithm checks whether ˛R(D) is
larger than the threshold. (For induction of positive
rules, this is equal to checking whether ˛R(D) is equal
to 1.0.) If so, then this formula is included a list of the
conditional parts of positive rules. Otherwise, it will be
included inM, which is used for making conjunctions.

(3) When L1 is empty, the next list L2 is generated from
the listM.

Experimental Results

For experimental evaluation, a new system, called
PRIMEROSE-REX2 (Probabilistic Rule InductionMethod
for Rules of Expert System ver. 2.0), was developed, where
the algorithms discussed in Sect. “Algorithms for Rule In-
duction” were implemented.

PRIMEROSE-REX2 was applied to the following three
medical domains:

(1) Headache (RHINOS domain), whose training sam-
ples consist of 52,119 samples, 45 classes, and 147 at-
tributes;

(2) Cerebulovasular diseases (CVD), whose training sam-
ples consist of 7620 samples, 22 classes, and 285 at-
tributes; and

(3) Meningitis, whose training samples consist of 1211
samples, 4 classes, and 41 attributes (Table 2).

For evaluation, we used the following two types of experi-
ments. One experiment was to evaluate the predictive ac-
curacy using the cross-validation method, which is often
used in the machine-learning literature [9]. The other ex-

Rough Set Data Analysis, Table 2
Databases

Domain Samples Classes Attributes
Headache 52,119 45 147
CVD 7620 22 285
Meningitis 1211 4 41
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periment was to evaluate the induced rules by medical ex-
perts and to check whether these rules lead to a new dis-
covery.

Performance of Rules Obtained

For comparison of performance, the experiments are con-
ducted by the following four procedures. First, rules are
acquired manually from experts. Second, the data sets are
randomly split into new training samples and new test
samples. Third, PRIMEROSE-REX2, conventional rule-
induction methods, AQ15 [4] and C4.5 [7] are applied to
the new training samples for rule generation. Fourth, the
induced rules and rules acquired from experts are tested
using new test samples. The second through fourth steps
are repeated 100 times, and the average classification accu-
racy over 100 trials is computed. This process is a variant
of repeated two-fold cross-validation, introduced in [10].

Experimental results (performance) are shown in Ta-
ble 3. The first and second rows show the results obtained
using PRIMROSE-REX2; the results in the first row are
derived using both positive and negative rules and those
in the second row are derived by only positive rules. The
third row shows the results derived from medical experts.
For comparison, we compare the classification accuracy of
C4.5 and AQ-15, which is shown in the fourth and fifth
rows.

These results show that the combination of positive
and negative rules outperforms positive rules, although it
is a little worse than medical experts’ rules.

What Is Discovered?

Interesting Rules Are Very Few

One of the most important observations is that there were
very few rules interesting or unexpected tomedical experts
compared to the number of rules extracted from the data
sets.

Table 4 shows the mentioned results. The second col-
umn denotes the number of positive and negative rules
obtained from each data set. The third column denotes
the number of positive and negative rules interesting or
unexpected for domain experts. For example, the first
row shows that the number of induced positive rules in
headache is 24,335, but the number of interesting rules are
114, which shows that only 0.47% of rules are interesting
for domain experts.

This table shows that the number of interesting rules
are very few: even in the case of meningitis, only 6.5% are
interesting, which suggests that the interpretation part of

domain experts is very hard for the knowledge discovery
process.

Next, we show several examples of rules that are inter-
esting to domain experts.

Positive Rules in Differential Diagnosis of Headache

In the domain of differential diagnosis of headache, the
following interesting positive rules were found.

[Age < 20] ^ [History:paroxysmal]
! Common Migraine(Coverage:0.75)

This rule is said to be interesting if it is compared with the
following rule:

[Age > 40] ^ [History:paroxysmal]
! Classic Migraine(Coverage:0.72)

These two rules include two parts; although the values
of the attribute “Age” are different, those of the attribute
“History” are the same. This suggests that the attribute
“Age” is important for differential diagnosis between com-
mon migraine and classic migraine.

Negative Rules in Differential Diagnosis of Headache

In the domain of differential diagnosis of headache, the
following interesting negative rule was found.

:[Nature:Persistent]^
:[History:acute] ^:[History:paroxysmal])
^:[Neck Stiffness:yes]! :Common Migraine

It is notable that it is difficult even for domain experts
to interpret the interestingness of this rule if only this rule
is shown. The domain experts pointed out that the rule is
interesting when compared with the following rules.

[Nature:Persistent] ^ [History:acute]
^ [Neck Stiffness:yes]! Meningitis[Nature:
Persistent] ^ [History:chronic]! Brain Tumor

This means that the rule includes information that is
very important for differential diagnosis between common
migraine and meningitis or brain tumor. Note that these
two rules are very similar to the negative rule except for
the negative symbols.
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Rough Set Data Analysis, Table 3
Experimental results (accuracy: averaged)

Method Headache CVD Meningitis
PRIMEROSE-REX2 (positive+negative) 91.3% 89.3% 92.5%
PRIMEROSE-REX2 (positive) 68.3% 71.3% 74.5%
Experts 95.0% 92.9% 93.2%
PR-REX 88.3% 84.3% 82.5%
C4.5 85.8% 79.7% 81.4%
AQ15 86.2% 78.9% 82.5%

Rough Set Data Analysis, Table 4
Number of extracted rules and interesting rules

Induced positive rules Interesting rules
Headache 24,335 114 (0.47%)
CVD 14,715 106 (0.72%)
Meningitis 1,922 40 (2%)

Induced negative rules Interesting rules
Headache 12,113 120 (0.99%)
CVD 7,231 155 (2.1%)
Meningitis 77 5 (6.5%)

Positive Rules in Meningitis

In the domain of meningitis, the following positive rules,
which medical experts do not expect, are obtained.

[WBC < 12 000] ^ [Sex D Female] ^ [Age < 40]
^ [CSF_CELL < 1000]! Virus(Coverage:0.91)

[Age � 40] ^ [WBC � 8000] ^ [Sex D Male]
^ [CSF_CELL � 1000]! Bacteria(Coverage:0.64)

The former rule means that if WBC (white blood cell
count) is less than 12 000, the gender of a patient is female,
the age is less than 40, and CSF_CELL (cell count of cere-
bulospinal fluid), then the type of meningitis is Viral. The
latter means that the age of a patient is less than 40, WBC
is larger than 8000, the gender is male, and CSF_CELL is
larger than 1000, then the type of meningitis is Bacterial.

The most interesting points are that these rules in-
cluded information about age and gender, which often
seems to be unimportant attributes for differential diag-
nosis of meningitis. The first discovery was that women
did not often suffer from bacterial infection compared
with men, because such relationships between gender and
meningitis has not been discussed in medical context [1].
By a close examination of the database on meningitis, it
was found that most of the patients suffered from chronic
diseases, such as DM, LC, and sinusitis, which are the risk
factors of bacterial meningitis. The second discovery was

that [age < 40] was also an important factor not to sus-
pect viral meningitis, which alsomatches the fact thatmost
old people suffer from chronic diseases. These results were
also reevaluated in medical practice. Recently, the preced-
ing two rules were checked by an additional 21 cases who
suffered from meningitis (15 cases viral, 6 cases bacterial
meningitis.) Surprisingly, the rulesmisclassified only three
cases (two viral, the other bacterial), that is, the total accu-
racy was equal to 18/21 D 85:7%, and the accuracies for vi-
ral and bacterial meningitis were equal to 13/15 D 86:7%
and 5/6 D 83:3%. The reasons for misclassification are the
following: a case of bacterial infection involved a patient
who had a severe immunodeficiency, although he is very
young. Two cases of viral infection involved patients who
suffered from herpes zoster. It is notable that even those
misclassified cases could be explained from the viewpoint
of the immunodeficiency: that is, it was confirmed that im-
munodeficiency is a key factor for meningitis.

The validation of these rules is still ongoing; it will be
reported in the near future.

Positive and Negative Rules in CVD

Concerning the database on CVD, several interesting rules
were derived. The most interesting results were the follow-
ing positive and negative rules for thalamus hemorrhage:

�
Sex D Female

�
^ [Hemiparesis D Left]

^ [LOC:positive]! Thalamus
:[Risk:Hypertension] ^ :[Sensory D no]
! :Thalamus

The former rule means that if the gender of a patient
is female and he or she suffered from the left hemi-
paresis ([HemiparesisDLeft]) and loss of consciousness
([LOC:positive]), then the focus of CVD is thalamus. The
latter rule means that if he or she suffers neither from hy-
pertension ([Risk: Hypertension]) or sensory disturbance
([SensoryDno]), then the focus of CVD is thalamus.
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Interestingly, LOC (loss of consciousness) under the
condition of [Gender D Female] ^ [Hemiparesis D Left]
was found to be an important factor to diagnose thalamic
damage. In this domain, any strong correlations between
these attributes and others, like the database of meningitis,
have not been found yet. It will be our future work to find
what factor is behind these rules.

Rule Discovery as Knowledge Acquisition
and Decision Support

Expert System: RH

Another point of discovery of rules is automated knowl-
edge acquisition from databases. Knowledge acquisition is
referred to as a bottleneck problem in development of ex-
pert systems [2], which has not fully been solved and is ex-
pected to be solved by induction of rules from databases.
However, there are few papers that discuss the evaluation
of discovered rules from the viewpoint of knowledge ac-
quisition [12].

For this purpose, we have developed an expert sys-
tem, called RH (rule-based system for headache) using
the acquired knowledge. The reason for selecting the do-
main of headache is that earlier we developed an expert
system RHINOS (rule-based headache information orga-
nizing system), which makes a differential diagnosis in
headache [3]. In this system, it takes about six months to
acquire knowledge from domain experts. RH consists of
two parts. First, it requires inputs and applies exclusive
and negative rules to select candidates (focusing mecha-
nism). Then, it requires additional inputs and applies pos-
itive rules for differential diagnosis between selected can-
didates. Finally, RH outputs diagnostic conclusions.

Evaluation of RH

RH was evaluated in clinical practice with respect to its
classification accuracy by using 930 patients who came
to the outpatient clinic after the development of this sys-
tem. Experimental results about classification accuracy are
shown in Table 5. The first and second rows show the per-
formance of rules obtained using PRIMROSE-REX2; the
results in the first row are derived using both positive and
negative rules and those in the second row are derived us-
ing only positive rules. The third and fourth rows show the
results derived using both positive and negative rules and
those by positive rules acquired directly from medical ex-
perts. These results show that the combination of positive
and negative rules outperforms positive rules and gains al-
most the same performance as those by experts.

Rough Set Data Analysis, Table 5
Evaluation of RH (accuracy: averaged)

Method Accuracy
PRIMEROSE-REX2 (positive and negative) 91.4% (851/930)
PRIMEROSE-REX2 (positive) 78.5% (729/930)
RHINOS (positive and negative) 93.5% (864/930)
RHINOS (positive) 82.8% (765/930)

Discussion

Hierarchical Rules for Decision Support

One of the problems with rule induction is that conven-
tional rule-induction methods cannot extract rules that
plausibly represent experts’ decision processes [12]. The
description length of induced rules is too short, compared
to the experts’ rules. (It may be observed that this length
part does not contribute much to the classification perfor-
mance.)

For example, rule-induction methods introduced in
this chapter induced the following common rule for mus-
cle contraction headache from databases on differential di-
agnosis of headache:

�
location D whole

�

^ [Jolt Headache D no]
^ [Tenderness of M1 D yes]
! muscle contraction headache

This rule is shorter than the following rule given by medi-
cal experts:

�
Jolt Headache D no

�

^ ([Tenderness of M0 D yes]
_ [Tenderness of M1 D yes]
_ [Tenderness of M2 D yes])
^ [Tenderness of B1 D no]
^ [Tenderness of B2 D no]
^ [Tenderness of B3 D no]
^ [Tenderness of C1 D no]
^ [Tenderness of C2 D no]
^ [Tenderness of C3 D no]
^ [Tenderness of C4 D no]
! muscle contraction headache

These results suggest that conventional rule-induction
methods do not reflect a mechanism of knowledge acqui-
sition of medical experts.
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Typically, rules acquired from medical experts are
much longer than those induced from databases, the de-
cision attributes of which are given by the same experts.
This is because rule induction methods generally search
for shorter rules, compared with decision tree induction.
In the case of decision tree induction, the induced trees
are sometimes too deep, and in order for the trees to be
useful for learning, pruning and examination by experts
are required. One of the main reasons rules are short and
decision trees are sometimes long is that these patterns are
generated by only one criteria, such as high accuracy or
high information gain. The comparative study in this sec-
tion suggests that experts should acquire rules by usage of
several measures. Those characteristics of medical experts’
rules are fully examined not by comparing between those
rules for the same class, but by comparing experts’ rules
with those for another class. For example, a classification
rule for muscle contraction headache is given by:

�
Jolt Headache D no

�

^ ([Tenderness of M0 D yes]
_ [Tenderness of M1 D yes]
_ [Tenderness of M2 D yes])
^ [Tenderness of B1 D no]
^ [Tenderness of B2 D no]
^ [Tenderness of B3 D no]
^ [Tenderness of C1 D no]
^ [Tenderness of C2 D no]
^ [Tenderness of C3 D no]
^ [Tenderness of C4 D no]
! muscle contraction headache

This rule is very similar to the following classification
rule for disease of cervical spine:

�
Jolt Headache D no

�

^ ([Tenderness of M0 D yes]
_ [Tenderness of M1 D yes]
_ [Tenderness of M2 D yes])
^ ([Tenderness of B1 D yes]
_ [Tenderness of B2 D yes]
_ [Tenderness of B3 D yes]
_ [Tenderness of C1 D yes]
_ [Tenderness of C2 D yes]
_ [Tenderness of C3 D yes]
_ [Tenderness of C4 D yes])
! disease of cervical spine

The differences between these two rules are attribute-
value pairs, from tenderness of B1 to C4. Thus, these two
rules can be simplified into the following form:

a1 ^ A2 ^:A3 ! muscle contraction headache;
a1 ^ A2 ^ A3 ! disease of cervical spine:

The first two terms and the third one represent differ-
ent reasoning. The first and second terms a1 and A2 are
used to differentiate muscle contraction headache and dis-
ease of cervical spine from other diseases. The third term
A3 is used to make a differential diagnosis between these
two diseases. Thus, medical experts first select several di-
agnostic candidates, which are similar to each other, from
many diseases and then make a final diagnosis from those
candidates.

This problem has been partially solved; Tsumoto in-
troduced a new approach for inducing these rules in [13],
as induction of hierarchical decision rules. In that paper,
the characteristics of experts’ rules are closely examined
and a new approach to extract plausible rules is intro-
duced, which consists of the following three procedures.
First, the characterization of decision attributes (given
classes) is done from databases and the classes are clas-
sified into several groups with respect to the characteri-
zation. Then two kinds of subrules, characterization rules
for each group and discrimination rules for each class in
the group, are induced. Finally, those two parts are inte-
grated into one rule for each decision attribute. The pro-
posed method was evaluated on a medical database, the
experimental results of which show that induced rules cor-
rectly represent experts’ decision processes.

This observation also suggests that medical experts im-
plicitly look at the relation between rules for different con-
cepts. Future work should discover the relations between
induced rules.

Relations Between Rules

In [14], Tsumoto focuses on the characteristics of medi-
cal reasoning(focusing mechanism) and introduces three
kinds of rules, positive rules, exclusive rules and total cov-
ering rules, as a model of medical reasoning, which is an
extended formalization of rules defined in [12].

Interestingly, from the set-theoretic point of view, sets
of examples supporting these rules correspond to the
lower and upper approximations in rough sets.

Furthermore, from the viewpoint of propositional
logic, both inclusive and exclusive rules are defined as clas-
sical propositions, or deterministic rules with two proba-
bilistic measures, classification accuracy and coverage. To-
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tal covering rules have several interesting relations with in-
clusive and exclusive rules, which reflects the characteris-
tics of medical reasoning.

Originally, a total covering rule is defined as a set of
symptoms that can be observed in at least one case of a tar-
get disease. That is, this rule is defined as a collection of
attribute-value pairs whose accuracy is larger than 0:

R! d s.t. R D _ j[a j D vk]; ˛R (D) > 0 :

From the definition of accuracy and coverage, this for-
mula can be transformed into:

R! d s.t. R D _ j[a j D vk]; �R(D) > 0 :

For each attribute, the attribute-value pairs form a par-
tition of U. Thus, for each attribute, total covering rules
include a covering of all the positive examples. According
to this property, the preceding formula is redefined as:

R! d s.t. R D _ jR(a j);
R(a j) D _k[a j D vk] s.t. �R(D) D 1:0 :

It is notable that this definition is an extension of ex-
clusive rules and this total covering rule can be written as:

d ! _ j _k [a j D vk] s.t. �[a jDvk ](D) D 1:0 :

Let S(R) denote a set of attribute-value pairs of rule R.
For each class d, let Rpos(d), Rex(d), and Rtc(d) denote
the positive exclusive rule and total covering rules, respec-
tively. Then

S(Rex(d)) � S(Rtc(d)) ;

because a total covering rule can be viewed as an upper
approximation of exclusive rules. It is also notable that this
relation will hold in the relation between the positive rule
(inclusive rule) and total covering rule. That is,

S(Rpos(d)) � S(Rtc(d)) :

Thus, the total covering rule can be viewed as an upper
approximation of inclusive rules. This relation also holds
when Rpos(d) is replaced with a probabilistic rule, which
shows that total covering rules are the weakest form of di-
agnostic rules.

In this way, rules that reflect the diagnostic reason-
ing of medical experts have sophisticated background
from the viewpoint of set theory. Especially, the rough set
framework provides a good tool for modeling such focus-
ing mechanisms.

Our future work will investigate the relation between
these three types of rules from the viewpoint of rough set
theory.

Conclusions

In this chapter, the characteristics of two measures, classi-
fication accuracy and coverage, are discussed, which show
that both measures are dual and that accuracy and cov-
erage are measures of both positive and negative rules, re-
spectively. Then an algorithm for induction of positive and
negative rules is introduced.

The proposed method is evaluated on medical
databases. The experimental results have demonstrated
that the induced rules are able to correctly represent ex-
perts’ knowledge. We also demonstrated that the method
can discover several interesting patterns.
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Glossary

Multiple attribute (or multiple criteria) decision sup-
port aims at giving the decision maker (DM) a recom-

mendation concerning a set of objects A (also called
alternatives, actions, acts, solutions, options, candi-
dates, . . . ) evaluated from multiple points of view
called attributes (also called features, variables, crite-
ria, objectives, . . . ).
Main categories ofmultiple attribute (or multiple crite-
ria) decision problems:

� classification, when the decision aims at assigning
each object to one of predefined classes,

� choice, when the decision aims at selecting the best
object,

� ranking, when the decision aims at ordering objects
from the best to the worst.

Two kinds of classification problems are distinguished:

� taxonomy, when the value sets of attributes and the
predefined classes are not preference ordered,

� ordinal classification (also known as multiple crite-
ria sorting), when the value sets of attributes and
the predefined classes are preference ordered.

Two kinds of choice problems are distinguished:

� discrete choice, when the set of objects is finite and
reasonably small to be listed,

� multiple objective optimization, when the set of
objects is infinite and defined by constraints of
a mathematical program.

If value sets of attributes are preference-ordered, they
are called criteria or objectives, otherwise they keep the
name of attributes.

Criterion is a real-valued function gi defined on A, re-
flecting a worth of objects from a particular point of
view, such that in order to compare any two objects
a; b 2 A from this point of view it is sufficient to com-
pare two values: gi(a) and gi(b).

Dominance Object a is non-dominated in set A (Pareto-
optimal) if and only if there is no other object b in A
such that b is not worse than a on all considered crite-
ria, and strictly better on at least one criterion.

Preference model is a representation of a value system of
the decision maker on the set of objects with vector
evaluations.

Decision under uncertainty takes into account conse-
quences of decisions that distribute over multiple
states of nature with given probability. The preference
order, characteristic for data describing multiple at-
tribute decision problems, concerns also decision un-
der uncertainty, where the objects correspond to acts,
attributes are outcomes (gain or loss) to be obtained
with a given probability, and the problem consists in
ordinal classification, choice, or ranking of the acts.

Rough set in universe U is an approximation of a set
based on available information about objects ofU. The
rough approximation is composed of two ordinary sets
called lower and upper approximation. Lower approx-
imation is a maximal subset of objects which, accord-
ing to the available information, certainly belong to the
approximated set, and upper approximation is a mini-
mal subset of objects which, according to the available
information, possibly belong to the approximated set.
The difference between upper and lower approxima-
tion is called boundary.

Decision rule is a logical statement of the type “if . . . ,
then . . . ”, kursiv where the premise (condition part)
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specifies values assumed by one or more condition at-
tributes and the conclusion (decision part) specifies an
overall judgment.

Definition of the Subject

Scientific analysis of decision problems aims at giving the
decision maker (DM) a recommendation concerning a set
of objects (also called alternatives, solutions, acts, actions,
options, candidates, . . . ) evaluated from multiple points
of view considered relevant for the problem at hand and
called attributes (also called features, variables, criteria, ob-
jectives, . . . ). For example, a decision can concern:

1) diagnosis of pathologies for a set of patients, where pa-
tients are objects of the decision, and symptoms and
results of medical tests are the attributes,

2) assignment of enterprises to classes of risk, where en-
terprises are objects of the decision, and financial ra-
tio indices and other economic indicators, such as the
market structure, the technology used by the enterprise
and the quality of management, are the attributes,

3) selection of a car to be bought from among a given
set of cars, where cars are objects of the decision, and
maximum speed, acceleration, price, fuel consump-
tion, comfort, color and so on, are the attributes,

4) ordering of students applying for a scholarship, where
students are objects of the decision, and scores in dif-
ferent subjects are the attributes.

The following three main categories of decision problems
are typically distinguished [44]:

� classification, when the decision aims at assigning each
object to one of predefined classes,

� choice, when the decision aims at selecting the best ob-
jects,

� ranking, when the decision aims at ordering objects
from the best to the worst.

Looking at the above examples, one can say that 1) and
2) are classification problems, 3) is a choice problem and
4) is a ranking problem.

The above categorization can be refined by distin-
guishing two kinds of classification problems: taxonomy,
when the value sets of attributes and the predefined classes
are not preference ordered, and ordinal classification (also
known as multiple criteria sorting), when the value sets
of attributes and the predefined classes are preference or-
dered [12]. In the above examples, 1) is a taxonomy prob-
lem and 2) is an ordinal classification problem. If value sets

of attributes are preference ordered, they are called crite-
ria, otherwise they keep the name of attributes. For exam-
ple, in a decision regarding the selection of a car, its price
is a criterion because, obviously, a low price is better than
a high price. Instead, the color of a car is not a criterion but
simply an attribute, because red is not intrinsically better
than green. One can imagine, however, that also the color
of a car could become a criterion if, for example, a DM
would consider red better than green.

Introduction

Scientific support of decisions makes use of a more or less
explicit model of the decision problem. The model relates
the decision to the characteristics of the objects expressed
by the considered attributes. Building such a model re-
quires information about conditions and parameters of the
aggregation of multi-attribute characteristics of objects.
The nature of this information depends on the adopted
methodology: prices and interest rates for cost-benefit
analysis, cost coefficients in objectives and technological
coefficients in constraints for mathematical programming,
a training set of decision examples for neural networks and
machine learning, substitution rates for a value function
of multi-attribute utility theory, pairwise comparisons of
objects in terms of intensity of preference for the analytic
hierarchy process, attribute weights and several thresholds
for ELECTRE methods, and so on (see the state-of-the-art
survey [4]). This information has to be provided by the
DM, possibly assisted by an analyst.

Very often this information is not easily definable. For
example, this is the case of the price of many immaterial
goods and of the interest rates in cost-benefit analysis, or
the case of the coefficients of objectives and constraints in
mathematical programming models. Even if the required
information is easily definable, like a training set of deci-
sion examples for neural networks, it is often processed in
a way which is not clear for the DM, such that (s)he cannot
see what are the exact relations between the provided in-
formation and the final recommendation. Consequently,
very often the decision model is perceived by the DM as
a black box whose result has to be accepted because the
analyst’s authority guarantees that the result is “right”. In
this context, the aspiration of the DM to find good rea-
sons to make decision is frustrated and rises the need for
a more transparent methodology in which the relation be-
tween the original information and the final recommen-
dation is clearly shown. Such a transparent methodology
searched for has been called glass box [32]. Its typical rep-
resentative is using a learning set of decision examples as
the input preference information provided by the DM, and
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it is expressing the decision model in terms of a set of “if
. . . , then . . . ” decision rules induced from the input infor-
mation. From one side, the decision rules are explicitly re-
lated to the original information and, from the other side,
they give understandable justifications for the decisions to
be made.

For example, in case of a medical diagnosis problem,
the decision rule approach requires as input information
a set of examples of previous diagnoses, from which some
diagnostic rules are induced, such as “if there is symp-
tom ˛ and the test result is ˇ, then there is pathology �”.
Each one of such rules is directly related to examples of
diagnoses in the input information, where there is symp-
tom ˛, test result ˇ and pathology � . Moreover, the DM
can verify easily that in the input information there is no
example of diagnosis where there is symptom ˛, test re-
sult ˇ but no pathology � .

The rules induced from the input information pro-
vided in terms of exemplary decisions represent a decision
model which is transparent for the DM and enables his
understanding of the reasons of his past decisions. The ac-
ceptance of the rules by the DM justifies, in turn, their use
for future decisions.

The induction of rules from examples is a typical ap-
proach of artificial intelligence. This explains our inter-
est in rough set theory [38,39] which proved to be a use-
ful tool for analysis of vague description of decision situ-
ations [41,48]. The rough set analysis aims at explaining
the values of some decision attributes, playing the role of
“dependent variables”, by means of the values of condition
attributes, playing the role of “independent variables”. For
example, in the above diagnostic context, data about the
presence of a pathology are given by decision attributes,
while data about symptoms and tests are given by condi-
tion attributes. An important advantage of the rough set
approach is that it can deal with partly inconsistent ex-
amples, i. e. cases where the presence of different patholo-
gies is associated with the presence of the same symptoms
and test results. Moreover, it provides useful information
about the role of particular attributes and their subsets,
and prepares the ground for representation of knowledge
hidden in the data by means of “if . . . , then . . . ” decision
rules.

Classical rough set approach proposed by Paw-
lak [38,39] cannot deal, however, with preference order
in the value sets of condition and decision attributes. For
this reason, the classical rough set approach can deal with
only one of four decision problems listed above – clas-
sification of taxonomy type. To deal with ordinal classi-
fication, choice and ranking, it is necessary to general-
ize the classical rough set approach, so as to take into

account preference orders and monotonic relationships
between condition and decision attributes. This gener-
alization, called Dominance-based Rough Set Approach
(DRSA), has been proposed by Greco, Matarazzo and
Slowinski [12,14,15,18,21,49].

