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Glossary

QSAR – quantitative structure activity relationships
a method to predict biological activity from chemical
structure

Combi-QSAR – combinatorial QSAR implies concur-
rent generation of QSAR models using all possible
binary combinations of different descriptor types and
model optimization techniques

QSARmodeling workflow a hierarchy of QSAR model
development and validation protocols that should be

followed to establish validated and externally predic-
tive model

kNN – k nearest neighbors a pattern recognition ap-
proach used in deriving non-linear QSAR models

Model validation a set of computational routines used
to establish internal and external predictive power of
QSAR models

Applicability domain restriction on the chemistry space
occupied by compounds for which the prediction of
their activity from training set QSAR model is consid-
ered reliable.

Definition of the Subject

In the early days of Quantitative Structure Activity Rela-
tionship (QSAR) modeling the experimental datasets were
relatively small and chemically congeneric and the tech-
niques employed were relatively unsophisticated. Since
then, the size and complexity of experimental datasets
has increased dramatically, and so had the complexity
and challenges of data analytical approaches. This chap-
ter examines the strategy and the output of the modern
QSAR modeling approaches especially as applied to com-
plex biomolecular datasets. We discuss a data-analytical
modeling workflow developed in our laboratory that in-
corporates modules for combinatorial QSAR model de-
velopment (i. e., using all possible binary combinations of
available descriptor sets and statistical datamodeling tech-
niques), rigorous model validation, and virtual screening
of available chemical databases to identify novel biolog-
ically active compounds. Our approach places particular
emphasis on model validation as well as on the need to de-
fine model applicability domains in the chemistry space.
We present examples of studies where the application of
rigorously validated QSAR models for virtual screening
identified computational hits that were confirmed by sub-
sequent experimental investigations. The emerging focus
of QSAR modeling on target property forecasting brings it
forward as predictive, as opposed to evaluative, modeling
approach.
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Introduction

QSAR methodology was introduced by Hansch et al.
in early 1960th [1]. The original approach stemmed
from linear free-energy relationships and is based upon
the assumption that the difference in structural prop-
erties accounts for the difference in biological activities
of compounds. According to this approach, the struc-
tural changes that affect the biological activities of a set
of congeners are of three major types: electronic, steric,
and hydrophobic [2]. These structural properties are
often described by Hammett electronic constants [2],
Verloop STERIMOL parameters [3], hydrophobic con-
stants [2], etc. The relationship between a biological ac-
tivity (or chemical property) and the structural parame-
ters is obtained using linear or multiple linear regression
(MLR) analysis. The fundamentals and applications of this
method in chemistry and biology have been summarized
by Hansch and Leo [2].

The original QSAR method was relatively straightfor-
ward; the datasets were small, and so was the number
of relatively simple physical chemical descriptors used in
modeling building. Today, even a person familiar with the
basic principles of QSAR could be easily confused by the
diversity of methodologies and naming conventions used
inmodernQSAR studies. Two-dimensional (2D) or three-
dimensional (3D) QSAR, variable selection or Artificial
Neural Network methods, Comparative Molecular Field
Analysis (CoMFA) or binary QSAR present examples of
various terms that may appear to describe totally indepen-
dent approaches, which can not be generalized or even eas-
ily compared to each other. Thus, modern QSAR mod-
eling is a very complex and complicated field requiring
deep understanding and thorough practicing to develop
robust models. Nevertheless, an attempt can be made to
provide some unifying concepts that underlie practically
any QSAR methodology.

Indeed, any QSAR method can be generally defined
as an application of mathematical and statistical methods
to the problem of finding empirical relationships (QSAR
models) of the form Pi D k̂(D1;D2; : : : ;Dn), where Pi are
biological activities (or other properties of interest) of
molecules, D1;D2; : : : ;Dn are calculated (or, sometimes,
experimentally measured) structural properties (molecu-
lar descriptors) of compounds, and k̂ is some empirically
established mathematical transformation that should be
applied to descriptors to calculate the property values for
all molecules. The relationship between values of descrip-
tors D and target properties P can be linear or non-linear.
The example of the former relationship is given by multi-
ple linear regression (MLR) common to the Hansch QSAR

approach [1], where target property can be predicted di-
rectly from the descriptor values. On the contrary, nearest
neighbor QSAR methods serve as examples of non-linear
techniques where descriptor values are used in character-
izing chemical similarities between molecules, which are
then used to infer compound activity. The goal of QSAR
modeling is to establish a trend in the descriptor values,
which parallels the trend in biological activity. In essence,
all QSAR approaches imply, directly or indirectly, a sim-
ple similarity principle, which for a long time has provided
a foundation for the experimental medicinal chemistry:
compounds with similar structures are expected to have
similar biological activities.

The subsequent sections of this chapter present a brief
overview of the modern QSAR modeling field without go-
ing into specific details of any particular technique; intro-
duce the predictive QSAR modeling workflow developed
in our group; present examples of successful applications
of the workflow to several datasets resulting in experimen-
tally confirmed computational predictions of biologically
active compounds by the means of virtual screening; ad-
dress the issue of fruitful collaborations between QSAR
modelers in developing and supporting “best practices”
in QSAR modeling; and summarize most important chal-
lenges that the field of QSAR modeling is facing today.

The Complexity of Modern Datasets
and QSARMethods

Traditionally, QSAR approaches have been applied to
modeling datasets tested against a single target, e. g., in
specific enzymatic or receptor-binding assays. Recent ex-
perimental advances in high-throughput screening and
multi-target testing of compound libraries have led to the
establishment of datasets of biologically active compounds
(often publicly available) that we shall define as complex.
A complex dataset could include a library of compounds
tested against multiple targets, or have the target prop-
erty measured in the form of gene or protein expression
profiles across many genes (chemical genomics), or could
be formed by diverse compounds tested against a com-
plex assay where multiple mechanisms leading to the mea-
sured response could be involved (e. g., carcinogenicity or
mutagenicity). The examples of complex datasets include
Pubchem [4], GPCR ligands [5], NCI [6], US FDA [7],
NIEHS [8], and EPA DSS-Tox [9] (see more examples in
a recent review [10]). Naturally, the complex datasets call
for the development of more sophisticated computational
tools and corresponding models.

Modern QSAR approaches are characterized by the
use of multiple descriptors of chemical structure com-
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bined with the application of both linear and non-linear
optimization approaches, and a strong emphasis on rigor-
ous model validation to afford robust and predictive mod-
els. The most important recent developments in the field
concur with a substantial increase in the size of experimen-
tal datasets available for the analysis and an increased ap-
plication of QSAR models as virtual screening tools to dis-
cover biologically active molecules in chemical databases
and/or virtual chemical libraries [11]. The latter focus dif-
fers substantially from the traditional emphasis on devel-
oping so called explanatory QSAR models characterized
by high statistical significance but only as applied to train-
ing sets of molecules with known chemical structure and
biological activity.

The differences in various QSAR methodologies can
be understood in terms of the types of target property val-
ues, descriptors, and optimization algorithms used to re-
late descriptors to the target properties and generate sta-
tistically significant models. Target properties (regarded
as dependent variables in statistical data modeling sense)
can be generally of three types: continuous (i. e., real values
covering certain range, e. g., IC50 values, or binding con-
stants); categorical related, or rank-based (e. g., classes of
rank-ordered target properties covering certain range of
values, e. g., classes of metabolic stability such as unstable,
moderately stable, stable); and categorical unrelated (i. e.,
classes of target properties that do not relate to each other
in any continuum, e. g., compounds that belong to differ-
ent pharmacological classes). As simple as it appears, un-
derstanding this classification is actually very important
since the choice of descriptor types and modeling tech-
niques as well as model accuracy metrics is often dictated
by the type of the target properties. Thus, in general the
latter two types require classificationmodeling approaches
whereas the former type of the target properties allows the
use of (multi)linear regression type modeling. The corre-
sponding methods of data analysis are referred to as either
classification or continuous property QSAR.

Many QSAR approaches have been developed during
the past few decades (e. g., see recent reviews [12,13]). The
major differences between various approaches are due to
structural parameters (descriptors) used to characterize
molecules and the mathematical approaches used to es-
tablish a correlation between descriptor values and bio-
logical activity. Most of the modeling techniques assume
a linear relationship between molecular descriptors and
a target property, which may be an adequate methodol-
ogy for many datasets. However, the advances in combi-
natorial chemistry and high throughput screening tech-
nologies have resulted in the explosive growth of the
amount of structural and biological data making the prob-

lem of developing robust QSAR models more challeng-
ing. This progress has provided an impetus for the devel-
opment of fast, nonlinear QSAR methods that can cap-
ture structure-activity relationships for large and complex
data. New nonlinear methods of multivariate analysis such
as different types of Artificial Neural Networks [14,15,
16,17], Generalized Linear Models [15,18,19,20], Classi-
fication and Regression Trees [18,21,22,23,24], Random
Forests [25,26,27], MARS (Multivariate Adaptive Regres-
sion Splines) [27,28], Support Vector Machines [29,30,31,
32], and some other methods have become routine tools in
QSAR studies. Interesting examples of applications have
been reported for all types of the above methods. In some
cases the comparisons between different techniques as ap-
plied to the same dataset have been made but in general
there appears to be no universal QSAR approach that pro-
duces the best QSAR models for any datasets.

For instance, several types of ANNs have been used in
QSAR studies, including feed forward back propagation
neural networks (FFBPNN), counter propagation neural
networks (CPNN), radial basis function neural networks
(RBFNN), Bayesian regularized neural networks (BRNN),
etc. In [33], analysis of FFBPNN was carried out based on
artificial and real data. It has been shown that for neural
nets capable of generating linear models, increasing the
number of nodes in the hidden layer can improve statistics
for the training sets. However, leave-one-out and leave-
some-out cross-validation statistics as well as prediction
power for the test sets start decreasing when the number
of hidden layer nodes passes some threshold that depends
on the dataset. On the whole, according to [33], linear
FFBPNNs compare unfavorably with more simple MLR
methodology. No conclusions have been made for neural
nets including quadratic and indicator variables as well as
ANNs with other architectures.

In [34], probabilistic and generalized regression neu-
ral networks (PNN and GRNN, respectively), which are
variants of RBFNN, have been used for classification and
continuous QSAR modeling for a data set of soluble epox-
ide hydrolase inhibitors and prediction of aqueous solubil-
ity of some classes of small organic molecules. Final mod-
els appeared to have comparable predictive power to kNN
classification, MLR and feed-forward neural networks, but
they included significantly lower number of descriptors.

Overall, the advantage of ANNs is that they do not
explicitly define the relationship between descriptors and
target property making these techniques applicable to
datasets of complex chemical nature and/or complex re-
sponse variable where the relationship between descriptor
values and the response variable are likely to be non-linear.
On the other hand, for the same reason the interpretation
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of ANN QSAR models is very difficult, if not impossible.
ANNs can be used as part of the combi-QSAR strategy dis-
cussed below and may prove to be particularly useful (as
with any other QSAR approach) for specific datasets.

Our laboratory among others has concentrated on the
development of automated QSAR approaches based on
variable selection and stochastic optimization. The exam-
ples of methods developed or implemented in our labora-
tory include k-NearestNeighbors (kNN) [31,35,36], Simu-
lated Annealing-Partial Least Squares (SA-PLS) [37], Sup-
port Vector Machines (SVM) [38,39,40], and the Auto-
mated Lazy Learning QSAR (ALL-QSAR) [41].

Recent Progress in Chemical Descriptor Research:
2D Chirality and Fragment Descriptors

In most cases the accurate formal description of molecules
is the key to developing successful QSAR models. Many
approaches to generating descriptors have been developed
during the long history of QSARmodeling; programs such
as Dragon [42] or MolConnZ [43] could calculate 100s or
even 1000s of molecular descriptors. The molecular de-
scriptors that are commonly used in QSAR studies can be
divided into several groups. Physicochemical descriptors
reflect electronegativity, partial charges, hydrogen bond
acceptor and donor ability, molecular weight, logP, sur-
face area, etc. Another class of descriptors are three-di-
mensional (3D) descriptors which are derived from spatial
structures of molecules (e. g. CoMFA [44], CoMSIA [45],
QSiAR [46] etc.). Most of QSAR studies based on 3D de-
scriptors require exhaustive conformational analysis and
spatial alignment of molecules, and thus large computa-
tional and human resources (e. g., [47]). Approaches such
as GRIND [48] and VolSurf [49] generate descriptors
based on 3D interaction maps and do not require align-
ment, but still require conformational search. On the other
hand, descriptors based onmolecular graphs (e. g. molecu-
lar connectivity indices [50], molecular shape indices [51],
E-state indices [52], etc.) are naturally insensitive to prob-
lems related to conformation or alignment. Since chemical
graphs are planar, these descriptors are often referred to
as two-dimensional (2D) descriptors. An important note
is that one should not be confused by the perceived low
dimensionality of 2D descriptors: a molecule is actually
described in multidimensional 2D descriptor space, with
the number of dimensions (i. e., descriptors) frequently
higher than that for 3D descriptors. Thus any modern
“2D” or “3D” QSARmodel actually operates on a complex
high-dimensional space of multiple chemical descriptors.
In this regard, the tasks and challenges of modern QSAR
are much more similar to those faced by, e. g., bioinfor-

maticians trying to analyse multidimensional data on pro-
tein or gene expression profiles of say patients vs. healthy
individuals. 2D descriptors have certain advantages over
3D descriptors: they can be easily calculated even for very
large datasets and in most case they seem to capture suf-
ficient information about chemical structures to enable
important modeling tasks such as similarity searching or
QSAR modeling. For instance, it was shown [53] that 2D
descriptors outperformed 3D descriptors in chemical sim-
ilarity and diversity analyses. Our studies have shown that
the predictive power of QSAR models based on 2D de-
scriptors is generally comparable (and sometimes supe-
rior) to that of themodels based on 3D descriptors [35,54].
Finally, recent comparison of protein structure based vs.
ligand based virtual screening results [55] demonstrated
that the latter approach helped recover a higher number
of confirmed hits than the former one.

Overall, the field of chemical descriptor development
has probably reached its saturation (as far as active devel-
opment of new generalized descriptors is concerned) al-
though there are continuing reports on novel 3D descrip-
tors such as for instance inductive descriptors [56]. Still,
there remain challenges in developing specialized descrip-
tors such as topological chirality descriptors and fragment
descriptors that have been of special interest to several
groups including ours. We briefly review recent advances
in such specialized descriptor development research.

Chirality Descriptors

Many biologically-active compounds are in fact enantio-
specific, and their chiralities are believed to directly influ-
ence their bioactivities because these compounds are rec-
ognized differently by their corresponding receptors. In
1999, the worldwide annual sales of chiral drugs exceeded
$100 billion that constituted almost one-third of all drug
sales, and in 2000, these numbers were $133 billion and
40%, respectively. It was projected that the sales for chiral
drugs in 2008 could reach $200 billion [57].

In QSAR studies, taking chirality into account has be-
come possible only after the development of the 3D QSAR
methods such as the comparative molecular field analysis
(CoMFA) [44]. Subsequently, many CoMFA-like methods
have appeared (e. g., [45,46,58]). Evidently, the chirality
in such methods is taken into account by default, since
3D molecular field values of chiral isomers are different.
At the same time as mentioned above 2D QSAR meth-
ods offer a clear advantage over 3D methods since they
require no conformational analysis, no alignment, and no
3D pharmacophore hypothesis and, as a result, can be eas-
ily fully automated. However, one of the main drawbacks
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of QSAR approaches utilizing 2D molecular descriptors
such as molecular connectivity indices (calculated with the
MolconnZ program [43]) or atom pairs [59] has been their
inability to take into account the chirality of atoms since
the latter is a true 3D property. Naturally, this deficiency
has severely limited the range of applications of 2D QSAR
methods, especially as compared to 3D QSAR approaches.
We shall discuss two approaches that circumvent this lim-
itation of 2D descriptors.

Topological Chirality Indices

The idea of modifying conventional 2D descriptors to
make them sensitive to chirality was put forward as early as
in 1995 [60]. The authors introduced a so-called chiral fac-
tor equal to + 1 or� 1 for an atom in R- or S-configuration,
respectively. This factor was used to derive several chiral-
ity descriptors which appeared to have different values for
linear hexose isomers. The first attempt to consider chi-
rality descriptors in QSAR studies was reported by Ortiz
et al. in 1998 [61] when several chirality-sensitive molec-
ular and charge topological indices were introduced. Both
chirality descriptors and conventional MolconnZ descrip-
tors have been implemented in QSAR studies of the se-
ries of D2 dopamine and � receptor ligands. It was shown
that the resulting QSAR models had better statistics and
predictive power for IC50 values of the ligands than those
obtained with conventional descriptors only. In addition,
using these chirality descriptors, a set of chiral barbiturates
were correctly classified as sedatives or stimulants [61].

Several series of chirality molecular topological de-
scriptors have been developed in our laboratory ear-
lier [62]. These descriptors have been developed on the
basis of conventional 2D topological descriptors of molec-
ular graphs. They include modified molecular connectiv-
ity indices, Zagreb group indices, extended connectivity,
overall connectivity, and topological charge indices. These
modified descriptors make use of a term called chirality
correction, which is added to the vertex degrees of asym-
metric atoms in a molecular graph. They have been used
to build predictive QSAR models for several datasets [63].
Similar approach was used to develop cis-trans (ZE) iso-
merism descriptors as well [64].

Chirality-Sensitive Atom Pair Descriptors

Atom pair descriptors were introduced by Carhart et
al. [59] and implemented in the GenAP program in
our laboratory. The conventional atom pair descriptors
can not be applied for a data set of chiral compounds
since their numerical values are identical for enantiomeric
molecules. Thus, we have recently introduced chiral atom

QSAR Modeling and QSAR Based Virtual Screening, Complexity
and Challenges of Modern, Figure 1
Example of the chiral atom type definition based on partial
charges of the substituents (here, three carbon atoms and one
oxygen atom) at the chiral center

types and thereby augmented the conventional AP de-
scriptors with the novel chiral atom pair (cAP) descrip-
tors [65].

A cAP descriptor is defined as a pair of atoms sepa-
rated by certain chemical graph distance (for 2D repre-
sentation of a molecule) or a real physical distance (in
3D) where at least one atom of the pair is chiral. Our
definition of a chiral atom is similar to the conventional
IUPAC nomenclature but different in how we define the
seniority of the substituents at the chiral atom. The differ-
ence is that the relative priorities of the substituents are
not determined by their atomic numbers, but values of
a certain property, such as atomic partial charge, van der
Waals volume, etc. In the previous studies [65], Gasteiger–
Huckel charges as implemented in the SYBYL software
were used. In addition, our current implementation does
not take into consideration properties of any atoms be-
sides the substituents. Figure 1 shows an example of a chi-
ral atom where all four substituents at a carbon atom have
different partial charges.

Since the oxygen atom has the most negative partial
charge, we assign the lowest seniority to it, and since the
charges on the substituent increase in a counterclockwise
order, the central atom is in Rq configuration (index q
means that the configuration was defined using partial
charges). (Note that the same carbon atom would not be
considered chiral based on the standard nomenclature!)
Using different atomic properties to assign chirality, we
can introduce many different definitions of R and S con-
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figurations of chiral atoms; this work is in progress in our
laboratory.

Fragment Descriptors

2D descriptors such asmolecular connectivity indices have
one significant drawback: in most cases models based on
2D descriptors are difficult (if not impossible) to inter-
pret, because most of 2D descriptors have no clear physic-
ochemical meaning. To overcome this drawback, molec-
ular structural keys, molecular fingerprints and molec-
ular holograms are used. Unlike molecular descriptors
based on physicochemical properties, 2D and 3D descrip-
tors, structural keys, molecular fingerprints and molecular
holograms can provide a mechanistic explanation to the
target property of active molecules.

Structural keys and molecular fingerprints were ini-
tially introduced by chemical information system compa-
nies for querying chemical databases. A structural key of
a molecule is defined as a bit string; each bit in state “on”
(one) or “off” (zero) represents the presence or absence of
a certain atom or group (fragment) in a molecule [66,67].
Alternatively, it is a string of numbers; each number rep-
resents how many times an atom or a fragment is repre-
sented in a molecule. A predefined library of fragments
is used. Usually bit strings are very long and for small
molecules almost all bits are zeros.

To reduce the memory necessary to store structural
keys, hashing [68] is used to map structural keys on
a shorter string of a predefined length. For example, typ-
ical Daylight fingerprints have 512 or 1024 bits, but any
power of two can be generated. The MACCS public fin-
gerprints include 166 or 320 keys which encapsulate 966
original (private) bits [69]. Barnard Chemical Information
Systems (BCI) fingerprints are generated combining both
the Daylight and MDL approaches, and molecular finger-
print bit lengths are about 5,000.

Molecular holograms used in HQSAR are based on the
structural keys containing the number of times each bit
was set. This information is stored in the hologram string
which is a string of integers rather than a bit string. As fin-
gerprints, molecular holograms are based on a predefined
library of fragments (chemical groups). The development
of frequent common subgraph based molecular descrip-
tors represent an important and interesting area of current
descriptor research. For instance, recurring substructures
in a group of chemicals with similar activity can be identi-
fied by finding frequent subgraphs in their related graph-
ical representations. The recurring substructures can im-
plicate chemical features responsible for compounds’ bio-
logical activities [70].

Critical Importance of Model Validation

It should sound almost axiomatic that validation should
be natural part of anymodel development process. Indeed,
what is the (ultimate) purpose of any modeling approach
such as QSAR, if not developing models with a significant
external predictive power? Unfortunately, as we and oth-
ers have indicated in many publications (e. g., [46,71,72]),
the entire field of QSARmodeling counting nearly 50 years
of a rich history has been plagued with insufficient atten-
tion paid to the subject of external validation. Indeed,most
practitioners have merely presumed that internally cross-
validated models built from available training set data
should be externally predictive. However, the overwhelm-
ing prevalence of QSAR publications exploring small to
medium size datasets to produce models with little sta-
tistical significance led to the recent editorial published
by the J. Chem. Info. Model. two years ago [73] that ex-
plicitly discouraged researchers from submitting the “in-
trospective” QSAR/QSPR publications and requested that
“evidence that any reported QSAR/QSPR model has been
properly validated using data not in the training set must
be provided”.We and others have demonstrated (as we de-
tail below) that the training set statistics using most com-
mon internal validation techniques such as leave-one-out
or even leave-many-out cross-validation approaches is in-
sufficient and the statistical figures of merit of such mod-
els serve as misleading indicators of the external predictive
power of QSAR models [72]. We shall refer to studies lim-
ited to exploring training sets (and associated model sta-
tistical parameters) as “narcissistic modeling”.

In our highly cited publication “Beware of q2!” [71],
we have demonstrated the insufficiency of the training set
statistics for developing externally predictive QSAR mod-
els and formulated the main principles of model valida-
tion. At the time of that publication in 2002, the major-
ity of papers on QSAR analysis ignored any model val-
idation except for the cross-validation, performed dur-
ing model development. Despite earlier observations of
several authors [74,75,76] warning that high cross-vali-
dated correlation coefficient R2(q2) is the necessary, but
not the sufficient condition for the model to have high
predictive power, many authors continued to consider q2

as the only parameter characterizing the predictive power
of QSAR models. In [71] we have shown that the predic-
tive power of QSAR models can be claimed only if the
model was successfully applied for prediction of the ex-
ternal test set compounds, which were not used in the
model development. We have demonstrated that the ma-
jority of the models with high q2 values have poor predic-
tive power when applied for prediction of compounds in
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the external test set. We believe that paying attention only
to the training set statistics equates to “narcissistic” mod-
eling in a sense that such models appear “beautiful” only
in the eyes of their developers but provide little if any util-
ity to potential users (“viewers”) of these models. In an-
other publication [72] the importance of rigorous valida-
tion was again emphasized as a crucial, integral compo-
nent of model development. Several examples of published
QSPR models with high fitted accuracy for the training
sets, which failed rigorous validation tests, have been con-
sidered. We presented a set of simple guidelines for de-
veloping validated and predictive QSPR models and dis-
cussed several validation strategies such as the random-
ization of the response variable (Y-randomization) ex-
ternal validation using rational division of a dataset into
training and test sets. We highlighted the need to estab-
lish the domain of model applicability in the chemical
space to flag molecules for which predictions may be un-
reliable, and discussed some algorithms that can be used
for this purpose. We advocated the broad use of these
guidelines in the development of predictive QSPR mod-
els [72,77,78].

Nowadays, most of the QSAR modeling studies in-
clude validation of QSAR models. However, some authors
still publish QSAR models which lack proper validation.
For example, [79] developed a model to predict gastroin-
testinal absorption of drugs, but did not validate it using
a test set. Verma et al. [80] developed QSAR models for
predicting cytotoxicity of a group of compounds with anti-
ovarian cancer activity which were validated only using
cross-validation and Y-randomization.

At the 37th Joint Meeting of Chemicals Committee
and Working Party on Chemicals, Pesticides & Biotech-
nology, held in Paris on 17–19 November 2004, the OECD
(Organization for Economic Co-operation and Develop-
ment) member countries adopted the following five prin-
ciples that valid (Q)SAR models should follow to al-
low their use in regulatory assessment of chemical safety.
(i) a defined endpoint; (ii) an unambiguous algorithm;
(iii) a defined domain of applicability; (iv) appropriate
measures of goodness-of-fit, robustness and predictivity;
(v) a mechanistic interpretation, if possible. Since then,
most of the European authors publishing in QSAR area
include a statement that their models fully comply with
OECD principles (e. g., see [81,82,83,84]). For instance,
two aspects of QSAR modeling outlined in the OECD
principles are considered by Estrada and Patlewicz [85].
The first aspect concerns the theoretical approaches used
in chemistry in general, and in QSAR in particular, i. e.,
which method should be selected for theoretical studies:
more sophisticated and complex or more simple. The au-

thors criticize the common belief that applying more so-
phisticated methods should always lead to significantly
better results. They considered an example of polycyclic
aromatic hydrocarbons (PAHs) the toxicity of which is be-
lieved to depend on the energy gap between HOMO and
LUMO values. The authors show that a simple Hückel
Molecular Orbital theory gives practically the same values
of HOMO and LUMO as the sophisticated ab initio meth-
ods yet the calculations are 10�4 to 10�7times faster. They
reach the conclusion that if a more simple method is capa-
ble of giving results better or similar to those of more so-
phisticated method, one should naturally use a more sim-
ple method!

The second aspect relates to so called “mechanistic”
QSAR. Some authors (e. g., [86]) prefer descriptors which
are mechanistically interpretable. On the other hand,
Estrada and Patlewicz [85] argue that in many cases a bio-
logical response is a result of a multitude of different pro-
cesses, some of which can be even not known, and its
a posteriori mechanistic interpretation is difficult if not
impossible. The authors suggest an alternative approach
where a biological system is considered as a black box,
when considering several possible mechanisms would be
more productive. At the same time, some variables in-
cluded in the model can describe several different mech-
anisms simultaneously, e. g. log P, so in many cases it
makes no sense to suggest that the use of this descriptor
in QSAR models affords any mechanistic interpretation
(see also [87]). We would add that descriptors which give
better models in terms of their predictive power are ac-
tually preferable. We consider building predictive models
as the main goal of QSAR analysis. Of course, interpreta-
tion of the model is also important, and if it is possible, it
should be done. However, in many cases it is impossible,
even when models with high predictive power have been
obtained (e. g., best models were found to be those built
using the molecular connectivity indices but these models
were disregarded by the authors for the lack of mechanis-
tic interpretability [86]). We believe that mechanistic in-
terpretation of the externally validated QSAR model is an
important a posteriori exercise that should be done after
themodel has been internally and externally validated, and
descriptors that afford models with the highest predictive
power should be always used preferentially.

Validation of QSAR models remains one of the most
critical problems of QSAR. Recently, we have extended our
requirements for the validation of multiple QSAR mod-
els selected by acceptable statistics criteria of prediction of
the test set [88]. Additional studies in this critical compo-
nent of QSARmodeling should establish reliable and com-
monly accepted “good practices” for model development.
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Applicability Domains of QSARModels

One of the most important problems in QSAR analy-
sis is establishing the models’ domain of applicability in
the chemistry space. In the absence of the applicability
domain, each model can formally predict the activity of
any compound, even with a completely different struc-
ture from those included in the training set. Thus, the ab-
sence of the model applicability domain as a mandatory
component of any QSAR model would lead to the unjus-
tified extrapolation of the model in the chemistry space
and, as a result, a high likelihood of inaccurate predictions.
In our research we have always paid particular attention
to this issue [36,41,62,72,89,90,91,92]. The need for estab-
lishing the applicability domain for every model adds an-
other critical degree of complexity to the model building
process.

The applicability domain problem has been addressed
by many researchers. Mandel [93] introduced the so called
Effective Prediction Domain which was based on the
ranges of descriptors included in the regression equation.
Afantitis et al. [94] built a multiple linear regression model
for a dataset of apoptotic agents. They defined the appli-
cability domain for each compound as a leverage defined
as a corresponding diagonal element of the hat matrix.
In fact, it is a method for detecting possible leverage out-
liers. If for some compound leverage is higher than 3K/N,
where K is the number of descriptors and N is the num-
ber of compounds, the compound is an outlier. To use
this approach, for each external compound it would be
necessary to recalculate the leverage. Netzeva et al. [95]
and Saliner et al. [83] defined the applicability domain
by ranges of descriptors, i. e., in fact, as a subspace oc-
cupied by representative points in the descriptor space.
This definition of the applicability domain has a signif-
icant drawback, because the representative points could
be found only in a small part of the hyper-parallelepiped
corresponding to descriptor ranges rather than distributed
uniformly. A similar definition of the applicability domain
was proposed by Tong et al. [96]. The authors built QSAR
models for two datasets of estrogen receptor ligands using
the Decision Forest method and studied the dependence
of the model predictive power vs. the applicability domain
threshold. The prediction accuracy within the domain is
defined as a ratio of the number of correct predictions to
the total number of compounds in the domain. The accu-
racy was changing from about 90% for the initial applica-
bility domain to about 50% when the applicability domain
increased by 30%. Interestingly, for one of the datasets the
prediction accuracy was increasing until the domain was
extended by about 20%. Another important aspect of this

study was that the authors defined the confidence level of
prediction. The probability that a compound belongs to
a certain class was defined as the percentage of active com-
pounds in the leaf node that the compound belongs to. The
authors found (as expected), that the confidence level cor-
related with the prediction accuracy.

In [97] a lazy learning kNN-like method was ap-
plied for the prediction of rodent carcinogenicity and
Salmonella mutagenicity. The applicability domain was
defined by a so-called confidence index. A compound was
assigned to one of the two classes by a weighted majority
vote of its nearest neighbors. The confidence index is the
weighted majority quote divided by the number of near-
est neighbors. If the absolute value of the confidence in-
dex is low (< 0:05) a compound is said to be out of the
applicability domain. This definition of the applicability
domain captures the areas in the descriptor space where
compounds of both classes are close to each other, and
possibly mixed. In this area the precise and accurate pre-
diction of a compound’s class is impossible. A Tanimoto-
like coefficient is used as a similarity measure. Nearest
neighbors are defined by the value of this coefficient higher
than 0.3, which limits the possibility of over-extrapolation.

In most of our QSAR studies we have defined the ap-
plicability domain as the distance cutoff value Dcutoff D

hDi C zs, where Z is a similarity threshold parameter de-
fined by a user, and hDi and s are the average and stan-
dard deviation of all Euclidian distances in the multidi-
mensional descriptor space between each compound and
its nearest neighbors for all compounds in the training set
(e. g., see [78]). This definition of the applicability domain
has several major drawbacks which we continue to address
in our ongoing studies: (i) Currently, applicability domain
is direction-independent in the descriptor space. We shall
consider the directions in the descriptor space in which the
distribution of representative points has smaller spread as
less important than those that have higher spread. Thus,
the applicability domain will be represented as a multi-
dimensional ellipsoid in the principal component space.
(ii) Too strict definition of the applicability domain: if
a compound is outside of the model applicability domain,
we currently do not predict its activity. Naturally, we shall
establish the lower and upper bounds for the applicabil-
ity domain. (iii) Finally, it seems reasonable to introduce
a confidence level of prediction, which will depend on the
distance of the compound under prediction from its near-
est neighbor of the training set. These considerations pro-
vide just a few examples that illustrate the importance of
ongoing research in this area of QSAR modeling. Not sur-
prisingly, the model applicability domain was the subject
of a special symposium organized at the most recent 235th
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meeting of the American Chemical Society in New Or-
leans, LO.

Combinatorial QSAR
andModel Acceptability Criteria

The chief hypothesis of the combi-QSAR approach that we
introduced in recent publications [39,98] is that if an im-
plicit structure-activity relationship exists for a given data
set, it can be formally manifested via a variety of QSAR
models obtained with different descriptors and optimiza-
tion protocols. Our experience indicates that there is no
universal QSAR method that is guaranteed to give the best
results for any dataset. Thus we believe that multiple al-
ternative QSAR models should be developed (as opposed
to a single model using some favorite QSAR method) for
each dataset to identify the most successful technique in
the context of the given dataset. Since QSAR modeling is
relatively fast, these alternative models could be explored
simultaneously when making predictions for external data
sets. The consensus predictions of biological activity for
novel test set compounds on the basis of several QSAR
models, especially when they converge, are more reliable
and provide better justification for the experimental explo-
ration of hits.

Our current approach to combi-QSAR modeling is
summarized on the workflow diagram (Fig. 2). Our expe-
rience suggests that QSAR is a highly experimental area of
statistical data modeling where it is impossible to decide
a priori as to which particular QSAR modeling method
will prove most successful. To achieveQSARmodels of the
highest internal, and most importantly, external accuracy,
the combi-QSAR approach explores all possible binary
combinations of various descriptor types and optimization

QSAR Modeling and QSAR Based Virtual Screening, Complexity and Challenges of Modern, Figure 2
Flow-chart of the combinatorial QSAR methodology. All descriptor sets and methods currently implemented in our laboratory are
listed

methods along with external model validation. Each com-
bination of descriptor sets and optimization techniques is
likely to capture certain unique aspects of the structure-
activity relationship. Since our ultimate goal is to use the
resulting models as reliable activity (property) predictors,
application of different combinations of modeling tech-
niques and descriptor sets will increase our chances for
success. All types of descriptors and modeling techniques
are available within our laboratory and are described in
detail in our recent publications on the implementation of
the combi-QSAR strategy [39,98].

In our critical publications [71,72] we have recom-
mended a set of statistical criteria which must be satisfied
by a predictive model. For continuous QSAR, criteria
that we will follow in developing activity/property predic-
tors are as follows: (i) correlation coefficient R between
the predicted and observed activities; (ii) coefficients of
determination [99] (predicted versus observed activities
R2
0, and observed versus predicted activities R0 20 for re-

gressions through the origin); (iii) slopes k and k0 of
regression lines through the origin. We consider a QSAR
model predictive, if the following conditions are satis-
fied (i) q2 > 0:5; (ii) R2 > 0:6; (iii) (R2 � R2

0)/R
2 < 0:1

and 0:85 � k � 1:15 or (R2 � R0 20 )/R2 < 0:1 and
0:85 � k0 � 1:15; (iv)

ˇ
ˇR2

0 � R0 20
ˇ
ˇ < 0:3 where q2 is the

cross-validated correlation coefficient calculated for the
training set, but all other criteria are calculated for the test
set.

Predictive QSARModelingWorkflow
and its Application to Virtual Screening

Our experience in QSAR model development and valida-
tion has led us to establishing a complex strategy that is



7080 Q QSARModeling and QSAR Based Virtual Screening, Complexity and Challenges of Modern

Only accept models 
that have a 

q2 > 0.6
R2 > 0.6, etc.

Multiple 
Training Sets

Validated Predictive 
Models with High Internal 

& External Accuracy

Original 
Dataset

Multiple 
Test Sets

Combi-QSAR 
Modeling

Split into 
Training, Test, 
and External 

Validation Sets

Activity 
Prediction

Y-Randomization

External Validation
Using Applicability 

Domain

Virtual  
Screening
With AD

to Identify Hits 

Experimental 
Validation of 

Hits

QSAR Modeling and QSAR Based Virtual Screening, Complexity and Challenges of Modern, Figure 3
Flowchart of predictive QSARmodeling framework based on the validated combi-QSAR models

summarized in Fig. 3. It describes the predictive QSAR
modeling workflow focused on delivering validated mod-
els and ultimately, computational hits confirmed for the
experimental validation. We start by randomly selecting
a fraction of compounds (typically, 10–15%) as an exter-
nal validation set. The remaining compounds are then di-
vided rationally (using the Sphere Exclusion protocol im-
plemented in our laboratory [78]) into multiple training
and test sets that are used for model development and val-
idation, respectively using criteria discussed in more de-
tail below. We employ multiple QSAR techniques based
on the combinatorial exploration of all possible pairs of
descriptor sets coupled with various statistical data min-
ing techniques (combi-QSAR) and select models charac-
terized by high accuracy in predicting both training and
test sets data. Validated models are finally tested using the
evaluation set. The critical step of the external validation
is the use of applicability domains. If external validation
demonstrates the significant predictive power of the mod-
els we use all such models for virtual screening of available
chemical databases (e. g., ZINC [100]) to identify putative
active compounds and work with collaborators who could
validate such hits experimentally. The entire approach is
described in detail in several recent papers and reviews
(e. g., [11,13,72]).

In our recent studies we were fortunate to recruit
experimental collaborators who have validated computa-
tional hits identified through our modeling of anticonvul-
sants [36], HIV-1 reverse transcriptase inhibitors [101],

D1 antagonists [31], antitumor compounds [102], and
beta-lactamase inhibitors [103]. Thus, models resulting
from this workflow could be used to prioritize the selec-
tion of chemicals for the experimental validation. How-
ever, since we can not generally guarantee that every pre-
diction resulting from ourmodeling effort will be validated
experimentally we can not include the experimental vali-
dation step as a mandatory part of the workflow on Fig. 3,
which is why we used the dotted line for this component.
We note that our approach shifts the emphasis on ensur-
ing good (best) statistics for the model that fits known
experimental data towards generating testable hypothe-
sis about purported bioactive compounds. Thus, the out-
put of the modeling has exactly same format as the input,
i. e., chemical structures and (predicted) activities making
model interpretation and utilization completely seamless
for medicinal chemists.

The development of truly validated and predictive
QSAR models affords their growing application in chemi-
cal data mining and combinatorial library design [37,104].
For example, three-dimensional (3D) stereoelectronic
pharmacophore based on QSAR modeling was used re-
cently to search the National Cancer Institute Repository
of SmallMolecules [6] to find new leads for inhibiting HIV
type 1 reverse transcriptase at the non-nucleoside binding
site [105].

Our studies have shown that QSAR models could be
used successfully as virtual screening tools to discover
compounds with the desired biological activity in chemical
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databases or virtual libraries [11,31,36,102,103,106]. The
discovery of novel bioactive chemical entities is the pri-
mary goal of computational drug discovery, and the devel-
opment of validated and predictive QSAR models is criti-
cal to achieve this goal.

Computational Chemical Toxicology

Chemical toxicity can be associated with many hazardous
biological effects such as gene damage, carcinogenicity,
or induction of lethal rodent or human diseases. Toxic-
ity presents an example of complex biological property (cf.
the discussion of complex datasets above) where the un-
derlying mechanisms are most frequently unknown and
in fact multiple mechanisms are likely to be involved in
mediating the end point response. For this reason, toxicity
modeling is a very challenging QSAR problem yet alterna-
tive approaches such as protein structure based modeling
can not be explored in most cases for the same reason of
complex or unknown molecular mechanisms.

Although the experimental protocols for toxicity test-
ing have been developed for many years and the cost
of compound testing has reduced significantly, compu-
tational chemical toxicology continues to be a viable ap-
proach to reduce both the amount of efforts and the cost
of experimental toxicity assessment [107]. Significant sav-
ings could be achieved if accurate predictions of potential
toxicity could be used to prioritize compound selection
for experimental testing. Many Quantitative Structure Ac-
tivity Relationship (QSAR) studies have been conducted
for different toxicity endpoints to address this challenge,
[108,109,110,111]. However, the most critical limitation of
many traditional QSAR studies has been their low exter-
nal predictive power, i. e., their ability to predict accurately
the underlying end point toxicity for compounds that were
not used for model development.We discuss below the re-
sults of a recent important study of aquatic toxicity [112]
since in our opinion this particular study may serve as
a useful example to illustrate the complexity and power of
modern QSAR modeling approaches.

The combinational QSAR modeling approach has
been applied to a diverse series of organic compounds
tested for aquatic toxicity in Tetrahymena pyriformis in
the same laboratory over nearly a decade [113,114,115,
116,117,118,119]. The unique aspect of this research was
that it was conducted in collaboration between six aca-
demic groups specializing in cheminformatics and com-
putational toxicology. The common goals for our virtual
collaboratory were to explore the relative strengths of var-
ious QSAR approaches in their ability to develop robust
and externally predictive models of this particular toxicity

end point. We have endeavored to develop the most sta-
tistically robust, validated, and externally predictive QSAR
models of aquatic toxicity. The members of our collabora-
tory included scientists from the University of North Car-
olina at Chapel Hill in the United States (UNC); University
of Louis Pasteur (ULP) in France; University of Insubria
(UI) in Italy; University of Kalmar (UK) in Sweden; Vir-
tual Computational Chemistry Laboratory (VCCLAB) in
Germany; and the University of British Columbia (UBC)
in Canada. Each group relied on its own QSAR model-
ing approaches to develop toxicity models using the same
modeling set, and we agreed to evaluate the realistic model
performance using the same external validation set(s) (cf.
Table 1 for the summary of approaches).

The T. pyriformis toxicity dataset used in this study
was compiled from several publications of the Schultz
group [113,120,121,122,123] as well as from data avail-
able at the Tetratox database website of (http://www.vet.
utk.edu/TETRATOX/). After deleting duplicates as well as
several compounds with conflicting test results and cor-
recting several chemical structures in the original data
sources, our final dataset included 983 unique compounds
(the structural information is included in the Appendix).
The dataset was randomly divided into two parts: 1) the
modeling set of 644 compounds; 2) the validation set in-
cluding 339 compounds. The former set was used for
model development by each participating group and the
latter set was used to estimate the external prediction
power of each model as a universal metric of model per-
formance. In addition, when this project was already well
underway, a new dataset had become available from the
most recent publication by the Schultz group [124]. It pro-
vided us with an additional external set to evaluate the pre-
dictive power and reliability of all QSAR models. Among
compounds reported in [125] 110 were unique, i. e., not
present among the original set of 983 compounds; thus,
these 110 compounds formed the second independent val-
idation set for our study.

Universal Statistical Figures of Merit for All Models

Different groups have employed different techniques and
(sometimes) different statistical parameters to evaluate the
performance of models developed independently for the
modeling set (described below). To harmonize the results
of this study the same standard parameters were chosen to
describe each model’s performance as applied to the mod-
eling and external test set predictions. Thus, we have em-
ployed Q2

abs (squared leave-one-out cross-validation cor-
relation coefficient) for the modeling set, R2

abs (frequently
described as coefficient of determination) for the external

http://www.vet.utk.edu/TETRATOX/
http://www.vet.utk.edu/TETRATOX/
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QSAR Modeling and QSAR Based Virtual Screening, Complexity and Challenges of Modern, Table 1
Overview of QSARmodeling approaches employed by six cheminformatic groups involved in this study

Group ID Modeling Techniques Descriptor Type Applicability Domain Definition
UNC kNN, SVM MolconnZ, Dragon Euclidean distance threshold between a test compound

and compounds in the modeling set
ULP MLR, SVM, kNN Fragments (ISIDA), Molecular

(CODESSA-Pro)
Euclidean distance threshold between a compound
and compounds in the modeling set; bounding box

UI MLR/OLS Dragon Leverage approach
UK PLS Dragon Residual standard deviation and leverage within the PLSR model
VCCLAB ASNN E-state indices Maximal correlation coefficient of the test molecule to the training

set molecules in the space of models
UBC MLR, ANN, SVM, PLS IND_I Undefined

validations sets, and MAE (mean absolute error) for the
linear correlation between predicted (Ypred) and experi-
mental (Yexp) data (here, Y = pIGC50); these parameters
are defined as follows:

Q2
abs D 1�

X

Y

(Yexp�YLOO)2
.X

Y

(Yexp�hYiexp)2 (1)

R2
abs D 1�

X

Y

(Yexp �Ypred)2
.X

Y

(Yexp �hYiexp)2 (2)

MAE D
X

Y

ˇ̌
Y � Ypred

ˇ̌ .
n : (3)

Many other statistical characteristics can be used to eval-
uate model performance; however, we restricted ourselves
to these three parameters that provide minimal but suf-
ficient information concerning any model’s ability to re-
produce both the trends in experimental data for the test
sets as well as mean accuracy of predicting all experimen-
tal values. The models were considered acceptable if R2

abs
exceeded 0.5.

Consensus QSARModels of Aquatic Toxicity;
Comparison Between Methods and Models

The objective of this study from methodological prospec-
tive was to explore the suitability of different QSAR mod-
eling tools for the analysis of a dataset with an impor-
tant toxicological endpoint. Typically, such datasets are
analyzed with one (or several) modeling techniques, with
a great emphasis on the (high value of) statistical param-
eters of the training set models. In this study, we went
well beyond the modeling studies reported in the origi-
nal publications [113,126,127,128,129,130] in several re-
spects. First, we have compiled all reported data on chem-
ical toxicity against T. pyriformis in a single large dataset

and attempted to develop global QSAR models for the en-
tire set. Second, we have employed multiple QSAR mod-
eling techniques thanks to the engagement of six collabo-
rating groups. Third, we have focused on defining model
performance criteria not only using training set data but
most importantly using external validation sets that were
not used in model development in any way (unlike any
common cross-validation procedure) [131]. This focus af-
forded us the opportunity to evaluate and compare all
models using simple and objective universal criteria of ex-
ternal predictive accuracy, which in our opinion is the
most important single figure of merit for a QSAR model
that is of practical significance for experimental toxicol-
ogists. Fourth, we have explored the significance of ap-
plicability domains and the power of consensus modeling
in maximizing the accuracy of external predictivity of our
models.

We believe that results of our analysis lend a strong
support for our strategy. Indeed, all models performed
quite well for the training set (Table 2) with even the low-
est Q2

abs among them as high as 0.72. However, there was
much greater variation between these models when look-
ing at their (universal and objective) performance criteria
as applied to the validation sets I and II (Table 2).

Of 15 QSAR approaches used in this study, nine im-
plemented method-specific applicability domains. Models
that did not define the AD showed a reduced predictive
accuracy for the validation set II even though they yielded
reasonable results for the validation set I. Only CODESSA-
MLR (which did not employ any AD) approached in accu-
racy the lower bound of the models using the AD as mea-
sured by R2

abs D 0:58 but still had one of the highest MAE
of 0.47 (Table 2). On the other hand, among models em-
ploying the AD only kNN-MolconnZ had relatively low
accuracy of prediction for the validation set II, with R2

abs
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QSAR Modeling and QSAR Based Virtual Screening, Complexity and Challenges of Modern, Table 2
Statistical results obtained with all toxicity QSARmodels for the modeling and external validation sets

Model Group ID
Modeling Set (n D 644) Validation Set I (n D 339) Validation Set II (nD 110)
Q2
abs MAE Coverage (%) R2abs MAE Coverage (%) R2abs MAE Coverage (%)

kNN-Dragon UNC 0.92 0.22 100 0.85 0.27 80.2 0.72 0.33 52.7
kNN-MolconnZ UNC 0.91 0.23 99.8 0.84 0.30 84.3 0.44 0.39 53.6
SVM-Dragon UNC 0.93 0.21 100 0.81 0.31 80.2 0.83 0.27 52.7
SVM-MolconnZ UNC 0.89 0.25 100 0.83 0.30 84.3 0.55 0.37 53.6
ISIDA-kNN ULP 0.77 0.37 100 0.73 0.36 78.5 0.63 0.37 42.7
ISIDA-SVM ULP 0.95 0.15 100 0.76 0.32 100 0.38 0.50 100
ISIDA-MLR ULP 0.94 0.20 100 0.81 0.31 95.9 0.65 0.41 51.8
CODESSA-MLR ULP 0.72 0.42 100 0.71 0.44 100 0.58 0.47 100
OLS UI 0.86 0.30 92.1 0.77 0.35 97.0 0.59 0.43 98.2
PLS UK 0.88 0.28 97.7 0.81 0.34 96.1 0.59 0.40 95.5
ASNN VCCLAB 0.83 0.31 83.9 0.87 0.28 87.4 0.75 0.32 71.8
PLS-IND_I UBC 0.76 0.39 100 0.74 0.39 99.7 0.45 0.54 100
MLR-IND_I UBC 0.77 0.39 100 0.75 0.40 99.7 0.46 0.53 100
ANN-IND_I UBC 0.77 0.39 100 0.76 0.39 99.7 0.46 0.53 100
SVM-IND_I UBC 0.79 0.31 100 0.79 0.35 99.7 0.53 0.46 100
Consensus Modela – 0.92 0.22 100 0.87 0.27 100 0.70 0.34 100

a consensus model: average of the 9models (kNN-Dragon, kNN-MolconnZ, SVM-Dragon, SVM-MolconnZ, ISIDA-kNN,
ISIDA-MLR, OLS, PLS and ASNN) using their individual applicability domains

below 0.5. For all other models the R2
abs ranged between

0.55 and 0.83. On average, the use of applicability domains
improved the performance of individual models although
the improvement came at the expense of the lower chem-
istry space coverage (cf. Table 2).

For the most part all models succeeded in achieving
reasonable accuracy of external prediction especially when
using the AD. It then appeared natural to bring all mod-
els together to explore the power of consensus prediction.
Thus, the consensus model was constructed by averaging
all available predicted values taking into account the ap-
plicability domain of each individual model. In this case
we could use only nine of 15 models that had the AD de-
fined. Since each model had its unique way of defining the
AD, each external compound could be found within the
AD of anywhere between one and nine models so for av-
eraging we only used models covering the compound. The
advantage of this data treatment is that the overall cover-
age of the prediction is still high because it was rare to have
an external compound outside of the ADs of all available
models. The results (Table 2) showed that the prediction
accuracy for both the modeling set (MAE D 0:22) and the
validation sets I and II (0.27 and 0.34, respectively) was the
best compared to any individual model. The same obser-
vation could be made for the correlation coefficient R2

abs.
The coverage of this consensus model II was 100% for all
three data sets. This observation suggests that consensus

models afford both high space coverage and high accuracy
of prediction.

In summary, this study presents an example of a fruit-
ful international collaboration between researchers that
use different techniques and approaches but share general
principles of QSAR model development and validation.
Significantly, we did not make any assumptions about the
purported mechanisms of aquatic toxicity yet were able to
develop statistically significant models for all experimen-
tally tested compounds. In this regard it is relevant to cite
an opinion expressed in an earlier publication by Dr. T.
Schultz that “models that accurately predict acute toxicity
without first identifying toxic mechanisms are highly de-
sirable” [132]. However, the most significant single result
of our studies is the demonstrated superior performance
of the consensus modeling approach when all models are
used concurrently and predictions from individual mod-
els are averaged. We have shown that both the predictive
accuracy and coverage of the final consensus QSAR mod-
els were superior as compared to these parameters for in-
dividual models. The consensus models appeared robust
in terms of being insensitive to both incorporating indi-
vidual models with low prediction accuracy and the inclu-
sion or exclusion of the AD. Another important result of
this study is the power of addressing complex problems in
QSAR modeling by forming a virtual collaboratory of in-
dependent research groups leading to the formulation and
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empirical testing of best modeling practices. This latter en-
deavor is especially critical in light of the growing inter-
est of regulatory agencies to developing most reliable and
predictive models for environmental risk assessment [133]
and placing such models in the public domain.

Conclusions. Rapid Growth of Publicly Available
Databases and Emerging QSAR Research Strategies

With more than 40 years of history behind, QSAR mod-
eling is a well established research field that (as perhaps
with any scientific area) has had its ups and downs. There
were several recent publications that criticized the cur-
rent state of the field. Thus, recent editorial published by
the leading cheminformatics Journal of Chemical Infor-
mation andModeling (JCIM; also reproduced by the Jour-
nal of Medicinal Chemistry) introduced severe limitations
on the level and quality of QSAR papers to be consid-
ered acceptable [73]. Another recent editorial opinion by
Dr. Gerry Maggiora [134] outlined limitations and some
reasons for failures of QSAR modeling that relate to the
so called “activity cliffs”. In another recent important pa-
per, Dr. Terry Stouch addressed the question as to why
in silico ADME/Tox models fail [135]. These examples
naturally lead to an important and perhaps critical ques-
tion: whether there is any room for further advancement
of the field via innovative methodologies and important
applications.

Our previous and ongoing research in the area of
QSAR suggests that the answer is a resounding ‘yes’. We
believe strongly that many examples of low impact QSAR
research are due to frequent exploration of datasets of lim-
ited size with little attention paid to model external vali-
dation. This limitation leads to models having question-
able “mechanistic” explanatory power but perhaps little if
any forecasting ability outside of the training sets used for
model development.We believe that the latter ability along
with the capabilities of QSAR models to explore chemi-
cally diverse datasets with complex biological properties
should become the chief focus of QSAR studies. This fo-
cus requires the re-evaluation of the success criteria for
the modeling as well as the development of novel chemical
data mining algorithms and model validation approaches.
In fact, we think that the most interesting era in QSAR
modeling is just beginning with the rapid growth of the
experimental SAR data space.

In the past fifteen years, innovative technologies that
enable rapid synthesis and high throughput screening of
large libraries of compounds have been adopted in al-
most all major pharmaceutical and biotech companies. As
a result, there has been a huge increase in the number of

compounds available on a routine basis to quickly screen
for novel drug candidates against new targets or path-
ways. In contrast, such technologies have rarely become
available to the academic research community, thus lim-
iting its ability to conduct large scale chemical genetics or
chemical genomics research. The NIHMolecular Libraries
Roadmap Initiative has changed this situation by form-
ing the national Molecular Library Screening Centers Net-
work (MLSCN) [136] with the results of screening assays
made publicly available via PubChem [4]. These efforts
have already led to the unprecedented growth of avail-
able databases of biologically tested compounds (cf. our
recent review where we list about 20 available databases
of compounds with known bioactivity [10]). This growth
creates new challenges for QSAR modeling such as devel-
oping novel approaches for the analysis and visualization
of large databases of screening data, novel biologically rel-
evant chemical diversity or similarity measures, and novel
tools for virtual screening of compound libraries to en-
sure high expected hit rates. Due to the significant recent
increase in publicly available datasets of biologically ac-
tive compounds and the critical need to improve the hit
rate of experimental compound screening there is a strong
need in developing widely accessible and reliable com-
putational QSAR modeling techniques and specific end-
point predictors.
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Glossary

Quantum circuit model One of the standard and most
commonly used models of quantum computation
which generalizes the classical model of acyclic circuits
and closely models most of the proposed physical im-
plementations of quantum computers. When studying
algorithms for a problem with an infinite number of
possible inputs, one usually restricts attention to uni-
form families of circuits, which are families of circuits
in which the circuit for inputs of size n can be gen-
erated efficiently as a function of n. For example, one
might require that there is a classical Turing machine
that can generate the nth circuit in time polynomial
in n.

Black box model A model of computation where the in-
put to the problem includes a “black-box” that can
be applied (equivalently, an “oracle” that can be
“queried”). This is the only way to extract informa-
tion from the black-box. For example, the black-box
could accept inputs j 2 f0; 1gn and output a value
Xj 2 f0; 1g. In this particular case, we can think of
the black-box as a means for querying the bits of the
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string X D X1X2X3 : : : X2n . In the black-box model,
one usually measures complexity in terms of the num-
ber of applications of the black-box.

Computational complexity When referring to an algo-
rithm, the computational complexity (often just called
the complexity) is a measure of the resources used by
the algorithm (which we can also refer to as the cost of
the algorithm) usually measured as a function of the
size of the input to the algorithm. The complexity for
input size n is taken to be the cost of the algorithm on
a worst-case input of size n to the problem. This is also
referred to as worst-case complexity. When referring to
a problem, the computational complexity is the mini-
mum amount of resources required by any algorithm
to solve the problem. See � Quantum Computational
Complexity for an overview.

Query complexity When referring to a black-box algo-
rithm, the query complexity is the number of appli-
cations of the black-box or oracle used by the algo-
rithm. When referring to a black-box problem, the
query complexity is the minimum number of appli-
cations of the black-box required by any algorithm to
solve the problem.

Definition of the Subject

The strong Church–Turing thesis states that a probabilis-
tic Turing machine can efficiently simulate any realistic
model of computation. By “efficiently”, we mean that there
is a polynomial p such that the amount of resources used
by the Turing machine simulation is not more than p(M)
where M is the amount of resources used by the given re-
alistic model of computation.

Since a computer is a physical device, any reasonable
model of computation must be cast in a realistic physical
framework, hence the condition that the model be “real-
istic” is very natural. The probabilistic Turing machine is
implicitly cast in a classical framework for physics, and it
appears to hold as long as the competing model of com-
putation is also cast in a classical framework. However,
roughly a century ago, a new framework for physics was
developed: quantum mechanics. The impact of this new
framework on the theory of computation was not taken
very seriously until the early 1970’s by Stephen Wies-
ner [177] for cryptographic purposes (and later by Ben-
nett and Brassard [27]). Benioff [23] proposed using quan-
tum devices in order to implement reversible computa-
tion. Feynman [79] noted that a classical computer seems
incapable of efficiently simulating the dynamics of rather
simple quantum mechanical systems, and proposed that
a “quantum” computer, with components evolving ac-

cording to quantum mechanical rules, should be able to
perform such simulations efficiently (see Sect. “Simulation
of Quantum Mechanical Systems”). Manin made a simi-
lar observation independently [136]. Deutsch [64] worked
on proving the original Church–Turing thesis (which was
only concerned about effective computability, and not effi-
cient computability) in a quantummechanical framework,
and defined two models of quantum computation; he also
gave the first quantum algorithm. One of Deutsch’s ideas is
that quantum computers could take advantage of the com-
putational power present in many “parallel universes” and
thus outperform conventional classical algorithms. While
thinking of parallel universes is sometimes a convenient
way for researchers to invent quantum algorithms, the al-
gorithms and their successful implementation are inde-
pendent of any particular interpretation of standard quan-
tum mechanics.

Quantum algorithms are algorithms that run on any
realistic model of quantum computation. The most com-
monly used model of quantum computation is the cir-
cuit model (more strictly, the model of uniform fami-
lies of acyclic quantum circuits), and the quantum strong
Church–Turing thesis states that the quantum circuit
model can efficiently simulate any realistic model of com-
putation. Several other models of quantum computation
have been developed, and indeed they can be efficiently
simulated by quantum circuits. Quantum circuits closely
resemble most of the currently pursued approaches for at-
tempting to construct scalable quantum computers.

The study of quantum algorithms is very important
for several reasons. Computationally secure cryptography
is widely used in society today, and relies on the be-
lieved difficulty of a small number of computational prob-
lems. Quantum computation appears to redefine what is
a tractable or intractable problem, and one of the first
breakthroughs in the development of quantum algorithms
was Shor’s discovery of efficient algorithms [165] for fac-
toring and finding discrete logarithms. The difficulty of
factoring and finding discrete logarithms was (and still is!)
at the core of currently-used public-key cryptography, and
his results showed that if and when a quantum computer
is built, then any messages that had been previously en-
crypted using our current public-key cryptographic tools
could be compromised by anyone who had recorded the
ciphertext and public keys. Furthermore the vast public-
key infrastructure currently in place would be compro-
mised with no clear alternative to replace it; also, any alter-
native will take many years to deploy. There was a sudden
rush to answer two fundamental questions. Firstly, can we
actually build a sufficiently large quantum computer? Per-
haps this isn’t a reasonable model of computation. Subse-
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quent work on quantum fault-tolerant error correction in-
dicates that the answer is “yes”, and experimental progress
has steadily grown. Secondly, what other interesting and
important problems can quantum computers solve more
efficiently than the best known classical algorithms? The
following sections survey the state of the art on the second
question.

As we gain confidence about which problems are still
hard in a quantum mechanical framework, we can start
to rebuild confidence in a secure public-key cryptographic
infrastructure that is robust in the presence of quantum
technologies. Although the cryptographic implications are
dramatic and of immediate relevance, in the longer term,
the most important significance of quantum algorithms
will be for a wider range of applications, where important
problems cannot be solved because there are no known
(or possible) efficient classical algorithms, but there are
efficient quantum mechanical solutions. At present, we
know of applications such as searching and optimizing
(Sect. “Algorithms Based on Amplitude Amplification”)
and simulating physical systems (see Sect. “Simulation of
Quantum Mechanical Systems”), but the full implications
are still unknown and very hard to predict. The next few
sections give an overview of the current state of quantum
algorithmics.

Introduction and Overview

There are several natural models of quantum computa-
tion. The most common one is a generalization of the clas-
sical circuit model. A detailed description of the circuit
model of quantum computation can be found in several
textbooks [122,129,149]. One can also define continuous
models of computation, where one specifies the Hamilto-
nian H(t) of the system at time t, where H(t) is a “rea-
sonable” Hamiltonian (e. g. a sum Hamiltonians involving
a constant number of nearby subsystems), and one evolves
the system for a period of time T. A reasonable measure of
the total cost might be

R T
tD0 kH(t)k dt.

Most algorithmic work in quantum computing has
been developed in discrete models of computation, that is,
with a discrete state space and with discrete time steps. In
Subsect. “Continuous Time Quantum Walk Algorithms”
and Sect. “Adiabatic Algorithms”, we discuss algorithms
developed in a continuous-time model of computation.
Even if, as in the case of classical computers, implemen-
tations of scalable fault-tolerant quantum computers have
discrete time steps and state spaces, these algorithms are
still very useful since there are efficient simulations us-
ing any universal discrete model of quantum computation.
Note that if no such efficient simulation exists, then either

the continuous model of computation in question is phys-
ically unrealistic, or the quantum strong Church–Turing
thesis is incorrect.

Discrete state spaces can be used to approximate con-
tinuous state spaces in order to solve problems normally
posed with continuous state spaces. One must choose ap-
propriate discretizations, analyzing errors in the approx-
imation, and quantify the scaling of the algorithm as the
overall approximation error gets arbitrarily small. Quan-
tum algorithms for such continuous problems are sur-
veyed in � Quantum Algorithms and Complexity for
Continuous Problems.

Many of the key ideas that led to the development
of quantum computation emerged from earlier work on
reversible computation [24]. Many facts from the theory
of reversible computing are fundamental tools in the de-
velopment of quantum algorithms. For example, suppose
we have a classical algorithm for computing a function
f : f0; 1gn ! f0; 1gm (we use binary encoding for conve-
nience). The details of the computing model are not so
important, as long as it’s a realistic model. For concrete-
ness, suppose we have a reasonable encoding of a circuit of
size C, using gates from a finite set, that takes x 2 f0; 1gn

as input and outputs y 2 f0; 1gm (discarding any addi-
tional information it might have computed). Then this
circuit can be efficiently converted into a circuit, com-
posed only of reversible gates, that maps jxi j yi j 0i 7!
j xi j y˚ f (x)i j 0i, where˚ denotes the bitwise XOR (ad-
dition modulo 2), and the third register of 0s is ancilla
workspace that is reset to all 0s by reversible operations.
This new circuit uses O(C) reversible gates from a finite
set, so the overhead is modest. A basic introduction to this
and other important facts about reversible computing can
be find in most standard textbooks on quantum comput-
ing. For example, in Sect. “Algorithms Based on Ampli-
tude Amplification” on quantum searching, we use the fact
that we can convert any classical heuristic algorithm that
successfully guesses a solution with probability p into a re-
versible quantum algorithm that guesses a solution with
probability amplitude

p
p.

Most of the known quantum algorithms can be
phrased as black-box algorithms solving black-box prob-
lems. A black-box, or oracle, is subroutine or subcircuit
that implements some operation or function. It does so in
a way that provides no other information other than sim-
ply taking an input and giving the prescribed output. One
cannot, for example, look at the inner workings of the cir-
cuit or device implementing the black-box to extract ad-
ditional information. For example, Shor’s factoring algo-
rithm can be viewed as an algorithm that finds the order of
an element in a black-box group (that is, a group for which
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the group operations are computed by a black-box), or the
period of a black-box function, where the black-box is sub-
stituted with a subcircuit that implements exponentiation
modulo N . The quantum search algorithm is described as
a black-box algorithm, but it is straightforward to substi-
tute in a subcircuit that checks if a given input is a valid
certificate for some problem in NP.