Classical Rough Set Approach
to ClassificationProblems of Taxonomy Type

Information Table and Indiscernibility Relation

Information regarding classification examples is supplied
in the form of an information table, whose separate rows
refer to distinct objects, and whose columns refer to differ-
ent attributes considered. This means that each cell of this
table indicates an evaluation (quantitative or qualitative)
of the object placed in the corresponding row by means of
the attribute in the corresponding column. Formally, an
information table is the 4-tuple S D hU;Q;V ; vi, whereU
is a finite set of objects, called universe, Q D fq1; : : : ; qng
is a finite set of attributes, Vq is a value set of the at-
tribute q;V D

S
q2Q Vq , and v : U � Q ! V is a total

function such that v(x; q) 2 Vq for each q 2 Q; x 2 U ,
called information function.

Therefore, each object x of U is described by a vec-
tor (string) DesQ (x) D [v(x; q1); : : : ; v(x; qn)], called de-
scription of x in terms of the evaluations on the attributes
from Q; it represents the available information about x.
Obviously, x 2 U can be described in terms of any non-
empty subset P � Q.

To every (non-empty) subset of attributes P � Q there
is associated an indiscernibility relation on U, denoted
by IP :

IP D f(x; y) 2 U � U : v(x; q) D v(y; q) ; 8q 2 Pg :

If (x; y) 2 IP , it is said that the objects x and y are P-in-
discernible. Clearly, the indiscernibility relation thus de-
fined is an equivalence relation (reflexive, symmetric and
transitive). The family of all the equivalence classes of the
relation IP is denoted by U/IP , and the equivalence class
containing object x 2 U , by IP(x). The equivalence classes
of the relation IP are called P-elementary sets.

Approximations

Let S be an information table, X a non-empty subset of U
and ; ¤ P � Q. The P-lower approximation and the P-
upper approximation of X in S are defined, respectively,
as:

P (X) D fx 2 U : IP (x) � Xg ;

P (X) D fx 2 U : IP (x) \ X ¤ ;g :
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The elements of P (X) are all and only those objects
x 2 U which belong to the equivalence classes generated
by the indiscernibility relation IP, contained in X; the ele-
ments of P (X) are all and only those objects x 2 U which
belong to the equivalence classes generated by the indis-
cernibility relation IP , containing at least one object x be-
longing to X. In other words, P (X) is the largest union
of the P-elementary sets included in X, while P (X) is the
smallest union of the P-elementary sets containing X.

The P-boundary of X in S, denoted by BnP(X), is de-
fined by

BnP(X) D P (X)� P (X) :

The following inclusion relation holds:

P (X) � X � P (X) :

Thus, in view of information provided by P, if an ob-
ject x belongs to P (X), then it certainly belongs to set X,
while if x belongs to P (X), then it possibly belongs to setX.
BnP(X) constitutes the “doubtful region” of X: nothing
can be said with certainty about the membership of its el-
ements to set X, using the subset of attributes P only.

Moreover, the following complementarity relation is
satisfied:

P (X) D U � P(U � X) :

If the P-boundary of set X is empty, BnP(X) D ;,
then X is an ordinary (exact) set with respect to P, that is,
it may be expressed as union of a certain number of P-el-
ementary sets; otherwise, if BnP(X) ¤ ;, set X is an ap-
proximate (rough) set with respect to P and may be char-
acterized bymeans of the approximations P (X) and P (X).
The family of all sets X � U having the same P-lower
and P-upper approximations is called the rough set.

The quality of the approximation of set X by means of
the attributes from P is defined as

�P(X) D
jP (X)j
jXj

;

such that 0 � �P(X) � 1. The quality �P(X) represents the
relative frequency of the objects correctly classified using
the attributes from P.

The definition of approximations of a set X � U
can be extended to a classification, i. e. a partition
Y D fY1; : : : ;Ymg of U. The P-lower and P-upper ap-
proximations of Y in S are defined by sets P(Y) D
fP(Y1); : : : ; P(Ym)g and P(Y) D

˚
P(Y1); : : : ; P(Ym )

�
, re-

spectively. The coefficient

�P (Y) D
Pm

iD1 jP(Yi )j
jUj

is called quality of the approximation of classification Y by
set of attributes P, or in short, quality of classification. It
expresses the ratio of all P-correctly classified objects to all
objects in the system.

Dependence and Reduction of Attributes

An issue of great practical importance is the reduction of
“superfluous” attributes in an information table. Superflu-
ous attributes can be eliminated without deteriorating the
information contained in the original table.

Let P � Q and p 2 P. It is said that attribute p
is superfluous in P with respect to classification Y if
P(Y) D (P � p)(Y); otherwise, p is indispensable in P. The
subset of Q containing all the indispensable attributes is
known as the core.

Given classification Y , anyminimal (with respect to in-
clusion) subset P � Q, such that P(Y) D Q(Y), is called
reduct. It specifies a minimal subset P of Q which keeps
the quality of classification at the same level as the whole
set of attributes, i. e. �P (Y) D �Q (Y). In other words, the
attributes that do not belong to the reduct are superfluous
with respect to the classification Y of objects from U.

More than one reduct may exist in an information ta-
ble and their intersection gives the core.

Decision Table and Decision Rules

In the information table describing examples of classi-
fication, the attributes of set Q are divided into condi-
tion attributes (set C ¤ ;) and decision attributes (set
D ¤ ;);C [ D D Q and C \ D D ;. Such an informa-
tion table is called a decision table. The decision attributes
induce a partition of U deduced from the indiscernibility
relation ID in a way that is independent of the condition
attributes.D-elementary sets are called decision classes, de-
noted by Clt ; t D 1; : : : ;m. The partition of U into de-
cision classes is called classification Cl D fCl1; : : : ;Clmg.
There is a tendency to reduce the set C while keeping
all important relationships between C and D, in order to
make decisions on the basis of a smaller amount of infor-
mation. When the set of condition attributes is replaced
by one of its reducts, the quality of approximation of the
classification induced by the decision attributes is not de-
teriorating.

Since the aim is to underline the functional dependen-
cies between condition and decision attributes, a decision
table may also be seen as a set of decision rules. These are
logical statements of the type “if . . . , then . . . ”, where the
premise (condition part) specifies values assumed by one
or more condition attributes (description of C-elementary
sets) and the conclusion (decision part) specifies an assign-
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ment to one or more decision classes. Therefore, the syn-
tax of a rule is the following:

“if v(x; q1) D rq1 and v(x; q2) D rq2 and . . .
v(x; qp) D rqp , then x belongs to decision class Cl j1
or Cl j2 or . . . Cl jk”,

where fq1; q2; : : : ; qpg � C; (rq1; rq2; : : : ; rqp) 2 Vq1 �

Vq2 � � � � � Vqp and Cl j1;Cl j2; : : : ;Cl jk are some deci-
sion classes of the considered classification Cl. If the con-
sequence is univocal, i. e. k D 1, then the rule is univocal,
otherwise it is approximate.

An object x 2 U supports decision rule r if its descrip-
tion is matching both the condition part and the decision
part of the rule. The decision rule r covers object x if it
matches the condition part of the rule. Each decision rule
is characterized by its strength, defined as the number of
objects supporting the rule. In the case of approximate
rules, the strength is calculated for each possible decision
class separately.

If a univocal rule is supported by objects from the
lower approximation of the corresponding decision class
only, then the rule is called certain or deterministic. If,
however, a univocal rule is supported by objects from the
upper approximation of the corresponding decision class
only, then the rule is called possible or probabilistic. Ap-
proximate rules are supported, in turn, only by objects
from the boundaries of the corresponding decision classes.

Procedures for generation of decision rules from a de-
cision table use an inductive learning principle. The ob-
jects are considered as examples of classification. In or-
der to induce a decision rule with a univocal and cer-
tain conclusion about assignment of an object to decision
class X, the examples belonging to the C-lower approxi-
mation of X are called positive and all the others negative.
Analogously, in case of a possible rule, the examples be-
longing to the C-upper approximation of X are positive
and all the others negative. Possible rules are character-
ized by a coefficient, called confidence, telling to what ex-
tent the rule is consistent, i. e. what is the ratio of the num-
ber of positive examples supporting the rule to the num-
ber of examples belonging to set X according to decision
attributes. Finally, in case of an approximate rule, the ex-
amples belonging to the C-boundary of X are positive and
all the others negative. A decision rule is calledminimal if
removing any attribute from the condition part gives a rule
covering also negative objects.

The existing induction algorithms use one of the fol-
lowing strategies [55]:

(a) Generation of a minimal representation, i. e. minimal
set of rules covering all objects from a decision table,

(b) Generation of an exhaustive representation, i. e. all
rules for a given decision table,

(c) Generation of a characteristic representation, i. e. a set
of rules covering relatively many objects, however, not
necessarily all objects from a decision table.

Explanation of the Classical Rough Set Approach
by an Example

Suppose that one wants to describe the classification of ba-
sic traffic signs to a novice. There are three main classes of
traffic signs corresponding to:

� Warning (W),
� Interdiction (I),
� Order (O).

Then, these classes may be distinguished by such at-
tributes as the shape (S) and the principal color (PC) of
the sign. Finally, one can consider a few examples of traffic
signs, like those shown in Table 1. These are:

a) Sharp right turn,
b) Speed limit of 50 km/h,
c) No parking,
d) Go ahead.

The rough set approach is used here to build a model
of classification of traffic signs to classes W, I, O on the
basis of attributes S and PC. This is a typical problem of
taxonomy.

One can remark that the sets of signs indiscernible by
“Class” are:

W D fagClass ; I D fb; cgClass ; O D fdgClass ;

Rough Sets in Decision Making, Table 1
Examples of traffic signs described by S and PC

Traffic sign Shape (S) Primary color (PC) Class

a) triangle yellow W

b) circle white I

c) circle blue I

d) circle blue O
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and the sets of signs indiscernible by S and PC are as fol-
lows:

fagS;PC ; fbgS;PC ; fc; dgS;PC :

The above elementary sets are generated, on the one
hand, by decision attribute “Class” and, on the other hand,
by condition attributes S and PC. The elementary sets of
signs indiscernible by “Class” are denoted by f�gClass and
those by S and PC are denoted by f�gS;PC. Notice that
W D fagClass is characterized precisely by fagS;PC. In or-
der to characterize I D fb; cgClass and O D fdgClass, one
needs fbgS;PC and fc; dgS;PC, however, only fbgS;PC is in-
cluded in I D fb; cgClass while fc; dgS;PC has a non-empty
intersection with both I D fb; cgClass and O D fdgClass. It
follows, from this characterization, that by using condition
attributes S and PC, one can characterize classW precisely,
while classes I and O can only be characterized approxi-
mately:

� Class W includes sign a certainly and possibly no other
sign than a,

� Class I includes sign b certainly and possibly signs b; c
and d,

� Class O includes no sign certainly and possibly signs c
and d.

The terms “certainly” and “possibly” refer to the ab-
sence or presence of ambiguity between the description of
signs by S and PC from the one side, and by “Class”, from
the other side. In other words, using description of signs
by S and PC, one can say that all signs from elementary
sets f�gS;PC included in elementary sets f�gClass belong cer-
tainly to the corresponding class, while all signs from ele-
mentary sets f�gS;PC having a non-empty intersection with
elementary sets f�gClass belong to the corresponding class
only possibly. The two sets of certain and possible signs
are, respectively, the lower and upper approximation of the
corresponding class by attributes S and PC:

lower_approx:S;PC(W) D fag;

upper_approx:S;PC(W) D fag;

lower_approx:S;PC(I) D fbg;

upper_approx:S;PC(I) D fb; c; dg;

lower_approx:S;PC(O) D ;;

upper_approx:S;PC(O) D fc; dg:

The quality of approximation of the classification by
attributes S and PC is equal to the number of all the signs
in the lower approximations divided by the number of all
the signs in the table, i. e. 1/2.

Rough Sets in Decision Making, Table 2
Examples of traffic signs described by S, PC and SC

Traffic sign Shape (S) Primary
color (PC)

Secondary
color (SC)

Class

a) triangle yellow red W

b) circle white red I

c) circle blue red I

d) circle blue white O

Oneway to increase the quality of the approximation is
to add a new attribute so as to decrease the ambiguity. Let
us introduce the secondary color (SC) as a new condition
attribute. The new situation is now shown in Table 2.

As one can see, the sets of signs indiscernible by S, PC
and SC, i. e. the elementary sets f�gS;PC;SC, are now:

fagS;PC;SC ; fbgS;PC;SC ; fcgS;PC;SC ; fdgS;PC;SC :

It is worth noting that the elementary sets are finer
than before and this enables the ambiguity to be elimi-
nated. Consequently, the quality of approximation of the
classification by attributes S, PC and SC is now equal to 1.

A natural question occurring here is to ask if, indeed,
all three attributes are necessary to characterize precisely
the classes W, I and O. When attribute S or attribute PC is
eliminated from the description of the signs, the elemen-
tary sets f�gPC;SC or f�gS;SC are defined, respectively, as fol-
lows:

fagPC;SC ; fbgPC;SC ; fcgPC;SC ; fdgPC;SC ;

fagS;SC ; fb; cgS;SC ; fdgS;SC :

Using any one of the above elementary sets, it is possi-
ble to characterize (approximate) classes W, I and O with
the same quality (equal to 1) as it is when using the ele-
mentary sets f�gS;PC;SC (i. e. those generated by the com-
plete set of three condition attributes). Thus, the answer to
the above question is that the three condition attributes are
not all necessary to characterize precisely the classes W, I
and O. It is, in fact, sufficient to use either PC and SC or S
and SC. The subsets of condition attributes fPC; SCg and
fS; SCg are called reducts of fS;PC; SCg because they have
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this property. Note that the identification of reducts en-
ables us to reduce attributes about the signs from the table
to only those which are relevant.

Other useful information can be generated from the
identification of reducts by taking their intersection. This
is called the core. In our example, the core contains at-
tribute SC. This tells us that it is clearly an indispensable at-
tribute i. e. it cannot be eliminated from the description of
the signs without decreasing the quality of the approxima-
tion. Note that other attributes from the reducts (i. e. S and
PC) are exchangeable. If there happened to be some other
attributes which were not included in any reduct, then they
would be superfluous, i. e. they would not be useful at all in
the characterization of the classes W, I and O.

If, however, column S or PC is eliminated from Ta-
ble 2, then the resulting table is not a minimal representa-
tion of knowledge about the classification of the four traffic
signs. Note that, in order to characterize class W in Ta-
ble 2, it is sufficient to use the condition “S = triangle”.
Moreover, class I is characterized by two conditions (“S =
circle” and “SC = red”) and class O is characterized by the
condition “SC = white”. Thus, the minimal representation
of this information system requires only four conditions
(rather than the eight conditions that are presented in Ta-
ble 2 with either column S or PC eliminated). This repre-
sentation corresponds to the following set of decision rules
which may be seen as classification model discovered in
the data set contained in Table 2 (in the braces there are
symbols of signs covered by the corresponding rule):

rul e #1 : if S D triangle; then Class DW fag
rul e #2 : if S D circle

and SC D red; then Class D I fb; cg
rul e #3 : if SC D white; then Class D O fdg :

This is not the only representation, because an alterna-
tive set of rules is:

rul e #10 : if PC D yellow; then Class DW fag
rul e #20 : if PC D white; then Class D I fbg
rul e #30 : if PC D blue;

and SC D red; then Class D I fcg
rul e #40 : if SC D white; then Class D O fdg :

It is interesting to come back to Table 1 and to ask what
decision rules represent this information system. As the
description of the four signs by S and PC is not sufficient
to characterize exactly all the classes, it is not surprising
that not all the rules will have a non-ambiguous decision.

Indeed, the following decision rules can be induced:

rul e #100 : if S D triangle; then Class DW fag
rul e #200 : if PC D white; then Class D I fbg
rul e #300 : if PC D blue; then Class D I or O fc; dg :

Note that these rules can be induced from the
lower approximations of classes W and I, and from
the set called the boundary of both I and O. In-
deed, for exact rule #100, the supporting example is in
lower_approx:S;PC(W) D fag; for exact rule #200 it is in
lower_approx:S;PC(I) D fbg; and the supporting examples
for approximate rule #300 are in the boundary of classes I
and O, defined as:

boundaryS;PC(I)

D upper_approx:S;PC(I) � lower_approx:S;PC(I)

D fc; dg ;

boundaryS;PC(O)

D upper_approx:S;PC(O) � lower_approx:S;PC(O)

D fc; dg :

As a result of the approximate characterization of
classes W, I and O by S and PC, an approximate repre-
sentation in terms of decision rules is obtained. Since the
quality of the approximation is 1/2, exact rules (#100 and
#200) cover one half of the examples and the other half is
covered by the approximate rule (#300). Now, the quality
of approximation by S and SC, or by PC and SC, was equal
to 1, so all examples were covered by exact rules (#1 to #3,
or #10 to #40 respectively).

One can see, from this simple example, that the rough
set analysis of data included in an information system pro-
vides some useful information. In particular, the following
results are obtained:

� A characterization of decision classes in terms of cho-
sen condition attributes through lower and upper ap-
proximation.

� A measure of the quality of approximation which in-
dicates how good the chosen set of attributes is for ap-
proximation of the classification.

� The reducts of condition attributes including all rele-
vant attributes. At the same time, superfluous and ex-
changeable attributes are also identified.

� The core composed of indispensable attributes.
� A set of decision rules which is induced from the lower

and upper approximations of the decision classes. This
constitutes a classification model for a given informa-
tion system.
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Dominance-Based Rough Set Approach
to Ordinal ClassificationProblems

Dominance-Based Rough Set Approach (DRSA)

Dominance-based Rough Set Approach (DRSA) has been
proposed by the authors to handle background knowledge
about ordinal evaluations of objects from a universe, and
about monotonic relationships between these evaluations,
e. g. “the larger the mass and the smaller the distance, the
larger the gravity” or “the greater the debt of a firm, the
greater its risk of failure”. Such a knowledge is typical for
data describing various phenomena. It is also character-
istic for data concerning multiple criteria decision or de-
cision under uncertainty, where the order of value sets of
condition and decision attributes corresponds to increas-
ing or decreasing preference. In case of multiple criteria
decision, the condition attributes are called criteria.

Let us consider a decision table including a finite uni-
verse of objects (solutions, alternatives, actions) U eval-
uated on a finite set of criteria F D f f1; : : : ; fng, and on
a single decision attribute d. The set of the indices of cri-
teria is denoted by I D f1; : : : ; ng. Without loss of gen-
erality, fi : U ! < for each i D 1; : : : ; n, and, for all ob-
jects x; y 2 U; fi (x) � fi(y) means that “x is at least as
good as y with respect to criterion f i ”, which is denoted
by x �i y. Therefore, it is supposed that �i is a complete
preorder, i. e. a strongly complete and transitive binary re-
lation, defined on U on the basis of evaluations fi(�). Fur-
thermore, decision attribute d makes a partition of U into
a finite number of decision classes, Cl D fCl1; : : : ;Clmg,
such that each x 2 U belongs to one and only one class
Clt ; t D 1; : : : ;m. It is assumed that the classes are prefer-
ence ordered, i. e. for all r; s D 1; : : : ;m, such that r > s,
the objects from Clr are preferred to the objects from Cls .
More formally, if� is a comprehensive weak preference re-
lation on U, i. e. if for all x; y 2 U; x�y reads “x is at least
as good as y”, then it is supposed that

[x2Clr ; y2Cls ; r > s]) x�y ;

where x�y means x�y and not y�x.
The above assumptions are typical for consideration

of an ordinal classification (or multiple criteria sorting)
problem. Indeed, the decision table characterized above
includes examples of ordinal classification which consti-
tute an input preference information to be analyzed using
DRSA.

The sets to be approximated are called upward union
and downward union of decision classes, respectively:

Cl�t D
[

s�t
Cls ; Cl�t D

[

s�t
Cls ; t D 1; : : : ;m :

The statement x 2 Cl�t reads “x belongs to at least class
Clt”, while x 2 Cl�t reads “x belongs to at most class
Clt”. Let us remark that Cl�1 D Cl�m D U; Cl�m D Clm
and Cl�1 D Cl1. Furthermore, for t D 2; : : : ;m,

Cl�t�1 D U � Cl�t and Cl�t D U � Cl�t�1 :

The key idea of DRSA is representation (approxima-
tion) of upward and downward unions of decision classes,
by granules of knowledge generated by criteria. These gran-
ules are dominance cones in the criteria values space.

x dominates y with respect to set of criteria P � I
(shortly, x P-dominates y), denoted by xDP y, if for ev-
ery criterion i 2 P; fi (x) � fi(y). The relation of P-domi-
nance is reflexive and transitive, i. e. it is a partial preorder.

Given a set of criteria P � I and x 2 U , the granules of
knowledge used for approximation in DRSA are:

� a set of objects dominating x, called P-dominating set,
DCP (x) D fy 2 U : yDPxg,

� a set of objects dominated by x, called P-dominated set,
D�P (x) D fy 2 U : xDP yg.

Let us recall that the dominance principle requires that
an object x dominating object y on all considered criteria
(i. e. x having evaluations at least as good as y on all con-
sidered criteria) should also dominate y on the decision
(i. e. x should be assigned to at least as good decision class
as y). Objects satisfying the dominance principle are called
consistent, and those which are violating the dominance
principle are called inconsistent.

The P-lower approximation of Cl�t , denoted by
P
�
Cl�t


, and the P-upper approximation of Cl�t , denoted

by P
�
Cl�t


, are defined as follows (t D 2; : : : ;m):

P
�
Cl�t


D
˚
x 2 U : DCP (x) � Cl�t

�
;

P
�
Cl�t


D
˚
x 2 U : D�P (x) \ Cl�t ¤ ;

�
:

Analogously, one can define the P-lower approxima-
tion and the P-upper approximation of Cl�t as follows
(t D 1; : : : ;m � 1):

P
�
Cl�t


D
˚
x 2 U : D�P (x) � Cl�t

�
;

P
�
Cl�t


D
˚
x 2 U : DCP (x) \ Cl�t ¤ ;

�
:

The P-lower and P-upper approximations so defined
satisfy the following inclusion properties, for all P � I:

P
�
Cl�t


� Cl�t � P

�
Cl�t


; t D 2; : : : ;m ;

P
�
Cl�t


� Cl�t � P

�
Cl�t


; t D 1; : : : ;m � 1 :
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The P-lower and P-upper approximations of Cl�t and
Clt� have an important complementarity property, ac-
cording to which,

P
�
Cl�t


D U � P

�
Cl�t�1


and

P
�
Cl�t


D U � P

�
Cl�t�1


; t D 2; : : : ;m;

P
�
Cl�t


D U � P

�
Cl�tC1


and

P
�
Cl�t


D U � P

�
Cl�tC1


; t D 1; : : : ;m � 1 :

The P-boundary of Cl�t and Cl�t , denoted by
BnP

�
Cl�t


and BnP

�
Cl�t


, respectively, are defined as fol-

lows:

BnP
�
Cl�t


D P

�
Cl�t


� P

�
Cl�t


; t D 2; : : : ;m;

BnP
�
Cl�t


D P

�
Cl�t


� P

�
Cl�t


; t D 1; : : : ;m � 1:

Due to the above complementarity property,
BnP

�
Cl�t


D BnP

�
Cl�t�1


, for t D 2; : : : ;m.

For every P � C, the quality of approximation of the
ordinal classification Cl by a set of criteria P is defined as
the ratio of the number of objects P-consistent with the
dominance principle and the number of all the objects
in U. Since the P-consistent objects are those which do
not belong to any P-boundary BnP(Cl�t ); t D 2; : : : ;m, or
BnP

�
Cl�t


; t D 1; : : : ;m � 1, the quality of approxima-

tion of the ordinal classification Cl by a set of criteria P,
can be written as

�P(Cl) D

ˇ
ˇU �

�S
tD2;:::;m BnP

�
Cl�t

ˇˇ

jUj

D

ˇ
ˇU �

�S
tD1;:::;m�1 BnP

�
Cl�t

ˇˇ

jUj
:

�P(Cl) can be seen as a degree of consistency of the
objects from U, when P is the set of criteria and Cl is the
considered ordinal classification.

Eachminimal (with respect to inclusion) subset P � C
such that �P(Cl) D �C (Cl) is called a reduct of Cl, and is
denoted by REDCl. Let us remark that for a given set U
one can have more than one reduct. The intersection of all
reducts is called the core, and is denoted by CORECl. Cri-
teria in CORECl cannot be removed from consideration
without deteriorating the quality of approximation. This
means that, in set C, there are three categories of criteria:

� indispensable criteria included in the core,
� exchangeable criteria included in some reducts, but not

in the core,
� redundant criteria, neither indispensable nor ex-

changeable, and thus not included in any reduct.

The dominance-based rough approximations of up-
ward and downward unions of decision classes can serve
to induce a generalized description of objects in terms
of “if . . . , then . . . ” decision rules. For a given upward
or downward union of classes, Cl�t or Cl�s , the decision
rules induced under a hypothesis that objects belonging to
P(Cl�t ) or P

�
Cl�s


are positive examples, and all the oth-

ers are negative, suggest a certain assignment to “class Clt
or better”, or to “class Cls or worse”, respectively. On the
other hand, the decision rules induced under a hypothesis
that objects belonging to P

�
Cl�t


or P

�
Cl�s


are positive

examples, and all the others are negative, suggest a pos-
sible assignment to “class Clt or better”, or to “class Cls
or worse”, respectively. Finally, the decision rules induced
under a hypothesis that objects belonging to the intersec-
tion P(Cl�s ) \ P(Cl�t ) are positive examples, and all the
others are negative, suggest an approximate assignment to
some classes between Cls and Clt(s < t).