If we take a black-box algorithm that uses T applica-
tions of the black-box and A other computational steps,
and replace each black-box with a subcircuit that uses B el-
ementary gates, thenwe get an algorithm that uses TBC A
gates. Thus if T and A are both polynomial in size, then an
efficient black-box algorithm yields an efficient algorithm
wheneverwe replace the black-box with a polynomial time
computable function.

Many lower bounds have been found in the black-box
model. The query complexity of a black-box problem is
the number of applications of the black-box (or queries
to the oracle) that a black-box algorithm must make in
order to solve the problem. If we try to solve a prob-
lem that has query complexity T, where the black-box is
implemented by some subcircuit, then we can conclude
that any algorithm that treats the subcircuit as a black-
box must apply the subcircuit a total of T times and thus
use ˝(T) gates (we use the fact that any implementation
of the black-box uses at least one gate; if we had a lower
bound on the complexity of implementing the black-box,
then we could derive a better lower bound in this case).
However, this does not imply that an ˝(T) lower bound
applies to any algorithm that uses the subcircuit, since
it might exploit the information within the subcircuit in
a way other than just applying the subcircuit. A discussion
of the black-box model and its practical relevance can be
found in [52,122,173].

In the literature, one can often see a progression from
studying basic algorithmic primitives (such as the conver-
gence properties of a generic quantum walk), to the ap-
plication to solve a black-box problem (such as element
distinctness), to solving some concrete computational
problem (like factoring an integer) that doesn’t involve
a black-box.

This survey will include both black-box and non-
black-box results. It is infeasible to detail all the known
quantum algorithms, so a representative sample is given in
this article. For a subset of this sample, there is an explicit
definition of the problem, a discussion of what the best
known quantum algorithm can do, and a comparison to
what can be achieved with classical algorithms. For black-
box problems, we attempt to give the number of queries
and the number of non-query operations used by the al-
gorithm, as well as the best-known lower bounds on the

query complexity. In some cases, all of this information is
not readily available in the literature, so there will be some
gaps.

As a small technical note, when we refer to a real num-
ber r as an input or output to a problem, we are referring
to a finite description of a real number from which, for any
integer n, one can efficiently compute (in time polynomial
in n) an approximation of r with error at most 1/2n .

In this article, we start with a brief sketch of the very
early quantum algorithms, and then in the subsequent sec-
tions the algorithms are grouped according to the kind
of problems they solve, or the techniques or algorithmic
paradigms used.

Section “Early Quantum Algorithms” summarizes the
early quantum algorithms. Section “Factoring, Discrete
Logarithms and the Abelian Hidden Subgroup Prob-
lem” describes the Abelian hidden subgroup algorithms,
including Shor’s factoring and discrete logarithm algo-
rithms. Section “Algorithms Based on Amplitude Am-
plification” describes quantum searching and amplitude
amplification and some of the main applications. Sec-
tion “Simulation of Quantum Mechanical Systems” de-
scribes quantum algorithms for simulating quantum me-
chanical systems, which are another important class of
algorithms that appear to offer an exponential speed-
up over classical algorithms. Section “Generalizations of
the Abelian Hidden Subgroup Problem” describes sev-
eral non-trivial generalizations of the Abelian hidden sub-
group problem, and related techniques. Section “Quantum
Walk Algorithms” describes the quantum walk paradigm
for quantum algorithms and summarizes some of themost
interesting results and applications. Section “Adiabatic Al-
gorithms” describes the paradigm of adiabatic algorithms.
Section “Topological Algorithms” describes a family of
“topological” algorithms. Section “Quantum Algorithms
for Quantum Tasks” describes algorithms for quantum
tasks which cannot be done by a classical computer. In
Sect. “Future Directions” we conclude with a discussion.

Early QuantumAlgorithms

The first explicitly defined quantum algorithmwas the one
described by David Deutsch in his landmark paper [64]
where he defined the model of quantum computation, in-
cluding a circuit and Turing machine model.

The problem was to decide if a given function
f : f0; 1g 7! f0; 1g is constant or “balanced” (the func-
tion f is balanced if there are an equal number of 0 and
1 outputs). In other words, output f (0)˚ f (1), where ˚
denotes addition modulo 2. One is given a circuit that im-
plements j xi j 0i 7! j xi j f (x)i. Deutsch showed that us-
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ing one application of the circuit, we can compute

1
p
2
j 0i j f (0)i C

1
p
2
j 1i j f (1)i :

If f (0) D f (1), then the first qubit is in the state
1p
2
j 0i C 1p

2
j 1i and thus applying a Hadamard transfor-

mation to the first qubit will output j 0i with certainty.
However, if f (0) ¤ f (1), then applying a Hadamard gate
and measuring will output j 0i with probability 1

2 and j 1i
with probability 1

2 . Thus if we obtain j 1i, we are certain
that the function is balanced, and thus we would output
“balanced” in this case. If we obtain j 0i, we cannot be cer-
tain; however, by guessing “constant” with probability 2

3 in
this case, we get an algorithm that guesses correctly with
probability 2

3 . This is not possible with a classical algo-
rithm that only evaluates f once.

If one knows, for example, that the unitary transfor-
mation also maps j xi j 1i 7! j xi j 1˚ f (x)i, then one can
solve this problem with certainty with only one query [54].
A common tool that is used in this and many other quan-
tum algorithms, is to note that if one applies such an im-
plementation of f on the input j xi (1/

p
2 j 0i� 1/

p
2 j 1i),

then the output can be written as (�1) f (x) j xi (1/
p
2 j 0i�

1/
p
2 j 1i). This technique can be used to replace the 2-

step process of first mapping j xi j 0i 7! j xi j f (x)i, then
applying a Z gate j xi j f (x)i 7! j xi (�1) f (x) j f (x)i D
(�1) f (x) j xi j f (x)i, and then applying the function eval-
uation a second time in order to “uncompute” the value
of f (x) from the second register: (�1) f (x) j xi j f (x)i 7!
(�1) f (x) j xi j 0i.

This problem was generalized to the Deutsch–Jozsa
problem [65] which asks the same constant versus “bal-
anced” question, but for a function f : f0; 1gn ! f0; 1g,
with the promise that the function is either constant or
balanced. The notion of a promise problem appears fre-
quently in the study of quantum algorithms and complex-
ity. One can either think of the condition as a promise, or
alternatively, one can accept any answer as correct in the
case that the promise is not satisfied.

This problem was solved with two queries with a sim-
ilar algorithm, and the two queries can be reduced to
one if the oracle evaluating f has the form j xi j bi 7!
j xi j b˚ f (x)i. A classical deterministic algorithm re-
quires 2n�1 C 1 evaluations of the function in order to de-
cide if f is constant or balanced with certainty. However,
a classical randomized algorithm can decide if f is constant
or balanced with error probability � with only O(log 1

�
)

queries. Other oracle separations were given in [30,31].
Bernstein and Vazirani [28] defined a special family of

functions that are either constant or balanced, in partic-
ular, for any a 2 f0; 1gn , b 2 f0; 1g, let fa(x) D a � x˚ b.

They showed how to find a using only 2 evaluations
of a black-box implementing j xi j 0i 7! j xi j f (x)i. This
can be reduced to 1 evaluation given the standard black-
box Uf : j xi j bi 7! j xi j b˚ f (x)i. This algorithm can be
generalized quite naturally to finding the hidden matrixM
in the affine map x 7! MxC b, where x 2 Zn

N , b 2 Zm
N

and M is an m � n matrix of values in ZN (with element-
wise addition modulo N), using only m queries [104,143].
In some sense, the quantum algorithm takes a black-box
for right-multiplying by M and turns it into a black-box
for left-multiplying by M. This allows us to determine M
with onlym queries instead of nC 1 queries, which can be
advantageous if m < n, although no practical application
has been developed to date.

Bernstein and Vazirani also give the first instance of
a black-box problem (recursive Fourier sampling) where
a quantum algorithm gives a exponential improvement
over bounded error randomized classical algorithms. Si-
mon [167] gave a problem where there is an exponen-
tial gap. The problem is somewhat simpler to state, and
is a special case of a broad family of important problems
for which efficient quantum algorithms were subsequently
found (using similar methods).

Simon’s Problem
Input:Ablack-boxUf implementing j xi j 0i 7! j xi j f (x)i
for a function f : f0; 1gn ! f0; 1gn with the property that
f (x) D f (y) if and only if x˚ y 2 K D f0; sg for some
s 2 f0; 1gn .
Problem: Find s.

Note that f is one-to-one if s D 0, the string of 0s, and f is
two-to-one if s ¤ 0.

Simon’s algorithm is very simple and elegant. We
sketch it here, since many of the algorithms presented in
the upcoming sections follow the same overall structure.
We give a modified version that has a definite running
time (versus letting it run indefinitely and analyzing the
expected running time).

Simon’s Algorithm

1. Set i D 1.
2. Prepare the 2n qubit state j 00 : : : 0i j 00 : : : 0i.
3. Apply a Hadamard gate to the first n qubits to obtain

the state 1p
2n
j xi j 0i.

4. Apply Uf to create the state 1p
2n
j xi j f (x)i.

5. Apply a Hadamard gate to the first n qubits.
6. Measure the first n qubits to obtain a string yi 2 f0; 1gn .
7. If i D nC 3, go to the next step. Otherwise, increment i

and go to step 2.
8. Let M be the (n C 3) � n matrix whose ith row is the

vector yi . Solve the system Mx D 0 (where we treat x
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and 0 as column vectors). If there is a unique non-zero
solution x D s, then output s. If the only solution is
x D 0, then output 0. Otherwise, output “FAIL”.

Note that in step 3, since we can partition the space Zn
2

into a disjoint union of cosets Zn
2 /K of the subgroup

K D f0; sg, where f (x) is constant on each coset, we can
rewrite the state of the system as

1
p
2n
j xi j f (x)i

D
1

p
2n�1

X

fz;z˚sg2Zn
2 /K

1
p
2
(j zi C j z˚ si) j f (z)i :

Since the rest of the algorithm ignores the second reg-
ister, we can assume that in the first register we have a ran-
dom “coset state” 1p

2
(j zi C j z˚ si) selected uniformly at

random from all the coset states.
After applying the Hadamard gates, the coset state gets

mapped to a equally weighted superposition of states that
are orthogonal to K ,

1
p
2n�1

X

y2K?
(�1)y�z j yi

where K? D fy j y 2 Zn
2 ; y � s D 0g. Thus, with nC O(1)

random sampled from K?, the samples vectors yi will gen-
erated K? with high probability. Then, using linear alge-
bra, we can efficiently compute generators for K . In the
generalizations of Simon’s algorithm that we see in the
next few sections, we’ll see a more general formulation of
K? for a hidden subgroup K .

Shortly after Simon came up with his black-box algo-
rithm, Shor [165] used similar ideas to derive his famous
algorithms for factoring and finding discrete logarithms.

Quantum Algorithms for Simon’s Problem Simon’s al-
gorithm solves this problem with bounded error using
nC O(1) applications of Uf and O(n) other elementary
quantum operations and O(n3) elementary classical oper-
ations.

Brassard and Høyer [35] combined Simon’s algorithm
with amplitude amplification order to make the algorithm
exact.

Classical Algorithms for Simon’s Problem Simon [167]
showed a lower bound of ˝(2

n
4 ) queries, and this can be

improved to˝(2
n
2 ).

This was a historical moment, since the field of quantum
algorithms progressed fromwork on black-box algorithms
and complexity, to having an algorithm without black-
boxes and of broad practical importance. It is important to
note the fundamental role of the foundational complexity-

theoretic work and black-box algorithms to the develop-
ment of the practical algorithms.

Factoring, Discrete Logarithms
and the AbelianHidden Subgroup Problem

Factoring, Finding Orders and Periods,
and Eigenvalue Estimation

The most well known quantum algorithm is Shor’s algo-
rithm [165,166] for the integer factorization problem.

Integer Factorization Problem
Input: An integer N.
Problem: Output positive integers p1; p2; : : : ; pl ; r1; r2;
: : : ; rl where the pi are distinct primes and N D

pr11 pr22 : : : p
rl
l .

This problem can be efficiently reduced (that is, in time
polynomial in log N), by a probabilistic classical algo-
rithm, to O(l) instances (note that l 2 O(log N)) of the
problem of finding the multiplicative order of an element
modulo N, which can be solved efficiently on a quantum
computer.

Order Finding Problem
Input: Positive integers a and N, such that GCD(a;N) D
1 (i. e. a is relatively prime to N).
Problem: Find the order of amodulo N.

Essentially the same quantum algorithm can efficiently
find the order of an element a in a finite group G given
a black-box for performing the group arithmetic. Shor’s
algorithm in fact solves the more general problem of find-
ing the period of a periodic function f .

Period Finding Problem
Input: A black-box implementing a periodic function
f : Z 7! X for some finite set X, where f (x) D f (y) if and
only if r j x � y.
Problem: Find the period r.

Shor described his algorithm for the specific function
f (x) D ax mod N, where N was the integer to be fac-
tored; however the algorithm will find the period of any
such periodic function (note the assumption that the
values of f (1); f (2); : : : ; f (r) are distinct; one can also
analyze the case where the values are not entirely dis-
tinct [32,145]).

Kitaev later showed that the problem of finding the or-
der of a 2 G can alternatively be reduced to the problem of
estimating the eigenvalues of the operator that multiplies
by a, and he described a efficient quantum algorithm for
estimating such eigenvalues [126]. His method is to reduce
the problem to phase estimation. Although Kitaev’s algo-
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rithm was qualitatively different [116], it was shown that
using an improved phase estimation algorithm yields an
order-finding circuit that is essentially equivalent to Shor’s
factoring algorithm based on period-finding [54].

Both Shor’s and Kitaev’s approaches find r by finding
good estimates of a random integer multiple of 1

r and then
applying the continued fractions algorithm to find r.

Sampling Estimates to an Almost Uniformly Random Inte-
ger Multiple of 1/r
Input: Integers a, and N such that GCD(a;N) D 1. Let r
denote the (unknown) order of a.
Problem: Output a number x 2 f0; 1; 2; : : : ; 2n � 1g such
that for each k 2 f0; 1; : : : ; r � 1g we have

Pr
�ˇˇ̌
ˇ
x
2n
�

k
r

ˇ
ˇ̌
ˇ �

1
2r2

�
� c

1
r

for some constant c > 0.

Shor’s analysis of the algorithm works by creating
a “periodic state”, which is done by preparing

P
x j xi

j ax mod Ni and measuring the second register (in fact,
just ignoring or tracing out the second register suffices,
since one never uses the value of the measurement out-
come). One then applies the quantum Fourier transform,
or its inverse, to estimate the period.

Kitaev’s algorithm works by estimating a random
eigenvalue of the operator Ua that multiplies by a.

Eigenvalue Estimation Problem
Input:A quantum circuit implementing the controlled-U,
for some unitary operator U, and an eigenstate j i of U
with eigenvalue e2	 i! .
Problem: Obtain a good estimate for !.

He solves the eigenvalue estimation problem by solving
a version of the well-studied phase estimation problem,
and uses the crucial fact (as did Shor) that one can effi-
ciently implement a circuit that computes U2 j

a D Ua2 j us-
ing j group multiplications instead of 2 j multiplications.
Thus one can efficiently reduce the eigenvalue estimation
problem to the following phase estimation problem.

Phase Estimation Problem
Input: The states 1p

2
(j 0i C e2	 i! y j 1i), for y D 1; 2;

4; : : : ; 2n , for some ! 2 [0; 2�).
Problem: Obtain a good estimate of the phase parame-
ter !.

Kitaev’s phase estimation algorithm used O(n) copies of
the states 1p

2
(j 0i C e2	 i! y j 1i) for y D 1; 8; 64; : : :, and

provides an estimate with error at most 1
2n with high prob-

ability. Although there are slightly more efficient phase

estimation algorithms, one advantage of his algorithm is
that it does not require a quantum Fourier transform, and
instead performs some efficient classical post-processing
of estimates of y! mod 1. This might be advantageous
experimentally. The phase estimation problem has been
studied for several decades [100,102] recently with some
focus on the algorithmic complexity of the optimal or
near-optimal estimation procedures.

QuantumAlgorithms for Order Finding Finding the order
of a random element in Z�N

� Quantum complexity is in O((log N)2 log log(N) log
log log(N)).

Order finding in a black-box group

� Quantum black-box complexity (for groups with
unique encodings of group elements) is O(log r) black-
box multiplications and O(nC log2 r) other elemen-
tary operations.

Classical Algorithms for Order Finding Finding the order
of a random element in Z�N

� Best known rigorous probabilistic classical algorithm
has complexity in eO(

p
logN log logN).

� Best known heuristic probabilistic classical algorithm

has complexity in eO((logN)
1
3 (log logN)

2
3 ).

Order finding in a black-box group

� Classical black-box multiplication complexity is in
	(
p
r) [53].

By “heuristic” algorithm, wemean the proof of its running
time makes some plausible but unproven assumptions.

Discrete Logarithms

Shor [165,166] also solved the problem of finding discrete
logarithms in the multiplicative group of a finite field.

The Discrete Logarithm Problem
Input: Elements a and b D at in Z�p , where t is an integer
from f0; 1; 2; : : : ; r � 1g and r is the order of a.
Problem: Find t. (The number t is called the discrete log-
arithm of b with respect to the base a.)

Shor solved this problem by defining f : Zr � Zr 7! Z�p
as f (x; y) D axby . Note that f (x1; y1) D f (x2; y2) if and
only if (x1 � x2; y1 � y2) is in the additive subgroup of
Zr � Zr generated by (t;�1). Since r is known, there is
no need for the continued fractions algorithm. There is
also an analogous eigenvalue estimation version of this
algorithm.
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The algorithm can be defined in general for any
group G where we have a black-box for computing the
group operation. Given a; b 2 G, output the smallest pos-
itive t such that b D at . For example, one can apply this
algorithm to finding discrete logarithms in the additive
group of an elliptic curve over a finite field [121,150],
a group widely used in public key cryptography [137]. In
this case, the group operation is described as addition, and
thus the problem is to find the smallest positive integer t
such that b D ta, where b and a are points on some ellip-
tic curve.

Quantum Complexities of the Discrete Logarithm Problem

� Finding discrete logarithms in F�q
– Quantum complexity is in O((log q)2 log log(q) log

log log(q)).
� Discrete logarithms in a black-box group represented

with strings of length n (including elliptic curve groups
discussed above)
– Quantum black-box complexity (for groups with

unique encodings of group elements) is O(log r)
black-box multiplications and O(n C log2 r) other
elementary operations.

Classical Complexities of the Discrete Logarithm Problem

� Finding discrete logarithms in F�q
– Best known rigorous probabilistic classical algo-

rithm has complexity in eO(
p

log q log log q) for certain
values of q (including q D 2n and prime q).

– Best known heuristic probabilistic classical algo-

rithm has complexity in eO((log q)
1
3 (log log q)

2
3 ).

� Discrete logarithms in a black-box group represented
with strings of length n
– Classical black-box complexity is in 	(

p
r). For

a large class of elliptic curves, the best known clas-
sical algorithms have complexity in O(

p
r) group

additions. There are sub-exponential algorithms for
special families of curves.

Abelian Hidden Subgroup Problem

Notice how we can rephrase most of the problems we have
already discussed, along with some other ones, as a special
case of the following problem.

The Abelian Hidden Subgroup Problem Let f : G ! X
map anAbelian groupG to some finite setX with the prop-
erty that there exists some subgroup K � G such that for
any x; y 2 G, f (x) D f (y) if and only if x C K D y C K.
In other words f is constant on cosets of K and distinct on
different cosets.

Deutsch’s problem G D Z2, X D f0; 1g, and K D f0g if f
is balanced, and K D f0; 1g if f is constant.

Generalized Simon’s problem G D Zn
2 , X D f0; 1gn ,

and K is any subgroup of Zn
2 .

Finding orders G D Z, X is any finite group H, r is the
order of a 2 H. The subgroup K D rZ is the hidden
subgroup of G, and a generator for K reveals r.

Finding the period of a function G D Z, X is any set, r
is the period of f . The subgroup K D rZ is the hidden
subgroup of G, and a generator for K reveals the pe-
riod r.

Discrete logarithms in any group G D Zr �Zr , X is any
group H. Let a be an element of H with ar D 1 and
suppose b D ak . Consider the function f (x1; x2) D
ax1bx2 . We have f (x1; x2) D f (y1; y2) if and only if
(x1; x2) � (y1; y2) 2 f(tk;�t); t D 0; 1; : : : ; r � 1g.
The hidden subgroup K is the subgroup generated by
(k;�1), where k is the discrete logarithm.

Hidden linear functions [34] G D Z � Z. Let g be some
permutation of ZN for some integer N. Let h
be a function from Z � Z to ZN defined by
h(x; y) D x C ay mod N. Let f D g ı h. The sub-
group K is the hidden subgroup generated by (�a; 1),
and the generator reveals the hidden linear function h.

Self-shift-equivalent polynomials [83] Given a polyno-
mial P in l variables X1; X2; : : : ; Xl over Fq (the fi-
nite field with q elements), the function f which maps
(a1; a2; : : : ; al ) 2 F l

q to P(X1 � a1; X2 � a2; : : : ; Xl �

al ) is constant on cosets of a subgroup K of F l
q . This

subgroup K is the set of self-shift-equivalences of the
polynomial P.

Abelian stabilizer problem [119] LetG be any group act-
ing on a finite set X. That is, each element of G acts as
a map from X to X in such a way that for any two el-
ements a; b 2 G, a(b(x)) D (ab)(x) for all x 2 X. For
a particular element x 2 X, the set of elements which
fix x (that is the elements a 2 G such that a(x) D x)
form a subgroup. This subgroup is called the stabilizer
of x in G, denoted StG (x). Let f x denote the function
from G to X which maps g 2 G to g(x). The hidden
subgroup of f x is StG (x).

If we restrict attention to finite Abelian groups, or more
generally, finitely generated Abelian groups, then we can
efficiently solve the hidden subgroup problem, by gener-
alizations of the algorithms for factoring, finding discrete
logarithms, and Simon’s problem.

The Abelian hidden subgroup problem can also be
used to decompose a finite Abelian group into a direct sum
of cyclic groups if there is a unique representative for each
group element [44,143]. For example, the multiplicative
group of integers modulo N is an Abelian group, and we
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can efficiently perform computations in the group. How-
ever, having a decomposition of the group would imply
an efficient algorithm for factoring N. The class group of
a number field is another Abelian group for which a de-
composition is believed to be hard to find on a classical
computer. For example, such a decomposition would eas-
ily give the size of the class group, which is also known
to be as hard as factoring, assuming the Generalized Rie-
mann Hypothesis. Computing the class group of a com-
plex number field is a simple consequence of the algorithm
for decomposing an Abelian group into a direct sum of
cyclic groups, since there are techniques for computing
unique representatives in this case. A unique classical rep-
resentation is sufficient, but a quantum state could also be
used to represent a group element. For example, a uniform
superposition over classical representatives of the same
group element would also work (this technique was ap-
plied by Watrous in the case of solvable groups [175]).
Computing the class number of a real number field is
not as straightforward, since there is no known way to
efficiently compute a unique classical representative for
each group element. However Hallgren [95] used the tech-
niques outlined in Subsect. “Lattice and Number Field
Problems” to show how to compute quantum states to rep-
resent the group elements, assuming the Generalized Rie-
mann Hypothesis, in the case of class group of a real num-
ber field of constant degree, and thus is able to compute
the class group in these cases as well .

Quantum Algorithms for the Abelian Hidden Subgroup
Problem There exists a bounded-error quantum algo-
rithm for finding generators for the hidden subgroup
K � G D ZN1 � ZN2 � � � � � ZNl of f using O(l) evalu-
ations of f and O(log3 N) other elementary operations,
where N D N1N2 : : : Nl D jGj.

It can be shown that˝(l) queries are needed for worst-
case K .

Classical Algorithms for the Abelian Hidden Subgroup
Problem In the black-box model˝(

p
jG/Kj) queries are

necessary in order to even decide if the hidden subgroup
is trivial.

Generalizations are discussed in Sect. “Generalizations of
the Abelian Hidden Subgroup Problem”.

Algorithms Based on Amplitude Amplification

In 1996 Grover [90] developed a quantum algorithm for
solving the search problem that gives a quadratic speed-
up over the best possible classical algorithm.

Search Problem
Input: A black-box Uf for computing an unknown func-
tion f : f0; 1gn ! f0; 1g.
Problem: Find a value x 2 f0; 1gn satisfying f (x) D 1, if
one exists. Otherwise, output “NO SOLUTION”.

The decision version of this problem is to output 1 if there
is a solution, and 0 if there is no solution.

This problem is stated in a very general way, and can
be applied to solving a wide range of problems, in particu-
lar any problem in NP. For example, suppose one wanted
to find a solution to an instance ˚ of the 3-SAT prob-
lem. The Boolean formula ˚ is in “3-conjunctive normal
form” (3-CNF), which means that it is a conjunction (logi-
cal AND) of clauses, each of which is a disjunction (logical
OR) of three Boolean variables (or their negations). For
example, the following is a 3-CNF formula in the variables
b1; b2; : : : ; b5:

˚ D (b1 _ b̄2 _ b5)^ (b1 _ b̄4 _ b̄5) ^ (b4 _ b2 _ b3) ;

where we let b̄ denote the logical NOT of b. A “satisfy-
ing assignment” of a particular 3-CNF formula ˚ is an as-
signment of 0 or 1 values to each of the n variables such
that the formula evaluates to 1. Given a satisfying assign-
ment, it is easy to check if it satisfies the formula. Define f˚
to be the function that, for any x D x1x2 : : : xn 2 f0; 1gn ,
maps x 7! 1 if the assignment bi D xi , i D 1; 2; : : : ; n sat-
isfies ˚ and x 7! 0 otherwise. Solving the search prob-
lem for f˚ is equivalent to finding a satisfying assignment
for ˚ .

If we only learn about f by applying the black-box Uf ,
then any algorithm that finds a solution with high prob-
ability for any f (even if we just restrict to functions f
with at most one solution) requires ˝(

p
2n) applications

of Uf [25].
The basic intuition as to why a quantum algorithm

might provide some speed-up is that a quantum version
of an algorithm that guesses the solution with probability
1
2n will in fact produce the correct answer with probabil-
ity amplitude 1/

p
2n . The hope is that additional guesses

increase the amplitude of finding a correction solution by
˝(1/
p
2n), and thus O(

p
2n) guesses and applications of

Uf might suffice in order to get the total probability am-
plitude close to 1. Of course, one needs to find a unitary
algorithm for implementing this, and obvious approaches
do not permit the amplitudes to add constructively. Lov
Grover discovered a quantum algorithm that does permit
the amplitudes to add up in such a way. This algorithmwas
analyzed and generalized to the technique known as “am-
plitude amplification” [34,35,38]. Further generalizations
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of these search algorithms are discussed in Sect. “Quan-
tumWalk Algorithms”.

Quantum Algorithms for Searching: There exists a quan-
tum algorithm that finds a solution with probability at
least 2

3 if one exists, otherwise outputs “NO SOLUTION”,
and uses O(

p
2n) applications of Uf . The algorithm uses

O(n
p
2n) elementary gates. Note that ˝(

p
2n) applica-

tions of Uf are necessary in order to find a solution for
any f , even if we restrict attention to functions f with at
most one solution.

If, as an additional input, we are also given an algo-
rithm A that will find a solution to f (x) D 1 with proba-
bility p, then amplitude amplification will find a solution
with high probability using O(1/

p
p) applications of Uf

and of unitary versions of A and A�1.

This more general statement implies that if there are
m � 1 solutions, then there is an algorithm which makes
an expected number of queries in O(

p
2n/m) (since guess-

ing uniformly at randomwill succeed with probability m
2n ).

This algorithm works even if the unitary black-box Uf
computes f with a small bounded error [108].

Classical Algorithms for the Search Problem: Any classical
algorithm must make ˝(2n) queries in order to succeed
with probability at least 2

3 on any input f , even if we restrict
attention to functions with at most one solution. Exhaus-
tive searching will find a solution using O(2n) applications
of Uf .

If we are also given a black-box A that successfully
guesses a solution to f (x) D 1 with probability p � 1

2n ,
then 	( 1p ) applications of Uf are needed and also suffi-
cient (using random sampling).

If instead of a black-box for Uf , we are given a circuit for f
or some other description of f (such as a description of
the 3-SAT formula ˚ in the case of f˚ ) then there might
be more efficient algorithms that uses this additional in-
formation to do more than just use it to apply Uf . One
can directly use amplitude amplification to get a quadratic
speed-up for any such heuristic algorithm that guesses
a solution with probability p, and then repeats until a so-
lution is found.

The quantum searching algorithm has often been
called a ‘database’ search algorithm, but this term can be
misleading in practice. There is a quadratic speed-up if
there is an implicit database defined by an efficiently com-
putable function f . However, if we are actually interested
in searching a physical database, then a more careful anal-
ysis of the physical set-up and the resources required is
necessary. For example, if a database is arranged in a linear
array, then to query an N-element database will take time

proportional to N. If the data is arranged in a square grid,
then a general lookup could be possibly be done in time
proportional to

p
N. This limitation is true for both clas-

sical and quantum searching; however the hardware as-
sumptions in the two cases are often different, so one needs
to be careful when making a comparison. (e. g. [158,180]
and Chap. 6 of [149], discuss these issues).

Local searching [2] restricts attention to architectures
or models where subsystems can only interact locally, and
does not allow access to any memory location in one unit
of time regardless of the memory size (which is not truly
possible in any case, but can sometimes be appropriate in
practice). The algorithms used include quantum walk al-
gorithms (e. g. [182]) and can achieve quadratic or close
to quadratic speed-ups depending on details such as the
spatial dimension of the database.

It is also important to note that there has been much
work studying the quantum query complexity of search-
ing an ordered list. It is known that 	(logN) queries are
necessary and sufficient, but the constant factor is not yet
known [49,98,107].

Other Applications of Amplitude Amplification

Apart from the application to the searching problem, one
of the first applications of the quantum searching algo-
rithm was to counting [37], and more generally amplitude
amplification can be used to estimate amplitudes [38]. The
quantum algorithm for amplitude estimation combines
the techniques of the order finding algorithm with ampli-
tude amplification. Bounds on optimal phase estimation
translate to bounds on optimal amplitude estimation. It
has several applications, including approximate and exact
counting [37,38], and approximating the mean (or, in the
continuous case � Quantum Algorithms and Complexity
for Continuous Problems, the integral) of a function [172].
These applications offer up to a quadratic speed-up over
classical algorithms.

We have already mentioned the straight-forward, and
very useful, application of amplitude amplification to
searching: providing a quadratic speed-up up for any algo-
rithm that consists of repeating a subroutine that guesses
a solution, until a solution is found. However, there are
many applications of amplitude amplification that are
not so straightforward, and require some additional non-
trivial algorithmic insights. Other applications of am-
plitude amplification include the collision finding prob-
lem, which has applications to breaking hash functions in
cryptography.

Collision Finding Problem:
Input: A black-box Uf for computing a function
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f : f0; 1gn ! f0; 1gm . The function f is r to 1, for some
positive integer r.
Problem: Find two distinct x; y 2 f0; 1gn with f (x) D
f (y), if r > 1. Otherwise output “NO COLLISION”.

Quantum Algorithms for Collision Finding There exists
a quantum algorithm [36] that uses O((2n/r)1/3) applica-
tions of Uf , and O((2n/r)1/3 polylog (2n/r)) other elemen-
tary operations, and O((2n/r)1/3) space, and outputs a col-
lision with probability at least 2

3 if r > 1, and outputs “NO
COLLISION” otherwise.

It can be shown that ˝((2n/r)1/3) applications of Uf
are needed.

Classical Algorithms for Collision Finding There exists
a classical probabilistic algorithm that uses O((2n/r)1/2)
applications of Uf , and O((2n/r)1/2 polylog (2n/r)) other
elementary operations, and O(n) space, and outputs a col-
lision with probability at least 2/3 if r > 1, and out-
puts “NO COLLISION” otherwise. It can be shown that
˝((2n/r)1/2) applications of Uf are needed.

Other applications include finding claws [37], finding
the maximum (or minimum) value of a function [106],
string matching [153], estimating the median of a func-
tion [91,148] and many others [67,84]. There is also
a non-trivial application to the element distinctness prob-
lem [42], which we define in Sect. “Quantum Walk Algo-
rithms”, since there is a better, optimal, quantum walk al-
gorithm. Amplitude amplification also a basic tool in mak-
ing algorithms exact [35,146].

Simulation of QuantumMechanical Systems

Feynman’s reason for considering a quantum computer
was to simulate other quantum mechanical systems [79].
This general idea was described in more detail by
Lloyd [131], Wiesner [178] and Zalka [180], and later
by many other authors (e. g. [149]). More detailed situ-
ations have been studied by numerous authors, includ-
ing [43,45,119,170].

There are other notions of what one what one might
mean by simulating a physical system, such as computing
properties of the ground state of the Hamiltonian, or other
properties of the spectrum of the Hamiltonian. In this sec-
tion, we focus on the problem of simulating the evolution
of a quantum mechanical system given the initial state (or
a description of it) and a description of the Hamiltonian of
the system.

For convenience, we will restrict attention to a discrete
Hilbert space. In practice, when modelling systems with
a continuous state space, the state space will need to be ap-
proximated with a discrete state space [180] with enough

states so that the accumulated error is below the desired
error threshold. This general problem of dealing with con-
tinuous problems is discussed in � Quantum Algorithms
and Complexity for Continuous Problems.

We will also restrict attention to time-independent
Hamiltonians, since well-behaved time-dependentHamil-
tonian evolution can be approximated by a sequence of
time-dependent Hamiltonian evolutions.

There are two natural ways that have been studied for
representing the Hamiltonian. The first way, is to repre-
sent H D

PM
kD1 Hk , where Hk is a simple enough Hamil-

tonian that we know how to efficiently simulate its evolu-
tion. For convenience, we assume the simulation of theHk
term for a time t takes unit cost and is exact. In practice, if
the simulation can be donewith error � in time polynomial
in 1
�
, � D jjHkjjt, and the number of qubits n, then the ef-

fect on the overall cost is by a factor that is polynomial in
these factors. In many situations, the simulation is polyno-
mial in log( 1

�
) and log � , and independent of n and �. This

leads to the following formulation:

Hamiltonian Simulation Problem 1
Input: An integer n and black-boxes A1, A2; : : : ;AM ,
where Aj takes a non-negative real number r and executes
eiH jr , for a set of Hamiltonians Hj acting on n qubits.
The value of kHk, the trace norm of H D

PM
kD1 Hk .

A positive real number t.
A positive real number � < 1.
An n-qubit state j i.
Output: A state

ˇ̌
 f
˛
satisfying

��ˇ̌ f
˛
� eiHt j i

�� < �.

In practice, the input will likely be a classical description of
how to prepare the state j i. It suffices to have an upper
bound on kHk (if the bound is within a constant factor,
this won’t affect the stated complexities). In particular, it
suffices that we can efficiently compute or approximate the
eigenvalue k of a given an eigenvector j Eki ofHk. This is
the case, for example, when the Hilbert space is a tensor
product of n finite sized subsystems and Hk acts non-triv-
ially only on a finite number of subsystems, say c of them.
In other words, up to a reordering of the subsystem labels,
Hk D In�c ˝ H̃k . Since

eiHk t D In�c ˝ ei H̃k t ;

in order to simulate the evolution of Hk for a time inter-
val of size t, one only needs to simulate H̃k on the rele-
vant c qubits for a time interval of size t. In this case, since
we know H̃k , one can use “brute-force” methods to ap-
proximately implement the map

ˇ̌
E�k

˛
7! e2	 i�k t

ˇ̌
E�k

˛
,

for any time interval t.
An easy example is when the state space is n qubits, and

Hk is a tensor product of Pauli operators. This means that
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we can easily diagonalize H̃k as H̃k D (P1 ˝ P2 ˝ : : : ˝
Pc)Zc(P�1 ˝ P�2 ˝ : : : ˝ P�c ) for some one-qubit unitary
operations P1; P2; : : : ; Pc . Thus we have

ei H̃k t D (P1˝ P2˝ : : :˝ Pc )ei Z
c t(P�1 ˝ P�2 ˝ : : :˝ P�c ) :

Since

ei Z
c t j x1x2 : : : xci D ei t f (x1:::xc ) j x1x2 : : : xci

where f (x1; : : : ; xc) D x1 ˚ : : :˚ xc , this simulation can
be done easily. In fact, as pointed out in [149], in the case
that Hk is such a product Hamiltonian, c does not need to
be constant.

Another example, [180], is where the eigenvectors of
Hk are of the form

j Eki D

2n�1X

jD0

e2	 i jk/2n j ji

(i. e. “momentum” eigenstates), in which case the in-
verse quantum Fourier transform will map j Eki 7! j ki,
and then one can easily approximate j ki 7! ei�k t j ki
for any efficiently computable function k, and then ap-
ply the quantum Fourier transform to map j ki 7! j Eki

and thus effectively compute the transformation
j Eki 7! ei�k t j Eki.

Thus we can study any situation where H D
P

k Hk ,
and we have some means of efficiently simulating the time
evolution of Hk. If theHk commute, then

eiHt D eiH1 teiH2 t : : : eiHn t ;

and the problem is straightforward. For the non-trivial
case when the Hk do not commute pairwise, we can take
advantage of approximations derived from Trotter formu-
las, like

eiHt D


eiH1 t/neiH2 t/n : : : eiHn t/n

�n
C O(t2/n)

and other improved versions. A good estimate of the over-
all cost of this family of simulations is the number of terms
of the form eiH jr that are used, for any choice of r (we
can assume 0 � r � t, and that r is some efficiently com-
putable number).

Quantum Complexity of Hamiltonian Simulation Prob-
lem 1 There is a quantum algorithm that simulates eiHt

on a given input j i with trace distance error at most
� < 1 that uses a number of exponential terms Nexp sat-
isfying

Nexp 2 (M� C 1)M1Co(1)� o(1)
�
1
�

�O(1/
p
s)
;

where � D kHk t and � D 1/2s . Since the running time of
simulating each exponential term is assumed to be poly-
nomial in n, the overall running time is polynomial in n.

In general, there are Hamiltonians for which ˝(�)
time is necessary.

The product � D kHk t is the relevant parameter since one
can effectively speed up time by a factor of s by rescal-
ing the Hamiltonian by a multiplicative factor of s, for any
s > 0 (e. g. one can perform an operation in half the time
by doubling all the energies).

It is hard to give an explicit comparison to the best
known classical complexity of this general problem. There
are classical algorithms and heuristics for special cases, but
in the worst-case, the best solutions known require time
exponential in n and polynomial in � (e. g. in �1Co(1)).

Another natural formulation of the problem [5,29]
considers the case of sparse Hamiltonians, where for any
basis state j xi there are at most d basis states j yi such that
h xjH j yi ¤ 0 and one can efficiently compute this neigh-
borhood for any input x. This leads to the following black-
box formulation of the problem.

Hamiltonian Simulation Problem 2
Input: Integers n and d, and a black-box UH that maps
j x; ii j 0i 7! j x; ii

ˇ
ˇ yi ;Hx;yi

˛
, where yi is the index of

the ith non-zero entry in column x of the Hermitian ma-
trix H (if there are d0 < d non-zero entries, then Uf can
output any index for i > d0). The valuesHx;y D h xjH j yi
are the (x; y) entries of H represented in the computa-
tional basis.
A positive real number t.
A positive real number � < 1.
An n-qubit state j i.
Output: A state

ˇ̌
 f
˛
satisfying

��ˇ̌ f
˛
� eiHt j i

�� < �.

The best known general solution was shown in [29].

Quantum Complexity of Hamiltonian Simulation Prob-
lem 2 There is a quantum algorithm that simulates eiHt

on a given input j i with trace distance error at most
� < 1 that uses a number of black-box calls, Nbb, satisfy-
ing, for any positive integer k,

Nbb 2 O

 

� (1C
1
2k )d(4C

1
k )52k

�
1
�

� 1
2k
(log� n)

!

;

where � D jjHjjt and log� n is the smallest positive inte-
ger r such that log(r)2 n < 2, where log(r)2 refers to iterating
the log2 function r times.

In general, there are Hamiltonians that require ˝(�)
black-box evaluations.
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For example, setting k D
p
s where � D 1

2s , we get

Nbb 2 �
(1CO( 1

p

s ))d(4CO( 1
p

s ))
�
1
�

�O



1
p

s

�

(log� n) :

Some applications involve trying to study properties
of the ground state of a Hamiltonian by combining simu-
lation of the dynamics with some approach for generating
the ground state with non-trivial initial amplitude. For ex-
ample, if one had a procedure A for generating a ground
state j E0i of H with probability p, then one can combine
the algorithm for simulating H with eigenvalue estima-
tion, and then amplitude amplification on the eigenvalue
estimates in order to generate the ground state with high
fidelity. The algorithm would use O(1/

p
p) applications

of A and A�1 and O(1/
p
p) eigenvalue estimations. The

eigenvalue estimations would have to be precise enough
to distinguish j E0i from the next highest energy eigenstate
produced by A. If the gap between these two energies is�,
then the eigenvalue estimation would involve simulating
the evolution of H for a time in˝( 1

#
).

Several papers address techniques for generating the
ground states for various problems of interest includ-
ing [3]. Another application for such simulations is to
implement algorithms that are designed in the continu-
ous-time model in a discrete-time quantum computation
model.

Generalizations of the Abelian
Hidden Subgroup Problem

Non-Abelian Hidden Subgroup Problem

One of the most natural ways to generalize the Abelian
hidden subgroup problem is to non-Abelian groups. The
problem definition is the same, apart from letting G be
non-Abelian. One natural problem in this class of prob-
lems is the graph automorphism problem.

Graph automorphism problem: Consider G D Sn ,
the symmetric group on n elements, which corresponds
to the permutations of f1; 2; : : : ; ng. LetG be a graph on n
vertices labeled f1; 2; : : : ; ng. For any permutation � 2 Sn ,
let fG map Sn to the set of n-vertex graphs by mapping
fG(�) D �(G), where �(G) is the graph obtained by per-
muting the vertex labels ofG according to � . For the func-
tion fG , the hidden subgroup of G is the automorphism
group ofG (i. g. the permutations � such that �(G) D G).

The graph isomorphism problem (deciding if two
graphsG1 andG2 are isomorphic) can be reduced to solv-
ing the graph automorphism problem. The best known
classical algorithm takes time in eO(

p
n log n) to decide if

two graphs are isomorphic, and there is no substantially
better quantum algorithm known.

There has been much work attacking the non-Abelian
hidden subgroup problem. Ettinger, Høyer and Knill [71]
showed the following.

Query Complexity of the Non-Abelian Hidden Subgroup
Problem For any finite group G, the non-Abelian hidden
subgroup problem can be solved with high probability us-
ing O(log jGj) queries to Uf .

Thus, themain question remaining is whether it is possible
for the entire algorithm, including black-box queries and
other elementary operations, to be efficient.

QuantumFourier TransformApproaches One natural
approach is to mimic the algorithm for the Abelian HSP,
which starts by computing

1
p
jGj

X

x2G

j xi j f (x)i

and noticing that this equals

X

y2 f (G)

1
p
j f (G)j

0

@ 1
p
jKj

X

x2 f�1(y)

j xi

1

A j yi :

For convenience, we suppose we measure the second reg-
ister (it suffices just to trace out the 2nd register) and get
some random outcome y, and thereby project the first reg-
ister into the state

j aC Ki D
1

p
jKj

X

x2K

j aC xi

where a is any element of G such that f (a) D y. In other
words, as in the Abelian HSP algorithm, the first register
is an equal superposition of all the elements in some coset
of K .

The question is: how do we extract information
about K given a random coset state of K? In the Abelian
case, a quantum Fourier transform of the coset state al-
lowed us to sample elements that were orthogonal to K ,
which we illustrated in the case of Simon’s algorithm.

A more general way of looking at the quantum
Fourier transform of an Abelian group G D ZN1 �

ZN2 � � � � � ZNl is in terms of representation theory.
The Abelian group G can be represented by homomor-
phisms � that maps G to the complex numbers. There
are in fact jGj such homomorphisms, in a natural one-
to-one correspondence with the elements of G. For each
g D (a1; a2; : : : ; al ) 2 G, define �g to be the homomor-



QuantumAlgorithms Q 7101

phism that maps any h D (b1; b2; : : : ; bl ) 2 G according
to

�g(h) D e2	 i
Pl

iD1
ai bi
Ni :

Using these definitions, we derive the following quantum
Fourier transform maps:

j gi 7!
1

p
jGj

X

h2G

�g(h) j hi :

It is easy to verify that the quantum Fourier trans-
form QFTN1 ˝QFTN2 ˝ : : :˝QFTNl maps a coset state
of a subgroupK to a superposition of labels hwhere K is in
the kernel of �h, that is, �h(k) D 1 for all k 2 K. Thus, af-
ter applying the quantum Fourier transform, one will only
measure labels h D (b1; b2; : : : ; bl ) such that

�g(h) D e2	 i
Pl

iD1
ai bi
Ni D 1

which generalizes the notion of orthogonality defined
in the explanation of Simon’s algorithm in a very nat-
ural way, since it means

Pl
iD1

ai b i
Ni
D 0 mod 1. This

gives us a linear equation that must be satisfied by all
h D (b1; b2; : : : ; bl ) 2 K, and thus after l C O(1) such
random equations are collected, we can efficiently find
generators for K by solving a linear system of equations.

One can also define representations for finite non-
Abelian groups G, except in order to fully capture the
structure of G, we allow homomorphisms � to invertible
matrices over C (in the Abelian case, we only need 1 � 1
matrices). For any finite group G, one can define a finite
set of such homomorphisms �1; �2; : : : ; �k that map el-
ements of G to unitary matrices of dimension d1 � d1,
d2 � d2; : : : ; dk � dk , respectively, with the property thatP

i d
2
i D jGj, and any other such representation is equiv-

alent to a representation that can be factored into a collec-
tion of some number of these representations. More pre-
cisely, any representation � : G ! Md�d (C) has the prop-
erty that there exists some invertible P 2 Md�d (C), and
a list of � j1 ; � j2 ; : : : such that

P
i di D d and for every

g 2 G

P�(g)P�1 D ˚i� j i (g)

(that is, P�(g)P�1 is block-diagonal, with the matrices
� j i (g) along the diagonals). Furthermore, the representa-
tions �j are irreducible in the sense that they cannot be de-
composed into the sum of two ormore smaller representa-
tions in this way. They are also unique up to conjugation.

Since
P

i d
2
i D jGj, one can define a unitary transfor-

mation from G to the vector space spanned by the labels of

all the entries �i ( j; k) of these irreducible representations
�i. In particular, we can map

j gi 7!
X

i

s
di
jGj

X

0� j;k�di

�i( j; k)(g) j i; j; ki

where �i( j; k)(g) is the value of the ( j; k) entry in the ma-
trix �i(g). Such a mapping is unitary and is called a quan-
tum Fourier transform for the group G. There is freedom
in the specific choice of �i within the set of unitary repre-
sentations that are conjugate to �i, so there is more than
one quantum Fourier transform.

There has been much study of such quantum Fourier
transforms for non-Abelian groups, which are sometimes
possible to implement efficiently [21,96,140,151,156], but
efficient constructions are not known in general. It appears
they are of limited use in solving the non-Abelian hidden
subgroup, except in special cases [68,87,96,156] such as
when K is a normal subgroup of G.

In the next sections we discuss several other lines of
attack on the non-Abelian hidden subgroup that have
yielded some partial progress on the problem.

“Sieving” Kuperberg [130] introduced a method for at-
tacking the hidden subgroup problem for the dihedral
group that leads to a sub-exponential algorithm.

The dihedral group DN is a non-Abelian group of
order 2N, which corresponds to the set of symme-
tries of a regular N-gon. It can be defined as the set
of elements f(x; d) j x 2 f0; 1; 2; : : : ;N � 1g; d 2 f0; 1gg,
where f(x; 0) j x 2 f0; 1; 2; : : : ;N � 1gg is the Abelian
subgroup ofDN , corresponding to the rotations (satisfying
(x; 0)C(y; 0) D (xCy mod N; 0)), and f(0; 0); (y; 1)g are
Abelian subgroups of order 2 corresponding to reflections.
In general, (x; 0)C (y; 1) D (y � x; 1), (y; 1) C (x; 0) D
(x � y; 1) D �((x; 0) C (y; 1)). If the hidden subgroup
is a subgroup of the Abelian subgroup of order N, then
finding the hidden subgroup easily reduces to the Abelian
hidden subgroup problem. However, there is no known ef-
ficient algorithm for finding hidden subgroups of the form
f(0; 0); (y; 1)g. So we can focus attention to the following
restricted version of the dihedral hidden subgroup.

Dihedral Hidden Subgroup Problem (Hard Case)
Input: An integer N, and a black-box implementing
Uf : j x; di j 0i 7! j x; di j f (x; d)i, where f (x1; d1) D
f (x2; d1) if and only if (x1; d1) � (x2; d2) 2 f(0; 0); (y; 1)g
for some y.
Problem: Find y.
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As mentioned earlier, the dihedral hidden subgroup prob-
lem can be efficiently reduced to the following phase esti-
mation problem [70].

Ettinger-Høyer Phase Estimation Problem for the Dihedral
HSP
Input: An integer N, and a black-box Od that outputs
a classical value k 2 f0; 1; : : : ;N � 1g uniformly at ran-
dom, along with the qubit 1/

p
2(j 0i C ei�k j 1i) where

� D (2�d)/N , for some integer d 2 f0; 1; 2; : : : ;N � 1g.
Problem: Find d.

Note that if we could sample the values k D 2 j for
j D 1; 2; : : : ; dlog Ne, then the phase estimation problem
can be solved directly using the quantum Fourier trans-
form [54].

Regev designed a clever method for generating states
of the form 1/

p
2(j 0i C ei2 j� j 1i) using O(1) calls to

the black-box Od , given an oracle that solves the sub-
set sum problem on average. Kuperberg [130] devel-
oped a “sieving” method of generating states of the form
1/
p
2(j 0i C ei2 j� j 1i) and the method was refined and

improved to use less memory by Regev [154].

Quantum Algorithms for the Dihedral HSP There ex-
ists a quantum algorithm that solves the dihedral HSP
with running time in eO(

p
logN) and uses space in

eO(
p

logN). There is also an algorithm with running time
in eO(

p
logN log logN) and uses space in O(log N).

Classical Algorithms for the Dihedral HSP The classical
complexity of the dihedral hidden subgroup problem is
	(
p
N) evaluations of the function f .

Similar sievingmethodswere applied [11] to yield a subex-
ponential time algorithm for the HSP over the product
groups Gn for a fixed non-Abelian group G. It has also
been show that these kinds of quantum sieve algorithms
will not give efficient quantum algorithms for graph iso-
morphism [141].

“Pretty Good Measurements” A natural approach to
solving the non-Abelian hidden subgroup problem is to
prepare several instances of a random coset state for the
hidden subgroup K , and then try to determine what K is.
More precisely, after preparing
X

x2G

j xi j f (x)i D
X

yCK2G/K

j y C Ki j f (y)i

and discarding the second register, we are left with the
mixed state

�K D
X

yCK2G/K

j y C Ki h y C Kj :

Thus one could try to implement or approximate the op-
timal quantum measurement for identifying the mixed
states �K , over all possible hidden subgroups K � G. Fur-
thermore, one could sample the state �K a polynomial
number of times t, and try to guess K given �K ˝ �K ˝
: : :˝ �K D �

t
K .

Holevo [102] determined the optimal measurement
for the following general state distinguishability problem.
Given � 2 f� jg, output a label m such that the probabil-
ity that � D �m is maximum. Let pj denote the probabil-
ity that � D � j . Holevo proved that the maximum proba-
bility of guessing the correct input state � is achieved by
a POVM with elements fGjg satisfying the following con-
ditions:

P
i pi�iGi D

P
i piGi�i and

P
i pi�iGi � p j� j .

However, it is not in general easy to efficiently find and
implement such a POVM.

Hausladen and Wootters [99] defined a ‘pretty good’
measurement for distinguishing quantum states that is not
necessarily optimal, but has a simpler form. The mea-
surement used POVM elements Gj D T�1/2� jT�1/2 and,
if these don’t sum to the identity, also I �

P
j G j , where

T D
P

i �i . For the case of the dihedral hidden subgroup
problem, it was shown [19] that the pretty good measure-
ment is in fact optimal; however, in this case, it is still not
known how to efficiently implement the pretty good mea-
surement. However, it was later shown how to implement
the pretty good measurement for the Heisengroup group
HSP [19].

For example, in the case of the dihedral hidden sub-
group problem for D2N , after a quantum Fourier trans-
form on each of n coset states, one can view the resulting
state of n registers as

(j 0i C e2	 i k1dN j 1i) j k1i ˝ (j 0i C e2	 i k2 dN j 1i) j k2i

˝ : : :˝ (j 0i C e2	 i kn dN j 1i) j kni

for ki selected independently and uniformly at random
from f0; 1; : : : ;N � 1g.

The (j 0i C e2	 i k1 dN j 1i)˝ (j 0i C e2	 i k2 dN j 1i)˝ : : :˝
(j 0i C e2	 i kn dN j 1i) part of the state can be rewritten as

X

r
˛r j Sri

where r spans all the possible sums of the form
P

i bi ki ,
bi 2 f0; 1g (the ‘subset sums’), j Sri is the uniform
superposition of the strings j b1b2 : : : bni that satisfyP

bi k i D r, and ˛r is the appropriate normalization fac-
tor (i. e.

p
nr/2n where nr is the number of solutions toP

bi k i D r).
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The optimal measurement [19] (in the restricted case
of order two subgroups) can be thought of as map-
ping j Sri 7! j ri, performing an inverse quantum Fourier
transform and then measuring a value d̃, which will be the
guess of the value d (interestingly, a similar measurement
is optimal [61] in the case of trying to optimally estimate
an arbitrary phase parameter � 2 [0; 2�) given the state
(j 0iCei k1� j 1i)�(j 0iCei�k2 j 1i)�: : :�(j 0iCei�kn j 1i)).
Note that implementing such a basis change in reverse
would solve the subset sum problem (which is NP-hard).
In fact, it suffices to solve the subset sum problem on av-
erage [154]. A nice discussion of this connection can be
found in [19].

For groups that are semidirect products of an Abelian
group and a cyclic group, the pretty good measurement
corresponds to solving what is referred to [19] as a ‘matrix
sum problem’, which naturally generalizes the subset sum
problem. They also show that the pretty good measure-
ments are optimal in these cases, and similarly relate their
implementation to solving the matrix sum problem to cer-
tain average-case algebraic problems. They show that the
pretty good measurement can be implemented for several
groups, including semidirect product groups of the form
Zr

p Ì Zp for constant r (when r D 2, this is the Heisenberg
group), and of the form ZN Ì Zp with p prime (which
are metacyclic) and where the ratio N/p is polynomial in
logN .

Other Methods and Results There are also some algo-
rithms for solving other cases of the non-Abelian hidden
subgroup problem that don’t use any of the above tech-
niques, e. g. [82,110,111]. These results use sophisticated
classical and quantum group theoretic techniques to re-
duce an instance of a non-AbelianHSP to instances of HSP
in Abelian groups.

One of the most recent results [112] shows that such
a reduction is possible for nil-2 groups, which are nilpo-
tent groups of class 2. The group G is nilpotent of class n if
the following holds1. Let A1 D G, and let AiC1 D [Ai ;G],
for i > 0. A group G is nilpotent if AnC1 D f1g, for some
integer n, and the class of a nilpotent group is the smallest
positive integer n for which AnC1 D f1g.

One of their techniques is to generalize Abelian HSP
to a slightly more general problem, where the hidden sub-
group K is hidden by a quantum procedure with the fol-
lowing properties. For every g1; g2; : : : ; gN 2 G the algo-

1For any two elements g; h of a group, we define their commuta-
tor, denoted [g; h] to be [g; h]D g�1h�1gh, and for any two sub-
groups H;K � G we define [H;K] to be the (normal) subgroup of G
generated by all the commutators [h; k] where h 2 H; k 2 K .

rithm maps

j g1i j g2i : : : j gN i j 0i j 0i : : : j 0i 7! j g1i j g2i

: : : j gN i
ˇ̌
ˇ 1

g1

E ˇ̌
ˇ 2

g2

E
: : :
ˇ̌
ˇ N

gN

E

where the set of states f
ˇ
ˇ i

g
˛
j g 2 Gg is a hiding set

for K , for each i D 1; 2; : : : ;N. A set of normalized states
f
ˇ̌
 g
˛
j g 2 Gg is a hiding set for the subgroup K of G if

� If g and h are in the same left coset of K then j gi D

j hi.
� If g and h are in different left cosets of K then
h g j ji D 0.

Generators for the subgroup K of G can be found in time
polynomial in log jGj using a quantum hiding procedure
with N 2 O(log jGj). They find a series of non-trivial re-
ductions of the standard HSP in nil-2 groups to instances
of the Abelian HSP with a quantum hiding function.

Lattice and Number Field Problems

The Abelian hidden subgroup problem also works for
finitely generated groups G. We can, thus, define the hid-
den subgroup problem on G D Z � Z � : : : � Z D Zn .
The hidden subgroupK will be generated by some n-tuples
in Zn . We can equivalently think of G as a lattice and K as
a sublattice. The function f : G ! X, for some finite setX,
that satisfies f (x) D f (y) if and only if x � y 2 K, can be
thought of as hiding the sublattice K .

By generalizing the problem to hiding sublattices of
Rn , one can solve some interesting and important num-
ber theoretic problems. The solutions in these cases were
not a simple extension of the Abelian hidden subgroup al-
gorithm.

Hallgren [93,95] found a quantum algorithm for find-
ing the integer solutions x; y to Pell’s equation x2�dy2 D
1, for any fixed integer d. He also found an efficient quan-
tum algorithm for the principal ideal problem, and later
generalized it to computing the unit group of a number
field of constant degree [94]. Solving Pell’s equation is
known to be at least as hard as factoring integers.We don’t
have room to introduce all the necessary definitions, but
we’ll sketch some of the main ideas.

A number field F can be defined as a subfield Q(�)
of the complex numbers that is generated by the ratio-
nals Q together with a root � of an irreducible polyno-
mial with rational coefficients; the degree of F is the de-
gree of the irreducible polynomial. The “integers” of F are
the elements of F that are roots of monic polynomials (i. e.
polynomials with leading coefficient equal to 1, such as
x2 C 5x C 1). The integers of F form a ring, denoted O.
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One can define a parameter� called the discriminant of F
(we won’t define it here), and an algorithm is considered
efficient if its running time is polynomial in log� and n.
The unit group of the ring F, denoted O�, is the set of el-
ements ˛ in O that have an inverse ˛�1 2 O. “Comput-
ing” the unit group corresponds to finding a description of
a system of “fundamental” units, �1; �2; : : : ; �r that gener-
ateO� in the sense that every unit � 2 O� can be written as
� D ��

k1
1 �

k2
2 : : : �

kr
r for some k1; k2; : : : ; kr 2 Z and some

root of unity �. However, in general, an exact description
of a fundamental unit requires an exponential number of
bits. There are are some finite precision representations
of the elements of the unit group, such as the “Log” em-
bedding intoRr . This representation describes a unit ˛ by
an element of Rr where some finite precision representa-
tion of each coordinate suffices. This Log representation
of the unit group O�, corresponds to a sublattice L D O�
of Rr . Hence, we have a relationship between several im-
portant computational number field problems, and lattice
problems.

By the above correspondence between O� and the
lattice L � Rr , we can formulate [94,162] the problem
of computing the unit group as the problem of find-
ing elements that approximate generators of the sublat-
tice L of Rr . One important non-trivial step is defining
a function f : Rr ! X (for some infinite set X) such that
f (x) D f (y) if and only if x � y 2 L as well as appropri-
ate discrete approximations to this function. The defini-
tion of these functions involves substantial knowledge of
algebraic number theory, so we will not describe them
here.

By designing quantum algorithms for approximating
generators of the lattice L, [94,162] one can find polyno-
mial time algorithms for computing the unit group O� of
an algebraic number field F D Q(�).

A corollary of this result, is a somewhat simpler so-
lution to the principal ideal problem (in a constant de-
gree number field) that had been found earlier by Hall-
gren [93]. An ideal I of the ring O is a subset of elements
ofO that is closed under addition, and is also closed under
multiplication by elements of O. An ideal I is principal if
it can be generated by one element ˛ 2 I ; in other words
I D ˛O D f˛ˇ j ˇ 2 Og. The principal ideal problem is,
given generators for I , to decide if I is principal, and if it
is, to find a generator ˛.

As mentioned in Subsect. “Abelian Hidden Subgroup
Problem”, the tools developed can also be applied to find
unique (quantum) representatives of elements of the class
group for constant degree number fields [95] (assuming
the generalized Riemann hypothesis), and thus allow for
the computation of the class group in these cases.

Hidden Non-linear Structures

Another way to think of the Abelian hidden subgroup
problem is as an algorithm for finding a hidden linear
structure within a vector space. For simplicity, let’s con-
sider the Abelian HSP over the additive group G D Fq �

Fq � : : : � Fq D F n
q , where q D pm is a prime power.

The elements of G can also be regarded as a vector space
over Fq . A hidden subgroup H � G corresponds to a sub-
space of this vector space and its cosets correspond to par-
allel affine subspaces or flats. The function f is constant on
these linear structures within the vector space F n

q .
A natural way to generalize this [51] is to con-

sider functions that are constant on sets that are de-
fined by non-linear equations. One problem they study
is the hidden radius problem. The circle of radius r 2 Fq
centered at t D (t1; t2; : : : ; tn) 2 F n

q is the set of points
x D (x1; x2; : : : ; xn) 2 F n

q that satisfy
P

i(xi � ti )2 D r.
The point x on a circle centered at t will be represented
as either (x; �(s)), where s D x � t and �(s) is a random
permutation of s, or as (x; �(t)) where �(t) is a random
permutation of t. We define f 1 and f�1 be the functions
satisfying f1(x; �(s)) D �(t) and f�1(x; �(t)) D �(s).

Hidden Radius Problem
Input: A black box Uf1 that implements j xi j �(s)i j 0i 7!
j xi j �(s)i j f1(x; �(s))i, and a black box Uf�1 that imple-
ments j xi j �(t)i j 0i 7! j xi j �(t)i j f�1(x; �(t))i.
Problem: Find r.

Quantum Algorithms for the Hidden Radius Problem For
odd d, there is a bounded error quantum algorithm that
makes polylog(q) queries to Uf1 and Uf�1 and finds r.
However, there is no known polynomial bound on the
non-query operations.

There is a bounded-error quantum algorithm that also
makes polylog(q) operations in total, and determines�(r),
where �(r) D 1 if r is a quadratic residue (that is, r D u2

for some u 2 Fq) and 0 otherwise.

Classical Algorithms for the HiddenRadius Problem It was
shown in [51] that the expected number of queries needed
to be able to guess any bit of information about r correctly
with probability greater than 1

2 C
1

poly(d log q) is exponential
in d log q.

A number of other black-box problems of this kind were
defined in [51] with quantum algorithms that are expo-
nentially more efficient than any classical algorithm, in
some cases just in terms of query complexity, and other
times in terms of all operations. These problems fit into the
frameworks of shifted subset problems and hidden poly-
nomial problems. They use a variety of non-trivial tech-
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niques for these various problems, including the quan-
tum Fourier transform, quantum walks on graphs, and
make some non-trivial connections to various Klooster-
man sums. Further work along these lines has been done
in [63].

Hidden Shifts and Translations

There have been a variety of generalizations of the hidden
subgroup problem to the problem of finding some sort of
hidden shift or translation.

Grigoriev [89] addressed the problem of the shift-
equivalence of two polynomials (the self-shift-equivalence
problem is a special case of the Abelian hidden subgroup
problem). Given two polynomials P1; P2 in l variables
X1; X2; : : : ; Xl over Fq (the finite field with q elements),
does there exist an element (a1; a2; : : : ; al ) 2 F l

q such that
P1(X1 � a1; X2 � a2; : : : ; Xl � al ) D P2(X1; X2; : : : ; Xl ).
More generally, if there is a group G (F l

q in this case) act-
ing on a set X (the set of polynomials in l variables over
Fq in this case), one can ask if two elements x; y 2 X are
in the same orbit of the action of G on X (that is, if there
is a g 2 G such that g(x) D y). In general, this seems like
a hard problem, even for a quantum computer.

The dihedral hidden subgroup problem [70] is a spe-
cial case of the hidden translation problem [82], where
there is a finite group G, with unique representation of
the elements of G, and two injective functions f 0 and f 1
from G to some finite set X.

Hidden Translation Problem:
Input: Two black boxes Uf0 and Uf1 that, for any
x 2 G, implement the maps Uf0 : j xi j 0i 7! j xi j f0(x)i
and Uf1 : j xi j 0i 7! j xi j f1(x)i.
A promise that f1(x) D f0(ux), for some u 2 G.
Problem: Find u.

The same problem expressed with additive group notation
has been called the hidden shift problem, and instances of
this problem were solved efficiently by van Dam, Hallgren
and Ip [59]. For example, they find an efficient solution
in the case that f1(x) D �(x C s) where f0 D � is a mul-
tiplicative character function over a finite field, which im-
plies a method for breaking a class of “algebraically homo-
morphic” cryptosystems. They also describe a more gen-
eral hidden coset problem.

In [82] it is shown how to solve the hidden translation
problem in G D Zn

p in polynomial time, and then show
how to use this to solve the problem for any group that
they call “smoothly solvable”. Let us briefly define what
this means.

The derived subgroup of a group G is G(1) D [G;G].
In general, we define G(0) D G;G(nC1) D [G(n);G(n)], for
n�1. A group G is solvable if G(n)Df1g, the trivial group,
for some positive integer n, and the series of subgroups is
called the derived series of G. A group G is called smoothly
solvable ifm is bounded above by a constant, and if the fac-
tor groups G( jC1)/G( j) are isomorphic to a direct product
of a group of bounded exponent (the exponent of a group
is the smallest positive integer r such that gr D 1 for all g
in the group) and a group of size polynomial in log jGj.

The algorithm for smoothly solvable groups works by
solving a more general orbit coset problem, for which they
prove a “self-reducibility” property. In particular, orbit
coset problem for a finite group G is reducible to the or-
bit coset problem in G/N and N, for any solvable normal
subgroup N of G.

Quantum Algorithms for the Hidden Translation Problem:
For groups G D Zn

p , the hidden translation problem can
be solved with bounded probability using O(p(n C p)p�1)
queries and (nC p)O(p) other elementary operations.

In general, for smoothly solvable groups G, the hid-
den translation problem can also be solved with a poly-
nomial number of queries and other elementary opera-
tions. Another consequence of the tools they developed
is a polynomial time solution to the hidden subgroup for
such smoothly solvable groups.

Classical Algorithms for the Hidden Translation Problem:
In general, including the case G D Zn

p , the hidden trans-
lation problem requires ˝(

p
jGj) queries on a classical

computer.

Another natural generalization of the hidden translation
or hidden shift problem and the Abelian hidden sub-
group problem is the generalized hidden shift problem
introduced in [46]. There is a function f : f0; 1; 2; : : : ;
M � 1g � ZN ! X for some finite set X, with the
property that for a fixed b 2 f0; 1; : : : ;M � 1g, the map-
ping x 7! f (b; x) is one-to-one, and there is some hidden
value s 2 ZN such that f (b; x) D f (bC 1; x C s) for all
b 2 f0; 1; : : : ;M � 2g. Note that for M D 2, this is equiv-
alent to the dihedral hidden subgroup problem for the
group DN , and for M D N, this problem is equivalent to
the Abelian hidden subgroup problem for the hidden sub-
group h(1; s)i of the group ZN � ZN .

Generalized Hidden Shift Problem:
Input: Positive integersM and N.
A black boxes Uf that maps j b; xi j 0i 7! j b; xi j f (b; x)i
for all b 2 f0; 1; : : : ;M � 1g and x 2 ZN , where f satisfies
the properties defined above.
Problem: Find s.
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Quantum Algorithms for the Generalized Hidden Shift
Problem: There is a quantum algorithm that, for any fixed
� > 0, and M � N� , solves the generalized hidden shift
problem in time polynomial in logN .

The algorithm uses a “pretty good measurement” that
involves solving instances of the following matrix
sum problem. Given x 2 Zk

N and w 2 ZN chosen uni-
formly at random, find b 2 f0; 1; : : : ;M � 1gk such thatP

bi xi D w mod N . Note how this generalizes the sub-
set sum problem, which was shown to be related to the
dihedral hidden subgroup problem [154]. While there is
no efficient solution known for small M (even an average
case solution suffices for the dihedral HSP), for M � N� ,
Lenstra’s integer programming algorithm allows for an ef-
ficient solution to the matrix sum problem.

Classical Algorithms for the GeneralizedHidden Shift Prob-
lem: Any classical algorithm requires ˝(

p
N) evalua-

tions of the function f .

Other Related Algorithms

There are a variety of other problems that aren’t (as far as
we know) generalizations of the hidden subgroup prob-
lem, and arguably deserve a separate section. We’ll men-
tion them here since various parts of the algorithms for
these problems use techniques related to those discussed
in one of the other subsections of this section.

Van Dam and Seroussi [56] give an efficient quan-
tum algorithm for estimating Gauss sums. Consider a fi-
nite field Fpr (where p is prime, and r is a positive inte-
ger). The multiplicative characters are homomorphisms
of the multiplicative group, F�pr , to the complex num-
bers C, and also map 0 7! 0. Each multiplicative charac-
ter can be specified by an integer ˛ 2 f0; 1; : : : ; pr � 2g by
defining �˛(g j) D �˛ j , where g is a generator for F�pr and
� D e2	 i/(pr�1).

The additive characters are homomorphisms of the
additive group of the field to C, and can be specified
by a value ˇ 2 Fpr according to eˇ (x) D �Tr(ˇ x), where
Tr(y) D

Pr�1
jD0 y

p j and � D e2	 i/p .
The Gauss sum G(Fpr ; �˛ ; eˇ ) is defined as

G(Fpr ; �; eˇ ) D
X

x2Fpr

�(x)eˇ (x) :

It is known that the norm of the Gauss sum is
jG(Fpr ; �; eˇ )j D

p
pr , and thus the hard part is deter-

mining, or approximating, the parameter � in the equation
G(Fpr ; �; eˇ ) D ei�

p
pr .

Gauss Sum Problem for Finite Fields:
Input:A prime number p, positive integer r and a standard
specification of Fpr (including a generator g).
A positive integer ˛ 2 f0; 1; : : : ; pr � 2g.
An element ˇ 2 Fpr .
A parameter �, 0 < � < 1.
Problem: Output an approximation, with error at most �,
to � in the equation G(Fpr ; �˛ ; eˇ ) D ei�

p
pr .

One noteworthy feature of this problem is that it is not
a black-box problem.

Quantum Algorithms for the Finite Field Gauss Sum
Problem: There is a quantum algorithm running in
time O( 1

�
polylog(pr )) that outputs a value �̃ such that

j� � �̃ j < � with probability at least 2
3 .

Classical Complexity of the Finite Field Gauss Sum Prob-
lem: It was shown that solving this problem is at least as
hard as the discrete logarithm problem in the multiplica-
tive group of Fpr (see Subsect. “Discrete Logarithms”).

Various generalizations of this problem were also stud-
ied in [56]. Other examples include [57] which studies
the problem of finding solutions to equations of the form
a f x C bg y D c, where a; b; c; f ; g are elements of a finite
field, and x; y are integers.

QuantumWalk Algorithms

Quantum walks, sometimes called quantum random
walks, are quantum analogues of (classical) randomwalks,
which have proved to be a very powerful algorithmic
tool in classical computer science. The quantum walk
paradigm is still being developed. For example, the rela-
tionship between the continuous time and discrete time
models of quantum walks is still not fully understood. In
any case, the best known algorithms for several problems
are some type of quantum walk.

Here we restrict attention to walks on discrete state
spaces. Because of the quantum strong Church–Turing
thesis, we expect that any practical application of a walk
on a continuous state space will have an efficient (up to
polynomial factors) simulation on a discrete system.

In general, any walk algorithm (classical or quantum),
consists of a discrete state space, which is usually finite
in size, but sometimes infinite state spaces are also con-
sidered when it is convenient to do so. The state space is
usually modeled as being the vertices of a graph G, and
the edges of the graph denote the allowed transitions. In
classical discrete time walks, the system starts in some ini-
tial state, vi. Then at every time step the system moves to
a random neighbor w of the current vertex v, according
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to some probability distribution p(v;w). LetM denote the
matrix where the (v;w) entry is p(v;w). Let v0 be the col-
umn vector with the value pi in the ith position, where pi
is the probability that the initial vertex is vi. Then the vec-
tor vt D Mtv0 describes the probability distribution of the
system after t time steps after starting in a state described
by the probability distribution v0.

The walks are usually analyzed as abstract walks on
a graph. In practice, the vertices are representing more so-
phisticated objects. For example, suppose one wishes to
solve a 3-SAT formula ˚ on n Boolean variables. One
could define a random walk on the 2n possible assign-
ments of the Boolean variables. So the vertices of the graph
would represent the 2n Boolean strings of length n. One
could start the walk on a random vertex (which corre-
sponds to a random assignment of the n-Boolean vari-
ables). At every step of the walk, if the current vertex v cor-
responds to a satisfying assignment, then p(v; v) D 1 and
the walk should not leave the vertex. Otherwise, a random
clause should be picked, and one of the variables in that
clause should be picked uniformly at random and flipped.
This implicitly defines a probability distribution p(v;w).

In a quantum walk, instead of just having classical
probability distributions of the vertices vi 2 V(G), one can
have superpositions

P
v i2V (G) ˛i j vi i, and more generally

any quantum mixed state of the vertices. If we restrict to
unitary transitions, then there is a unitary matrix U that
contains the transition amplitudes ˛(v;w) of going from
vertex v to vertex w, and if the systems starts in initial
state j 0i, then after t time steps the state of the system
is Ut j 0i. These unitary walks are not really “random”
since the evolution is deterministic. More generally, the
transition function could be a completely positive map E,
and if the system starts in the initial state � D j 0i h 0j,
then after t time steps the state of the system will be E t(�).

One cannot in general define a unitary walk on any
graph [164]; however if one explicitly adds a “coin” sys-
tem of dimension as a large as the maximum degree d
of the vertices (i. e. the new state space consists of the
states j vi i j ci, vi 2 V(G) and c 2 f0; 1; : : : ; d � 1g) then
one can define a unitary walk on the new graph one would
derive from the combined graph-coin system. In particu-
lar, the state of the coin system indicates to which neighbor
of a given vertex the system should evolve.More generally,
one can define a unitary walk on states of the form (vi ; v j),
where fvi ; v jg is an edge of G.

A continuous version of quantum walks was intro-
duced by Farhi and Gutmann [72]. The idea is to let the
adjacency matrix of the graph be the Hamiltonian driving
the evolution of the system. Since the adjacency matrix is
Hermitian, the resulting evolution will be unitary. The rea-

son such a unitary is possible even for a graph where there
is no unitary discrete time evolution is that in this contin-
uous time Hamiltonian model, for any non-zero time evo-
lution, there is some amplitude with which the walk has
taken more than one step.

In classical random walks, one is often concerned with
the “mixing time”, which is the time it takes for the system
to reach its equilibrium distribution. In a purely unitary
(and thus reversible) walk, the system never reaches equi-
librium, but there are alternative ways of arriving at an ef-
fective mixing time (e. g. averaging over time). In general,
quantum walks offer at most a quadratically faster mixing.
Another property of random walks is the “hitting time”,
which is the time it takes to reach some vertex of interest.
There are examples where quantum walks offer exponen-
tially faster hitting times.

The study of what are essentially quantum walks has
been around for decades, and the algorithmic applica-
tions have been developed for roughly 10 years. Much of
the early algorithmic work developed the paradigm and
discovered the properties of quantum walks on abstract
graphs, such as the line or circle, and also on general
graphs (e. g. [6,17]). There have also been applications to
more concrete computational problems, and we will out-
line some of them here.

Element Distinctness Problem
Input:A black-boxUf thatmaps j ii j bi 7! j ii j b˚ f (i)i
for some function f : f0; 1; : : : ;N � 1g ! f0; 1; : : : ;Mg.
Problem: Decide whether there exist inputs i and j, i ¤ j,
such that f (i) D f ( j).

Prior to the quantum walk algorithm of Ambainis,
the best known quantum algorithm used O(N

3
4 logN)

queries [42].

Quantum Algorithms for Element Distinctness Problem
The quantum walk algorithm in [15] uses O(N2/3) evalu-
ations of Uf , O(N2/3polylogN) non-query operations and
O(N2/3polylogN) space.

Classical Algorithms for Element Distinctness A classical
computer requires N � O(1) applications of Uf in order
to guess correctly with bounded error for worst-case in-
stances of f .

As is often the case with classical randomwalk algorithms,
the graph is only defined implicitly, and is usually expo-
nentially large in the size of the problem instance. For
the element distinctness algorithm, the graph is defined
as follows. The vertices are subsets of f1; 2; : : : ;Ng of size
dN2/3e. Two vertices are joined if the subsets differ in ex-
actly two elements. A detailed description and analysis of
this walk is beyond the scope of this survey.
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Szegedy [171] extended the approach of Ambainis to
develop a powerful general framework for quantizing clas-
sical randomwalks in order to solve search problems. Sup-
pose we wish to search a solution space of size N and there
are �N solutions to f (x) D 1. Furthermore, suppose there
is a classical random walk with transition matrix M, with
the property that p(v;w) D p(w; v) (known as a ‘symmet-
ric’ walk). It can be shown that the matrix M has max-
imum eigenvalue 1, and suppose the next highest eigen-
value is 1� ı, for ı > 0. The classical theory of random
walks implies the existence of a bounded-error classical
random walk search algorithm with query complexity in
O( 1

ı�
). Szegedy developed a “

p
ı�-rule” that gives a quan-

tum version of the classical walk with query complexity in
O(1/
p
ı�). This technique was generalized further in [134]

and summarized nicely in [160].
Quantum walk searching has been applied to other

problems such as triangle-finding [135], commutativity
testing [133], matrix product verification [40], associativ-
ity testing when the range is restricted [66], and element
k-distinctness [15]. A survey of results in quantum walks
can be found in [13,14,123,160].

Continuous Time QuantumWalk Algorithms

In this section we describe two very well-known con-
tinuous time quantum walk algorithms. The first algo-
rithm [48] illustrates how a quantum walk algorithm can
give an exponential speed-up in the black-box model.

A problem instance of size n corresponds to an oracle
OGn that encodes a graph Gn on O(2n) vertices in the fol-
lowing way. The graph Gn is the graph formed by taking
2 binary trees of depth n, and then “gluing” the two trees
together by adding edges that create a cycle that alternates
between the leaves of the first tree (selected at random) and
the leaves of the second tree (selected at random). The two
root vertices are called the “ENTRANCE” vertex, labeled
with some known string, say, the all zeroes string 000 : : : 0
of length 2n, and “EXIT” vertex, which is labeled with
a random string of length 2n. The remaining vertices of the
graph are labeledwith distinct random bit strings of length
2n. The oracle OGn encodes the graph Gn in the following
way. For j xi where x 2 f0; 1g2n encodes a vertex label of
Gn, OGn maps j xi j 00 : : : 0i to j xi j n1(x); n2(x); n3(x)i
where n1(x); n2(x); n3(x) are the labels of the neighbors
of x in any order (for the exit and entrance vertex, there
will only be two distinct neighbors).

“Glued-Trees” Problem
Input: A black-box implementing OGn for a graph Gn of
the above form.
Problem: Output the label of the EXIT vertex.

Quantum Algorithms for the “Glued-Trees” Problem
There is a continuous time quantum walk which starts at
the ENTRANCE vertex (in this case j 00 : : : 0i) and evolves
according to the Hamiltonian defined by the adjacency
matrix of the graph Gn for an amount of time t selected
uniformly at random in [0; n4/(2�)] where 0 < � < 1.
Measuring will then yield the EXIT label with probability
at least (1��)

2n .
The authors show how to efficiently simulate this con-

tinuous time quantum walk using a universal quantum
computer thatmakes a polynomial number of calls to OGn .

Classical Algorithms for the “Glued-Trees” Problem Any
classical randomized algorithm must evaluate the black-
box OGn an exponential number of times in order to
output the correct EXIT vertex label with non-negligible
probability. More precisely, any classical algorithm that
makes 2n/6 queries to OGn can only find the EXIT with
probability at most 4 � 2�n/6.

Another very interesting and recent problem for which
a quantum walk algorithm has given the optimal algo-
rithm is the problem of evaluating a NAND-tree (or AND-
OR tree). The problem is nicely described by a binary
tree of depth n whose leaves are labeled by the integers
i 2 f1; 2; : : : ; 2ng. The input is a black-box OX that en-
codes a binary string X D X1X2 : : : XN , where N D 2n .
The ith leaf vertex is assigned value Xi, and the parent of
any pair of vertices takes on the value which is the NAND
of the value of its child vertices (the NAND of two in-
put bits is 0 if both inputs are 1 and 1 if either bit is 0).
Thus, given the assignment of values to the leaves of a bi-
nary tree, one can compute the values of the remaining
vertices in the tree, including the root vertex. The value of
the NAND tree for a given assignment is the value of the
root vertex.

NAND-Tree Evaluation
Input: A black-box OX that encodes a binary string
X D X1X2 : : : XN 2 f0; 1gN , N D 2n .
Problem: Output the value of the binary NAND tree
whose ith leaf has value Xi.

Classical Algorithms for NAND-Tree Evaluation The best
known classical randomized algorithm uses O(N0:753:::)
evaluations of the black-box, and it is also known that
˝(N0:753:::) evaluations are required for any classical ran-
domized algorithm.

Until recently, no quantum algorithm worked better.

Quantum Algorithms for NAND-Tree Evaluation Farhi,
Goldstone and Gutmann [76] showed a continuous time
walk that could solve this it time O(

p
N) using a con-

tinuous version of the black-box, and it was subsequently
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QuantumAlgorithms, Figure 1
This is an example of a “glued-trees” graph with random labelings for all vertices (except the “ENTRANCE” vertex). The goal is to find
the label of the “EXIT” vertex (in this case, it is 101010), given a black-box that outputs the vertex labels of the neighbors of a given
vertex label

showed that O(N1/2C�) queries to the discrete oracle suf-
fice, for any real constant � > 0, and discrete walk ver-
sions of the algorithm and other generalizations were de-
veloped [18,50]

This was a very interesting breakthrough in solving a fun-
damental problem that had stumped quantum algorithms
experts for a number of years. The general idea is inspired
from techniques in particle physics and scattering theory.
They consider a graph formed by taking a binary tree and
making two additions to it. Firstly, for each leaf vertex
where Xi D 1, add another vertex and join it to that leaf.
Secondly, attach the root vertex to the middle of a long
path of length in˝(

p
N). Then evolve the system accord-

ing to the Hamiltonian equal to the adjacency matrix of
this graph. Then one should start the system in a superpo-
sition of states on the left side of the line graph with phases
defined so that if the NAND-tree were not attached, the
“wave packet” would move from left to right along the line.
If the packet gets reflected with non-negligible amplitude,
then the NAND tree has value 1, otherwise, if the packet
gets mostly transmitted, then the NAND tree has value 0.
Thus one measures the system, and if one obtains a vertex

to the left of the NAND-tree, one guesses “1”, and if one
obtains a vertex to the right of the NAND-tree, one guesses
“0”. This algorithm outputs the correct answer with high
probability.

In a discrete query model, one can carefully simulate
the continuous time walk [50] (as discussed in Sect. “Sim-
ulation of QuantumMechanical Systems”), or one can ap-
ply the results of Szegedy [171] to define a discrete-time
coined walk with the same spectral properties [18] and
thus obtain a discrete query complexity of N

1
2C� for any

constant � > 0.
This algorithm has also been applied to solve MIN–

MAX trees with a similar improvement [55]. The NAND-
tree and related problems are related to deciding the win-
ner of two-player games. Another very recent new class of
quantum algorithms for evaluating a wider class of formu-
las, based on “span” programs, was developed in [155].

Adiabatic Algorithms

It is possible to encode the solution to a hard problem into
the ground state of an efficiently simulatable Hamiltonian.
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For example, in order to try to solve 3-SAT for a formula
on n Boolean variables, one could define a Hamiltonian

H1 D
X

x2f0;1gn
f˚ (x) j xi h xj

where f˚ (x) is the number of clauses of ˚ that are vi-
olated by the assignment x. Then one could try to de-
fine algorithms to find such a ground state, such as quan-
tum analogues of classical annealing or other heuristics
(e. g. [62,74,101]).

Adiabatic algorithms (also known as adiabatic opti-
mization algorithms) are a new paradigm for quantum
algorithms invented by Farhi, Goldstone, Gutmann and
Sipser [74]. The paradigm is based on the fact that, un-
der the right conditions, a system that starts in the ground
state of a Hamiltonian H(0), will with high probability re-
main in the ground state of the Hamiltonian H(t) of the
system at a later time t, if the Hamiltonian of the system
changes “slowly enough” from H(0) to H(t). This fact is
called the adiabatic theorem (see e. g. [115]).

This theorem inspires the following algorithmic
paradigm:

� Convert your problem to generating the ground state
of some easy-to-simulate Hamiltonian H1.

� Initialize your quantum computer in an easy-to-pre-
pare state j 0i of an easy-to-simulate HamiltonianH0.

� On the quantum computer, simulate a time-dependent
HamiltonianH(t) D (1 � t/T)H0 C t/TH1, for t going
from 0 to T.

An important detail is how slowly to transition from
H0 to H1 (in other words, how large T should be).
This related to two important parameters. Let 0(t) be
the smallest eigenvalue of H(t), and assume that the
corresponding eigenspace is non-degenerate. Let 1(t)
be the second smallest eigenvalue of H(t), and define
g(t) D 1(t) � 0(t) to be the gap between the two lowest
eigenvalues. The norm of the Hamiltonian is also relevant.
This is to be expected, since one can effectively speed-up
time by a factor of s by just multiplying the Hamiltonian
of the system by s. In any realistic implementation of the
Hamiltonian one pays for such a speed-up by at least a fac-
tor of s in some resource. For example, if we simulate the
Hamiltonian using quantum circuits (e. g. as described in
Sect. “Simulation of Quantum Mechanical Systems”), the
overhead is a factor of s1Co(1) in the circuit depth; thus
there is no actual speed-up. Furthermore, the norm of the
derivatives of the Hamiltonian is also relevant.

There are a variety of theorems and claims in the lit-
erature proving, or arguing, that a value of T polynomial
in the operator norm of dH(t)/dt (or even some higher

derivative) and in the inverse of the minimum gap (i. e.
the minimum g(t), for 0 � t � T), and in 1

ı
, is sufficient

in order to generate the final ground state with probabil-
ity at least 1� ı. The general folklore is that with the right
assumptions the dependence on the minimum gap gmin
is ˝(1/g2min), and one can find examples when this is the
case; however more sophisticated descriptions of the de-
pendence on g(t) are known (see e. g. [115]).

Assuming there is exactly one satisfying assignmentw,
then jwi hwj is the unique ground state of H1. This
algorithm has been studied numerically and analyti-
cally [58,75,157] and variations have been introduced as
well to work around various lower bounds that were
proved [77]. Unfortunately, it is not known what the
worst-case complexity is for these algorithms on such NP-
hard problems, since it has proved very hard to provide
rigorous or even convincing heuristic bounds on the min-
imum gap for such problems of interest. It is widely be-
lieved that these algorithms will not solve an NP-hard
problem in worst-case polynomial time, partly because it
is believed that no quantum algorithm can do this.

A slight generalization of adiabatic algorithms, called
adiabatic computation (where the final Hamiltonian does
not need to be diagonal in the computational basis) was
shown to be polynomially equivalent to general quantum
computation [7].

Topological Algorithms

The standardmodels of quantum computation (e. g. quan-
tum Turing machine, quantum acyclic circuits) are known
to be equivalent in power (up to a polynomial factor), and
the quantum strong Church–Turing thesis states that any
realistic model of computation can be efficiently simulated
by such a quantum computer. If this were not the case,
then one should seek to define a stronger model of com-
putation that encapsulates the full computational power
that the laws of physics offer.

Freedman [80] proposed defining a computing model
based on topological quantum field theories. The main ob-
jective was that such a computer might naturally solve
an NP-hard or #P-hard topological problem, in partic-
ular, evaluating the Jones polynomial at certain points.
A natural family of such topological quantum field the-
ory computers was shown to be equivalent in power to
the standard model of quantum computation, thus such
a new model of computation would not provide addi-
tional computational power, but it was hoped that this
new paradigm might inspire new quantum algorithms.
In fact, it has been shown that “topological” algorithms
can approximate the value of the Jones polynomial at cer-
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tain points more efficiently than any known classical al-
gorithm [8,81]. The known approximations are not good
enough to solve an NP-hard problem. Several other gen-
eralizations and related problems and algorithms have
been found recently [10,85,132,179].We will briefly sketch
some of the definitions, results and techniques.

A knot is a closed non-intersecting curve embedded in
R3, usually represented via a knot diagram, which is a pro-
jection of the knot into the plane with additional informa-
tion at each cross-over to indicate which strand goes over
and which goes under. Two knots are considered equiv-
alent if one can be manipulated into the other by an iso-
topy (i. e. by a transformations one could make to an ac-
tual knot that can be moved and stretched but not broken
or passed through itself). A link is a collection of non-in-
tersecting knots embedded in R3. They can be represented
by similar diagrams, and there is a similar notion of equiv-
alence.

The Jones polynomial of a link L is a polynomial
VL(t) that is a link invariant; in other words it has the
property that if two links L1 and L2 are equivalent, then
VL1 (t) D VL2 (t). Computing the Jones polynomial is in
general #P-hard for all but a finite number of values of t.
In particular, it is #P-hard to evaluate the Jones polyno-
mial exactly at any primitive rth root of unity for any in-
teger r � 5. However, certain approximations of these val-
ues are not known to be #P-hard.

The Jones polynomial is a special case of the Tutte
polynomial of a planar graph. For a planar graph
G D (V ; E), with weights edge weights v D fve j e 2 Eg
the multivariate Tutte polynomial is defined as

ZG(q; ve1 ; ve2 ; : : :) D
X

A�E

qk(A)
Y

e2A

ve

where q is another variable and k(A) is the number of con-
nected components in the subgraph (V ;A). The standard
Tutte polynomial TG (x; y) is obtained by setting ve D v
for all e 2 E, x D 1C q/v and y D 1C v. Connections
with physics are discussed, for example, in [120,169,176].

Here we briefly sketch a specific instance of such
a problem, and the approach of [10] taken to solve this
problem on a quantum computer.

Firstly, for any planar graph G, one can efficiently find
its medial graph LG, which is a 4-regular planar graph
which can be drawn from a planar embedding of G as fol-
lows. Draw a new vertex with weight ui in the middle of
each edge that had label vi. For each new vertex, on each
side of the original edge on which the vertex is placed,
draw a new edge going in the clockwise direction joining
the new vertex to the next new vertex encountered along
the face of the original graph. Do the same in the counter-

clockwise direction, and remove all the original edges and
vertices.

From this medial graph, one can define another
polynomial called the Kauffman bracket, denoted
hLGi(d; u1; u2; : : :), that satisfies hLGi(d; u1; u2; : : :) D
d�jV jZG(d2; du1; du2 : : :). The next section sketches
a quantum algorithm that approximates the Kauffman
bracket.

Additive Approximation of the Multivariate Tutte Polyno-
mial for a Planar Graph
Input: A description of a planar graph G D (V ; E).

Complex valued weights v1; v2; : : : ; vm corresponding
to the edges e1; e2; : : : ; em 2 E of G.

A complex number q.
Problem: Output an approximation of ZG(q; v1; v2; : : : ;
vm).

Quantum Algorithms for Approximating the Tutte Polyno-
mial Aharonov et al. [10] give a quantum algorithm that
solves the above problem in time polynomial in n with an
additive approximate they denote by�alg/poly(m), which
is described below.

The value �alg depends on the embedding of the graph.
The results are hard to compare to what his known about
classical algorithms for this problem (see [33] for a discus-
sion), but there are special cases that are BQP-hard.

Classical Algorithms for Approximating the Tutte Polyno-
mial It was shown [10] that for certain ranges of param-
eter choices, the approximations given by the quantum al-
gorithms are BQP-hard, and thus we don’t expect a classi-
cal algorithm to be able to provide as good of an approxi-
mation unless classical computers can efficiently simulate
quantum computers.

Sketch of the Structure of the Algorithm

We only have room to give a broad overview of the algo-
rithm. One of the main points is to emphasize that this
algorithm looks nothing any of the other algorithms dis-
cussed in the previous sections.

At a very high level, the idea is that these medial
graphs TG can be represented by a linear operation QG
such that hLGi(d; u1; u2; : : :) D h 1jQG j 1i. The quantum
algorithm approximates the inner product between j 1i
and QG j 1i, and therefore gives an approximation to the
Kauffman bracket for G and thus the generalized Tutte
polynomial for G.

The medial graph LG will be represented as a prod-
uct of basic elements Ti from a generalized Temperley–
Lieb algebra. These basic elements Ti will be represented
by simple linear transformations on finite dimensional



7112 Q Quantum Algorithms

Hilbert spaces, which can be implemented on a quantum
computer. Below we briefly sketch this decomposition and
correspondence.

One can easily draw the medial graph LG in the plane
so that one can slice it with horizontal lines so that in be-
tween each consecutive horizontal line there is a diagram
with only one of the following: a crossing of two lines,
a “cap” or a “cup”. One can think of the gluing together of
these adjacent diagramsTi to form the graph LG as a prod-
uct operation. We will sketch how to map eachTi to a lin-
ear operation �(Ti ) acting on a finite dimensional Hilbert
space.

The state space that the operation �(Ti ) will act on is
the set of finite walks starting at vertex 1 on the infinite
graph G with vertices labeled by the non-negative integers
and edges fi; i C 1g for all i � 0. For example, the walk
1 � 2 � 3 � 2 � 3 is a walk of length 4 from 1 to 3. The lin-
ear transformation �(Ti ) maps a walk w1 to a linear com-
bination of walks that are “compatible” with Ti (we won’t
explain here the details of defining this linear transforma-
tion).

In order to apply this technique to a diagram with
a crossing, one eliminates the crossing by replacing it with
two non-intersecting lines. This replacement can be done
in two different ways, and one can represent the diagram
with a crossing as a formal linear combination of these two
diagrams one gets by replacing a crossing at a vertex (say
with label u) with two non-intersecting lines, where one of
the two links gets the coefficient u (by a simple rule that we
don’t explain here). We can then apply the construction to
each of these new diagrams, and combine them linearly
to get the linear transformation corresponding to the dia-
gram with the crossing.

These linear transformations QG are not necessarily
unitary (they were unitary in the earlier work on the Jones
polynomial, and other relatedwork also constructs unitary
representations); however the authors show how one can
use ancilla qubits and unitaries to implement non-unitary
transformations and approximate the desired inner prod-
uct using the “Hadamard test” (see Sect. “Quantum Algo-
rithms for Quantum Tasks”).

QuantumAlgorithms for Quantum Tasks

At present, whenwe think of quantum algorithms, we usu-
ally think of starting with a classical input, running some
quantum algorithm, or series of quantum algorithms, with
some classical post-processing in order to get a classical
output. There might be some quantum sub-routines that
have been analyzed, but the main goal in mind is to solve
a classical problem.

For example, quantum error correction (see [124] for
a recent survey) can be thought of as an algorithm hav-
ing a quantum input and a quantum output. There are
many algorithms for transferring a qubit of information
through a network of qubits under some physical con-
straints. We might develop a quantum cryptographic in-
frastructure where objects like money and signatures [88]
are quantum states that need to be maintained andmanip-
ulated as quantum states for long periods of time.

Several of the algorithms described in the previous
sections have versions which have a quantum input or
a quantum output or both. For example, the amplitude
amplification algorithm can be rephrased in terms of pro-
ducing a quantum state j�i given a black-boxU� that rec-
ognizes j�i by mapping j�i 7! � j�i and acting as the
identity on all states orthogonal to j�i. The end result of
such a quantum search is the quantum state j�i. Ampli-
tude estimation is estimating a transition probability of
a unitary operator.

The topological algorithms require as a basic sub-
routine a quantum algorithm for approximating the in-
ner product of j 0i and U j 00 : : : 0i, which the au-
thors call the “Hadamard test”. The algorithm consists
of using a controlled-U operation to create the state
1p
2
j 0i j 00 : : : 0i C 1p

2
j 1iU j 00 : : : 0i. Note that if we

apply the Hadamard gate to the first qubit, we get

r
1C Re h 00 : : : 0jU j 00 : : : 0i

2
j 0i j 0i

C

r
1 � Re h 00 : : : 0jU j 00 : : : 0i

2
j 1i j 1i

for normalized states j 0i and j 1i. We can thus esti-
mate the real part of the h 00 : : : 0jU j 00 : : : 0i by repeating
several times, or applying the quadratically more efficient
amplitude estimation algorithm algorithm described ear-
lier (the goal is a superpolynomial speed-up, so a quadratic
improvement is not substantial in this case). We can also
estimate the complex part similarly.

Another example is the coset orbit problem [82] men-
tioned in Sect. “Generalizations of the Abelian Hidden
Subgroup Problem”. The input to this problem consists of
two quantum states j�0i and j�1i from a set � of mu-
tually orthogonal states and black-boxes for implement-
ing the action of a group G on the set � . For a state
j�i, let j u � �i denote the state resulting from the action
of u 2 G on j�i, and let Gj�i denote the subgroup of G
that stabilizes the state j�i (i. e. the set of u 2 G such
that ju � �i D j�i). The question is whether there exists
a u 2 G such that ju � �1i D j�0i. If the answer is “yes”,
then the set of u satisfying j u � �1i D j�0i is a left coset of
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Gj�1i. Thus, the algorithm should output a coset represen-
tative u along with O(log n) generators of Gj�1i. The solu-
tion to this problem was an important part of the solution
to the hidden translation problem. Several other quantum
algorithms have such “quantum” sub-routines.

Other examples of quantum tasks include quantum
data compression which was known to be information the-
oretically possible, and efficient quantum circuits for per-
forming it were also developed [26]. Another example is
entanglement concentration and distillation.

Researchers have also developed quantum algorithms
for implementing some natural basis changes, which have
quantum inputs and quantum outputs. For example, the
Clebsch-Gordan transformation [20] or other transforma-
tions (e. g. [69,103]).

We’ve only listed a few examples here. In the fu-
ture, as quantum technologies develop, in particular quan-
tum computers and reliable quantummemories, quantum
states and their manipulation will become an end in them-
selves.

Future Directions

Roughly 10 years ago, many people said that there were es-
sentially only two quantum algorithms. One serious omis-
sion was the simulation of quantum mechanical systems,
which was in fact Feynman’s initial motivation for quan-
tum computers. Apart from this omission, it was true that
researchers were developing a better and deeper under-
standing of the algorithms of Shor and Grover, analyzing
them in different ways, generalizing them, and applying
them in non-trivial ways. It would have been feasible to
write a reasonably sized survey of all the known quantum
algorithms with substantial details included. In addition
to this important and non-trivial work, researchers were
looking hard for “new” approaches, and fresh ideas like
quantumwalks, and topological algorithms, were being in-
vestigated, as well as continued work on the non-Abelian
version of the hidden subgroup problem. The whole en-
deavor of finding new quantum algorithms was very hard
and often frustrating. Fortunately, in the last 10 years,
there have been many non-trivial developments, enough
to make the writing of a full survey of quantum algorithms
in a reasonable number of pages impossible. Some direc-
tions in which future progress might be made are listed
below.

� The complexity of the non-Abelian hidden subgroup
problem will hopefully be better understood. This
includes addressing the question: Does there exist
a quantum polynomial time algorithm for solving
the graph isomorphism problem? Of course, a proof

that no such quantum algorithm exists would imply
that P ¤ PSPACE. So, more likely, we might develop
a strong confidence that no such algorithm exists, in
which case this can form the basis of quantum compu-
tationally secure cryptography [142].

� There are many examples where amplitude amplifi-
cation was used to speed-up a classical algorithm in
a non-trivial way. That is, in a way that was more than
just treating a classical algorithm as a guessing algo-
rithm A and applying amplitude amplification to it.
There are likely countless other algorithms which can
be improved in non-trivial ways using amplitude am-
plification.

� The quantum walk paradigm for quantum algorithms
emerged roughly 10 years ago, and has recently been
applied to find the optimal black-box algorithm for sev-
eral problems, and has become a standard approach for
developing quantum algorithms. Some of these black-
box problems are fairly natural, and the black-boxes
can be substituted with circuits for actual functions of
interest. For example, collision finding can be applied
to find collisions in actual hash functions used in cryp-
tography. We will hopefully see more instances where
black-box algorithm can be applied to solve an problem
without a black-box, or where there is no black-box in
the first place.

� In addition to the development of new quantum walk
algorithms, we will hopefully have a more elegant and
unified general theory of quantum walks that unites
continuous and discrete walks, coined and non-coined
walks, and quantum and classical walks.

� The adiabatic algorithm paradigm has not reached the
level of success of quantum walks, partly because it is
hard to analyze the worst case complexity of the algo-
rithms. To date there is no adiabatic algorithm with
a proof that it works more than quadratically faster
than the best known classical algorithm. Can we do bet-
ter with an adiabatic algorithm?
If and when we have large-scale quantum computers,
we will be able to just test these algorithms to see if in-
deed they do have the conjectured running times on
instances of interesting size.

� The topological algorithms have received limited atten-
tion to date. This is partly because the initial work in
this field was largely inaccessible to researchers with-
out substantial familiarity with topological quantum
field theory and related areas ofmathematics. Themore
recent work summarized in this paper and other re-
cent papers is a sign that this approach could mature
into a fruitful paradigm for developing new important
quantum algorithms.
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� The paradigm of measurement based computation (see
e. g. [118] for an introduction) has been to date mostly
focused on its utility as a paradigm for possibly imple-
menting a scalable fault-tolerant quantum computer.
We might see the development of algorithms directly
in this paradigm. Similarly for globally controlled ar-
chitectures.

� There is also a growing group of researchers look-
ing at the computational complexity of various com-
putational problems in physics, in particular of sim-
ulating certain Hamiltonian systems, often coming
from condensed matter physics. Much of the work has
been complexity theoretic, such as proving the QMA-
hardness of computing ground states of certain Hamil-
tonians (e. g. [9]). Other work has focused on under-
standing which quantum systems can be simulated ef-
ficiently on a classical computer. This work should
lead to the definition of some simulation problems that
are not known to be in BPP, nor believed to be NP-
hard or QMA-hard, and thus might be good candi-
dates for a quantum algorithm. There has been a lan-
guage and culture barrier between physicists and theo-
retical computer scientists when it comes to discussing
such problems. However, it is slowly breaking down, as
more physicists are becoming familiar with algorithms
and complexity, and more quantum computer scien-
tists are becoming familiar with language and notions
from physics. This will hopefully lead to more quan-
tum algorithms for computational problems in physics,
and new algorithmic primitives that can be applied to
a wider range of problems.

In summary, as daunting as it is to write a survey of quan-
tum algorithms at this time, it will be a much harder task
in another 10 years. Furthermore, in another 10 years we
will hopefully have a better idea of when we might expect
to see quantum computers large enough to solve problems
faster than the best available classical computers.
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Glossary

Black box model This model assumes we can collect
knowledge about an input f through queries without
knowing how the answer to the query is computed.
A synonym for black box is oracle.

Classical computer A computer which does not use the
principles of quantum computing to carry out its
computations.

Computational complexity In this article, complexity for
brevity. The minimal cost of solving a problem by
an algorithm. Some authors use the word complexity
when cost would be preferable. An upper bound on
the complexity is given by the cost of an algorithm.
A lower bound is given by a theoremwhich states there
cannot be an algorithm which does better.

Continuous problem A problem involving real or com-
plex functions of real or complex variables. Examples
of continuous problem are integrals, path integrals,
and partial differential equations.

Cost of an algorithm The price of executing an algo-
rithm. The cost depends on the model of computation.

Discrete problem A problem whose inputs are from
a countable set. Examples of discrete problems are
integer factorization, traveling salesman and satisfia-
bility.

"-Approximation Most real-world continuous problems
can only be solved numerically and therefore approx-
imately, that is to within an error threshold ". The
definition of "-approximation depends on the setting.
See worst-case setting, randomized setting, quantum
setting.

Information-based complexity The discipline that stud-
ies algorithms and complexity of continuous prob-
lems.

Model of computation The rules stating what is permit-
ted in a computation and how much it costs. The
model of computation is an abstraction of a physical
computer. Examples of models are Turing machines,
real number model, quantum circuit model.

Optimal algorithm An algorithm whose cost equals the
complexity of the problem.

Promise A statement of what is known about a problem
a priori before any queries are made. An example in
quantum computation is the promise that an unknown
1-bit function is constant or balanced. In information-
based complexity a promise is also called global
information.

Quantum computing speedup The amount by which
a quantum computer can solve a problem faster than
a classical computer. To compute the speedup one
must know the classical complexity and it is desir-
able to also know the quantum complexity. Grover
proved quadratic speedup for search in an unstruc-
tured database. Its only conjectured that Shor’s algo-
rithm provides exponential speedup for integer factor-
ization since the classical complexity is unknown.

Query One obtains knowledge about a particular input
through queries. For example, if the problem is nu-
merical approximation of

R 1
0 f (x)dx a query might be

the evaluation of f at a point. In information-based
complexity the same concept is called an information
operation.

Quantum setting There are a number of quantum set-
tings. An example is a guarantee of error atmost "with
probability greater than 1/2.

Qubit complexity Theminimal number of qubits to solve
a problem.

Query complexity The minimal number of queries re-
quired to solve the problem.

Randomized setting In this setting the expected error
with respect to the probability measure generating the
random variables is at most ". The computation is ran-
domized. An important example of a randomized al-
gorithm is the Monte Carlo method.

Worst-case setting In this setting an error of at most " is
guaranteed for all inputs satisfying the promise. The
computation is deterministic.

Definition of the Subject

Most continuous mathematical formulations arising in
science and engineering can only be solved numerically
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and therefore approximately. We shall always assume that
we are dealing with a numerical approximation to the
solution.

There are two major motivations for studying quan-
tum algorithms and complexity for continuous problems.

1. Are quantum computers more powerful than classi-
cal computers for important scientific problems? How
much more powerful? This would answer the question
posed by Nielsen and Chuang (p. 47 in [48]).

2. Many important scientific and engineering problems
have continuous formulations. These problems occur
in fields such as physics, chemistry, engineering and fi-
nance. The continuous formulations include path inte-
gration, partial differential equations (in particular, the
Schrödinger equation) and continuous optimization.

To answer the first question we must know the classi-
cal computational complexity (for brevity, complexity) of
the problem. There have been decades of research on the
classical complexity of continuous problems in the field
of information-based complexity; see, for example, the
monographs [49,57,59,67,68,71,75]. The reason we know
the complexity of many continuous problems is that we
can use adversary arguments to obtain their query com-
plexity. See, for example, [54] for an exposition. This may
be contrasted with the classical complexity of discrete
problems where we have only conjectures such as P ¤ NP.
Even the classical complexity of the factorization of large
integers is unknown. Knowing the classical complexity
of a continuous problem we obtain the quantum com-
putation speedup if we know the quantum complexity.
If we know an upper bound on the quantum complexity
through the cost of a particular quantum algorithm then
we can obtain a lower bound on the quantum speedup.
To state and prove complexity theorems, the mathemati-
cal formulation of the problem, the promise about the class
of inputs, and the model of computation must be precisely
specified. See [66] for a discussion of the model of compu-
tation for continuous problems.

Regarding the second motivation, in this article we
will report on high-dimensional integration, path integra-
tion, Feynman path integration, the smallest eigenvalue of
a differential equation, approximation, partial differential
equations, ordinary differential equations and gradient es-
timation. We will also briefly report on the simulation of
quantum systems on a quantum computer.

Introduction

We provide a summary of the contents of the article.

Section “Overview of Quantum Algorithms” We de-
fine basic concepts and notation including quantum algo-
rithm, continuous problem, query complexity and qubit
complexity.

Section “Integration” High-dimensional integration,
often in hundreds or thousands of variables, is one of the
most commonly occurring continuous problems in sci-
ence. In Subsect. “Classical Computer” we report on com-
plexity results on a classical computer. For illustration we
begin with a one-dimensional problem and give a sim-
ple example of an adversary argument. We then move on
the d-dimensional case and indicate that in the worst case
the complexity is exponential in d; the problem suffers the
curse of dimensionality. The curse can be broken by the
Monte Carlo algorithm. In Subsect. “QuantumComputer”
we report on the algorithms and complexity results on
a quantum computer. Under certain assumptions on the
promise the quantum query complexity enjoys exponen-
tial speedup over classical worst case query complexity.

A number of the problems we will discuss enjoy expo-
nential quantum query speedup. This does not contradict
Beals et al. [6] who prove that speedup can only be polyno-
mial. The reason is that [6] deals with problems concern-
ing total Boolean functions.

For many classes of integrands there is quadratic
speedup over the classical randomized query complexity.
This is the same speedup as enjoyed by Grover’s search al-
gorithm of an unstructured database. To obtain the quan-
tum query complexity one has to give matching upper
and lower bounds. As usual the upper bound is given by
an algorithm, the lower bound by a theorem. The upper
bound is given by the amplitude amplification algorithm
of Brassard et al. [12]. We outline a method for approx-
imating high-dimensional integrals using this algorithm.
The quantum query complexity lower bounds for integra-
tion are based on the lower bounds of Nayak andWu [47]
for computing the mean of a Boolean function.

Section “Path Integration” We define a path inte-
gral and provide an example due to Feynman. In Sub-
sect. “Classical Computer” we report on complexity results
on a classical computer. If the promise is that the class
of integrands has finite smoothness, then path integration
is intractable in the worst case. If the promise is that the
class of integrands consists of entire functions the query
complexity is tractable even in the worst case. For smooth
functions intractability is broken by Monte Carlo. In Sub-
sect. “Quantum Computer” we report on the algorithm
and complexity on a quantum computer. The quantum
query complexity enjoys Grover-type speedup over clas-
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sical randomized query complexity. We outline the quan-
tum algorithm.

Section “Feynman–Kac Path Integration” The Feyn-
man–Kac path integral provides the solution to the dif-
fusion equation. In Subsect. “Classical Computer” we re-
port on algorithms and complexity on a classical com-
puter. In the worst case for a d-dimensional Feynman–
Kac path integral the problem again suffers the curse of
dimensionality which can be broken by Monte Carlo. In
Subsect. “Quantum Computer” we indicate the algorithm
and query complexity on a quantum computer.

Section “Eigenvalue Approximation” One of the most
important problems in physics and chemistry is approx-
imating the ground state energy governed by a differen-
tial equation. Typically, numerical algorithms on a classi-
cal computer are well known. Our focus is on the Sturm–
Liouville eigenvalue (SLE) problem where the first com-
plexity results were recently obtained. The SLE equation
is also called the time-independent Schrödinger equation.
In Subsect. “Classical Computer” we present an algorithm
on a classical computer. The worst case query complexity
suffers the curse of dimensionality. We also state a ran-
domized algorithm. The randomized query complexity is
unknown for d > 2 and is an important open question.
In Subsect. “QuantumComputer” we outline an algorithm
for a quantum computer. The quantum query complexity
is not known when d > 1. It has been shown that it is not
exponential in d; the problem is tractable on a quantum
computer.

Section “Qubit Complexity” So far we’ve focused on
query complexity. For the foreseeable future the number
of qubits will be a crucial computational resource. We give
a general lower bound on the qubit complexity of contin-
uous problems. We show that because of this lower bound
there’s a problem that cannot be solved on a quantum
computer but that’s easy to solve on a classical computer
using Monte Carlo.

A definition of a quantum algorithm is given by (1); the
queries are deterministic. Woźniakowski [77] introduced
the quantum setting with randomized queries for continu-
ous problems. For path integration there is an exponential
reduction in the qubit complexity.

Section “Approximation” Approximating functions of
d variables is a fundamental and generally hard problem.
The complexity is sensitive to the norm, p, on the class of
functions and to several other parameters. For example, if
p D 1 approximation suffers the curse of dimensionality

in the worst and randomized classical cases. The problem
remains intractable in the quantum setting.

Section “Partial Differential Equations” Elliptic partial
differential equations have many important applications
and have been extensively studied. In particular, consider
an equation of order 2m in d variables. In the classical
worst case setting the problem is intractable. The classi-
cal randomized and quantum settings were only recently
studied. The conclusion is that the quantum may or may
not provide a polynomial speedup; it depends on certain
parameters.

Section “Ordinary Differential Equations” Consider
a system of initial value ordinary equations in d variables.
Assume that the right hand sides satisfy a Hölder condi-
tion. The problem is tractable even in the worst case with
the exponent of "�1 depending on the Hölder class param-
eters. The complexity of classical randomized and quan-
tum algorithms have only recently been obtained. The
quantum setting yields a polynomial speedup.

Section “Gradient Estimation” Jordan [37] showed
that approximating the gradient of a function can be done
with a single query on a quantum computer although it
takes d C 1 function evaluations on a classical computer.
A simplified version of Jordan’s algorithm is presented.

Section “Simulation of Quantum Systems on Quantum
Computers” There is a large and varied literature on
simulation of quantum systems on quantum computers.
The focus in these papers is typically on the cost of partic-
ular classical and quantum algorithms without complexity
analysis and therefore without speedup results. To give the
reader a taste of this area we list some sample papers.

Section “FutureDirections” Webriefly indicate a num-
ber of open questions.

Overview of QuantumAlgorithms

A quantum algorithm consists of a sequence of unitary
transformations applied to an initial state. The result of
the algorithm is obtained by measuring its final state. The
quantum model of computation is discussed in detail in
[6,7,8,17,27,48] and we summarize it here as it applies to
continuous problems.

The initial state j 0i of the algorithm is a unit vector of
the Hilbert spaceH� D C2 ˝ � � � ˝C2, � times, for some
appropriately chosen integer �, where C2 is the two di-
mensional space of complex numbers. The dimension of
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H� is 2� . The number � denotes the number of qubits
used by the quantum algorithm.

The final state j i is also a unit vector of H� and is
obtained from the initial state j 0i through a sequence of
unitary 2� � 2� matrices, i. e.,

j i f :D UTQ fUT�1Qf � � �U1Qf U0j 0i : (1)

The unitary matrix Qf is called a quantum query and
is used to provide information to the algorithm about
a function f . Qf depends on n function evaluations
f (t1); : : : ; f (tn), at deterministically chosen points,
n � 2� . The U0;U1; : : : ;UT are unitary matrices that
do not depend on f . The integer T denotes the number of
quantum queries.

For algorithms solving discrete problems, such as
Grover’s algorithm for the search of an unordered
database [26], the input f is considered to be a Boolean
function. The most commonly studied quantum query is
the bit query. For a Boolean function f : f0; : : : ; 2m�1g !
f0; 1g, the bit query is defined by

Qf j jijki D j jijk ˚ f ( j)i : (2)

Here � D mC 1, j ji 2Hm , and jki 2H1 with˚ denot-
ing addition modulo 2. For a real function f the query
is constructed by taking the most significant bits of the
function f evaluated at some points tj . More precisely, as
in [27], the bit query for f has the form

Qf j jijki D j jijk ˚ ˇ( f (�( j)))i ; (3)

where the number of qubits is now � D m0 C m00 and
j ji 2Hm0 , jki 2Hm00 . The functions ˇ and � are used
to discretize the domain D and the range R of f ,
respectively. Therefore, ˇ : R! f0; 1; : : : ; 2m00 � 1g and
� : f0; 1; : : : ; 2m0 � 1g ! D. Hence, we compute f at
t j D �( j) and then take the m00 most significant bits of
f (t j) by ˇ( f (t j)), for the details and the possible use of
ancillary qubits see [27].

At the end of the quantum algorithm, the final state
j f i is measured. The measurement produces one of M
outcomes, whereM � 2� . Outcome j 2 f0; 1; : : : ;M � 1g
occurs with probability p f ( j), which depends on j and the
input f . Knowing the outcome j, we classically compute
the final result � f ( j) of the algorithm.

In principle, quantum algorithms may have measure-
ments applied between sequences of unitary transforma-
tions of the form presented above. However, any algo-
rithm with multiple measurements can be simulated by
a quantum algorithm with only one measurement [8].

Let S be a linear or nonlinear operator such that

S : F ! G : (4)

Typically, F is a linear space of real functions of several
variables, and G is a normed linear space. We wish to ap-
proximate S(f ) to within " for f 2 F . We approximate
S(f ) using n function evaluations f (t1); : : : ; f (tn) at deter-
ministically and a priori chosen sample points. The quan-
tum query Qf encodes this information, and the quantum
algorithm obtains this information from Qf .

Without loss of generality, we consider algorithms that
approximate S(f ) with probability p � 3/4. We can boost
the success probability of an algorithm to become arbitrar-
ily close to one by repeating the algorithm a number of
times. The success probability becomes at least 1� ı with
a number of repetitions proportional to log ı�1.

The local error of the quantum algorithm (1) that com-
putes the approximation � f ( j), for f 2 F and the out-
come j 2 f0; 1; : : : ;M � 1g, is defined by

e(� f ; S) D min
�
˛ :

X

j : kS( f )�� f ( j)k�˛

p f ( j) �
3
4

�
; (5)

where p f ( j) denotes the probability of obtaining outcome
j for the function f . The worst case error of a quantum
algorithm � is defined by

equant(�; S) D sup
f2F

e(� f ; S) : (6)

The query complexity compquery("; S) of the problem S is
the minimal number of queries necessary for approximat-
ing the solution with accuracy ", i. e.,

compquery(") D minfT : 9� such that equant(�; S) � "g :
(7)

Similarly, the qubit complexity of the problem S is the
minimal number of qubits necessary for approximating
the solution with accuracy ", i. e.,

compqubit(") D minf� : 9� such that equant(�; S) � "g :
(8)

Integration

Integration is one of the most commonly occurring math-
ematical problems. One reason is that when one seeks the
expectation of a continuous process one has to compute
an integral. Often the integrals are over hundreds or thou-
sands of variables. Path integrals are taken over an infinite
number of variables. See Sect. “Path Integration”.

Classical Computer

We begin with a one dimensional example to illustrate
some basic concepts before moving to the d-dimen-
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sional case (Number of dimensions and number of vari-
ables are used interchangeably.) Our simple example is to
approximate

I( f ) D
Z 1

0
f (x)dx :

For most integrands we can not use the fundamental the-
orem of calculus to compute the integral analytically; we
have to approximate numerically (most real world contin-
uous problems have to be approximated numerically). We
have to make a promise about f . Assume

F1 D
˚
f : [0; 1]! R j continuous and

j f (x)j � 1; x 2 [0; 1]
�
:

Use queries to compute

y f D [ f (x1); : : : ; f (xn)] :

We show that with this promise one cannot guarantee
an "-approximation on a classical computer. We use
a simple adversary argument. Choose arbitrary numbers
x1; : : : ; xn 2 [0; 1]. The adversary answers all these que-
ries by answering f (xi) D 0, i D 1; : : : ; n.

What is f ? It could be f1 � 0 and
R 1
0 f1(x)dx D 0 or

it could be the f 2 shown in Fig. 1. The value of
R 1
0 f2(x)dx

can be arbitrarily close to 1. Since f1(x) and f2(x) are indis-
tinguishable with these query answers and this promise, it
is impossible to guarantee an "-approximation on a classi-
cal computer with " < 1/2. We will return to this example
in Sect. “Qubit Complexity”.

We move on to the d-dimensional case. Assume that
the integration limits are finite. For simplicity we assume
we are integrating over the unit cube [0; 1]d . So our prob-
lem is

I( f ) D
Z

[0;1]d
f (x)dx :

If our promise is that f 2 Fd , where

Fd D
˚
f : [0; 1]d ! R j continuous and

j f (x)j � 1; x 2 [0; 1]d
�
;

then we can not compute an "-approximation regardless
of the value of d. Our promise has to be stronger. Assume
that integrand class has smoothness r. There are various
ways to define smoothness r for functions of d variables.
See, for example, the definition on p. 25 in [67]. (For other
definitions see [71].) With this definition Bakhvalov [4]
showed that the query complexity is

compqueryclas�wor(") D 	


"�d/r

�
: (9)

Quantum Algorithms and Complexity for Continuous Problems,
Figure 1
All the function evaluations are equal to zero but the integral is
close to one

This is the worst case query complexity on a classical
computer.

What does this formula imply? If r D 0 the promise
is that the functions are only continuous but have no
smoothness. Then the query complexity is1, that is, we
cannot guarantee an "-approximation. If r and " are fixed
the query complexity is an exponential function of d. We
say the problem is intractable. Following R. Bellman this
is also called the curse of dimensionality. In particular, let
r D 1. Then the promise is that the integrands have one
derivative and the query complexity is	("�d ).

The curse of dimensionality is present for many for
continuous problems in the worst case setting. Breaking
the curse is one of the central issues of information-based
complexity. For high-dimensional integration the curse
can be broken for Fd by the Monte Carlo algorithm which
is a special case of a randomized algorithm. The Monte
Carlo algorithm is defined by

�MC( f ) D
1
n

nX

iD1

f (xi) ; (10)

where the xi are chosen independently from a uniform dis-
tribution. Then the expected error is

eMC( f ) D
p
var( f )
p
n

;

where

var( f ) D
Z

[0;1]d
f 2(x)dx �

�Z

[0;1]d
f (x)dx

�2
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is the variance of f . For the promise f 2 Fd the query com-
plexity is given by

compqueryclas�ran(") D 	("�2) : (11)

This is the randomized query complexity on a classical
computer.

Thus Monte Carlo breaks the curse of dimensionality
for the integration problem; the problem is tractable. Why
should picking sample points at random be much better
than picking them deterministically in the optimal way?
This is possible because we have replaced the guarantee of
the worst case setting by the stochastic assurance of the
randomized setting. There is no free lunch!

The reader will note that (11) is a complexity result
even though it is the cost of a particular algorithm, the
Monte Carlo algorithm. The reason is that for integrands
satisfying this promise Monte Carlo has been proven opti-
mal. It is known that if the integrands are smoother Monte
Carlo is not optimal; see p. 32 in [67].

In the worst case setting (deterministic) the query
complexity is infinite if f 2 Fd . In the randomized set-
ting the query complexity is independent of d if f 2 Fd .
This will provide us guidance when we introduce Monte
Carlo sampling into the model of quantum computation
in Sect. “Qubit Complexity”.

Generally pseudo-random numbers are used in the
implementation of Monte Carlo on a classical computer.
The quality of a pseudo-random number generator is usu-
ally tested statistically; see, for example, Knuth [41]. Will
(11) still hold if a pseudo-random number generator is
used? An affirmative answer is given by [69] provided
some care is taken in the choice of the generator and f is
Lipschitz.

QuantumComputer

We have seen that Monte Carlo breaks the curse of dimen-
sionality for high-dimensional integration on a classical
computer and that the query complexity is of order "�2.
Can we do better on a quantum computer?

The short answer is yes. Under certain assumptions on
the promises, which will be made precise below, the quan-
tum query complexity enjoys exponential speedup over
the classical worst case query complexity and quadratic
speedup over the classical randomized query complexity.
The latter is the same speedup as enjoyed by Grover’s
search algorithm of an unstructured database [26].

To show that the quantumquery complexity is of order
"�1 we have to give matching, or close to matching upper
and lower bounds. Usually, the upper bound is given by
an algorithm, the lower bound by a theorem. The upper

bound is given by the amplitude amplification algorithm
of Brassard et al. [12] which we describe briefly.

The amplitude amplification algorithm of Brassard et
al. computes the mean

SUM( f ) D
1
N

N�1X

iD0

f (i) ;

of a Boolean function f : f0; 1; : : : ;N � 1g ! f0; 1g,
where N D 2k , with error " and probability at least 8/�2,
using a number of queries proportional to minf"�1;Ng.
Moreover, Nayak and Wu [47] show that the order of
magnitude of the number of queries of this algorithm is
optimal. Without loss of generality we can assume that
"�1 
 N.

Perhaps the easiest way to understand the algorithm is
to consider the operator

G D (I � j ih j)Of ;

that is used in Grover’s search algorithm. Here

Of jxi D (�1) f (x)jxi; x 2 f0; 1gk ;

denotes the query, which is slightly different yet equiva-
lent [48] to the one we defined in (2). Let

j i D

r
1
N

X

x
jxi

be the equally weighted superposition of all the states.
If M denotes the number of assignments for which f

has the value 1 then

SUM( f ) D
M
N
:

Without loss of generality 1 � M � N � 1. Consider the
spaceH spanned by the states

j 0i D

r
1

N �M

X

x : f (x)D0

jxi and

j 1i D

r
1
M

X

x : f (x)D1

jxi :

Then

j i D cos(� /2)j 0i C sin(� /2)j 1i

where sin(� /2) D
p
M/N, and � /2 is the angle between

the states j i and j 0i. Thus

sin2
�
�

2

�
D

M
N
:
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Now consider the operator G restricted to H which
has the matrix representation

G D
�

cos � � sin �
sin � cos �

�
:

Its eigenvalues are ˙ D e˙i� , i D
p
�1, and let j�˙i de-

note the corresponding eigenvectors.
We can express j i using the j�˙i to get

j i D aj��i C bj�Ci ;

with a; b 2 C, jaj2 C jbj2 D 1. This implies that phase es-
timation [48] with Gp, p D 2 j , j D 0; : : : ; t � 1, and ini-
tial state j0i˝tj i can be used to approximate either � or
2� � � with error proportional to 2�t . Note that the first
t qubits of the initial state determine the accuracy of phase
estimation. Indeed, let �̃ be the result of phase estimation.
Since sin2(� /2) D sin2(� � � /2),
ˇ
ˇ̌
ˇsin

2(��̃)�
N
M

ˇ
ˇ̌
ˇ D O

�
2�t


;

with probability at least 8/�2; see [12,48] for the details.
Setting t D 	(log "�1) and observing that phase estima-
tion requires a number of applications ofG (or queriesOf )
proportional to "�1 yields the result. (The complexity of
quantum algorithms for the average case approximation
of the Boolean mean has also been studied [35,52]).

For a real function f : f0; 1; : : : ;N � 1g ! [0; 1]; we
can approximate

SUM( f ) D
1
N

N�1X

iD0

f (i) ;

by reducing the problem to the computation of the
Booleanmean. One way to derive this reduction is to trun-
cate f (i) to the desired number of significant bits, typi-
cally, polynomial in log "�1, and then to use the bit repre-
sentation of the function values to derive a Boolean func-
tion whose mean is equal to the mean of the truncated
real function, see, e. g. [77]. The truncation of the func-
tion values is formally expressed through the mapping ˇ
in (3). Variations of this idea have been used in the litera-
ture [3,27,50].

Similarly, one discretizes the domain of a function
f : [0; 1]d ! [0; 1] using the function � in (3) and then
uses the amplitude amplification algorithm to compute the
average

SUM( f ) D
1
N

N�1X

iD0

f (xi) ; (12)

for xi 2 [0; 1]d , i D 0; : : : ;N � 1.

The quantum query complexity of computing the av-
erage (12) is of order "�1. On the other hand, the classical
deterministic worst case query complexity is proportional
to N (recall that "�1 
 N), and the classical randomized
query complexity is proportional to "�2.

We now turn to the approximation of high-dimen-
sional integrals and outline an algorithm for solving this
problem. Suppose f : [0; 1]d ! [0; 1] is a function for
which we are given some promise, for instance, that f has
smoothness r. The algorithm integrating f with accuracy
" has two parts. First, using function evaluations f (xi),
i D 1; : : : ; n, at deterministic points, it approximates f
classically, by a function f̂ with error "1, i. e.,

k f � f̂ k � "1 ;

where k � k is the L1 norm. The complexity of this prob-
lem has been extensively studied and there are numerous
results [49,67,71] specifying the optimal choice of n and
the points xi that must be used to achieve error "1. Thus
Z

[0;1]d
f (x)dx D

Z

[0;1]d
f̂ (x)dx C

Z

[0;1]d
g(x)dx ;

where g D f � f̂ . Since f̂ is known and depends linearly
on the f (xi) the algorithm proceeds to integrate it exactly.
So it suffices to approximate

R
[0;1]d g(x)dx knowing that

kgk � "1.
The second part of the algorithm approximates the in-

tegral of g using the amplitude amplification algorithm to
compute

SUM(g) D
1
N

N�1X

iD0

g(yi ) ;

for certain points yi 2 [0; 1]d , with error "2. Once more,
there are many results, see [67,71] for surveys specifying
the optimal N and the points yi, so that SUM(g) approx-
imates

R
[0;1]d g(x)dx with error "2. Finally, the algorithm

approximates the original integral by the sum of the re-
sults of its two parts. The overall error of the algorithm is
proportional to " D "1 C "2.