In the case of preference ordered description of ob-
jects, set U is composed of examples of ordinal classifica-
tion. Then, it is meaningful to consider the following five
types of decision rules:

1) certain D�-decision rules, providing lower profile de-
scriptions for objects belonging to P(Cl�t ): if fi1(x) �
ri1 and . . . and fi p (x) � ri p , then x 2 Cl�t ; fi1; : : : ;
ipg � I; t D 2; : : : ;m; ri1 ; : : : ; ri p 2 <;

2) possible D�-decision rules, providing lower profile de-
scriptions for objects belonging to P(Cl�t ): if fi1(x) �
ri1 and . . . and fi p (x) � ri p , then x possibly belongs to
Cl�t ; fi1; : : : ; ipg � I; t D 2; : : : ;m; ri1 ; : : : ; ri p 2 <;

3) certain D�-decision rules, providing upper profile de-
scriptions for objects belonging to P(Cl�t ): if fi1(x) �
ri1 and . . . and fi p (x) � ri p , then x 2 Cl�t ; fi1; : : : ;
ipg � I; t D 1; : : : ;m � 1; ri1 ; : : : ; ri p 2 <;

4) possible D�-decision rules, providing upper profile de-
scriptions for objects belonging to P(Cl�t ): if fi1(x) �
ri1 and . . . and fi p (x) � ri p , then x possibly belongs
to Cl�t ; fi1; : : : ; ipg � I; t D 1; : : : ;m � 1; ri1 ; : : : ;
ri p 2 <;

5) approximate D��-decision rules, providing simultane-
ously lower and upper profile descriptions for objects
belonging to Cls [ ClsC1 [ : : : [ Clt , without possi-
bility of discerning to which class: if fi1(x) � ri1 and
. . . and fik (x) � rik and fikC1 (x) � rikC1 and . . . and
fi p (x) � ri p , then x 2 Cls [ClsC1[ : : :[Clt ; fi1; : : : ;
ipg � I; s; t 2 f1; : : : ;mg; s < t; ri1 ; : : : ; ri p 2 <.

In the premise of a D��-decision rule, there can be
“ fi(x) � ri” and “ fi(x) � r0i”, where ri � r0i , for the same
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i 2 I. Moreover, if ri D r0i , the two conditions boil down
to “ fi (x) D ri”.

Since a decision rule is a kind of implication, a mini-
mal rule is understood as an implication such that there
is no other implication with the premise of at least the
same weakness (in other words, a rule using a subset of
elementary conditions or/and weaker elementary condi-
tions) and the conclusion of at least the same strength (in
other words, a D�- or aD�-decision rule assigning objects
to the same union or sub-union of classes, or a D��-de-
cision rule assigning objects to the same or smaller set of
classes).

The rules of type 1) and 3) represent certain knowl-
edge extracted from data (examples of ordinal classifica-
tion), while the rules of type 2) and 4) represent possible
knowledge; the rules of type 5) represent doubtful knowl-
edge, because they are supported by inconsistent objects
only.

Moreover, the rules of type 1) and 3) are exact if they
do not cover negative examples, and they are probabilis-
tic otherwise. In the latter case, each rule is characterized
by a confidence ratio, representing the probability that an
object matching the premise of the rule also matches its
conclusion.

Given a certain or possible D�-decision rule r �
“if fi1(x) � ri1 and . . . and fi p (x) � ri p , then x 2 Cl�t ”,
an object y 2 U supports r if fi1 (y) � ri1 and . . . and
fi p (y) � ri p . Moreover, object y 2 U supporting decision
rule r is a base of r if fi1(y) D ri1 and . . . and fi p (y) D ri p .
Similar definitions hold for certain or possible D�-deci-
sion rules and approximate D��-decision rules. A deci-
sion rule having at least one base is called robust. Identi-
fication of supporting objects and bases of robust rules is
important for interpretation of the rules in multiple crite-
ria decision analysis perspective. The ratio of the number
of objects supporting a rule and the number of all consid-
ered objects is called relative support of a rule. The relative
support and the confidence ratio are basic characteristics
of a rule, however, some Bayesian confirmation measures
reflect much better the attractiveness of a rule [25].

A set of decision rules is complete if it covers all con-
sidered objects (examples of ordinal classification) in such
a way that consistent objects are re-assigned to their origi-
nal classes, and inconsistent objects are assigned to clusters
of classes referring to this inconsistency. A set of decision
rules is minimal if it is complete and non-redundant, i. e.
exclusion of any rule from this set makes it incomplete.

Note that the syntax of decision rules induced from
rough approximations defined using dominance cones,
is using consistently this type of granules. Each condi-
tion profile defines a dominance cone in p

"V (p�n) -dimen-

sional condition space <p(p � n), and each decision pro-
file defines a dominance cone in one-dimensional decision
space f1; : : : ;mg. In both cases, the cones are positive for
D�-rules and negative for D�-rules.

Let also remark that dominance cones corresponding
to condition profiles can originate in any point of <n ,
without the risk of their being too specific. Thus, contrary
to traditional granular computing, the condition space<n

need not be discretized.
Procedures for rule induction from dominance-based

rough approximations have been proposed in [17].
In [10], a newmethodology for the induction of mono-

tonic decision trees from dominance-based rough approx-
imations of preference ordered decision classes has been
proposed.

Application of DRSA to decision related problems
goes far beyond ordinal classification. In [27], DRSA has
been used for decision support involving multiple decision
makers, and in [28], DRSA has been applied to case-based
reasoning. The following sections present applications of
DRSA to multiple criteria choice and ranking, to decision
under uncertainty and to interactive multiobjective opti-
mization. The surveys [24,26,29,51,52] include other ap-
plications of DRSA.

Example Illustrating DRSA in the Context
of Ordinal Classification

This subsection presents a didactic example which illus-
trates the main concepts of DRSA. Let us consider the fol-
lowing ordinal classification problem. Students of a col-
lege must obtain an overall evaluation on the basis of their
achievements in Mathematics, Physics and Literature. The
three subjects are clearly criteria (condition attributes) and
the comprehensive evaluation is a decision attribute. For
simplicity, the value sets of the criteria and of the deci-
sion attribute are the same, and they are composed of three
values: bad, medium and good. The preference order of
these values is obvious. Thus, there are three preference
ordered decision classes, so the problem belongs to the
category of ordinal classification. In order to build a pref-
erence model of the jury, DRSA is used to analyze a set
of exemplary evaluations of students provided by the jury.
These examples of ordinal classification constitute an in-
put preference information presented as decision table in
Table 3.

Note that the dominance principle obviously applies to
the examples of ordinal classification, since an improve-
ment of a student’s score on one of three criteria, with
other scores unchanged, should not worsen the student’s
overall evaluation, but rather improve it.
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Rough Sets in Decision Making, Table 3
Exemplary evaluations of students (examples of ordinal classifi-
cation)

Student Mathematics Physics Literature Overall
evaluation

S1 good medium bad bad
S2 medium medium bad medium
S3 medium medium medium medium
S4 good good medium good
S5 good medium good good
S6 good good good good
S7 bad bad bad bad
S8 bad bad medium bad

Rough Sets in Decision Making, Table 4
Exemplary evaluations of students excluding Literature

Student Mathematics Physics Overall evaluation
S1 good medium bad
S2 medium medium medium
S3 medium medium medium
S4 good good good
S5 good medium good
S6 good good good
S7 bad bad bad
S8 bad bad bad

Observe that student S1 has not worse evaluations than
student S2 on all the considered criteria, however, the
overall evaluation of S1 is worse than the overall evalua-
tion of S2. This contradicts the dominance principle, so
the two examples of ordinal classification, and only those,
are inconsistent. The quality of approximation of the or-
dinal classification represented by examples in Table 3 is
equal to 0.75.

One can observe that in result of reducing the set
of considered criteria, i. e. the set of considered subjects,
some new inconsistencies can occur. For example, remov-
ing from Table 3 the evaluation on Literature, one obtains
Table 4, where S1 is inconsistent not only with S2, but also
with S3 and S5. In fact, student S1 has not worse evalu-
ations than students S2, S3 and S5 on all the considered
criteria (Mathematics and Physics), however, the overall
evaluation of S1 is worse than the overall evaluation of S2,
S3 and S5.

Observe, moreover, that removing from Table 3 the
evaluations on Mathematics, one obtains Table 5, where
no new inconsistencies occur, comparing to Table 3.

Similarly, after removing from Table 3 the evaluations

Rough Sets in Decision Making, Table 5
Exemplary evaluations of students excluding Mathematics

Student Physics Literature Overall evaluation
S1 medium bad bad
S2 medium bad medium
S3 medium medium medium
S4 good medium good
S5 medium good good
S6 good good good
S7 bad bad bad
S8 bad medium bad

Rough Sets in Decision Making, Table 6
Exemplary evaluations of students excluding Physics

Student Mathematics Literature Overall evaluation
S1 good bad bad
S2 medium bad medium
S3 medium medium medium
S4 good medium good
S5 good good good
S6 good good good
S7 bad bad bad
S8 bad medium bad

on Physics, one obtains Table 6, where no new inconsis-
tencies occur, comparing to Table 3.

The fact that no new inconsistency occurs whenMath-
ematics or Physics is removed, means that the subsets
of criteria {Physics, Literature} or {Mathematics, Litera-
ture} contain sufficient information to represent the over-
all evaluation of students with the same quality of ap-
proximation as using the complete set of three criteria.
This is not the case, however, for the subset {Mathematics,
Physics}. Observe, moreover, that subsets {Physics, Litera-
ture} and {Mathematics, Literature} are minimal, because
no other criterion can be removed without new inconsis-
tencies occur. Thus, {Physics, Literature} and {Mathemat-
ics, Literature} are the reducts of the complete set of cri-
teria {Mathematics, Physics, Literature}. Since Literature
is the only criterion which cannot be removed from any
reduct without introducing new inconsistencies, it consti-
tutes the core, i. e. the set of indispensable criteria. The
core is, of course, the intersection of all reducts, i. e. in our
example:

fLiteratureg
D fPhysics, Literatureg\fMathematics, Literatureg:

In order to illustrate in a simple way the con-
cept of rough approximation, let us confine our anal-



7764 R Rough Sets in Decision Making

ysis to the reduct {Mathematics, Literature}. Let us
consider student S4. His positive dominance cone
DC
fMathematics;Literatureg(S4) is composed of all the students

having evaluations not worse than him on Mathematics
and Literature, i. e. of all the students dominating him with
respect to Mathematics and Literature. Thus,

DC
fMathematics, Literatureg(S4) D fS4; S5; S6g :

On the other hand, the negative dominance cone of
student S4;D�

fMathematics, Literatureg(S4), is composed of all
the students having evaluations not better than him on
Mathematics and Literature, i. e. of all the students domi-
nated by him with respect to Mathematics and Literature.
Thus,

D�fMathematics, Literatureg(S4) D fS1; S2; S3; S4; S7; S8g :

Similar dominance cones can be obtained for all the
students from Table 6. For example, for S2, the dominance
cones are

DC
fMathematics, Literatureg(S2) D fS1; S2; S3; S4; S5; S6g

and

D�fMathematics, Literatureg(S2) D fS2; S7g :

The rough approximations can be calculated using
dominance cones. Let us consider, for example, the lower
approximation of the set of students having a “good” over-
all evaluation P(Cl�good), with P = {Mathematics, Litera-
ture}. Notice that P(Cl�good) D fS4; S5; S6g, because pos-
itive dominance cones of students S4, S5 and S6 are all
included in the set of students with an overall evaluation
“good”. In other words, this means that there is no student
dominating S4 or S5 or S6 while having an overall evalu-
ation worse than “good”. From the viewpoint of decision
making, this means that, taking into account the available
information about evaluation of students on Mathematics
and Literature, the fact that student y dominates S4 or S5
or S6 is a sufficient condition to conclude that y is a “good”
student.

The upper approximation of the set of students with
a “good” overall evaluation is P(Cl�good) D fS4; S5; S6g,
because negative dominance cones of students S4, S5 and
S6 have a nonempty intersection with the set of students
having a “good” overall evaluation. In other words, this
means that for each one of the students S4, S5 and S6, there
is at least one student dominated by him with an over-
all evaluation “good”. From the point of view of decision
making, this means that, taking into account the available

information about evaluation of students on Mathematics
and Literature, the fact that student y dominates S4 or S5
or S6 is a possible condition to conclude that y is a “good”
student.

Let us observe that for the set of criteria P = {Mathe-
matics, Literature}, the lower and upper approximations
of the set of “good” students are the same. This means
that examples of ordinal classification concerning this de-
cision class are all consistent. This is not the case, how-
ever, for the examples concerning the union of decision
classes “at least medium”. For this upward union the
rough approximations are P(Cl�medium) D fS3; S4; S5; S6g
and P(Cl�medium) D fS1; S2; S3; S4; S5; S6g. The difference
between P(Cl�medium) and P(Cl�medium), i. e. the boundary
BnP(Cl�medium) D fS1; S2g, is composed of students with
inconsistent overall evaluations, which has already been
noticed above. From the viewpoint of decision making,
this means that, taking into account the available infor-
mation about evaluation of students on Mathematics and
Literature, the fact that student y is dominated by S1 and
dominates S2 is a condition to conclude that y can obtain
an overall evaluation “at least medium” with some doubts.

Until now, rough approximations of only upward
unions of decision classes have been considered. It is in-
teresting, however, to calculate also rough approximations
of downward unions of decision classes. Let us consider
first the lower approximation of the set of students hav-
ing “at most medium” overall evaluation P(Cl�medium). Ob-
serve that P(Cl�medium) D fS1; S2; S3; S7; S8g, because the
negative dominance cones of students S1, S2, S3, S7, and
S8 are all included in the set of students with overall eval-
uation “at most medium”. In other words, this means that
there is no student dominated by S1 or S2 or S3 or S7 or S8
while having an overall evaluation better than “medium”.
From the viewpoint of decision making, this means that,
taking into account the available information about evalu-
ation of students on Mathematics and Literature, the fact
that student y is dominated by S1 or S2 or S3 or S7 or S8
is a sufficient condition to conclude that y is an “at most
medium” student.

The upper approximation of the set of students
with an “at most medium” overall evaluation is
P(Cl�medium) D fS1; S2; S3; S7; S8g, because the positive
dominance cones of students S1, S2, S3, S7, and S8 have
a nonempty intersection with the set of students having an
“at most medium” overall evaluation. In other words, this
means that for each one of the students S1, S2, S3, S7, and
S8, there is at least one student dominating him with an
overall evaluation “at most medium”. From the viewpoint
of decision making, this means that, taking into account
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the available information about evaluation of students on
Mathematics and Literature, the fact that student y is dom-
inated by S1 or S2 or S3 or S7 or S8 is a possible condition
to conclude that y is an “at most medium” student.

Finally, the lower and upper approximations of the
set of students having a “bad” overall evaluation are
P(Cl�bad) D fS7; S8g and P(Cl�bad) D fS1; S2; S7; S8g. The
difference between P(Cl�bad) and P(Cl�bad), i. e. the bound-
ary BnP(Cl�bad) D fS1; S2g is composed of students with
inconsistent overall evaluations, which has already been
noticed above. From the point of view of decision making,
this means that, taking into account the available infor-
mation about evaluation of students on Mathematics and
Literature, the fact that student y is dominated by S1 and
dominates S2 is a condition to conclude that y can obtain
an overall evaluation “bad” with some doubts. Observe,
moreover, that BnP(Cl�medium) D BnP(Cl�bad) D fS1; S2g.

Given the above rough approximations with respect to
the set of criteria P = {Mathematics, Literature}, one can
induce a set of decision rules representing the preferences
of the jury. The idea is that evaluation profiles of students
belonging to the lower approximations can serve as a base
for some certain rules, while evaluation profiles of stu-
dents belonging to the boundaries can serve as a base for
some approximate rules. The following decision rules have
been induced (between parentheses there are id’s of stu-
dents supporting the corresponding rule; the student be-
ing a rule base is underlined):

rule 1) if the evaluation on Mathematics is (at least)
good, and the evaluation on Literature is at least
medium, then the overall evaluation is (at least) good,
fS4; S5; S6g,

rule 2) if the evaluation on Mathematics is at least
medium, and the evaluation on Literature is at
least medium, then the overall evaluation is at least
medium, fS3; S4; S5; S6g,

rule 3) if the evaluation on Mathematics is at least
medium, and the evaluation on Literature is (at most)
bad, then the overall evaluation is bad or medium,
fS1; S2g,

rule 4) if the evaluation on Mathematics is at least
medium, then the overall evaluation is at least
medium, fS2; S3; S4; S5; S6g,

rule 5) if the evaluation on Literature is (at most) bad,
then the overall evaluation is at most medium,
fS1; S2; S7g,

rule 6) if the evaluation on Mathematics is (at most) bad,
then the overall evaluation is (at most) bad, fS7; S8g.

Notice that rules 1)–2), 4)–7) are certain, while rule 3) is an
approximate one. These rules represent knowledge discov-

ered from the available information. In the current con-
text, the knowledge is interpreted as a preference model
of the jury. A characteristic feature of the syntax of de-
cision rules representing preferences is the use of expres-
sions “at least” or “at most” a value; in case of extreme val-
ues (“good” and “bad”), these expressions are put in paren-
theses because there is no value above “good” and below
“bad”.

Even if one can represent all the knowledge using
only one reduct of the set of criteria (as it is the case
using P = {Mathematics, Literature}), when considering
a larger set of criteria than a reduct, one can obtain a more
synthetic representation of knowledge, i. e. the number of
decision rules or the number of elementary conditions, or
both of them, can get smaller. For example, considering
the set of all three criteria, {Mathematics, Physics, Litera-
ture}, one can induce a set of decision rules composed of
the above rules 1), 2), 3) and 6), plus the following:
rule 7) if the evaluation on Physics is at most medium,

and the evaluation on Literature is at most medium,
then the overall evaluation is at most medium,
fS1; S2; S3; S7; S8g.
Thus, the complete set of decision rules induced from

Table 3 is composed of 5 instead of 6 rules.
Once accepted by the DM, these rules represent his/her

preference model. Assuming that rules 1)–7) in our ex-
ample represent the preference model of the jury, it can
be used to evaluate new students. For example, student S9
who is “medium” in Mathematics and Physics and “good”
in Literature, would be evaluated as “medium” because his
profile matches the premise of rule 2), having as conse-
quence an overall evaluation at least “medium”. The over-
all evaluation of S9 cannot be “good”, because his profile
does not match any rule having as consequence an over-
all evaluation “good” (in the considered example, the only
rule of this type is rule 1) whose premise is not matched by
the profile of S9.

DRSA on a Pairwise Comparison Table
forMultiple Criteria Choice and Ranking Problems

Multiple Criteria Choice and Ranking Problems

Ordinal classification decisions are based on absolute eval-
uation of objects on multiple criteria, however, multiple
criteria choice and ranking decisions are based on pref-
erence relations between objects. Decision table including
examples of ordinal classification does not contain infor-
mation about preference relations between objects, thus,
in order to apply DRSA to multiple criteria choice and
ranking problems, a different representation of the input
preference information is needed.
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To handle binary relations within the rough set ap-
proach, it has been proposed in [14,15] to operate on, so-
called, pairwise comparison table (PCT), i. e. a decision ta-
ble including pairs of objects for which multiple criteria
evaluations and a comprehensive preference relation are
known. PCT represents preference information provided
by the DM in the form of decision examples (pairwise
comparisons of objects).

Similarly to ordinal classification, decision examples
concerning multiple criteria choice and ranking may be
inconsistent with respect to the dominance principle,
however, interpretation of the inconsistency is different:
It occurs when preferences of a pair of objects, say (a; b),
on all considered criteria are not weaker than preferences
of another pair of objects, say (c; d), on these criteria, how-
ever, the comprehensive preference of object a over ob-
ject b is weaker than the comprehensive preference of ob-
ject c over object d.

The Pairwise Comparison Table

Similarly to the ordinal classification, let us consider a fi-
nite set of criteria F D f f1; : : : ; fng, the set of their in-
dices I D f1; : : : ; ng and a finite universe of objects (ac-
tions, solutions, alternatives) U. For any criterion i 2 I,
let Ti be a finite set of binary relations defined on U on
the basis of the evaluations of objects from U with respect
to the considered criterion i, such that 8(x; y) 2 U � U
exactly one binary relation t 2 Ti is verified; t 2 Ti has
the meaning of a preference relation for a pair of objects
on a particular criterion i. More precisely, given value
set Vi of i 2 I, if v0i ; v

00
i 2 Vi are the respective evalua-

tions of x; y 2 U on criterion i, and (x; y) 2 t, with t 2 Ti ,
then for each w; z 2 U having the same evaluations v0i ; v

00
i

on i; (w; z) 2 t. For interesting applications it should be
jTq j � 2; 8i 2 I. Furthermore, let Td be a set of binary re-
lations defined on U, such that at most one binary relation
t 2 Td is verified 8(x; y) 2 U � U ; t 2 Td has the mean-
ing of a comprehensive preference relation for a pair of ob-
jects (comprehensive pairwise comparison).

The preference information provided by the DM,
has the form of pairwise comparisons of some refer-
ence objects from B � U . These decision examples are
presented in the pairwise comparison table (PCT), de-
fined as information table SPCT D hB̂; F [ fdg; TF [
Td ; gi, where B̂ � B � B is a non-empty set of exemplary
pairwise comparisons of reference objects, TF D

S
i2I Ti ; d

is a decision corresponding to the comprehensive pair-
wise comparison (comprehensive preference relation),
and g : B̂ � (F [ fdg) ! TF [ Td is a total function
such that g[(x; y); i] 2 Ti ; 8(x; y) 2 U � U and 8i 2 I,

and g[(x; y); d] 2 Td ; 8(x; y) 2 B̂. It follows that for
any pair of reference objects (x; y) 2 B̂ there is verified
one and only one binary relation t 2 Td . Thus, Td induces
a partition of B̂. In fact, information table SPCT can be seen
as decision table, since the set of considered criteria F and
decision d are distinguished.

It is assumed that the exemplary pairwise compar-
isons provided by the DM can be represented in terms of
graded preference relations (for example “very weak pref-
erence”, “weak preference”, “strict preference”, “strong
preference”, “very strong preference”) Ph

i : 8i 2 I and
8(x; y) 2 U � U ,

Ti D
n
Ph
i ; h 2 Hi

o
;

where Hi is a particular subset of the relative integers and

� xPh
i y; h > 0, means that object x is preferred to ob-

ject y by degree h with respect to criterion i,
� xPh

i y; h < 0, means that object x is not preferred to ob-
ject y by degree h with respect to criterion i,

� xP0i y means that object x is similar (asymmetrically in-
different) to object y with respect to criterion i.

Of course, 8i 2 I and 8(x; y) 2 U � U , it holds:

h
xPh

i y; h > 0
i
)
h
yPk

i x; k � 0
i
:

The set of binary relations Td may be defined in a sim-
ilar way, but xPh

d y means that object x is comprehensively
preferred to object y by degree h.

Technically, the modeling of the binary relation Ph
i ,

i. e. the assessment of h, can be organized as follows:

� first, it is observed that criterion i is a function
fi : U ! < increasing with respect to the preferences
on i, for each i D 1; : : : ; n,

� then, for each i D 1; : : : ; n, it is possible to define
a function ki : <2 ! < which measures the strength of
the preference (positive or negative) of x over y (e. g.
ki [ fi(x); fi(y)] D fi(x) � fi(y)); it should satisfy the
following properties 8x; y; z 2 U :
i) fi(x) > fi(y) , ki [ fi(x); fi(z)] > ki[ fi (y);

fi(z)],
ii) fi(x) > fi(y) , ki [ fi(z); fi (x)] < ki [ fi(z);

fi(y)],
iii) fi(x) D fi(y), ki[ fi (x); fi(y)] D 0,

� next, the domain of ki can be divided into inter-
vals, using a suitable set of thresholds �i ; 8i 2 I;
these intervals are numbered in such a way that
ki [ fi(x); fi(y)] D 0 belongs to interval no. 0,
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� the value of h in the relation xPh
i y is then equal to the

number of the interval including ki [ fi(x); fi (y)], for
any (x; y) 2 U � U .

Actually, property iii) can be relaxed in order to obtain
a more general preference model which, for instance, does
not satisfy preferential independence.

To simplify the presentation, let us consider a PCT
where the set Td is composed of two binary relations de-
fined on U:

� x outranks y (denotation xSy or (x; y) 2 S), where
(x; y) 2 B̂,

� x does not outrank y (denotation xSc y or (x; y) 2 Sc),
where (x; y) 2 B̂,

and S [ Sc D B̂, where “x outranks y” means “x is at least
as good as y”; observe that the binary relation S is reflex-
ive, but neither necessarily transitive nor complete. In [8],
a more general PCT was considered, where the set Td is
composed of multi-graded binary relations defined on U.

Approximation by Means
of Graded Dominance Relations

Let HP D
T

i2P Hi ; 8P � I. Given P � I and h 2 HP ;

8(x; y) 2 U � U it is said that x positively dominates y
by degree h with respect to criteria from P iff xPci

i y with
ci � h; 8i 2 P. Analogously, 8(x; y) 2 U � U; x neg-
atively dominates y by degree h with respect to criteria
from P iff xPci

i y with ci � h; 8i 2 P. Therefore, each
P � I and h 2 HP generate two binary relations (possi-
bly empty) on U, called positive P-dominance by degree h
(denotation Dh

CP) and negative P-dominance by degree h
(denotation Dh

�P), respectively. They satisfy the following
conditions:

(P1) if (x; y) 2 Dh
CP , then (x; y) 2 Dh

CR for each R � P
and k � h;

(P2) if (x; y) 2 Dh
�P , then (x; y) 2 Dh

�R for each R � P
and k � h.

In [15], it has been proposed to approximate the out-
ranking relation S by means of the dominance relation
Dh
CP . Therefore, S is considered a rough binary relation.
The P-lower approximation of S (denotation P(S)) and

the P-upper approximation of S (denotation P(S)) are de-
fined, respectively, as:

P(S) D
[

h2HP

n

Dh
CP \ B̂

�
� S

o
;

P(S) D
\

h2HP

n

Dh
CP \ B̂

�
� S

o
:

P(S) may be interpreted as the dominance relation
Dh
CP having the largest intersection with B̂ included in the

outranking relation S, and P(S) as the dominance relation
Dh
CP including S and having the smallest intersection with

B̂.
Analogously, it is possible to approximate the relation

Sc by means of the dominance relation Dh
�P . Observe that,

in general, the definitions of the approximations of S and
Sc do not satisfy the condition of complementarity, i. e. it
is not true, in general, that P(S) is equal to B̂ � P(Sc ) and
that P(Sc ) is equal to B̂ � P(S). This is because S and Sc

are approximated using two different relations, Dh
CP and

Dh
�P , respectively. Nevertheless, the approximations thus

obtained constitute a good basis for the generation of sim-
ple decision rules.

Decision Rules

It is possible to represent preferences of the DM revealed
in terms of exemplary pairwise comparisons contained in
a given PCT, using decision rules. Since approximations
of S and Sc were made using graded dominance relations,
it is possible to induce decision rules being propositions of
the following type:

� DCC-decision rule: if xDh
CP y, then xSy,

� DC�-decision rule: if not xDh
CP y, then xSc y,

� D�C-decision rule: if not xDh
�P y, then xSy,

� D��-decision rule: if xDh
�P y, then xSc y,

where P is a non-empty subset of I. Therefore, for example,
a DCC– decision rule is a proposition of the type: “if x
positively dominates y by degree h with respect to criteria
from P, then x outranks y”.