Variations of the integration algorithm we described
are known to have optimal query complexity for a number
of different promises [27,29,34,50]. The quantum query
complexity lower bounds for integration are based on
the lower bounds of Nayak and Wu [47] for computing
the Boolean mean. The quantum algorithms offer an ex-
ponential speedup over classical deterministic algorithms
and a polynomial speedup over classical randomized algo-
rithms for the query complexity of high-dimensional in-
tegration. Tabel 1 summarizes the query complexity (up
to polylog factors) of high-dimensional integration in the
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Table 1
Query complexity of high-dimensional integration

Worst case Randomized Quantum

Fr;˛d "�d/(rC˛) "�2d/(2(rC˛)Cd) "�d/(rC˛Cd)

Wr
p;d; 2 � p �1 "�d/r "�2d/(2rCd) "�d/(rCd)

Wr
p;d; 1 � p � 2 "�d/r "�pd/(rpCpd�d) "�d/(rCd)

Wr
1;d "�d/r "�d/r "�d/(rCd)

worst case, randomized and quantum setting for functions
belonging to Hölder classes Fr;˛

d and Sobolev spacesWr
p;d .

Heinrich obtained most of the quantum query complexity
results in a series of papers, which we cited earlier. Hein-
rich summarized his results in [28] where a corresponding
table showing error bounds can be found.

Abrams and Williams [3] were the first to apply the
amplitude amplification algorithm to high-dimensional
integration. Novak [50] was the first to spell out his
promises and thus obtained the first complexity results for
high-dimensional integration.

Path Integration

A path integral is defined as

I( f ) D
Z

X
f (x)�(dx) ; (13)

where � is a probability measure on an infinite-dimen-
sional space X. It can be viewed as an infinite-dimensional
integral. For illustration we give an example due to R.
Feynman. In classical mechanics a particle at a certain po-
sition at time t0 has a unique trajectory to its position at
time t1. Quantummechanically there are an infinite num-
ber of possible trajectories which Feynman called histories,
see Fig. 2. Feynman summed over the histories. If one goes
to the limit one gets a path integral. Setting t0 D 0, t1 D 1
this integral is

I( f ) D
Z

C[0;1]
f (x)�(dx) ;

which is a special case of (13).
Path integration occurs in numerous applications in-

cluding quantum mechanics, quantum chemistry, statisti-
cal mechanics, and mathematical finance.

Classical Computer

The first complexity analysis of path integration is due
to Wasilkowski and Woźniakowski [72]; see also Chap. 5
in [67]. They studied the deterministic worst case and

Quantum Algorithms and Complexity for Continuous Problems,
Figure 2
Different trajectories of a particle

randomized settings and assume that � is a Gaussian
measure; an important special case of a Gaussian mea-
sure is a Wiener measure. They make the promise that F,
the class of integrands, consists of functions f : X ! R
whose rth Fréchet derivatives are continuous and uni-
formly bounded by unity. If r is finite then path integra-
tion is intractable. Curbera [20] showed that the worst case
query complexity is of order ""�ˇ where ˇ is a positive
number depending on r.

Wasilkowski and Woźniakowski [72] also considered
the promise that F consists of entire functions and that� is
the Wiener measure. Then the query complexity is a poly-
nomial in "�1. More precisely, they provide an algorithm
for calculating a worst case "-approximation with cost of
order "�p and the problem is tractable with this promise.
The exponent p depends on the particular Gaussian mea-
sure; for the Wiener measure p D 2/3.

We return to the promise that the smoothness r is fi-
nite. Since this problem is intractable in the worst case,
Wasilkowski and Woźniakowski [72] ask whether set-
tling for a stochastic assurance will break the intractabil-
ity. The obvious approach is to approximate the infinite-
dimensional integral by a d-dimensional integral where d
may be large (or even huge) since d is polynomial in "�1.
Then Monte Carlo may be used since its speed of conver-
gence does not depend on d. Modulo an assumption that
the nth eigenvalue of the covariance operator of � does
not decrease too fast the randomized query complexity is
roughly "�2. Thus Monte Carlo is optimal.
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QuantumComputer

Just as with finite dimensional integration Monte Carlo
makes path integration tractable on a classical computer
and the query complexity is of order "�2. Again we ask
whether we can do better on a quantum computer and
again the short answer is yes. Under certain assumptions
on the promises, which will be made precise below, the
quantum query complexity is of order "�1. Thus quan-
tum query complexity enjoys exponential speedup over
the classical worst case query complexity and quadratic
speedup over the classical randomized query complexity.
Again the latter is the same speedup as enjoyed byGrover’s
search algorithm of an unstructured database.

The idea for solving path integration on a quantum
computer is fairly simple but the analysis is not so easy.
So we outline the algorithm without considering the de-
tails. We start with a classical deterministic algorithm that
uses an average as in (12) to approximate the path integral
I(f ) with error " in the worst case. The number of terms N
of the this average is an exponential function of "�1. Nev-
ertheless, on a quantum computer we can approximate the
average, using the amplitude amplification algorithm as
we discussed in Sect. “Integration (Quantum Computer)”,
with cost that depends on logN and is, therefore, a poly-
nomial in "�1, Sect. 6 in [70].

A summary of the promises and the results in [70]
follows. The measure � is Gaussian and the eigenval-
ues of its covariance operator is of order j�h , h > 1. For
the Wiener measure occurring in many applications we
have h D 2. The class of integrands consists of functions
f whose rth Fréchet derivatives are continuous and uni-
formly bounded by unity. In particular assume the inte-
grands are at least Lipschitz. Then

� Path integration on a quantum computer is tractable.
� Query complexity on a quantum computer enjoys ex-

ponential speedup over the worst case and quadratic
speedup over the classical randomized query complex-
ity. More precisely, the number of quantum queries is
at most 4:22"�1.

Results on the qubit complexity of path integration will
be given in Sect. “Qubit Complexity”. Details of an algo-
rithm for computing an "-approximation to a path integral
on a quantum computer may be found in Sect. 6 in [70].

Feynman–Kac Path Integration

An important special case of a path integral is a Feynman–
Kac path integral. Assume that X is the space C of con-
tinuous functions and that the measure � is the Wiener
measure w. Feynman–Kac path integrals occur in many

applications; see [23]. For example consider the diffusion
equation

@z
@t

(u; t) D
1
2
@2z
@u2

(u; t)C V(u) z(u; t)

z(u; 0) D v(u) ;

where u 2 R, t > 0, V is a potential function, and v is an
initial condition function. Under mild conditions on v and
V the solution is given by the Feynman–Kac path integral

z(u; t) D
Z

C
v(x(t)C u)e

R t
0 V (x(s)Cu)ds w(dx) : (14)

The problem generalizes to the multivariate case by
considering the diffusion equation

@z
@t

(u; t) D
1
2
�z(u; t)C V(u) z(u; t)

z(u; 0) D v(u) ;

with u 2 Rd , t > 0, and V ; v : Rd ! R, the potential and
the initial value function, respectively. As usual,� denotes
the Laplacian. The solution is given by the Feynman–Kac
path integral

z(u; t) D
Z

C
v(x(t)C u)e

R t
0 V (x(s)Cu)ds w(dx) ;

where C is the set of continuous functions x : RC ! Rd

such that x(0) D 0.
Note that there are two kinds of dimension here.

A Feynman–Kac path integral is infinite dimensional since
we are integrating over continuous functions. Further-
more u is a function of d variables.

Classical Computer

We begin with the case when u is a scalar and then move
to the case where u is a multivariate function. There have
been a number of papers on the numerical solution of (14);
see, for example [14].

The usual attack is to solve the problem with a stochas-
tic assurance using randomization. For simplicity wemake
the promise that u D 1 and V is four times continuously
differentiable. Then by Chorin’s algorithm [16], the total
cost is of order "�2:5.

The first complexity analysis may be found in
Plaskota et al. [58] where a new algorithm is defined which
enjoys certain optimality properties. They construct an al-
gorithmwhich computes an "-approximation at cost of or-
der "�:25 and show that the worst case complexity is of the
same order. Hence the exponent of "�1 is an order of mag-
nitude smaller and with a worst case rather than a stochas-
tic guarantee. However, the new algorithm requires a nu-
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merically difficult precomputation which may limit its ap-
plicability.

We next report onmultivariate Feynman–Kac path in-
tegration. First consider the worst case setting with the
promise that v and V are r times continuously differen-
tiable with r finite. Kwas and Li [43] proved that the query
complexity is of order "�d/r . Therefore in the worst case
setting the problem suffers the curse of dimensionality.

The randomized setting was studied by Kwas [42]. He
showed that the curse of dimensionality is broken by using
Monte Carlo using a number of queries of order "�2. The
number of queries can be further improved to "�2/(1C2r/d),
which is the optimal number of queries, by a bit more
complicated algorithm. The randomized algorithms re-
quire extensive precomputing [42,43].

QuantumComputer

Multivariate multivariate Feynman–Kac path integration
on a quantum computer was studied in [42]. With the
promise as in the worst and randomized case, Kwas
presents an algorithm and complexity analysis. He exhibits
a quantum algorithm that uses a number of queries of or-
der "�1 that is based on the Monte Carlo algorithm. He
shows that the query complexity is of order "�1/(1Cr/d) and
is achieved by a bit more complicated quantum algorithm.
Just as in the randomized case the quantum algorithms re-
quire extensive precomputing [42,43].

Eigenvalue Approximation

Eigenvalue problems for differential operators arising in
physics and engineering have been extensively studied
in the literature; see, e. g. [5,18,19,22,25,40,63,65]. Typi-
cally, the mathematical properties of the eigenvalues and
the corresponding eigenfunctions are known and so are
numerical algorithms approximating them on a classical
computer. Nevertheless, the complexity of approximat-
ing eigenvalues in the worst, randomized and quantum
settings has only recently been addressed for the Sturm–
Liouville eigenvalue problem [53,55] (see also [10] for
quantum lower bounds with a different kind of query than
the one we discuss in this article). In some cases we have
sharp complexity estimates but there are important ques-
tions that remain open.

Most of our discussion here concerns the complex-
ity of approximating the smallest eigenvalue of a Sturm–
Liouville eigenvalue problem. We will conclude this sec-
tion by briefly addressing quantum algorithms for other
eigenvalue problems.

In the physics literature this problem is called the time-
independent Schrödinger equation. The smallest eigen-

value is the energy of the ground state. In the mathematics
literature it is called the Sturm–Liouville eigenvalue prob-
lem.

Let Id D [0; 1]d and consider the class of functions

Q D
�
q : Id ! [0; 1]

ˇ̌
ˇ
ˇ q ; Djq : D

@q
@x j
2 C(Id ) ;

kDjqk1 � 1 ; kqk1 � 1
�
;

where k � k1 denotes the supremum norm. For q 2 Q,
define Lq : D ��C q, where � D

Pd
jD1 @

2/@x2j is the
Laplacian, and consider the eigenvalue problem

Lqu D u; x 2 (0; 1)d ; (15)

u(x) � 0; x 2 @Id : (16)

In the variational form, the smallest eigenvalue  D (q)
of (15), (16) is given by

(q) D min
0¤u2H1

0

R
Id

Pd
jD1[Dju(x)]2 C q(x)u2(x)dx

R
Id u

2(x)dx
;

(17)

where H1
0 is the space of all functions vanishing on the

boundary of Id having square integrable first order partial
derivatives. We consider the complexity of classical and
quantum algorithms approximating (q) with error ".

Classical Computer

In the worst case we discretize the differential operator
on a grid of size h D 	("�1) and obtain a matrix M" D

��" C B", of size proportional to "�d � "�d . The matrix
�" is the (2d C 1)-point finite difference discretization of
the Laplacian. The matrix B" is a diagonal matrix contain-
ing evaluations of q at the grid points. The smallest eigen-
value of M" approximates (q) with error O(") [73,74].
We compute the smallest eigenvalue of M" using the bi-
section method (p. 228 in [22]). The resulting algorithm
uses a number of queries proportional to "�d . It turns out
that this number of queries is optimal in the worst case,
and the problem suffers from the curse of dimensionality.

The query complexity lower bounds are obtained by
reducing the eigenvalue problem to high-dimensional in-
tegration. For this we use the perturbation formula [53,55]

(q) D (q̄)C
Z

Id

�
q(x) � q̄(x)


u2q̄(x)dxCO

�
kq � q̄k21


;

(18)

where q; q̄ 2 Q and uq̄ is the normalized eigenfunction
corresponding to (q̄).
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The same formula is used for lower bounds in the ran-
domized setting. Namely, the query complexity is

˝


"�2d/(dC2)

�
:

Moreover, we can use (18) to derive a randomized algo-
rithm. First we approximate q by a function q̄ and then
approximate (q) by approximating the first two terms on
the right hand side of (18); see Papageorgiou and Woźni-
akowski [55] for d D 1, and Papageorgiou [53] for gen-
eral d. However, this algorithm uses

O


"�max(2/3;d/2)

�
;

queries. So, it is optimal only when d � 2. Determining
the randomized complexity for d > 2 and determining if
the randomized complexity is an exponential function of
d are important open questions.

QuantumComputer

The perturbation formula (18) can be used to show that
the quantum query complexity is

˝


"�d/(dC1)

�
:

As in the randomized case, we can use (18) to derive an
algorithm that uses O("�d/2) quantum queries. The differ-
ence between the quantum algorithm and the randomized
algorithm is that the former uses the amplitude amplifi-
cation algorithm to approximate the integral on the right
hand side of (18) instead of Monte Carlo. The algorithm is
optimal only when d D 1 [53,55].

For general d the query complexity is not known ex-
actly, we only have the upper bound O("�p), p � 6. The
best quantum algorithm known is based on phase es-
timation. In particular, we discretize the problem as in
the worst case and apply phase estimation to the unitary
matrix

ei�M" ;

where � is chosen appropriately so that the resulting phase
belongs to [0; 2�). We use a splitting formula to approxi-
mate the necessary powers of the matrix exponential. The
largest eigenvalue of�" isO("�2) and kqk1 � 1. This im-
plies that the resulting number of queries does not grow
exponentially with d.

Finally, there are a number of papers providing quan-
tum algorithms for eigenvalue approximation without car-
rying out a complete complexity analysis. Abrams and
Lloyd [2] have written an influential paper on eigenvalue

approximation of a quantum mechanical system evolving
with a given Hamiltonian. They point out that phase es-
timation, which requires the corresponding eigenvector
as part of its initial state, can also be used with an ap-
proximate eigenvector. Jaksch and Papageorgiou [36] give
a quantum algorithm which computes a good approxima-
tion of the eigenvector at low cost. Their method can be
generally applied to the solution of continuous Hermitian
eigenproblems on a discrete grid. It starts with a classically
obtained eigenvector for a problem discretized on a coarse
grid and constructs an approximate eigenvector on a fine
grid.

We describe this algorithm briefly for the case d D 1.
Suppose N D 2k and N0 D 2k0 are the number of points
in the fine and coarse grid, respectively. Given the eigen-
vector for the coarse grid jU (N0)i, we approximate the
eigenvector for the fine grid jU (N)i by

ˇ̌
Ũ (N)˛ D

ˇ̌
U (N0)

˛ � j0i C j1i
p
2

�˝(k�k0)
:

The effect of this transformation is to replicate the coordi-
nates of jU (N0)i2k�k0 times. The resulting approximation
is good enough in the sense that the success probability of
phase estimation with initial state jŨhi is greater than 1/2.

Szkopek et al. [64] use the algorithm of Jaksch and Pa-
pageorgiou in the approximation of low order eigenvalues
of a differential operator of order 2s in d dimensions. Their
paper provides an algorithm with cost polynomial in "�1

and generalizes the results of Abrams and Lloyd [2]. How-
ever, [64] does not carry out a complexity analysis but only
considers known classical algorithms in the worst case for
comparison.

Qubit Complexity

For the foreseeable future the number of qubits will be
a crucial computational resource. We give a general lower
bound on the qubit complexity of continuous problems.

Recall that in (1) we defined a quantum algorithm as

j f i D UTQ f UT�1Qf : : :U1Qf U0j 0i :

where j 0i and j f i are the initial and final state vectors,
respectively. They are column vectors of length 2� . The
query Qf , a 2� � 2� unitary matrix, depends on the values
of f at n � 2� deterministic points. That is

Qf D Qf ( f (x1); : : : ; f (xn)) :

It is important to note that in the standard model the evo-
lution is completely deterministic. The only probabilistic
element is in the measurement of the final state.
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For the qubit complexity (8) we have the following
lower bound

compqubitstd ("; S) D ˝
�
log compqueryclas (2"; S)


: (19)

Here S specifies the problem, see (4), and compqubitstd ("; S) is
the qubit complexity in the standard quantum setting. On
the right hand side compqueryclas ("; S) is the query complexity
on a classical computer in the worst case setting. See [77]
for details.

We provide an intuition about (19). Assume 2� func-
tion evaluations are needed to solve the problem specified
by S to within ". Note that � qubits are needed to generate
the Hilbert spaceH� of size 2� to store the evaluations.

Equation (19) can be interpreted as a certain limitation
of the standard quantum setting, which considers queries
using function evaluations at deterministic points. We will
show why this is a limitation and show we can do better.

Consider multivariate integration which was discussed
in Sect. “Integration”.We seek to approximate the solution
of

S( f ) D
Z

0;1]d
f (x)dx :

Assume our promise is f 2 F0 where

Fd D
n
f : [0; 1]d ! R j continuous

and j f (x)j � 1; x 2 [0; 1]d
o
:

For the moment let d D 1. We showed that with this
promise we cannot guarantee an "-approximation on
a classical computer with " < 1/2. That is,

compqueryclas ("; S) D 1 :

By (19)

compqubitstd ("; S) D 1 :

If the qubit complexity is infinite even for d D 1 its cer-
tainly infinite for general d. But we saw that if classical ran-
domization (Monte Carlo) is used

compqueryclas�ran("; S) D 	("�2) :

Thus we have identified a problem which is easy to
solve on a classical computer and is impossible to solve
on a quantum computer using the standard formulation of
a quantum algorithm (1). Our example motivates extend-
ing the notion of quantum algorithm by permitting ran-
domized queries. The quantum setting with randomized

queries was introduced by Woźniakowski [77]. The idea
of using randomized queries is not entirely new. Shor’s
algorithm [60] uses a special kind of randomized query,
namely,

Qx jxi D j jx modNi ;

with j D 0; : : : ;N � 1 and a random x from the set f2;
3; : : : ;N � 1g.

In our case, the randomization affects only the selec-
tion of sample points and the number of queries. It occurs
prior to the implementation of the queries and the execu-
tion of the quantum algorithm. In this extended setting,
we define a quantum algorithm as

j f ;!i D UT!Qf ;!UT!�1Qf ;! : : :U1Qf ;!U0j 0i; (20)

where ! is a random variable and

Qf ;! D Qf ;!( f (x1;!); : : : ; f (xn;!)) ;

and the x j;! are random points. The number of queries T!
and the points x j;! are chosen at random initially and then
remain fixed for the remainder of the computation. Note
that (20) is identical to (1) except for the introduction of
randomization. Randomized queries require that we mod-
ify the criterion (6) by which we measure the error of an
algorithm. One possibility is to consider the expected error
and another possibility is to consider the probabilistic er-
ror with respect to the random variable !. Both cases have
been considered in the literature [77] but we will avoid the
details here because they are rather technical.

A test of the new setting is whether it buys us anything.
We compare the qubit complexity of the standard and ran-
domized settings for integration and path integration.

Integration

Wemake the same promise as above, namely, f 2 Fd .

� Quantum setting with deterministic queries. We re-
mind the reader that

compquerystd (") D 1

compqubitstd (") D 1 :

� Quantum setting with randomized queries. Then [77]

compqueryran (") D 	
�
"�1



compqubitran (") D 	
�
log "�1


:

Therefore, there is infinite improvement in the ran-
domized quantum setting over the standard quantum
setting.
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Path Integration

� Quantum setting with deterministic queries. With an
appropriate promise it was shown [77] that

compquerystd (") D 	
�
"�1



compqubitstd (") D 	
�
"�2 log "�1


:

Thus, modulo the log factor, the qubit complexity of
path integration is a second degree polynomial in "�1.
That seems pretty good but we probably will not have
enough qubits for a long time to do new science, espe-
cially with error correction.

� Quantum setting with randomized queries. Then [77]

compqueryran (") D 	
�
"�1



compqubitran (") D 	
�
log "�1


:

Thus there is an exponential improvement in the ran-
domized quantum setting over the standard quantum
setting.

As the analogue of (19) we have the following lower
bound on the randomized qubit complexity [77]

compqubitran ("; S) D ˝
�
log compqueryclas�ran("; S)


; (21)

where compqueryclas�ran("; S) is the query complexity on a clas-
sical computer in the randomized setting.

Approximation

Approximating functions of d variables is a fundamental
and generally hard problem. Typically, the literature con-
siders the approximation of functions that belong to the
Sobolev spaceWr

p ([0; 1]d ) in the norm of Lq([0; 1]d ). The
condition r/d > 1/p ensures that functions in Wr

p ([0; 1]d )
are continuous, which is necessary for function values to
be well defined. Thus, when p D 1 the dimension d can
be arbitrarily large while the smoothness r can be fixed,
which cannot happen when p <1.

For p D 1 the problem suffers the curse of di-
mensionality in the worst and the randomized classical

QuantumAlgorithms and Complexity for Continuous Problems, Table 2
Query complexity of approximation

Worst case Randomized Quantum

1 � p < q �1, r/d � 2/p� 2/q "�dpq/(rpq�d(q�p)) "�dpq/(rpq�d(q�p)) "�d/r

1 � p < q �1, r/d < 2/p� 2/q "�dpq/(rpq�d(q�p)) "�dpq/(rpq�d(q�p)) "�dpq/(2rpq�2d(q�p))

1 � q � p �1 "�d/r "�d/r "�d/r

cases [49,71]. Recently, Heinrich [30] showed that quan-
tum computers do not offer any advantage relative to clas-
sical computers since the problem remains intractable in
the quantum setting.

For different values of the parameters p; q; r; d the
classical and quantum complexities are also known [30,
49,71]. In some cases quantum computers can provide
a roughly quadratic speedup over classical computers, but
there are also cases where the classical and quantum com-
plexities coincide. Table 2 summarizes the order of the
query complexity (up to polylog factors) of approximation
in the worst case, randomized and quantum setting, and is
based on a similar table in [30] describing error bounds.

Elliptic Partial Differential Equations

Elliptic partial differential equations have many important
applications and have been extensively studied in the lit-
erature, see [75] and the references therein. A simple ex-
ample is the Poisson equation, for which we want to find
a function u : ¯̋ ! R, that satisfies

��u(x) D f (x) ; x 2 ˝
u(x) D 0 ; x 2 @˝ ;

where˝ � Rd ,
More generally we consider elliptic partial differen-

tial equations of order 2m on a smooth bounded do-
main˝ � Rd with smooth coefficients and homogeneous
boundary conditions with the right hand side belonging to
Cr (˝) and the error measured in the L1 norm; see [32]
for details.

In the worst case the complexity is proportional to
"�d/r [75] and the problem is intractable. The randomized
complexity of this problemwas only recently studied along
with the quantum complexity by Heinrich [31,32]. In par-
ticular, the randomized query complexity (up to polylog
factors) is proportional to

"�maxfd/(rC2m); 2d/(2rCd)g ;

and the quantum query complexity is proportional to

"�maxfd/(rC2m); d/(rCd)g :
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Thus the quantum setting may provide a polynomial
speedup over the classical randomized setting but not al-
ways. Moreover, for fixed m and r and for d > 4m the
problem is intractable in all three settings.

Ordinary Differential Equations

In this section we consider the solution of a system of or-
dinary differential equations with initial conditions

z0(t) D f (z(t)); t 2 [a; b]; z(a) D � ;

where f : Rd ! Rd , z : [a; b]! Rd and � 2 Rd with
f (�) ¤ 0. For the right hand side function f D [ f1;
: : : ; fd ], where f j : Rd ! R, we assume that the f j belong
to the Hölder class Fr;˛

d , r C ˛ � 1. We seek to compute
a bounded function on the interval [a; b] that approxi-
mates the solution z.

Kacewicz [38] studied the classical worst case com-
plexity of this problem and found it to be proportional to
"�1/(rC˛). Recently he also studied the classical random-
ized and quantum complexity of the problem and derived
algorithms that yield upper bounds that from the lower
bounds by only an arbitrarily small positive parameter in
the exponent [39]. The resulting randomized and quan-
tum complexity bounds (up to polylog factors) are

O
�
"�1/(rC˛C1/2��)

and

O
�
"�1/(rC˛C1��) ;

where � 2 (0; 1) is arbitrarily small, respectively. Observe
that the randomized and quantum complexities (up to
polylog factors) satisfy

˝
�
"�1/(rC˛C1/2)

and

˝
�
"�1/(rC˛C1) ;

respectively. Even more recently, Heinrich and Milla [33]
showed that the upper bound for the randomized com-
plexity holds with � D 0, thereby establishing tight upper
and lower randomized complexity bounds, up to polylog
factors.

Once more, the quantum setting provides a polyno-
mial speedup over the classical setting.

Gradient Estimation

Approximating the gradient of a function f : Rd ! R
with accuracy " requires a minimum of d C 1 function

evaluations on a classical computer. Jordan [37] shows
how this can be done using a single query on a quantum
computer.

We present Jordan’s algorithm for the special case
where the function is a plane passing through the ori-
gin, i. e., f (x1; : : : ; xd ) D

Pd
jD1 a jx j , and is uniformly

bounded by 1. Then r f D (a1; : : : ; ad )T . Using a single
query and phase kickback we obtain the state

1
p
Nd

N�1X

j1D0

� � �

N�1X

jdD0

e2	 i f ( j1;:::; jd )j j1i � � � j jd i ;

where N is a power of 2. Equivalently, we have

1
p
Nd

N�1X

j1D0

� � �

N�1X

jdD0

e2	 i(a1 j1C���Cad jd )j j1i � � � j jd i :

This is equal to the state

1
p
N

N�1X

j1D0

e2	 i a1 j1 j j1i : : :
1
p
N

N�1X

jdD0

e2	 i ad jd j jd i :

We apply the Fourier transform to each of the d registers
and then measure each register in the computational basis
to obtain m1; : : : ;md . If aj can be represented with finitely
many bits and N is sufficiently large then mj/N D a j ,
j D 1; : : : ; d.

For functions with second order partial derivatives not
identically equal to zero the analysis is more complicated
and we refer the reader to [37] for the details.

Simulation of Quantum Systems
on QuantumComputers

So far this article has been devoted to work on algorithms
and complexity of problems where the query and qubit
complexities are known or have been studied. In a number
of cases, the classical complexity of these problems is also
known and we know the quantum computing speedup.

The notion that quantum systems could be simulated
more efficiently by quantum computers than by classi-
cal computers was first mentioned by Manin [44], see
also [45], and discussed thoroughly by Feynman [24].

There is a large and varied literature on simulation of
quantum systems on quantum computers. The focus in
these papers is typically on the cost of particular quan-
tum and classical algorithms without complexity analysis
and therefore without speedup results. To give the reader
a taste of this area we list some sample papers:

� Berry et al. [9] present an efficient quantum algorithm
for simulating the evolution of a sparse Hamiltonian.
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� Dawson, Eisert and Osborne [21] introduce a uni-
fied formulation of variational methods for simulat-
ing ground state properties of quantum many-body
systems.

� Morita and Nishimori [46] derive convergence condi-
tions for the quantum annealing algorithm.

� Brown, Clark, Chuang [13] establish limits of quantum
simulation when applied to specific problems.

� Chen, Yepez and Cory [15] report on the simulation of
Burgers equation as a type-II quantum computation.

� Paredes, Verstraete and Cirac [56] present an algo-
rithm that exploits quantum parallelism to simulate
randomness.

� Somma et al. [61] discuss what type of physical prob-
lems can be efficiently simulated on a quantum com-
puter which cannot be simulated on a Turing machine.

� Yepez [78] presents an efficient algorithm for the
many-body three-dimensional Dirac equation.

� Nielsen andChuang [48] discuss simulation of a variety
of quantum systems.

� Sornborger and Stewart [62] develop higher order
methods for simulations.

� Boghosian and Taylor [11] present algorithms for effi-
ciently simulating quantum mechanical systems.

� Zalka [79] shows that the time evolution of the wave
function of a quantum mechanical many particle sys-
tem can be simulated efficiently.

� Abrams and Lloyd [1] provide fast algorithms for sim-
ulating many-body Fermi systems.

� Wisner [76] provides two quantum many-body prob-
lems whose solution is intractable on a classical
computer.

Future Directions

The reason there is so much interest in quantum comput-
ers is to solve important problems fast. The belief is that we
will be able to solve scientific problems, and in particular
quantum mechanical systems, which cannot be solved on
a classical computer. That is, that quantum computation
will lead to new science.

Research consists of two major parts. The first is iden-
tification of important scientific problems with substan-
tial speedup. The second is the construction of machines
with sufficient number of qubits and long enough deco-
herence times to solve the problems identified in the first
part. Abrams and Lloyd [2] have argued that with 50 to 100
qubits we can solve interesting classically intractable prob-
lems from atomic physics. Of course this does not include
qubits needed for fault tolerant computation.

There are numerous important open questions. We
will limit ourselves here to some open questions regarding
the problems discussed in this article.

1. In Sect. “Path Integration” we reported big wins for the
qubit complexity for integration and path integration.
Are there big wins for other problems?

2. Are there problems for which we get big wins for query
complexity using randomized queries?

3. Are there tradeoffs between the query complexity and
the qubit complexity?

4. What are the classical and quantum complexities of ap-
proximating the solution of the Schrödinger equation
for a many-particle system? How do they it depend on
the number of particles?What is the quantum speedup?
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Classical limit The classical limit is the classical mechan-
ical problem which can be constructed from a given
quantum problem by some limiting procedure. Dur-
ing such a construction the classical limiting mani-
fold should be defined which plays the role of classical
phase space. As soon as quantum mechanics is more
general than classical mechanics, going to the classical
limit from a quantum problem is much more reason-
able than discussing possible quantizations of classical
theories [73].

Energy-momentummap In classical mechanics for any
problem which allows the existence of several integrals
of motion (typically energy and other integrals of-
ten named as momenta) the Energy-Momentum (EM)
map gives the correspondence between the phase space
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of the initial problem and the space of values of all in-
dependent integrals of motion. The energy-momen-
tum map introduces the natural foliation of the clas-
sical phase space into common levels of values of en-
ergy and momenta [13,35]. The image of the EM map
is the region of the space of possible values of integrals
of motion which includes regular and critical values.
The quantum analog of the image of the energy-mo-
mentum map is the joint spectrum of mutually com-
muting quantum observables.

Joint spectrum For each quantum problem a maximal
set of mutually commuting observables can be intro-
duced [16]. A set of quantum wave functions which
are mutual eigenfunctions of all these operators exists.
Each such eigenfunction is characterized by eigenval-
ues of all mutually commuting operators. The repre-
sentation of mutual eigenvalues of n commuting oper-
ators in the n-dimensional space gives the geometrical
visualization of the joint spectrum.

Monodromy In general, the monodromy characterizes
the evolution of some object after it makes a close path
around something. In classical Hamiltonian dynamics
the Hamiltonian monodromy describes for completely
integrable systems the evolution of the first homology
group of the regular fiber of the energy-momentum
map after a close path in the regular part of the base
space [13].
For a corresponding quantum problem the quantum
monodromy describes the modification of the local
structure of the joint spectrum after its propagation
along a close path going through a regular region of
the lattice.

Quantum bifurcation Qualitative modification of the
joint spectrum of the mutually commuting observ-
ables under the variation of some external (or inter-
nal) parameters and associated in the classical limit
with the classical bifurcation is named quantum bifur-
cation [59]. In other words the quantum bifurcation is
the manifestation of the classical bifurcation presented
in the classical dynamic system in the quantum version
of the same system.

Quantum-classical correspondence Starting from any
quantum problem the natural question consists of
defining the corresponding classical limit, i. e. the
classical dynamic variables forming the classical
phase space and the associated symplectic structure.
Whereas in simplest quantum problems defined in
terms of standard position and momentum operators
with commutation relation [qi ; p j] D i„ıi j , [qi ; qj]
D [pi ; p j] D 0 (i; j D 1 : : : n) the classical limit phase
space is the 2n-dimensional Euclidean space with stan-

dard symplectic structure on it, the topology of the
classical limit manifold in many other important for
physical applications cases can be rather non-triv-
ial [73,87].

Quantum phase transition Qualitative modifications of
the ground state of a quantum system occurring under
the variation of some external parameters at zero tem-
perature are named quantum phase transitions [65].
For finite particle systems the quantum phase transi-
tion can be considered as a quantum bifurcation [60].

Spontaneous symmetry breaking Qualitative modifica-
tion of the system of quantum states caused by per-
turbation which has the same symmetry as the ini-
tial problem. Local symmetry of solutions decreases
but the number of solutions increases. In the energy
spectra of finite particle systems the spontaneous sym-
metry breaking produces an increase of the “quaside-
generacy”, i. e. formation of clusters of quasi-degener-
ate levels whose multiplicity can be much higher than
the dimension of the irreducible representations of the
global symmetry group [51].

Symmetry breaking Qualitative changes in the proper-
ties (dynamical behavior, and in particular in the joint
spectrum) of quantum systems which are due tomodi-
fications of the global symmetry of the problem caused
by external (less symmetrical than original problem)
perturbation can be described as symmetry breaking
effects. Typical effects consist of splitting of degener-
ate energy levels classified initially according to irre-
ducible representation of the initial symmetry group
into less degenerate groups classified according to irre-
ducible representation of the subgroup (the symmetry
group of the perturbation) [47].

Definition of the Subject

Quantum bifurcations (QB) are qualitative phenomena
occurring in quantum systems under the variation of some
internal or external parameters. In order to make this def-
inition a little more precise we add the additional require-
ment: The qualitative modification of the “behavior” of
a quantum system can be described as QB if it consists
of the manifestation for the quantum system of the clas-
sical bifurcation presented in classical dynamic systems
which is the classical analog of the initial quantum system.
Quantum bifurcations are typical elementary steps lead-
ing from the simplest in some way effective Hamiltoni-
an to more complicated ones under the variation of ex-
ternal or internal parameters. As internal parameters one
may consider the values of exact or approximate integrals
of motion. The construction of an effective Hamiltonian



Quantum Bifurcations Q 7137

is typically based on the averaging and/or reduction pro-
cedure which results in the appearance of “good” quan-
tum numbers (or approximate integrals of motion). The
role of external parameters can be played by forces of ex-
ternal champs, phenomenological constants in the effec-
tive Hamiltonians, particle masses, etc. In order to limit
the very broad field of qualitative changes and of possible
quantum bifurcations in particular, we restrict ourselves
mainly to quantum systems whose classical limit is asso-
ciated with compact phase space and is nearly integrable.
This means that for quantum problems the set of mutually
commuting observables can be constructed within a rea-
sonable physical approximation almost everywhere at least
locally.

Quantum bifurcations are supposed to be universal
phenomena which appear in generic families of quantum
systems and explain how relatively simple behavior be-
comes complicated under the variation of some physical
parameters. To know these elementary bricks responsible
for increasing complexity of quantum systems under con-
trol parameter modifications is extremely important in or-
der to make the extrapolation to regimes unaccessible to
experimental study.

Introduction

In order to better understand the manifestations of quan-
tum bifurcations and their significance for concrete phys-
ical systems we start with the description of several sim-
ple model physical problems which exhibit in some sense
the simplest (but nevertheless) generic behavior. Let us
start with the harmonic oscillator. A one-dimensional har-
monic oscillator has an equidistant system of eigenval-
ues. All eigenvalues can be labeled by consecutive integer
quantum numbers which have the natural interpretation
in terms of the number of zeros of eigenfunctions. The
classical limit manifold (classical phase space) is a stan-
dard Euclidean 2-dimensional space with natural vari-
ables fp; qg. The classical Hamiltonian for the harmonic
oscillator is an example of a Morse-type function which
has only one stationary point p D q D 0 and all non-zero
energy levels of the Hamiltonian are topological circles. If
now we deform slightly the Hamiltonian in such a way that
its classical phase portrait remains topologically the same,
the spectrum of the quantum problem changes but it can
be globally described as a regular sequence of states num-
bered consecutively by one integer and such description
remains valid for any mass parameter value. Note, that for
this problem increasing mass means increasing quantum
state density and approaching classical behavior (classical
limit).

More serious modification of the harmonic oscilla-
tor can lead, for example, to creation of new stationary
points of the Hamiltonian. In classical theory this phe-
nomenon is known as fold bifurcation or fold catastro-
phe [3,31]. The phase portrait of the classical problem
changes qualitatively. As a function of energy the con-
stant level set of the Hamiltonian has different topologi-
cal structure (one circle, two circles, figure eight, circle and
a point, or simply point). The quantum version of the same
problem shows the existence of three different sequences
of states which become clearly visible in the limit of the
high density of states which can be reached by increasing
the mass value parameter [32]. Such qualitative modifi-
cation of the energy spectrum of the 1D-quantum Ham-
iltonian gives the simplest example of the phenomenon
which can be described as a quantum bifurcation. Figure 1
shows a schematic representation of quantum bifurcations
for a model system with one degree-of-freedom in parallel
in quantum and classical mechanics.

After looking for one simple examplewe can formulate
a more general question which concerns the appearance in
more general quantum systems of qualitative phenomena
which can be characterized as quantum bifurcations.

Quantum Bifurcations, Figure 1
Classical and quantum bifurcations for a one degree-of-freedom
system. Situations before (a,b,e) and after (c,d,f) the bifurcation
are shown. a Energymap for harmonic oscillator-type system. In-
verse images of each point are indicated. b Quantum state lat-
tice for harmonic oscillator-type system. c Energy map after the
bifurcation. Inverse images of each point are indicated. d Quan-
tum state lattice after bifurcation represented as composed of
three regular parts glued together. e Phaseportrait for harmonic
oscillator-type system. Inverse images are S1 (generic inverse im-
age) and S0 (inverse image for minimal energy value). f Phase
portrait after bifurcation
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Simplest Effective Hamiltonians

We turn now to several models which describe some spe-
cific classes of relatively simple real physical quantum
systems formed by a finite number of particles (atoms,
molecules, . . . ). Spectra of such quantum objects are stud-
ied nowadays with very high accuracy and this allows us to
compare the behavior predicted by quantum bifurcations
with the precise information about energy level structure
found, for example, from high-resolution molecular spec-
troscopy.

Typically, the intra-molecular dynamics can be split
into electronic, vibrational, and rotational ones due to im-
portant differences in characteristic energy excitations or
in time scales. The most classical is the rotational mo-
tion and probably due to that the quantum bifurcations
as a counterpart to classical bifurcations were first studied
for purely rotational problems [59,61].

Effective rotational Hamiltonians describe the inter-
nal structure of rotational multiplets formed by isolated
finite particle systems (atoms, molecules, nuclei) [36]. For
manymolecular systems in the ground electronic state any
electronic and vibrational excitations are much more en-
ergy consuming as compared with rotational excitations.
Thus, to study the molecular rotation the simplest physi-
cal assumption is to suppose that all electronic and all vi-
brational degrees-of-freedom are frozen. This means that
a set of quantum numbers is given which have the sense
of approximate integrals of motion specifying the char-
acter of vibrational and electronic motions in terms of
these “good” quantum numbers. At the same time for
a free molecule in the absence of any external fields due to
isotropy of the space the total angular momentum J and
its projection Jz on the laboratory fixed frame are strict
integrals of motion. Consequently, to describe the rota-
tional motion for fixed values of J and Jz it is sufficient
to analyze the effective problem with only one degree-of-
freedom. The dimension of classical phase space in this
case equals two and the two classical conjugate variables
are: the projection of the total angular momentum on the
body fixed frame and conjugate angle variable. The classi-
cal phase space is topologically a two-dimensional sphere,
S2. There is a one-to-one correspondence between the
points on a sphere and the orientation of the angular mo-
mentum in the body-fixed frame. Such a representation
gives a clear visualization of a classical rotational Hamil-
tonian as a function defined over a sphere [36,49].

In quantum mechanics the rotation of molecules is
traditionally described in terms of an effective rotational
Hamiltonian which is constructed as a series in rotational
operators Jx , Jy, Jz , the components of the total angular

momentum J. In a suitably chosen molecular fixed frame
the effective Hamiltonian has the form

Heff D AJ2x C BJ2yCCJ2z C
X

c˛ˇ� J˛x Jˇy J�z C� � � ; (1)

where A, B, C and c˛ˇ� are constants. To relate quan-
tum and classical pictures we note that J2 and energy
are integrals of Euler’s equations of motion for dynamic
variables Jx, Jy, Jz . The phase space of the classical ro-
tational problem with constant jJj is S2, the two-dimen-
sional sphere, and it can be parametrized with spherical
angles (�; �) in such a way that the points on S2 define the
orientation of J, i. e. the position of the axis and the direc-
tion of rotation. To get the classical interpretation of the
quantum Hamiltonian we introduce the classical analogs
of the operators Jx , Jy, Jz

J �!
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@
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sin � sin�
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p
J(J C 1) (2)

and consider the rotational energy as a function of the dy-
namical variables (�; �) and the parameter J.

Thus, for an effective rotational Hamiltonian the cor-
responding classical symbol is a function EJ(�; �) de-
fined over S2 and named usually the rotational energy sur-
face [36].

Taking into account the symmetry imposed by the ini-
tial problem and the topology of the phase space the sim-
plest rotational Hamiltonian can be constructed. In clas-
sical mechanics the simplest Hamiltonian can be defined
(using Morse theory [55,89]) as a Hamiltonian function
with the minimal possible number of non-degenerate sta-
tionary points compatible with the symmetry group ac-
tion of the classical phase space. Morse theory in the pres-
ence of symmetry (or equivariant Morse theory) implies
important restrictions on the number of minima, max-
ima, and saddle points. In the absence of symmetry the
simplest Morse type function on the S2 phase space has
one minimum and one maximum, as a consequence of
Morse inequalities. In the presence of non-trivial symme-
try group action the minimal number of stationary points
on the sphere increases. For example, many asymmet-
ric top molecules (possessing three different moment of
inertia of the equilibrium configuration) have D2h sym-
metry group [47]. This group includes rotations over �
around fx; y; zg axes, reflections in fxy; yz; zxg planes
and inversion as symmetry operations. Any D2h invari-
ant function on the sphere has at least six stationary points
(two equivalent minima, two equivalent maxima, and two
equivalent saddle points). This means that in quantum
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Quantum Bifurcations, Figure 2
a Schematic representation of the energy level structure for
asymmetric top molecule. Vertical axis corresponds to energy
variation. Quantum levels are classified by the symmetry group
of the asymmetric top. Two fold clusters at two ends of the ro-
tational multiplet are formed by states with different symmetry.
b Foliation of the classical phase space (S2 sphere) by constant
levels of the Hamiltonian given in the form of its Reeb graph.
Each point corresponds to a connected component of the con-
stant level set of the Hamiltonian (energy). c Geometric repre-
sentation of the constant energy sections

mechanics the asymmetric top has eigenvalueswhich form
two regular sequences of quasi-degenerate doublets with
the transition region between them. The correspondence
between the quantum spectrum and the structure of the
energy map for the classical problem is shown in Fig. 2.
Highly symmetrical molecules which have cubic symme-
try, for example, can be described by a simplest Morse-
type Hamiltonian with 26 stationary points (6 and 8 min-
ima/maxima and 12 saddle points). As a consequence, the
corresponding quantum Hamiltonian shows the presence
of six-fold and eight-fold quasi-degenerate clusters of ro-
tational levels.

As soon as the simplest classical Hamiltonian is char-
acterized by the appropriate system of stationary points
the whole region of possible classical energy values (in
the case of dynamical systems with only one degree-of-
freedom the energy-momentum map becomes simply the
energy map) appears to be split into different regions cor-
responding to different dynamical regimes, i. e. to differ-
ent regions of the phase portrait foliated by topologically
non-equivalent systems of classical trajectories. Accord-
ingly, the energy spectrum of the corresponding quantum
Hamiltonian can be qualitatively described as formed by

regular sequences of states within each region of the clas-
sical energy map.

Quantum bifurcations are universal phenomena
which lead to a new organization of the energy spec-
trum into qualitatively different regions in accordance
with corresponding qualitative modifications of the clas-
sical energy-momentum map under the variation of some
control parameter.

Simplest Hamiltonians
for Two Degree-of-Freedom Systems

When the quantum system has two or larger number of
degrees-of-freedom the simplest dynamical regimes often
correspond in classical mechanics to a quasi-regular dy-
namics which can be reasonably well approximated by an
integrable model. The integrable model in classical me-
chanics can be constructed by normalizing the Hamilto-
nian and by passing to so-called normal forms [2,49]. The
quantum counterpart of normalization is the construction
of a mutually commuting set of operators which should
not be mistaken with quantization of systems in normal
form. Corresponding eigenvalues can be used as “good”
quantum numbers to label quantum states. A joint spec-
trum of mutually commuting operators corresponds to
the image of the energy-momentum map for the classical
completely integrable dynamical problem. In this context
the question about quantum bifurcations first of all leads
to the question about qualitative classification of the joint
spectra of mutually commuting operators. To answer this
question we need to start with the qualitative description
of foliations of the total phase space of the classical prob-
lem by common levels of integrals of motion which are
mutually in involution [2,7]. One needs to distinguish the
regular and the singular values of the energy-momentum
map. For Hamiltonian systems the inverse images of the
regular values are regular tori (one or several) [2]. A lot
of different singularities are possible. In classical mechan-
ics different levels of the classifications are studied in de-
tail [7]. The diagram which represents the image of the
classical EM map together with its stratification into reg-
ular and critical values is named the bifurcation diagram.
The origin of such a name is due to the fact that the val-
ues of integrals of motion can be considered as control pa-
rameters for the phase portraits (inverse images of the EM
map) of the reduced systems.

For quantum problems the analog of the classical strat-
ification of the EMmap for integrable systems is the split-
ting of the joint spectrum of several commuting observ-
ables into regions formed by regular lattices of joint eigen-
values. Any local simply connected neighborhood of a reg-
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Quantum Bifurcations, Figure 3
Joint spectrum of two commuting operators together with the
image of the classical EM map for the resonant 1 : (�1) oscil-
lator given by (3),(4). Quantum monodromy is seen as a result
of transportation of the elementary cell of the quantum lattice
along a close path through a non simply connected region of the
regular part of the image of the EMmap. Taken from [58]

ular point of the lattice can be deformed into part of the
regular Zn lattice of integers. This means that local quan-
tum numbers can be consistently introduced to label states
of the joint spectrum. If the regular region is not simply
connected it still can be characterized locally by a set of
“good” quantum numbers. At the same time this is impos-
sible globally. Likewise in classical mechanics the Ham-
iltonian monodromy is the simplest obstruction to the
existence of the global action-angle variables [17,57], in
quantum mechanics the analog notion of quantum mon-

Quantum Bifurcations, Figure 4
Two chart atlas which covers the quantum lattice of the 1 : (�1) resonant oscillator system represented in Fig. 3. Top plots show
the choice of basis cells and the gluing map between the charts. Bottom plots show the transport of the elementary cell (dark gray
quadrangles) in each chart. Central bottom panel shows closed path� and its quantum realization (black dots) leading to non-trivial
monodromy (compare with Fig. 3). Taken from [58]

odromy [14,34,68,80] characterizes the global non-trivial-
ity of the regular part of the lattice of joint eigenvalues.
Figure 3 demonstrates the effect of the presence of a clas-
sical singularity (isolated focus-focus point) on the global
properties of the quantum lattice formed by joint eigenval-
ues of two commuting operators for a simple problemwith
two degrees-of-freedom, which is essentially the 1 : (�1)
resonant oscillator [58]. Two integrals of motions in this
example are chosen as

f1 D
1
2
�
p21 C q21


�

1
2
�
p22 C q22


; (3)

f2 D p1q2 C p2q1 C
1
4
�
p21 C q21 C p22 C q22

2
: (4)

Locally in any simply connected region which does not
include the classical singularity of the EM map situated
at f1 D f2 D 0, the joint spectrum can be smoothly de-
formed to the regular Z2 lattice [58,90]. Such lattices are
shown, for example, in Fig. 4. If somebody wants to use
only one chart to label states, it is necessary to take care
in respect of the multivaluedness of such a representation.
There are two possibilities:

(i) One makes a cut and maps the quantum lattice to
a regular Z2 lattice with an appropriate solid angle re-
moved from it (see Fig. 5 [58,68,90]). Points on the
boundary of such a cut should be identified and a spe-
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Quantum Bifurcations, Figure 5
Construction of the 1 : (�1) lattice defect starting from the reg-
ular Z2 lattice. The solid angle is removed from the regular Z2

lattice and points on the so-obtained boundary are identified
by vertical shifting.Dark gray quadrangles show the evolution of
an elementary lattice cell along a closed path around the defect
point. Taken from [58]

Quantum Bifurcations, Figure 6
Representation of the quantum joint spectrum for the “Mexican
hat” potential V(r) D ar4 � br2 with the “cut” along the eigen-
ray. For such a cut the left and the right limits at the cut give the
same values of actions (good quantumnumbers) but the lines of
constant values of actions exhibit a “kink” at the cut (the discon-
tinuity of the first derivative)

cial matching rule explaining how to cross the path
should be introduced. Similar constructions are quite
popular in solid state physics in order to represent
defects of lattices, like dislocations, disclinations, etc.
We just note that the “monodromy defect” introduced
in such a way is different from standard construction
for dislocation and disclination defects [45,50]. The
inverse procedure of the construction of the “mon-
odromy defect” [90] from a regular lattice is repre-
sented in Fig. 5. Let us note that the width of the solid
angle removed depends on the direction of the cut and

the direction of the cut itself can be chosen in an am-
biguous way.

(ii) An alternative possibility is to make a cut in such
a way that the width of the removed angle becomes
equal to zero. For focus-focus singularities one such
direction always exists and is named an eigenray by
Symington [75]. The same construction is used in
some physical papers [10,11,85]. The inconvenience
of such a procedure is the appearance of discontinu-
ity of the slope of the constant action (quantum num-
ber) line at the cut, whereas the values of actions them-
selves are continued (see Fig. 6). This gives the wrong
impression that this eigenray is associated with some
special non-regular behavior of the initial problem,
whereas there is no singularity except at one focus-
focus point.

Bifurcations and Symmetry

The general mathematical answer about the possible qual-
itative modifications of a system of stationary points of
functions depending on some control parameters can be
found in bifurcation (or catastrophe) theory [3,31,33]. It
is important that the answer depends on the number of
control parameters and on the symmetry. Very simple
classification of possible typical bifurcations of stationary
points of a one-parameter family of functions under pres-
ence of symmetry can be formulated for dynamical sys-
tems with one degree-of-freedom. The situation is partic-
ularly simple because the phase space is two-dimensional
and the complete list of local symmetry groups (which are
the stabilizers of stationary points) includes only 2D-point
groups [84]. It should be noted that the global symmetry
of the problem can be larger than the local symmetry of
the bifurcating stationary points. In such a case the bifur-
cations occur simultaneously for all points forming one
orbit of the global symmetry group [51,52]. We describe
briefly here (see Table 1) the classification of the bifurca-
tions of stationary points in the presence of symmetry for
families of functions depending on one parameter and as-
sociated quantum bifurcations [59,61]. Their notation in-
cludes the local symmetry group and several additional
indexes which specify creation/annihilation of stationary
points and the local or non-local character of the bifurca-
tion. The list of possible bifurcations includes:
C˙1 A non-symmetrical non-local bifurcation resulting in

the appearance (+) or disappearance (�) of a stable-
unstable pair of stationary points with the trivial local
symmetryC1. In the quantum problem this bifurcation
is associated with the appearance or disappearance of
a new regular sequence of states glued at its end with



7142 Q Quantum Bifurcations

Quantum Bifurcations, Table 1
Bifurcations in the presence of symmetry. Solid lines denote stable stationary points. Dashed lines denote unstable stationary points.
Numbers in parenthesis indicate the multiplicity of stationary points

the intermediate part of another regular sequence of
quantum states [32,77].

CL˙
2 A local bifurcation with the broken C2 local sym-
metry. This bifurcation results either in appearance of
a triple of points (two equivalent stable points with C1
local symmetry and one unstable point with C2 local
symmetry) instead of one stable point with C2 sym-
metry, or in inverse transformation. The number of
stationary points in this bifurcation increases or de-
creases by two. For the quantum problem the result
is the transformation of a local part of a regular se-
quence of states into one sequence of quasi-degenerate
doublets.

CN˙
2 A non-local bifurcation with the broken C2 local
symmetry. This bifurcation results in appearance (+)
or disappearance (�) of two new unstable points with
broken C2 symmetry and simultaneous transforma-
tion of the initially stable (for +) or unstable (for �)
stationary point into an unstable/stable one. The num-
ber of stationary points in this bifurcation increases or
decreases by two. For the quantum problem thismeans
the appearance of a new regular sequence of states near
the separatrix between two different regular regions.

CN
n (n D 3; 4) A non-local bifurcation corresponding to
passage of n unstable stationary points through a sta-
ble stationary point with Cn local symmetry which is
accompanied with the minimum$maximum change
for a stable point with the Cn local symmetry. The
number of stationary points remains the same. For
the quantum problem this bifurcation corresponds to
transformation of the increased sequence of energy
levels into a decreased sequence.

CL˙
n (n � 4) A local bifurcation which results in appear-
ance (+) or disappearance (�) of n stable and n un-
stable stationary points with the broken Cn symmetry
and a simultaneous minimum$maximum change of
a stable point with the Cn local symmetry. The num-
ber of stationary points increases or decreases by 2n. In
the quantum problem after bifurcation a new sequence
of n-times quasi-degenerate levels appears/disappears.

Universal quantum Hamiltonians which describe the
qualitative modification of the quantum energy level sys-
tem around the bifurcation point are given in [59,61].

The presence of symmetry makes it much easier to ob-
serve the manifestation of quantum bifurcations. Modi-
fication of the local symmetry of stable stationary points
results in the modification of the cluster structure of en-
ergy levels, i. e. the number and the symmetry types of
energy level forming quasi-degenerate groups of levels.
This phenomenon is essentially the spontaneous break-
ing of symmetry [51]. Several concrete molecular systems
which show the presence of quantum bifurcations in ro-
tational structure under rotational excitation are cited in
Table 2. Many other examples can be found in [9,23,59,
67,71,88,89,92,93] and references therein. In purely vi-
brational problems breaking dynamical SU(N) symme-
try of the isotrope harmonic oscillator till finite sym-
metry group results in formation of so-called non-lin-
ear normal modes [23,54] or quasimodes [1], or local
modes [9,25,39,40,43,46,48]. In the case of two degrees-
of-freedom the analysis of the vibrational problem can
be reduced to the analysis of the problem similar to the
rotational one [36,66] and all the results about possi-
ble types of bifurcations found for rotational problems
remain valid in the case of intra-molecular vibrational
dynamics.

Quantum Bifurcations, Table 2
Molecular examples of quantum bifurcations in the rotational
structure of individual vibrational components under the varia-
tion of the absolute value of angular momentum, J. Jc is the crit-
ical value corresponding to bifurcation

Molecule Component Jc Bifurcation type

SiH4 �2(C) 12 CNC
2

SnH4 �2(�) 10 CNC
2 ;CN

3 ;C
N
4 ;C

N�
2

CF4 �2(C) 50 CLC
4

H2Se j0i 20 CLC
2
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Imperfect Bifurcations

According to general results the possible types of bifur-
cations which are generically present (and persist un-
der small deformations) in a family of dynamical systems
strictly depend on the number of control parameters. In
the absence of symmetry only one bifurcation of station-
ary points is present for a one-parameter family of Morse-
type functions, namely the formation (annihilation) of two
new stationary points. This corresponds to saddle-node
bifurcation for one degree-of-freedom Hamiltonian sys-
tems. The presence of symmetry increases significantly the
number of possible bifurcations even for families with only
one parameter [31,33]. From the physical point-of-view it
is quite natural to study the effect of symmetry breaking on
the symmetry allowed bifurcation. Decreasing symmetry
naturally results in the modification of the allowed types
of bifurcations but at the same time it is quite clear that
at sufficient slight symmetry breaking perturbation the re-
sulting behavior of the system should be rather close to the
behavior of the original system with higher symmetry.

In the case of a small violation of symmetry the so-
called “imperfect bifurcations” can be observed. Imperfect
bifurcations, which are well known in the classical theory
of bifurcations [33] consist of the appearance of station-
ary points in the neighborhood of another stationary point
which does not change its stability. In some way one can
say that imperfect bifurcation mimics generic bifurcation
in the presence of higher symmetry by the special organi-
zation of several bifurcations which are generic in the pres-
ence of lower symmetry. Naturally quantum bifurcations
follow the same behavior under the symmetry breaking as
classical ones. Very simple and quite natural examples of

Quantum Bifurcations, Figure 7
Imperfect bifurcations. a Position x of stationary points as a function of control parameter � during a pitchfork bifurcation in the
presence of C2 local symmetry. b Modifications induced by small symmetry perturbation of lower symmetry. Solid line: Stable sta-
tionary points. Dashed lines: Unstable stationary points

imperfect quantumbifurcations were demonstrated on the
example of the rotational structure modifications under
increasing angular momentum [91]. The idea of appear-
ance of imperfect bifurcations is as follows. Let us suppose
that some symmetrical molecule demonstrates under the
variation of angular momentum a quantum rotational bi-
furcation allowed by symmetry. The origin of this bifur-
cation is due, say, to centrifugal distortion effects which
depend strongly on J but are not very sensitive to small
variation of masses even in the case of symmetry breaking
isotopic substitution. In such a case a slight modification
of the masses of one or several equivalent atoms breaks the
symmetry and this symmetry violation can be made very
weak due to the small ratio �M/M under isotope substi-
tution. In classical theory the effect of symmetry breaking
can be easily seen through the variation of the position of
stationary points with control parameter. For example, in-
stead of a pitchfork bifurcation which is typical for C2 lo-
cal symmetry, we get for the unsymmetrical problem (after
slight breaking of C2 symmetry) a smooth evolution of the
position of one stationary point and the appearance of two
new stationary points in fold catastrophe (see Fig. 7). In
associated quantum bifurcations the most important ef-
fect is the splitting of clusters. But one should be care-
ful with this interpretation because in quantum mechan-
ics of finite particle systems the clusters are always split
due to quantum mechanical tunneling between different
equivalent regions of localization of quantum wave func-
tions. Intercluster splitting increases rapidly approaching
the region of classical separatrix. The behavior of quan-
tum tunneling was studied extensively in relation to the
quantum breathers problem [6,29]. Systematic application
of quasi-classical methods to reproduce quantum energy
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level structure near the singularities of the energy-momen-
tum maps where exponentially small corrections are im-
portant is possible but requires special efforts (see for ex-
ample [12]) and we will not touch upon this problem here.

Organization of Bifurcations

The analysis of the quantum bifurcations in concrete ex-
amples of rotating molecules have shown that in some
cases the molecule undergoes several consecutive qualita-
tive changes which can be interpreted as a sequence of bi-
furcations which sometimes cannot even be separated into
elementary bifurcations for the real scale of the control pa-
rameter [89]. One can imagine in principle that successive
bifurcations lead to quantum chaos in analogy with clas-
sical dynamical systems where the typical scenario for the
transition to chaos is through a sequence of bifurcations.
Otherwise, the molecular examples were described with
effective Hamiltonians depending only on one degree-of-
freedom and the result of the sequence of bifurcations was
just the crossover of the rotational multiplets [64]. In some
sense such a sequence of bifurcations can be interpreted as
an imperfect bifurcation assuming initially higher dynam-
ical symmetry, like the continuous SO(3) group.

Later, a similar crossover phenomenon was found in
a quite different quantum problem, like the hydrogen
atom in external fields [24,53,72]. The general idea of such
organization of bifurcations is based on the existence of
two different limiting cases of dynamical regimes for the
same physical quantum system (often under presence of
the same symmetry group) which are qualitatively differ-
ent. For example, the number of stationary points, or their
stability differs. IfH1 andH2 are two corresponding effec-
tive Hamiltonians, the natural question is: Is it possible to
transform H1 into H2 by a generic perturbation depend-
ing on only one parameter? And if so, what is the minimal
number of bifurcations to go through?

The simplest quantum system for which such a ques-
tion becomes extremely natural is the hydrogen atom in
the presence of external static electric (F) andmagnetic (G)
fields. Two natural limits – the Stark effect in the electric
field and Zeeman effect in the magnetic field – show quite
different qualitative structure even in the extremely low
field limit [15,20,63,72,78]. Keeping a small field one can
go from one (Stark) limit to another (Zeeman) and this
transformation naturally goes through qualitatively differ-
ent regimes [24,53]. In spite of the fact that the hydro-
gen atom (even without spin and relativistic corrections)
is only a three degree-of-freedom system, the complete de-
scription of qualitatively different regimes in a small field
limit is still not done and remains an open problem [24].

An example of clearly seen qualitative modifications of
the quantum energy level system of the hydrogen atomun-
der the variation of F/G ratio of the strengths of two par-
allel electric and magnetic fields is shown in Fig. 8. The
calculations are done for a two degree-of-freedom system
after the normalization with respect to the global action.
In quantum mechanics language this means that only en-
ergy levels which belong to the same n-shell of the hy-
drogen atom are treated and the interaction with other n0

shells is taken into account only effectively. The limiting
classical phase space for this effective problem is the four-
dimensional space S2 � S2, which is the direct product
of two two-dimensional spheres. In the presence of axial
symmetry this problem is completely integrable and the
Hamiltonian and the angular momentum provide a com-
plete set of mutually commuting operators. Energies of
stationary points of classical Hamiltonian limit are shown
on the same Fig. 8 along with quantum levels. When one
of the characteristic frequencies goes through zero, the so-
called collapse phenomena occurs. Some other non-triv-
ial resonance relations between two frequencies are also
indicated. These resonances correspond to special orga-

Quantum Bifurcations, Figure 8
Reorganization of the internal structure of the n-multiplet of the
hydrogen atom in small parallel electric andmagnetic fields. En-
ergies of stationary points of the classical Hamiltonian (red solid
lines) are shown together with quantumenergy levels (blue solid
lines). The figure is done for n D 10 (there are n2 D 100 energy
levels forming this multiplet). As the ratio F/G of electric F and
magneticG fields varies this twodegree-of-freedomsystemgoes
through different zones associated with special resonance rela-
tions between two characteristic frequencies (shown by vertical
dashed lines). Taken from [24]
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nization of quantum energy levels. At the same time it
is not necessary here to go to joint spectrum representa-
tion in order to see the reorganization of stationary points
of the Hamiltonian function on S2 � S2 phase space un-
der the variation of the external control parameter F/G.
A more detailed treatment of qualitative features of the
energy level systems for the hydrogen atom in low fields
is given in [15,20,24].

BifurcationDiagrams for Two Degree-of-Freedom
Integrable Systems

Let us consider now the two degree-of-freedom integrable
system with compact phase space as a bit more complex
but still reasonably simple problem. Many examples of
such systems possess EM maps with the stratification of
the image formed by the regular part surrounded by the
singular boundary. The most naturally arising examples of
classical phase spaces, like S2 � S2, CP2, are of that type.
All internal points on the image of the EM map are regu-

Quantum Bifurcations, Figure 9
Typical images of the energy momentum map for completely
integrable Hamiltonian systems with two degrees-of-freedom
in the case of: a integer monodromy, b fractional monodromy,
c non-local monodromy, and d bidromy. Values in the light
shaded area lift to single 2-tori; values in the dark shaded area
lift to two 2-tori. Taken from [69]

Quantum Bifurcations, Figure 10
Two-dimensional singular fibers in the case of integrable Hamiltonian systems with two degrees-of-freedom (left to right): singular
torus, bitorus, pinched and curled tori. Singular torus corresponds to critical values in Fig. 9c, d (ends of bitoris line). Bitorus corre-
sponds to critical values in Fig. 9c, d, which belong to singular line (fusion of two components). Pinched torus corresponds to isolated
focus-focus singularity in Fig. 9a. Curled torus is associated with critical values at singular line in Fig. 9b (fractional monodromy).
Taken from [69]

lar in these cases. In practice, real physical problems, even
after necessary simplifications and approximations lead to
more complicated models. Some examples of fragments of
images of the EM map with internal singular points are
shown in Fig. 9. In classical mechanics the inverse images
of critical values are singular tori of different kinds. Some
of them are represented in Fig. 10. Inverse images of criti-
cal points situated on the boundary of the EM image have
lower dimension. They can be one-dimensional tori (S1-
circles), or zero-dimensional (points).