A constructive definition of these rules may be given,
being a kind of implication supported by the existence of
at least one pair of objects from B̂ satisfying one of the four
propositions listed above, and by the absence of pairs from
B̂ contradicting it. Thus, for example, if

� there exists at least one pair (w; z) 2 B̂ such that
wDh
CPz and wSz and

� there does not exist any pair (v; u) 2 B̂ such that
vDh
CPu and vScu,

� then “if xDh
CP y, then xSy” is accepted as a DCC– deci-

sion rule.

A DCC-decision rule “if xDh
CP y, then xSy” is said

to be minimal if there does not exist any other rule “if
xDk
CR y, then xSy” such that R � P and k � h. Analogous

definitions hold for the other cases. In other words, a mini-
mal decision rule is a kind of implication for which there is
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no other implication whose premise is of at least the same
weakness and whose consequence is of at least the same
strength.

The following results show connections of the decision
rules with the P-lower and P-upper approximations of S
and Sc [15]:

� DCC-minimal decision rule “if xDh
CP y, then xSy” is

supported by pairs of objects belonging to P(S) D
Dh
CP \ B̂,

� D��-minimal decision rule “if xDh
�P y, then xSc y” is

supported by pairs of objects belonging to P(Sc ) D
Dh
�P \ B̂,

� DC�-minimal decision rule “if not xDh
CP y, then xS

c y”
is supported by pairs of objects belonging to P(S) D
Dh
CP \ B̂,

� D�C-minimal decision rule “if not xDh
�P y, then xSy”

is supported by pairs of objects belonging to P(Sc ) D
Dh
�P \ B̂.

Application of the Decision Rules
and Final Recommendation

In order to obtain a recommendation in the multiple cri-
teria choice or ranking problems with respect to a set of
objects M � U , the decision rules induced from the ap-
proximations of S and Sc (defined with respect to reference
objects from B) should be applied on set M �M. The ap-
plication of the rules to any pair of objects (u; v) 2 M �M
establishes the presence (uSv) or the absence (uScv) of
outranking with respect to (u; v). More precisely,

� from DCC-decision rule “if xDh
CP y then xSy” and

from uDh
CPv, one concludes uSv,

� from DC�-decision rule “if not xDh
CP y then xS

c y” and
from not uDh

CPv, one concludes uS
c y,

� from D�C-decision rule “if not xDh
�P y, then xSy” and

from not uDh
�Pv, one concludes uSv,

� from D��-decision rule “if xDh
�P y, then xSc y” and

from uDh
�Pv, one concludes uS

cv.

After the application of the decision rules to each pair
of objects (u; v) 2 M �M, one of the following four situ-
ations may occur:

� uSv and not uScv, that is true outranking (denotation
uSTv),

� uScv and not uSv, that is false outranking (denotation
uSFv),

� uSv and uScv, that is contradictory outranking (deno-
tation uSKv),

� not uSv and not uScv, that is unknown outranking (de-
notation uSUv).

The four above situations, which together constitute
the so-called four-valued outranking (see [56]), have been
introduced to underline the presence and the absence of
positive and negative reasons for the outranking. More-
over, theymake it possible to distinguish contradictory sit-
uations from unknown ones.

The following theorem underlines the operational im-
portance of the minimal decision rules [15]: The applica-
tion of all the decision rules obtained for a given SPCT to
a pair of objects (u; v) 2 M �M results in the same out-
ranking relations S and Sc as those obtained from the ap-
plication of theminimal decision rules only. Therefore, the
set of the minimal decision rules totally characterizes the
preferences of the DM contained in SPCT.

A final recommendation can be obtained upon a suit-
able exploitation of the presence and the absence of out-
ranking S and Sc on M. A possible exploitation proce-
dure consists in calculating a specific score, calledNet Flow
Score, for each object x 2 M:

Snf(x) D SCC(x) � SC�(x)C S�C(x) � S��(x) ;

where

SCC(x) D jfy 2 M : there is at least one decision
rule which affirms xSygj ;

SC�(x) D jfy 2 M : there is at least one decision
rule which affirms ySxgj ;

S�C(x) D jfy 2 M : there is at least one decision
rule which affirms ySc xgj ;

S��(x) D jfy 2 M : there is at least one decision
rule which affirms xSc ygj :

The recommendation in multiple criteria ranking
problems consists of the total preorder determined by
Snf(x) on M; in multiple criteria choice problems it
consists of the object(s) x� 2 M such that Snf(x�) D
maxx2M Snf(x).

The procedure described above has been characterized
with reference to a number of desirable properties in [13].

Approximation by Means
of Multi-graded Dominance Relations

The graded dominance relation introduced above assumes
a common grade of preference for all the considered cri-
teria. While this permits a simple calculation of the ap-
proximations and of the resulting decision rules, it is lack-
ing in precision. A dominance relation allowing a different
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degree of preference for each considered criterion (multi-
graded dominance) gives a far more accurate picture of the
preference information contained in the pairwise compar-
ison table SPCT [14,16,18].

More formally, given P � I (P ¤ ;); (x; y); (w; z) 2
U �U; (x; y) is said to dominate (w; z) with respect to cri-
teria from P (denotation (x; y)DP(w; z)) if x is preferred
to y at least as strongly as w is preferred to z with respect
to each i 2 P. Precisely, “at least as strongly as” means
“by at least the same degree”, i. e. hi � ki, where hi; ki 2
Hi ; xPhi

i y and wPki
i z;8i 2 P. Let Dfig be the domi-

nance relation confined to the single criterion i 2 P. The
binary relation Dfig is reflexive ((x; y)Dfig(x; y);8(x; y) 2
U � U), transitive ((x; y)Dfig(w; z) and (w; z)Dfig(u; v)
imply (x; y)Dfig(u; v);8(x; y); (w; z); (u; v) 2 U�U), and
complete ((x; y)Dfig(w; z) or (w; z)Dfig(x; y);8(x; y);
(w; z) 2 U � U). Therefore, Dfig is a complete preorder
on U � U . Since the intersection of complete preorders is
a partial preorder and DP D

T
i2P Dfig; P � I, then the

dominance relation DP is a partial preorder on U � U .
Let R � P � I and (x; y); (u; v) 2 U �U ; then the fol-

lowing implication holds:

(x; y)DP(u; v)) (x; y)DR(u; v) :

Given P � I and (x; y) 2 U � U , let us introduce the
positive dominance set (denotation DCP (x; y)) and the
negative dominance set (denotation D�P (x; y)):

DCP (x; y)) D f(w; z) 2 U � U : (w; z)DP (x; y)g ;

D�P (x; y)) D f(w; z) 2 U � U : (x; y)DP(w; z)g :

Using the dominance relation DP, it is possible to de-
fine P-lower and P-upper approximations of the outrank-
ing relation S with respect to P � I, respectively, as:

P(S) D
˚
(x; y) 2 B̂ : DCP (x; y) � S

�
;

P(S) D
[

(x;y)2S

DCP (x; y) :

Analogously, it is possible to define the approxima-
tions of Sc:

P(Sc ) D
˚
(x; y) 2 B̂ : D�P (x; y) � Sc

�
;

P(Sc ) D
[

(x;y)2S c
D�P (x; y) :

It may be proved that

P(S) � S � P(S)

P(Sc ) � Sc � P(Sc ) :

Furthermore, the following complementarity proper-
ties hold:

P(S) D B̂ � P(Sc ); P(S) D B̂ � P(Sc ) ;

P(Sc ) D B̂ � P(S); P(Sc ) D B̂ � P(S) :

The P-boundaries (P-doubtful regions) of S and Sc are
defined as

BnP(S) D P(S) � P(S); BnP(Sc ) D P(Sc )� P(Sc ) :

It is easy to prove that BnP(S) D BnP(Sc ).
The concepts of quality of approximation, reducts and

core can be extended also to the approximation of the out-
ranking relation by multi-graded dominance relations. In
particular,

�P D
jP(S) [ P(Sc )j

ˇ
ˇB̂
ˇ
ˇ

defines the quality of approximation of S and Sc by P � I.
It expresses the ratio of all pairs of objects (x; y) 2 B̂ cor-
rectly assigned to S and Sc by the set P of criteria, to all
the pairs of objects contained in B̂. Each minimal subset
P0 � P such that �P0 D �P is called a reduct of P (denota-
tion REDPCT (P)). Let us remark that SPCT can have more
than one reduct. The intersection of all reducts is called the
core (denotation COREPCT (P)).

Using the approximations defined above, it is then
possible to induce a generalized description of the pref-
erence information contained in a given SPCT in terms of
suitable decision rules. The syntax of these rules is based
on the concept of upward cumulated preferences (denota-
tion P�hi ) and downward cumulated preferences (denota-
tion P�hi ), having the following interpretation:

� xP�hi y means “x is preferred to y with respect to i by at
least degree h”,

� xP�hi y means “x is preferred to y with respect to i by at
most degree h”.

Exact definition of the cumulated preferences, for each
(x; y) 2 U � U; i 2 I and h 2 Hi , is the following:

� xP�hi y if xPk
i y, where k 2 Hi and k � h,

� xP�hi y if xPk
i y, where k 2 Hi and k � h.

Using the above concepts, three types of decision rules
can be obtained:
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1. D� – decision rules, being statements of the type:

if xP�h(i1)i1 y and xP�h(i2)i2 y and : : : xP�h(i p)i p y; then xSy;

where P D fi1; : : : ; ipg � I and (h(i1); : : : ; h(ip)) 2
Hi1 � � � � � Hip ; these rules are supported by pairs of
objects from the P-lower approximation of S only;

2. D� – decision rules, being statements of the type:

if xP�h(i1)i1 y and xP�h(i2)i2 y and : : : xP�h(i p)i p y; then xSc y;

where P D fi1; : : : ; ipg � I and (h(i1); : : : ; h(ip)) 2
Hi1 � � � � � Hip ; these rules are supported by pairs of
objects from the P-lower approximation of Sc only;

3. D�� – decision rules, being statements of the type:

if xP�h(i1)i1 y and xP�h(i2)i2 y and : : : xP�h(i k)i k y and

xP�h(i kC1)
i kC1 y and : : : xP�h(i p)i p y; then xSy or xSc y ;

where O0 D fi1; : : : ; ikg � I;O00 D fikC1; : : : ; ipg �
I; P D O0 [ O00;O0 and O00 not necessarily disjoint,
(h(i1); : : : ; h(ip)) 2 Hi1�Hi2 � � ��Hip ; these rules are
supported by objects from the P-boundary of S and Sc

only.

Dominance Without Degrees of Preference

The degree of graded preference considered in Sub-
sect. “The Pairwise Comparison Table” is defined on
a quantitative scale of the strength of preference ki ; i 2 I.
However, in many real world problems, the existence of
such a quantitative scale is rather questionable. Roy [45]
distinguishes the following cases:

� Preferences expressed on an ordinal scale: this is the
case where the difference between two evaluations has
no clear meaning;

� Preferences expressed on a quantitative scale: this is the
case where the scale is defined with reference to a unit
clearly identified, such that it is meaningful to consider
an origin (zero) of the scale and ratios between evalua-
tions (ratio scale);

� Preferences expressed on a numerical non-quantitative
scale: this is an intermediate case between the previous
two; there are two well-known particular cases:
� Interval scale, where it is meaningful to compare ra-

tios between differences of pairs of evaluations,
� Scale for which a complete preorder can be defined

on all possible pairs of evaluations.

The preference scale has also been considered within
economic theory (e. g. [47]), where cardinal utility is dis-
tinguished from ordinal utility: the former deals with

a strength of preference, while, for the latter, this concept
is meaningless. From this point of view, preferences ex-
pressed on an ordinal scale refer to ordinal utility, while
preferences expressed on a quantitative scale or a numeri-
cal non-quantitative scale deal with cardinal utility.

The strength of preference ki and, therefore, the graded
preference considered in Subsect. “Approximation by
Means of Multi-graded Dominance Relations”, is mean-
ingful when the scale is quantitative or numerical non-
quantitative. If the information about ki is non-available,
then it is possible to define a rough approximation of S
and Sc using a specific dominance relation between pairs
of objects from U � U , defined on an ordinal scale repre-
sented by evaluations fi(x) on criterion i, for x 2 U [14].
Let us explain this latter case in more details.

Let IO be the set of criteria expressing preferences on
an ordinal scale, and IN, the set of criteria expressing pref-
erences on a quantitative scale or a numerical non-quan-
titative scale, such that IO [ IN D I and IO \ IN D ;.
Moreover, for each P � I; PO denotes the subset of P
composed of criteria expressing preferences on an ordinal
scale, i. e. PO D P \ IO, and PN the subset of P composed
of criteria expressing preferences on a quantitative scale or
a numerical non-quantitative scale, i. e. PN D P \ IN. Of
course, for each P � I; P D PN [ PO and PO \ PN D ;.

If P D PN and PO D ;, then the definition of
dominance is the same as in the case of multi-
graded dominance (Subsect. “Approximation by Means
of Multi-graded Dominance Relations”). If P D PO and
PN D ;, then, given (x; y); (w; z) 2 U � U , the pair
(x; y) is said to dominate the pair (w; z) with re-
spect to P if, for each i 2 P; fi(x) � fi(w) and
fi(z) � fi(y). Let Dfig be the dominance relation con-
fined to the single criterion i 2 PO. The binary rela-
tion Dfig is reflexive ((x; y)Dfig(x; y); 8(x; y) 2 U �
U), transitive ((x; y)Dfig(w; z) and (w; z)Dfig(u; v) imply
(x; y)Dfig(u; v); 8(x; y); (w; z); (u; v) 2 U �U), but non-
complete (it is possible that not (x; y)Dfig(w; z) and not
(w; z)Dfig(x; y) for some (x; y); (w; z) 2 U � U). There-
fore, Dfig is a partial preorder. Since the intersection of
partial preorders is also a partial preorder and DP DT

i2P Dfig; P D PO, then the dominance relation DP is
also a partial preorder. If some criteria from P � I express
preferences on a quantitative or a numerical non-quantita-
tive scale and others on an ordinal scale, i. e. if PN ¤ ; and
PO ¤ ;, then, given (x; y); (w; z) 2 U � U , the pair (x; y)
is said to dominate the pair (w; z) with respect to criteria
from P, if (x; y) dominates (w; z) with respect to both PN

and PO. Since the dominance relation with respect to PN is
a partial preorder on U � U (because it is a multi-graded
dominance) and the dominance with respect to PO is also
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a partial preorder on U � U (as explained above), then
also the dominanceDP, being the intersection of these two
dominance relations, is a partial preorder. In consequence,
all the concepts introduced in the previous subsection can
be restored using this specific definition of dominance
relation.

Using the approximations of S and Sc based on the
dominance relation defined above, it is possible to in-
duce a generalized description of the available preference
information in terms of decision rules. These decision
rules are of the same type as the rules already intro-
duced in the previous subsection, however, the condi-
tions on criteria from IO are expressed directly in terms
of evaluations belonging to value sets of these criteria.
Let Fi D f fi(x); x 2 Ug; i 2 IO. The decision rules have in
this case the following syntax:

1. D�-decision rule, being a statement of the type:

if xP�h(i1)i1 y and : : : xP�h(i e)i e y and fi eC1(x) � ri eC1

and fi eC1(y) � si eC1 and : : : fi p(x) � ri p
and fi p(y) � sqp; then xSy ;

where P D fi1; : : : ; ipg � I; PN D fi1; : : : ; ieg; PO D
fie C 1; : : : ; ipg; (h(i1); : : : ; h(ie)) 2 Hi1 � � � � � Hie
and (ri eC1; : : : ; ri p); (si eC1; : : : ; si p) 2 Fi eC1 � � � � �

Fi p ; these rules are supported by pairs of objects from
the P-lower approximation of S only;

2. D�-decision rule, being a statement of the type:

if xP�h(i1)i1 y and : : : xP�h(i p)i p y and fi eC1(x) � ri eC1

and fi eC1(y) � si eC1 and : : : fi p(x) � ri p
and fi p(y) � si p; then xSc y ;

where P D fi1; : : : ; ipg � I; PN D fi1; : : : ; ieg; PO D
fie C 1; : : : ; ipg; (h(i1); : : : ; h(ie)) 2 Hi1 � � � � � Hie
and (ri eC1; : : : ; ri p), (si eC1; : : : ; si p) 2 Fi eC1 � � � � �

Fi p ; these rules are supported by pairs of objects from
the P-lower approximation of Sc only;

3. D��-decision rule, being a statement of the type:

if xP�h(i1)i1 y and : : : xP�h(i e)i e y and xP�h(i eC1)
i eC1 y : : :

xP�h(i f )i f y and fi fC1(x) � ri fC1

and fi fC1(y) � si fC1 and : : : fi g(x) � ri g
and fi g(y) � si g and fi gC1(x) � ri gC1

and fi gC1(y) � si gC1 and : : : fi p(x) � ri p
and fi p(y) � si p; then xSy or xSc y ;

where O0 D fi1; : : : ; ieg � I;O00 D fieC1; : : : ; i f g �
I; PN D O0 [ O00;O0 and O00 not necessarily dis-
joint, PO D fi f C 1; : : : ; ipg; (h(i1); : : : ; h(i f )) 2

Rough Sets in Decision Making, Table 7
Information table of the illustrative example

Warehouse A1 A2 A3 A4
1 high good no profit
2 medium medium no loss
3 medium medium no profit
4 low medium no loss
5 medium good yes loss
6 high medium yes profit

Hi1 � � � � � Hi f and (ri fC1; : : : ; ri p); (si fC1; : : : ; si p) 2
Fi fC1 � � � � � Fi p; these rules are supported by pairs of
objects from the P-boundary of S and Sc only.

Example Illustrating DRSA in the Context
of Multiple Criteria Choice and Ranking

The following example illustrates DRSA in the context of
multiple criteria choice and ranking. Six warehouses have
been described by means of four criteria:

� f 1, capacity of the sales staff,
� f 2, perceived quality of goods,
� f 3, high traffic location,
� f 4, warehouse profit or loss.

The components of the information table S are: U D
f1; 2; 3; 4; 5; 6g; F D f f1; f2; f3; f4g; I D f1; 2; 3; 4g; F1 D
fhigh, medium, lowg; F2 D fgood, mediumg; F3 D

fno, yesg; F4 D fprofit, lossg, the criterion fi(x), taking
values f1(1) D high, f2(1) D good, and so on.

It is assumed that the DM accepts to express pref-
erences with respect to criteria f1; f2; f3 on a numer-
ical non-quantitative scale, for which a complete pre-
order can be defined on all possible pairs of evalua-
tions. According to this assumption, in order to build the
PCT, as described in Subsect. “Approximation by Means
of Multi-graded Dominance Relation”, the DM speci-
fies sets of possible degrees of preference; for example,
H1 D f�2;�1; 0; 1; 2g;H2 D f�1; 0; 1g;H3 D f�1; 0; 1g.
Therefore, with respect to f 1, there are the following pref-
erence relations Ph

1 :

� xP21 y (and yP�21 x), meaning that x is preferred to y
with respect to f 1, if f1(x) D high and f1(y) D low,

� xP11 y (and yP�11 x), meaning that x is weakly preferred
to y with respect to f 1, if f1(x) D high and f1(y) D
medium, or f1(x) D medium and f1(y) D low,

� xP01 y (and yP01 x), meaning that x is indifferent to ywith
respect to f 1, if f1(x) D f1(y).
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Analogously, with respect to f 2 and f 3, there are the
following preference relations Ph

2 and Ph
3 :

� xP12 y (and yP�12 x), meaning that x is weakly pre-
ferred to y with respect to f 2, if f2(x) D good and
f2(y) D medium,

� xP02 y (and yP02 x), meaning that x is indifferent to ywith
respect to f 2, if f2(x) D f2(y),

� xP13 y (and yP�13 x), meaning that x is weakly preferred
to y with respect to f 3, if f3(x) D yes and f3(y) D no,

� xP03 y (and yP03 x), meaning that x is indifferent to ywith
respect to f 3, if f3(x) D f3(y).

As to the comprehensive preference relation, the DM
considers that, given two different warehouses x; y 2 U D
f1; 2; 3; 4; 5; 6g, if xmakes profit and ymakes loss, then xSy
and yScx. Moreover, the DM accepts xSx for each ware-
house x. As to warehouses x and y, which both make profit
or both make loss, the DM abstains from judging whether
xSy or xSc y. Therefore, the set of exemplary pairwise com-
parisons supplied by the DM is B̂ D f(1, 1), (1, 2), (1, 4),
(1, 5), (2, 1), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 4), (3, 5),
(4, 1), (4, 3), (4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (5, 6), (6, 2),
(6, 4), (6, 5), (6, 6)}.

At this stage, the PCT can be build as shown in Table 8.
The I-lower approximations, the I-upper approxima-

tions and the I-boundaries of S and Sc obtained by means
of multi-graded dominance relations are as follows:

� I(S) D f(1, 2), (1, 4), (1, 5), (3, 4), (6, 2), (6, 4), (6, 5)},
� I(S) D f(1, 1), (1, 2), (1, 4), (1, 5), (2, 2), (2, 3), (3, 2),

(3, 3), (3, 4), (3, 5), (4, 4), (5, 3), (5, 5), (6, 2), (6, 4), (6, 5),
(6, 6)},

� I(Sc ) D f(2, 1), (2, 6), (4, 1), (4, 3), (4, 6), (5, 1), (5, 6)},
� I(Sc ) D f(1, 1), (2, 1), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3),

(3, 5), (4, 1), (4, 3), (4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (5, 6),
(6, 6)},

� BnI(S) D BnI(Sc ) D f(1, 1), (2, 2), (2, 3), (3, 2), (3, 3),
(3, 5), (4, 4), (5, 3), (5, 5), (6, 6)}.

Therefore, the quality of approximation is equal to
0.58. Moreover, there is only one reduct which is also the
core, i. e. REDS (I) D CORES (I) D f1g.

Finally, the following decision rules can be induced
(within parentheses there are the pairs of objects support-
ing the rule):

� if xP�11 y, then xSy (or, in words, if x is at least weakly
preferred to y with respect to f 1, then x outranks y),
((1, 2), (1, 4), (1, 5), (3, 4), (6, 2), (6, 4), (6, 5)),

� if xP��11 y, then xSc y (or, in words, if y is at least
weakly preferred to x with respect to f 1, then x does

Rough Sets in Decision Making, Table 8
Pairwise comparison table

Pairs Ph1 Ph2 Ph3 Outranking
(1,1) 0 0 0 S
(1,2) 1 1 0 S
(1,4) 2 1 0 S
(1,5) 1 0 �1 S
(2,1) �1 �1 0 Sc

(2,2) 0 0 0 S
(2,3) 0 0 0 Sc

(2,6) �1 0 �1 Sc

(3,2) 0 0 0 S
(3,3) 0 0 0 S
(3,4) 1 0 0 S
(3,5) 0 �1 �1 S
(4,1) �2 �1 0 Sc

(4,3) �1 0 0 Sc

(4,4) 0 0 0 S
(4,6) �2 0 �1 Sc

(5,1) �1 0 1 Sc

(5,3) 0 1 1 Sc

(5,5) 0 0 0 S
(5,6) �1 1 0 Sc

(6,2) 1 0 1 S
(6,4) 2 0 1 S
(6,5) 1 �1 0 S
(6,6) 0 0 0 S

not outrank y), ((2, 1), (2, 6), (4, 1), (4, 3), (4, 6), (5, 1),
(5, 6)),

� if xP�01 y, and xP�01 y, (i. e. if xP01 y), then xSy or xSc y
(or, in words, if x and y are indifferent with respect
to f 1, then x outranks y or x does not outrank y),
((1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (3, 5), (4, 4), (5, 3),
(5, 5), (6, 6)).

Let us assume now that the DM accepts to express
preferences with respect to criteria f 1, f2; f3 on an ordi-
nal scale of preference, for which there is only informa-
tion about a partial preorder on all possible pairs of eval-
uations. In this case, S and Sc can be approximated in the
way described in Subsect. “Dominance Without Degrees
of Preference”, i. e. without considering degrees of prefer-
ence. The I-lower approximations, the I-upper approxi-
mations and the I-boundaries of S and Sc are as follows:

� I(S) D f(1, 1), (1, 2), (1, 4), (1, 5), (3, 4), (4, 4), (6, 2),
(6, 4), (6, 5), (6, 6)},

� I(S) D f(1, 1), (1, 2), (1, 4), (1, 5), (2, 2), (2, 3), (3, 2),
(3, 3), (3, 4), (3, 5), (4, 4), (5, 3), (5, 5), (6, 2), (6, 4), (6, 5),
(6, 6)},
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� I(Sc ) D f(2, 1), (2, 6), (4, 1), (4, 3), (4, 6), (5, 1), (5, 6)},
� I(Sc ) D f(2, 1), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 5),

(4, 1), (4, 3), (4, 6), (5, 1), (5, 3), (5, 5), (5, 6)},
� BnI(S) D BnI(Sc ) D f(2, 2), (2, 3), (3, 2), (3, 3), (3, 5),

(5, 3), (5, 5)}.

Let us observe that the pairs (1, 1), (4, 4) and (6, 6)
belong now to the I-lower approximation of S and are
not contained in the I-boundaries. Therefore, the qual-
ity of approximation is equal to 0.71. Moreover, there
is still only one reduct which is also the core, i. e. again
REDS (I) D CORES (I) D f1g.

The following decision rules are induced from the
above approximations and boundaries (within parenthe-
ses there are the pairs of objects supporting the rule):

� if f1(x) is at least high and f1(y) is at most high,
then xSy; ((1, 1), (1, 2), (1, 4), (1, 5), (6, 2), (6, 4), (6, 5),
(6, 6)),

� if f1(x) is at least low and f1(y) is at most low, then
xSy; ((1, 4), (3, 4), (4, 4), (6, 4)),

� if f1(x) is at most medium and f1(y) is at least high,
then xSc y; ((2, 1), (2, 6), (4, 1), (4, 6)(5, 1), (5, 6)),

� if f1(x) is at most low and f1(y) is at least medium, then
xSc y; ((4, 1), (4, 3), (4, 6))

� if f1(x) is at least medium and f1(y) is at most medium
and f1(x) is at most medium and f1(y) is at least
medium, (i. e. if f1(x) is equal to medium and f1(y)
is equal to medium), then xSy or xSc y; ((2, 2), (2, 3),
(3, 2), (3, 3), (3, 5), (5, 3), (5, 5)).