The natural question now is to describe typical generic
modifications of the Hamiltonian which lead to qualitative
modifications of the EMmap image in classical mechanics
and to associated modifications of the joint spectrum in
quantum mechanics.

The simplest classical bifurcation leading to modifica-
tion of the image of the EM map is the Hamiltonian Hopf
bifurcation [79]. It is associated with the following modi-
fication of the image of the EM map. The critical value of
the EM map situated on the boundary leaves the bound-
ary and enters the internal domain of regular values (see
Fig. 11). As a consequence, the toric fibration over the
closed path surrounding an isolated singularity is non-
trivial. Its non-triviality can be characterized by the Ham-
iltonian monodromy which describes the mapping from
the fundamental group of the base space into the first ho-
mology group of the regular fiber [18]. A typical pattern
of the joint spectrum around such a classical singularity
is shown in Fig. 3. The joint spectrum manifests the pres-
ence of quantum monodromy. Its interpretation in terms
of regular lattices is given in Figs. 4 and 5.

Taking into account additional terms of higher order
it is possible to distinguish different types of Hamiltonian
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Quantum Bifurcations, Figure 11
Qualitative modification of the image of the EM map due to
Hamiltonian Hopf bifurcation. Left: Simplest integrable toric fi-
bration over S2 � S2 classical phase space. A, B, C, D: Critical val-
ues corresponding to singular S0 fibers. Regular points on the
boundary correspond to S1 fibers. Regular internal points: Reg-
ular T2 fibers. Right: Appearance of an isolated critical value in-
side the field of regular values. Critical value B corresponds to
pinched torus shown in Fig. 10

Hopf bifurcations usually named as subcritical and super-
critical [19,79]. New qualitative modification, for exam-
ple, corresponds to transformation of an isolated singular
value of the EMmap into an “island”, i. e. the region of the
EM image filled by points whose inverse images consist
of two connected components. Integrable approximation
for vibrational motion in the LiCN molecule shows the
presence of such an island associated with the non-local
quantum monodromy (see Fig. 12) [41]. The monodromy

Quantum Bifurcations, Figure 12
Quantum joint spectrum for the quantum model problem with two degrees-of-freedom describing two vibrations in the LiCN
molecule. The non-local quantum monodromy is shown by the evolution of the elementary cell of the quantum lattice around the
singular line associated with gluing of two regular lattices corresponding in molecular language to two different isomers, LiCN and
LiNC. Classical limit (left) shows the possible deformation of isolated focus-focus singularity for pendulum to non-local island singu-
larity for LiNC model. In contrast to LiCN, the HCN model has an infinite island which cannot be surrounded by a close path. Taken
from [41]

naturally coincides with the quantum monodromy of iso-
lated focus-focus singularity which deforms continuously
into the islandmonodromy. It is interesting to note that in
molecule HCN which is rather similar to LiCN, the region
with two components in the inverse image of the EMmap
exists also but the monodromy cannot be defined due to
impossibility to go around the island [22].

In the quantum problem the presence of “standard”
quantum monodromy in the joint spectrum of two mutu-
ally commuting observables can be seen through the map-
ping of a locally regular part of the joint spectrum lat-
tice to an idealized Z2 lattice. Existence of local actions
for the classical problem which are defined almost every-
where and the multivaluedness of global actions from one
side and the quantum-classical correspondence from an-
other side allow the interpretation of the joint spectrum
with quantummonodromy as a regular lattice with an iso-
lated defect.

Recently, the generalization of the notion of quan-
tum (and classical) monodromy was suggested [21,58].
For quantum problems the idea is based on the possibility
to study instead of the complete lattice formed by the joint
spectrum only a sub-lattice of finite index. Such a trans-
formation allows one to eliminate certain “weak line sin-
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Quantum Bifurcations, Figure 13
Joint quantum spectrum for two-dimensional non-linear 1 : (�2) resonant oscillator (5),(6). The singular line is formed by critical
values whose inverse images are curled tori shown in Fig. 10. In order to get the unambiguous result of the propagation of the cell
of the quantum lattice along a closed path crossing the singular line, the elementary cell is doubled. Taken from [58]

Quantum Bifurcations, Figure 14
Representation of a latticewith 1 : 2 rational defect by cutting and gluing. Left: The elementary cell goes through cut in an ambiguous
way. The result depends on the place where the cell crosses the cut. Right: Double cell crosses the cut in an unambiguousway. Taken
from [58]

gularities” presented in the image of the EM map. The
resulting monodromy is named “fractional monodromy”
because for the elementary cell in the regular region the
formal transformation after a propagation along a close
path crossing “weak line singularities” turns out to be rep-
resented in a form of a matrix with fractional coefficients.

An example of quantum fractional monodromy can be
given with a 1 : (�2) resonant oscillator system possessing
two integrals of motion f 1, f 2 in involution:

f1 D
!

2
�
p21 C q21


�

2!
2
�
p22 C q22


C R1(q; p) ; (5)

f2 D Im
�
(q1 C ip1)2(q2 C ip2)

�
C R2(q; p) : (6)

The corresponding joint spectrum for the quantum prob-
lem is shown in Fig. 13. It can be represented as a regu-
lar Z2 lattice with a solid angle removed (see Fig. 14). The
main difference with the standard integer monodromy
representation is due to the fact that even after gluing two

sides of the cut we get the one-dimensional singular stra-
tum which can be neglected only after going to a sub-
lattice (to a sub-lattice of index 2 for 1 : 2 fractional sin-
gularity).

Another kind of generalization of the monodromy no-
tion is related to the appearance of multi-component in-
verse images for the EM maps. We have already men-
tioned such a possibility with the appearance of non-lo-
cal monodromy and Hamiltonian Hopf bifurcations (see
Fig. 12). But in this case two components of the inverse
image belong to different regular domains and cannot be
joined by a path going only through regular values. An-
other possibility is suggested in [69,70] and is explained
schematically in Fig. 15. This figure shows that the ar-
rangement of fibers can be done in such a way that one
connected component can be deformed into another con-
nected component along a path which goes only through
regular tori. The existence of a quantum joint spectrum
corresponding to such a classical picture was demon-
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a bc

b

Quantum Bifurcations, Figure 15
Schematic representation of the inverse images for a problem
with bidromy in the form of the unfolded surface. Each con-
nected component of the inverse image is represented as a sin-
gle point. The path b0 � a� b00 starts and ends at the same point
of the space of possible values of integrals of motion but it
starts at one connected component and ends at another one.
At the same time the path goes only through regular tori. Taken
from [70]

strated on the example of a very well-known model prob-
lem with three degrees-of-freedom: Three resonant oscil-
lators with 1 : 1 : 2 resonance, axial symmetry and with
small detuning between double degenerate and non-de-
generate modes [30,70]. The specific behavior of the joint
spectrum for this model can be characterized as self-over-
lapping of a regular lattice. The possibility to propagate the
initially chosen cell through a regular lattice from the re-
gion of self-overlapping of lattice back to the same region
but to another component was named “bidromy”. More
complicated construction for the same problem allows us
to introduce the “bipath” notion. The bipath starts at a reg-
ular point of the EM image, and crosses the singular line
by splitting itself into two components. Each component
belongs to its proper lattice in the self-overlapping region.
Two components of the path can go back through the reg-
ular region only and fuse together. The behavior of quan-
tum cells along a bipath is shown in Fig. 16. Providing
a rigorous mathematical description of such a construc-
tion is still an open problem. Although the original prob-
lem has three degrees-of-freedom, it is possible to con-
struct a model system with two degrees-of-freedom and
with similar properties.

Bifurcations of “QuantumBifurcationDiagrams”

We want now to stress some differences in the role of in-
ternal and external control parameters. From one point-
of-view a quantum problem, which corresponds in the
classical limit to a multidimensional integrable classical
model, possesses a joint spectrum qualitatively described
by a “quantum bifurcation diagram”. This diagram shows

Quantum Bifurcations, Figure 16
Joint quantum spectrum for problem with bidromy. Quantum
states are given by two numbers (energy, E, and polyad num-
ber, n) which are the eigenvalues of two mutually commuting
operators. Inside theOAB curvilinear triangle two regular lattices
are clearly seen. One can be continued smoothly through theOC
boundary whereas another continues through the BC boundary.
This means that the regular part of the whole lattice can be con-
sidered as a one self-overlapping regular lattice. The figure sug-
gests also the possibility to define the propagation of a double
cell along a “bipath” through the singular line BOwhich leads to
splitting of the cell into two elementary cells fusing at the end
into one cell defining in such a way the “bidromy” transforma-
tion associated with a bipath. Taken from [70]

that the joint spectrum is formed from several parts of reg-
ular lattices through a cutting and gluing procedure. Going
from one regular region to another is possible by crossing
singular lines. The parameter defined along such a path
can be treated as an internal control parameter. It is essen-
tially a function of values of integrals of motion. To cross
the singular line is equivalent to passing the quantum bi-
furcation for a family of reduced systems with a smaller
number of degrees of freedom.
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On the other side we can ask the following more gen-
eral question. What kinds of generic modifications of “bi-
furcation diagrams” are possible for a family of integrable
systems depending on some external parameters? Hamil-
tonianHopf bifurcation leading to the appearance of a new
isolated singular value and as a consequence appearance
of monodromy is just one of the possible effects of this
kind. Another possibility is the transformation of an iso-
lated focus-focus singular value into the island associated
with the presence of a second connected component of the
inverse image of the EM map. It is also possible that such
an island is born within the regular region of the EMmap.
In such a case naturally the monodromy transformation
associated with a closed path surrounding the so-obtained
island should be trivial (identity).

The boundary of the image of the EM map can also
undergo transformation which results in the appearance
of the region with two components in the inverse image
but, in contrast to the previous example of the appearance
of an island, these two components can be smoothly de-
formed one onto another along a continuous path going
only through regular values of the EM map. Examples of
all such modifications were studied on simple models in-
spired by concrete quantum molecular systems like the H
atom, CO2, LiCN molecules and so on [24,30,41].

Semi-QuantumLimit
and Reorganizationof Quantum Bands

Up to now we have discussed the qualitative modifications
of internal structures of certain groups of quantum lev-
els which are typically named bands. Their appearance is
physically quite clear in the adiabatic approximation. The
existence of fast and slow classical motions manifests it-
self in quantum mechanics through the formation of so-
called energy bands. The big energy difference between en-
ergies of different bands correspond to fast classical vari-
ables whereas small energy differences between energy lev-
els belonging to the same band correspond to classical slow
variables. Typical bands in simple quantum systems corre-
spond to vibrational structure of different electronic states,
rotational structure of different vibrational states, etc.

If now we have a quantum problem which shows the
presence of bands in its energy spectrum, the natural gen-
eralization consists of putting this quantum system in
a family, depending on one (or several) control parame-
ters. What are the generic qualitative modifications which
can be observed within such a family of systems when
control parameters vary? Apart from qualitative modifi-
cations of the internal structure of individual bands which
can be treated as the earlier discussed quantum bifurca-

Quantum Bifurcations, Figure 17
System of rovibrational energy levels of 13CF4 molecule repre-
sented schematically in E, J coordinates. The number of energy
levels in each clearly seen band is 2JC 1C ı, where ı is a small
integer which remains constant for isolated bands and changes
at band intersections. In the semi-quantum model ı is inter-
preted as the first Chern class, characterizing the non-triviality of
the vector bundle formed by eigenfunctions of the “fast” subsys-
tem over the classical phase space of the “slow” subsystem [27]

tions, another qualitative phenomenon is possible, namely
the redistribution of energy levels between bands or more
generally, the reorganization of bands under the variation
of some control parameters [8,26,28,62,68]. In fact this
phenomenon is very often observed in both the numeri-
cal simulations and the real experiments with molecular
systems exhibiting bands. A typical example of molecular
rovibrational energy levels classified according to their en-
ergy and angular momentum is shown in Fig. 17. It is im-
portant to note that the number of energy levels in bands
before and after their “intersection” changes.

The same phenomenon of the redistribution of en-
ergy levels between energy bands can be understood by
the example of a much simpler quantum system of two
coupled angularmomenta, say orbital angularmomentum
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and spin in the presence of a magnetic field interacting
only with spin [62,68].

H D
1 � �
S

Sz C
�

NS
(N � S) ; 0 � � � 1 : (7)

The Hamiltonian for such a system can be represented in
the form of a one-parameter family (7) having two natural
limits corresponding to uncoupled and coupled angular
momenta. The interpolation of eigenvalues between these
two limits is shown in Fig. 18 for different values of spin
quantum number, S D 1/2; 1; 3/2. The quantum number
of orbital momentum is taken to be N D 4. Although this
value is not much larger than the S values, the existence of
bands and their reorganization under the variation of the
external parameter � is clearly seen in the figure.

Although the detailed description of this reorganiza-
tion of bands will take us rather far away from the prin-
cipal subject it is important to note that in the simplest
situations there exists a very close relation between the re-
distribution phenomenon and the Hamiltonian Hopf bi-
furcations leading to the appearance of Hamiltonian mon-
odromy [81]. In the semi-quantum limit when part of the
dynamical variables are treated as purely classical and all
the rest as quantum, the description of the complete sys-
tem naturally leads to a fiber bundle construction [27].
The role of the base space is taken by the classical phase
space for classical variables. A set of quantum wave-func-
tions associated with one point of the base space forms
a complex fiber. As a whole the so-obtained vector bun-
dle with complex fibers can be topologically characterized
by its rank and Chern classes [56]. Chern classes are re-

Quantum Bifurcations, Figure 18
Rearrangement of energy levels between bands formodel Hamiltonian (7)with two, three, or four states for “fast” variable.Quantum
energy levels are shown by solid lines. Classical energies of stationary points for energy surfaces are shown by dashed lines. Taken
from [68]

lated to the number of quantum states in bands formed
due to quantum character of the total problem with re-
spect to “classical” variables. Modification of the number
of states in bands can occur only at band contact and is as-
sociated with the modification of Chern classes of the cor-
responding fiber bundle [26]. The simplest situation takes
place when the number of degrees of freedom associated
with classical variables is one. In this case only one topo-
logical invariant – the first Chern class is sufficient to char-
acterize the non-triviality of the fiber bundle and the dif-
ference in Chern classes is equal to the number of energy
levels redistributed between corresponding bands. More-
over, in the generic situation (in the absence of symmetry)
the typical behavior consists of the redistribution of only
one energy level between two bands. The generic phenom-
ena become more complicated with increasing the num-
ber of degrees of freedom for the classical part of vari-
ables. The model problem with two slow degrees of free-
dom (described in classical limit by the CP2 phase space)
and three quantum states was studied in [28]. A new qual-
itative phenomenon was found, namely, the modification
of the number of bands due to formation of topologically
coupled bands. Figure 19 shows the evolution of the sys-
tem of energy levels along with the variation of control
parameter . Three quantum bands (at  D 0) transform
into two bands (in the  D 1) limit. One of these bands
has rank one, i. e. it is associated with one quantum state.
Another has rank two. It is associated with two quantum
states. Both bands have non-trivial topology (non-trivial
Chern classes). Moreover, it is quite important that the
newly formed topologically coupled band of rank two can
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Quantum Bifurcations, Figure 19
Rearrangement of three bands into two topologically non-triv-
ially coupled bands. Example of a model with three electronic
states and vibrational structure of polyads formed by three
quasi-degenerate modes. At � D 0 three bands have each the
same number of states, namely 15. In the classical limit each ini-
tial band has rank one and trivial topology. At � D 1 there are
only two bands. One of them has rank 2 and non-trivial first and
second Chern classes. Taken from [28]

be split into two bands of rank one only if a coupling with
the third band is introduced.

The corresponding qualitative modifications of quan-
tum spectra can be considered as natural generalizations
of quantum bifurcations and probably should be treated as
topological bifurcations. Thus, the description of possible
“elementary” rearrangements of energy bands is a direct
consequence of topological restrictions imposed by a fiber
bundle structure of the studied problem.

It is interesting to mention here the general mathe-
matical problem of finding proper equivalence or better
to say correspondence between some construction made
over real numbers and their generalizations to complex
numbers and quaternions. This paradigm of complexifi-
cation and quaternization was discussed by Arnold [4,5]
on many different examples. The closest to the present
subject is the example of complexification of the Wigner–
Neumann non-crossing rule resulting in a quantum Hall
effect (in physical terms). In fact, the mathematical basis
of the quantum Hall effect is exactly the same fiber bun-
dle construction which explains the redistribution of en-
ergy levels between bands in the above-mentioned simple
quantum mechanical model.

Multiple Resonances and Quantum State Density

Rearrangement of quantum energy states between bands
is presented in the previous section as an example of

a generic qualitative phenomenon occurring under vari-
ation of a control parameter. One possible realization of
bands is the sequence of vibrational polyads formed by
a system of resonant vibrational modes indexed by the
polyad quantum number. In the classical picture this con-
struction corresponds to the system of oscillators reduced
with respect to the global action. The reduced classical
phase space is in such a case the weighted projective space.
In the case of particular 1 : 1 : : : : : 1 resonance the corre-
sponding reduced phase space is a normal complex projec-
tive space CPn . The specific resonance conditions impose
for a quantum problem specific conditions on the num-
bers of quantum states in polyads. In the simplest case of
harmonic oscillators with n1 : n2 : : : : : nk resonance the
numbers of states in polyads are given by the generating
function

g D
1

(1 � tn1 ) (1 � tn2 ) � � � (1 � tnk )
D
X

N

CN tN ; (8)

where N is the polyad quantum number. Numbers CN are
integers for integer N values, but they can be extended to
arbitrary N values and represented in the form of a quasi-
polynomial, i.e, a polynomial in N with coefficients being
a periodic function whose period equals the least common
multiplier of ni ; i D 1; : : : ; k. Moreover, the coefficients
of the polynomial can be expressed in terms of so-called
Todd polynomials which indicates the possibility of topo-
logical interpretation of such information [52,89].

Physical Applications and Generalizations

Themost clearly seen physical applications of quantum bi-
furcations is the qualitative modification of the rotational
multiplet structure under rotational excitation, i. e. under
the variation of the absolute value of the angular momen-
tum. This is related first of all with the experimental pos-
sibility to study high J multiplets (which are quite close
to the classical limit but nevertheless manifest their quan-
tum structure) and to the possibility to use symmetry ar-
guments, which allow one to distinguish clusters of states
before and after bifurcation just by counting the number
of states in the cluster, which depends on the order of
group of stabilizer. Nuclear rotation is another natural ex-
ample of quantum rotational bifurcations [60]. Again the
interest in corresponding qualitative modifications is due
to the fact that rotational bands are extremely well stud-
ied up to very high J values. But in contrast to molecu-
lar physics examples, in nuclear physics it mostly happens
that only ground states (for each value of J) are known.
Thus, one speaks more often about qualitative changes of
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the ground state (in the absence of temperature) named
quantum phase transitions [65].

Internal structure of vibrational polyads is less evi-
dent for experimental verifications of quantum bifurca-
tions, but it gives many topologically non-trivial examples
of classical phase spaces on which the families of Ham-
iltonians depending on parameters are defined [25,30,39,
42,44,46,66,76,77,86]. The main difficulty here is the small
number of quantum states in polyads accessible to exper-
imental observations. But this problem is extremely inter-
esting from the point-of-view of extrapolation of theoreti-
cal results to the region of higher energy (or higher polyad
quantum numbers) which is responsible as a rule for many
chemical intra-molecular processes. Certain molecules,
like CO2, or acetylene (C2H2) are extremely well studied
and a lot of highly accurate data exist. At the same time
the qualitative understanding of the organization of ex-
cited states even in these molecules is not yet completed
and new qualitative phenomena are just starting to be dis-
covered.

Among other physically interesting systems it is nec-
essary to mention model problems suggested to study the
behavior of Bose condensates or quantum qubits [37,38,
74,83,84]. These models have a mathematical form which
is quite similar to rotational and vibrational models. At the
same time their physical origin and the interpretation of
results is quite different. This is not an exception. For ex-
ample, the model Hamiltonian corresponding in the clas-
sical limit to aHamiltonian function defined over S2 classi-
cal phase space is relevant to rotational dynamics, descrip-
tion of internal structure of vibrational polyads formed by
two (quasi)degenerate modes, in particular to so-called lo-
cal-normal mode transition in molecules, interaction of
electromagnetic field with a two-level system, the Lipkin–
Meshkov–Glick model in nuclear physics, entanglement
of qubits, etc.

Future Directions

To date many new qualitative phenomena have been sug-
gested and observed in experimental and numerical stud-
ies due to intensive collaboration betweenmathematicians
working in dynamical system theory, classical mechanics,
complex geometry, topology, etc., and molecular physi-
cists using qualitativemathematical tools to classify behav-
ior of quantum systems and to extrapolate this behavior
from relatively simple (low energy regions) to more com-
plicated ones (high energy regions). Up to now the main
accent was placed on the study of the qualitative features
of isolated time-independent molecular systems. Specific
patterns formed by energy eigenvalues and by common

eigenvalues of several mutually commuting observables
were the principal subject of study. Existence of qualita-
tively different dynamical regimes for time-independent
problems at different values of exact or approximate inte-
grals of motion were clearly demonstrated. Many of these
new qualitative features and phenomena are supposed to
be generic and universal although their rigorous mathe-
matical formulation and description is still absent.

On the other side, the analysis of the time-dependent
processes should be developed. This step is essential in
order to realize at the level of quantum micro-systems
the transformations associated with the qualitative mod-
ifications of dynamical regimes and to control such time-
dependent processes as elementary reactions, information
data storage, and so on. From this global perspective the
main problem of the future development is to support the
adequate mathematical formulation of qualitative meth-
ods and to improve our understanding of qualitative mod-
ifications occurring in quantummicro-systems in order to
use them as real micro-devices.
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Glossary

Configuration The state of all cells at a given point in
time.

Neighborhood All cells with respect to a given cell that
can affect this cell’s state at the next time step. A neigh-
borhood always contains a finite number of cells.

Space-homogeneous The transition function / update ta-
ble is the same for each cell.

Time-homogeneous The transition function / update ta-
ble is time-independent.
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Update table Takes the current state of a cell and its
neighborhood as an argument and returns the cell’s
state at the next time step.

Schrödinger picture Time evolution is represented by
a quantum state evolving in time according to a time-
independent unitary operator acting on it.

Heisenberg picture Time evolution is represented by ob-
servables (elements of an operator algebra) evolving in
time according to a unitary operator acting on them.

BQP complexity class Bounded error, quantum proba-
bilistic, the class of decision problems solvable by
a quantum computer in polynomial time with an er-
ror probability of at most 1/3.

QMA complexity class Quantum Merlin–Arthur, the
class of decision problems such that a “yes” answer
can be verified by a 1-message quantum interactive
proof (verifiable in BQP).

QuantumTuring machine A quantum version of a Tur-
ing machine – an abstract computational model able
to compute any computable sequence.

Swap operation The one-qubit unitary gateU D
�
0 1
1 0

�

Hadamard gate The one-qubit unitary gate

U D
1
p
2

�
1 1
1 �1

�

Phase gate The one-qubit unitary gate U D
�
1 0
0 ei�

�

Pauli operator The three Pauli operators are

�x D

�
0 1
1 0

�
; �y D

�
0 �i
i 0

�
; �z D

�
1 0
0 �1

�

Qubit 2-state quantum system, representable as vector
a j0i C b j1i in complex space with a2 C b2 D 1.

Definition of the Subject

Quantum cellular automata (QCA) are a generalization of
(classical) cellular automata (CA) and in particular of re-
versible CA. The latter are reviewed shortly. An overview
is given over early attempts by various authors to define
one-dimensional QCA. These turned out to have serious
shortcomings which are discussed as well. Various propos-
als subsequently put forward by a number of authors for
a general definition of one- and higher-dimensional QCA
are reviewed and their properties such as universality and
reversibility are discussed.

Quantum cellular automata (QCA) are a quantization
of classical cellular automata (CA), d-dimensional arrays

of cells with a finite-dimensional state space and a lo-
cal, spatially-homogeneous, discrete-time update rule. For
QCA each cell is a finite-dimensional quantum system and
the update rule is unitary. CA as well as some versions
of QCA have been shown to be computationally univer-
sal. Apart from a theoretical interest in a quantized ver-
sion of CA, QCA are a natural framework for what is most
likely going to be the first application of quantum comput-
ers – the simulation of quantum physical systems. In par-
ticular, QCA are capable of simulating quantum dynami-
cal systems whose dynamics are uncomputable by classi-
cal means. QCA are now considered one of the standard
models of quantum computation next to quantum circuits
and various types of measurement-based quantum com-
putational models1. Unlike their classical counterpart, an
axiomatic, all-encompassing definition of (higher-dimen-
sional) QCA is still missing.

Introduction

Automata theory is the study of abstract computing de-
vices and the class of functions they can perform on
their inputs. The original concept of cellular automata is
most strongly associated with John von Neumann (�1903,
†1957), a Hungarianmathematicianwhomademajor con-
tributions to a vast range of fields including quantum me-
chanics, computer science, functional analysis and many
others. According to Burks, an assistant of von Neu-
mann, [45] von Neumann had posed the fundamental
questions: “What kind of logical organization is sufficient
for an automaton to reproduce itself?”. It was Stanislav
Ulam who suggested to use the framework of cellular au-
tomata to answer this question. In 1966 von Neumann
presented a detailed analysis of the above question in his
book Theory of Self-Reproducing Automata [45].

Thus, von Neumann initiated the field of cellular au-
tomata. He also made central contributions to the mathe-
matical foundations of quantummechanics and, in a sense
vonNeumann’s quantum logic ideas were an early attempt
at defining a computational model of physics. But he did
not pursue this, and did not go in the directions that have
led to modern ideas of quantum computing in general or
quantum cellular automata in particular.

The idea of quantum computation is generally at-
tributed to Feynman who, in his now famous lecture in
1981, proposed a computational scheme based on quan-
tum mechanical laws [19]. A contemporary paper by Be-
nioff contains the first proposal of a quantum Turing
machine [6]. The general idea was to devise a computa-

1For details on these and other aspects of quantum computation
see the article by Kendon in this Encyclopedia.
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tional device based on and exploiting quantum phenom-
ena that would outperform any classical computational
device. These first proposals were sequentially operating
quantum mechanical machines imitating the logical oper-
ations of classical digital computation. The idea of paral-
lelizing the operations was found in classical cellular au-
tomata. However, how to translate cellular automata into
a quantum mechanical framework turned out not to be
trivial. And to a certain extent how to do this in general
remains an open question until today.

The study of quantum cellular automata (QCA)
started with the work of Grössing and Zeilinger who
coined the term QCA and provided a first definition [21].
Watrous developed a different model of QCA [46]. His
work lead to further studies by several groups [16,17,18].
Independently of this, Margolus developed a paralleliz-
able quantum computational architecture building on
Feynman’s original ideas [26]. For various reasons to be
discussed below, none of these early proposals turned
out to be physical. The study of QCA gained new mo-
mentum with the work by Richter, Schumacher, and
Werner [36,37] and others [3,4,34] who avoided unphys-
ical behavior allowed by the early proposals [4,37]. It is
important to notice that in spite of the over two-decade
long history of QCA there is no single agreed-upon defi-
nition of QCA, in particular of higher-dimensional QCA.
Nevertheless, many useful properties have been shown for
the various models. Most importantly, quite a few mod-
els were shown to be computationally universal, i. e. they
can simulate any quantum Turing machine and any quan-
tum circuit efficiently [16,34,35,38,46]. Very recently, their
ability to generate and transport entanglement has been il-
lustrated [14].

A comment is in order on a class of models which is
often labeled as QCA but in fact are classical cellular au-
tomata implemented in quantum mechanical structures.
They do not exploit quantum effects for the actual compu-
tation. To make this distinction clear they are now called
quantum-dot QCA. These types of QCA will not be dis-
cussed here.

Cellular Automata

Definition (Cellular Automata) A cellular automaton
(CA) is a 4-tuple (L; ˙;N ; f ) consisting of (1) a d-dimen-
sional lattice of cells L indexed i 2 Zd , (2) a finite set of
states ˙ , (3) a finite neighborhood schemeN � Zd , and
(4) a local transition function f : ˙N ! ˙ .

A CA is discrete in time and space. It is space and time
homogeneous if at each time step the same transition func-

Quantum Cellular Automata, Table 1
Update table for CA rule ‘110’ (the second row is the decimal
number ‘110’ in binary notation)

M110 D
111
0

110
1

101
1

100
0

011
1

010
1

001
1

000
0

tion, or update rule, is applied simultaneously to all cells.
The update rule is local if for a given lattice L and lattice
site x; f (x) is localized in xCN D fxCnjx 2 L; n 2N g,
whereN is the neighborhood scheme of the CA. In addi-
tion to the locality constraint the local transition function f
must generate a unique global transition function map-
ping a lattice configuration Ct 2 ˙L at time t to a new
configuration CtC1 at time t C 1 : F : ˙L ! ˙L. Most
CA are defined on infinite lattices or, alternatively, on fi-
nite lattices with periodic boundary conditions. For finite
CA only a finite number of cells is not in a quiescent state,
i. e. a state that is not effected by the update.

Themost studied CA are the so-called elementaryCA –
1-dimensional lattices with a set of two states and a neigh-
borhood scheme of radius 1 (nearest-neighbor interaction).
i. e. the state of a cell at point x at time t C 1 only de-
pends on the state of cells x � 1; x, and x C 1 at time t.
There are 256 such elementary CA, easily enumerated us-
ing a scheme invented by Wolfram [48]. As an example
and for later reference, the update table of rule 110 is given
in Table 1. CA with update rule ‘110’ have been shown to
be computationally universal, i. e. they can simulate any
Turing machine in polynomial time [15].

A possible approach to constructing a QCA would be
to simply “quantize” a CA by rendering the update rule
unitary. There are two problems with this approach. One
is, that applying the same unitary to each cell does not
yield a well-defined global transition function nor nec-
essarily a unitary one. The second problem is the syn-
chronous update of all cells. “In practice”, the synchronous
update of, say, an elementary CA can be achieved by stor-
ing the current configuration in a temporary register, then
update all cells with odd index in the original CA, up-
date all cells with even index in the register and finally
splice the updated cells together to obtain the original CA
at the next time step. Quantum states, however, cannot
be copied in general due to the so-called no-cloning the-
orem [49]. Thus, parallel update of a QCA in this way is
not possible. Sequential update on the other hand leads to
either an infinite number of time steps for each update or
inconsistencies at the boundaries. One solution is a par-
titioning scheme as it is used in the construction of re-
versible CA.
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Reversible Cellular Automata

Definition (Reversible CA) A CA is said to be reversible
if for every current configuration there is exactly one pre-
vious configuration.

The global transition function F of a reversible CA is bi-
jective. In general, CA are not reversible. Only 16 out
of the 256 elementary CA rules are reversible. However,
one can construct a reversible CA using a partitioning
scheme developed by Toffoli and Margolus for 2-dimen-
sional CA [40].

Consider a 2-dimensional CA with nearest neighbor-
hood schemeN D fx 2 Z2j8jxi j � 1g. In the partition-
ing scheme introduced by Toffoli andMargolus each block
of 2 � 2 cells forms a unit cube � such that the even
translates �C 2x with x 2 Z2 and the odd translates
�C 1C 2x, respectively, form a partition of the lattice,
see Fig. 1. The update rule of a partitioned CA takes as in-
put an entire block of cells and outputs the updated state
of the entire block. The rule is then applied alternatingly
to the even and to the odd translates. The Margolus par-
titioning scheme is easily extended to d-dimensional lat-
tices. A generalized Margolus scheme was introduced by
Schumacher and Werner [37]. It allows for different cell
sizes in the intermediate step.

Quantum Cellular Automata, Figure 1
Even (solid lines) and odd (dashed lines) of a Margolus partition-
ing scheme in d D 2 dimensions using blocks of size 2� 2. For
each partition one block is shown shaded. Update rules are ap-
plied alternatingly to the solid and dashed partition

A partitioned CA is then a CA with a partitioning
scheme such that the set of cells are partitioned in some
periodic way: Every cell belongs to exactly one block, and
any two blocks are connected by a lattice translation. Such
a CA is neither time homogeneous nor space homoge-
neous anymore, but periodic in time and space. As long
as the rule for evolving each block is reversible, the entire
automaton will be reversible.

Early Proposals

Grössing and Zeilinger were the first to coin the term and
formalize a QCA [21]. In the Schrödinger picture of quan-
tum mechanics the state of a system at some time t is de-
scribed by a state vector j ti in Hilbert spaceH . The state
vector evolves unitarily,

j tC1i D Uj ti : (1)

U is a unitary operator, i. e. UU� D 1, with the complex
conjugate U� and the identity matrix 1. If fj�iig is a com-
putational basis of the Hilbert spaceH any state j i 2H
can be written as a superposition

P
j�i i

ci j�ii, with coeffi-
cients ci 2 C and

P
i ci c

�
i D 1. The QCA constructed by

Grössing and Zeilinger is an infinite 1-dimensional lattice
where at time t lattice site i is assigned the complex am-
plitude ci of state j ti. The update rule is given by unitary
operator U.

Definition (Grössing–Zeilinger QCA) A Grössing–
Zeilinger QCA is a 3-tuple (L;H ;U) which consists of (1)
an infinite 1-dimensional lattice L � Z representing basis
states of (2) a Hilbert space H with basis set fj�iig, and
(3) a band-diagonal unitary operator U.

Band-diagonality of U corresponds to a locality condition.
It turns out that there is no Grössing–Zeilinger QCA with
nearest-neighbor interaction and nontrivial dynamics. In
fact, later on, Meyer showed more generally that “in one
dimension there exists no nontrivial homogeneous, local,
scalar QCA. More explicitly, every band r-diagonal unitary
matrix U which commutes with the one-step translation
matrix T is also a translation matrix Tk for some k 2 Z,
times a phase” [27].

Grössing and Zeilinger also introduced QCA where
the unitarity constraint is relaxed to only approximate uni-
tarity. After each update the configuration can be normal-
ized which effectively causes non-local interactions.

The properties of Grössing–Zeilinger QCA were stud-
ied by Grössing and co-workers in some more detail in
following years, see [20] and references therein. This pi-
oneering definition of QCA, however, was not studied
much further, mostly because the “non-local” behavior
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renders the Grössing–Zeilinger definition non-physical. In
addition, it has little in common with the concepts de-
veloped in quantum computation later on. The Grössing-
Zeilinger definition really concerns what one would call
today a quantum random walk (for further details see the
review by Kempe [23]).

The first model of QCA researched in depth was that
introduced by Watrous [46], whose ideas where further
explored by van Dam [16], Dürr, LêThanh, and San-
tha [17,18], and Arrighi [2]. A Watrous-QCA is defined
over an infinite 1-dimensional lattice, a finite set of states
including a quiescent state. The transition function maps
a neighborhood of cells to a single quantum state instanta-
neously and simultaneously.

Definition (Watrous-QCA) AWatrous-QCA is a 4-tuple
(L; ˙;N ; f ) which consists of (1) a 1-dimensional lattice
L � Z, (2) a finite set of cell states ˙ including a quies-
cent state ", (3) a finite neighborhood schemeN , and (4)
a local transition function f : ˙N !H˙ .

Here, H˙ denotes the Hilbert space spanned by the cell
states ˙ . This model can be viewed as a direct quantiza-
tion of a CA where the set of possible configurations of the
CA is extended to include all linear superpositions of the
classical cell configurations, and the local transition func-
tion now maps the cell configurations of a given neighbor-
hood to a quantum state. One cell is labeled “accept” cell.
The quiescent state is used to allow only a finite number of
states to be active and renders the lattice effectively finite.
This is crucial to avoid an infinite product of unitaries and,
thus, to obtain a well-defined QCA.

The Watrous QCA, however, allows for non-physical
dynamics. It is possible to define transition functions that
do not represent unitary evolution of the configuration, ei-
ther by producing superpositions of configurations which
do not preserve the norm, or by inducing a global tran-
sition function which is not unitary. This leads to non-
physical properties such as super-luminal signaling [37].
The set of Watrous QCA is not closed under composition
and inverse [37].

Watrous defined a restricted class of QCA by introduc-
ing a partitioning scheme.

Definition (Partitioned Watrous QCA) A par-
titioned Watrous QCA is a Watrous QCA with
˙ D ˙l �˙c �˙r for finite sets ˙l ; ˙c , and ˙r , and
matrix� of size ˙ �˙ . For any state s D (sl ; sc ; sr) 2 ˙
define transition function f as

f (s1; s2; s3; s) D �(s l3 ;sm2 ;sr1 ;s) ; (2)

with matrix element�s i ;s j .

Quantum Cellular Automata, Figure 2
Each cell is divided into three sub-cells labeled l, c, and r for
left, center, and a right, respectively. The update rule consists of
swapping left and right sub-cells of neighboring cells and then
updating each cell internally using a unitary operation acting on
the left, center, and right part of each cell

In a partitioned Watrous QCA each cell is divided into
three sub-cells – left, center, and right. The neighborhood
scheme is then a nearest-neighbor interaction confined to
each cell. The transition function consists of a unitary act-
ing on each partitioned cell and swap operations among
sub-cells of different cells. Figure 2 illustrates the swap op-
eration between neighboring cells.

For the class of partitioned Watrous QCA Watrous
provides the first proof of computational universality of
a QCA by showing that any quantum Turing machine can
be efficiently simulated by a partitioned Watrous-QCA
with constant slowdown and that any partitioned Wa-
trous-QCA can be simulated by a quantum Turing ma-
chine with linear slowdown.

Theorem ([46]) Given any quantum Turing machine
MTM, there exists a partitioned Watrous QCA MCA which
simulates MTM with constant slowdown.

Theorem ([46]) Given any partitioned Watrous QCA
MCA, there exists a quantum Turing machine MTM which
simulates MCA with linear slowdown.

Watrous’ model was further developed by van Dam [16],
who defined a QCA as an assignment of a product vector
to every basis state in the computational basis. Here the
quiescent state is eliminated and thus the QCA is made
explicitly finite. Van Dam showed that the finite version is
also computationally universal. Efficient algorithms to de-
cide whether a given 1-dimensional QCA is unitary was
presented by Dürr, LeTanh, and Santha [17,18]. Due to
substantial shortcomings such as non-physical behavior,
these early proposals were replaced by a second wave of
proposals to be discussed below.

Today, there is not a generally accepted QCA model
that has all the attributes of the CA model: unique defini-
tion, simple to describe, and computationally powerful. In
particular, there is no axiomatic definition, contrary to its
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classical counterpart, that yields an immediate way of con-
structing/enumerating all of the instances of this model.
Rather, each set of authors defines QCA in their own par-
ticular fashion.

The states s 2 ˙ are basis states spanning a finite-di-
mensional Hilbert space. At each point in time a cell rep-
resents a finite-dimensional quantum system in a super-
position of basis states. The unitary operators represent
the discrete-time evolution of strictly finite propagation
speed.

Models of QCA

Reversible QCA

Schumacher and Werner used the Heisenberg picture
rather than the Schrödinger picture in their model [37].
Thus, instead of associating a d-level quantum systemwith
each cell they associated an observable algebra with each
cell. Taking a quasi-local algebra as the tensor product of
observable algebras over a finite subset of cells, a QCA is
then a homomorphism of the quasi-local algebra, which
commutes with lattice translations and satisfies locality on
the neighborhood.

The observable-based approach was first used in
Ref. [36] with focus on the irreversible case. However, this
definition left questions open such as whether the compo-
sition of two QCA will again form a QCA. The following
definition does avoid this uncertainty.

Consider an infinite d-dimensional lattice L � Zd of
cells x 2 Zd , where each cell is associated with the observ-
able algebraAx and each of these algebras is an isomor-
phic copy of the algebra of complex d � d-matrices.When
� � Zd is a finite subset of cells, denote byA(�) the alge-
bra of observables belonging to all cells in�, i. e. the tensor
product˝x2�Ax . The completion of this algebra is called
a quasi-local algebra and will be denoted byA(Zd ).

Definition (Reversible QCA) A quantum cellular au-
tomaton with neighborhood schemeN � Zd is a homo-
morphism T : A(Zd )!A(Zd ) of the quasi-local alge-
bra, which commutes with lattice translations, and satisfies
the locality condition T(A(�)) � T(A(�CN )) for ev-
ery finite set� � Zd . The local transition rule of a cellular
automaton is the homomorphism T0 : A0 !A(N ).

Schumacher andWerner presented and proved the follow-
ing theorem on one-dimensional QCA.

Theorem (Structure Theorem [37]) Let T be the global
transition homomorphism of a one-dimensional a nearest-
neighbor QCA on the lattice Zd with single-cell algebra
A0 DMd . Then T can be represented in the generalized

Margolus partitioning scheme, i. e. T restricts to an isomor-
phism

T : A(�)!
O

s2˙

Bs ; (3)

where for each quadrant vector q 2 Q, the subalgebra
Bq �A(�C q) is a full matrix algebra, BqMn(q). These
algebras and the matrix dimensions n(q) are uniquely de-
termined by T.

Theorem (Structure Theorem [37]) does not hold in
higher dimensions [47]. A central result obtained in this
framework is that almost any [47] 1-dimensionalQCA can
be represented using a set of local unitary operators and
a generalized Margolus partitioning [37], as illustrated in
Fig. 3. Furthermore, if the local implementation allows lo-
cal ancillas, then any QCA, in any lattice dimension can be
built from local unitaries [37,47]. In addition, they proved
the following Corollary.

Corollary ([37]) The inverse of a nearest-neighbor QCA
exists, and is a nearest-neighbor QCA.

The latter result is not true for CA. A similar result for
finite configurations was obtained in [4]. Here evidence
is presented that the result does not hold for two dimen-
sional QCA. The work by Schumacher andWerner can be
considered the first general definition for 1-dimensional
QCA. A similar result for many-dimensional QCA does
not exist.

Local Unitary QCA

Péres-Delgado and Cheung proposed a local unitary
QCA [34].

Definition (Local-unitary QCA) A local-unitary QCA is
a 5-tuple f(L; ˙;N ;U0;V0)g consisting of (1) a d-dimen-
sional lattice of cells indexed by integer tuples L � Zd ,
(2) a finite set of orthogonal basis states ˙ , (3) a finite

Quantum Cellular Automata, Figure 3
Generalized Margolus partitioning scheme in 1 dimension using
two unitary operations U and V
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neighborhood schemeN � Zd , (4) a local read function
U0 : (H˙ )˝N ! (H˙ )˝N , and (5) a local update func-
tion V0 : H˙ !H˙ . The read operation carries the fur-
ther restriction that any two lattice translations Ux andUy
must commute for all x; y 2 L.

The product VU is a valid local, unitary quantum opera-
tion. The resulting global update rule is well defined and
space homogeneous. The set of states includes a quies-
cent state as well as an “ancillary” set of states/subspace
which can store the result of the “read” operation. The
initial state of a local-unitary QCA consists of identical
kd blocks of cells initialized in the same state. Local-uni-
tary QCA are universal in the sense that for any arbitrary
quantum circuit there is a local-unitary QCA which can
simulate it. In addition any local-unitary QCA can be sim-
ulated efficiently using a family of quantum circuits [34].
Adding an additional memory register to each cell allows
this class of QCA to model any reversible QCA of the
Schumacher/Werner type discussed above.

Block-Partitioned and Nonunitary QCA

Brennen andWilliams introduced a model of QCA which
allows for unitary and nonunitary rules [14].

Definition (Block-partitioned QCA) A Block-parti-
tioned QCA is a 4-tuple fL; ˙;N ;Mg consisting of (1)
a 1-dimensional lattice of n cells indexed L D 0; : : : ; n � 1,
(2) a 2-dimensional state space ˙ , (3) a neighborhood
schemeN , and (4) an update ruleM applied overN .

Given a system with nearest-neighbor interactions, the
simplest unitary QCA rule has radius r D 1 describing
a unitary operator applied over a three-cell neighborhood
j � 1; j; jC 1:

M(u00; u01; u10; u11) D j00ih00j˝u00Cj01ih01j˝u01
C j10ih10j ˝ u10 C j11ih11j ˝ u11 ; (4)

where jabihabj ˝ uab means update the qubit at site jwith
the unitary uab if the qubit at the site j � 1 is in state jai
and the qubit at site jC 1 is in state jbi. M commutes
with its own 2-site translation. Thus, a partitioning is in-
troduced by updating simultaneously all even qubits with
rule M before updating all odd qubits with rule M. Peri-
odic boundaries are assumed. However, by addressability
of the end qubits simulation of a block-partitioned QCA
by a QCA with boundaries can be achieved.

Nonunitary update rules correspond to completely
positive maps on the quantum states where the neighbor-
ing states act as the environment. Take a nearest-neigh-
bor 1-dimensional Block-partitioned QCA. In the density

operator formalism each quantum system � is given by
the probability distribution � D

P
i pi j ih j over outer

products of quantum states j i. A completely positive
map S(�) applied to state � is represented by a set of Krauss
operators F�, which are positive operators that sum up
to the identity

P
� F��F� D 1. The map Sabj (�) acting on

cell j conditioned on state a of the left neighbor and state b
of the right neighbor can then be written as

Sabj (�) D jabihabj ˝
X

�

Fab
� �F

ab�
� ˝ jabihabj : (5)

As an example, the CA rule ‘110’ can now be translated
into an update rule for cell j in a block-partitioned nonuni-
tary QCA:

F j
1 D j00ih00j ˝ 1 j C j10ih10j ˝ 1 j C j11ih11j ˝ � j

x

C j01ih01j ˝ j1i j jh1j (6)

F j
2 D j01ih01j ˝ j1i j jh0j ; (7)

where �x is the Pauli operator.
The implementation of such a block-partitioned

nonunitary QCA is proposed in form of a lattice of even
order constructed with an alternating array of two dis-
tinguishable species ABABABAB : : : that are globally ad-
dressable and interact via the Ising interaction. Update
rules that generate and distribute entanglement were stud-
ied in this framework [14].

Continuous-Time QCA

Vollbrecht and Cirac initiated the study of continuous-
time QCA [44]. They show that the computability of the
ground state energy of a translationally invariant n-neigh-
bor Hamiltonian was QMA-hard. Their QCA model is
taken up by Nagaj and Wocjam [31] who used the term
Hamiltonian QCA.

Definition (Hamiltonian QCA) A Hamiltonian QCA is
a tuple fL; ˙ D ˙p �˙dg consisting of (1) a 1-dimen-
sional lattice of length L, (2) a finite set of orthogonal basis
states ˙ D ˙p �˙d containing (2a) a data register ˙d ,
and (2b) a program register˙p .

The initial state encodes both the program and the data,
stored in separate subspaces of the state space:

j�i D

LO

jD1

�
jp ji ˝ jdji


j (8)

The computation is carried out autonomously. Nagaj
and Wocjam showed that, if the system is left alone for
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a period of time t D O(L log L), polynomially in the length
of the chain, the result of the computation is obtained with
probability p � 5/6� O(1/ log L). Hamiltonian QCA are
computationally universal, more precisely they are in the
complexity class BQP. Two constructions for Hamiltonian
QCA are given in [31], one using a 10-dimensional state
space, and the resulting system can be thought of as the
diffusion of a system of free fermions. The second con-
struction given uses a 20-dimensional state space and can
be thought of as a quantum walk on a line.

Examples of QCA

Raussendorf proved an explicit construction of QCA and
proves its computational universality [35]. The QCA lives
on a torus with a 2 � 2 Margolus partitioning. The update
rule is given by a single 4-qubit unitary acting on 2 � 2
blocks of qubits. The four-qubit unitary operation con-
sists of swap operations, the Hadamard transformation,
and a phase gate. The initial state of the QCA is prepared
such that columns encode alternatingly data and program.
When the QCA is running the data travel in one direc-
tion while the program (encoding classical information in
orthogonal states) travels in the opposite direction. Where
the two cross the computation is carried out through near-
est-neighbor interaction. After a fixed number of steps the
computation is done and the result can be read out of
a dedicated “data” column. This QCA is computationally
universal, more precisely, it is within a constant as efficient
as a quantum logic network with local and nearest-neigh-
bor gates.

Shepherd, Franz, and Werner compared classically
controlled QCA to autonomous QCA [38]. The former is
controlled by a classical compiler that selects a sequence of
operations acting on the QCA at each time step. The latter
operates autonomously, performing the same unitary op-
eration at each time step. The only step that is classically
controlled is the measurement (and initialization). They
show the computational equivalence of the two models.
Their result implies that a particular quantum simulator
may be as powerful as a general one.

ComputationallyUniversal QCA

Quite a few models have been shown to be computation-
ally universal, i. e. they can simulate any quantum Turing
machine and any quantum circuit efficiently. A Watrous-
QCA simulates any quantum Turing machine with con-
stant slowdown [46]. The QCA defined by Van Dam is
a finite version of a Watrous QCA and is computation-
ally universal as well [16]. Local-unitary QCA can simulate
any quantum circuit and thus are computationally univer-

sal [34]. Block-partitioned QCA can simulate a quantum
computer with linear overhead in time and space [14].
Continuous-time QCA are in complexity class BQP and
thus computationally universal [44]. The explicit con-
structions of 2-dimensional QCA by Raussendorf is com-
putationally universal, more precisely, it is within a con-
stant as efficient as a quantum logic network with local and
nearest-neighbor gates [35]. Shepherd, Franz, andWerner
provided an explicit construction of a 12-state 1-dimen-
sional QCA which is in complexity class BQP. It is uni-
versally programmable in the sense that it simulates any
quantum-gate circuit with polynomial overhead [38]. Ar-
righi and Fargetton proposed a 1-dimensional QCA capa-
ble of simulating any other 1-dimensional QCA with lin-
ear overhead [3].

Implementations of computationally universal QCA
have been suggested by Lloyd [24] and Benjamin [8].

Modeling Physical Systems

One of the goals in developing QCA is to create a useful
modeling tool for physical systems. Physical systems that
can be simulated with QCA include Ising and Heisenberg
interaction spin chains, solid state NMR, and quantum lat-
tice gases. Spin chains are perhaps the most obvious sys-
tems to model with QCA. The simple cases of such 1-di-
mensional lattices of spins are Hamiltonians which com-
mute with their own lattice translations. Vollbrecht and
Cirac showed that the computability of the ground state
energy of a translationally invariant n-neighbor Hamilto-
nian is in complexity class QMA [44]. For simulating non-
commuting Hamiltonians a block-wise update such as the
Margolus partitioning has to be used (see Sect. “Reversible
Cellular Automata”). Here the fact is used that any Hamil-
tonian can be expressed as the sum of two Hamiltonians,
H D Ha C Hb . Ha andHb can then, to a good approxima-
tion, be applied sequentially to yield the original Hamilto-
nian H, even if these do not commute. It has been shown
that such 1-dimensional spin chains can be simulated effi-
ciently on a classical computer [43]. It is not known, how-
ever, whether higher dimensional spin systems can be sim-
ulated efficiently classically.

Quantum Lattice Gas Automata

Any numerical evolution of a discretized partial differen-
tial equation can be interpreted as the evolution of some
CA, using the framework of lattice gas automata. In the
continuous time and space limit such a CA mimics the be-
havior of the partial differential equation. In quantumme-
chanical lattice gas automata (QLGA) the continuous limit
on a set of so called quantum lattice Boltzman equation
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recovers the Schrödinger equation [39]. The first formula-
tion of a linear unitary CA was given in Ref. [10]. Meyer
coined the term quantum lattice gas automata (QLGA)
and demonstrated the equivalence of a QLGA and the
evolution of a set of quantum lattice Boltzman equa-
tions [27,28]. Meyer [29], Boghosian and Taylor [12], and
Love and Boghosian [25] explored the idea of using QLGA
as a model for simulating physical systems. Algorithms for
implementing QLGA on a quantum computer have been
presented in [13,30,32].

Implementations

A large effort is being made in many laboratories around
the world to implement a model of a quantum computer.
So far all of them are confined to a very finite number of
elements and are no way near to a quantum Turing ma-
chine (which in itself is a purely theoretical construct but
can be approximated by a very large number of computa-
tional elements). One existing experimental set-up that is
very promising for quantum information processing and
that does not suffer from this “finiteness” are optical lat-
tices (for a review, see [11]). They possess a translation
symmetry which makes QCA a very suitable framework
in which to study their computational power. Optical lat-
tices are artificial crystals of light and consist of hundreds
of thousands of microtraps. One or more neutral atoms
can be trapped in each of the potential minima. If the po-
tential minima are deep enough any tunneling between the
traps is suppressed and each site contains the same amount
of atoms. A quantum register – here in form of a so-called
Mott insulator – has been created. The biggest challenge at
the moment is to find a way to address the registers indi-
vidually to implement quantum gates. For a QCA all that
is needed is implementing the unitary operation(s) acting
on the entire lattice simultaneously. The internal structure
of the QCA guarantees the locality of the operations. This
is a huge simplification compared to individual manipula-
tion of the registers. Optical lattices are created routinely
by superimposing two or three orthogonal standing waves
generated from laser beams of a certain frequency. They
are used to study Fermionic and Bosonic quantum gases,
nonlinear quantum dynamics, strongly correlated quan-
tum phases, to name a few.

A type of locally addressed architecture by global con-
trol was put forward by Lloyd [24]. In this scheme a 1-di-
mensional array is built out of three atomic species, pe-
riodically arranged asABCABCABC. Each species en-
codes a qubit and can bemanipulatedwithout affecting the
other species. The operations on any species can be con-
trolled by the states of the neighboring cells. The end-cells

are used for readout, since they are the only individually
addressable components. Lloyd showed that such a quan-
tum architecture is universal. Benjamin investigated the
minimum physical requirements for such a many-species
implementation and found a similar architecture using
only two types of species, again arranged periodically
ABABAB [7,8,9]. By giving explicit sequences of op-
erations implementing one-qubit and two-qubit (CNOT)
operations Benjamin showed computational universality.
But the reduction in spin resources comes with an increase
in logical encoding into four spin sites with a buffer space
of at least four empty spin sites between each logical qubit.

A continuation of this multi-species QCA architec-
ture is found in the work by Twamley [42]. Twamley
constructed a proposal for a QCA architecture based on
Fullerene (C60) molecules doped with atomic species 15N
and 31P, respectively, arranged alternatingly in a one-di-
mensional array. Instead of electron spins which would
be too sensitive to stray electric charges the quantum in-
formation is encoded in the nuclear spins. Twamley con-
structed sequences of pulses implementing Benjamin’s
scheme for one- and two-qubit operations. The weakest
point of the proposal is the readout operation which is not
well-defined.

A different scheme for implementing QCA was sug-
gested by Tóth and Lent [41]. Their scheme is based on the
technique of quantum-dot CA. The term quantum-dot CA
is usually used for CA implementations in quantum dots
(for classical computation). The authors, therefore, called
their model a coherent quantum-dot CA. They illustrated
the usage of an array of N quantum dots as an N-qubit
quantum register. However, the set-up and the allowed op-
erations allow for individual control of each cell. This co-
herent quantum-dot CA is more a hybrid of a quantum
circuit with individual qubit control and a QCA with con-
stant nearest-neighbor interaction. The main property of
a QCA, operating under global control only, is not taken
advantage of.

Future Directions

The field of QCA is developing rapidly. New definitions
have appeared very recently. Since QCA are now consid-
ered to be one of the standard measurement-based mod-
els of quantum computation, further work on a consistent
and sufficient definition of higher-dimensional QCA is to
be expected. One proposal for such a “final” definition has
been put forward in [4,5].

In the search for robust and easily implementable
quantum computational architectures QCA are of consid-
erable interest. The main strength of QCA is global con-
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trol without the need to address cells individually (with
the possible exception of the read-out operation). It has
become clear that the global update of a QCA would be
a way around practical issues related to the implementa-
tion of quantum registers and the difficulty of their indi-
vidual manipulation.

More concretely, QCA provide a natural framework
for describing quantum dynamical evolution of optical lat-
tices, a field in which the experimental physics community
has made huge progress in the last decade.

The main focus so far has been on reversible QCA. Ir-
reversible QCA are closely related to measurement-based
computation and remain to be explored further.
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Glossary

Ergodicity The property of a dynamical system, accord-
ing to which a single trajectory, starting from almost
any initial condition, explores (densely covers) the en-
tire available phase space of physical states.

Integrability A classical Hamiltonian dynamical system
of N degrees of freedom is said to be integrable (ac-
cording to Liouville) if there exist N independent con-
served quantities. Integrability implies explicit quasi-
periodic solution of the equations of motion.

Randommatrix theory The statistical theory which al-
lows to describe the fluctuation properties of quan-
tum systems in terms of the sets (ensembles) of ran-
dom Hermitian matrices with appropriate invariant
measures.

Wigner surmise Nearest neighbor energy level spacing
distribution based on the simplest 2 � 2 Gaussian Her-
mitian randommatrix models, accurately approximat-
ing spacing distributions in complex quantum sys-
tems.

Periodic orbit theory or trace formula A relationship
between certain properties of energy spectrum of
a quantized chaotic system, and the set of unstable pe-
riodic orbits of the corresponding classical chaotic sys-
tem.

Quantum Loschmidt echo or fidelity A measure of sta-
bility of quantum time evolution. It is computed as
a Hilbert space inner product of two slightly different
quantum time evolutions starting from the same initial
state.

Definition of the Subject

As it is now widely recognized, classical dynamical chaos
has been one of the major scientific breakthroughs of the
past century. Quantum chaos, sometimes called Quan-
tum chaology, studies the manifestations of chaotic mo-
tion and related dynamical phenomena in quantum me-
chanics [1,2].

More abstractly, one may define as quantum chaos
those phenomena of simple quantum systems which can
be described statistically and exhibit some universal (i. e.
system independent) features. By the term simplewemean
here that the system can be specified by a finite set of pa-
rameters or, generally, can be described by a finite amount
of information. So we can fundamentally distinguish the
phenomena of quantum chaos from similar dynamical
phenomena in disordered systems – specified in terms of
random parameters and which therefore contain infinite
amount of information in an appropriate (say thermody-
namic) limit.

The universal statistical properties of quantum chaotic
systems which have been widely studied include statistics
of energy level spectra, statistical and semiclassical struc-
tures of the wave-functions and statistical distributions
of transition matrix elements (matrix elements of certain
physical observables in the energy eigenbasis). These prop-
erties are of key importance for understanding quantum
state transitions, dissipation, ionization and related phe-
nomena. Traditionally quantum chaos has been intimately
connected to problems in atomic physics, nuclear physics,
mesoscopic solid state physics, and more recently also to
the emerging field of quantum information.

The subject of quantum chaos is at the core of the
fundamental and general understanding of the correspon-
dence principle according to which classical mechanics
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emerges as a limit of quantum mechanics when an ‘effec-
tive’ value of the Planck’s constant goes to zero. However,
changing perspective, and treating quantum mechanics as
a fundamental theory and classical mechanics as its con-
venient approximation, one can ask what happens to the
phenomena of quantum chaos in systems which lack the
classical limit, such as systems of spin 1/2 or quantum bits
(qubits). Still, many of the successful statistical tools devel-
oped or widely used in the field of quantum chaos can be
applied to understand the dynamical and statistical prop-
erties of interacting qubits.

Introduction

Classical Hamiltonian dynamical systems display a rich
variety of behaviors [3]. At one end, we have strongly
chaotic dynamical systems, which are distinguished by
such properties as algorithmic complexity, exponential sen-
sitivity to initial conditions, continuous spectrum and con-
sequent decay of temporal correlations (‘loss of memory’),
relaxation to equilibrium, and ergodicity. Without enter-
ing a discussion of the above properties, we notice that
rigorous examples of such strongly chaotic systems are
billiard balls bouncing inside a table with inward curved
boundaries, or point mass particles moving freely on any
surfaces of constant negative curvature.

At the opposite end, there are completely integrable or
regular dynamical systems, which, according to Liouville,
are characterized by the existence of as many independent
smooth constants of motion as there are degrees of free-
dom, and which are distinguished by analytic predictabil-
ity of time evolutions and absence of algorithmic complex-
ity. Consequently, integrable systems have a discrete spec-
trum of time evolution, do not display relaxation to equi-
librium and, due to existence of non-trivial constants of
motion, they are not ergodic.

Nowadays we know few examples of completely in-
tegrable systems, such as an arbitrary system of cou-
pled linear (harmonic) oscillators, the general problem of
two moving bodies interacting with a centrally symmet-
ric force, and even many-body models such as the famous
Toda lattice which is a system of equal point masses in one
dimension interacting with exponentially distance depen-
dent force. On the other hand we also know that a generic,
or typical Hamiltonian system is not integrable, neither it
is strongly chaotic in a rigorous sense. Insteadwe find a va-
riety of intermediate behaviors between completely inte-
grable and strongly chaotic.

A famous Kolmogorov–Arnold–Moser (KAM) theo-
rem states that a small generic (smooth) perturbation of
a completely integrable Hamiltonian systems preserves

most of the features of regular motion, such as quasi-
periodicity or discrete spectrum, for most of initial con-
ditions. However, in the vicinity of the so-called resonant
tori (i. e. for initial conditions for which the motion of the
unperturbed system has commensurate frequencies) the
motion becomes locally (weakly) chaotic even for arbitrary
weak perturbations. Still, the relative overall phase space
volume occupied by chaotic trajectories decreases to zero
faster than any power of the perturbation strength.

However, KAM theory does not describe the only sce-
nario of integrability breaking in Hamiltonian systems.
Other types of perturbations, which do not obey the con-
ditions of KAM theorem are possible which yield physi-
cally interesting behavior. One class of such behaviors is
the motion in generic polygonal billiards [4] (namely bil-
liard tables with the shape of a generic polygon, say a tri-
angle), or the motion of any number of elastically colliding
point masses in one dimension. Such systems are neither
integrable nor chaotic in the sense of exponential sensitiv-
ity or algorithmic complexity.

The fundamental problem of quantum chaos concerns
themanifestations in the quantumworld of the various de-
grees of complexity of classical dynamics, as described by
the above hierarchy. Primarily we are interested in sim-
ple, closed (isolated) and bounded systems for which, as
it is known, the spectrum of the Hamilton operator (the
generator of the Schrödinger equation) is always discrete.
Notice that in classical ergodic theory, discrete spectrum
is associated to integrability which is just the opposite of
chaos which requires continuous spectrum. In such a sit-
uation quantum mechanics, at most, can follow chaotic
classical dynamics only up to the so called breaking time
scale t� after which the quantum motion becomes funda-
mentally different from the classical one. Precise under-
standing of this transition phenomena, scaling of the time
scale t� with various physical properties, is at the heart of
quantum chaos and shall be briefly discussed in the subse-
quent sections.

QuantumChaos – Stationary Aspects

The problems of quantum chaos can be viewed from two
different but closely connected view-points, namely the
stationary aspects in the energy domain and the dynam-
ical aspects in the time domain. Let us start by discussing
the stationary aspects.

It has been recognized as early as in 1950’s by Wigner,
and later by Dyson, that many statistical features of energy
levels of complex nuclei, or long lived resonance states,
can be adequately described by a simple statistical model
of random Hermitian matrices. Wigner’s idea was that for
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a sufficiently complicated quantum system with many de-
grees of freedom like a heavy nucleus, one assumes that
the matrix elements of the Hamiltonian in a typical basis
can be treated as independent Gaussian random numbers.
Such random matrix model has essentially no free param-
eters and is invariant under almost arbitrary basis changes,
and therefore one can obtain many explicit analytical
results.

The simplest and perhaps the main result of random
matrix theory [5] predicts that the statistical distribution
of spacings between adjacent energy levels, denoted by
Sn D EnC1 � En , properly scaled or normalized such that
the average spacing S equals one, obeys universal distribu-
tions which only depend on certain symmetry properties.
Roughly speaking, they depend on the existence of time-
reversal invariance of the Hamiltonian, and are, to a high
level of accuracy, given by a the so-called Wigner surmise

Pˇ (S) D ASˇ exp(�BS2)

where the constants A and B are determined from normal-
ization conditions,

R1
0 P(S)dS D 1,

R1
0 SP(S)dS D 1.

The integer ˇ is known as universality index and equals
ˇ D 1 for real Gaussian random matrices applying in the
time-reversal invariant case, and ˇ D 2 for complex Gaus-
sian random matrices applying in the case where time-
reversal invariance is broken. Note that ˇ has also an in-
teresting interpretation as a level repulsion parameter since
ˇ > 0 implies repulsive correlations between adjacent en-
ergy levels.

Quantum Chaos, Figure 1
Typical examples of a regular billiard (circular billiard, above) and a fully chaotic billiard (cardioid billiard, below). In the left side of
the figure we show two typical trajectories in the billiard table, whereas to the right we depict few examples of wave-functions of
eigenstates at different sequential level numbers n. Courtesy of Bäcker [9]

Of course, random matrix theory would only remain
an interesting mathematical model if it would not have
been so immensely successful in describing spectral cor-
relations of complex quantum systems. As already men-
tioned it started with nuclear spectra for which one is
ready to believe that due to immense complexity of in-
teractions random matrix description is intuitively ade-
quate. However in beginning of 1980’s numerical evidence
started to accumulate [6,7] that even spectra of very sim-
ple, but yet non-integrable and classically chaotic systems
exhibit universal level fluctuations described by random
matrix theory.

This observation, namely that short range spectral cor-
relations of quantum systems which are strongly chaotic in
the classical limit obey universal fluctuation laws which are
given by ensembles of randommatrices without free param-
eters, has been known as quantum chaos conjecture and,
despite of still not being rigorously proven, remains one of
the defining and most important results in the field.

One of the standard paradigmatic models where quan-
tum chaos conjecture has been most often and convinc-
ingly demonstrated are quantum billiards. The stationary
Schrödinger problem for a billiard of a point particle of
mass m moving freely inside a planar domain (billiard ta-
ble) D and colliding elastically off its boundary is simply
the well known Helmholtz (amplitude) equation for the
particle wavefunction

r2� (x; y)C k2� (x; y) D 0 ;
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with Dirichlet boundary condition � j@D D 0, having
a discrete set of solutions fkn ; �n ; n D 1; 2; : : : g with
a dispersion relation to the eigenenergies En D „

2k2n/
(2m). In Fig. 1 we show two examples of a typical inte-
grable billiard (circular billiard), and a typical fully chaotic
and ergodic billiard (cardioid billiard proposed by Rob-
nik [8]) – plotting typical trajectories for each and a se-
quence of few typical chaotic and regular eigenstates.

Solving the Dirichlet Helmholtz problem for a finite
domain is one of the most standard problems in lin-
ear wave physics and emerges in equivalent forms in gas
acoustics, flat electromagnetic (microwave) resonators,
transverse waves in optical fibers, etc, the only difference
from the stationary quantum problem being the disper-
sion relation which connects the frequency of stationary
waves to the eigenvalues of the wavenumber kn.

In Fig. 2 one can observe that spectra of chaotic quan-
tum billiard, hydrogen atom in strongmagnetic field, exci-
tation spectrum of NO2 molecule, microwave electromag-
netic spectrum of a three dimensional chaotic cavity and

Quantum Chaos, Figure 2
Level spacing distributions for a the fully chaotic Sinai bil-
liard [7], b a Hydrogen atom in a strong magnetic field, c an
NO2 molecule, d a vibrating quartz block shaped like a three di-
mensional sinai billiard, e the microwave spectrum of a three-
dimensional chaotic cavity, f a vibrating elastic disc shaped like
a quarter stadium. Courtesy of Stöckmann [2]

even spectra of vibrating elastic solids all exhibit spectral
correlations which are given by a Gaussian ensemble of
real random matrices.

The universality of quantum statistics of classically
chaotic systems applies also to other properties, such as the
distribution of a chaotic wave-function amplitudes, which
is Gaussian and verywellmodeled by the so-called random
plane wave superposition [10], the distribution of matrix
elements of typical observables in the eigenbasis of chaotic
Hamiltonians [11], which is again Gaussian, or even distri-
bution of chaotic Wigner functions (quantum analogues
of phase space densities) which is found again to be
Gaussian [12].

An interesting related mathematical question is the
problem of quantum ergodicity. For a generic physical ob-
servable A the question is whether its expectation value in
a given eigenstate approaches, with increasing quantum
level number, the microcanonical average of the corre-
sponding classical observable evaluated at the correspond-
ing energy, namely whether the sequence

fh�n jAj�ni � Aclassical(En); n D 1; 2; 3; : : : g

converges to zero? Mathematicians often relax the above
condition to hold for a subsequence of density 1 mean-
ing that the above property holds for a typical eigen-
state, whereas the sequence of exceptions (with semiclas-
sically vanishing statistical weight) correspond to the fa-
mous scar states discovered by Heller [13]. For quantum
billiards, the statement of quantum ergodicity is equivalent
to the statement of uniform equidistribution of probabil-
ity density for eigenstates (see e. g. lower panels of Fig. 1).
It has been proven (the proof has been announced by
Shnirelman [14], and later worked out by Zelditch [15]
and Colin de Verrdiere [16]) that strongly chaotic bil-
liards, and some other rigorous examples of strongly
chaotic systems, are quantum ergodic. However, the mini-
mal classical ergodic properties (like ergodicity, weakmix-
ing, etc) sufficient for quantum ergodicity are still under
debate.

One can now ask a similar questions for the other ex-
treme of ergodic hierarchy, namely for classically regular
systems: Are there some universal features of spectral fluc-
tuations of quantum systems whose classical limit is com-
pletely regular? The answer is only partly affirmative, in
the sense of an argument which has been originally given
by Berry and Tabor [17]. The starting point of this argu-
ment is that the eigenenergies of a completely integrable
systemwith d degrees of freedom can be labeled by a d-du-
ple of quantum numbers – integers nj – namely En1n2:::nd .
Berry and Tabor argued that level sub-sequences, where
d � 1 quantum numbers are fixed and only one of them
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is being varied, are mutually independent. As the over-
all spectrum of an integrable system is a superposition of
many such almost uncorrelated level sequences, one con-
cludes that any short range level correlations should be ab-
sent. For example, the level spacing distribution for an in-
tegrable system should be the same as for a Poissonian dis-
tribution of uncorrelated events, namely

Pint(S) D exp(�S) :

One has to note that for integrable systems one should
not really expect a universality in the same sense as for
chaotic systems. Berry and Tabor’s argument cannot in
general be turned into a rigorous proof, and for any par-
ticular integrable system one can in principle always find
statistical measures which deviate from Poissonian pre-
dictions [18]. For example, a one dimensional harmonic
oscillator has an equidistant (the so-called “picket fence”)
spectrum so its level spacing distribution can be written in
terms of a Dirac’s delta distribution Pharm:osc: D ı(S � 1).
In other words, as quantum statistical properties are con-
cerned, there is no such thing as a typical integrable system.
This can be viewed as another manifestation of quantum
non-ergodicity of integrable systems.

Even if spectral fluctuations of integrable systems are
relatively universal – in the sense as explained above – this
is not at all true for other statistical properties of quan-
tized integrable systems, such as wave-function ampli-
tudes, sizes and numbers of nodal domains of wave func-
tions, matrix elements of typical physical observables, etc.
There we find system specific features which can hardly be
described by some general statistical rules.

The general case of typical quantum systems, say those
which can be understood as quantizations of systems with
classically mixed phase space with coexisting regular and
chaotic orbits, is the most difficult to describe. It is fair to
say that quantum chaos of generic systems is still in its in-
fancy. Among the few results which can be mentioned is
the semiclassical theory of Berry and Robnik [19] describ-
ing level fluctuations of mixed systems as statistical super-
position of independent level subsequences corresponding
to each invariant classical phase space component: level
subsequences corresponding to areas of chaotic motion
aremodeled by an appropriate ensemble of randommatri-
ces with the relative level density which is given by the clas-
sical volume of the chaotic component, and a (single) sub-
sequence corresponding to all regular trajectories is mod-
eled by a Poissonian level sequence of the corresponding
overall level density. However, in realistic quantum sys-
tems tunneling between chaotic and regular states has to
be taken into account and, in spite of few attempts, we are

still lacking a general statistical theory of tunneling ampli-
tudes in mixed phase space systems.

It should be noted that statistical properties of energy
level fluctuations can be related to classical recurrent phase
space structures such as periodic orbits. In particular, for
chaotic dynamical systems, one finds a beautiful relation-
ship between semiclassical approximation to the energy
spectrum and isolated unstable classical periodic orbits,
which is known as Gutzwiller’s trace formula [20], and
is based on stationary phase approximation to Feynman
path integral representation of Green’s function of the
Schrödinger equation. A similar trace formula has been
proposed by Berry and Tabor also for classically regular
systems [21]. Related periodic or closed orbit theories have
been later developed for describing semiclassical proper-
ties of other quantities, for example scars in chaotic wave-
functions [22,23]. The trace formula has been believed
to be the theoretical tool to attack the proof of quantum
chaos conjecture. Considerable recent progress has been
achieved by Müller et al. [24], building upon an idea of
Sieber [25], who have shown that the correct resumma-
tion of a trace formula indeed yields short time expan-
sion of the universal spectral form factor (Fourier trans-
formation of the two-point spectral correlation function)
which is identical to the one obtained from randommatrix
theory.

QuantumChaos – Dynamical Aspects

Classical chaos is a property of time evolution and, as
we have seen, requires continuous spectrum of the mo-
tion. However, the spectrum of bounded closed quan-
tum systems is always discrete, therefore genuine quantum
chaos which would be a property of asymptotic time evo-
lution is not possible, namely there is an ultimate breaking
time scale t� which is determined by the density of states
� D dEn/dn. Indeed, writing a completely general solu-
tion of the time dependent Schrödinger equation as

� (t) D
X

n
cn exp(�iEn t/„)�n

one sees that the quasi-periodic nature of time evolution
shows up, on average, when the difference of two adjacent
phases grows to 2� , namely

t� D 2�„� :

This breaking time scale is also sometimes referred to as
Heisenberg time, and after t� the time evolution in quan-
tum mechanics is dominated by quantum fluctuations.

Thus genuine quantum chaos is possible only within
a time scale t < t�, where quantum phenomena with
semiclassical description are possible, such as relaxation,
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exponential sensitivity etc. However, not all chaotic phe-
nomena can be observed in quantum dynamics up to t�,
some aremuchmore short lived. For example, exponential
sensitivity to initial conditions can be mimicked by quan-
tum motion only up to the so-called Ehrenfest time

tE D
ln(A0/„)



where A0 is the phase space volume explored by a clas-
sical chaotic trajectory, and  is the classical Lyapunov
exponent measuring the exponential rate of divergence
ıx(t) � exp(t)ıx(0) of nearby trajectories in classical dy-
namics. Up to time tE Gaussian wave-packets centered
on classical trajectories can be used for semi-classical de-
scription of quantum motion [26]. Ehrenfest time tE and
Heisenberg time t� are two essential time-scales of quan-
tum chaos.

A simple but fundamental manifestation of quantum
chaos is the destruction of quantum interferences by quan-
tum dephasing as a results of chaotic classical dynamics.
To illustrate this, let us consider a time-dependent dou-
ble slit experiment, where the source is closed inside a two
dimensional wave resonator in the shape of a chaotic bil-
liard [27]. The setting is depicted in Fig. 3. We take an
initial Gaussian wave-packet with average energy corre-
sponding to about the 1600th excited state of the closed
billiard and direct it towards two narrow openings – slits –
which are a few (about 3) De Broglie wavelengths apart.
The wave-packet is taken to be as sharply as possible lo-
calized in momentum space, so that, due to Heisenberg
uncertainty principle, its spreading in position space is of
the order of the diameter of the billiard. Then we solve the
time dependent Schrödinger equation and observe the ra-
diation which is transmitted through the two slits to an
infinite plane below. We then record the time integrated
probability current density I(x) as a function of the hori-
zontal position x on the screen.

The results of such numerical experiment are shown
in Fig. 4. We observe almost no sign of quantum interfer-
ence if the shape of the resonator is chaotic. This is a man-
ifestation of chaotic dynamics of classical rays and conse-
quently phase randomization of multiply reflected waves
impacting onto the slits. For comparison we show an anal-
ogous result for a regular geometry of the resonator which
is represented by an integrable billiard. Here we find the
well known interference fringes whose location and visi-
bility is a well controlled function of the initial conditions
of the wave-packet. In Fig. 5 we show instant snapshots
of the probability density at around half the Heisenberg
time for chaotic and regular geometry. The crucial differ-
ence is that the jets of probability coming out from the

Quantum Chaos, Figure 3
The geometry of the numerical double-slit experiment. All scales
are in proper proportions. The two slits are placed at a distance s
on the lower side of the billiard

Quantum Chaos, Figure 4
The total intensity after the double-slit experiment as a function
of the position on the screen. I(x) is obtained as the perpendic-
ular component of the probability current, integrated in time.
The red full curve indicates the case of regular billiard, while the
blue dotted curve indicates the case of chaotic one. The green
dashed curve indicates the averaged intensity over two 1-slit ex-
periments (where one of the slits is closed), with either the regu-
lar or chaotic billiard (with results being practically the same)

two slits have time-dependent direction in the chaotic case
whereas these directions are frozen in time for the regular
geometry.

We note that such a simple numerical experiment has
a well defined analogue (and explanation) in the stationary
quantum chaos. Namely the intensity I(x), in the far field
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Quantum Chaos, Figure 5
Typical snapshots of the wave-function (plotted is the proba-
bility density) for the two cases: a for the regular billiard at
t D 0:325, and b for the chaotic billiard at t D 0:275 (both cases
correspond to about half the Heisenberg time). The probabil-
ity density is normalized separately in both parts of each plot,
namely the probability density, in absolute units, in the radiat-
ing region is typically less than 1% of the probability density in
the billiard domain. The screen, its center, and the positions of
the slits are indicated with thin black lines. Please note that the
color code on the top of the figure is proportional to the square
root of probability density

and narrow slit approximations, can be expressed in terms
of spatial autocorrelation of the eigenfunctions of the bil-
liard at the two positions of the slit. It is known [10] that
chaotic eigenfunctions are characterized by decaying spa-
tial correlations – hence destruction of interference pat-
tern – whereas eigenfunctions of regular systems have long
range spatial correlations.

Another important aspect of time-dependent quan-
tum chaos is the study of the so-called Loschmidt echoes
or fidelity decay [28]. This quantity has been proposed
by Peres [29] as a natural analogy in quantum mechanics
of Lyapunov exponents and sensitive dependence to ini-
tial conditions. Let U0(t) represent some unitary quantum
mechanical evolution operator, e. g. U0(t) D exp(�iHt/„)
where H is the Hamiltonian, and let U"(t) represent
a perturbed evolution, where " is some small pertur-
bation strength parameter. Quantum Loschmidt echo is
defined in terms of fidelity (square modulus of Hilbert
space inner product) of a state of perturbed time evolu-
tion j�"(t)i D U"(t)j� (0)i with respect to time evolved
state of the unperturbed evolution j�0(t)i D U0(t)j� (0)i,
namely

F(t) D jh�0(t)j�"(t)ij2 D jh� (0)jU0(�t)U"(t)j� (0)ij2 :

The first expression (fidelity) can be interpreted as the
probability that two nearby quantum evolutions end up in
the same state, whereas the second expression (Loschmidt
echo) is the probability that the state after forward per-
turbed time evolution composed with time reversal op-
eration and (backward) unperturbed evolution for the
same amount of time, end up in the same (initial) state.
The equivalence of the two expressions is a simple con-
sequence of the unitarity of quantum dynamics. The fi-
delity is a measure of stability of quantum motion. Note
that the formalism of Loschmidt echoes can be closely con-
nected to the theory of decoherence in open quantum sys-
tems [28]. For example, in many interesting specific situa-
tions the Loschmidt echo can be used to bound or estimate
certain standard measures of decoherence.

For a semi-classical understanding of Loschmidt
echoes it is very useful to write the expression of quantum
fidelity in terms of the Wigner phase space function

W"(q; p; t) D (2�„)�d

�

Z
dd r hq � r/2j�"(t)ih�"(t)jqC r/2i exp(ip � r/„)

corresponding to state j�"(t)i, namely

F(t) D (2�„)�d
Z

dd q dd pW0(q; p; t)W"(q; p; t) :

It is known that the Wigner function of an initial Gaus-
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sian wave-packet follows the classical Liouville equation
for times below the Ehrenfest time. It can also be easily
shown that, for short times, the corresponding classical fi-
delity computed in terms of classical phase space densities
decays with the the same rate with which nearby-orbits di-
verge, namely with the Lyapunov exponent [28]. There-
fore, for t < tE, quantum fidelity decays with the pertur-
bation independent rate given by the classical Lyapunov
exponent , Flyap(t) � exp(�t).

For times between Ehrenfest and Heisenberg time,
tE < t < t�, and correspondingly small perturbation
strength so that the fidelity is appreciable, the decay of
Loschmidt echo can be computed using time-dependent
perturbation theory, or Fermi golden rule, and one ob-
tains Ffgr(t) � exp(�"2� t) where the coefficient � is equal
to average square of near diagonal matrix elements of
the generator of the perturbation. The quantity � can
be semiclassically computed in terms of integrated time-
correlation function of the classical perturbation [28].

For even larger times, t > t�, the quantum dynam-
ics is dominated by fluctuations, and fidelity decay, pro-
vided " is small enough, can be computed by static quan-
tum perturbation theory which leads to the Gaussian de-
cay Fp(t) � exp(�2"2� t2/t�).

On the other hand, fidelity decay for classically inte-
grable (regular) systems is somewhat simpler but less uni-
versal – namely it depends on the structure of invariant
tori of the integrable system and on the initial state. For
initial Gaussian wave-packets, the decay of fidelity is typi-
cally faster than for chaotic systems, which is a manifesta-
tion of ballistic nature of regular dynamics as opposed to
diffusive nature of chaotic dynamics. In Fig. 6 we demon-
strate the decay of fidelity for Haake’s kicked top model [1]
and compare the regimes of regular and chaotic dynamics
for the same initial coherent (Gaussian) state and the same
value of perturbation parameter. Both cases can be the-
oretically described and understood [28]. For illustration
we plot the Wigner functions of the time evolution as well
as the Wigner function of the echo dynamics – perturbed
forward evolution composed with unperturbed backward
evolution. Note that theWigner function of a quantum top
(spin) is defined over a surface of the sphere.

Quantum chaos has been studied also in unbounded
systems with infinite classical phase space, such as the
kicked rotator [30], where classical chaos – through de-
caying temporal correlations – gives rise to determinis-
tic diffusion. It has been shown [30,31,32] that the role
of classical deterministic chaos in kicked one-dimensional
systems with infinite momentum space is analogous and
sometimes even formally equivalent to the role of disorder
in one-dimensional tight binding model of a solid. In fact

Quantum Chaos, Figure 6
Fidelity decay for chaotic (top curve and pictures) and regular
(bottom curve and pictures) kicked top. Initial conditions and the
perturbation are the same in both case and theoretical formu-
lae, with the only input given in terms of classical dynamics, are
shown with full curves (see [28] for details). Wigner functions af-
ter forward and echo evolution are shown for shown for illustra-
tion of the ballistic versus diffusive mechanisms

the phenomenon of dynamical localization has been dis-
covered [31] in full analogy with Anderson localization in
disordered one-dimensional solids.

Applications of QuantumChaos

Theoretical phenomena of quantum chaos have been ap-
plied or experimentally observed in a variety of fields. Far
from being complete we just mention a few.

Atomic Physics

One of the first successful applications of the ideas of
quantum chaos has been a theoretical explanation of
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multi-photon ionization experiments with hydrogen in
microwave field which were performed by Bayfield and
Koch [33]. Single hydrogen atoms prepared in very elon-
gated states with high principal quantum number were in-
jected into microwave cavity and the ionization rate was
measured. Even though the microwave frequency was well
bellow the ionization energy, in fact even lower than the
transition energy to the next excited energy level, it was
found very surprisingly that very efficient ionization oc-
curred when the electric field intensity exceeded a cer-
tain threshold value. The theoretical analysis (described
e. g. in [30]) explained the threshold intensities as criti-
cal values for the onset of chaotic diffusion in phase space.
Quite interestingly, it has been shown that classical me-
chanics alone accurately describes the results of experi-
ment, namely in the situation above the delocalization bor-
der (which has been predicted theoretically [34]) and in
the semiclassical regime of high principal quantum num-
ber, where an effective value of the Planck constant is suffi-
ciently small. However, in [34] it has been shown that dy-
namical localization can take place in hydrogen atom and
this has been experimentally observed in [35,36].

A second notable experimental achievement has been
the observation of dynamical localization, in fact a realiza-
tion of quantum mechanical kicked rotor in terms of cold
Cesium atoms in a standing wave of kicked electric field by
the Raizen’s group [37].

Mesoscopic Solid State Physics

The ideas of quantum chaos have been extensively investi-
gated inmesoscopic solid state systems, in particular in the
studies of quantum transport in the ballistic regime, where
the mean free path of the electrons is much larger than the
device.

Perhaps it is worth mentioning the discovery of uni-
versal conductance fluctuations [38] which correspond
to Ericson fluctuations in nuclear physics. It has been
shown – by measuring the so-called magneto-resistance in
quantum dots (2d conducting structure of a size of the or-
der of a micrometer) – that the conductance fluctuations
have some universal statistical features if the shape of the
quantum dot represents a chaotic billiard. Universal con-
ductance fluctuations have been later extensively discussed
theoretically and explained in terms of randommatrix the-
ory (see e. g. review [39]).

Quantum Information

Chaotic quantum dynamics is effective in producing en-
tanglement, which is a key resource for quantum informa-
tion processing [40,41]. This has been demonstrated theo-

retically with many chaotic toy models, see e. g. [42]. Per-
haps it deserves to be mentioned that two of these mod-
els, namely the quantized Baker map and the quantized
sawtooth map have been realized in a real world quan-
tum computer [43]. Dynamical chaos can also be explored
to engineer robust and accurate decoupling schemes for
processing quantum information in the presence of static
noise [28].

Wave Chaos

There are many applications of the ideas and mechanisms
of quantum chaos outside of quantum mechanics. For ex-
ample, essentially all the stationary aspects of quantum
chaos, and sometimes even some dynamical aspects pro-
vided the change in dispersion relations is taken into ac-
count, are being beautifully demonstrated in the planar
electromagnetic microwave resonators since early 1990’s
by the groups of Stöckmann (see e. g. [44]), Richter (see
e. g. [45]) and Sridhar (see e. g. [46]). Very impressive
“quantum chaos” experimental studies were conducted
in acoustics, namely with blocks of vibrating solids, see
e. g. [47,48]. It turns out that experimentally feasible qual-
ity (Q) factors in elastodynamics resonators can be much
larger than in microwave billiards, however the compli-
cation here being that the underlying amplitude wave
equation is of 4th order and cannot be interpreted as
a Schrödinger equation. Still, using the universality of
quantum chaos one can argue (and find) that statistical
properties of resonance frequencies are described by the
same statistical random matrix theory [49]. We may also
mention a recent application of quantum chaos to opti-
cal fibers [50]. Another impressive extension of quantum
chaos is to non-linear wave-optics, namely to engineer-
ing of directed stimulated emission of micron-size and
chaotic-billiard-shaped semiconductor lasers [51].

Future Directions

By now quantum chaos of a single – or few particles –
systems is relatively well understood. Among open future
problems we should perhaps mention the case of systems
with mixed phase space being neither completely inte-
grable nor fully chaotic. In such systems, one of the most
important problems is to derive a quantitative theory of
tunneling rates between classically disjoint phase space
components.

Most of the results so far obtained in the field of quan-
tum chaos are based on numerical evidence and we are still
lacking of rigorous proofs. For example, we aremissing the
proof of quantum chaos conjecture, the precise conditions
(ergodic properties of the underlying classical system) un-
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der which it holds, precise statements about quantum er-
godicity in general Hamiltonian systems, etc.

However, one of the key challenges for future is to un-
derstand and apply dynamical chaos mechanisms to quan-
tum systems of many interacting particles. In particular it
seems that complete integrability of many body systems
implies anomalous non-equilibrium statistical behaviors,
such as e. g. ballistic transport, and it seems necessary to
operate in the regime of quantum chaos in order to vali-
date diffusive statistical laws in many body transport. Fur-
thermore, it seems that quantum chaos in many body sys-
tems is intimately connected to the impossibility of effi-
cient simulation of such systems on classical computers.
See e. g. [52] for a recent review of these topics.

At the general level we recall that, while in classical
mechanics there is a very well developed ergodic theory
which is important for understanding equilibrium and
non-equilibrium properties of classical physical systems,
in quantum mechanics there is not, so far, a well estab-
lished theory. A theory would be required which could ex-
plain the asymptotic relaxation process (in the correct or-
der of limits, namely letting the time to infinity at last) in
the presence of a purely discrete spectrum and in the ab-
sence of exponential instability.

We close on a more speculative note. In quantum me-
chanics we are always facing with the problem of the mea-
surement device which should be treated as a macroscopic
classical system. As for such, classical chaos and exponen-
tial instability are present. This is indeed even necessary
since, by its purpose, a measurement device must be un-
stable because a microscopic intervention must produce
amacroscopic effect. The importance of chaos in the quan-
tum measurement is that it destroys the coherence of the
initial pure state to be measured converting it to an inco-
herent mixture. In the existing theories of quantum mea-
surement this is described as the effect of external noise.
Chaos theory allows to get rid of this unsatisfactory as-
sumption and to develop a purely dynamical theory of loss
of quantum coherence. Still, a fundamental problem re-
mains open, namely the redistribution of probability ac-
cording to the result of the measurement: the so-called
collapse of the wave-function which remains to be under-
stood.
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Glossary

Quantum circuit A quantum circuit is an acyclic network
of quantum gates connected by wires: the gates repre-
sent quantum operations and the wires represent the
qubits on which these operations are performed. The
quantum circuit model is the most commonly studied
model of quantum computation.

Quantum complexity class A quantum complexity class
is a collection of computational problems that are solv-
able by a chosen quantum computational model that
obeys certain resource constraints. For example, BQP
is the quantum complexity class of all decision prob-
lems that can be solved in polynomial time by a quan-
tum computer.

Quantum proof A quantum proof is a quantum state that
plays the role of a witness or certificate to a quan-
tum computer that runs a verification procedure. The
quantum complexity class QMA is defined by this no-
tion: it includes all decision problems whose yes-in-
stances are efficiently verifiable by means of quantum
proofs.

Quantum interactive proof system A quantum interac-
tive proof system is an interaction between a verifier
and one or more provers, involving the processing
and exchange of quantum information, whereby the
provers attempt to convince the verifier of the answer
to some computational problem.

Definition of the Subject

The inherent difficulty, or hardness, of computational
problems is a fundamental concept in computational com-
plexity theory. Hardness is typically formalized in terms
of the resources required by different models of compu-
tation to solve problems, such as the number of steps of
a deterministic Turing machine. A variety of models and
resources are often considered, including deterministic,
nondeterministic and probabilistic models; time and space
constraints; and interactions among models of differing
abilities. Many interesting relationships among these dif-
ferent models and resource constraints are known.

One common feature of the most commonly stud-
ied computational models and resource constraints is that
they are physically motivated. This is quite natural, given
that computers are physical devices, and to a significant
extent it is their study that motivates and directs research
on computational complexity. The predominant exam-
ple is the class of polynomial-time computable functions,
which ultimately derives its relevance from physical con-
siderations; for it is a mathematical abstraction of the class
of functions that can be efficiently computed without error
by physical computing devices.

In light of its close connection to the physical world, it
seems only natural that modern physical theories should
be considered in the context of computational complex-
ity. In particular, quantum mechanics is a clear candidate
for a physical theory to have the potential for implica-
tions, if not to computational complexity then at least to
computation more generally. Given the steady decrease
in the size of computing components, it is inevitable that
quantum mechanics will become increasingly relevant to
the construction of computers—for quantum mechanics
provides a remarkably accurate description of extremely
small physical systems (on the scale of atoms) where clas-
sical physical theories have failed completely. Indeed, an
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extrapolation of Moore’s Law predicts sub-atomic com-
puting components within the next two decades [74,78];
a possibility inconsistent with quantum mechanics as it is
currently understood.

That quantum mechanics should have implications
to computational complexity theory, however, is much
less clear. It is only through the remarkable discoveries
and ideas of several researchers, including Richard Feyn-
man [49], David Deutsch [40,41], Ethan Bernstein and
Umesh Vazirani [29,30], and Peter Shor [88,89], that this
potential has become evident. In particular, Shor’s poly-
nomial-time quantum factoring and discrete-logarithm al-
gorithms [89] give strong support to the conjecture that
quantum and classical computers yield differing notions of
computational hardness. Other quantum complexity-the-
oretic concepts, such as the efficient verification of quan-
tum proofs, suggest a wider extent to which quantum me-
chanics influences computational complexity.

It may be said that the principal aim of quantum com-
putational complexity theory is to understand the impli-
cations of quantum physics to computational complexity
theory. To this end, it considers the hardness of computa-
tional problems with respect to models of quantum com-
putation, classifications of problems based on these mod-
els, and their relationships to classical models and com-
plexity classes.

Introduction

This article surveys quantum computational complexity,
with a focus on three fundamental notions: polynomial-
time quantum computations, the efficient verification of
quantum proofs, and quantum interactive proof systems.
Based on these notions one defines quantum complex-
ity classes, such as BQP, QMA, and QIP, that contain
computational problems of varying hardness. Properties
of these complexity classes, and the relationships among
these classes and classical complexity classes, are pre-
sented. As these notions and complexity classes are typi-
cally defined within the quantum circuit model, this article
includes a section that focuses on basic properties of quan-
tum circuits that are important in the setting of quantum
complexity. A selection of other topics in quantum com-
plexity, including quantum advice, space-bounded quan-
tum computation, and bounded-depth quantum circuits,
is also presented.

Two different but closely related areas of study are not
discussed in this article: quantum query complexity and
quantum communication complexity. Readers interested in
learning more about these interesting and active areas of

research may find the surveys of Brassard [33], Cleve [34],
and de Wolf [39] to be helpful starting points.

It is appropriate that brief discussions of computa-
tional complexity theory and quantum information pre-
cede the main technical portion of the article. These dis-
cussions are intended only to highlight the aspects of
these topics that are non-standard, require clarification,
or are of particular importance in quantum computa-
tional complexity. In the subsequent sections of this ar-
ticle, the reader is assumed to have basic familiarity with
both topics, which are covered in depth by several text
books [13,43,60,67,79,82].

Computational Complexity

Throughout this article the binary alphabet f0; 1g is de-
noted ˙ , and all computational problems are assumed
to be encoded over this alphabet. As usual, a function
f : ˙� ! ˙� is said to be polynomial-time computable if
there exists a polynomial-time deterministic Turing ma-
chine that outputs f (x) for every input x 2 ˙�. Two re-
lated points on the terminology used throughout this arti-
cle are as follows.

1. A function of the form p : N ! N (where N D

f0; 1; 2; : : : g) is said to be a polynomial-bounded func-
tion if and only if there exists a polynomial-time deter-
ministic Turing machine that outputs 1 f (n) on input 1n

for every n 2 N. Such functions are upper-bounded by
some polynomial, and are efficiently computable.

2. A function of the particular form a : N ! [0; 1] is said
to be polynomial-time computable if and only if there
exists a polynomial-time deterministic Turing machine
that outputs a binary representation of a(n) on input
1n for each n 2 N . References to functions of this form
in this article typically concern bounds on probabili-
ties that are functions of the length of an input string
to some problem.

The notion of promise problems [44,52] is central to quan-
tum computational complexity. These are decision prob-
lems for which the input is assumed to be drawn from
some subset of all possible input strings. More formally,
a promise problem is a pair A D (Ayes;Ano), where
Ayes; Ano � ˙

� are sets of strings satisfying Ayes\Ano D

¿. Languages may be viewed as promise problems that
obey the additional constraint Ayes[Ano D ˙

�. Although
complexity theory has traditionally focused on languages
rather than promise problems, little is lost and much is
gained in shifting one’s focus to promise problems. Karp
reductions and the notion of completeness are defined for
promise problems in the same way as for languages.
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Several classical complexity classes are referred to
in this article, and compared with quantum complexity
classes when relations are known. The following classical
complexity classes, which should hereafter be understood
to be classes of promise problems and not just languages,
are among those discussed.

P A promise problem AD (Ayes;Ano) is in P if and only
if there exists a polynomial-time deterministic Turing
machine M that accepts every string x 2 Ayes and re-
jects every string x 2 Ano.

NP A promise problem AD (Ayes;Ano) is in NP if
and only if there exists a polynomial-bounded func-
tion p and a polynomial-time deterministic Turing
machine M with the following properties. For every
string x 2 Ayes, it holds thatM accepts (x; y) for some
string y 2 ˙ p(jxj), and for every string x 2 Ano, it
holds thatM rejects (x; y) for all strings y 2 ˙ p(jxj) .

BPP A promise problem AD (Ayes;Ano) is in BPP if
and only if there exists a polynomial-time probabilistic
Turing machine M that accepts every string x 2 Ayes
with probability at least 2/3, and accepts every string
x 2 Ano with probability at most 1/3.

PP A promise problem AD (Ayes;Ano) is in PP if and
only if there exists a polynomial-time probabilistic
Turing machine M that accepts every string x 2 Ayes
with probability strictly greater than 1/2, and accepts
every string x 2 Ano with probability at most 1/2.

MA A promise problem AD (Ayes;Ano) is in MA if
and only if there exists a polynomial-bounded func-
tion p and a probabilistic polynomial-time Turing ma-
chineM with the following properties. For every string
x 2 Ayes, it holds that Pr[M accepts (x; y)] � 2

3 for
some string y 2 ˙ p(jxj); and for every string x 2 Ano,
it holds that Pr[M accepts (x; y)] � 1

3 for all strings
y 2 ˙ p(jxj).

AM A promise problem AD (Ayes;Ano) is in AM if and
only if there exist polynomial-bounded functions p
and q and a polynomial-time deterministic Turingma-
chineM with the following properties. For every string
x 2 Ayes, and at least 2/3 of all strings y 2 ˙ p(jxj) ,
there exists a string z 2 ˙ q(jxj) such that M accepts
(x; y; z); and for every string x 2 Ano, and at least
2/3 of all strings y 2 ˙ p(jxj) , there are no strings
z 2 ˙ q(jxj) such thatM accepts (x; y; z).

SZK A promise problem AD (Ayes;Ano) is in SZK if and
only if it has a statistical zero-knowledge interactive
proof system.

PSPACE A promise problem AD (Ayes;Ano) is in
PSPACE if and only if there exists a deterministic Tur-
ing machine M running in polynomial space that ac-

cepts every string x 2 Ayes and rejects every string
x 2 Ano.

EXP A promise problem AD (Ayes;Ano) is in EXP if and
only if there exists a deterministic Turing machine M
running in exponential time (meaning time bounded
by 2p , for some polynomial-bounded function p), that
accepts every string x 2 Ayes and rejects every string
x 2 Ano.

NEXP A promise problem AD (Ayes;Ano) is in NEXP if
and only if there exists an exponential-time non-deter-
ministic Turing machine N for A.

PL A promise problem AD (Ayes;Ano) is in PL if and
only if there exists a probabilistic Turing machine M
running in polynomial time and logarithmic space that
accepts every string x 2 Ayes with probability strictly
greater than 1/2 and accepts every string x 2 Ano with
probability at most 1/2.

NC A promise problem AD (Ayes;Ano) is in NC if
and only if there exists a logarithmic-space generated
family C D fCn : n 2 Ng of poly-logarithmic depth
Boolean circuits such that C(x) D 1 for all x 2 Ayes
and C(x) D 0 for all x 2 Ano.

For most of the complexity classes listed above, there
is a standard way to attach an oracle to the machine model
that defines the class, which provides a subroutine for solv-
ing instances of a chosen problem B D (Byes; Bno). One
then denotes the existence of such an oracle with a su-
perscriptfor example, PB is the class of promise problems
that can be solved in polynomial time by a deterministic
Turing machine equipped with an oracle that solves in-
stances of B (at unit cost). When classes of problems ap-
pear as superscripts, one takes the union, as in the follow-
ing example:

PNP D
[

B2NP

PB :

Quantum Information

The standard general description of quantum information
is used in this article: mixed states of systems are repre-
sented by density matrices and operations are represented
by completely positive trace-preserving linear maps. The
choice to use this description of quantum information is
deserving of a brief discussion, for it will likely be less fa-
miliar to many non-experts than the simplified picture of
quantum information where states are represented by unit
vectors and operations are represented by unitary matri-
ces. This simplified picture is indeed commonly used in
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Quantum Computational Complexity, Figure 1
A diagram illustrating known inclusions amongmost of the clas-
sical complexity classes discussed in this paper. Lines indicate
containments going upward; for example, AM is contained in
PSPACE

the study of both quantum algorithms and quantum com-
plexity theory; and it is often adequate. However, the gen-
eral picture has major advantages: it unifies quantum in-
formation with classical probability theory, brings with it
powerful mathematical tools, and allows for simple and in-
tuitive descriptions in many situations where this is not
possible with the simplified picture.

Classical simulations of quantum computations,
which are discussed below in Subsect. “Classical Upper
Bounds on BQP”, may be better understood through
a fairly straightforward representation of quantum oper-
ations by matrices. This representation begins with a rep-
resentation of density matrices as vectors based on the
function defined as vec(jxihyj) D jxijyi for each choice
of n 2 N and x; y 2 ˙ n , and extended by linearity to all
matrices indexed by ˙n. The effect of this mapping is to
form a column vector by reading the entries of a matrix in
rows from left to right, starting at the top. For example,

vec
�
˛ ˇ

� ı

�
D

0

BB
@

˛

ˇ

�

ı

1

CC
A :

Now, the effect of a general quantum operation ˚ , repre-
sented in the typical Kraus form as

˚(�) D
kX

jD1

Aj�A�j ;

is expressed as a matrix by means of the equality

vec(˚(�)) D

0

@
kX

jD1

Aj ˝ Aj

1

A vec(�) :

The matrix

K˚ D
kX

jD1

Aj ˝ Aj

is sometimes called the natural representation (or linear
representation) of the operation ˚ . Although this matrix
could have negative or complex entries, one can reason-
ably view it as being analogous to a stochastic matrix that
describes a probabilistic computation.

For example, the complete phase-damping channel for
a single qubit can be written

D(�) D j0i h0j�j0i h0j C j1i h1j�j1i h1j :

The effect of this mapping is to zero-out the off-diagonal
entries of a density matrix

D
�
˛ ˇ

� ı

�
D

�
˛ 0
0 ı

�
:

The natural representation of this operation is easily com-
puted

KD D

0

BB
@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

1

CC
A :

The natural matrix representation of quantum operations
is well-suited to performing computations. For the pur-
poses of this article, the most important observation about
this representation is that a composition of operations cor-
responds simply to matrix multiplication.

The QuantumCircuit Model

General QuantumCircuits

The term quantum circuit refers to an acyclic network of
quantum gates connected by wires. The quantum gates
represent general quantum operations, involving some
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constant number of qubits, while the wires represent the
qubits on which the gates act. An example of a quantum
circuit having four input qubits and three output qubits is
pictured in Fig. 2. In general a quantum circuit may have n
input qubits andm output qubits for any choice of integers
n;m � 0. Such a circuit induces some quantum operation
from n qubits to m qubits, determined by composing the
actions of the individual gates in the appropriate way. The
size of a quantum circuit is the total number of gates plus
the total number of wires in the circuit.

A unitary quantum circuit is a quantum circuit in
which all of the gates correspond to unitary quantum op-
erations. Naturally this requires that every gate, and hence
the circuit itself, has an equal number of input and output
qubits. It is common in the study of quantum computing
that one works entirely with unitary quantum circuits. The
unitary model and generalmodel are closely related, as will
soon be explained.

A Finite Universal Gate Set

Restrictions must be placed on the gates from which quan-
tum circuits may be composed if the quantum circuit
model is to be used for complexity theory—for without
such restrictions it cannot be argued that each quantum
gate corresponds to an operation with unit-cost. The usual
way in which this is done is simply to fix a suitable finite set
of allowable gates. For the remainder of this article, quan-
tum circuits will be assumed to be composed of gates from
the following list:

1. Toffoli gates. Toffoli gates are three-qubit unitary gates
defined by the following action on standard basis states:

T : jaijbijci 7! jaijbijc˚ abi :

2. Hadamard gates. Hadamard gates are single-qubit uni-
tary gates defined by the following action on standard

Quantum Computational Complexity, Figure 2
An example of a quantum circuit. The input qubits are labeled X1; : : : ;X4, the output qubits are labeled Y1; : : : ; Y3, and the gates
are labeled by (hypothetical) quantum operations˚1; : : : ;˚6

basis states:

H : jai 7!
1
p
2
j0i C

(�1)a
p
2
j1i :

3. Phase-shift gates. Phase-shift gates are single-qubit uni-
tary gates defined by the following action on standard
basis states:

P : jai 7! iajai :

4. Ancillary gates. Ancillary gates are non-unitary gates
that take no input and produce a single qubit in the
state j0i as output.

5. Erasure gates. Erasure gates are non-unitary gates that
take a single qubit as input and produce no output.
Their effect is represented by the partial trace on the
space corresponding to the qubit they take as input.

The symbols used to denote these gates in quantum circuit
diagrams are shown in Fig. 3. For the sake of simplifying
some of the diagrams that appear later in this article, some
additional gates are illustrated in Fig. 4 along with their
realizations as circuits with gates from the chosen basis set.

The above gate set is universal in a strong sense: ev-
ery quantum operation can be approximated to within
any desired degree of accuracy by some quantum circuit.
Moreover, the size of the approximating circuit scales well
with respect to the desired accuracy. Theorem 1, stated be-
low, expresses this fact in more precise terms, but requires
a brief discussion of a specific sense in which one quantum
operation approximates another.

A natural and operationally meaningful way to mea-
sure the distance between two given quantum opera-
tions ˚ and � is given by

ı(˚;� ) D
1
2
k ˚ � � k˘ ;

where k � k˘ denotes a norm usually known as the dia-
mond norm [64,67]. A technical discussion of this norm is
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Quantum Computational Complexity, Figure 3
A universal collection of quantum gates: Toffoli, Hadamard, phase-shift, ancillary, and erasure gates

Quantum Computational Complexity, Figure 4
Four additional quantum gates, together with their implementations as quantum circuits. Top left: a NOT gate. Top right: a constant
j1i ancillary gate. Bottom left: a controlled-NOT gate. Bottom right: a phase-damping (or decoherence) gate

not necessary for the purposes of this article and is beyond
its scope. Instead, an intuitive description of the distance
measure ı(˚;� ) will suffice.

When considering the distance between quantum op-
erations ˚ and � , it must naturally be assumed that these
operations agree on their numbers of input qubits and out-
put qubits; so assume that ˚ and � both map n qubits
to m qubits for nonnegative integers n and m. Now, sup-
pose that an arbitrary quantum state on n or more qubits
is prepared, one of the two operations ˚ or � is applied
to the first n of these qubits, and then a general measure-
ment of all of the resulting qubits takes place (including
the m output qubits and the qubits that were not among
the inputs to the chosen quantum operation). Two pos-
sible probability distributions on measurement outcomes
arise: one corresponding to ˚ and the other correspond-
ing to � . The quantity ı(˚;� ) is simply the maximum
possible total variation distance between these distribu-
tions, ranging over all possible initial states and general

measurements. This is a number between 0 and 1 that
intuitively represents the observable difference between
quantum operations.

In the special case that ˚ and � take no inputs, the
quantity ı(˚;� ) is simply one-half the trace norm of the
difference between the two output states; a common and
useful ways to measure the distance between quantum
states.

Now the Universality Theorem, which represents an
amalgamation of several results that suits the needs of
this article, may be stated. In particular, it incorporates
the Solovay–Kitaev Theorem, which provides a bound on
the size of an approximating circuit as a function of the
accuracy.

Theorem 1 (Universality Theorem) Let ˚ be an arbi-
trary quantum operation from n qubits to m qubits. Then
for every " > 0 there exists a quantum circuit Q with n
input qubits and m output qubits such that ı(˚;Q) < ".
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Moreover, for fixed n and m, the circuit Q may be taken to
satisfy size(Q) D poly(log(1/")).

Note that it is inevitable that the size of Q is exponen-
tial in n and m in the worst case [68]. Further details
on the facts comprising this theorem can be found in
both Nielsen and Chuang [79] and Kitaev, Shen, and Vya-
lyi [67].

Unitary Purifications of QuantumCircuits

The connection between general and unitary quantum cir-
cuits can be understood through the notion of a unitary
purification of a general quantum circuit. This may be
thought of as a very specific manifestation of the Stine-
spring Dilation Theorem [90], which implies that general
quantum operations can be represented by unitary opera-
tions on larger systems. It was first applied to the quan-
tum circuit model by Aharonov, Kitaev, and Nisan [9],
who gave several arguments in favor of the general quan-
tum circuit model over the unitary model. The term pu-
rification is borrowed from the notion of a purification of
a mixed quantum state, as the process of unitary purifica-
tion for circuits is similar in spirit. The universal gate set,
described in the previous section has the effect of making
the notion of a unitary purification of a general quantum
circuit nearly trivial at a technical level.

Suppose that Q is a quantum circuit taking input
qubits (X1; : : : ; Xn) and producing output qubits (Y1; : : : ;
Ym), and assume there are k ancillary gates and l erasure
gates among the gates of Q to be labeled in an arbitrary
order as G1; : : : ;Gk and K1; : : : ;Kl , respectively. A new
quantum circuit R may then be formed by removing the
gates labeled G1; : : : ;Gk and K1; : : : ;Kl ; and to account
for the removal of these gates the circuit R takes k addi-
tional input qubits (Z1; : : : ; Zk) and produces l additional
output qubits (W1; : : : ;Wl ). Figure 5 illustrates this pro-
cess. The circuit R is said to be a unitary purification of Q.
It is obvious that R is equivalent to Q, provided the qubits
(Z1; : : : ; Zk) are initially set to the j0i state and the qubits
(W1; : : : ;Wl ) are traced-out, or simply ignored, after the

Quantum Computational Complexity, Figure 5
A general quantum circuit (left) and its unitary purification (right)

circuit is run—for this is precisely the meaning of the re-
moved gates.

Despite the simplicity of this process, it is often useful
to consider the properties of unitary purifications of gen-
eral quantum circuits.

Oracles in the QuantumCircuit Model

Oracles play an important, and yet uncertain, role in com-
putational complexity theory; and the situation is no dif-
ferent in the quantum setting. Several interesting oracle-
related results, offering some insight into the power of
quantum computation, will be discussed in this article.

Oracle queries are represented in the quantum circuit
model by an infinite family

fRn : n 2 Ng

of quantum gates, one for each possible query length. Each
gate Rn is a unitary gate acting on nC 1 qubits, with the
effect on computational basis states given by

Rn jx; ai D jx; a˚ A(x)i (1)

for all x 2 ˙ n and a 2 ˙ , where A is some predicate
that represents the particular oracle under consideration.
When quantum computations relative to such an oracle
are to be studied, quantum circuits composed of ordinary
quantum gates as well as the oracle gates fRng are consid-
ered; the interpretation being that each instance of Rn in
such a circuit represents one oracle query.

It is critical to many results concerning quantum ora-
cles, as well as most results in the area of quantum query
complexity, that the above definition (1) takes each Rn to
be unitary, thereby allowing these gates to make queries
“in superposition”. In support of this seemingly strong
definition is the fact, discussed in the next section, that any
efficient algorithm (quantumor classical) can be converted
to a quantum circuit that closely approximates the action
of these gates.

Finally, one may consider a more general situation in
which the predicate A is replaced by a function that out-
puts multiple bits. The definition of each gateRn is adapted
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Quantum Computational Complexity, Figure 6
The Bernstein–Vazirani algorithm allows a multiple-bit query to
be simulated by a single-bit query. In the example pictured,
f : ˙ 3! ˙ 3 is a given function. To simulate a query to this
function, the gate R6 is taken to be a standard oracle gate im-
plementing the predicate A(x; z) D hf (x); zi, for h�; �i denoting
the modulo 2 inner product

appropriately. Alternately, one may restrict their attention
to single-bit queries as discussed above, and use the Bern-
stein–Vazirani algorithm [30] to simulate one multiple-bit
query with one single-bit query as illustrated in Fig. 6.

Polynomial-TimeQuantumComputations

This section focuses on polynomial-time quantum compu-
tations. These are the computations that are viewed, in
an abstract and idealized sense, to be efficiently imple-
mentable by the means of a quantum computer. In par-
ticular, the complexity class BQP (short for bounded-error
quantum polynomial time) is defined. This is themost fun-
damentally important of all quantum complexity classes,
as it represents the collection of decision problems that can
be efficiently solved by quantum computers.

Polynomial-Time Generated Circuit Families and BQP

To define the class BQP using the quantum circuit model,
it is necessary to briefly discuss encodings of circuits and
the notion of a polynomial-time generated circuit family.

It is clear that any quantum circuit formed from the
gates described in the previous section could be encoded
as a binary string using any number of different encoding
schemes. Such an encoding scheme must be chosen, but
its specifics are not important so long as following simple
restrictions are satisfied:

1. The encoding is sensible: every quantum circuit is en-
coded by at least one binary string, and every binary
string encodes at most one quantum circuit.

2. The encoding is efficient: there is a fixed polynomial-
bounded function p such that every circuit of sizeN has

an encoding with length atmost p(N). Specific informa-
tion about the structure of a circuit must be computable
in polynomial time from an encoding of the circuit.

3. The encoding disallows compression: it is not possible
to work with encoding schemes that allow for extremely
short (e. g., polylogarithmic-length) encodings of cir-
cuits; so for simplicity it is assumed that the length of
every encoding of a quantum circuit is at least the size
of the circuit.

Now, as any quantum circuit represents a finite computa-
tion with some fixed number of input and output qubits,
quantum algorithms are modeled by families of quantum
circuits. The typical assumption is that a quantum circuit
family that describes an algorithm contains one circuit for
each possible input length. Precisely the same situation
arises here as in the classical setting, which is that it should
be possible to efficiently generate the circuits in a given
family in order for that family to represent an efficient,
finitely specified algorithm. The following definition for-
malizes this notion.

Definition 2 Let S � ˙� be any set of strings. Then a col-
lection fQx : x 2 Sg of quantum circuits is said to be poly-
nomial-time generated if there exists a polynomial-time
deterministic Turing machine that, on every input x 2 S,
outputs an encoding of Qx.

This definition is slightly more general thanwhat is needed
to define BQP, but is convenient for other purposes. For
instance, it allows one to easily consider the situation in
which the input, or some part of the input, for some prob-
lem is hard-coded into a collection of circuits; or where
a computation for some input may be divided among sev-
eral circuits. In the most typical case that a polynomial-
time generated family of the form fQn : n 2 Ng is referred
to, it should be interpreted that this is a shorthand for
fQ1n : n 2 Ng. Notice that every polynomial-time gener-
ated family fQx : x 2 Sg has the property that each cir-
cuitQx has size polynomial in jxj. Intuitively speaking, the
number of quantum and classical computation steps re-
quired to implement such a computation is polynomial;
and so operations induced by the circuits in such a family
are viewed as representing polynomial-time quantum com-
putations.

The complexity class BQP, which contains those
promise problems abstractly viewed to be efficiently solv-
able using a quantum computer, may now be defined.
More precisely, BQP is the class of promise problems that
can be solved by polynomial-time quantum computations
that may have some small probability to make an error.
For decision problems, the notion of a polynomial-time
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quantum computation is equated with the computation
of a polynomial-time generated quantum circuit family
Q D fQn : n 2 Ng, where each circuit Qn takes n input
qubits, and produces one output qubit. The computation
on a given input string x 2 ˙ is obtained by first applying
the circuit Qjxj to the state jxihxj, and then measuring the
output qubit with respect to the standard basis. The mea-
surement results 0 and 1 are interpreted as yes and no (or
accept and reject), respectively. The events thatQ accepts x
and Q rejects x are understood to have associated proba-
bilities determined in this way.

BQP Let AD (Ayes;Ano) be a promise problem and let
a; b : N ! [0; 1] be functions. Then A 2 BQP(a; b) if
and only if there exists a polynomial-time generated
family of quantum circuits Q D fQn : n 2 Ng, where
each circuit Qn takes n input qubits and produces one
output qubit, that satisfies the following properties:

1. if x 2 Ayes then Pr[Q accepts x] � a(jxj), and
2. if x 2 Ano then Pr[Q accepts x] � b(jxj).

The class BQP is defined as BQP D BQP(2/3; 1/3).

Similar to BPP, there is nothing special about the par-
ticular choice of error probability 1/3, other than that it is
a constant strictly smaller than 1/2. This is made clear in
the next section.

There are several problems known to be in BQP but
not known (and generally not believed) to be in BPP. Deci-
sion-problem variants of the integer factoring and discrete
logarithm problems, shown to be in BQP by Shor [89], are
at present the most important and well-known examples.

Error Reduction for BQP

When one speaks of the flexibility, or robustness, of BQP
with respect to error bounds, it is meant that the class
BQP(a; b) is invariant under a wide range of “reasonable”
choices of the functions a and b. The following proposition
states this more precisely.

Proposition 3 (Error reduction for BQP) Suppose that
a; b : N ! [0; 1] are polynomial-time computable func-
tions and p : N ! N is a polynomial-bounded function
such that a(n) � b(n) � 1/p(n) for all but finitely many
n 2 N . Then for every choice of a polynomial-bounded
function q : N ! N satisfying q(n) � 2 for all but finitely
many n 2 N , it holds that

BQP(a; b) D BQP D BQP
�
1 � 2�q ; 2�q


:

The above proposition may be proved in the same stan-
dard way that similar statements are proved for classical

probabilistic computations: by repeating a given compu-
tation some large (but still polynomial) number of times,
overwhelming statistical evidence is obtained so as to give
the correct answer with an extremely small probability of
error. It is straightforward to represent this sort of re-
peated computation within the quantum circuit model in
such a way that the requirements of the definition of BQP
are satisfied.

Simulating Classical Computations
with QuantumCircuits

It should not be surprising that quantum computers can
efficiently simulate classical computers—for quantum in-
formation generalizes classical information, and it would
be absurd if there were a loss of computational power
in moving to a more general model. This intuition may
be confirmed by observing the containment BPP � BQP.
Here an advantage of working with the general quantum
circuit model arises: for if one truly believes the Universal-
ity Theorem, there is almost nothing to prove.

Observe first that the complexity class P may be de-
fined in terms of Boolean circuit families in a similar man-
ner to BQP. In particular, a given promise problem A D
(Ayes;Ano) is in P if and only if there exists a polynomial-
time generated family C D fCn : n 2 Ng of Boolean cir-
cuits, where each circuit Cn takes n input bits and outputs
1 bit, such that

1. C(x) D 1 for all x 2 Ayes, and
2. C(x) D 0 for all x 2 Ano.

A Boolean circuit-based definition of BPP may be
given along similar lines: a given promise problem
A D (Ayes;Ano) is in BPP if and only if there exists a poly-
nomial-bounded function r and a polynomial-time gener-
ated family C D fCn : n 2 Ng of Boolean circuits, where
each circuit Cn takes nC r(n) input bits and outputs 1 bit,
such that

1. Pr[C(x; y) D 1] � 2/3 for all x 2 Ayes, and
2. Pr[C(x; y) D 1] � 1/3 for all x 2 Ano,

where y 2 ˙ r(jxj) is chosen uniformly at random in both
cases.

In both definitions, the circuit family C includes
circuits composed of constant-size Boolean logic
gates—which for the sake of brevity may be assumed
to be composed of NAND gates and FANOUT gates.
(FANOUT operations must be modeled as gates for the
sake of the simulation.) For the randomized case, it may
be viewed that the random bits y 2 ˙ r(jxj) are produced
by gates that take no input and output a single uniform
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random bit. As NAND gates, FANOUT gates, and ran-
dom bits are easily implemented with quantum gates,
as illustrated in Fig. 7, the circuit family C can be sim-
ulated gate-by-gate to obtain a quantum circuit family
Q D fQn : n 2 Ng for A that satisfies the definition of
BQP. It follows that BPP � BQP.

The BQP Subroutine Theorem

There is an important issue regarding the above definition
of BQP, which is that it is not an inherently “clean” def-
inition with respect to the modularization of algorithms.
The BQP subroutine theorem of Bennett, Brassard, Bern-
stein and Vazirani [27] addresses this issue.

Suppose that it is established that a particular promise
problem A is in BQP, which by definition means that there
must exist an efficient quantum algorithm (represented by
a family of quantum circuits) for A. It is then natural to
consider the use of that algorithm as a subroutine in other
quantum algorithms for more complicated problems, and
one would like to be able to do this without worrying about
the specifics of the original algorithm. Ideally, the algo-
rithm for A should function as an oracle for A, as defined
in Subsect. “Oracles in the Quantum Circuit Model”.

A problem arises, however, when queries to an algo-
rithm for A are made in superposition. Whereas it is quite
common and useful to consider quantum algorithms that
query oracles in superposition, a given BQP algorithm
for A is only guaranteed to work correctly on classical in-
puts. It could be, for instance, that some algorithm for A
begins by applying phase-damping gates to all of its input
qubits, or perhaps this happens inadvertently as a result
of the computation. Perhaps it is too much to ask that the
existence of a BQP algorithm for A admits a subroutine
having the characteristics of an oracle for A?

Quantum Computational Complexity, Figure 7
Quantum circuit implementations of a NAND gate, a FANOUT gate, and a random bit. The phase-damping gates, denoted by D, are
only included for aesthetic reasons: they force the purely classical behavior that would be expected of classical gates, but are not
required for the quantum simulation of BPP

The BQP subroutine theorem establishes that, up to
exponentially small error, this is not too much to ask: the
existence of an arbitrary BQP algorithm for A implies the
existence of a “clean” subroutine for A with the charac-
teristics of an oracle. A precise statement of the theorem
follows.

Theorem 4 (BQP subroutine theorem) Suppose A D
(Ayes;Ano) is a promise problem in BQP. Then for any
choice of a polynomial-bounded function p there exists
a polynomial-bounded function q and a polynomial-time
generated family of unitary quantum circuits fRn : n 2 Ng
with the following properties:

1. Each circuit Rn implements a unitary operation Un on
nC q(n)C 1 qubits.

2. For every x 2 Ayes and a 2 ˙ it holds that

hx; 0m ; a˚ 1jUnjx; 0m; ai � 1 � 2�p(n)

for n D jxj and m D q(n).
3. For every x 2 Ano and a 2 ˙ it holds that

hx; 0m ; ajUnjx; 0m ; ai � 1 � 2�p(n)

for n D jxj and m D q(n).

The proof of this theorem is remarkably simple: given
a BQP algorithm for A, one first uses Proposition 3 to
obtain a circuit family Q having exponentially small er-
ror for A. The circuit illustrated in Fig. 8 then implements
a unitary operation with the desired properties. This is es-
sentially a bounded-error quantum adaptation of a classic
construction that allows arbitrary deterministic computa-
tions to be performed reversibly [26,92].

The following corollary expresses themain implication
of the BQP subroutine theorem in complexity-theoretic
terms.



7184 Q Quantum Computational Complexity

Quantum Computational Complexity, Figure 8
A unitary quantum circuit approximating an oracle-gate imple-
mentation of a BQP computation. Here Qn is a unitary purifica-
tion of a circuit having exponentially small error for some prob-
lem in BQP

Corollary 5 BQPBQP D BQP.

Classical Upper Bounds on BQP

There is no known way to efficiently simulate quantum
computers with classical computers—and there would be
little point in seeking to build quantum computers if there
were. Nevertheless, some insight into the limitations of
quantum computers may be gained by establishing con-
tainments of BQP in the smallest classical complexity
classes where this is possible.

The strongest containment known at this time is given
by counting complexity. Counting complexity began with
Valiant’s work [94] on the complexity of computing the
permanent, and was further developed and applied in
many papers (including [22,47,91], among many others).

The basic notion of counting complexity that is rel-
evant to this article is as follows. Given a polynomial-
time nondeterministic TuringmachineM and input string
x 2 ˙�, one denotes by #M(x) the number of accepting
computation paths of M on x, and by #M(x) the num-
ber of rejecting computation paths of M on x. A function
f : ˙� ! Z is then said to be a GapP function if there
exists a polynomial-time nondeterministic Turing ma-
chineM such that f (x) D #M(x)� #M(x) for all x 2 ˙�.

A variety of complexity classes can be specified in
terms of GapP functions. For example, a promise problem
AD (Ayes;Ano) is in PP if and only if there exists a func-
tion f 2 GapP such that f (x) > 0 for all x 2 Ayes and
f (x) � 0 for all x 2 Ano. The remarkable closure prop-
erties of GapP functions allows many interesting facts to
be proved about such classes. Fortnow’s survey [50] on
counting complexity explains many of these properties
and gives several applications of the theory of GapP func-
tions. The following closure property is used below.

GapP–multiplication of matrices. Let p; q : N ! N
be polynomial-bounded functions. Suppose that for each
n 2 N a sequence of p(n) complex-valued matrices is

given

An;1; An;2; : : : ; An;p(n) ;

each having rows and columns indexed by strings
in ˙ q(n). Suppose further that there exist functions
f ; g 2 GapP such that

f (1n ; 1k ; x; y) D Re
�
An;k[x; y]



g(1n ; 1k ; x; y) D Im
�
An;k[x; y]



for all n 2 N , k 2 f1; : : : ; p(n)g, and x; y 2 ˙ q(n). Then
there exist functions F;G 2 GapP such that

F(1n ; x; y) D Re
�
(An;p(n) � � �An;1)[x; y]



G(1n ; x; y) D Im
�
(An;p(n) � � �An;1)[x; y]



for all n 2 N and x; y 2 ˙ q(n). In other words, if there ex-
ist two GapP functions describing the real and imaginary
parts of the entries of a polynomial sequence of matrices,
then the same is true of the product of these matrices.

Now, suppose that Q D fQn : n 2 Ng is a polyno-
mial-time generated family of quantum circuits. For each
n 2 N , let us assume the quantum circuit Qn consists
of gates Gn;1; : : : ;Gn;p(n) for some polynomial bounded
function p, labeled in an order that respects the topology
of the circuit. By tensoring these gates with the identity op-
eration on qubits they do not touch, and using the natural
matrix representation of quantum operations, it is possi-
ble to obtainmatricesMn;1; : : : ;Mn;p(n) with the property
that

Mn;p(n) � � �Mn;1vec(�) D vec(Qn(�))

for every possible input density matrix � to the circuit. The
probability that Qn accepts a given input x is then

h1; 1j
�
Mn;p(n) � � �Mn;1


jx; xi ;

which is a single entry in the product of the matrices.
By padding matrices with rows and columns of zeroes,

it may be assumed that each matrix Mn;k has rows and
columns indexed by strings of length q(n). The assump-
tion that the family Q is polynomial-time generated then
allows one to easily conclude that there exist GapP func-
tions f and g so that

f (1n ; 1k ; x; y) D
1
2
Re
�
An;k[x; y]



g(1n ; 1k ; x; y) D
1
2
Im
�
An;k[x; y]



for all n 2 N, k 2 f1; : : : ; p(n)g, and x; y 2 ˙ q(n). (Note
that his fact makes use of the observation that the natural
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matrix representation of all of the gates listed in Subsect.
“A Finite Universal Gate Set” have entries whose real and
imaginary parts come from the set f�1;�1/2; 0; 1/2; 1g.
The numbers ˙1/2 are only needed for the Hadamard
gates.) By the property of GapP functions above, it follows
that there exists a GapP function F such that

Pr[Q accepts x] D
F(x)
2p(jxj)

:

The containment BQP � PP follows easily. This con-
tainment was first proved by Adleman, DeMarrais, and
Huang [7] using a different method, and was first argued
using counting complexity along similar lines to the above
proof by Fortnow and Rogers [51]. There are two known
ways that this upper bound can be improved. Using the
fact that BQP algorithms have bounded error, Fortnow
and Rogers [51] proved that BQP is contained in a (some-
what obscure) counting complexity class called AWPP,
which implies the following theorem.

Theorem 6 PPBQP D PP.

Another improvement comes from the observation that
the above proof that BQP � PP makes no use of the
bounded-error assumption of BQP. It follows that an un-
bounded error variant of BQP is equal to PP.