DRSA for DecisionUnder Uncertainty

Basic Concepts

To apply the rough set approach to decision under uncer-
tainty, the following basic elements must be considered:

� a set S D fs1; s2; : : : ; sug of states of the world, or sim-
ply states, which are supposed to be mutually exclusive
and collectively exhaustive,

� an a priori probability distribution P over the states
of the world: more precisely, the probabilities of states
s1; s2; : : : ; su are p1; p2; : : : ; pu , respectively (p1C p2C
� � � C pu D 1; pi � 0; i D 1; : : : ; u),

� a set AD fa1; a2; : : : ; amg of acts,
� a set X D fx1; x2; : : : ; xrg of outcomes or consequences

expressed in monetary terms (X � <),
� a function g : A! X assigning to each pair act-state

(ai ; s j) 2 A� S � S an outcome x 2 X,
� a set of classes Cl D fCl1;Cl2; : : : ;Clpg, such that

Cl1 [ Cl2 [ : : : [ Clp D A;Clr \ Clq D ; for each

r; q 2 f1; : : : ; pg with r ¤ q; the classes of Cl are pref-
erence-ordered according to the increasing order of
their indices,

� a function e : A! Cl assigning each act ai 2 A to
a class Cl j 2 Cl.

In this context, two different types of dominance can
be considered:

1) Classical dominance: given ap; aq 2 A; ap dominates
aq iff, for each possible state of the world, act ap gives
an outcome at least as good as act aq; more formally,
g(ap; s j) � g(aq ; s j), for each s j 2 S,

2) Stochastic dominance: given ap; aq 2 A; ap dominates
aq iff, for each outcome x 2 X, act ap gives an outcome
at least as good as x with a probability at least as great as
the probability that act aq gives the same outcome, i. e.
for all x 2 X,

P[S(ap ; x)] � P[S(aq ; x)]

where, for each (ai ; x) 2 A� X; S(ai ; x) D fs j 2 S :
g(ai ; s j) � xg.

In [19], it has been shown how to apply stochastic
dominance in this context. On the basis of an a priori
probability distribution P, one can assign to each sub-
set of states of the world W � S (W ¤ ;) the proba-
bility P(W) that one of the states in W is verified, i. e.
P(W) D

P
i :s i2W pi , and then to build up the set˘ of all

possible values P(W), i. e.

˘ D f� 2 [0; 1] : � D P(W);W � Sg :

Let us define the following functions z : A� S ! ˘

and z0 : A� S ! ˘ assigning to each act-state pair
(ai ; s j) 2 A� S a probability � 2 ˘ , as follows:

z(ai ; s j) D
X

r:g(ai ;sr)�g(ai ;s j)

pr ;

and

z0(ai ; s j) D
X

r:g(ai ;sr )�g(ai ;s j)

pr :

Therefore, z(ai ; s j) represents the probability of ob-
taining an outcome whose value is at least g(ai ; s j) by
act ai. Analogously, z0(ai ; s j) represents the probability
of obtaining an outcome whose value is at most g(ai ; s j)
by act ai. On the basis of function z(ai ; s j), function
� : A�˘ ! X can be defined as follows:

�(ai ; �) D max j : z(ai ;s j)�	 g(ai ;s j) :
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Thus, �(ai ; �) D x means that the outcome got by act
ai is greater than or equal to x with a probability at least p
(i. e. a probability p or greater). On the basis of function
z0(ai ; s j), the function �0 : A�˘ ! X can be defined as
follows:

�0(ai ; �) D min j : z(ai ;s j)�	
g(ai ;s j ) :

�0(ai ; �) D x means that the outcome got by act ai is
smaller than or equal to x with a probability at least p.

Let us observe that information given by �(ai ; �) and
�0(ai ; �) is related. In fact, if the elements of ˘; 0 D
�(0); �(1); �(2); : : : ; �(d) D 1 (d D j˘ j), are reordered in
such a way that 0 D �(0) � �(1) � �(2) � : : : � �(d) D 1,
then

�
�
ai ; �( j)


D �0

�
ai ; 1 � �( j�1)


:

Therefore, �(ai ; �( j)) � x is equivalent to �0(ai ; 1 �
�( j�1)) � x; ai 2 A; �( j�1); �( j) 2 ˘; x 2 X. This implies
that the analysis of the possible decisions can be equiva-
lently conducted on values of either �(ai ; �) or �0(ai ; �).
However, from the point of view of representation of re-
sults, it is interesting to consider both values �(ai ; �)
and �0(ai ; �). The reason is that, contrary to intuition,
�(ai ; �) � x is not equivalent to the statement that by act
ai the outcome is smaller than or equal to x with a proba-
bility at least � . The following example clarifies this point.
Let us consider a game a with rolling a dice, in which if the
result is 1, then the gain is 1, if the result is 2 then the gain
is 2, and so on. Suppose, moreover, that the dice is equi-
librated and thus each result is equiprobable with proba-
bility 1/6. The values of �(ai ; �) for all possible values of
probability are:

�(a; 1/6) D $6; �(a; 2/6) D $5; �(a; 3/6) D $4 ;

�(a; 4/6) D $3; �(a; 5/6) D $2; �(a; 6/6) D $1 :

Let us remark that �(a; 5/6) � $3 (indeed, �(a; 5/6) D
$2; and thus �(a; 5/6) � $3 is true), however, this is not
equivalent to the statement that by act a the outcome is
smaller than or equal to $3 with a probability at least 5/6.
In fact, this is false because this probability is 3/6 (related
to results 1, 2 and 3). Analogously, the values of �0(a; �)
for all possible values of probability are:

�0(a; 1/6) D $1; �0(a; 2/6) D $2; �0(a; 3/6) D $3 ;

�0(a; 4/6) D $4; �0(a; 5/6) D $5; �0(a; 6/6) D $6 :

Let us remark that �0(a; 5/6) � $5 (indeed,
�0(a; 5/6) D $5; and thus �0(a; 5/6) � $3 is true), how-
ever, this is not equivalent to the statement that by act a

the outcome is greater than or equal to 3 with a probability
at least 5/6. In fact, this is false because this probability is
4/6 (related to results 3, 4, 5 and 6). Therefore, in the con-
text of stochastic acts, an outcome expressed in positive
terms refers to �(a; �) giving a lower bound of an outcome
(“for act a there is a probability � to gain at least �(a; �)”),
while an outcome expressed in negative terms refers to
�0(a; �) giving an upper bound of an outcome (“for act a
there is a probability � to gain at most �0(a; �)”).

Given ap; aq 2 A; ap stochastically dominates aq if and
only if �(ap; �) � �(aq ; �) for each � 2 ˘ . This is equiv-
alent to the statement: given ap; aq 2 A; ap stochastically
dominates aq if and only if �0(ap; �) � �0(aq; �) for each
� 2 ˘ .

For example, consider the game a� with rolling a dice,
in which if the result is 1, then the gain is $7, if the result is
2 then the gain is $6, and so on until the case in which
the result is 6 and the gain is $2. In this case game a�

stochastically dominates game a because �(a�; 1/6) D $7
is not smaller than �(a; 1/6) D $6; �(a�; 2/6) D $6
is not smaller than �(a; 2/6) D $5, and so on. Equiv-
alently, game a� stochastically dominates game a be-
cause �0(a�; 1/6) D $2 is not smaller than �0(a; 1/6) D
$1; �0(a�; 2/6) D $3 is not smaller than �0(a; 2/6) D $2,
and so on.

DRSA can be applied in the context of decision un-
der uncertainty considering as set of objects U the set
of acts A, as set of criteria (condition attributes) I the
set ˘ , as decision attribute fdg the classification Cl, as
value set of all criteria the set X, as information func-
tion f a function f such that f (ai ; �) D �(ai ; �) and
f (ai ; cl) D e(ai). Let us observe that due to equivalence
�(ai ; �( j)) D �0(ai ; 1 � �( j�1)), one can also consider in-
formation function f 0(ai ; �) D �0(ai ; �).

The aim of the rough set approach to preferences un-
der uncertainty is to explain the preferences of the DM
represented by the assignments of the acts from A to the
classes from Cl in terms of stochastic dominance, ex-
pressed by means of function �. The syntax of decision
rules obtained from this rough set approach is as follows:

1) D�-decision rules with the following syntax: “if
�(a; ph1 ) � xh1 and . . . , and �(a; phz ) � xhz , then
a 2 Cl�r ” (i. e. “if by act a the outcome is at least xh1
with probability at least ph1 , and . . . , and the out-
come is at least xhz with probability at least phz , then
a 2 Cl�r ”) where ph1 ; : : : ; phz 2 ˘; xh1 ; : : : ; xhz 2 X
and r 2 f2; : : : ; pg;

2) D�-decision rules with the following syntax: “if
�0(a; ph1 ) � xh1 and . . . , and �0(a; phz ) � xhz , then
a 2 Cl�r ” (i. e. “if by act a the outcome is at most
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xh1 with probability at least ph1 , and . . . , and the out-
come is at most xhz with probability at least phz , then
a 2 Cl�r ”) where ph1 ; : : : ; phz 2 ˘; xh1 ; : : : ; xhz 2 X
and r 2 f1; : : : ; p � 1g;

3) D��-decision rules with the following syntax: “if
�(a; ph1 ) � xh1 and . . . , and �(a; phz ) � xhw and
�0(a; phwC1 ) � xhwC1 and . . . , and �0(a; phz ) � xhz ,
then a 2 Cls [ ClsC1 [ : : :Clt” (i. e. “if by act a the
outcome is at least xh1 with probability at least
ph1 , and . . . , and the outcome is at least xhw
with probability at least phw and the outcome is
at most xhwC1 with probability at least phwC1 , and
. . . , and the outcome is at most xhz with proba-
bility at least phz , then a 2 Cls [ ClsC1 [ : : : Clt”)
where ph1 ; : : : ; phw ; phwC1 ; phz 2 ˘; xh1 ; : : : ; xhz 2 X
and s; t 2 f1; : : : ; pg, such that s < t.

According to the meaning of �(ai ; p) and �0(ai ; p) dis-
cussed above, D�-decision rules are expressed in terms
of �(ai ; p);D�-decision rules are expressed in terms of
�0(ai ; p), and D��-decision rules are expressed in terms
of both �(ai ; p) and �0(ai ; p). Let us observe that due
to equivalence �(ai ; �( j)) D �0(ai ; 1 � �( j�1)), all above
decision rules can be expressed equivalently in terms of
values of �(ai ; p) or �0(ai ; p). For example, a D�-de-
cision rule r�(�) D“if �(a; ph1 ) � xh1 and . . . , and
�(a; phz ) � xhz , then a 2 Cl�r ” can be expressed in terms
of �0(ai ; p) as r�(�0) D“if �0(a; p�h1 ) � xh1 and . . . , and
�0(a; p�hz ) � xhz , then a 2 Cl�r ”, where, if phr D �( jr),
then p�hr D 1 � �( jr � 1), with r D 1; : : : ; z, and 0 D
�(0); �(1); �(2); : : : ; �(jPj) D 1 reordered in such a way
that 0 D �(0) � �(1) � �(2) � � � � � �(jPj) D 1. Anal-
ogously, a D�-decision rule r�(�0) D“if �0(a; ph1 ) � xh1
and . . . , and �0(a; phz ) � xhz , then a 2 Cl�r ” can be ex-
pressed in terms of �(ai ; p) as r�(�) D“if �(a; p�h1 ) � xh1
and . . . , and �(a; p�hz ) � xhz , then a 2 Cl�r , where, if
phr D �( jr ), then p�hr D 1� �( jr � 1), with r D 1; : : : ; z,
and 0 D �(0); �(1); �(2); : : : ; �(jPj) D 1 reordered in
such a way that 0 D �(0) � �(1) � �(2) � � � � �
�(jPj) D 1.

Let us observe, however, that r�(�) is an expression
much more natural and meaningful than r�(�0), as well as
r�(�0) is an expression much more natural and meaning-
ful than r�(�). Another useful remark concerns minimal-
ity of rules, related to the specific intrinsic structure of the
stochastic dominance. Let us consider the following two
decision rules:

� r1 � “if by act a the outcome is at least 100 with prob-
ability at least 0.25, then a is at least good”,

� r2 � “if by act a the outcome is at least 100 with prob-
ability at least 0.50, then a is at least good”.

r1 and r2 can be induced from the analysis of the
same information table, because they involve different cri-
teria (condition attributes). In fact, r1 involves attribute
�(a; 0:25) (it can be expressed as “if �(a; 0:25) � 100,
then a is at least good”), r2 involves attribute �(a; 0:50)
(it can be expressed as “if �(a; 0:50) � 100, then a is at
least good”). Considering the structure of the stochastic
dominance, the condition part of rule r1 is the weakest. In
fact, rule r1 requires a cumulated outcome to be at least
100 with probability of 0.25, while rule r2 requires the
same outcome but with a greater probability, 0.5 against
0.25. Since the decision part of these two rules is the same,
r1 is minimal among these two rules. From a practical
point of view, this observation says that, if one induces
decision rules using the algorithms designed for DRSA,
it is necessary to further filter the obtained results in or-
der to remove rules which are not minimal in the specific
context of the DRSA analysis based on stochastic domi-
nance.

Example Illustrating DRSA in the Context
of Decision Under Uncertainty

The following example illustrates the approach. Let us
consider

� a set S D fs1; s2; s3g of states of the world,
� an a priori probability distribution P over the states of

the world defined as follows: p1 D 0:25; p2 D 0:35;
p3 D 0:40,

� a set AD fa1; a2; a3; a4; a5; a6g of acts,
� a set X D f0; 10; 15; 20; 30g of consequences
� a set of classesCl D fCl1;Cl2;Cl3g, where Cl1 is the set

of bad acts, Cl2 is the set of medium acts, Cl3 is the set
of good acts,

� a function g : A! X assigning to each act-state pair
(ai ; s j) 2 A� S � S a consequence xh 2 X and a func-
tion e : A! Cl assigning each act ai 2 A to a class
Cl j 2 Cl presented in the following Table 9.

Rough Sets in Decision Making, Table 9
Acts, consequences and assignment to classes from Cl

pj a1 a2 a3 a4 a5 a6
s1 0.25 30 0 15 0 20 10
s2 0.35 10 20 0 15 10 20
s3 0.40 10 20 20 20 20 20
Cl good medium medium bad medium good
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Rough Sets in Decision Making, Table 10
Acts, values of function �(ai; p) and assignment to classes from
Cl

	 a1 a2 a3 a4 a5 a6
0.25 30 20 20 20 20 20
0.35 10 20 20 20 20 20
0.40 10 20 20 20 20 20
0.60 10 20 15 15 20 20
0.65 10 20 15 15 20 20
0.75 10 20 0 15 10 20
1 10 0 0 0 10 10
Cl good medium medium bad medium good

Table 10 shows the values of function �(ai ; p).
Table 10 is the decision table on which the DRSA is

applied. Let us give some examples of the interpretation of
the values in Table 10. The column of act a3 can be read as
follow:

� the value 20 in the row corresponding to 0.25 means
that the outcome is at least 20 with a probability of at
least 0.25,

� the value 15 in the row corresponding to 0.65 means
that the outcome is at least 15 with a probability of at
least 0.65,

� the value 0 in the row corresponding to 0.75 means that
the outcome is at least 0 with a probability of at least
0.75.

Analogously, the row corresponding to 0.65, can be
read as follows:

� the value 10 relative to a1, means that by act a1 the out-
come is at least 10 with a probability of at least 0.65,

� the value 20 relative to a2, means that by act a2 the out-
come is at least 20 with a probability of at least 0.65,

� and so on.

Applying DRSA, the following upward union and
downward union of classes are approximated:

� Cl�2 D Cl2 [ Cl3, i. e. the set of the acts at least
medium,

� Cl�3 D Cl3, i. e. the set of the acts (at least) good,
� Cl�1 D Cl1, i. e. the set of the acts (at most) bad,
� Cl�2 D Cl1 [ Cl2, i. e. the set of the acts at most

medium.

The first result of the DRSA approach was a discovery
that the decision table (Table 10) is not consistent. Indeed,
Table 10 shows that act a4 stochastically dominates act a3,
however act a3 is assigned to a better class (medium) than

act a4 (bad). Therefore, act a3 cannot be assigned with-
out doubts to the set of the class of the at least medium
acts as well as act a4 cannot be assigned without doubts
to the set of the classes of the (at most) bad acts. In con-
sequence, lower approximation and upper approximation
of Cl�2 ;Cl

�
3 and Cl�1 ;Cl

�
2 are equal, respectively, to

� I
�
Cl�2


D fa1; a2; a5; a6g D Cl�2 � fa3g,

� I
�
Cl�2


D fa1; a2; a3; a4; a5; a6g D Cl�2 [ fa4g,

� I
�
Cl�3


D fa1; a6g D Cl�3 ,

� I
�
Cl�3


D fa1; a6g D Cl�3 ,

� I
�
Cl�1


D ; D Cl�1 � fa4g,

� I
�
Cl�1


D fa3; a4g D Cl�1 [ fa3g,

� I
�
Cl�2


D fa2; a3; a4; a5g D Cl�2 ,

� I
�
Cl�2


D fa2; a3; a4; a5g D Cl�2 .

Since there are two inconsistent acts on a total of six
acts (a3; a4), then the quality of approximation of the or-
dinal classification is equal to 4/6. The second discovery
was one reduct of criteria (condition attributes) ensur-
ing the same quality of approximation as the whole set ˘
of probabilities: REDCl D f0:25; 0:75; 1g. This means that
the preferences of the DM can be explained using only the
probabilities from REDCl. REDCl is also the core because
no probability value in REDCl can be removed without de-
teriorating the quality of approximation. The third discov-
ery was a set of minimal decision rules describing theDM’s
preferences (within parentheses there is a verbal interpre-
tation of the corresponding decision rule, and the support-
ing acts):

1) if �(ai ; 0:25) � 30, then ai 2 Cl�3 (if the probability of
gaining at least 30 is at least 0.25, then act ai is at least
good) (a1),

2) if �(ai ; 0:75) � 20 and �(ai ; 1) � 10, then ai 2 Cl�3 (if
the probability of gaining at least 20 is at least 0.75 and
the probability of gaining at least 10 is (at least) 1 (i. e.
for sure the gaining is at least 10), then act ai is at least
good) (a6),

3) if �(ai ; 1) � 10, then ai 2 Cl�2 (if the probability of
gaining at least 10 is (at least) 1 (i. e. for sure the gaining
is at least 10), then act ai is at leastmedium) (a1; a5; a6),

4) if �(ai ; 0:75) � 20, then ai 2 Cl�2 (if the probability of
gaining at least 20 is at least 0.75, then act ai is at least
medium) (a2; a6),

5) if �(ai ; 0:25) � 20 (i. e. �0(ai ; 1) � 20) and �(ai ;
0:75) � 15 (i. e. �0(ai ; 0:35) � 15), then ai 2 Cl�2 (if
the probability of gaining at most 20 is (at least) 1 (i. e.
for sure you gain at most 20) and the probability to gain
at most 15 is at least 0.35, then act ai is at most medium)
(a3; a4; a5),
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6) if �(ai ; 1) � 0 (i. e. �0(ai ; 0:25) � 0), then ai 2 Cl�2 (if
the probability of gaining at most 0 is at least 0.25, then
act ai is at most medium) (a2; a3; a4),

7) if �(ai ; 1) � 0 and �(ai ; 1) � 0 (i. e. �(ai ; 1) D 0) and
�(ai ; 0:75) � 15 (�0(ai ; 0:35) � 15), then ai 2 Cl1 [
Cl2 (if the probability of gaining at least 0 is 1, then act
ai is at most medium) (a2; a3; a4).

Minimal sets of minimal decision rules represent the
most concise and non-redundant knowledge contained in
Table 9 (and, consequently, in Table 10). The above min-
imal set of 7 decision rules uses 3 attributes (probability
0:25; 0:75 and 1) and 11 elementary conditions, i. e. 26%
of descriptors from the original data table (Table 10). Of
course, this is only a didactic example. Representation in
terms of decision rules of larger sets of exemplary acts
from real applications are more synthetic in the sense of
the percentage of used descriptors from the original deci-
sion table.

Multiple Criteria DecisionAnalysis
Using Association Rules

In multiple criteria decision analysis, the DM is often in-
terested in relationships between attainable values of cri-
teria. This information is particularly useful in multiob-
jective optimization (see [32] and Sect. “Interactive Multi-
objective Optimization Using DRSA (IMO-DRSA)”). For
instance, in a car selection problem, one can observe that
in the set of considered cars, if the maximum speed is at
least 200 km/h and the time to reach 100 km/h is at most
7 s, then the price is not less than 40,000 $ and the fuel
consumption is not less than 9 liters per 100 km. These re-
lationships are association rules whose general syntax, in
case of minimization of criteria fi ; i 2 I, is:

“if fi1(x) � ri1 and . . . and fi p (x) � ri p , then
fi pC1(x) � ri pC1 and . . . and fiq (x) � riq ”, where
fi1; : : : ; iqg � I; ri1 , . . . , riq 2 <.

If criterion fi ; i 2 I, should be maximized, the corre-
sponding condition in the association rule should be
reversed, i. e. in the premise, the condition becomes
fi(x) � ri , and in the conclusion it becomes fi(x) � ri .

Given an association rule r � “if fi1(x) � ri1 and
. . . and fi p(x) � ri p , then fi pC1(x) � ri pC1 and . . . and
fiq (x) � riq ”, an object y 2 U supports r if fi1(y) � ri1
and . . . and fi p (y) � ri p and fi pC1(y) � ri pC1 and . . . and
fiq (y) � riq . Moreover, object y 2 U supporting decision
rule r is a base of r if fi1(y) D ri1 and . . . and fi p (y) D ri p
and fi pC1(y) D ri pC1 and . . . and fiq (y) D riq . An associ-
ation rule having at least one base is called robust.

An association rule r � “if fi1(x) � ri1 and . . .
and fi p (x) � ri p , then fi pC1(x) � ri pC1 and . . . and
fiq (x) � riq ” holds in universe U if:

1) there is at least one y 2 U supporting r,
2) r is not contradicted in U, i. e. there is no z 2 U such

that fi1(z) � ri1 and . . . and fi p (z) � ri p , while not
fi pC1(z) � ri pC1 or . . . or fiq (z) � riq .

Given the two association rules:

� r1 �“if fi1 (x) � r1i1 and . . . and fi p (x) � r1i p , then
fi pC1(x) � r1i pC1

and . . . and fiq (x) � r1iq ”,
� r2 �“if f j1 (x) � r2j1 and . . . and f js (x) � r2js , then

f jsC1 (x) � r2jsC1
and . . . and f jt (x) � r2j t ”,

rule r1 is not weaker than rule r2, denoted by r1Fr2, if:

˛) fi1; : : : ; ipg � f j1; : : : ; jsg,
ˇ) r1i1 � r2i1 ; : : : ; r

1
i p � r2i p ,

� ) fipC1; : : : ; iqg � f jsC1; : : : ; jtg,
ı) r1jsC1

� r2jsC1
; : : : ; r1j t � r2j t .

Conditions ˇ and ı are formulated for criteria f i to be
minimized. If criterion f i should be maximized, the cor-
responding inequalities should be reversed, i. e. r1i � r2i in
condition ˇ as well as in condition ı. Notice that F is a bi-
nary relation on the set of association rules, which is a par-
tial preorder, i. e. it is reflexive (each rule is not weaker
than itself) and transitive. The asymmetric part of the re-
lation F is denoted by F, and r1 F r2 reads “r1 is stronger
than r2”.

For example, consider the following association rules:

� r1 � “if the maximum speed is at least 200 km/h and
the time to reach 100 km/h is at most 7 s, then the price
is not less than 40,000 $ and the fuel consumption is not
less than 9 liters per 100 km”,

� r2 � “if the maximum speed is at least 200 km/h and
the time to reach 100 km/h is at most 7 s and the horse
power is at least 175 kW, then the price is not less than
40,000 $ and the fuel consumption is not less than 9
liters per 100 km”,

� r3 � “if the maximum speed is at least 220 km/h and
the time to reach 100 km/h is at most 7 s, then the price
is not less than 40,000 $ and the fuel consumption is not
less than 9 liters per 100 km”,

� r4 � “if the maximum speed is at least 200 km/h and
the time to reach 100 km/h is at most 7 s, then the price
is not less than 40,000 $”,

� r5 � “if the maximum speed is at least 200 km/h and
the time to reach 100 km/h is at most 7 s, then the price
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is not less than 35,000 $ and the fuel consumption is not
less than 9 liters per 100 km”,

� r6 � “if the maximum speed is at least 220 km/h and
the time to reach 100 km/h is at most 7 s and the horse
power is at least 175 kW, then the price is not less than
35,000 $”.

Let us observe that rule r1 is stronger than each of the
other five rules for the following reasons:

� r1 F r2 for condition ˛) because, all things equal else-
where, in the premise of r2 there is an additional con-
dition: “the horse power is at least 175 kW”,

� r1 F r3 for condition ˇ) because, all things equal else-
where, in the premise of r3 there is a condition with
a worse threshold value: “the maximum speed is at least
220 km/h” instead of “the maximum speed is at least
200 km/h”,

� r1 F r4 for condition � ) because, all thing equal else-
where, in the conclusion of r4 one condition is miss-
ing: “the fuel consumption is not less than 9 liters per
100 km”,

� r1 F r5 for condition ı) because, all thing equal else-
where, in the conclusion of r5 there is a condition with
a worse threshold value: “the price is not less than
35,000 $” instead of “the price is not less than 40,000 $”,

� r1 F r6 for conditions ˛), ˇ), � ) and ı) because all weak
points for which rules r2; r3; r4 and r5 are weaker than
rule r1 are present in r6.

An association rule r isminimal if there is no other rule
stronger than r with respect to F. An algorithm for induc-
tion of association rules from preference ordered data has
been presented in [20].

InteractiveMultiobjectiveOptimization
Using DRSA (IMO-DRSA)

This section presents a recently proposed method for In-
teractive Multiobjective Optimization using Dominance-
based Rough Set Approach (IMO-DRSA) [32]. Assuming
that objective functions fi; jD1;:::;n , are to minimized, the
method is composed of the following steps.

Step 1. Generate a representative sample of solutions
from the currently considered part of the Pareto op-
timal set.

Step 2. Present the sample to the DM, possibly together
with association rules showing relationships between
attainable values of objective functions in the Pareto
optimal set.

Step 3. If the DM is satisfied with one solution from the
sample, then this is themost preferred solution and the
procedure stops. Otherwise continue.

Step 4. Ask the DM to indicate a subset of relatively
“good” solutions in the sample.

Step 5. Apply DRSA to the current sample of solutions
classified into “good” and “others” solutions, in order
to induce a set of decision rules with the following syn-
tax “if f j1 (x) � ˛ j1 and . . . and f j p (x) � ˛ j p , then so-
lution x is good”,

˚
j1; : : : ; jp

�
� f1; : : : ; ng.

Step 6. Present the obtained set of rules to the DM.
Step 7. Ask the DM to select the decision rules most ade-

quate to his/her preferences.
Step 8. Adjoin the constraints f j1 (x) � ˛ j1 ; : : : ; f j p (x) �

˛ j p coming from the rules selected in Step 7 to the set
of constraints imposed on the Pareto optimal set, in
order to focus on a part interesting from the point of
view of DM’s preferences.

Step 9. Go back to Step 1.

In a sequence of iterations, the method is exploring the
Pareto optimal set of a multiobjective optimization prob-
lem or an approximation of this set. In the calculation
stage (Step 1), any multiobjective optimization method,
which finds the Pareto optimal set or its approximation,
such as Evolutionary Multiobjective Optimization meth-
ods, can be used. In the dialogue stage of the method (Step
2 to 7), the DM is asked to select a decision rule induced
from his/her preference information, which is equivalent
to fixing some upper bounds for the minimized objective
functions f j.

In Step 1, the representative sample of solutions from
the currently considered part of the Pareto optimal set
can be generated using one of existing procedures, such
as [33,57,58]. It is recommended to use a fine grained sam-
ple of representative solutions to induce association rules,
however, the sample of solutions presented to the DM in
Step 2 should be much smaller (about a dozen) in order to
avoid an excessive cognitive effort of the DM. Otherwise,
the DM would risk to give non reliable information.

The association rules presented in Step 2 help the DM
in understandingwhat (s)he can expect from the optimiza-
tion problem. More precisely, any association rule

“if fi1(x) � ri1 and . . . and fi p (x) � ri p , then
fi pC1(x) � ri pC1 and . . . and fiq (x) � riq ”, where
fi1; : : : ; iqg � I; ri1 ; : : : ; riq 2 <

says to the DM that, if (s)he wants attain the values of
objective functions fi1(x) � ri1 and . . . and fi p (x) � ri p ,
then (s)he cannot reasonably expect to obtain values of ob-
jective functions fi pC1(x) < ri pC1 and . . . and fiq (x) < riq .
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With respect to the ordinal classification of solutions
into the two classes of “good” and “others”, observe that
“good” means in fact “relatively good”, i. e. better than the
rest. In case, the DM would refuse to classify as “good”
any solution, one can ask the DM to specify some min-
imal requirements of the type f j1 (x) � ˛ j1 and . . . and
f j p (x) � ˛ j p for “good” solutions. These minimal require-
ments give some constraints that can be used in Step 8, in
the same way as the analogous constraints coming from
selected decisions rules.

The rules considered in Step 5 have a syntax corre-
sponding to minimization of objective functions. In case
of maximization of an objective function f j, the condition
concerning this objective in the decision rule should have
the form f j(x) � ˛ j .

Remark, moreover, that the Pareto optimal set reduced
in Step 8 by constraints f j1 (x) � ˛ j1 ; : : : ; f j p (x) � ˛ j p is
certainly not empty if these constraints are coming from
one decision rule only. Since robust rules (see the glos-
sary Dominance-Based Rough Set Approach (DRSA)) are
considered, the threshold values ˛ j1 ; : : : ; ˛ j p are values
of objective functions of some solutions from the Pareto
optimal set. If f j1; : : : ; jpg D f1; : : : ; ng, i. e. f j1; : : : ; jpg
is the set of all objective functions, then the new re-
duced part of the Pareto optimal set contains only
one solution x such that f1(x) D ˛1; : : : ; fn(x) D ˛n . If
f j1; : : : ; jpg � f1; : : : ; ng, i. e. f j1; : : : ; jpg is a proper sub-
set of the set of all objective functions, then the new re-
duced part of the Pareto optimal set contains solutions sat-
isfying conditions f j1 (x) � ˛ j1 and . . . and f j p (x) � ˛ j p .
Since the considered rules are robust, then there is at
least one solution x satisfying these constraints. When
the Pareto optimal set is reduced in Step 8 by constraints
f j1 (x) � ˛ j1 ; : : : ; f j p (x) � ˛ j p coming from more than
one rule, then it is possible that the resulting reduced part
of the Pareto optimal set is empty. Thus, before passing to
Step 9, it is necessary to verify if the reduced Pareto opti-
mal set is not empty. If the reduced Pareto optimal set is
empty, then the DM is required to revise his/her selection
of rules. TheDMcan be supported in this task, by informa-
tion about minimal sets of constraints f j(x) � ˛ j coming
from the considered decision rules to be removed in order
to get a non-empty part of the Pareto optimal set.

The constraints introduced in Step 8 are maintained
in the following iterations of the procedure, however, they
cannot be considered as irreversible. Indeed, the DM can
come back to the Pareto optimal set considered in one of
previous iterations and continue from this point. This is
in the spirit of a learning oriented conception of interac-
tive multiobjective optimization, i. e. it agrees with the idea
that the interactive procedure permits the DM to learn

about his/her preferences and about the “shape” of the
Pareto optimal set.

Example Illustrating IMO-DRSA in the Context
of Multiobjective Optimization

To illustrate the interactive multiobjective optimization
procedure based on DRSA, a product mix problem is con-
sidered. There are three products: A, B, C which are pro-
duced in quantities denoted by xA; xB ; and xC , respec-
tively. The unit prices of the three products are pA D 20;
pB D 30;pC D 25. The production process involves two
machines. The production times of A, B, C on the first
machine are equal to t1A D 5; t1B D 8; t1C D 10, and on
the second machine they are equal to t2A D 8;t2B D 6;
t2C D 2. Two raw materials are used in the production
process. The first raw material has a unit cost of 6 and
the quantity required for production of one unit of A, B
and C is r1A D 1; r1B D 2 and r1C D 0:75, respectively.
The second rawmaterial has a unit cost of 8 and the quan-
tity required for production of one unit of A, B and C is
r2A D 0:5; r2B D 1 and r2C D 0:5, respectively. Moreover,
the market cannot absorb a production greater than 10, 20
and 10 units for A, B and C, respectively. To decide how
much of A, B and C should be produced, the following ob-
jectives have to be taken into account:

� Profit (to be maximized),
� Time (total production time on two machines – to be

minimized),
� Production of A (to be maximized),
� Production of B (to be maximized),
� Production of C (to be maximized),
� Sales (to be maximized).

The above product mix problem can be formulated as
the following multiobjective optimization problem:

Maximize
20xA C 30xB C 25xC � (1xA C 2xB C 0:75xC)6

� (0:5xA C 1xB C 0:5xC)8 [Profit] ;

Minimize 5xAC8xBC10xCC8xAC6xBC2xC [Time];

Maximize xA [Production of A] ;

Maximize xB [Production of B] ;

Maximize xC [Production of C] ;

Maximize 20xA C 30xB C 25xC [Sales] ;
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Rough Sets in Decision Making, Table 11
A sample of Pareto optimal solutions proposed in the first iteration

Solution Profit Time Prod. A Prod. B Prod. C Sales Evaluation
s1 165 120 0 0 10 250 �

s2 172.69 130 0.769 0 10 265.38 �
s3 180.38 140 1.538 0 10 280.77 good
s4 141.13 140 3 3 4.92 272.92 good
s5 148.38 150 5 2 4.75 278.75 good
s6 139.13 150 5 3 3.58 279.58 �
s7 188.08 150 2.308 0 10 296.15 �
s8 159 150 6 0 6 270 �

s9 140.5 150 6 2 3.67 271.67 good
s10 209.25 200 6 2 7.83 375.83 �
s11 189.38 200 5 5 5.42 385.42 �
s12 127.38 130 3 3 4.08 252.08 �
s13 113.63 120 3 3 3.25 231.25 �

subject to:

xA � 10 ; xB � 20 ; xC � 10
[Market absorption limits] ;

xA � 0 ; xB � 0 ; xC � 0
[Non-negativity constraints] :

A sample of representative Pareto optimal solutions has
been calculated and proposed to the DM. Observe that
the considered problem is a Multiple Objective Linear
Programming (MOLP) problem, and thus representative
Pareto optimal solutions can be calculated using classical
linear programming looking for the solutions optimizing
each one of the considered objectives or fixing all the con-
sidered objective functions but one at a satisfying value,
and looking for the solution optimizing the remaining ob-
jective function. The set of representative Pareto optimal
solutions is shown in Table 11. Moreover, a set of poten-
tially interesting association rules have been induced from
the sample and presented to the DM. These rules repre-
sent strongly supported relationships between attainable
values of objective functions. The association rules are the
following (between parentheses there are id’s of solutions
supporting the rule):

1) if Time � 140, then Profit � 180.38 and Sales
� 280:77 (s1; s2; s3; s4; s12; s13),

2) if Time � 150, then Profit � 188:08 and Sales
� 296:15 (s1; s2; s3; s4; s5; s6; s7; s8; s9; s12; s13),

3) if xB � 2, then Profit � 209:25 and xA � 6 and
xC � 7:83 (s4; s5; s6; s9; s10; s11; s12; s13),

4) if Time � 150, then xB � 3 (s1; s2; s3; s4; s5; s6; s7;
s8; s9; s12; s13),

5) if Profit � 148:38 and Time � 150, then xB � 2 (s1;
s2; s3; s5; s7; s8),

6) if xA � 5, then Time� 150 (s5; s6; s8; s9; s10; s11),
7) if Profit � 127:38 and xA � 3, then Time � 130 (s4;

s5; s6; s8; s9; s10; s11; s12),
8) if Time � 150 and xB � 2, then Profit � 148:38 (s4;

s5; s6; s9; s12; s13),
9) if xA � 3 and xC � 4:08, then Time � 130 (s4; s5;

s8; s10; ; s11; s12),
10) if Sales � 265:38, then Time � 130 (s2; s3; s4; s5; s6;

s7; s8; s9; s10; s11).

Then, the DM has been asked if (s)he was satisfied
with one of the proposed Pareto optimal solutions. Since
his/her answer was negative, (s)he was requested to indi-
cate a subset of relatively “good” solutions which are indi-
cated in the “Evaluation” column of Table 11.

Taking into account the ordinal classification of Pareto
optimal solutions into “good” and “others”, made by the
DM, twelve decision rules have been induced from the
lower approximation of “good” solutions. The frequency
of the presence of objectives in the premises of the rules
gives a first idea of the importance of the considered ob-
jectives. These frequencies are the following:

� Profit: 4
12 ,

� Time: 1212 ,
� Production of A : 7

12 ,
� Production of B : 4

12 ,
� Production of C : 5

12 ,
� Sales: 5

12 .
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The following potentially interesting decision rules
were presented to the DM:

1) if Profit � 140.5 and Time � 150 and xB � 2, then
product mix is good (s4; s5; s9),

2) if Time� 140 and xA � 1:538 and xC � 10, then prod-
uct mix is good (s3),

3) if Time� 150 and xB � 2 and xC � 4:75, then product
mix is good (s4, s5),

4) if Time� 140 and Sales� 272:9167, then product mix
is good (s3, s4),

5) if Time � 150 and xB � 2 and xC � 3:67 and Sales
� 271:67, then product mix is good (s4, s5, s9).

Among these decision rules, the DM has selected
rule 1) as the most adequate to his/her preferences. This
rule permits to define the following constraints reducing
the feasible region of the production mix problem:

� 20xAC30xBC25xC�(xAC2xBC0:75xC)6�(0:5xAC
xB C 0:5xC)8 � 140:5 [Profit � 140:5],

� 5xA C 8xB C 10xC C 8xA C 6xB C 2xC � 150 [Time
� 150],

� xB � 2 [Production of B � 2].

These constraints have been considered together with
the original constraints for the production mix problem,
and a new sample of representative Pareto optimal solu-
tions shown in Table 12 have been calculated and pre-
sented to the DM, together with the following potentially
interesting association rules:

10) if Time � 140, then Profit � 174 and xC � 9:33 and
Sales� 293:33 (s50, s60, s70, s80, s90, s100, s110, s120),

20) if xA � 2, then xB � 3 and Sales � 300:83 (s20, s30,
s40, s60, s70, s90),

30) if xA � 2, then Profit � 172 and xC � 8 (s20, s30, s40,
s60, s70, s90),

40) if Time � 140, then xA � 2 and xB � 3 (s50, s60, s70,
s80, s90, s100, s110, s120),

50) if Profit � 158.25, then xA � 2 (s10, s30, s40, s50, s60,
s80),

60) if xA � 2, then Time� 130 (s20, s30, s40, s60, s70, s90),
70) if xC � 7:17, then xA � 2 and xB � 2 (s10, s30, s50, s60,

s80, s100),
80) if xC � 6, then xA � 2 and xB � 3 (s10, s30, s40, s50,

s60, s70, s80, s90, s100, s110, s120),
90) if xC � 7, then Time � 125 and xB � 2 (s10, s30, s50,

s60, s80, s100, s110),
100) if Sales � 280, then Time � 140 and xB � 3 (s10, s20,

s30, s40, s50, s70),
110) if Sales � 279:17, then Time � 140 (s10, s20, s30, s40,

s50, s60, s70),

120) if Sales � 272, then Time � 130 (s10, s20, s30, s40, s50,
s60, s70, s80).

The DM has been asked again if (s)he was satisfied
with one of the proposed Pareto optimal solutions. Since
his/her answer was negative, (s)he was requested again to
indicate a subset of relatively “good” solutions, which are
indicated in the “Evaluation” column of Table 12.

Taking into account the ordinal classification of Pareto
optimal solutions into “good” and “others”, made by the
DM, eight decision rules have been induced from the
lower approximation of “good” solutions. The frequencies
of the presence of objectives in the premises of the rules
are the following:

� Profit: 2
8 ,

� Time: 18 ,
� Production of A : 5

8 ,
� Production of B : 3

8 ,
� Production of C : 3

8 ,
� Sales: 28 .

The following potentially interesting decision rules
were presented to the DM:

1) if Time � 125 and xA � 1, then product mix is good
(s110; s120),

2) if xA � 1 and xC � 7, then product mix is good
(s30; s60; s110),

3) if xA � 1:5 and xC � 6:46, then product mix is good
(s30; s40; s60; s120),

4) if Profit� 158.25 and xA � 2, then product mix is good
(s30; s40; s60),

5) if xA � 2 and Sales � 300, then product mix is good
(s30; s40).

Among these decision rules, the DM has selected rule
4) as the most adequate to his/her preferences. This rule
permits to define the following constraints reducing the
Pareto optimal set of the production mix problem:

� 20xAC30xBC25xC�(xAC2xBC0:75xC)6�(0:5xAC
xB C 0:5xC)8 � 158:25 [Profit � 158:25],

� xA � 2 [Production of A � 2].

Let us observe that the first constraint is just strength-
ening an analogous constraint introduced in the first iter-
ation (Profit � 140:5).

Considering the new set of constraints, a new sample
of representative Pareto optimal solutions shown in Ta-
ble 13 has been calculated and presented to the DM, to-
gether with the following potentially interesting associa-
tion rules:
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Rough Sets in Decision Making, Table 12
A sample of Pareto optimal solutions proposed in the second iteration

Solution Profit Time Prod. A Prod. B Prod. C Sales Evaluation
s10 186.53 150 0.154 2 10 313.08 �
s20 154.88 150 3 3 5.75 293.75 �
s30 172 150 2 2 8 300 good
s40 162.75 150 2 3 6.83 300.83 good
s50 174 140 0 2 9.33 293.33 �
s60 158.25 140 2 2 7.17 279.17 good
s70 149 140 2 3 6 280 �

s80 160.25 130 0 2 8.5 272 good
s90 144.5 130 2 2 6.33 258.33 �
s100 153.38 125 0 2 8.08 262.08 �
s110 145.5 125 1 2 7 255 good
s120 141.56 125 1.5 2 6.46 251.46 good

100) if Time � 145, then xA � 2 and xB � 2:74 and Sales
� 290:2 (s200; s300; s400),

200) if xC � 6:92, then xA � 3 and xB � 2 and Sales
� 292:92 (s300; s400; s500),

300) if Time � 145, then Profit � 165:13 and xA � 2 and
xC � 7:58 (s200; s300; s400),

400) if xC � 6:72, then xB � 2:74 (s200; s300; s400; s500),
500) if Sales � 289:58, then Profit � 165:13 and Time
� 145 and xC � 7:58 (s100; s200; s300; s500).

TheDMhas been asked again if (s)he was satisfiedwith
one of the presented Pareto optimal solutions shown in
Table 13 and this time (s)he declared that solution s300 is
satisfactory for him/her. This ends the interactive proce-
dure.

Characteristics of the IMO-DRSA

The interactive procedure presented in Sect.“Interactive
Multiobjective Optimization Using DRSA (IMO-DRSA)”
can be analyzed from the point of view of input and out-
put information. As to the input, the DM gives prefer-
ence information by answering easy questions related to
ordinal classification of some representative solutions into
two classes (“good” and “others”). Very often, in multi-
ple criteria decision analysis, in general, and in interac-
tive multiobjective optimization, in particular, the prefer-
ence information has to be given in terms of preference
model parameters, such as importance weights, substitu-
tion rates and various thresholds (see [6] for the Multi-
ple Attribute Utility Theory and [1,5,34,46] for outrank-
ing methods; for some well-known interactive multiob-
jective optimization methods requiring preference model
parameters, see the Geoffrion–Dyer–Feinberg method [9],
the method of Zionts andWallenius [60,61] and the Inter-
active Surrogate Worth Tradeoff method [2,3] requiring

information in terms of marginal rates of substitution, the
reference point method [58] requiring a reference point
and weights to formulate an achievement scalarizing func-
tion, the Light Beam Search method [33] requiring infor-
mation in terms of weights and indifference, preference
and veto thresholds, being typical parameters of ELEC-
TRE methods). Eliciting such information requires a sig-
nificant cognitive effort on the part of the DM. It is gener-
ally acknowledged that people often prefer to make exem-
plary decisions and cannot always explain them in terms
of specific parameters. For this reason, the idea of inferring
preference models from exemplary decisions provided by
the DM is very attractive. The output result of the anal-
ysis is the model of preferences in terms of “if . . . , then
. . . ” decision rules which is used to reduce the Pareto op-
timal set iteratively, until the DM selects a satisfactory so-
lution. The decision rule preference model is very conve-
nient for decision support, because it gives argumentation
for preferences in a logical form, which is intelligible for
the DM, and identifies the Pareto optimal solutions sup-
porting each particular decision rule. This is very useful
for a critical revision of the original ordinal classification of
representative solutions into the two classes of “good” and
“others”. Indeed, decision rule preference model speaks
the same language of theDMwithout any recourse to tech-
nical terms, like utility, tradeoffs, scalarizing functions and
so on.

All this implies that IMO-DRSA has a transparent
feedback organized in a learning oriented perspective,
which permits to consider this procedure as a “glass box”,
contrary to the “black box” characteristic of many pro-
cedures giving final result without any clear explanation.
Note that with the proposed procedure, the DM learns
about the shape of the Pareto optimal set using the asso-
ciation rules. They represent relationships between attain-
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Rough Sets in Decision Making, Table 13
A sample of Pareto optimal solutions proposed in the third iteration

Solution Profit Time Prod. A Prod. B Prod. C Sales Evaluation
s100 158.25 150 2 3.49 6.27 301.24 �
s200 158.25 145 2 2.74 6.72 290.20 �
s300 165.13 145 2 2 7.58 289.58 selected
s400 158.25 140 2 2 7.17 279.17 �
s500 164.13 150 3 2 6.92 292.93 �
s600 158.25 145.3 3 2 6.56 284.02 �

able values of objective functions on the Pareto optimal
set in logical and very natural statements. The information
given by association rules is as intelligible as the decision
rule preference model, since they speak the language of the
DM and permit him/her to identify the Pareto optimal so-
lutions supporting each particular association rule.

Thus, decision rules and association rules give an ex-
planation and a justification of the final decision, that
does not result from a mechanical application of a cer-
tain technical method, but rather from a mature conclu-
sion of a decision process based on active intervention of
the DM.

Observe, finally, that the decision rules representing
preferences and the association rules describing the Pareto
optimal set are based on ordinal properties of objective
functions only. Differently from methods involving some
scalarization (almost all existing interactive methods), in
any step the proposed procedure does not aggregate the
objectives into a single value, avoiding operations (such
as averaging, weighted sum, different types of distance,
achievement scalarization) which are always arbitrary to
some extent. Observe that one could use a method based
on a scalarization to generate the representative set of
Pareto optimal solutions, nevertheless, the decision rule
approach would continue to be based on ordinal proper-
ties of objective functions only, because the dialogue stage
of the method operates on ordinal comparisons only. In
the proposed method, the DM gets clear arguments for
his/her decision in terms of “if . . . , then . . . ” decision rules
and the verification if a proposed solution satisfies these
decision rules is particularly easy. This is not the case
of interactive multiobjective optimization methods based
on scalarization. For example, in the methods using an
achievement scalarization function, it is not evident what
does it mean for a solution to be “close” to the reference
point. How to justify the choice of the weights used in the
achievement function? What is their interpretation? Ob-
serve, instead, that the method proposed in this chapter
operates on data using ordinal comparisons which would
not be affected by any increasing monotonic transforma-

tion of scales, and this ensures the meaningfulness of re-
sults from the point of view of measurement theory (see
e. g. [42]).

With respect to computational aspects of the method,
notice that the decision rules can be calculated effi-
ciently in few seconds only using the algorithms presented
in [17,20]. When the number of objective functions is not
too large to be effectively controlled by the DM (let us say
seven plus or minus two, as suggested byMiller [37]), then
the decision rules can be calculated in a fraction of one
second. In any case, the computational effort grows expo-
nentially with the number of objective functions, but not
with respect to the number of considered Pareto optimal
solutions, which can increase with no particularly negative
consequence on calculation time.

Conclusions

Rough set theory is a mathematical tool for dealing with
granularity of information and possible inconsistencies in
the description of objects. Considering this description as
an input data about a decision problem, the rough set ap-
proach permits to structure this description into lower and
upper approximations, corresponding to certain and pos-
sible knowledge about the problem. Induction algorithms
run on these approximations discover, in turn, certain and
possible decision rules that facilitate an understanding of
the DM’s preferences, and that enable a recommendation
concordant with these preferences.

The original version of the rough set approach, based
on indiscernibility or similarity relation, and typical in-
duction algorithms considered within machine learning,
data mining and knowledge discovery, deal with data
describing problems of taxonomy-type classification, i. e.
problems where neither the attributes describing the ob-
jects, nor the classes to which the objects are assigned,
are ordered. On the other hand, multiple criteria decision
making deals with problems where descriptions (evalua-
tions) of objects by means of attributes (criteria), as well as
decisions in classification, choice and ranking problems,
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are ordered. Moreover, in data describing multiple criteria
decision making, there exist a monotonic relationship be-
tween conditions and decisions, like “the bigger the house,
the more expensive it is”. The generalization of the rough
set approach and of the induction algorithms about prob-
lems in which order properties and monotonic relation-
ships are important gave birth to the Dominance-based
Rough Set Approach (DRSA) which made a breakthrough
in scientific decision support.
The main features of DRSA are the following:

� preference information necessary to deal with anymul-
tiple criteria decision problem, or with decision under
uncertainty, is asked to the DM just in terms of exem-
plary decisions,

� the rough set analysis of preference information sup-
plies some useful elements of knowledge about the de-
cision situation; these are: the relevance of attributes
or criteria, the minimal subsets of attributes or criteria
(reducts) conveying the relevant knowledge contained
in the exemplary decisions, the set of indispensable at-
tributes or criteria (core),

� DRSA can deal with preference information concern-
ing taxonomy-type classification, ordinal classification,
choice, ranking, multiobjective optimization and deci-
sion under uncertainty,

� the preference model induced from preference infor-
mation structured by DRSA is expressed in a natural
and comprehensible language of “if . . . , then . . . ” deci-
sion rules,

� suitable procedures have been proposed to exploit the
results of application of the decision rule preference
model on a set of objects or pairs of objects in order
to workout a recommendation,

� no prior discretization of quantitative condition at-
tributes or criteria is necessary,

� heterogeneous information (qualitative and quantita-
tive, ordered and non-ordered, nominal and ordinal,
quantitative and numerical non-quantitative scales of
preferences) can be processed within DRSA,

� the proposed methodology fulfills some desirable prop-
erties for both rough set approach (the approximated
sets include lower approximation and are included in
upper approximation, and the complementarity prop-
erty is satisfied), and for multiple criteria decision anal-
ysis (the decision rule preference model is formally
equivalent to the non-additive, non-transitive and non-
complete conjoint measurement model, and to a more
general model for preferences defined on all kinds of
scales),

� the decision rule preference model resulting from
DRSA is more general than all existing models of con-
joint measurement, due to its capacity of handling in-
consistent preferences (a new model of conjoint mea-
surement is formally equivalent to the decision rule
preference model handling inconsistencies),

� the decision rule preference model fulfills the postulate
of transparency and interpretability of preference mod-
els in decision support; each decision rule can be clearly
identified with those parts of the preference informa-
tion (decision examples) which support the rule; the
rules inform the DM in a quasi-natural language about
the relationships between conditions and decisions; in
this way, the rules permit traceability of the decision
support process and give understandable justifications
for the decision to be made,

� the proposed methodology is based on elementary con-
cepts and mathematical tools (sets and set operations,
binary relations), without recourse to any algebraic or
analytical structures.

The decision rules entering the preference model have
a special syntax which involves partial evaluation profiles
and dominance relations on these profiles. The traditional
preference models, which are the utility function and the
outranking relation, can be represented in terms of equiva-
lent decision rules. The clarity of the rule representation of
preferences enables one to see the limits of these aggrega-
tion functions. Several studies [22,23,26,50] presented an
axiomatic characterization of all three kinds of preference
models in terms of conjoint measurement theory and in
terms of a set of decision rules. The given axioms of “can-
cellation property” type are the weakest possible. In com-
parison to other studies on the characterization of aggre-
gation functions, these axioms do not require any prelimi-
nary assumptions about the scales of criteria. A side-result
of these investigations is that the decision rule preference
model is the most general among the known aggregation
functions.