PQP Let AD (Ayes;Ano) be a promise problem. Then
A 2 PQP if and only if there exists a polynomial-time
generated family of quantum circuits Q D fQn : n 2
Ng, where each circuit Qn takes n input qubits and
produces one output qubit, that satisfies the follow-
ing properties. If x 2 Ayes then Pr[Q accepts x] > 1/2;
and if x 2 Ano then Pr[Q accepts x] � 1/2.

Theorem 7 PQP D PP.

Oracle Results Involving BQP

It is difficult to prove separations among quantum com-
plexity classes for apparently the same reasons that this
is so for classical complexity classes. For instance, one
clearly cannot hope to prove BPP 6D BQP whenmajor col-
lapses such as NC D PP or P D PSPACE are still not dis-
proved. In some cases, however, separations among quan-
tum complexity classes can be proved in relativized set-
tings, meaning that the separation holds in the presence of
some cleverly defined oracle. The following oracle results
are among several that are known:

1. There exists an oracle A such that BQPA 6�

MAA [18,30,96]. Such an oracle A intuitively encodes
a problem that is solvable using a quantum computer

but is not even efficiently verifiable with a classical com-
puter. As the containment BPP � BQP holds relative
to every oracle, this implies that BPPA ¨ BQPA for this
particular choice of A.

2. There is an oracle A such that NPA 6� BQPA [27]. In
less formal terms: a quantum computer cannot find
a needle in an exponentially large haystack in polyno-
mial time. This result formalizes a critically important
idea, which is that a quantum computer can only solve
a given search problem efficiently if it is able to exploit
that problem’s structure. It is easy to define an oracle
search problem represented by A that has no structure
whatsoever, which allows the conclusion NPA 6� BQPA

to be drawn. It is not currently known whether the
NP-complete problems, in the absence of an oracle,
have enough structure to be solved efficiently by quan-
tum computers; but there is little hope and no indica-
tion whatsoever that this should be so. It is therefore
a widely believed conjecture that NP 6� BQP.

3. There is an oracle A such that SZKA 6� BQPA [1,5].
This result is similar in spirit to the previous one, but is
technically more difficult and rules out the existence of
quantum algorithms for unstructured collision detec-
tion problems. The graph isomorphism problem and
various problems that arise in cryptography are ex-
amples of collision detection problems. Once again, it
follows that quantum algorithms can only solve such
problems if their structure is exploited. It is a ma-
jor open question in quantum computing whether the
graph isomorphism problem is in BQP.

Quantum Proofs

There aremany quantum complexity classes of interest be-
yond BQP. This section concerns one such class, which
is a quantum computational analogue of NP. The class is
known as QMA, short for quantum Merlin–Arthur, and is
based on the notion of a quantum proof : a quantum state
that plays the role of a certificate or witness to a quan-
tum computer that functions as a verification procedure.
Interest in both the class QMA and the general notion
of quantum proofs is primarily based on the fundamental
importance of efficient verification in computational com-
plexity. The notion of a quantum proof was first proposed
by Knill [69] and consider more formally by Kitaev (pre-
sented at a talk in 1999 [65] and later published in [67]).

Definition of QMA

The definition of QMA is inspired by the standard defini-
tion of NP included in Subsect. “Computational Complex-
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ity” of this article. This definition is of course equivalent to
the other well-known definition of NP based on nonde-
terministic Turing machines, but is much better-suited to
consideration in the quantum setting—for nondetermin-
ism is arguably a non-physical notion that does not nat-
urally extend to quantum computing. In the definition of
NP from Subsect. “Computational Complexity”, the ma-
chine M functions as a verification procedure that treats
each possible string y 2 ˙ p(jxj) as a potential proof that
x 2 Ayes. The conditions onM are known as the complete-
ness and soundness conditions, which derive their names
from logic: completeness refers to the condition that true
statements have proofs, while soundness refers to the con-
dition that false statements do not.

To define QMA, the set of possible proofs is extended
to include quantum states, which of course presumes that
the verification procedure is quantum. As quantum com-
putations are inherently probabilistic, a bounded probabil-
ity of error is allowed in the completeness and soundness
conditions. (This is why the class is called QMA rather
than QNP, as it is reallyMA and not NP that is the classical
analogue of QMA.)

QMA Let AD (Ayes;Ano) be a promise problem, let p be
a polynomial-bounded function, and let a; b : N !

[0; 1] be functions. Then A 2 QMAp(a; b) if and only
if there exists a polynomial-time generated family
of circuits Q D fQn : n 2 Ng, where each circuit Qn
takes nC p(n) input qubits and produces one output
qubit, with the following properties:

1. Completeness. For all x 2 Ayes, there exists a p(jxj)-
qubit quantum state � such that Pr[Q accepts (x;
�)] � a(jxj).

2. Soundness. For all x 2 Ano and all p(jxj)-
qubit quantum states � it holds that Pr[Q accepts
(x; �)] � b(jxj).

Also define QMA D
S

p QMAp(2/3; 1/3), where the
union is over all polynomial-bounded functions p.

Problems in QMA

Before discussing the general properties of QMA that are
known, it is appropriate to mention some examples of
problems in this class. Of course it is clear that thousands
of interesting combinatorial problems are in QMA, as the
containment NP � QMA is trivial. What is more inter-
esting is the identification of problems in QMA that are
not known to be in NP, for these are examples that pro-
vide insight into the power of quantum proofs. There are
presently just a handful of known problems in QMA that
are not known to be in NP, but the list is growing.

The Local Hamiltonian Problem Historically speaking,
the first problem identified to be complete for QMA was
the local Hamiltonian problem [65,67], which can be seen
as a quantum analogue of the MAX-k-SAT problem. Its
proof of completeness can roughly be seen as a quantum
analogue of the proof of the Cook–Levin Theorem [38,72].
The proof has subsequently been strengthened to achieve
better parameters [61].

Suppose thatM is a Hermitian matrix whose rows and
columns are indexed by strings of length n for some inte-
ger n � 1. ThenM is said to be k-local if and only if it can
be expressed as

M D P	 (A˝ I)P�1	

for an arbitrary matrixA indexed by˙k, P	 a permutation
matrix defined by

P	 jx1 � � � xni D jx	(1) � � � x	(n)i

for some permutation � 2 Sn , and I denoting the identity
matrix indexed by˙ n�k . In less formal terms,M is a ma-
trix that arises from a “gate” on k qubits, but where the
gate is described by a 2k � 2k Hermitian matrix A rather
than a unitary matrix. It is possible to express such a ma-
trix compactly by specifying A along with the bit-positions
on which A acts.

Intuitively, a k-local matrix assigns a real number (rep-
resenting the energy) to any quantum state on n qubits.
This number depends only on the reduced state of the k
qubits whereM acts nontrivially, and a limit on this value
can be thought of as a local constraint on a given quan-
tum state. Loosely speaking, the k-local Hamiltonian prob-
lem asks whether there exists a quantum state that satisfies
a collection of such constraints.

THE K-LOCAL HAMILTONIAN PROBLEM
Input: A collection H1; : : : ;Hm of k-local Hermitian ma-

trices indexed by strings of length n and satisfying
k Hj k� 1 for j D 1; : : : ;m.

Yes: There exists an n-qubit quantum state j i such
that  jH1 C � � � C Hmj � �1.

No: For every n-qubit quantum state j i it holds that
 jH1 C � � � C Hmj � 1.

Theorem 8 The 2-local Hamiltonian problem is complete
for QMA with respect to Karp reductions.

The completeness of this problem has been shown to be
closely related to the universality of the so-called adiabatic
model of quantum computation [11].

Other Problems Complete for QMA Aside from the lo-
cal Hamiltonian problem, there are other promise prob-
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lems known to be complete for QMA, including the fol-
lowing:

1. Restricted versions of the local Hamiltonian problem.
For example, the 2-local Hamiltonian problem remains
QMA-complete when the local Hamiltonians are re-
stricted to nearest-neighbor interactions on a two-di-
mensional array of qubits [81]. The hardness of the
local Hamiltonian problem with nearest-neighbor in-
teractions on one-dimensional systems is known to be
QMA-complete for 12 dimensional particles in place of
qubits [10], but is open for smaller systems including
qubits.

2. The density matrix consistency problem. Here, the input
is a collection of density matrices representing the re-
duced states of a hypothetical n-qubit state. The input
is a yes-instance of the problem if there exists a state
of the n-qubit system that is consistent with the given
reduced density matrices, and is a no-instance if every
state of the n-qubit system has reduced states that have
significant disagreement from one or more of the input
densitymatrices. This problem is known to be complete
for QMA with respect to Cook reductions [73], but is
not known to be complete for Karp reductions.

3. The quantum clique problem. Beigi and Shor [23] have
proved that a promise version of the following prob-
lem is QMA-complete for any constant k � 2. Given
a quantum operation ˚ , are there k different inputs
to ˚ that are perfectly distinguishable after passing
through ˚? They name this the quantum clique prob-
lem because there is a close connection between com-
puting the zero-error capacity of a classical channel and
computing the size of the largest clique in the comple-
ment of a graph representing the channel; and this is
a quantum variant of that problem.

4. Several problems about quantum circuits. All of the
problems mentioned above are proved to be QMA-
hard through reductions from the local Hamiltonian
problem. Other problems concerning properties of
quantum circuits can be proved QMA-complete by
more direct means, particularly when the problem itself
concerns the existence of a quantum state that causes an
input circuit to exhibit a certain behavior. An example
in this category is the non-identity check problem [59]
that asks whether a given unitary circuit implements an
operation that is close to some scalar multiple of the
identity.

The Group Non-Membership Problem Another exam-
ple of a problem in QMA that is not known to be in NP is
the group non-membership problem [17,96]. This problem

is quite different from the QMA-complete problems men-
tioned above in two main respects. First, the problem cor-
responds to a language, meaning that the promise is vacu-
ous: every possible input can be classified as a yes-instance
or no-instance of the problem. (In all of the above prob-
lems it is not possible to do this without invalidating the
known proofs that the problems are in QMA.) Second, the
problem is not known to be complete for QMA; and in-
deed it would be quite surprising if QMA were shown to
have a complete problem having a vacuous promise.

In the group non-membership problem the input is
a subgroup H of some finite group G, along with an ele-
ment g 2 G. The yes-instances of the problem are those
for which g 62 H, while the no-instances are those for
which g 2 H.
THE GROUP NON-MEMBERSHIP PROBLEM
Input: Group elements h1; : : : ; hk and g from some finite

group G. Let H D hh1; : : : ; hki be the subgroup
generated by h1; : : : ; hk .

Yes: g 62 H.
No: g 2 H.

Like most group-theoretic computational problems,
there are many specific variants of the group non-mem-
bership problem that differ in the way that group elements
are represented. For example, group elements could be
represented by permutations in cycle notation, invertible
matrices over a finite field, or any number of other pos-
sibilities. The difficulty of the problem clearly varies de-
pending the representation. The framework of black-box
groups, put forth by Babai and Szemerédi [20], simplifies
this issue by assuming that group elements are represented
by meaningless labels that can only be multiplied or in-
verted by means of a group oracle. Any algorithm or pro-
tocol that solves a problem in this framework can then be
adapted to any specific group provided that an efficient im-
plementation of the group operations exists that can re-
place the group oracle.

Theorem 9 The group non-membership problem is in
QMA for every choice of a group oracle.

Error Reduction for QMA

The class QMA is robust with error bounds, which are re-
flected by the completeness and soundness probabilities,
in much the same way that the same is true of BQP. Two
specific error reduction methods are presented in this sec-
tion: weak error reduction and strong error reduction. The
two methods differ with respect to the length of the quan-
tum proof that is needed to obtain a given error bound,
which is a unique consideration that arises when working
with quantum proofs.
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Suppose that AD (Ayes;Ano) is a given promise prob-
lem for which a QMA-type quantum verification proce-
dure exists. To describe both error reduction procedures,
it is convenient to assume that the input to the prob-
lem is hard-coded into each circuit in the family repre-
senting the verification procedure. The verification proce-
dure therefore takes the form Q D fQx : x 2 ˙�g, where
each circuit Qx takes a p(jxj)-qubit quantum state as in-
put, for some polynomial-bounded function p represent-
ing the quantum proof length, and produces one out-
put qubit. The completeness and soundness probabilities
are assumed to be given by polynomial-time computable
functions a and b as usual.

The natural approach to error reduction is repetition:
for a given input x the verification circuit Qx is evaluated
multiple times, and a decision to accept or reject based on
the frequency of accepts and rejects among the outcomes
of the repetitions is made. Assuming a(jxj) and b(jxj) are
not too close together, this results in a decrease in error
that is exponential in the number of repetitions [67]. The
problem that arises, however, is that each repetition of the
verification procedure apparently destroys the quantum
proof it verifies, which necessitates the composite verifica-
tion procedure receiving p(jxj) qubits for each repetition
of the original procedure as illustrated in Fig. 9. The form
of error reduction implemented by this procedure is called

Quantum Computational Complexity, Figure 9
An illustration of the weak error reduction procedure for QMA.
The circuitsQx represent the original verification procedure, and
the circuit labeled F outputs acceptance or rejection based on
the frequency of accepts among its inputs (which can be ad-
justed depending on a and b). It cannot be assumed that the in-
put state � takes the form of a product state �˝ � � � ˝ �; but it
is not difficult to prove that therewill always be at least one such
input state among the states maximizing the acceptance proba-
bility of the procedure

weak error reduction, given that the length of the quan-
tum proof must grow as the error decreases. (Of course
one may view that it also has a strength, which is that it
does not require a significant increase in circuit depth over
the original procedure.)

The second error reduction procedure for QMA is due
to Marriott and Watrous [76]. Like weak error reduction
it gives an exponential reduction in error for roughly a lin-
ear increase in circuit size, but has the advantage that it
does not require any increase in the length of the quan-
tum proof. This form of error reduction is called strong
error reduction because of this advantage, which turns out
to be quite handy in some situations. The procedure is il-
lustrated in Fig. 10. The following theorem follows from
an analysis of this procedure.

Theorem 10 Suppose that a; b : N ! [0; 1] are polyno-
mial-time computable functions and q : N ! N is a poly-
nomial-bounded function such that a(n) � b(n) � 1/q(n)
for all but finitely many n 2 N . Then for every choice
of polynomial-bounded functions p; r : N ! N such that
r(n) � 2 for all but finitely many n, it holds that QMAp(a;
b) D QMAp (1 � 2�r ; 2�r ).

Containment of QMA in PP

By means of strong error reduction for QMA, it can be
proved that QMA is contained in PP as follows. Suppose
that some promise problem AD (Ayes;Ano) is contained
in QMA. Then by Theorem 10 it holds that

A 2 QMAp



1 � 2�(pC2); 2�(pC2)

�
(2)

for some polynomial-bounded function p. What is impor-
tant here is that the soundness probability is smaller than
the reciprocal of the dimension of the space corresponding
to the quantum proof, which is where strong error reduc-
tion is essential.

Now, consider an algorithm that does not receive any
quantum proof, but instead just randomly guesses a quan-
tum proof on p qubits and feeds this proof into a ver-
ification procedure having completeness and soundness
probabilities consistent with the above inclusion (2). To
be more precise, the quantum proof is substituted by the
totally mixed state on p qubits. A simple analysis shows
that this algorithm accepts every string x 2 Ayes with
probability at least 2�(p(jxj)C1) and accepts every string
x 2 Ano with probability at most 2�(p(jxj)C2). The gap be-
tween these two probabilities is enough to establish that
A 2 PQP D PP.
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Quantum Computational Complexity, Figure 10
Illustration of the strong error reduction procedure for QMA. The circuitQx represents a unitary purification of a given QMA verifica-
tion procedure on an input x, while the circuit C determines whether to accept or reject based on the number of alternations of its
input qubits. The quantum proof is denoted by�

Classical Proofs for QuantumVerification Procedures

One may also consider quantum verification procedures
that receive classical proofs rather than quantum proofs.
Aharonov and Naveh [8] defined a complexity class MQA
accordingly.

MQA Let AD (Ayes;Ano) be a promise problem. Then
A 2 MQA if and only if there exists a polynomial-
bounded function p and a polynomial-time gener-
ated family of circuits Q D fQn : n 2 Ng, where each
circuit Qn takes nC p(n) input qubits and pro-
duces one output qubit, with the following proper-
ties. For all x 2 Ayes, there exists a string y 2 ˙ p(jxj)

such that Pr[Q accepts (x; y)] � 2/3; and for all
x 2 Ano and all strings y 2 ˙ p(jxj) it holds that
Pr[Q accepts (x; y)] � 1/3.

(This class was originally named QCMA, and is more
commonly known by that name—but it is impossible to
resist the urge to give this interesting class a more sensible
name.)

When considering the power of quantum proofs, it is
the question of whether MQA is properly contained in
QMA that arguably cuts to the heart of the issue. Aaron-
son and Kuperberg [4] studied this question, and based
on a reasonable group-theoretic conjecture argued that the
group non-membership problem is likely to be in MQA.

Are Two Quantum Proofs Better than One?

An unusual, yet intriguing question about quantum proofs
was asked by Kobayashi, Matsumoto, and Yamakami [71]:
are two quantum proofs better than one? The implicit set-
ting in this question is similar to that of QMA, except that
the verification procedure receives two quantum proofs
that are guaranteed to be unentangled. The complexity

class QMA(2) is defined to be the class of promise prob-
lems having such two-proof systems with completeness
and soundness probabilities 2/3 and 1/3, respectively. (It
is not known to what extent this type of proof system is
robust with respect to error bounds, so it is conceivable
that other reasonable choices of error bounds could give
distinct complexity classes.)

The restriction on entanglement that is present in the
definition of QMA(2) may seem artificial from a phys-
ical perspective, as there is no obvious mechanism that
would prevent two entities with otherwise unlimited com-
putational power from sharing entanglement. Neverthe-
less, the question of the power of QMA(2) is interest-
ing in that it turns around the familiar question in quan-
tum computing about the computational power of entan-
glement. Rather than asking if computational power is
limited by a constraint on entanglement, here the ques-
tion is whether a constraint on entanglement enhances
computational power. It is clear that two quantum proofs
are no less powerful than one, as a verification proce-
dure may simply ignore one of the proofs—which means
that QMA � QMA(2). Good upper bounds on QMA(2),
however, are not known: the best upper bound presently
known is QMA(2) � NEXP, which follows easily from the
fact that a nondeterministic exponential-time algorithm
can guess explicit descriptions of the quantum proofs and
then perform a deterministic exponential-time simulation
of the verification procedure.

Quantum Interactive Proof Systems

The notion of efficient proof verification is generalized by
means of the interactive proof system model, which has
fundamental importance in complexity theory and theo-
retical cryptography. Interactive proof systems, or interac-
tive proofs for short, were first introduced by Babai [17,19]
and Goldwasser, Micali, and Rackoff [55,56], and have led
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to remarkable discoveries in complexity such as the PCP
Theorem [14,15,42]. In the most commonly studied vari-
ant of interactive proof systems, a polynomial-time ver-
ifier interacts with a computationally unbounded prover
that tries to convince the verifier of the truth of some state-
ment. The prover is not trustworthy, however, and so the
verifier must be specified in such a way that it is not con-
vinced that false statements are true.

Quantum interactive proof systems [66,99] are interac-
tive proof systems in which the prover and verifier may ex-
change and process quantum information. This ability of
both the prover and verifier to exchange and process quan-
tum information endows quantum interactive proofs with
interesting properties that distinguish them from classical
interactive proofs, and illustrate unique features of quan-
tum information.

Definition of Quantum Interactive Proofs
and The Class QIP

A quantum interactive proof system involves an interac-
tion between a prover and verifier as suggested by Fig. 11.

The verifier is described by a polynomial-time gener-
ated family

V D
˚
Vn
j : n 2 N; j 2 f1; : : : ; p(n)g

�

of quantum circuits, for some polynomial-bounded func-
tion p. On an input string x having length n, the sequence
of circuits

Vn
1 ; : : : ;V

n
p(n)

determine the actions of the verifier over the course of the
interaction, with the value p(n) representing the number
of turns the verifier takes. For instance, p(n) D 4 in the
example depicted in Fig. 11. The inputs and outputs of the
verifier’s circuits are divided into two categories: private
memory qubits andmessage qubits. Themessage qubits are

Quantum Computational Complexity, Figure 11
A quantum interactive proof system. There are six messages in this example, labeled 1; : : : ; 6. (There may be polynomially many
messages in general.) The arrows each represent a collection of qubits, rather than single qubits as in previous figures. The super-
script n is omitted in the names of the prover and verifier circuits, which can safely be done when the input length n is determined
by context

sent to, or received from, the prover, while the memory
qubits are retained by the verifier as illustrated in the fig-
ure. It is always assumed that the verifier receives the last
message; so if the number of messages is to be m D m(n),
then it must be the case that p(n) D bm/2c C 1.

The prover is defined in a similar way to the veri-
fier, although no computational assumptions are made:
the prover is a family of arbitrary quantum operations

P D fPn
j : n 2 N; j 2 f1; : : : ; q(n)gg

that interface with a given verifier in the natural way.
Again, this is as suggested by Fig. 11.

Now, on a given input string x, the prover P and ver-
ifier V have an interaction by composing their circuits as
described above, after which the verifier measures an out-
put qubit to determine acceptance or rejection. In direct
analogy to the classes NP, MA, and QMA, one defines
quantum complexity classes based on the completeness
and soundness properties of such interactions.

QIP Let AD (Ayes;Ano) be a promise problem, let m be
a polynomial-bounded function, and let a; b : N !

[0; 1] be polynomial-time computable functions. Then
A 2 QIP(m; a; b) if and only if there exists an m-mes-
sage quantum verifier V with the following properties:

1. Completeness. For all x 2 Ayes, there exists a quan-
tum prover P that causes V to accept x with proba-
bility at least a(jxj).

2. Soundness. For all x 2 Ano, every quantum prover P
causes V to accept x with probability at most b(jxj).

Also define QIP(m) D QIP(m; 2/3; 1/3) for each poly-
nomial-bounded function m and define QIP DS

m QIP(m), where the union is over all polynomial-
bounded functions m.
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Properties of Quantum Interactive Proofs

Classical interactive proofs can trivially be simulated
by quantum interactive proofs, and so the containment
PSPACE � QIP follows directly from IP D PSPACE [75,
87]. Unlike classical interactive proofs, quantum interac-
tive proofs are not known to be simulatable in PSPACE.
Simulation is possible in EXP through the use of semidefi-
nite programming [66].

Theorem 11 QIP � EXP.

Quantum interactive proofs, like ordinary classical inter-
active proofs, are quite robust with respect to the choice
of completeness and soundness probabilities. In particu-
lar, the following facts hold [66].

1. Every quantum interactive proof can be transformed
into an equivalent quantum interactive proof with per-
fect completeness: the completeness probability is 1 and
the soundness probability is bounded away from 1. The
precise bound obtained for the soundness probability
depends on the completeness and soundness probabili-
ties of the original proof system. This transformation to
a perfect-completeness proof system comes at the cost
of one additional round (i. e., twomessages) of commu-
nication.

2. Parallel repetition of quantum interactive proofs with
perfect completeness gives an exponential reduction
in soundness error. An exponential reduction in com-
pleteness and soundness error is also possible for quan-
tum interactive proofs not having perfect completeness,
but the procedure is more complicated than for the per-
fect completeness case.

One of the major differences between quantum and clas-
sical interactive proof systems is that quantum interac-
tive proofs can be parallelized: every quantum interactive
proof system, possibly having polynomially many rounds
of communication, can be transformed into an equiva-
lent quantum interactive proof system with three mes-
sages [66]. This transformation comes at the cost of weak-
ening the error bounds. However, it preserves perfect
completeness, and the soundness error can subsequently
be reduced by parallel repetition without increasing the
number of messages beyond three. If classical interactive
proof systems could be parallelized in this way, then it
would follow that AM D PSPACE; a collapse that would
surprise most complexity theorists and have major impli-
cations to the theory.

The following theorem summarizes the implications
of the facts just discussed to the complexity classes
QIP(m; a; b) defined above.

Theorem 12 Let a; b : N ! [0; 1] be polynomial-time
computable functions and let p be a polynomial-bounded
function such that a(n) � b(n) � 1/p(n) for all but finitely
many n 2 N . Also let m and r be polynomial-bounded
functions. Then

QIP(m; a; b) � QIP(3; 1; 2�r) :

For a wide range of completeness and soundness probabil-
ities this leaves just four complexity classes among those
defined above: QIP(0) D BQP, QIP(1) D QMA, QIP(2),
and QIP(3) D QIP.

The final property of quantum interactive proofs that
will be discussed in this section is the existence of an in-
teresting complete promise problem [85]. The problem
is to determine whether the operations induced by two
quantum circuits are significantly different, or are approxi-
mately the same, with respect to the same metric on quan-
tum operations discussed in Subsect. “A Finite Universal
Gate Set”.

THE QUANTUM CIRCUIT
DISTINGUISHABILITY PROBLEM
Input: Quantum circuits Q0 and Q1, both taking n input

qubits and producing m output qubits.
Yes: ı(Q0;Q1) � 2/3.
No: ı(Q0;Q1) � 1/3.

Theorem 13 The quantum circuit distinguishability prob-
lem is QIP-complete with respect to Karp reductions.

Zero-Knowledge Quantum Interactive Proofs

Interactive proof systems can sometimes be made to have
a cryptographically motivated property known as the zero-
knowledge property [56]. Informally speaking, an interac-
tive proof system is zero-knowledge if a verifier “learns
nothing” from an interaction with the prover on an in-
put x 2 Ayes, beyond the fact that it is indeed the case
that x 2 Ayes. This should hold even if the verifier deviates
from the actions prescribed to it by the interactive proof
being considered. At first this notion seems paradoxical,
but nevertheless there are many interesting examples of
such proof systems. For an introductory survey on zero-
knowledge, see [93].

Several variants of zero-knowledge are often studied
in the classical setting that differ in the particular way that
the notion of “learning nothing” is formalized. This article
will only consider statistical zero-knowledge, which is the
variant of zero-knowledge that is most easily adapted to
the quantum setting.

Suppose that AD (Ayes;Ano) is a promise problem,
and (V ; P) is a quantum interactive proof system for A.
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By this it is meant that V is the honest verifier and P is
the honest prover that behave precisely as the proof system
specifies. Whether or not this proof system possesses the
zero-knowledge property depends on the characteristics of
interactions between a cheating verifier V 0 with the hon-
est prover P on inputs x 2 Ayes. Figure 12 illustrates such
an interaction, wherein it is viewed that the cheating ver-
ifier V 0 is using the interaction with P on input x to com-
pute some quantum operation ˚x. Informally speaking,
the input to this operation represents the verifier’s state
of knowledge before the protocol is run, while the output
represents the verifier’s state of knowledge after.

Now, the proof system (V ; P) is said to be quantum
statistical zero-knowledge if, for any choice of a polyno-
mial-time cheating verifier V 0, the quantum operation ˚x
can be efficiently approximated for all x 2 Ayes. More pre-
cisely, the assumption that V 0 is described by polynomial-
time generated quantum circuits must imply that there ex-
ists a polynomial-time generated family fQx : x 2 ˙�g of
quantum circuits for which ı(˚x ;Qx ) is negligible for ev-
ery x 2 Ayes. Intuitively this definition captures the notion
of learning nothing—for anything that the cheating veri-
fier could compute in polynomial time with the help of the
prover could equally well have been computed in polyno-
mial time without the prover’s help.

The class of promise problems having statistical zero-
knowledge quantum interactive proofs is denoted QSZK.

QSZK A promise problem AD (Ayes;Ano) is in QSZK if
and only if it has a statistical zero-knowledge quantum
interactive proof system.

Although it has not been proved, it is reasonable to
conjecture that QSZK is properly contained in QIP; for the
zero-knowledge property seems to be quite restrictive. In-
deed, it was only recently established that there exist non-
trivial quantum interactive proof systems that are statisti-
cal zero-knowledge [100]. The following facts [97,100] are
among those known about QSZK.

Quantum Computational Complexity, Figure 12
A cheating verifier V0 performs a quantum operation˚x with the unintentional help of the honest prover

1. Statistical zero-knowledge quantum interactive proof
systems can be parallelized to two messages. It follows
that QSZK � QIP(2).

2. The class QSZK is closed under complementation:
a given promise problem A has a quantum statistical
zero-knowledge proof if and only if the same is true for
the problem obtained by exchanging the yes- and no-
instances of A.

3. Statistical zero-knowledge quantum interactive proof
systems can be simulated in polynomial space:
QSZK � PSPACE.

Classical analogues to the first and second facts in this
list were shown first [86]. (The classical analogue to the
third fact is SZK � PSPACE, which follows trivially from
IP � PSPACE.) A key step toward proving the above
properties (which is also similar to the classical case) is to
establish that the following promise problem is complete
for QSZK. The problem is a restricted version of the QIP-
complete quantum circuit distinguishability problem.

THE QUANTUM STATE DISTINGUISHABILITY PROBLEM
Input: Quantum circuits Q0 and Q1, both taking no in-

put qubits and producing m output qubits. Let �0
and �1 be the density matrices corresponding to
the outputs of these circuits.

Yes: ı(�0; �1) � 2/3.
No: ı(�0; �1) � 1/3.

Theorem 14 The quantum state distinguishability prob-
lem is QSZK-complete with respect to Karp reductions.

A quantum analogue of a different SZK-complete problem
known as the entropy difference problem [53] has recently
been shown to be complete for QSZK [16].

Multiple-Prover Quantum Interactive Proofs

Multiple-prover interactive proof systems are variants of
interactive proofs where a verifier interacts with two or
more provers that are not able to communicate with one
another during the course of the interaction. Classical
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multiple-prover interactive proofs are extremely powerful:
the class of promise problems having multiple-prover in-
teractive proofs (denoted MIP) coincides with NEXP [21].
This is true even for two-prover interactive proofs wherein
the verifier exchanges just one round of communication
with each prover in parallel [46]. The key to the power
of multiple-prover interactive proofs is the inability of the
provers to communicate during the execution of the proof
system. Similar to a detective interrogating two suspects
in separate rooms in a police station, the verifier can ask
questions of the provers that require strongly correlated
answers, limiting the ability of cheating provers to con-
vince the verifier of a false statement.

The identification of MIP with NEXP assumes a com-
pletely classical description of the provers. Quantum in-
formation, however, delivers a surprising twist for this
model: even when the verifier is classical, an entangled
quantum state shared between two provers can allow for
non-classical correlations between their answers to the
verifier’s questions. This phenomenon is better known as
a Bell-inequality violation [24] in the quantum physics lit-
erature. Indeed, there exist two-prover interactive proof
systems that are sound against classical provers, but can
be cheated by entangled quantum provers [36].

MIP� A promise problem AD (Ayes;Ano) is in MIP� if
and only if there exists a multiple-prover interactive
proof system for A wherein the verifier is classical and
the provers may share an arbitrary entangled state.

One may also consider fully quantum variants of mul-
tiple-prover interactive proofs, which were first studied by
Kobayashi and Matsumoto [70].

QMIP A promise problem AD (Ayes;Ano) is in QMIP if
and only if there exists a multiple-prover quantum in-
teractive proof system for A.

Various refinements on these classes have been stud-
ied, where parameters such as the number of provers,
number of rounds of communication, completeness and
soundness probabilities, and bounds on the amount of
entanglement shared between provers are taken into ac-
count.

The results proved in both [36] and [70] support the
claim that it is entanglement shared between provers that
is the key issue in multiple-prover quantum interactive
proofs. Both models are equivalent in power to MIP when
provers are forbidden to share entanglement before the
proof system is executed.

At the time of the writing of this article, research into
these complexity classes and general properties of multi-
ple-prover quantum interactive proofs is highly active and
has led to several interesting results (such as [37,62,63],
among others). Despite this effort, little can be said at this
time about the relationship among the above classes and
other known complexity classes. For instance, only the
trivial lower bounds PSPACE � MIP� and QIP � QMIP,
and no good upper bounds, are known. It has not even
been ruled out that non-recursive languages could have
multiple-prover quantum interactive proof systems. These
difficulties seem to stem from two issues: (i) no bounds are
known for the size of entangled states needed for provers
to perform optimally, or nearly optimally, in an interactive
proof, and (ii) the possible correlations that can be induced
with entanglement are not well-understood.

One highly restricted variant of MIP� that has been
studied, along with its unentangled counterpart, is as fol-
lows.

˚MIP� A promise problem AD (Ayes;Ano) is in˚MIP�

if and only if there exists a one-round two-prover in-
teractive proof system for A wherein the provers each
send a single bit to the verifier, and the verifier’s deci-
sion to accept or reject is determined by the questions
asked along with the XOR of these bits. The verifier is
classical and the provers are quantum and share an ar-
bitrary entangled state.

˚MIP This class is similar to ˚MIP�, except that the
provers may not share entanglement (and therefore
can be assumed to be classical without loss of gener-
ality).

It holds that ˚MIP D NEXP for some choices of
completeness and soundness probabilities [25,58]. On the
other hand, it has been proved [101] that ˚MIP� �
QIP(2) and therefore˚MIP� � EXP.

Other Variants of Quantum Interactive Proofs

Other variants of quantum interactive proof systems have
been studied, including public-coin quantum interactive
proofs and quantum interactive proofs with competing
provers.

Public-Coin Quantum Interactive Proofs Public-coin
interactive proof systems are a variant of interactive proofs
wherein the verifier performs no computations until all
messages with the prover have been exchanged. In place of
the verifier’s messages are sequences of random bits, visi-
ble to both the prover and verifier. Such interactive proof
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systems are typically called Arthur–Merlin games [17,19],
and the verifier and prover are called Arthur and Merlin,
respectively, in this setting.

Quantum variants of such proof systems and their cor-
responding classes are easily defined. For instance, QAM is
defined as follows [76].

QAM A promise problem AD (Ayes;Ano) is in QAM if
and only if it has a quantum interactive proof sys-
tem of the following restricted form. Arthur uniformly
chooses some polynomial-bounded number of classi-
cal random bits, and sends a copy of these bits to Mer-
lin. Merlin responds with a quantum state on a poly-
nomial-bounded number of qubits. Arthur then per-
forms a polynomial-time quantum computation on
the input, the random bits, and the state sent byMerlin
to determine acceptance or rejection.

It is clear that QAM � QIP(2), but unlike the clas-
sical case [54] equality is not known in the quantum
setting. It is straightforward to prove the upper bound
QAM � PSPACE, while containment QIP(2) � PSPACE
is not known.

The class QMAM may be defined through a similar
analogy with classical Arthur–Merlin games. Here, Merlin
sends the first message, Arthur responds with a selection
of random bits, and then Merlin sends a second message.

QMAM A promise problem AD (Ayes;Ano) is in
QMAM if and only if it has a quantum interactive
proof system of the following restricted form. Mer-
lin sends a quantum state on a polynomial-bounded
number of qubits to Arthur. Without performing any
computations, Arthur uniformly chooses some poly-
nomial-bounded number of classical random bits, and
sends a copy of these bits to Merlin. Merlin responds
with a second quantum state. Arthur then performs
a polynomial-time quantum computation on the in-
put, the random bits, and the two states sent by Merlin
in order to determine acceptance or rejection.

Even when Arthur is restricted to a single random bit,
this class has the full power of QIP [76].

Theorem 15 QMAM D QIP.

Quantum Interactive Proofs with Competing Provers
Another variant of interactive proof systems that has been
studied is one where a verifier interacts with two compet-
ing provers, sometimes called the yes-prover and the no-
prover. Unlike ordinary two-prover interactive proof sys-
tems, it is now assumed that the provers have conflicting

goals: the yes-prover wants to convince the verifier that
a given input string is a yes-instance of the problem be-
ing considered, while the no-prover wants to convince the
verifier that the input is a no-instance. The verifier is some-
times called the referee in this setting, given that interactive
proof systems of this form are naturally modeled as com-
petitive games between the two provers. Two complexity
classes based on interactive proofs with competing provers
are the following.

RG A promise problem AD (Ayes;Ano) is in RG (short
for refereed games) if and only if it has a classical in-
teractive proof system with two competing provers.
The completeness and soundness conditions for such
a proof system are replaced by the following condi-
tions:

1. For every x 2 Ayes, there exists a yes-prover Pyes
that convinces the referee to accept with probabil-
ity at least 2/3, regardless of the strategy employed
by the no-prover Pno.

2. For every x 2 Ano, there exists a no-prover Pno that
convinces the referee to reject with probability at
least 2/3, regardless of the strategy employed by the
yes-prover Pyes.

QRG A promise problem AD (Ayes;Ano) is in QRG
(quantum refereed games) if and only if it has a quan-
tum interactive proof system with two competing
provers. The completeness and soundness conditions
for such a proof system are analogous to RG.

Classical refereed games have the computational
power of deterministic exponential time [45], and the
same is true in the quantum setting [57]: RG D QRG D
EXP. The containment EXP � RG represents an applica-
tion of the arithmetization technique, while QRG � EXP
exemplifies the power of semidefinite programming.

Other SelectedNotions in Quantum Complexity

In this section of this article, a few other topics in quan-
tum computational complexity theory are surveyed that
do not fall under the headings of the previous sections.
While incomplete, this selection should provide the reader
with some sense for the topics that have been studied in
quantum complexity.

QuantumAdvice

Quantum advice is a formal abstraction that addresses this
question: how powerful is quantum software? More pre-
cisely, let us suppose that some polynomial-time generated
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family of quantum circuits Q D fQn : n 2 Ng is given.
Rather than assuming that each circuit Qn takes n input
qubits as for the class BQP, however, it is now assumed
that Qn takes nC p(n) qubits for p some polynomial-
bounded function: in addition to a given input x 2 ˙ n ,
the circuit Qn will take an advice state �n on p(n) qubits.
This advice state may be viewed as pre-loaded quantum
software for a quantum computer. The advice state may
depend on the input length n, but not on the particular
input x 2 ˙ n . Similar to a quantum proof, the difficulty
of preparing this state is ignored; but unlike a quantum
proof the advice state is completely trusted. The quan-
tum complexity class BQP/qpoly is now defined to be the
class of promise problems that are solved by polynomial-
time quantum algorithms with quantum advice in the nat-
ural way. The first published paper on quantum advice
was [80], while the definitions and most of the results dis-
cussed in this section are due to Aaronson [2].

BQP/qpoly A promise problem AD (Ayes;Ano) is in
BQP/qpoly if and only if there exists a polynomial-
bounded function p, a collection of quantum states
f�n : n 2 Ng where each �n is a p(n)-qubit state, and
a polynomial-time generated family of quantum cir-
cuits Q D fQn : n 2 Ng with the following properties.
For all x 2 Ayes, Q accepts (x; �jxj) with probability at
least 2/3; and for all x 2 Ano, Q accepts (x; �jxj) with
probability at most 1/3.

Similar to BQP without advice, it is straightforward to
shown that the constants 2/3 and 1/3 in this definition can
be replaced by a wide range of functions a; b : N ! [0; 1].

As the notation suggests, BQP/qpoly is a quantum ana-
logue of the class P/poly. This analogy may be used as the
basis for several relevant points about BQP/qpoly, quan-
tum advice, and their relationship to classical complexity
classes and notions.

1. As is well-known, P/poly may be defined either in
amanner similar to the above definition for BQP/qpoly,
or more simply as the class of promise problems solv-
able by polynomial-size Boolean circuit families with
no uniformity restrictions. Based on similar ideas, the
class BQP/qpoly does not change if the circuit family
fQn : n 2 Ng is taken to be an arbitrary polynomial-
size circuit family without uniformity constraints.

2. There is a good argument to be made that quantum
advice is better viewed as a quantum analogue of ran-
domized advice rather than deterministic advice. That
is, BQP/qpoly can equally well be viewed as a quan-
tum analogue of the (suitably defined) complexity class

BPP/rpoly. It happens to be the case, however, that
BPP/rpoly D P/poly. (The situation is rather different
for logarithmic-length advice, where randomized advice
is strictly more powerful than ordinary deterministic
advice.)

3. Any combination of quantum, randomized, or deter-
ministic advice with quantum, randomized, or deter-
ministic circuits can be considered. This leads to classes
such as BQP/rpoly, BQP/poly, P/qpoly, P/rpoly, and so
on. (The only reasonable interpretation of BPP/qpoly
and P/qpoly is that classical circuits effectively measure
quantum states in the standard basis the instant that
they touch them.)
At most three distinct classes among these possibili-
ties arise: BQP/qpoly, BQP/poly, and P/poly. This is be-
cause BQP/rpoly D BQP/poly and

BPP/qpoly D BPP/rpoly D BPP/poly
D P/qpoly D P/rpoly D P/poly :

The principle behind these equalities is that nonunifor-
mity is stronger than randomness [6].

The following theorem places an upper-bound on the
power of polynomial-time quantum algorithms with
quantum advice [2].

Theorem 16 BQP/qpoly � PP/poly.

Although in all likelihood the class PP/poly is enormous,
containing many interesting problems that one can have
little hope of being able to solve in practice, the upper-
bound represented by this theorem is far from obvious.
The most important thing to notice is that the power of
quantum advice (to a BQP machine) is simulated by de-
terministic advice (to a PP machine). This means that
no matter how complex, a polynomial-size quantum ad-
vice state can never encode more information accessible to
a polynomial-time quantum computer than a polynomial-
length string can, albeit to an unbounded error probabilis-
tic machine.

Quantum advice has also been considered for other
quantum complexity classes such as QMA and QIP. For
instance, the following bound is known on the power of
QMA with quantum advice [3].

Theorem 17 QMA/qpoly � PSPACE/poly.

Generally speaking, the study of both quantum and ran-
domized advice is reasonably described as a sticky busi-
ness when unbounded error machines or interactive pro-
tocols are involved. In these cases, complexity classes de-
fined by both quantum and randomized advice can be
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highly non-intuitive and dependent on specific interpre-
tations of models. For example, Raz [83] has shown that
both QIP/qpoly and IP/rpoly contain all languages, pro-
vided that the advice is not accessible to the prover. Like-
wise, Aaronson [2] has observed that both PP/rpoly and
PQP/qpoly contain all languages. These results are quite
peculiar, given that significantly more powerful models
can become strictly less powerful in the presence of quan-
tum or randomized advice. For instance, even a Turing
machine running in exponential space cannot decide all
languages with bounded error given randomized advice.

Space-Bounded QuantumComputation

The quantum complexity classes that have been discussed
thus far in this article are based on the abstraction that ef-
ficient quantum computations are those that can be per-
formed in polynomial time. Quantum complexity classes
may also be defined by bounds on space rather than
time, but here a different computational model is required
to reasonably compare with classical models of space-
bounded computation. One simple choice of a suitable
model is a hybrid between quantum circuits and classi-
cal Turing machines—and although this model is differ-
ent from the variants of quantum Turing machines that
were originally studied in the theory of quantum comput-
ing [30,40], the term quantum Turing machine (QTM for
short) is nevertheless appropriate. There should be no con-
fusion given that no other models of quantum Turing ma-
chines are discussed in this article.

Figure 13 illustrates a quantum Turing machine.
A quantum Turing machine has a read-only classical in-
put tape, a classical work tape, and a quantum tape con-
sisting of an infinite sequence of qubits each initialized to
the zero-state. Three tape heads scan the quantum tape,
allowing quantum operations to be performed on the cor-
responding qubits. (It would be sufficient to have just two,
but allowing three tape heads parallels the choice of a uni-
versal gate set that allows three-qubit operations.) A sin-
gle step of a QTM’s computation may involve ordinary
moves by the classical parts of the machine and quantum
operations on the quantum tape: Toffoli gates, Hadamard
gates, phase-shift gates, or single-qubit measurements in
the computational basis.

The running time of a quantum Turing machine is de-
fined as for ordinary Turing machines. The space used by
such a machine is the number of squares on the classical
work tape plus the number of qubits on the quantum tape
that are ever visited by one of the tape heads. Similar to
the classical case, the input tape does not contribute to the
space used by the machine because it is a read-only tape.

The following complexity classes are examples of
classes that can be defined using this model.

BQL A promise problem AD (Ayes;Ano) is in BQL
(bounded-error quantum logarithmic space) if and
only if there exists a quantum Turing machineM run-
ning in polynomial time and logarithmic space that
accepts every string x 2 Ayes with probability at least
2/3 and accepts every string x 2 Ano with probability
at most 1/3.

PQL A promise problem AD (Ayes;Ano) is in PQL (un-
bounded-error quantum logarithmic space) if and
only if there exists a quantum Turing machineM run-
ning in polynomial time and logarithmic space that
accepts every string x 2 Ayes with probability strictly
greater than 1/2 and accepts every string x 2 Ano with
probability at most 1/2.

BQPSPACE A promise problem AD (Ayes;Ano) is in
BQPSPACE (bounded-error quantum polynomial
space) if and only if there exists a quantum Turing ma-
chine M running in polynomial space that accepts ev-
ery string x 2 Ayes with probability at least 2/3 and ac-
cepts every string x 2 Ano with probability at most 1/3.

PQPSPACE A promise problem AD (Ayes;Ano) is in
PQPSPACE (unbounded-error quantum polynomial
space) if and only if there exists a quantum Turing
machine M running in polynomial space that accepts
every string x 2 Ayes with probability strictly greater
than 1/2 and accepts every string x 2 Ano with proba-
bility at most 1/2.

Unlike polynomial-time computations, it is known
that quantum information does not give a significant
increase in computational power in the space-bounded
case [95,98].

Theorem 18 The following relationships hold.

1. BQL � PQL D PL.
2. BQPSPACE D PQPSPACE D PSPACE.

The key relationship in the above theorem, from the per-
spective of quantum complexity, is PQL � PL, which can
be shown using space-bounded counting complexity. In
particular, the proof relies on a theory of GapL func-
tions [12] that parallels the theory of GapP functions, and
allows for a variety of matrix computations to be per-
formed in PL.

The above theorem, together with the containment
PL � NC [32], implies that both BQL and PQL are con-
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Quantum Computational Complexity, Figure 13
A quantum Turing machine. This variant of quantum Turing machine is classical with the exception of a quantum work tape, each
square of which contains a qubit. Quantum operations andmeasurements can be performed on the qubits scanned by the quantum
tape heads

tained in NC. An interpretation of this fact is that logarith-
mic-space quantum computations can be very efficiently
simulated in parallel.

Bounded-Depth QuantumCircuits

The depth of a classical or quantum circuit is the maxi-
mum number of gates encountered on any path from an
input bit or qubit to an output bit or qubit in the circuit.
One may reasonably think of circuit depth as the parallel
running time, or the number of time units needed to apply
a circuit when operations may be parallelized in any way
that respects the topology of the circuit.

The following complexity class, first defined by Moore
and Nilsson [77], represent bounded-error quantum vari-
ants of the class NC.

BQNC A promise problem AD (Ayes;Ano) is in BQNC
(bounded-error quantum NC) if and only if there ex-
ists a logarithmic-space generated family fQn : n 2 Ng
of poly-logarithmic depth quantum circuits, where
each circuit Qn takes n input qubits and produces one
output qubit, such that Pr[Q accepts x] � 2/3 for all
x 2 Ayes, and Pr[Q accepts x] � 1/3 for all x 2 Ano.

Many other complexity classes based on bounded-
depth quantum circuits have been studied as well. The sur-
vey of Bera, Green, and Homer [28] discusses several ex-
amples.

In the classical case there is a very close relation-
ship between space-bounded and depth-bounded compu-
tation [31,32]. This close relationship is based on twomain
ideas: the first is that space-bounded computations can be
simulated efficiently by bounded-depth circuits using par-
allel algorithms for matrix computations, and the second

is that bounded-depth Boolean circuits can be efficiently
simulated by space-bounded computations via depth-first
traversals of the circuit to be simulated.

For quantum computation this close relationship is
not known to exist. One direction indeed holds, as was dis-
cussed in the previous subsection: space-bounded quan-
tum computations can be efficiently simulated by depth-
bounded circuits. The other direction, which is an effi-
cient space-bounded simulation of bounded-depth quan-
tum circuits, is not known to hold and is arguably quite
unlikely. Informally speaking, bounded-depth quantum
circuits are computationally powerful, whereas space-
bounded quantum Turing machines are not. Three facts
that support this claim are as follows.

1. Computing the acceptance probability for even con-
stant-depth quantum circuits is as hard as computing
acceptance probabilities for arbitrary polynomial-size
quantum circuits [48].

2. Shor’s factoring algorithm can be implemented by
quantum circuits having logarithmic-depth, along with
classical pre- and post-processing [35].

3. The quantum circuit distinguishability problem re-
mains complete for QIPwhen restricted to logarithmic-
depth quantum circuits [84].

It is reasonable to conjecture that BQNC is incomparable
with BPP and properly contained in BQP.

Future Directions

There are many possible future directions for research in
quantum computational complexity theory. The following
list suggests just a few of many possibilities.

1. The power of multiple-prover quantum interactive
proofs, for both quantum and classical verifiers, is
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Quantum Computational Complexity, Figure 14
A diagram of inclusions among most of the complexity classes
discussed in this article

very poorly understood. In particular: (i) no interest-
ing upper-bounds are known for eitherMIP� or QMIP,
and (ii) neither the containment NEXP � MIP� nor
NEXP � QMIP is known to hold.

2. The containment NP � BQP would be a very power-
ful incentive to build a quantum computer, to say the
least. While there is little reason to hope that this con-
tainment holds, there is at the same time little evidence
against it aside from the fact that it fails relative to an
oracle [27]. A better understanding of the relationship
between BQP and NP, including possible consequences
of one being contained in the other, is an important di-
rection for further research in quantum complexity.

3. Along similar lines to the previous item, an under-
standing of the relationship between BQP and the poly-
nomial-time hierarchy has remained elusive. It is not
known whether BQP is contained in the polynomial-
time hierarchy, whether there is an oracle relative to

which this is false, or even whether there is an oracle
relative to which BQP is not contained in AM.

4. Interest in complexity classes is ultimately derived from
the problems that they contain. An important future di-
rection in quantum complexity theory is to prove the
inclusion of interesting computational problems in the
quantum complexity classes for which this is possible.
Of the many problems that have been considered, one
of the most perplexing from the perspective of quan-
tum complexity is the graph isomorphism problem. It
is a long-standing open problem whether the graph iso-
morphism problem is in BQP. A seemingly easier task
than showing the inclusion of this problem in BQP is
proving it is in co-QMA; but even this problem has re-
mained unresolved.
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Glossary

Bit A two state classical system used to represent a binary
digit, zero or one.

Bose–Einstein particles Integer spin quantum particles
like to be together: any number can occupy the same
quantum state.

Classical computing What we can compute within the
laws of classical physics.

Error correction In a quantum context, fixing errors
without disturbing the quantum superposition.

Entanglement Quantum states can be more highly corre-
lated than classical systems: the extra correlations are
known as entanglement.

Fermi–Dirac particles Half-integer spin quantum parti-
cles like to be alone: only one such particle can occupy
each quantum state.

Quantum communications Using quantum mechanics
can gain an advantage when transmitting information.

Quantum dense coding Classical bits can be encoded
two for one into qubits for communications purposes.

Quantum key distribution Quantum mechanics allows
for secure key distribution in the presence of eaves-
droppers and noisy environments. The keys can then
be used for encrypted communication.

Quantum teleportation A method to transmit an un-
known quantum state using only classical communi-
cations plus shared entanglement.

Quantum computing Computation based on the laws of
quantummechanics for the allowed logical operations.

Qubit A two state quantum system such as the spin of an
electron or the polarization of a photon. More com-
plex quantum particles (such as atoms) can be used as
qubits if just two of their available states are chosen to
represent the qubit.

Qubus A quantum version of a computer bus, the fast
communications linking memory and processing reg-
isters. Can be implemented using a coherent light
source (such as a laser).

Scalable A computer architecture designed frommodular
units that can be efficiently expanded to an arbitrary
size.

Squeezing With a pair of complementary quantum ob-
servables, making one uncertain so that the other can
be measured more precisely.

Threshold result In the context of quantum computa-
tion, this results says that error correction can work if
the error rate is low enough.

Tunneling Quantum particles can get through barriers
that classical particles remain stuck behind. If the bar-
rier is not infinitely high, there is a some probability
for the quantum particle to be the other side of it even
though it doesn’t on average have enough energy to
jump over the top.

Unitary operations How to control quantum systems
while preserving quantum properties. Quantum sys-
tems evolving without any influence from environ-
mental disturbance follow unitary dynamical evolu-
tion.

Definition of the Subject

Quantum computing is computing that follows the logic of
quantum mechanics. The first part of this subject is well-
specified after the hundred-odd years of development of
quantum theory. Definitions of computing are fuzzier, and
argued over by philosophers: for the purposes of this arti-
cle we will leave such nuances aside in favor of exploring
what is possible when the constraints of classical logic are
put aside, but the limitations of the physical world are kept
firmly in hand.

Quantum computing is not simply computing that in-
volves quantum effects, that would be too broad to be use-
ful. Since transitors and lasers exploit quantum properties
of matter and light, most classical computers would thus
be included. Yet it is worth remembering that definitions
are never as clearcut as we would like. Figuring out which
quantum systems can be simulated efficiently by classical
computers is an active area of current research, and pin-



7202 Q Quantum Computing

ning down the boundary between quantum and classical
is the object of ongoing experimental investigation.

Introduction

This article on quantum computing is in the Uncon-
ventional Computing section of the encyclopedia. It is
thus a somewhat distinctive view of quantum computing,
adapted to the context in which you are likely to be read-
ing it. It is self-contained, in that it introduces the concepts
you will need to understand the contents, but those de-
siring more details and a broader perspective on the sub-
ject can refer to the introductory article � Quantum In-
formation Science, Introduction to and referenced articles
therein.

To many, quantum computing is already unconven-
tional computing, depending for its conception on the elu-
sive properties of matter at the scale of atoms rather than
the simple everyday experience of counting and deduction
that underpins classical computation. Yet it is already an
established field in which there is a standard approach,
and the possibility to be unconventional within a quan-
tum computing context. This article is thus divided into
two parts, the first forming a lightening introduction to
the standard digital version of quantum computing, and
the second expanding into less well-charted territory be-
side and beyond.

In order to write about such an interdisciplinary sub-
ject for a broad audience, I have tried to keep everything
at a level a non-specialist can follow, while not oversimpli-
fying to the point of inaccuracy. Please be forgiving about
the parts you could have written better yourself, and in-
quisitive about the parts that may have something new for
you.

Digital QuantumComputing

Digital quantum computing developed a more or less par-
allel structure to classical digital computing, with a quan-
tum version of each component. There are good reasons
for this: many of the optimal features of classical digital
computing carry over to quantum computing with little or
no change. In order to explain why there is a fundamental
advantage to using quantum logic for computation, this
section will explain the components step by step and then
provide examples of how the parts combine into the whole.

What Is a Qubit? (QuantumMechanics for Dummies)

Quantum computing exploits the logic of quantum me-
chanics, which is notoriously tricky to understand. The
mathematical structure is simple and linear, so treating it

as “maths we happen to be able to build (we think)”, is
one option for getting to grips with it. Here I’ve chosen
the pictorial intuition approach, with some cartoon qubits
to help explain how they behave. Those already familiar
with quantum mechanics can safely skip over this section.
Those still bemused by the end of it may like to sample
from the wide range of available textbooks to find an ap-
proach which suits them best.

Classical computers use bits as their basic unit, any
classical system with two states can represent a single
bit. Tossing a coin, with the resulting “heads” or “tails”
is an example of a two state classical system. In com-
puters, the two states are usually labeled “0” (zero) and
“1” (one). Quantum computers use quantum bits, usu-
ally called qubits, as their basic unit, which are two state
quantum systems, and the two states are also usually la-
beled zero and one. Examples of physical systems with
two quantum states include electron spin, photon polar-
ization and phosphorus nuclear spin. These have all been
used in experiments aimed towards building a quantum
computer. Those who know a bit of quantum mechanics
should note that in a quantum computer we usually lo-
calize or otherwise separate individual qubits so they are
distinguishable from each other, and there are thus no
Fermi or Bose statistics to complicate the picture. We will
revisit this aspect of quantum mechanics briefly in Sub-
sect. “Topological Quantum Computing”.

Here are a couple of cartoon qubits to help explain

their quantum properties: . They are wriggly,
fidgety little things, they move so fast you can’t tell which
way up they are just by looking. If you reach down to
grab hold of one the only way you can get a grip is by an
arm or a leg. First we have to choose our basis states, la-

beled j0i and j1i . We write the zero and one
in those funny brackets (“kets”) to remind us they are
quantum states rather than classical bits. To simplify no-
tation, we will sometimes write the state of several qubits
together inside one ket thus, j0ij0i � j00i. In terms of the
cartoon qubits, this means we decided to label “grabbed
by the arm” as the zero state and “grabbed by the leg” as
the one state. The key quantum property is that qubits
can fidget around anywhere in between the zero and one
states, in what is called a superposition state, for exam-

ple, (j0i C j1i)/
p
2 or (j0i � j1i)/

p
2 . If you

reach down and grab a qubit in one of these superposition
states, you are equally like to grab an arm or a leg, indicat-



Quantum Computing Q 7203

ing zero or one in a basis state. So you can’t tell the qubit
was in a superposition state by measuring it, the outcome
is always a basis state. What’s more, grabbing it by the arm
hauls it onto its feet, and grabbing it by the leg shoves it
into a handstand. So after measuring, what you found is
what you now have, regardless of what it was before. Luck-
ily, it is possible to do other things to qubits besides mea-
suring them.

The most general state of one qubit can be written
˛j0i C ˇj1i with j˛j2 C jˇj2 D 1, and ˛, ˇ are complex
numbers. The probability of measuring zero is given by
j˛j2 and the probability of measuring one is given by jˇj2.
(Why complex numbers? Because it works conveniently. If
you don’t like complex numbers, there are ways to formu-
late quantum mechanics that avoid using them). Cartoon
qubits with limbs don’t quite capture all the subtle quan-
tum effects, but they are a useful image to keep in mind if
you are new to these concepts. This account also ignores all
of the more fundamental issues to do with the interpreta-
tion of quantum mechanics, especially those generally re-
ferred to as “the quantummeasurement problem”.

Now consider two qubits (traditionally belong-
ing to Alice and Bob) in the state (j0iAj0iB C

j1iAj1iB)/
p
2 . This is an example of an entan-

gled state: the two qubits are completely correlated. Sup-
pose Alice measures her qubit: if she finds j0iA then she
knows Bob will find j0iB when he measures his qubit. If
she finds j1iA then she knows Bob will find j1iB . Alice
can’t communicate anything to Bob this way because she
can’t control whether she will find 0 or 1 when she mea-
sures. After they have both measured their qubits, they
then share one random bit, which is a resource they can
use for other tasks.

The purely quantum feature of entanglement that can-
not be reproduced with suitably correlated classical sys-
tems is that Alice and Bob can use any basis states they
like and the perfect correlation still appears. For exam-
ple, (j0i C j1i)/

p
2 and (j0i � j1i)/

p
2 are another possi-

ble pair of basis states: the rule is they must be orthogonal
to each other. This is the equivalent of changing the orien-
tation of your classical coordinate system. However, Alice
and Bob do both have to use the same basis: for a thorough
discussion of the consequences of this and other reference
frames in quantum mechanics, see Bartlett et al. [1].

Now that we have qubits to make a quantum register
for our quantum computer, andmeasurements to read out
the state of the quantum register, we need some quantum
gates to perform our calculation with. There are two ways
to change a quantum state: measurements, which are what
happen when you (or something else) observes the state of

Quantum Computing, Figure 1
Unitary evolution: controlling qubits without looking at them

a quantum system, and unitary dynamics, which is what
quantum systems do when no-one is looking.

Happily, it is possible to steer a quantum system with-
out looking at it (see Fig. 1), so we can make it evolve the
way we choose through applying unitary operations. Uni-
tary operations are reversible, the simplest example, acting
on a single qubit, is the Hadamard gate H. We can define
what it does by the effect on basis states:

Hj0i D (j0i C j1i)/
p
2

Hj1i D (j0i � j1i)/
p
2 ;

(1)

and of course it can also act on superposition states,

H(˛j0iCˇj1i) D
1
p
2
f(˛ C ˇ)j0i C (˛ � ˇ)j1ig : (2)

The Hadamard gate rotates the qubit through an angle of
�/2. Notice also that applying the Hadamard gate twice
gets you back where you started, H(Hj i) D j i, the
Hadamard gate is its own inverse.

Rotation gates can rotate through any other angle, for
example,

R� j0i D cos(� /2)j0i C sin(� /2)j1i
R� j1i D sin(� /2)j0i � cos(� /2)j1i:

(3)

To carry out computations, we also need gates that act on
two qubits at once, for example, the familiar CNOT gate:

Cj0ic j0it D j0ic j0it
Cj0ic j1it D j0ic j1it
Cj1ic j0it D j1ic j1it
Cj1ic j1it D j1ic j0it

(4)
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Quantum Computing, Figure 2
Circuit diagram for the Deutsch–Jozsa algorithm for N < 8. See
text for details. Normalization factors have been omitted from
the qubit states

where the first qubit (labeled c) is the control and remains
unchanged, while the second qubit (labeled t) is the target
and is flipped if the control qubit is in state j1i.

Just as with classical computation, small sets of univer-
sal quantum gates exist from which any computation can
be constructed efficiently [2].

A particular set is usually chosen to suit the physical
components of the quantum computer, there are many
possible choices, the gates described here are just a few of
the one and two qubit gates available.

How Do Qubits Give Us Cool Computing?

Now that we have qubits to form a quantum register,
quantum gates to perform our computation, andmeasure-
ments to read out the result, the next step is to put them
all together. We will begin with an example, which will
illuminate the basic idea much more clearly than a gen-
eral description. The Deutsch–Jozsa Algorithm was one
of the earliest quantum algorithms, it solves the follow-
ing promise problem. We are promised that the function
f (x) : x 7! f0; 1g is either

� balanced i. e., the number of times f (x) outputs zero is
equal to the number of times f (x) outputs one, com-
pared over all possible input values x (with 0 < x � N),
or,

� f (x) is constant, i. e., the output is always either zero or
one (but we don’t know which) for any input x.

The cost of this computation is measured in “queries” or
evaluations of the function f (x). The circuit diagram in
Fig. 2 shows how to solve this problem with a quantum
computer.

There is one register of n D dlog2 Ne qubits to hold
the input x, and one extra single qubit jyi. We start with
all the qubits in the j0i state. The first trick is the set
of Hadamards applied to the jxi register: Hj0 : : : 0i D
(j0 : : : 0i C j0 : : : 1i C j0 : : : 10i C � � � C j1 : : : 1i)/2�n/2

which is a superposition of all numbers 0 : : : 2n � 1. We
then make our one query to the oracle that computes f (x)
for us, using the superposition of all possible inputs now

stored in jxi. We get back a superposition of all the an-
swers, which we store by adding it to the jyi qubit.

Remember we cannot detect a superposition by mea-
surement alone, so the superposition of all the possible an-
swers doesn’t help us yet. The second trick allows us to de-
tect what sort of superposition of answers we got back. Be-
fore adding the answer to jyi, we prepare this qubit in the
state (j0i � j1i)/

p
2. This can be done by flipping it from

0i to j1i then applying a Hadamard gate. Then, when we
add the answers to jyi, there are three possibilities:

1. the answers are all j0i: jyijxi D (j0i � j1i)jxi/
p
2 D

unchanged.
2. the answers are all j1i: jyijxi D (j1i � j0i)jxi/

p
2 D

minus what it was before.
3. the answers are half and half: jyijxi D something else.

The second sequence of Hadamard gates then attempts to
undo the first set and convert jxi back to the all zero state.
In the first two cases, this succeeds (we can’t detect the
minus sign when we measure), but in the third case the
Hadamards don’t get us back where we started so there
will be some ones in the jxi qubits which we find when
we measure them. So, if we measure all zeros for jxi then
f (x) is constant, while if we measure any ones then f (x) is
balanced.

To solve this problem classically you have to examine
the value of f (x) for one value of x at a time and compare
them. As soon as you accumulate both a zero and a one in
the set of answers, you know (because of the promise) that
f (x) is balanced. But you can’t be sure it is constant until
you accumulate more than half the answers and see that
they are all the same. So the best possible classical algo-
rithm must take at least two queries, and could require up
to N/2C 1. Thus the quantum algorithm is fundamentally
more efficient, requiring only the one evaluation of f (x).