Future Directions

The article shows that the Dominance-based Rough Set
Approach is a very powerful tool for decision analysis and
support. Its potential goes, however, beyond the theoreti-
cal frame considered in this article. There are many possi-
bilities of applying DRSA to real life problems. The non-
exhaustive list of potential applications includes:
Decision support in medicine: In this area there are al-

ready many interesting applications (see, e. g., [35,36,
40,59]), however, they exploit the classical rough set
approach; applications requiring DRSA, which handle
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ordered value sets of medical signs, as well as mono-
tonic relationship between the value of signs and the
degree of gravity of a disease, are in progress;

Customer satisfaction survey: Theoretical foundations
for application of DRSA in this field are available
in [30], however, a fully documented application is
still missing;

Bankruptcy risk evaluation: This is a field of many po-
tential applications, as can be seen from promising
results reported, e. g. in [12,53,54], however, a wider
comparative study involving real data sets is needed;

Operational research problems, such as location, rout-
ing, scheduling or inventory management: These are

problems formulated either in terms of classification
of feasible solutions (see, e. g., [11]), or in terms of
interactive multiobjective optimization, for which the
IMO-DRSA [32] procedure is suitable;

Finance: This is a domain where DRSA for decision un-
der uncertainty has to be combined with interactive
multiobjective optimization using IMO-DRSA; some
promising results going in this direction have been
presented in [31];

Ecology: Assessment of the impact of human activity on
the ecosystem is a challenging problem for which the
presented methodology is suitable; the up to date ap-
plications are based on the classical rough set concept
(see, e. g., [7,43]), however, it seems that DRSA han-
dling ordinal data has a greater potential in this field.
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30. Greco S, Matarazzo B, Słowiński R (2007) Customer satisfaction
analysis based on rough set approach. Z Betr 16(3):325–339
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Glossary

Approximation The replacement of mathematical ob-
jects by others that resemble them in certain re-
spects [64].

Approximation space An approximation space is de-
noted by (O;F ;�B), where O is a set of perceived ob-
jects, F is a set of probe functions representing object
features, and�B is an indiscernibility relation defined
relative to B � F . This approximation space is consid-
ered fundamental because it provided a framework for
the original rough set theory [37,40]. Several general-
izations of this definition of approximation space have
been proposed (see, e. g., [40,44,54,55,56,58,59,69]).

Attribute A quality regarded as characteristic or inherent
in an object [29]. In rough set theory, an attribute a
of an object x is represented by a partial function
fa(x) D v, where v is a value in the range of f a. In
rough set theory, the function f a is often called an
attribute [38,45].

Boundary region The B-boundary region of an approxi-
mation of a set X is denoted by BndBX and is defined
relative to a set of functions B representing features of
objects in X as well as the lower approximation B�X
and the upper approximation B�X, where

BndBX D B�XnB�X D fx j x 2 B�X and x … B�Xg:

Elementary set A B-class in the quotient set X/ �B .
Equivalence class Given a relation �, an equivalence

class is a set denoted by [x] or [x]� [10] in the quotient
set X/ � (See Glossary item “Quotient set”), where

[x] D fx0 2 X j x � x0g :

Equivalence relation A reflexive, symmetric and transi-
tive relation�� X � X. An equivalence relation� on
a set X defines a partition of X into classes.

Feature Make, form, fashion, shape (of an object) [29].
A characteristic of an object perceived by the senses
or knowable by the mind [41,52]. In rough set theory,
a feature f of an object x is represented by a function
� f (x) D v, where v is a value in the range of � f (e. g.,
��(x) as ameasure of the tonality � feature of a Chopin
Mazurka x) [41,52]. The function � f is sometimes also
termed an attribute [38,45].

Indiscernibility relation An equivalence relation

�BD f(x; x0) 2 X�Xj f (x)D f (x0) for any f 2 Bg ;

where X denotes a set of objects, B denotes a set of
functions, and f 2 B is a function representing a fea-
ture of an object x 2 X. The notation used to denote
an equivalence relation in rough set theory has var-
ied widely over time. For example, eB was originally
introduced by Zdzisław Pawlak in 1981 [37]. Later,
Ind(B) [18,30,38,66] or INDB [45] or IndB [14] or
IND [66] or I(B) [40] or DB [16] has also been used
to denote an equivalence relation on a set X defined
relative to attributes of objects. In rough set theory, the
equivalence relation �B was introduced by Zdzisław
Pawlak [37].

Information granule Information granules are obtained
in the process of granulation. Granulation can be
viewed as a human way of achieving data compres-
sion and it plays a key role in implementing the di-
vide-and-conquer strategy in human problem-solving.
An information granule represents a set of objects that
have descriptions matching the granule [52], e. g. ele-
mentary set [x]B , lower approximation B�X, quotient
set X/ �B .

Lower approximation The B-lower approximation of
a setX is denoted by B�X and is defined relative to a set
of functions B representing features of objects in X and
the quotient set X/ �B , where

B�X D
[

x :[x]B�X

[x]B :

Object Something perceptible to the senses or knowable
by the mind [29].
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Information Whatever is conveyed or represented by
a particular sequence of symbols [29]. In rough set the-
ory, information is derivable either from the patterns
in a particular information table or from what can be
observed in a particular approximation space [37,40].

Information system A system to represent knowledge
[25,36,40]. Syntactic representation of knowledge in
table form [25,45].

Partition of a non-empty set X A family of non-empty,
pairwise disjoint subsets of X (called classes) such that
the union of this family is equal to X.

Quotient set Set of all classes in a partition defined by an
equivalence relation� on a set X (denoted by X/ �).

Rough set A set X is considered a rough set if, and only if
it has a non-empty B-boundary BndBX, i. e., the B-ap-
proximation of X has a non-empty boundary.

Upper approximation The B-upper approximation of X
is denoted by B�X and is defined relative to a set of
functions B representing features of objects in X and
the quotient set X/ �B , where

B�X D
[

x :[x]B\X¤;

[x]B :

Definition of the Subject

Rough set theory was introduced by Zdzisław Pawlak
(1926–2006) during the early 1980s. This theory has two
distinguishing hallmarks: knowledge description systems
introduced by Pawlak in 1973 [36] and set approxima-
tion (See Glossary Items “Approximation”, “Boundary re-
gion”, “Lower approximation”, “Upper approximation”)
as a means of classifying a set [37]. Knowledge description
systems represent our knowledge about sample objects in
tabular form. This knowledge results from identifying a set
of attributes A (apparent qualities) of the objects. A total
function � : X � A �! Va maps an attribute a 2 A of an
object x 2 X to a value v 2 Va . Our knowledge about ob-
jects x1; : : : ; xn having attributes a1; : : : ; ak then can be
represented in table form as rows of knowledge descrip-
tions, e. g., description of xi as a tuple.

(�(xi ; a1); �(xi ; a2); : : : ; �(xi ; ak)) :

At this point, there is a natural transition to the formu-
lation of an indiscernibility relation�B that defines a par-
tition of a set of sample objects relative to set B � A (see
Glossary item “Indiscernibility relation”). In many ways,
this relation is both fecund and important. The fecundity
(high fertility) of this relation can be seen in several ways.
First, �B makes it possible to organize tabular represen-
tations of objects into equivalence classes. This, of course,

means that now our observations can be made at the level
of classes (elementary granules) instead of the more in-
transigent level of individual objects. Second, the majesty
of �B can be seen in Pawlak’s discovery of lower and up-
per descriptions of objects. These descriptions accrue nat-
urally from lower and upper approximations of a set of ob-
jects. Third, it is then possible gauge the roughness of our
knowledge about a set of objects by considering the size of
the boundary of an approximation. The roughness of our
knowledge about a set of sample objects is directly pro-
portional to the size of the approximation boundary. So,
in effect, the indiscernibility relation lead to the discovery
of rough sets.

The importance of the indiscernibility relation can
be seen in a number of ways, if one considers the ordi-
nary difficulties associated with the complexity of ordi-
nary, perceptual objects. The introduction of this relation
led to the creation of an approximation space that pro-
vides a framework for perception or observation on the
level of classes [33,37]. An important byproduct of the ap-
proach to approximation in rough set theory is informa-
tion granulation [52]. Each selection of features of a set
of sample objects leads to granulation of the information
associated with the objects. For a set of sample objects X
with selected features represented by a set of functions B,
a rich harvest of information granules from the partition
of X defined by the indiscernibility relation�B , e. g., indi-
vidual classes [x]B , quotient space X/ �B , lower approx-
imation B�X, upper approximation B�X, and boundary
BndBX. From the introduction of knowledge description
systems and approximation of our knowledge springs var-
ious forms of learning, starting with learning from exam-
ples exemplified by a number rough set toolsets released
during the past decade (see, e. g., [20,50]).

Basic ideas of rough set theory and its extensions, as
well as many interesting applications can be found in nu-
merous books [50], issues of the Transactions on Rough
Sets [62], special issues of other journals, proceedings of
international conferences, tutorials or surveys (see, ref-
erences and further readings listed in this paper and,
e. g., [40] and numerous web pages such as [20,63,65]).

Introduction

This chapter gives a concise overview of some of the fea-
tures of the foundations and perspectives of rough set the-
ory. The foundations of rough set theory are rich and
varied. These foundations include the study of algebras
and algebraic structures associated with rough sets [2,8],
entropy [7,61], lattice theory [9,23], similarity and in-
discernibility [34], rough-satisfiability [14], logic [11,45],
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and rough mereology [46]. In general, an overview of the
mathematical foundations of rough sets is given by Lech
Polkowski [45,46].

In addition to providing a fairly comprehensive inven-
tory of some of the highlights of rough set-based research,
this chapter gives a capsule view of several of the hallmarks
of rough set theory, namely, approximation, approxima-
tion spaces, discovery of rough sets, and feature set reduc-
tion (reducts). For many other issues related to rough set
theory and its applications, the reader is referred to the
bibliography on rough sets.

This chapter has the following organization. The
rough set approach to approximation spaces is given
in Sect. “Approximation Spaces”. This is followed in
Sect. “Rough Sets” by an overview of the general notion
of rough sets. The rough set approach to dimensionality
reduction is briefly presented in Sect. “Dimensionality Re-
duction”. A capsule view of the future of rough sets and
their applications is given in Sect. “Future Directions”.

Approximation Spaces

In rough set theory, approximations are carried out within
the context of an approximation space (O;F ;�B), where
O is a set of objects, F is a set of functions representing
object features, and �B is an indiscernibility relation de-
fined relative to B � F . This space is considered funda-
mental because it provided a framework for the original
rough set theory [37]. It has also been observed that an
approximation space is the formal counterpart of percep-
tion [33]. Approximation starts with the partition O/ �B
of O defined by the relation �B . Next, any set X � O is
approximated by considering the relation between X and
the classes [x]B 2 O/ �B; x 2 O.

An approximation space (O;F ;�B) defined relative to
a set of perceptual objects O, a set functions F , and rela-
tion �B , has the following basic framework that facilitates
observations concerning sample objects.

Framework for an Approximation Space

O D Set of perceived objects;
F D Set of probe functions objects;
B � F ;
�B D f(x; x0) 2 X � X j f (x)D f (x0)

for any f 2Bg;
O/ �B D f[x]B j x 2 O; B � Fg ; B-partition of O;
[x]B 2 O/ �B;

X � O; set of objects of interest;

B�X D
[

x :[x]B�X

[x]B; B-lower approximation;

B�X D
[

x :[x]B\X¤;

[x]B ; B-upper approximation;

BndBX D B�X n B�X; B-boundary region:

Affinities between objects of interest in the set X � O
and classes in the quotient set O/ �B can be discovered
by identifying those classes that have objects in common
with X. Approximation of the set X begins by determin-
ing which elementary sets [x]B 2 O/ �B are subsets of X.
This discovery process leads to the B-lower approximation
of X � O denoted by B�X. The B-upper approximation
B�X is a sum of equivalence classes [x]B 2 O/ �B , where
each class included in B�X contains at least one object
with a description that matches the description of an ob-
ject in X. The lower and upper approximations of X pro-
vide a basis for defining the boundary of an approxima-
tion. Notice that B�X is always a subset of B�X.

Several generalizations of the classical rough set ap-
proach based on approximation spaces defined as pairs of
the form (O;F ;�B); B � F, have been reported in the lit-
erature [44,45,54]. Among them it is worthwhile mention-
ing the rough set approach based on similarity (tolerance)
relations and the approach to approximation of vague con-
cepts based on the adaptive extension of approximation
spaces [54] and approximations spaces that consider the
nearness of objects [44].

Moreover, the approach based on inclusion func-
tions has been generalized to the rough mereological ap-
proach [32,45,46]. The inclusion relation x�r y with the
intended meaning x is a part of y to a degree at least r has
been taken as the basic notion of the rough mereology be-
ing a generalization of the Leśniewski mereology [26]. Re-
search on rough mereology has shown importance of an-
other notion, namely closeness of compound objects (e. g.,
concepts). This can be defined by x clr;r0 y if and only if
x�r y and y�r0x.

Rough mereology offers a methodology for synthesis
and analysis of objects in a distributed environment of in-
telligent agents, in particular, for synthesis of objects sat-
isfying a given specification to a satisfactory degree or for
control in such a complex environment. Moreover, rough
mereology has been used for developing the foundations
of the information granule calculi, aiming at formaliza-
tion of the Computing with Words paradigm, recently
formulated by Lotfi Zadeh [67,68]. More complex infor-
mation granules are defined recursively using already de-
fined information granules and theirmeasures of inclusion
and closeness. Information granules can have complex
structures like classifiers or approximation spaces. Com-
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putations on information granules lead to the discovery
of relevant information granules, e. g., information gran-
ules useful in compound concept approximations, pattern
recognition and in machine learning. For example, fami-
lies of approximation spaces labeled by some parameters
are considered. By tuning such parameters according to
chosen criteria (e. g., minimal description length), one can
search for an optimal approximation space.

Rough Sets

In its original conception by Zdzisław Pawlak during the
early 1980s, the discovery of the rough set approach to
classification of sets of objects resulted from work on
knowledge description systems begun by Pawlak during
the early 1970s. In the rough set approach, the roughness
of our knowledge of a set of objects is gauged in terms of
a new approach to approximation that pivots on object de-
scriptions commonly found in information tables also in-
troduced by Pawlak. Approximation is carried out at the
level of sets relative to our knowledge about objects of in-
terest. That is, one approximates one set by another set.
This approximation is built on a feature space for individ-
ual objects. A feature space for objects is defined relative
to functions that map sample objects (pre-images) to mea-
surements (images) that gauge the extent of our knowl-
edge about the appearance of the objects. The basic idea
is to select a set X of objects of interest and approximate it
with another set that resemblesX. Thismeans that approx-
imation is carried out at two different levels in the rough
set approach.

1. Object Level. For a given set of objects design a set of
functions � D f�1; : : : ; �ng that represent features of
sample objects of interest. The description of an ob-
ject x is approximated by an n-tuple (�1(x); : : : ; �n(x))
of feature measurements.

Rough Sets: Foundations and Perspectives, Figure 1
Sample X � O to be approximated

2. Set Level. Define the partition of objects in the sample
space O using the indiscernibility relation �B , where
B � �. Approximate a set X containing objects of in-
terest relative to the elementary sets in X/ �B . Approx-
imation of a set X containing objects with features rep-
resented by functions � is carried out in terms of the
lower approximation B�X and the upper approxima-
tion B�X.

Example 1 (Sample approximation of a set of coral pores)
For this example, consider the set of coral pores in the
coral fragment shown in Fig. 1(b). Then sets O;X;B and
an approximation of X are defined in the following way:

O D fp j p equals a labeled coral pore in Fig. 1g
D fp1; p2; p3; p4; p5; p6; p7; p8; p9; p10; p11g;

F D f f g; where f : O! <;
f (pi) D depth (in mm) of a coral pore pi 2 X;
O/ �B D f[p1] f ; [p4] f ; [p6] f g shown in Fig. 1a;

X D fp j p equals a labeled coral pore in Fig. 1bg;
D fp3; p4; p5; p10g:

Hence

B�X D [p4] f D fp4; p5g ;
B�X D [p1] f [ [p4] f [ [p6] f ;

BndBX D [p1] f [ [p6] f :

Then observe that only [p4] f is a proper subset of X.
In effect, only the class [p4] f has a complete affinity
with X, since all of the objects [p4] f have descriptions that
match the descriptions of objects in X. By contrast, classes
[p1] f ; [p6] f have only a partial affinity with X, since there
are objects in each class that have descriptions that do
match the description of any object in X. Observe that the
boundary BndBX is not empty. Hence, X is an example of
a rough set.

Information Tables

For computational reasons, a syntactic representation of
information systems is usually given in the form of tables.
An information system is represented by the pair (O;F),
where O denotes a set of objects (a universe) and F de-
notes a set of functions representing features of objects
in O. Let B � F . Discovering objects in the composition
of a class [x]B ; x 2 O in the partition O/ �B in the sys-
tem (O;F) is accomplished by gathering together inside
the class all of those objects that have matching function
values. Identifying the classes in X/ �B is greatly aided by
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a table representation of (O;F). This is illustrated with the
following example.

Example 2 (Sample information table) For this example,
assume again that O is a set of words. For simplicity, we
limit O to words from poems by John Keats (1795–1821).
Consider, for example, the words in the following lines in
Part 3 of Keats’ ode To Autumn [24].

TO AUTUMN

3.

Where are the songs of spring? Aye, where are they?

Think not of them, thou has thy music too,—

. . .

John Keats

19 September 1819

By way of approximation of a set of conceptual objects,
consider X � O defined as

O D fx j x is a word in Keats’ poetryg;
D fWhere; are; the; songs; o f ; spring; : : : g;

A D f f1; f2g;

where

f1(x) D

(
1; x begins with a vowel;
0; otherwise:

f2(x) D

(
1; x contains two or more vowels;
0; otherwise:

The objects in this example are conceptualized as poetic
words and the functions appropriately represent attributes
of poetic words. On might say that a word gains in poesy
by beginning with a vowel sound (taking away the leading
vowel sound tends to undermine the poetic character of
a word). Similarly, a repetition of vowel sounds in a word
is characteristic of poetic words, especially in the poetry of
John Keats. For simplicity, consider only the vowels a, e, i,
o, u, the vowel sound ha in the word has and omit consid-
eration of other vowel sounds. In addition, O is restricted
to words in Keats’ ode ToAutumn, partially represented in
this Example. The function values for each of the words in
the fragment from Keat’s ode are summarized in Table 1.
Let B DA. This leads to the following partition of O:

�
where

�
B D fwhere; thou;music; toog

[are]B D fare;Ayeg�
the
�
B D fthe; songs; spring; they; think; not;

them; has; thyg
�
o f
�
B D fo f g

Rough Sets: Foundations and Perspectives, Table 1
Information System for Keats’ Words

O f 1 f 2 d
where 0 1 1
are 1 1 1
the 0 0 0
songs 0 0 1
of 1 0 1
spring 0 0 1
Aye 1 1 1
they 0 0 1
think 0 0 1
not 0 0 1
them 0 0 1
thou 0 1 1
has 0 0 0
thy 0 0 1
music 0 1 1
too 0 1 1

Now select, for example,

X D fnot; are;Aye; has; o f ; toog :

This choice of X leads to

B�X D [are]B [ [o f ]B D fare;Aye; o f g
B�X D [are]B [ [o f ]B [ [the]B :

In effect, the words in [are]B [ [o f ]B have an affinity to
the words in the set X. In particular, notice that each of the
words in the class

�
where

�
B

�
where

�
B D fwhere; thou;music; toog ;

have exactly the same f1; f2 function values. Similarly, for
the composition of the remaining three classes in the par-
tition X/ �B . Again, for example, notice that the words
in class [the]A have the same function values, namely,
f1(x) D f (x) D 0, where x is a word in [the]B . It is a fairly
straightforward task to identify the classes extractable
from small tables. For large tables, it is necessary to mech-
anize the class extraction process.

Decision Systems and Decision Rules

Of particular interest is the extension of information sys-
tems made possible by including a function d represent-
ing what is known as a decision attribute in rough set
theory. A decision system is represented by the triple
(O;F ; d), where O denotes a set of objects (a universe),
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F denotes a set of functions representing features of
objects in O, and d : O �! Vd , where Vd is a set of
values representing decisions. Presenting decision pro-
cedures in a tabular form goes back at least to ancient
Babylon. Tabular forms for computer programming dates
back to the late 1950s. Next, tabular forms became pop-
ular in databases (see http://www.catalyst.com/products/
logicgem/overview.html). It is clear from the common
meaning of the verb decide that a decision represents a res-
olution or determination about something and presumes
something knowable by the mind but not necessarily ob-
servable by the senses. In more general setting, one can
consider a set of decisions D instead of a single decision d.

Example 3 (Sample decision system) For example, con-
sider an extension of the information system (O;A) with
a decision d for Keats’ words in Example 3. Recall that O
denotes a set of words andF denotes a set of features rep-
resenting attributes of words in O. By way of illustration,
let d be defined as follows.

d(x) D

(
1; x 2 O j x is a part of an alliteration ;
0; otherwise ;

where alliteration means the occurrence of the same let-
ter or sound at the beginning of adjacent or closely con-
nected words. Alliteration is also an example of a concept
(i. e., an idea for a class of objects), that provides a basis
for decision-making about various words. The common
sense view of a concept is the one favored in this intro-
duction to rough sets. Considering alliteration to be a con-
cept is consonant with the general meaning of a theoretical
concept [1]. That is, a theoretical concept is a concept ex-
pressed by a theoretical term associated with an axiomatic
system underlying logic, mathematics, terms drawn from
natural language or theories or that constitute the vocab-
ulary of a particular theory such as poetics or a branch of
science such as physics. at odds with the notion of concept
in logic, mathematics, scientific theory. Table 1 is a sample
decision table.

For example, consider the first line of Part 3 of Keats’
To Autumn:

Where are the songs of spring? Aye, where are they?

The repetition of the s sound in songs and Spring is alliter-
ative. Then d(songs) D d(Spring) D 1. The word the in
the first question in To Autumn is not part of an allitera-
tion in that question. Hence, d(the) D 0.

Let V D
S
fVa j a 2 Cg [ fVd g. Atomic formulae over

B � C [ D and V are expressions a D v called descriptors
(selectors) over B and V , where a 2 B and v 2 Va . The set

F(B;V ) of formulae over B and V is the least set contain-
ing all atomic formulae over B and V and closed with re-
spect to the propositional connectives ^ (conjunction), _
(disjunction) and : (negation).

By k'kA, we denote the meaning of ' 2 F(B;V ) in
the decision tableAwhich is the set of all objects inOwith
the property '. These sets are defined by ka D vkA D
fx 2 O j a(x) D vg, k' ^ '0kA D k'kA \ k'0kA; k' _
'0kA D k'kA[k'0kA; k:'kA D O�k'kA The formu-
lae fromF(C;V ),F(d;V ) are called condition formulae of
A and decision formulae of A, respectively.

Any object x 2 O belongs to the decision class
k
V

d2D d D d(x)kA ofA. All decision classes ofA create
a partition O/D of the universe O.

A decision rule for A is any expression of the
form ' )  , where ' 2 F(C;V );  2 F(D;V), and
k'kA ¤ ;. Formulae ' and are referred to as the prede-
cessor and the successor of decision rule ' )  . Decision
rules are often called “IF . . . THEN . . . ” rules. Such rules are
used in machine learning (see, e. g.,[13]).

Decision rule ' )  is true in A if and only if
k'kA � k kA. Otherwise, one can measure its truth de-
gree by introducing some inclusion measure of k'kA in
k kA.

Given two unary predicate formulae ˛(x); ˇ(x)
where x runs over a finite set O, Łukasiewicz [28] pro-
poses to assign to ˛(x) the value card(k˛(x)k)/card(O),
where k˛(x)k D fx 2 O : x satisfies ˛g. The fractional
value assigned to the implication ˛(x)) ˇ(x) is then
card(k˛(x) ^ ˇ(x)k)/card(k˛(x)k) under the assumption
that k˛(x)k ¤ ;. Proposed by Łukasiewicz, that fractional
part was much later adapted by machine learning and data
mining literature.

Each object x of a decision system determines a deci-
sion rule

^

a2C

a D a(x))
^

d2D

d D d(x) : (1)

For any decision tableA D (O;C; d) one can consider
a generalized decision function @A : O �! Vd defined by

@A(x) D
˚
i : 9x0 2 O

�
(x0; x) 2 I(A) and d(x0) D i

��
:

(2)

A is called consistent (deterministic), if card(@A(x)) D 1,
for any x 2 O. OtherwiseA is said to be inconsistent (non-
deterministic). Hence, a decision table is inconsistent if it
consists of some objects with different decisions but indis-
cernible with respect to condition attributes. Any set con-
sisting of all objects with the same generalized decision
value is called a generalized decision class. Now, one can

http://www.catalyst.com/products/logicgem/overview.html
http://www.catalyst.com/products/logicgem/overview.html
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consider certain (possible) rules (see, e. g. [17]) for deci-
sion classes defined by the lower (upper) approximations
of such generalized decision classes of A. This approach
can be extend, using the relationships of rough sets with
the Dempster–Shafer theory (see, e. g., [51]), by consider-
ing rules relative to decision classes defined by the lower
approximations of unions of decision classes ofA.

Numerous methods have been developed for different
decision rule generation that the reader can find in the lit-
erature on rough sets. Usually, one is searching for deci-
sion rules (semi) optimal with respect to some optimiza-
tion criteria describing quality of decision rules in concept
approximations.

In the case of searching for concept approximation in
an extension of a given universe of objects (sample), the
following steps are typical. When a set of rules has been
induced from a decision table containing a set of training
examples, they can be inspected to see if they reveal any
novel relationships between attributes that are worth pur-
suing for further research. Furthermore, the rules can be
applied to a set of unseen cases in order to estimate their
classificatory power.

Dimensionality Reduction

We often face the question whether one or more attributes
can be removed and still preserve the basic properties
of an information system. Let us express this idea more
precisely.

Let C;D � A, be sets of condition and decision at-
tributes respectively. We will say that C0 � C is a D-reduct
(reduct with respect to D) of C, if C0 is a minimal subset
of C such that

� (C;D) D � (C0;D) : (3)

The intersection of all D-reducts is called a D-core
(core with respect to D). Because the core is the intersec-
tion of all reducts, it is included in every reduct. Thus, in
a sense, the core is the most important subset of attributes,
since none of its elements can be removed without affect-
ing the classification power of attributes. Certainly, the ge-
ometry of reducts can be more compound. For example,
the core can be empty but there can exist a partition of
reducts into a few sets with non empty intersection.

Many other kinds of reducts and their approximations
are discussed in the literature (see, e. g., [30,60]). For ex-
ample, if one change the condition (3) to @A(x) D @B(x),
then the defined reducts are preserving the generalized de-
cision. Other kinds of reducts are preserving, e. g.,: (i) the
distance between attribute value vectors for any two ob-
jects, if this distance is greater than a given threshold,

(ii) the distance between entropy distributions between
any two objects, if this distance exceeds a given thresh-
old [60], or (iii) the so called reducts relative to object
used for generation of decision rules [3]. There are some
relationships between different kinds of reducts. If B is
a reduct preserving the generalized decision, than in B is
included a reduct preserving the positive region. For men-
tioned above reducts based on distances and thresholds
one can find analogous dependency between reducts rel-
ative to different thresholds. By choosing different kinds
of reducts we select different degrees to which informa-
tion encoded in data is preserved. Reducts are used for
building datamodels. Choosing a particular reduct or a set
of reducts has impact on the model size as well as on its
quality in describing a given data set. The model size to-
gether with the model quality are two basic components
tuned in selecting relevant data models. This is known as
the minimal length principle (see, e. g., [49]). Selection of
relevant kinds of reducts is an important step in building
data models. It turns out that the different kinds of reducts
can be efficiently computed using heuristics based, e. g., on
the Boolean reasoning approach [30,53].

Summary

We are now observing a growing research interest in the
foundations of rough sets that include various logical, alge-
braic, philosophical complexity issues of rough sets. Some
relationships have already been established between rough
sets and other approaches as well as a wide range of hybrid
systems have been developed.

As a result, rough sets are linked with decision system
modeling and analysis of complex systems, fuzzy sets, neu-
ral networks, evolutionary computing, data mining and
knowledge discovery, pattern recognition, machine learn-
ing, data mining, and approximate reasoning, multicrite-
ria decision making. In particular, rough sets are used in
probabilistic reasoning, granular computing (including in-
formation granule calculi based on rough mereology), in-
telligent control, intelligent agent modeling, identification
of autonomous systems, and process specification.

A wide range of applications of methods based on
rough set theory alone or in combination with other ap-
proaches have been discovered in the following areas:
acoustics, bioinformatics, business and finance, chem-
istry, computer engineering (e. g., data compression, dig-
ital image processing, digital signal processing, parallel
and distributed computer systems, sensor fusion, fractal
engineering), decision analysis and systems, economics,
electrical engineering (e. g., control, signal analysis, power
systems), environmental studies, digital image process-
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ing, informatics, medicine, molecular biology, musicol-
ogy, neurology, robotics, social science, software engi-
neering, spatial visualization, Web engineering, and Web
mining.

For further readings on rough set theory and applica-
tions the reader is referred to [40,45] and to books, special
issues of journals, issues of Transactions on Rough Sets,
and proceedings cited in the bibliography of this article.

Future Directions

One of the main future directions for research based on
rough sets in combination with other approaches such
as granular computing and other computational intelli-
gence approaches for developing intelligent systems can be
found in the framework of Wisdom Technology [21,22],
for complex vague concept approximation and approxi-
mate reasoning about such concepts by agents or teams of
agents searching for solutions of problems in real-life dy-
namically changing (distributed) environments in which
these agents are operating. Such systems consist of au-
tonomous agents operating in highly unpredictable envi-
ronments and interacting with each other.

In addition, a number of new rough set-based research
areas have emerged during the past several years such as
various forms of learning, including hierarchical learning
or analogy based reasoning [4,6,31,43,55,66], concept ap-
proximation [5], multicriteria decision making [15], en-
tropy in information systems [7,61], rough neural com-
puting [32], rough granular computing [52], and a near
set approach to image processing [19,27].
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Glossary

Discretization Discretization is a process of converting
numerical attributes into symbolic ones by splitting
the numerical attribute domain into intervals. Usually
discretization is conducted before the main process of
rule induction, but in some rule induction algorithms,
e. g., in MLEM2 (Modified LEM2), rules are induced
concurrently with discretization.
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LEM2 algorithm LEM2 (Learning from Examples Mod-
ule, version 2) is the basic rule induction algorithm
of the machine learning/data mining system LERS.
LEM2, implemented for the first time in 1990, uses an
idea of a local covering to induce a minimal set of min-
imal rules describing all data concepts.

LERS machine learning/data mining system
LERS (Learning from Examples based on Rough Sets)
is a rule induction system created at the University of
Kansas. Its first implementation was done in Franz
Lisp in 1988. This first version of LERS had only
one algorithm called LEM1 (Learning form Exam-
ples Module, version 1) to induce all rules from input
data.

Missing attribute values Missing attribute values fre-
quently affect real-life data. Some attribute values are
lost (e. g., erased), some are of the type “do not care”
conditions (such attribute values were irrelevant for
classification of the case). In most existing machine
learning/data mining systems some method of han-
dling missing attribute values is applied before the
main process of rule induction. However, in MLEM2
rule induction and handling missing attribute values
are conducted at the same time.

Rule induction Rule induction is understood here as an
instance of supervised learning. Rule induction is one
of the basic processes of acquiring knowledge (knowl-
edge extraction) in the form of rule sets from raw data.
This process is widely used in machine learning (data
mining). A data set contains cases (examples) charac-
terized by attribute values and classified as members
of concepts by an expert. Rules are expressions of the
following format:

if condition1 and condition2 and . . . and conditionn
then decision.

Definition of the Subject

Rule induction is a process of creating rule sets from raw
data called training data. Such rules represent hidden and
previously unknown knowledge contained in the training
data. These rules may be used for successful classification
of new cases that were not used for training. One of the
possible applications of this methodology is rule-based ex-
pert systems. There are many documented examples of
successful use of rule induction in medicine (e. g., for de-
cision support for diagnosis), finances, military, etc.

In particular, one of the rule induction systems called
LERS has proven its applicability having been used for
years by NASA Johnson Space Center (Automation and
Robotics Division), as a tool to develop expert systems of

the type used inmedical decision-making on board the In-
ternational Space Station. LERS was also used to enhance
facility compliance under Sections 311, 312, and 313 of Ti-
tle III, the Emergency Planning and Community Right to
Know. System LERS was used in other areas as well, for
example, in the medical field to assess preterm labor risk
for pregnant women. Currently used manual methods of
assessing preterm birth have a positive predictive value of
17–38%. The dataminingmethods based on LERS reached
positive predictive value of 59–92%. Other applications of
LERS to the medical area include diagnosis of melanoma,
prediction of behavior under mental retardation and anal-
ysis of animal models for prediction of self-injurious be-
havior. LERS has been used also in nursing, global warm-
ing, environmental protection, natural language, and data
transmission. LERS can process large datasets and fre-
quently outperforms not only other rule induction systems
but also human experts.

Introduction

Data mining uses methods of machine learning to acquire
knowledge from raw data. Rule induction is one of the
most successful techniques of machine learning. In many
application areas, such as medicine, it is essential not only
to make an appropriate decision or diagnosis but also to be
able to justify or explain the decision. Rules provide such
explanations.

We will discuss rule induction using for that pur-
pose one of the very successful algorithms called LEM2
(Learning from Examples Module, version 2), see for ex-
ample [4]. This algorithm is used in the LERS (Learning
from Examples based on Rough Sets) data mining system.
LERS can process inconsistent data, i. e., data with conflict-
ing cases, in which values for all attributes are the same yet
the decision values are distinct. LERS deals with inconsis-
tent data using a typical rough set approach: it computes
lower and upper approximations for all concepts. Then it
passes such approximations to LEM2.

Data are frequently incomplete, i. e., some attribute
values are missing. Rule sets may be induced from in-
complete data using a modified LEM2 algorithm called
MLEM2. Again, MLEM2 uses a rough set approach to
missing attribute values.

Additionally, many real-life data sets contain numeri-
cal attributes, i. e., attributes whose values are integers or
real numbers. Numerical data need to be converted into
symbolic data by a process called discretization. For a nu-
merical attribute a few intervals are determined, usually
these intervals are disjoint and together they cover the en-
tire domain of the numerical attribute. The process of dis-
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cretization may be performed before rule induction or, as
it is done in MLEM2, during rule induction.

In the entire process of rule learning, handling missing
attribute values, and discretization, the applied methodol-
ogy is based on the same granules called attribute-value
blocks. Similar granules were discussed in [13,14,15].

Discretization

The input examples are presented in a table, called a deci-
sion table. An example of such a table is presented as Ta-
ble 1. Table 1 represents the input data set in the format of
LERS [4]. Table 1 contains four variables: Age, Skill, Expe-
rience and Productivity. The first three variables are called
attributes, the last one is called decision. Table 1 presents
seven cases (or examples) labeled by integers 1; 2; : : : ; 7.

Any subset of the set of all cases, defined by the same
value of the decision is called a concept. Table 1 consists of
two concepts, defined by (Productivity, low) and (Produc-
tivity, high). For example, the concept defined by (Produc-
tivity, low) is the set f1; 3; 4; 6g.

The attribute Age from Table 1 is numerical. The nu-
merical attributes should be discretized before rule induc-
tion, otherwise rules induced from data with numerical at-
tributes will be too specific. In general, during discretiza-
tion an original range [a, b] of a numerical attribute is par-
titioned into a set of n intervals

f[a0; a1); [a1; a2); : : : ; [an�1; an]g ;

where a0 D a, ak < akC1 for k D 0; 1; : : : ; n � 1 and
an D b. The data mining system LERS uses for discretiza-
tion a number of discretization algorithms [2], includ-
ing Equal Interval Width, Equal Frequency per Interval,
Minimal Class Entropy, and two discretization methods
based on Cluster Analysis [5,8]. As an example, let us use
one of the simplest discretization methods, discretization
based on the Equal IntervalWidth. Let us start with n D 2.

Rule Induction, Missing Attribute Values and Discretization, Ta-
ble 1
An example of a decision table

Case Attributes Decision
Age Skill Experience Productivity

1 25 low low low
2 56 high high high
3 36 low high low
4 42 high low low
5 59 high low high
6 25 high low low
7 42 high high high

Rule Induction, Missing Attribute Values and Discretization, Ta-
ble 2
An example of an inconsistently discretized decision table

Case Attributes Decision
Age Skill Experience Productivity

1 25..42 low low low
2 42..57 high high high
3 25..42 low high low
4 42..57 high low low
5 42..57 high low high
6 25..42 high low low
7 42..57 high high high

Rule Induction, Missing Attribute Values and Discretization, Ta-
ble 3
An example of a discretized decision table

Case Attributes Decision
Age Skill Experience Productivity

1 25..36.3 low low low
2 47.7..59 high high high
3 25..36.3 low high low
4 36.3..47.7 high low low
5 47.7..59 high low high
6 25..36.3 high low low
7 36.3..47.7 high high high

Thus, the range [25; 59] of Age is partitioned into two in-
tervals of equal width: [25; 42) and [42; 59]. We will de-
note the first interval by 25..42 and the second interval by
42..59. As a result, the decision table that represents the
discretized data set (Table 2) is inconsistent, since cases 4
and 5 are conflicting. Therefore, the number of discretiza-
tion intervals was too small. Let us try n D 3. The new in-
tervals are [25; 36:3), [36:3::47:7), and [47:7::59], denoted,
respectively, by 25..36.3, 36.3..47.74, and 47.7..59. The new
discretized table is presented in Table 3. This table is con-
sistent and may be considered to be an input data set for
rule induction. For more details on discretization methods
see [2,6,8,10].

LEM2 Algorithm

LEM2 explores the search space of attribute-value pairs. Its
input data set is a lower or upper approximation of a con-
cept, so its input data set is always consistent. In general,
LEM2 computes a local covering and then converts it into
a rule set. We will quote a few definitions to describe the
LEM2 algorithm [1,4,5].

The LEM2 algorithm is based on an idea of an
attribute-value pair block. For an attribute-value pair
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Rule Induction, Missing Attribute Values and Discretization, Ta-
ble 4
An example of an inconsistent decision table

Case Attributes Decision
Age Skill Experience Productivity

1 25 low low low
2 56 high high high
3 36 low high low
4 42 high low low
5 59 high low high
6 25 high low low
7 42 high high high
8 25 high low high

(a; v) D t, a block of t, denoted by [t], is a set of all cases
from U such that for attribute a have value v. Let B be
a nonempty lower or upper approximation of a concept
represented by a decision-value pair (d;w). Set B depends
on a set T of attribute-value pairs t D (a; v) if and only if

; ¤ [T] D
\

t2T

[t] � B :

Set T is aminimal complex of B if and only if B depends
on T and no proper subset T 0 of T exists such that B de-
pends on T 0. LetT be a nonempty collection of nonempty
sets of attribute-value pairs. Then T is a local covering of
B if and only if the following conditions are satisfied:

� Each member T of T is a minimal complex of B,
�
S

t2T [T] D B, and
� T is minimal, i. e., T has the smallest possible number

of members.

The procedure LEM2, based on rule induction from local
coverings, is presented in Fig. 1

For a set X, jXj denotes the cardinality of X.
For Table 3 the following rules are induced by LEM2:

(Age, 25..36.3)! (Productivity, low),
(Age, 36.3..47.7) & (Experience, low)!

(Productivity, low),
(Age, 47.7..59)! (Productivity, high),
(Age, 36.3..47.7) & (Experience, high)!

(Productivity, high).

Inconsistent Data

LERS handles inconsistencies using rough set theory, in-
troduced by Z. Pawlak in 1982 [16,17]. In rough set theory
lower and upper approximations are computed for all con-
cepts involved in conflicts with other concepts.

Procedure LEM2
(input: a set B,
output: a single local covering T of set B);
begin

G :D B;
T :D ;;
while G ¤ ;

begin
T :D ;;
T(G) :D ftj[t]\ G ¤ ;g ;
while T D ; or [T] 6� B

begin
select a pair t 2 T(G) such
that j[t]\ Gj is maximum;
if a tie occurs, select a pair
t 2 T(G) with the smallest
cardinality of [t];
if another tie occurs,
select first pair;
T :D T [ ftg ;
G :D [t]\ G ;
T(G) :D ftj[t]\ G ¤ ;g;
T(G) :D T(G) � T ;
end {while}

for each t 2 T do
if [T � ftg] � B
then T :D T � ftg;

T :D T [ fTg;
G :D B �[T2T [T];

end {while};
for each T 2 T do

if
S

S2T�fTg[S] D B then T :D T � fTg;
end {procedure}.

Rule Induction, Missing Attribute Values and Discretization, Fig-
ure 1
Procedure LEM2

Let U denote the set of all examples of the decision ta-
ble and let P denote a nonempty subset of the set Q of all
variables, i. e., attributes and decisions. Let P be a subset
of A. An indiscernibility relation � on U is defined for all
x; y 2 U by x�y if and only if for both x and y the values
for all variables from P are identical. Equivalence classes
of � are called elementary sets of P. An equivalence class
of � containing x is denoted [x]P . Any finite union of el-
ementary sets of P is called a definable set in P. Let X be
a concept. In general, X is not a definable set in P. How-
ever, set X may be approximated by two definable sets in
P, the first one is called a lower approximation of X in P,
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denoted by PX and defined as follows

fx 2 Uj[x]P � Xg :

The second set is called an upper approximation of X
in P, denoted by PX and defined as follows

fx 2 Uj[x]P \ X ¤ ;g :

The lower approximation of X in A is the greatest de-
finable set in A, contained in X. The upper approxima-
tion of X in A is the least definable set in A containing X.
A rough set of X is the family of all subsets ofU having the
same lower and the same upper approximations of X.

Table 4 is an example of inconsistent data. Cases 6 and
8 are conflicting. The lower approximation of the concept
f1; 3; 4; 6g is the set f1; 3; 4g and the upper approximation
of the same concept is the set f1; 3; 4; 6; 8g. The Table 4,
discretized using the same Equal Interval Width method
that was used before to Table 1, with three intervals, is pre-
sented as Table 5. The corresponding rule sets are: the cer-
tain rule set:

(Skill, low)! (Productivity, low)
(Age, 36.3..47.7) & (Experience, low)!

(Productivity, low)
(Age, 47.7..59)! (Productivity, high),
(Age, 36.3..47.7) & (Experience, high)!

(Productivity, high),
and the possible rule set:

(Age, 25..36.3)! (Productivity, low),
(Age, 36.3..47.7) & (Experience, low)!

(Productivity, low),
(Skill, high) & (Age, 25..36.3)! (Productivity, high),
(Age, 47.7..59)! (Productivity, high),
(Age, 36.3..47.7) & (Experience, high)!

(Productivity, high).

Rule Induction, Missing Attribute Values and Discretization, Ta-
ble 5
An example of a discretized and inconsistent decision table

Case Attributes Decision
Age Skill Experience Productivity

1 25..36.3 low low low
2 47.7..59 high high high
3 25..36.3 low high low
4 36.3..47.7 high low low
5 47.7..59 high low high
6 25..36.3 high low low
7 36.3..47.7 high high high
8 25..36.3 high low high

Missing Attribute Values

For incomplete decision tables there are three important
and different possibilities to define lower and upper ap-
proximations, called singleton, subset, and concept ap-
proximations [9]. Singleton lower and upper approxima-
tions were studied, for example in [11,12,19,20]. Note that
similar definitions of lower and upper approximations,
though not for incomplete decision tables, were studied
in [15]. Additionally, note that some other rough-set ap-
proaches to missing attribute values were presented in [4]
as well.

For the rest of the paper we will assume that all deci-
sion values are specified, i. e., they are not missing. Also,
we will assume that lost values will be denoted by “?” and
“do not care” conditions by “”. Additionally, we will as-
sume that for each case at least one attribute value is spec-
ified.

For incomplete decision tables the definition of a block
of an attribute-value pair must be modified in the follow-
ing way:

� If for an attribute a there exists a case x such that
�(x; a) D ?, i. e., the corresponding value is lost, then
the case x should not be included in any blocks [(a; v)]
for all values v of attribute a.

� If for an attribute a there exists a case x such that
the corresponding value is a “do not care” condition,
i. e., �(x; a) D , then the case x should be included in
blocks [(a; v)] for all specified values v of attribute a.

For Table 6 the blocks of attribute-value pairs are:

[(Age; 25)] D f1; 6g,
[(Age; 36)] D f3g,
[(Age; 42)] D f4; 7g,
[(Skill, low)] D f1; 3; 4; 7g,
[(Skill, high)] D f2; 4; 5; 6; 7g,

Rule Induction, Missing Attribute Values and Discretization, Ta-
ble 6
An example of a decision table withmissing attribute values

Case Attributes Decision
Age Skill Experience Productivity

1 25 low * low
2 ? high * high
3 36 low high low
4 42 * low low
5 ? high low high
6 25 high * low
7 42 * high high
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[(Experience, low)] D f1; 2; 4; 5; 6g,
[(Experience, high)] D f1; 2; 3; 6; 7g,

For a case x 2 U the characteristic set KB(x) is defined as
the intersection of the sets K(x; a), for all a 2 B, where the
set K(x; a) is defined in the following way:

� If �(x; a) is specified, then K(x; a) is the block
[(a; �(x; a)] of attribute a and its value �(x; a).

� If �(x; a) D ? or �(x; a) D  then the set K(x; a) D U .

For Table 6 and B D A,

KA(1) D f1; 6g \ f1; 3; 4; 7g D f1g;
KA(2) D f2; 4; 5; 6; 7g;
KA(3) D f3g \ f1; 3; 4; 7g \ f1; 2; 3; 6; 7g D f3g;
KA(4) D f4; 7g \ f1; 2; 4; 5; 6g D f4g;
KA(5) D f2; 4; 5; 6; 7g \ f1; 2; 4; 5; 6g D f2; 4; 5; 6g;
KA(6) D f1; 6g \ f2; 4; 5; 6; 7g D f6g;
KA(7) D f4; 7g \ f1; 2; 3; 6; 7g D f7g:

Characteristic set KB(x) may be interpreted as the set
of cases that are indistinguishable from x using all at-
tributes from B and using a given interpretation of missing
attribute values. For incomplete decision tables lower and
upper approximations may be defined in a few different
ways. Here we suggest three different definitions of lower
and upper approximations for incomplete decision tables,
following [9]. Let B be a subset of the setA of all attributes.
Let X be any subset of the set U of all cases. The set X is
called a concept and is usually defined as the set of all cases
defined by a specific value of the decision.

Our first definition uses a similar idea as in the pre-
vious articles on incomplete decision tables [11,12,19,20],
i. e., lower and upper approximations are sets of singletons
from the universe U satisfying some properties. We will
call these approximations singleton. A singleton B-lower
approximation of X is defined as follows:

BX D fx 2 UjKB(x) � Xg :

A singleton B-upper approximation of X is

BX D fx 2 UjKB(x) \ X ¤ ;g :

In our example of the decision table presented in Table 6
let us say that B D A. Then the singleton A-lower and
A-upper approximations of the two concepts: f1; 3; 4; 6g
and f2; 5; 7g are:

Af1; 3; 4; 6g D f1; 3; 4; 6g ;
Af2; 5; 7g D f7g ;

Af1; 3; 4; 6g D f1; 2; 3; 4; 5; 6g ;

Af2; 5; 7g D f2; 4; 5; 6; 7g :

The next possibility is to define lower and upper ap-
proximations for incomplete decision tables using charac-
teristic sets instead of singletons. There are two ways to do
this. Using the first way, a subset B-lower approximation
of X is defined as follows:

BX D [fKB(x)jx 2 U;KB(x) � Xg :

A subset B-upper approximation of X is

BX D [fKB(x)jx 2 U;KB(x) \ X ¤ ;g :

For the same decision table, presented in Table 6, the sub-
set A-lower and A-upper approximations are

Af1; 3; 4; 6g D f1; 3; 4; 6g ;
Af2; 5; 7g D f7g ;

Af1; 3; 4; 6g D f1; 2; 3; 4; 6; 7g D U ;

Af2; 5; 7g D f2; 4; 5; 6; 7g :

The second way is to modify the subset definition of
lower and upper approximation by replacing the universe
U from the subset definition by a concept X. A concept
B-lower approximation of the concept X is defined as fol-
lows:

BX D [fKB(x)jx 2 X;KB(x) � Xg :

A concept B-upper approximation of the concept X is de-
fined as follows:

BX D [fKB(x)jx 2 X;KB(x) \ X ¤ ;g
D [fKB(x)jx 2 Xg :

For the decision table presented in Table 6, the concept
A-upper approximations are

Af1; 3; 4; 6g D f1; 3; 4; 6g ;

Af2; 5; 7g D f2; 4; 5; 6; 7g :

Note that for complete decision tables, all three defini-
tions of lower approximations, singleton, subset and con-
cept, coalesce to the same definition. Also, for complete
decision tables, all three definitions of upper approxima-
tions coalesce to the same definition. This is not true for
incomplete decision tables, as our example shows.

MLEM2

MLEM2, a modified version of LEM2 [7], processes nu-
merical attributes differently than symbolic attributes. For
numerical attributes MLEM2 sorts all values of a numer-
ical attribute. Then it computes cutpoints as averages for
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any two consecutive values of the sorted list. For each cut-
point qMLEM2 creates two blocks, the first block contains
all cases for which values of the numerical attribute are
smaller than q, the second block contains remaining cases,
i. e., all cases for which values of the numerical attribute are
larger than q. The search space of MLEM2 is the set of all
blocks computed this way, together with blocks defined by
symbolic attributes. Starting from that point, rule induc-
tion in MLEM2 is conducted the same way as in LEM2. At
the very end MLEM2 simplifies rules by merging appro-
priate intervals for numerical attributes.

The MLEM algorithm induced the following rules
from Table 6 certain rule set:

(Age, 25..39)! (Productivity, low),
(Skill, low) & (Experience, low)! (Productivity, low),
(Age, 39..42) & (Experience, high)!

(Productivity, high),
and possible rule set:

(Age, 25..39)! (Productivity, low),
(Skill, low) & (Experience, low)! (Productivity, low),
(Skill, high)! (Productivity, high).

Classification System

Rule sets, induced from data sets, are used mostly to clas-
sify new, unseen cases. Such rule sets may be used in rule-
based expert systems.

There are a few existing classification systems, for ex-
ample, associated with rule induction systems LERS or
AQ. A classification system used in LERS is a modifica-
tion of the well-known bucket brigade algorithm [5,18].
In the rule induction system AQ, the classification system
is based on a rule estimate of probability. Some classifica-
tion systems use a decision list, in which rules are ordered,
the first rule that matches the case classifies it. In this sec-
tion we will concentrate on a classification system used in
LERS.

The decision as to which concept a case belongs to is
made on the basis of three factors: strength, specificity, and
support. These factors are defined as follows: strength is
the total number of cases correctly classified by the rule
during training. Specificity is the total number of attribute-
value pairs on the left-hand side of the rule. The matching
rules with a larger number of attribute-value pairs are con-
sidered more specific. The third factor, support, is defined
as the sum of products of strength and specificity for all
matching rules indicating the same concept. The concept
C for which the support, i. e., the following expression

X

matching rules r
describing C

Strength(r)  Specificity(r)

is the largest is the winner and the case is classified as being
a member of C.

In the classification system of LERS, if complete
matching is impossible, all partially matching rules are
identified. These are rules with at least one attribute-value
pair matching the corresponding attribute-value pair of
a case. For any partially matching rule r, the additional
factor, called Matching_factor (r), is computed. Match-
ing_factor (r) is defined as the ratio of the number of
matched attribute-value pairs of r with a case to the to-
tal number of attribute-value pairs of r. In partial match-
ing, the concept C for which the following expression is
the largest

X

partiallymatching
rules r describing C

Matching_factor(r)Strength(r)Specificity(r)

is the winner and the case is classified as being a member
of C.

Validation

The most important performance criterion of rule induc-
tion methods is the error rate. If the number of cases is less
than 100, the leaving-one-out method is used to estimate
the error rate of the rule set. In leaving-one-out, the num-
ber of learn-and-test experiments is equal to the number
of cases in the data set. During the ith experiment, the ith
case is removed from the data set, a rule set is induced by
the rule induction system from the remaining cases, and
the classification of the omitted case by rules produced is
recorded. The error rate is computed as

total number of misclassifications
total number of cases

:

On the other hand, if the number of cases in the data
set is greater than or equal to 100, the tenfold cross-vali-
dation should be used. This technique is similar to leav-
ing-one-out in that it follows the learn-and-test paradigm.
In this case, however, all cases are randomly re-ordered,
and then a set of all cases is divided into ten mutually dis-
joint subsets of approximately equal size. For each subset,
all remaining cases are used for training, i. e., for rule in-
duction, while the subset is used for testing. This method
is used primarily to save time at the negligible expense of
accuracy.

Tenfold cross validation is commonly accepted as
a standard way of validating rule sets. However, using this
method twice, with different preliminary random re-or-
dering of all cases yields – in general – two different esti-
mates for the error rate [5]. For large data sets (at least 1000
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cases) a single application of the train-and-test paradigm
may be used. This technique is also known as holdout. Two
thirds of cases should be used for training, one third for
testing.

In yet another way of validation, resubstitution, it is as-
sumed that the training data set is identical with the testing
data set. In general, an estimate for the error rate is here
too optimistic. However, this technique is used in many
applications.

Future Directions

Rule induction, a part of supervised learning, is subject
to extensive research. Many possible extensions for rule
induction include boosting or ensemble learning, where
ensembles of classifiers vote on the final outcome dur-
ing classification of a new case. Semi-supervised learning,
where for learning is used not only the case set, pre-clas-
sified by an expert, but also a set of not classified cases, is
another example.
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