How QuantumComputing Got Started
(A Little Bit of History)

The idea that quantum mechanics could give us funda-
mentally faster computers first occurred to Feynman [3]
and independently to Deutsch [4]. They both observed
that quantum systems are like a parallel computer (c.f.
Feynman paths or many worlds respectively). It remained
a cute idea for the next decade, until a key result showing
error correction is theoretically possible implied it might be
feasible to build one that really works [5,6,7]. Around the
same time, Shor [8] found an algorithm for factoring that
could in theory break crypto schemes based on products
of large primes being hard to factorize. At this point the
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funders sat up and took notice. Not just because factor-
ing could become easier with a quantum computer, there
are public key crypto schemes based on other “one-way”
functions that are hard to compute given the public key,
but easy to compute from the private key. But by shifting
the boundary between what’s easy and what’s hard, quan-
tum computing threatens to break other classical one-way
functions too.

At the same time, quantum communications protocols
were being developed, in particular, quantum key distri-
bution solves the crypto problem created by Shor’s algo-
rithm [9]. Quantum resources can double the channel ca-
pacity, a technique known as quantum dense coding [10],
and quantum teleportation can transmit a quantum state
through a classical channel [11] with the help of some
shared entanglement. Commercial quantum communica-
tions devices are available now for key distribution. They
work over commercial fibre optics, they work well enough
to reach from earth to satellites, and handheld devices un-
der development [12,13]. It remains a niche market, but
the successful technology in a closely related quantum in-
formation field has helped to keep the funding and opti-
mism for quantum computers buoyant.

Error Correction for QuantumComputers

The most important result that allowed quantum comput-
ing to move from being an obscure piece of theory to a fu-
ture technology is that error correction canwork to protect
the delicate quantum coherences (those signs, or phases,
between different components of the superposition). Usu-
ally, the ubiquitous environmental disturbances random-
ize them very rapidly. Quantum systems are very sensi-
tive to noise, which is why we inhabit a largely classical
world.

The basic idea is simple: correct the errors faster than
they accumulate. The main method for doing this is also
conceptually simple: logical qubits are encoded in a larger
physical quantum system, and the extra degrees of free-
dom used for error correction. A very simple example:
for every qubit in your computation, use three identical
qubits. If a single qubit error occurs, the remaining two
will give you the correct answer. This is illustrated in Fig. 3.
Two errors hitting the three qubits and the majority out-
come will be wrong, though, so this code is only good if
the error rates are very low.

What is not at all obvious is that this has any chance of
working. Adding extra degrees of freedom (more qubits,
for example) adds more places where errors can occur.
Adding yet more qubits to correct these extra errors brings
in yet more errors, and so on. Nonetheless, if the error rate

Quantum Computing, Figure 3
Error correction using three qubits to encode one

is low enough, even the errors arising from the error cor-
rection can be corrected fast enough [5,6]. This is known
as the threshold result. The details of exactly how to accom-
plish this are considerable, and employ many techniques
from classical error correcting codes [7,8]. For those want-
ing to know more, there are lots of tutorials available,
e. g., [14].

The crucial piece of information is thus what the ac-
tual threshold error rate is. It can only be estimated, and
current estimates suggest it is around 10�3 to 10�4 errors
per qubit per quantum operation. This is rather smaller
than the error rates in most physical systems that have
been proposed for quantum computers, but not so small
it is clearly unattainable as technology is refined. Various
additional methods for avoiding the effects of decoherence
have since been developed, such as decoherence-free sub-
spaces [15,16], and using the quantum Zeno effect [17,18]
to keep the system evolving in the direction you want.

Programming a QuantumComputer

The general structure of many quantum algorithms fol-
lows the same pattern we already saw in the Deutsch–Jozsa
algorithm. This is illustrated in Fig. 4.
Each algorithm needs to have its own trick to make it
work, so progress on expanding the number of quantum
algorithms has been slow. Sometimes the same trick will
work for a family of similar problems, but the number of
distinct types remains limited. We have already seen an
example of a promise problem in the Deutsch–Jozsa al-
gorithm. Shor’s algorithm and the many variants on this
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Quantum Computing, Figure 4
General structure of many quantum algorithms

method have essentially similar structure, while Grover’s
search and quantum walks have a distinctly different way
of iterating towards the desired result. Quantum simula-
tion, the earliest suggested application for quantum com-
putation, is in a different category altogether and we will
return to it near the end, once we have all the tools neces-
sary to understand how it works. There are also quantum
versions of almost anything else computational you can
think of, such as quantum game theory, and quantum neu-
ral networks. Most of these other types of quantum infor-
mation processing fall into the category of communication
protocols, where the advantage is gained through quan-
tum entanglement shared between more than one per-
son or location. To consolidate our understanding of the
functioning of quantum algorithms, we will briefly outline
Shor’s algorithm and then give an overview of quantum
walks.

Shor’s Algorithm

The task is to find a factor of a number N D pq where p
and q are both prime. First choose a co-prime number
a < N . If a turns out not to be co-prime then the task is
done. This can be checked efficiently using Euclid’s algo-
rithm, but only happens in a very small number of cases.
Then run the quantum computation shown in Fig. 5 to
find r, the periodicity of ax (mod N). The first half of the
computation creates a superposition of ax (mod N) for all
possible inputs x up to N2. This upper limit is not essen-
tial, it determines the precision of the output and thus the
number of times the computation has to be repeated on
average to succeed. Shor’s first insight was that this modu-
lar exponentiation step can be done efficiently. The answer
is then contained in the entanglement between the qubits
in the upper and lower registers [19]. Shor’s second insight
was that a quantum version of the familiar discrete Fourier
transform can be used to rearrange the state so that mea-
suring the upper register allows one to calculate the value
of r with high probability. Once we have found r, then
ar/2 ˙ 1 gives a factor of N (with high probability). If the
first attempt doesn’t find a factor, repeating the computa-

tion a few times with different values of a rapidly increases
the chances of success.

The classical difficulty of factoring is not known, but
the best classical algorithms we have are sub-exponen-
tial (exponential to some slower than linear function
of N), whereas Shor’s algorithm is polynomial in N. This
is roughly speaking an exponential improvement, and it
promises to bring factoring into the set of “easy to solve”
problems (i. e. polynomial resources) from the “hard to
solve” set (exponential resources). There is a whole family
of problems using same method, all based around identi-
fying a hidden subgroup of an Abelian group. Some exten-
sions have been made beyond Abelian Groups but this is
in general much harder (for a review, see [20]).

QuantumWalks

Classical random walks underpin many of the best clas-
sical algorithms, so finding a faster quantum version of
a random walk is a good bet for a new type of quantum
algorithm. Quantum random walks that are faster than
classical random walks have been found in a variety of
guises, but turning them into algorithms is harder. They
have been applied most successfully to problems related
to searching, such as subset finding [21] and element dis-
tinctness [22].

A simple recipe for a quantum walk on a line goes as
follows:

1. Start at the origin
2. Toss a qubit (quantum coin)

Hj0i �! (j0i C j1i)/
p
2

Hj1i �! (j0i � j1i)/
p
2

3. Move left and right according to qubit state

Sjx; 0i �! jx � 1; 0i
Sjx; 1i �! jx C 1; 1i

4. Repeat steps 2. and 3. T times
5. measure position of walker,�T � x � T
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Quantum Computing, Figure 5
Circuit diagram for Shor’s algorithm for factoring shown for the example of factoring 15. H is a Hadamard gate, Rn is a rotation by
�/n, and the U gates perform the modular exponentiation (see text). IQFT is inverse quantum Fourier transform, and M is the final
measurement

If you repeat steps 1. to 5. many times, you get a probability
distribution P(x; T), which turns out to spread quadrati-
cally faster than a classical random walk.

If we add a little decoherence (measure the quantum
walker with prob p at each step) then we get a top hat dis-
tribution for just the right amount of noise [23], see Fig. 6.
For related results of mixing times on cycles and torii, see
Refs. [24,25].

Quantum walks can be used to find a marked item in
an unsorted database, the equivalent of finding a person’s
name from their phone number by searching the tele-
phone directory. Classical solutions have to check on aver-
age N/2 entries, and in the worst case need to check them
all. This problem was investigated by Grover [26,27], who
found a quantum algorithm that is quadratically faster
than classical searching. His algorithm doesn’t use quan-
tum walks, but Shenvi et al. [28] showed that quantum
walks can perform the task just as well. The recipe for this
is:

1. Start in a uniform distribution over graph withN
nodes.

2. Use Grover coin everywhere except the marked
node.

3. Run for approx 	2
p
N/2 steps.

4. Particle will now be at themarked nodewith high
probability.

This is the inverse of starting at the origin and trying to
get uniform (top hat) distribution. A quadratic speed up
is the best that can be achieved by any algorithm tackling
this problem [29].

The quantum walk version of Grover’s search has
been generalized to find more than one item. Magniez et
al. [30,31] show how to detect triangles in graphs, Am-
bainis [22] applies quantum walks to deciding element
distinctness, and Childs and Eisenberg [21] generalize to
finding subsets. These generally obtain a polynomial im-
provement over classical algorithms, for example, reduc-
ing the running time to O(N2/3) compared to O(N) for
classical methods.

There is one known problem for which a quantum
walk can provide a more impressive speed up. The “glued
trees” problem [32] is also about finding a marked state,
but this time the starting point is also specified, and an ora-
cle is available to give information about the possible paths
between the start and finish. This achieves an exponential
speed up, but has not been generalized to other problems.
For a short review of quantum walk algorithms, see [33].

How Powerful Is QuantumComputing?

What we’ve seen so far is quantum computers providing
a speed up over classical computation, i. e., new complex-
ity classes to add to the zoo [34], but nothing outside of
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Quantum Computing, Figure 6
Comparison of a quantumwalkof 100 stepswith the corresponding classical randomwalk. Progressively increasing the decoherence
produces a “top-hat” distribution for the right choice of decoherence rate

the classical computability limits. The mainstream view is
that quantum computing achieves the same computability
as classical computing, and the quantum advantage may
be characterized completely by complexity comparisons.
The intuitive way to see that this is likely to be correct is
to note that, given the mathematical definition of quan-
tum mechanics, we can always simulate quantum dynam-
ics using classical digital computers, but we generally can’t
do it efficiently. The chink in this argument is that quan-
tum mechanics is not digital. Qubits can be in an arbi-
trary superposition ˛j0i C ˇj1i, where j˛j can take any
real value between zero and one. Thus we can only sim-
ulate the quantum dynamics to within some precision dic-
tated by the amount of digital resources we employ. How-
ever, we cannot measure ˛, we can only infer an approx-
imate value from the various measurements we do make.
And classical computers also have continuous values for
quantities such as voltages that we choose to interpret
as binary zeros and ones. So it isn’t clear there could be
any fundamental difference between classical and quan-
tum in this respect that could separate their computational
ability.

So will quantum computers give us a practical advan-
tage over classical computers? How many qubits do we
need to make a useful quantum computer? This depends
on what we want to do:

Simulating a quantum system: for example,
N � two-state particles �! 2N possible different states.
The state of the system could be in superposition of all of
these 2N possible states. Classical simulations thus require
one complex number per state: 2NC1�size-of-double �!
1Gbyte can store the state of just N D 26 2-state sys-
tems. The current record is N D 36 in 1 Terabyte of
storage [35] – each additional particle doubles the mem-
ory required. Thus more than 40 or so qubits is beyond
current classical resources.

In the cases where we don’t need to keep track of all
the possible superpositions, e. g., if only nearest neighbor
interactions are involved, larger classical simulations can
be performed, for example, see [36].

Shor’s factoring algorithm: the best classical factor-
ing to date is 200 digit numbers (RSA-200) which is ap-
proximately 665 bits. Shor’s quantum algorithm needs 2n
qubits in the QFT register plus 5n qubits for the modu-
lar exponentiation (lower register plus ancilla qubits), a to-
tal of 7n logical qubits. A 665 bit number therefore needs
4655 logical qubits. We now need to take account of er-
ror correction. Again, this depends on the physical quan-
tum computer and the error rates that have to be cor-
rected. If the error rate is close to the threshold of 10�3

to 10�4, then more error correction is needed. For low er-
ror rates, maybe 20–200 physical qubits per logical qubit
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are required. For high error rates the numbers blow up
quickly tomaybe 105 physical qubits per logical qubit. This
suggest that factoring won’t be the first useful application
of quantum computing, despite being the most famous, we
may need Tera-qubit quantum computers to produce use-
ful results here. Although the scaling favors quantum com-
puting, the crossover point is very high.

Ultimate Physical Limits to Computation

This is a subject that is revisited regularly. The version by
Lloyd [37] is the best known of these calculations that has
an explicitly quantum flavor. Physical limits can be de-
duced from these fundamental constants:

The speed of light: c D 3 � 108m s�1

Boltzmann’s constant: k D 1:38 � 10�23J K�1

The gravitational constant:
G D 6:67 � 10�11m3kg�1 s�2

Planck’s constant: „ D 1:055 � 10�34J s

Consider 1 kg of matter occupying volume of 1 liter D
10�3 m3 – a little smaller than today’s laptops. How fast
can this matter compute? Quantummechanics tells us that
the speed of computation is limited by its average energy E
to 2E/�„ D 5 � 1050 operations per second with E D mc2

given by the mass of 1 kg. This is because the time-en-
ergy Heisenberg uncertainty principle, �E�t � „, says
that a state with a spread in energy of �E takes a time �t
to evolve into a different state. This was extended by Mar-
golus and Levitin [38,39] to show that a state with average
energy E takes a time �t � �„/2E to evolve to a different
state.

The number of bits it can store is limited by its entropy,
S D k lnW where W is the number of states the system
can be in. For m bits, W D 2m , so S D km, and the sys-
tem can store at most m bits. Our estimate of m is thus
dependent on what our laptop is made of. It also depends
on the energy E, since not all of theW possible states have
the same energy, so in practice we don’t get the maximum
possible W D 2m number of possible states, since we de-
cided our laptop had a mass-energy of 1 kg. In practice
this restriction doesn’t change the numbers very much.
There are various ways to estimate the number of states,
one way is to assume the laptop is made up of stuff much
like the early universe: high energy photons (the leftover
ones being the cosmic microwave background radiation).
This gives around 2 � 1031 bits as the maximum possible
memory.

Having noted that entropy S is a function of energy E,
we can deduce that the number of operations per second
per bit is given by 2Ek/�„S / kT/„, where T D @S/@E is

the effective temperature of the laptop. For our 1 kg laptop
this means the number of operations per bit is about 1019,
and the temperature is about 5 � 108 degrees, a very hot
plasma. This also implies the computer must have a par-
allel type of operation since the bit flip time is far smaller
than the time it takes for light to travel from one side to the
other. If you compress the computer into a smaller volume
to reduce the parallelism it reaches serial operation at the
black hole density! The evaporation rate for 1 kg black hole
is 10�19 seconds, after 1032 ops on 1016 bits. This is very
fast, but similar in size to conventional computers. Proto-
type quantum computers already operate at these limits,
only with most of their energy locked up as mass.

The salutary thing about these calculations is that once
you scale back to a computer in which the mass isn’t
counted as part of the available energy, we are actually
within some sort of spitting distance of the physical limits.
Computational power has been increasing exponentially
for so long we have become used to it doubling every few
years, and easily forget that it also requires increasing re-
sources to give us this increased computational capacity.
Based on current physics, there isn’t some vast reservoir of
untapped computational power out there waiting for us to
harness as our technology advances, andmost of us will see
a transition to a significantly different regime in our life-
times. Which, one may argue, highlights the importance
of unconventional computation, where further increases
in speed and efficiency may still be available after the stan-
dard model has run out of steam.

CanWe Build a QuantumComputer?

The short answer to this question is “yes”, and people al-
ready have built small ones, but we don’t know if we can
build one big enough to be useful for something we can’t
already calculate more easily with our classical computers.
In 2000, DiVincenzo [40] provided a checklist of five cri-
teria to assess whether a given architecture was capable of
being used to build a scalable quantum computer, i. e., one
that can be made large enough to be useful:

1. scalable qubits – to allow quantum computers to be
built large enough to solve real problems

2. prepare initial state – e. g. all qubits in state j0i
3. decoherence times far longer than gate times – to allow

many quantum operations before the quantum coher-
ence is degraded

4. universal set of quantum gates – a suitable two qubit
gate is sufficient

5. measurement of single qubits to read out result – can
be hardest part and can be much slower than other op-
erations.
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The notion of scalability is crucial in the quest to build
a useful quantum computer. We need designs that can
be tested at small sizes, registers of a few qubits, then
scaled up without fundamentally changing the operations
we tested at small scales. The most feasible architecture
for achieving this is using small, repeatable, connectable
units [41].

One of the most important models for scalable quan-
tum computers is the combination of stationary and flying
qubits. Flying qubits are usually photons while stationary
qubits can be almost any other type that can interact with
photons, such as atoms or quantum dots. The motivation
for this model is that it can be hard to do everything in one
type of physical system, for example, one-qubit gates are
easy to apply to photons while two-qubit gates are hard.
Also, stationary qubits are limited to nearest neighbor in-
teractions, which then involves many swap operations to
allow qubits further apart to be gated together, but this
can be overcome using flying intermediaries to connect
distant qubits. Atoms in traps combined with photons are
currently seen as the best scalable architecture, but this is
by no means the only player in the ring.

What HaveWe Got so Far?

Single qubits – with enough control to initialize them in
a chosen state and apply single qubit gates to them – have
been demonstrated in a wide variety of systems: this is only
a partial list:

� photons – using polarization or path to represent the
qubit

� atoms and ions in linear traps – qubit registers
� atoms loaded into optical lattices one per site
� quantum dots – with single spins (electrons or holes)
� electrons floating on liquid helium – electron spin
� phosphorus nuclei embedded in silicon – Kane model
� superconducting devices – using either currents or

magnetic flux
� nuclear magnetic resonance (NMR) – using nuclear

spins as qubits.

Some of these systems have also been demonstrated per-
forming two qubit gates, sometimes even more than one
gate at a time maintaining coherence. Progress is slow but
steady and this list will likely be out of date by the time
you read it, though not likely by more than a few small
numbers. For more details of the main types of architec-
tures, [42] is a good starting point. The current capabilities
are limited to

� a few (less than 10) qubits entangled to order
� a few (less than 20) quantum gate operations

� NMR can factor 15 (using 7 qubits)
� NMR qubit record is 7 (running an algorithm), and 12

(benchmarking)
� atoms: 6 in controlled superposition.

The vision is driving beautiful experiments: to find out up
to date information on current progress, visit the websites
of the major experimental collaborations, for example,

� NIST: http://qubit.nist.gov/
� MIT/Quanta: http://www.media.mit.edu/quanta/
� University Vienna: http://www.quantum.at/research/

quantum-computation.html
� EU Road map: http://qist.ect.it/Reports/reports.htm

and look for recent articles in Nature and Science.

Unconventional Extensions

Quantum computing as just described appears to mimic
classical digital computing quite closely in terms of bits
(qubits), gates, error correction, scalable architectures and
so on. In many ways this is just because this part of the
picture is easiest to relate to those familiar with classical
computing. In reality, neither the historical development,
nor the creativity with which theorists and experimental-
ists are tackling the difficult task of trying to build a work-
ing quantum computer justify this impression. In this sec-
tion I will attempt to set the record straight, and hint at
some of the wilder territory beyond.

What About Analogue?

Classical analogue computation was once commonplace,
yet was swept aside by the advance of digital computa-
tion. To understand why this happened we need to review
what it means to binary encode our data in a digital com-
puter. Binary encoding has profound implications for the
resources required for computation, as this table explains.

Unary vs. Binary Coding
Number Unary Binary
0 0
1 � 1
2 � � 10
3 � � � 11
4 � � � � 100
� � � � � � � � �

N N � � log2 N bits
Read out: distinguish between

measurements with N
outcomes

log2 Nmeasurements
with 2 outcomes each

Accuracy: errors scale linear in N errors scale/ logN

http://qubit.nist.gov/
http://www.media.mit.edu/quanta/
http://www.quantum.at/research/quantum-computation.html
http://www.quantum.at/research/quantum-computation.html
http://qist.ect.it/Reports/reports.htm
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Binary encoding provides an exponential advantage (re-
duction) in the amount of memory required to store the
data compared to unary encoding. It also means the pre-
cision costs are exponentially smaller. To double the ac-
curacy of a unary representation requires double the re-
sources, while a binary representation achieves this with
a single extra bit. This is the main reason why digital com-
puting works so well. It is so obvious it is easy to forget
that there was once analogue computing in which the data
is represented directly as the magnitude of a voltage or wa-
ter level displacement, or, in the slide rule, with the loga-
rithms etched onto the stick. Those of you too young to
have owned a slide rule should now play with Derek’s vir-
tual slide rules here: http://www.antiquark.com/sliderule/
sim/ to get a feel for what one version of analogue compu-
tation is like.

It does not, of course, have to be binary encoding,
numbers in base three or base ten, for example, gain the
exponential advantage just as well. One of the first to dis-
cuss the implications of binary encoding in a quantum
computing context was Jozsa [43], and this was refined in
Blume–Kohout et al. [44] and Greentree et al. [45]. Binary
encoding matters for quantum computing too in the stan-
dard digital model. It gains the same exponential advan-
tage from encoding the data into qubits as classical digital
computers gain from using bits.

Continuous Variable QuantumComputing

Although many quantum systems naturally have a fixed
number of discrete states (polarization of a photon or elec-
tronic spin for example), there are also variables like posi-
tion x andmomentum p that can take any real value. These
can be used to represent data in the same way as voltages
or other continuous quantities are used in classical ana-
logue computers. This quantum version of analogue com-
putation is usually known as continuous variable, or CV
computation.

The important difference between quantum and clas-
sical continuous variables is that a conjugate pair, such
as the position and momentum, are not independent of
each other. Instead, x and p are related by the commuta-
tor, [x; p] D i„ Knowing x exactly implies p is unknow-
able and vice versa, this is called squeezing. The most
commonly described continuous variable quantum system
uses electromagnetic fields, but rather than specializing to
the case of single photons as one does for digital quan-
tum computing, single modes of the field are employed.
Braunstein and van Loock [46] provide a comprehensive
review of CV quantum information processing for those
interested in further details.

Lloyd and Braunstein [47] showed that CV computa-
tion is universal, i. e., it can compute anything that a digital
quantum computer can compute. They did this by show-
ing that it is possible to obtain any polynomial in x and p
efficiently using operations that are known to be available
in physical systems. The universal set of operations has to
include a nonlinear operation applied to one of the vari-
ables, which means in this context higher than quadratic
in x and p. For electromagnetic fields, an example of a suit-
able nonlinear operation is the Kerr effect, which produces
a quartic term in x and p. This has the effect of an inten-
sity dependent refractive index. Unfortunately, although it
is observable, in real physical systems the Kerr effect is too
weak to be of practical use in CV computation. Without
the nonlinear term, the operations available are Gaussian
preserving, which means they can be simulated efficiently
with a classical computer [48]. Some operations are easier
than in digital quantum computers, the Fourier transform
is a single operation, rather than a long sequence of con-
trolled rotations and Hadamard gates.

Continuous variable information processing is espe-
cially suitable for quantum communications because of
the practicality of working with bright beams of light in-
stead of single photons. Most quantum communications
tasks only require Gaussian operations, which are eas-
ily achieved with standard optical elements. Quantum re-
peaters [49] to extend quantum communications chan-
nels over arbitrary distances are a good example. However,
a useful CV quantum computer isn’t a practical option us-
ing current experimental capabilities. The precision that
can be obtained in a single mode is limited by the degree
of squeezing that can be performed on the mode, currently
about 10 dB, which is equivalent to 3.7 bits. An extra bit of
precision doubles the required squeezing so CV quantum
computation suffers from the same precision problems as
classical analogue computing.

Hybrid QuantumComputing Architectures

Having noted above that continuous variable quantum
systems are especially suited to quantum communications
tasks, the obvious way to use them for quantum com-
puting is to make a high speed quantum “bus” (qubus)
to communicate between stationary qubit registers. Al-
though light and matter interact in simple easy ways, cre-
ating a suitable gate to transmit the quantum information
between qubits is a far from trivial task. Coherent light as
used for continuous variable quantum information is also
often employed to measure the final state of the matter
qubits at the end of the computation.

http://www.antiquark.com/sliderule/sim/
http://www.antiquark.com/sliderule/sim/
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Quantum Computing, Figure 7
Qubus parity gate operation

Unless the required operations are done in a way that
reveals only trivial information about the quantum state
while the computation is in process, the quantum super-
positions will instead be destroyed. The solution is built
around an elegant implementation of a parity gate, illus-
trated in Fig. 7. The left half shows a coherent light beam
(blue) interacting with two qubits in turn (green) bymeans
of an interaction that causes a phase shift in the light that
depends on the state of the qubit. The right half shows the
phase of the light after the interactions. If the two qubits
are in the same state, the light will have a phase in one of
the two blue positions. If the two qubits are in different
states, the two phase shifts will cancel leaving the phase
unaltered (red). Provided the angle of the shift, � is large
enough, the two cases can be distinguished by measuring
only the coordinate of the horizontal axis, not the vertical
distance away from it. For a detailed exposition illustrated
in a superconducting qubit setting, see [50].

Cluster State QuantumComputing

First proposed by Raussendorf and Briegel [51], and called
a “one way quantum computer”, cluster state quantum
computing has no direct classical equivalent, yet it has be-
come so popular it is currently almost the preferred ar-
chitecture for development of quantum computers. Orig-
inally designed for atoms in optical lattices, the idea is
to entangle a whole array of qubits in global operations,
then perform the computation by measuring the qubits
in sequence. This architecture trades space resources for
a temporal speed up, requiring roughly n2 physical qubits
where the gate model uses n. The measurement sequence
can be compressed to allow parallel operation for all but
a few measurements that are determined by previous re-
sults, and require the outcomes to be fed forward as the
computation proceeds. One obvious prerequisite for this
architecture is qubits that can be measured quickly and
easily. Measurement is often slower than other gate oper-
ations so this does limit in practice which types of qubits
can be used.

Quantum Computing, Figure 8
Fragment of a cluster state quantum computation. The compu-
tation can be thought of as proceeding from left to right, with
the qubit register arranged vertically, though all qubits in these
gates can be measured at the same time. White qubits do not
contribute directly to the computation and are “removed” by
measuring in the Z basis. Pink qubits are measured in the Y ba-
sis and form the gates, at the top a CNOT and at the bottom
a Hadamard. Blue qubits are measured in the X basis and trans-
mit the logical qubit through the cluster state. The black qubits
contain the output state (not yet measured, since their measure-
ments are determined by the next operations). Details in [52]

Since the measurements proceed from one side of the
lattice to the other, see Fig. 8, instead of making the whole
array in one go, the qubits can be added in rows as they are
needed. This also allows the use of a probabilistic method
for preparing the qubits, which can be repeated until it suc-
ceeds in a separate process to the main computation [53].
This idea grew out of schemes for linear optical quantum
computation in which gates are constructed probabilisti-
cally and teleported into the main computation once they
succeed [54]. Adding rows of qubits “just in time” does
remove one of the main advantages of the original pro-
posal, i. e., making the cluster state in a few simple global
operations. However, it gains in another respect in that
the data is regularly being moved into fresh qubits, so the
whole system doesn’t have to be kept free of decoherence
throughout the computation.

Cluster state quantum computation has been impor-
tant on a theoretical level also because it made people think
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harder about the role of measurement in quantum com-
puting [55]. Instead of striving to obtain perfect unitary
quantum evolution throughout the computation, cleverly
designedmeasurements can also be used to push the quan-
tum system along the desired trajectory.

Topological QuantumComputing

In Sect. “Digital Quantum Computing” we learned about
qubits: distinguishable quantum two state systems. But
there are more exotic quantum species, indeed, quantum
particles are indistinguishable when more than one of
them is around in the same place. This means if you swap
two of them, you can’t tell anything happened. And there
are precisely two ways to do this for particles living in our
familiar three spatial dimensions:

j Ai1j Bi2 �! j Bi1j Ai2 (5)

corresponding to Bose–Einstein particles (photons, He-
lium atoms), or

j Ai1j Bi2 �! �j Bi1j Ai2 (6)

corresponding to Fermi–Dirac particles (electrons, pro-
tons, neutrons). That extra minus sign can’t be measured
directly, but it does have observable effects, so we do
know the world really works this way. One important
consequence is that Fermi–Dirac particles cannot occupy
the same quantum state, whereas Bose–Einstein particles
can, and frequently do. From this we get, among many
other things, lasers (photons – Bose–Einstein particles)
and semiconductors (electrons – Fermi–Dirac particles),
without which modern technology would be very different
indeed.

A simple change of sign when swapping particles won’t
make a quantum computer, but something in between one
and minus one can. For this we have to restrict our parti-
cles to two spatial dimensions. Then it is possible to have
particles, known as anyons, that acquire more complicated
phase factors when exchanged. Restricting quantum parti-
cles to less than three spatial dimensions is not as hard as
it sounds. A thin layer of conducting material sandwiched
between insulating layers can confine electrons to two-di-
mensional motion, for example.

The first proposal for a quantum computer using
anyons was from Kitaev [56], using an array of interact-
ing spins on a planar surface. The anyons are formed from
excitations of the spins – think of this as similar to the way
electronic displays such as those found in trains and sta-
tions often work by flipping pixels between black and yel-

Quantum Computing, Figure 9
Aharonov Bohm affect

low to form characters. This opened up the field to a host
of connections with group theory, gauge theory, and braid
(knot) theory, and produced a new quantum algorithm
to approximate the Jones polynomial [57], a fundamental
structure in braid theory. If you already know something
about any of the above mathematical subjects, then you
can jump into the many accounts of topological quantum
computation (also going by the names geometric or holo-
nomic quantum computing). A recent introduction can be
found in [58].

Here is a simple example of how quantum phases
work, to further illuminate the idea. The Aharonov–Bohm
effect [59] was discovered in 1959 and has been observed
experimentally. It involves two ingredients. First, electrons
can be projected through a double slit much like photons
can, and they produce an interference pattern when de-
tected on the far side of the slits. If you aren’t familiar with
Young’s double slit experiment [60], note that you need to
think about it in terms of single electrons going through
both slits in superposition. This is an example of the quan-
tum behavior of particles that combines both wave and
particle properties. The interference pattern arises because
the electron can’t land on the detector in places where the
path length difference is half a wavelength, and prefers
to land near where the path difference is a whole num-
ber of wavelengths. The second ingredient is a solenoid,
a coil of wire with a current running through it. It gen-
erates a magnetic field inside the coil that does not leak
outside. If you put the solenoid between the two slits, see
Fig. 9, the interference pattern shifts, even though there is
no magnetic field where the electrons are traveling (they
can’t pass through the solenoid).
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Quantum Computing, Figure 10
Anyons: charge (blue) encirclingmagnetic field (flux, red+yellow)

From this we deduce two things: interference pat-
terns are a way to detect the extra quantum phases that
are generated in topological quantum effects, and, even
though there was no interaction between the electrons and
the magnetic field, i. e., no energy exchanged, the mag-
netic field still affected the quantum properties of the elec-
trons just by being inside the two paths the electrons take
through the slits.

Now imagine shrinking that experiment down to
a magnetic field with a charge (electron) encircling it. This
is one way to think of anyons. Confined to two dimen-
sions, the anyons can be moved round each other, and the
charge part of one going round the magnetic field part of
the other affects the quantum phase. When you want to
measure them, you manipulate them so that they form an
interference pattern. The rest of the details of how to make
them perform quantum computation comes down to the
mathematics of group theory.

Apart from delighting the more mathematically-
minded quantum computing theorists, this type of quan-
tum computing may have some practical advantages. The
effects are generated just by moving the anyons about, and
the exact path isn’t critical, only that they go around the
right set of other anyons. So there is less chance of er-
rors and disturbance spoiling the quantum computation.
However, constructing a physical system in which anyonic
excitations can be manipulated to order is not so easy. In
fact, it has not yet been demonstrated experimentally at all,
though there is no shortage of suggestions for how to do it,
see for example, [61].

Adiabatic QuantumComputing

Adiabatic quantum computation is the quantum equiva-
lent of simulated annealing. Simulated annealing is a com-
putational method that finds the minimum solution to
a problem by starting from an initial state and evolving to-

wards lower values until a minimum is found. In order to
avoid being stuck in a local minimum that is higher than
the desired solution, some random moves that increase
the value are necessary. This can be thought of as starting
in a high temperature distribution and slowly cooling the
simulation until the lowest energy state is found. The slow-
ness of the cooling is to allow it to get out of local minima
on the way.

Quantummechanics provides a more effective tool for
this problem, thanks to the quantum adiabatic theorem.
Quantum states don’t get stuck in local minima, they can
“tunnel” through barriers to lower-lying states. So there is
no need to start in a random initial state, instead, the evo-
lution starts in a minimum energy state that is easy to pre-
pare and transforms from there into the minimum energy
state we are interested in. The quantum adiabatic theorem
tells you how long it will take to evolve to the desired state
without ending up in some higher energy states by mis-
take.

Suppose you can prepare a system in the grounds state
j�0i of the Hamiltonian Hsimple, and you want to find the
ground state j�0i of the Hamiltonian Hhard. Then, pro-
vided you can evolve the systems under both Hamiltoni-
ans together, you applies the following Hamiltonian H(t)
to j�0i,

H(t) D f1 � ˛(t)gHsimple C ˛(t)Hhard (7)

where ˛(0) D 0, ˛(T) D 1 and 0 � ˛(t) � 1. The total
time the simulation will take is T, and ˛(t) controls how
fast the Hamiltonians switch over. The key parameter is
the difference, or gap �, between the ground and first ex-
cited energy states. It varies as the state evolves from j�0i to
j�0i and the smaller it is the slower the state must evolve
to stay in the ground state. Let �min be the smallest gap
that occurs during the adiabatic evolution. Then the quan-
tum adiabatic theorem says that provided T 	 "/�2

min,
the final state will be j�0i with high probability. Here " is
a quantity that relates the rate of change of the Hamilto-
nian to the ground state and first excited state. It is usually
about the same size as the energy of the system. The im-
portant parameter is thus �min. For hard problems, �min
will become small and the required time T will be large.

Adiabatic quantum computing was introduced by
Farhi et al. [62] as a natural way to solve SAT problems.
SAT stands for satisfiability and a typical problem is ex-
pressed as a Boolean expression, for example,

B(x1; x2; x3; x4)
D (x1 _ x3 _ x̃4) ^ (x̃2 _ x3 _ x4) ^ (x̃1 _ x2 _ x̃3)

(8)
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a set of clauses of three variables each combined with “or”
that are then combined together with “and”. The tilde over
a variable indicates the negation of that variable. The prob-
lem is to determine whether there is an assignment of the
variables x1; x2; x3; x4 that makes makes the expression
true (in the above simple example there are several such
assignments, such as x1 D 0, x2 D 0, x3 D 0, x4 D 0).

The Boolean expression is turned into a Hamiltonian
by constructing a cost function for each clause. If the
clause is satisfied, the cost is zero, if not, the cost is one
unit of energy. The Hamiltonian is the sum of all these
cost functions. If the ground state of the Hamiltonian is
zero the expression can be satisfied, but if it is non-zero
then some clauses remain unsatisfied whatever the values
of the variables.

The adiabatic quantum computation only works effi-
ciently if it runs in a reasonably short amount of time,
which in turn requires the gap, �min to remain large
enough throughout the evolution. Figuring out whether
this is so is not easy in general, and has led to some con-
troversy about the power of quantum computation. The
3SAT problem (clauses with three variables as above) is in
the general case a hard problem that requires exponential
resources to solve classically. Clearly adiabatic quantum
computing can also solve it, but the question is how long
it takes. The best indications are that the gap will become
exponentially small for hard problems, and thus the adia-
batic quantum computation will require exponential time
to solve it. For dissenting views see, for example, [63] dis-
cussing the traveling salesman problem, another standard
“hard” problem. One of the difficulties in analyzing this
issue is that adiabatic quantum computation uses the con-
tinuous nature of quantum mechanics, and care must be
taken when assessing the necessary resources to correctly
account for the precision requirements.

On the other hand, we do know that adiabatic quan-
tum computing is at least equivalent to digital computa-
tion (i. e., it can solve all the same problems using equiv-
alent resources) [57,64,65]. There are also indications that
it can be more resilient to some types of errors [66]. It has
even been implemented in a toy systemusing nuclearmag-
netic resonance (NMR) quantum computation [67].

Quantum Simulation

We have already noted that quantum simulation was
the original application that inspired Feynman [3] and
Deutsch [4] to propose the idea of quantum computation.
We have also explained why quantum systems cannot gen-
erally be simulated efficiently by classical digital comput-
ers, because of the need to keep track of the enormous

number of superpositions involved. In 1996 Lloyd [68]
proved that a quantum system can simulate another quan-
tum system efficiently, making the suggestions from Feyn-
man and Deutsch concrete.

The first step in quantum simulation is trivially simple,
the quantum system to be simulated is mapped onto the
quantum simulator by setting up a one-to-one correspon-
dence between their state spaces (which are called Hilbert
spaces for quantum systems). The second step is non-triv-
ial, Lloyd proved that the unitary evolution of the quan-
tum system being studied can be efficiently approximated
in the quantum simulator by breaking it down into a se-
quence of small steps that use standard operations. Math-
ematically this can be written

expfiHtg '
�
expfiH1t/ng expfiH2t/ng

: : : expfiH j t/ng
n
C O(t2/n)[Hj ;Hk]

where expfiHtg is the unitary evolution of the quantum
system (H is called the Hamiltonian) and H1 : : :Hj are
a sequence of standard Hamiltonians available for the
quantum simulator. The last term says that the errors
are small provided n, the step size, is chosen to be small
enough. There are variations and improvements on this
that use higher order corrections to this approximation,
see for example, [69]. Quantum simulation has even been
demonstrated experimentally [70] in a small test system
using an nuclear magnetic resonance (NMR) quantum
computer.

Just as with the quantum algorithms discussed in the
first section, evolving the quantum simulation is only half
of the job. Extracting the pertinent information from the
simulation requires some tricks, depending on what it is
you want to find out. A common quantity of interest is
the spectral gap, the energy difference between the ground
and first excited states, the quantity � discussed in Sub-
sect. “Adiabatic QuantumComputing”. One way to obtain
this is to create a superposition of the two energy states
and evolve it for a period of time. The phase difference be-
tween the ground and excited state will now be propor-
tional to the spectral gap. To measure the phase difference
requires a Fourier transform, either quantum or classical.
Either way, the simulation has to be repeated or extended
to provide enough data points to obtain the spectral gap
to the desired precision. Even creating the initial state in
superposition of ground and excited states is non-trivial.
It has been shown that this can be done for some systems
of interest by using quasi-adiabatic evolution starting from
the ground state. By running the adiabatic evolution a bit
too fast, the state of the system doesn’t remain perfectly in
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the ground state and the required superposition in gener-
ated [71,72].

However, because there is no binary encoding, un-
like classical simulation on a digital computer, accuracy
is a problem. In particular, accuracy does not scale effi-
ciently with time needed to run the simulation [73]. Is this
going to be a problem in practice? Poor scaling for accu-
racy didn’t stop people building useful analogue comput-
ers from electrical circuits or water pipes in the days be-
fore digital computers were widely available. As we noted,
a quantum simulator becomes useful at around 40 qubits
in size, whichmeans it maywell be the first real application
of quantum computing to calculate something we didn’t
know already. In the end, the accuracy required depends
on the problem we are solving, so we won’t know whether
it works until we try.

Future Directions

The wide range of creative approaches to quantum com-
puting are largely a consequence of the early stage of de-
velopment of the field. There is as yet no proven working
method to build a useful quantum computer, so new ideas
stand a fair chance of being the winning combination. We
do not even have any concrete evidence that we will be
able to build a quantum computer that actually outper-
forms classical computers. But we also have no evidence
to the contrary, that quantum computers this powerful are
not possible for some fundamental physical reason, so the
open question, plus the open questions such a quantum
computer may be able to solve, keep the field vibrant and
optimistic.

Beyond the precision quantum engineering required
to construct any of the designs described thus far, there is
plenty of discussion of quantum computational processes
in natural systems. While all natural systems are made
up of particles that obey quantum mechanics at a funda-
mental level, the extent to which their behavior requires
quantum logic to describe it is less ubiquitous. Quan-
tum coherences are more usually dissipated into the sur-
rounding environment than marshaled into co-ordinated
activity.

It has been suggested that the brain may exhibit quan-
tum computational capabilities on two different levels.
Firstly, Hameroff and Penrose [74] have argued that brain
cells amplify quantum effects that feed into the way the
brain functions. This is disputable on physical grounds
when the time-scales and energies involved are considered
in detail. Secondly, a quantum-like logic for brain pro-
cesses has been proposed, for example, see [75]. This does
not require actual quantum systems to provide it, and is

thus not dependent on individual brain cells amplifying
quantum effects.

Whether any biological computing is exploiting quan-
tum logic is an open question. Since typical biological tem-
peratures and time scales are generally not a hospitable
regime for maintaining quantum coherences, wemight ex-
pect any such quantum effects to be rare at the level of
complex computations. Clearly quantum effects are bio-
logically important for of basic processes such as photo-
synthesis, for example, and transport properties such as
the conductance and coherence of single electrons through
biological molecules are the subject of much current study.
These are perhaps more likely to feature as problems
solved by one of the first quantum simulators, than as ex-
amples of natural quantum computers.
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Further Reading
For those who seriously want to learn the quantitative details of

quantumcomputing, this is still the best textbook: NielsenMA,
Chuang IL (2000) Quantum Computation and Quantum Infor-
mation. CUP, Cambs

For lighter browsing but still with all the technical details, there are
several quantum wikis developed by the scientists doing the
research:

Quantiki http://www.quantiki.org/wiki/index.php/Main_Page
specifically quantum information

Qwiki http://qwiki.stanford.edu/wiki/Main_Page covers wider
quantum theory and experiments

For those still strugglingwith the concepts (which probablymeans
most people without a physics degree or other formal study
of quantum theory), there are plenty of popular science books
and articles. Please dive in, it’s the way the world we all live in
works, and there is no reason not dig in deep enough tomarvel
at the way it fits together and puzzle with the best of us about
the bits we can’t yet fathom.
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Glossary

Ion trap Device used for confining charged particles to
a small volume of space. There are two types of ion
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traps: in a Paul trap, the confinement is achieved by us-
ing an electric quadrupole radio-frequency field, while
a Penning trap uses a static electric quadrupole field
and a static magnetic field. For the right field parame-
ters, the charged particles can be stored in the trapping
volume permanently.

Lamb–Dicke regime Describes the conditions for strong
confinement of ions. In the Lamb–Dicke regime, ions
are confined to a region smaller than the wavelength
of the optical transition of the ion. Another property
of ions in this parameter range is that the ion’s re-
coil energy is less than the energy of a single quan-
tum of vibration in the trap. This suppresses sponta-
neous sideband transitions. The Lamb–Dicke regime
is essential for the reliable operation of laser-induced
quantum gates in an ion-trap quantum computer.

Qubit The unit of quantum information processing.
A contraction of quantum bit, the term qubit desig-
nates quantum systemwith two quasi-stable states car-
rying the quantum equivalent of binary information
(“0” or “1”). In an ion-trap quantum computer, two
long-lived electronic states are employed as quantum
memory. Their wavefunctions are represented here by
the symbols jgi and jei. The qubit states are manipu-
lated by means of laser pulses.

Quantum register A collection of qubits forms a quan-
tum register. The power of a quantum computer in-
creases exponentially with the size N of the quantum
register, since in this case 2N numbers can be pro-
cessed in parallel. In ion traps, the largest quantum
register implemented so far has size N D 8.

Normal modes The motion of ions in a linear string is
strongly coupled due to their Coulomb repulsion. The
system can still be described by analogy with a set
of independent harmonic oscillators, when collective
modes of motion are considered, in which all ions os-
cillate in phase and at the same frequency. These are
called normal modes. A linear string of N ions has
N normal modes of axial vibration. Each mode has
a characteristic distribution ofmotional amplitudes for
the ions. In the lowest frequency mode, all ions oscil-
late at the same amplitude, so that the string moves like
a rigid body.

Phonon bus Since all ions participate in the collective
motion, it can be used to transfer quantum infor-
mation between ions in the string. To this end, each
normal mode is considered as a quantum mechani-
cal oscillator, in which quanta of vibrational motion
(phonons) can be excited or de-excited. By coupling
their excitation to transitions of the ion-qubit, the
phonons serve as a quantum data bus to other ions. Re-

liable transfer requires that the phonons are restricted
to a binary system. The state with no vibrational exci-
tation encodes the qubit j0i, one quantum of vibration
corresponds to j1i.

Rabi-oscillations The term describes the change of state
of a two-level atom, induced by the coherent excita-
tion with a laser beam close to resonance. After half
a period (phase �), the population is completely trans-
ferred, after another half period it is returned to the
initial distribution again. By choosing suitable phases,
amplitudes, detunings and duration of the pulses, the
individual qubits may be manipulated in a fully con-
trolled way and quantum gates between different ions
may be induced (via the phonon bus).

Coherent superposition According to the laws of quan-
tum mechanics, a qubit can be in an arbitrary su-
perposition of the two basis states with complex am-
plitudes ˛ and ˇ, written as ˛jgi C ˇjei. The rela-
tive phase is important, for example, jgi � jei and
jgi C jei are distinct superposition states. As long as
a well-defined phase is preserved, the qubit is in a co-
herent superposition. This is a precondition for quan-
tum information processing.

Decoherence Any loss of coherence of a quantum state is
called decoherence. There are many sources of deco-
herence. In an ion-trap quantum processor, they range
from spontaneous decay of the qubit-levels to phase
shifts in fluctuating ambient fields. A quantum compu-
tation can only proceed reliably while decoherence is
negligible. Quantum error correction is a way to coun-
teract decoherence.

Entanglement Entanglement is one of the most impor-
tant properties of quantum systems and has no clas-
sical analogue. A composite system, for example two
qubits, is entangled if the states of the individual parti-
cles cannot be separated and regarded as independent.
Instead, there are strong non-local links between the
components, resulting in quantum correlations and
state changes of one partner upon measurement of the
other. Entangled states have many applications, from
spectroscopy to quantum networking. Up to eight ions
have been entangled in a deterministic way.

Quantum network A system of either local or distant
nodes performing quantum calculations and exchang-
ing results via transport of ions or via photon links.
Setting up the latter requires a controlled exchange of
quantum data between ions and photons, providing
flying qubits. The goal is distributed entanglement, for
example to transfer qubits over long distances via tele-
portation and eventually to perform distributed quan-
tum computation.
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Definition of the Subject

In quantum computation, the classical bit as carrier of in-
formation is replaced by a two-state quantum system, the
quantum bit (qubit). The enhanced computing power of
qubits is based on two facts: (1) they can simultaneously
store arbitrary superpositions of two values 0 and 1 and
(2) superpositions in different qubits may be strongly cor-
related (entangled), even in the absence of any direct phys-
ical link. Quantum algorithms exploit these features to ef-
ficiently solve problems whose complexity makes any clas-
sical method unfeasible.

As a new paradigm of computer science, the concept
of quantum computation has generated important results
in complexity theory. However, from a practical point of
view, the power of quantum information processing can
only be unleashed if the necessary quantum hardware is
available. What is required is a set of individually accessi-
ble binary quantum systems to serve as a quantum register.
They must have strong externally controllable interactions
between them, but at the same time no coupling to the en-
vironment. While there is no system in which these condi-
tions are ideally fulfilled, trapped atomic ions are the clos-
est realization. At present, they provide the most advanced
implementation of quantum information processing.

This article summarizes the state-of-the-art of quan-
tum computing with trapped ions. As shown below, all
necessary components of a trapped-ion quantum com-
puter have been demonstrated, from quantum memory
and fundamental quantum logic gates to simple quantum
algorithms. Current experimental efforts are directed to-
wards scaling up the small systems investigated so far and
enhancing the fidelity of operations to a level where error
correction can be applied efficiently. The first task at which
a quantum computer is expected to outperform a classi-
cal one is the efficient simulation of quantum systems too
complex for classical treatment.

Introduction

The idea of using atomic-scale systems for information
processing was first suggested by R. P. Feynman in his lec-
ture There’s plenty of room at the bottom [1]. In the early
1980s, Feynman and P. Benioff found that by exploiting
the dynamics of quantum systems, computations could be
performed far more efficiently than using a classical com-
puter [2,3]. They argued that the difficulty of efficiently
simulating quantum systems on a classical computer im-
plied the superior power of quantum computing.

The radically novel idea was to not merely use quan-
tum mechanics as a framework for predicting the macro-
scopic behavior of a system, but to manipulate individ-

ual quantum objects directly. While Feynman didn’t pro-
pose a particular physical implementation, the spectacular
progress achieved in atomic and optical physics laborato-
ries around the world in preparing and manipulating sin-
gle atoms and ions makes these particles an obvious choice
as a qubit. Binary quantum information is typically stored
in two internal electronic levels.

Owing to their electric charge, ions can be read-
ily trapped by radio-frequency electric fields. However,
Coulomb repulsion keeps the trapped ions so far apart,
that any direct interaction involving their internal states
is negligible. This seems to preclude logic gates for two
or more qubits. However, in 1995, I. Cirac and P. Zoller
found a way around this problem in a seminal paper which
initiated experimental ion-trap quantum computation as
an active research field [4]. They proposed to use the long-
distance Coulomb repulsion between ions to couple differ-
ent qubits in a linear string by exchanging single quanta of
their vibration.

Trapped ions have other advantages that make them
strong contenders as quantum bits. Their internal and ex-
ternal (motional) states can be manipulated using laser
light. In atoms or ions, long-lived excited states exist, al-
lowing for the storage and retrieval of quantum superposi-
tion states. Since the first experiment demonstrating a sim-
ple quantum gate with a single ion, impressive progress
has been made in developing or adapting ion trap tech-
nologies for quantum information processing.

In this article, the range of techniques used in ion-
trap quantum computing is presented, starting with the
technological foundations of ion trapping (Sect. “Ion Trap
Technology”). The subsequent discussion follows a list of
general requirements for a system to serve as a practi-
cal device for quantum computation. It was compiled as
a general guideline by D. DiVincenzo [5].

(1) The quantum system must provide well-character-
ized qubits forming a scalable quantum register (Sect.
“Ions as Carriers of Quantum Information”).

(2) It must be possible to initialize the qubits to a known
state (Sect. “Laser Cooling and State Initialization”).

(3) A method to efficiently measure individual qubits
must exist (Sect. “State Detection of Ionic Qubits”).

(4) A universal set of quantum gates is required (Sects.
“Single-Ion Operations” and “Two-Qubit Interaction
and Quantum Gates”).

(5) The time over which quantum states lose coherence
should be much longer than gate operation times
(Sect. “Decoherence”).

At present, trapped ion systems are the only technology,
for which all five criteria have been successfully demon-
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strated. Major achievements are two-qubit ion gates with
a fidelity around 96%, the entanglement of up to 8 ions
and a number of simple algorithms (Sect. “Quantum Al-
gorithms”).

In his article, DiVincenzo has added twomore require-
ments in case local quantum processors are to exchange
quantum information over some distance.

(6) It must be possible to interconvert the stationary
qubits of the quantum computer to “flying qubits”,
suitable for long-distance transmission.

(7) The flying qubits must be faithfully transmitted be-
tween specified locations.

These requirements become more important, as schemes
for distributed quantum computation are being devel-
oped. The obvious choice for flying qubits are photons and
there are first results regarding the coupling of ions and
photons (Sect. “Distributed Quantum Information with
Trapped Ions”).

Ion Trap Technology

Ions are particularly well suited for quantum information
processing, since due to their charge, they can be confined
by electromagnetic fields without affecting their internal
electronic levels. Presently, all realizations of quantum in-
formation processing with ions use variants of the Paul-
trap, in which the ponderomotive force of a time-depen-
dent inhomogeneous electric field leads to stable confine-
ment [6,7]. For a quantum register containing multiple
ions, a linear trap geometry is generally chosen.

Linear Paul Trap

The linear Paul trap has its origins in the electric quad-
rupole mass filter [8], in which transverse confinement of

Quantum Computing with Trapped Ions, Figure 1
Two-dimensional saddle potential for a charged particle in the linear Paul trap according to Eq. (1). Due to the quadrupole shape, at
any given time there is confinement only along one axis. a Potential at t D 0, providing y-confinement only. b Potential at t D �/˝ ,
providing x-confinement only. Stable confinement in both directions is achieved by rapidly alternating the sign of the potential

ions with a certain charge to mass ratio is achieved by a ra-
diofrequency quadrupole potential in a plane perpendicu-
lar to the axis of the device, assumed to be oriented in the
z-direction:

˚(x; y; t) D (U � V cos˝ t)
x2 � y2

2r20
; (1)

where ˙U/2 are the dc-voltages and ˙V/2 cos˝ t the
radiofrequency-voltages applied to the quadrupole elec-
trodes at a distance r0 from the trap center. Equation (1)
represents a saddle potential which at any particular time
provides confinement in one direction only, as shown in
Fig. 1. By using alternating voltages and averaging over
a period of the radiofrequency, stable trapping may be
achieved in both transverse directions. Figure 2 indicates
how the trap parameters V and U must be chosen to ob-
tain confinement. In practice, U D 0 and eV 
 m˝2r20/2
are chosen, where m and e denote mass and charge of the
ion.

To generate the potential (1), four hyperbolically
shaped electrodes are required. Usually these are approxi-
mated by simpler structures like rods with circular or tri-
angular cross section, since close to the trap axis the result-
ing anharmonicity is negligible.

On a timescale long compared to the period of
the radiofrequency, the ions move as if they are radi-
ally confined in a parabolic pseudopotential given by
� D e2jr˚ j2/4m˝2. The motion in the radial directions
is therefore harmonic, with the radial secular frequency

!r �
eV

p
2m˝r20

: (2)

The pseudopotential � provides confinement in the
radial direction only, while the motion along the z-axis is
not restricted. For three-dimensional confinement, an ad-
ditional static potential must be applied in the z-direction
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Quantum Computing with Trapped Ions, Figure 2
Stability diagram for the linear Paul trap as a function of radiofre-
quency amplitude V and dc-amplitude U, scaled to dimension-
less parameters q and a, respectively. Confinement in both x-
and y-direction is achieved in the purple region at the center,
defining the operating range of the trap

which is either achieved using additional electrodes at ei-
ther end of the trap or by segmenting the linear rod elec-
trodes and applying a positive dc-voltage Uz to the outer
segments. This provides a static harmonic well along the
z-axis which is characterized by the longitudinal trap fre-
quency

!z D

s
2�eUz

mz20
: (3)

Here, z0 is half the length between the axially confining
electrodes and � is a geometric factor accounting for the
specific electrode configuration. The presence of the axi-
ally confining field weakens the radial confinement which
is reduced to

! 0r D

r

!2
r �

1
2
!2
z : (4)

A sketch of a linear ion trap is shown in Fig. 3. Values for
!r/2� in ion traps used for quantum information process-
ing range from 3 MHz to 10 MHz, while typical values for
!z/2� are 1 MHz to 4 MHz.

If multiple ions are confined and cooled to a suffi-
ciently low temperature in a Paul trap (see Sect. “Vibra-
tional Cooling of a Single Ion”), they form ordered struc-
tures [9,10,11]. If the radial confinement is strong enough
(!r 	 !z), ions arrange themselves in a linear pattern
along the trap axis at distances determined by the equilib-
rium of their mutual Coulomb repulsion and the potential

Quantum Computing with Trapped Ions, Figure 3
Schematic drawing of a linear ion trap, as used for quantum in-
formation processing. The ions are arranged in a linear string
along the trap axis, held by rf- and dc electric fields. The state of
the ions is detected by imaging them to a CCD camera. © R. Blatt,
University of Innsbruck, Austria

Quantum Computing with Trapped Ions, Figure 4
String of eight ions in a linear Paul trap [10]. Color indicates the
intensity of the fluorescent light detected with a CCD camera.
The average distance between adjacent ions is about 10µm. See
Refs. [9,11,12] for other ion crystal structures. © R. Blatt, Univer-
sity of Innsbruck, Austria

providing axial confinement. Figure 4 shows an example
of a string of eight 40CaC ions in a linear trap. The equi-
librium spacing of the ions is not uniform and must be
determined numerically [12].

The number of ions N that fit on the axis of a lin-
ear ion trap is limited by the ratio of radial to axial con-
finement to approximately N < 1:82 (!r/!z)1:13 [14]. For
larger ion numbers, the equilibrium positions no longer
coincide with the z-axis of the trap. This must be avoided,
since off the axis, the ions undergo micromotion, an os-
cillatory motion around their equilibrium position, driven
by the trapping field at frequency˝ . Only on the trap axis,
the ions are protected from micromotion, since ideally it
corresponds to a node of the confining radiofrequency-
field. However, micromotion can still occur if stray elec-
tric fields shift the ions off the nodal line of the radiofre-
quency field. Since this may result in rf-heating of the ions
and precludes controlled quantum operations, stray fields
must be carefully compensated [15,16].
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Spherical Paul Trap

If only a single ion is to be stored, the spherical variant
of the Paul trap may be used [17]. Here, the average pon-
deromotive force of an alternating quadrupole potential is
used to provide three-dimensional confinement. The cor-
responding potential is

˚(x; y; z; t) D (U � V cos˝ t)
x2 C y2 � 2z2

2r20
: (5)

The ideal electrodes are two hyperbolic endcaps along the
z-axis and a hyperbolic ring in the x � y-plane, but sim-
plified configurations with only two cylindrical endcaps or
only one ring-electrode [18,19,20,21] are possible.

In a spherical Paul trap, the micromotion vanishes
completely only at the origin, which is why it is suited only
for the storage of a single ion. It was used in early studies
of quantum information processing in an ion trap [22,23].

In the future, spherical Paul traps may again play an
important role as single-ion microtraps, arranged in large,
scalable arrays [24]. Coupling of adjacent ions would be
accomplished through phase shifts, mediated by state-de-
pendent Coulomb interaction rather than the exchange of
vibrational quanta, as will be discussed in Sect. “Vibra-
tional Coupling” for quantum information processing in
linear ion strings.

Large-Scale Ion Traps

There is no fundamental limit to the length of a string of
trapped ions and hence to the size of a multi-ion quantum
register. However, the technical challenges of manipulat-
ing many ions in a single trapping zone are substantial. In
particular, the large number of vibrational modes of a long
ion crystal makes reliable transfer of quantum information
difficult (see Sect. “Vibrational Coupling”). So far, quan-
tum operations have been performed with up to eight ions
in a single trap.

In order to circumvent the problems associated with
long ion chains, trap architectures made up of intercon-
nected individual trap segments have been proposed [25].
In these schemes, processing of quantum information is
performed locally in special regions of the trap contain-
ing only a small number of ions, which are retrieved
from and returned to memory regions. Ion transfer is
achieved by changing the axially confining fields with dc-
electrodes placed along the trapping zones. This type of
trap is also known as a quantum charge-coupled device
(QCCD). A sketch of a possible electrode layout is shown
in Fig. 5.

An important issue for quantum computation in seg-
mented traps is to maintain coherence of internal states

Quantum Computing with Trapped Ions, Figure 5
Sketch of an ion trap with multiple segments, providing mem-
ory regions for storing qubits (red) and interaction regions for
logic operations, including ions to sympathetically cool the vi-
brational motion (blue). Shuttling between different locations is
accomplished by suitable dc-voltages applied to the electrodes
shown in green

during transport of the qubits. This has been demon-
strated over a straight distance of 1.2 mm after separating
two ions originally held in a single trap [26]. In order to
extract arbitrary ions from a quantum register, junctions
have to be implemented, for example, a T-junction joining
two linear trap sections at an angle of 90ı. A trap of this
type was realized at the University of Michigan and used
to swap the positions of two ions [27].

Microtraps and Surface-Electrode Traps

The number of electrodes required for multi-zone traps
quickly grows as more processing or memory segments
are included. These devices require integrated fabrication
technologies to replace the manual assembly and align-
ment of electrodes used in simpler traps. Two approaches
have been pursued to make ion traps amenable to micro-
fabrication.

(1) Three-dimensional microtraps, fabricated from a mo-
nolithic multilayer microchip [28,29]. The trapping
geometry is similar to that in a macroscopic trap but
minimum features are smaller and no assembly is re-
quired. A chip-trap has been fabricated from a doped
gallium-arsenide heterostructure [30].

(2) Surface-electrode traps further simplify the fabrication
of trapping structures. They are derived from three-
dimensional Paul traps, but have all their electrodes
moved to a single plane [31,32]. The ions are again
trapped in a minimum of the pseudopotential, which
is typically located several tens of μm above the sur-
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face. A planar trap for single ions has been demon-
strated at NIST [31].

Using microfabrication techniques for ion traps makes
them suitable for miniaturization and scaling. As an ad-
ditional benefit of chip-traps, microelectronics, e. g., for
electrode potential control can be placed directly on the
chip [33].

Penning Traps

An alternative way to trap ions in three dimensions is the
Penning trap [6]. In contrast to the Paul-trap, there are
no alternating fields. Stable confinement of ions is accom-
plished with a staticmagnetic field, providing a radial force
in the xy-plane and a static electric field exerting a restor-
ing force in the z-direction. While the z-motion in the
Penning trap is harmonic, in the radial plane the ions orbit
the center in a combination of cyclotron and magnetron
motion. This makes a fixed radial arrangement of ions dif-
ficult. However, by using a rotating electric field technique,
large radial ion crystals rotating at a controlled rate were
produced in a Penning trap [34]. Such a collection of ions
is equivalent to a quantum hard disk and has been pro-
posed for quantum information processing [35].

Another scheme for quantum computing with Pen-
ning traps uses an array of miniature Penning traps each
containing only a single ion [36]. Ions could be shuttled
between individual traps using suitable arrangements of
electric fields. To perform two-bit quantum gates, two
ions would be combined in a single trap, forming an axial
crystal, which can be manipulated by analogy with to the
equivalent structure in a Paul trap. Axial two-ion Coulomb
crystals have recently been observed in experiment [37].

An array of Penning traps holding single electrons has
been proposed as a scalable quantum information pro-
cessor [38]. Here, gates are implemented by controlling
the Coulomb interaction with radio-frequency and mi-
crowave techniques. In the remainder of this article, Pen-
ning traps will not be further discussed, since to date, all
realizations of quantum information processing have been
performed in Paul traps.

Ions as Carriers of Quantum Information

In an ion-trap quantum computer, information is encoded
in two internal (electronic) states of the ion. Among the
large number of levels, only those with a long natural life-
time are suitable for storing quantum information. This
excludes levels with electric dipole transitions to lower
lying states. For easy manipulation of the qubit-transi-
tion, the levels should be coupled either by a two-photon

Raman transition, an electric quadrupole or a magnetic
dipole transition. Ideally, the states should be insensitive to
fluctuations of external magnetic or electric fields to mini-
mize decoherence.

Two classes of states have been used for quantum in-
formation processing with ions so far: two hyperfine lev-
els of the ground state of an ion with nuclear spin and
a combination of an electronic ground state and a low-
lying metastable state.

Hyperfine State Qubits

In any isotope with non-vanishing nuclear spin, the elec-
tronic ground state energy levels are split by the inter-
action of the electrons’ angular momentum with the nu-
clear magnetic moment (and, if applicable, the electric
quadrupole moment). These so-called hyperfine states are
coupled by magnetic dipole transitions and hence have an
extremely long lifetime. Therefore, they are ideally suited
for reliably storing quantum information. An example is
the 9BeC ion, which was used in the first implementa-
tions of quantum information processing with ions [22].
The two hyperfine levels are distinguished by the quantum
numbers F D 1 and F D 2, differing in the relative orien-
tation of electronic angular momentum and nuclear spin.

The relevant level structure of 9BeC is shown in Fig. 6.
The two basis states of the quantum bit are represented
by a magnetic sublevel of each hyperfine state. A common
choice is jF D 2;mF D 2i and jF D 1;mF D 1i. While
the outermost levelswithmF D ˙F aremost conveniently
initialized, they are subject to random shifts by fluctuat-
ing magnetic fields, leading to decoherence. For a quan-
tum memory with longer lifetime, a first-order magnetic-
field independent transition at a finite magnetic bias field
should be used [39].

Metastable State Qubits

Long lifetimes for ionic qubits may also be achieved by
employing excited electronic states which are connected
to lower lying levels only by higher order electromagnetic
multipole transitions. This is the case for ions with a D-
state with lower energy than the first excited P-state. It de-
cays to the ground state via an electric quadrupole transi-
tion with a rate around 1s�1. An example is 40CaC [40],
which is used for ion-trap quantum information pro-
cessing in a number of laboratories. Here, the states
j2S1/2;mj D 1/2i and j2D5/2;mj D 1/2i are usually cho-
sen as basis states. The level structure of 40CaC is shown
in Fig. 7.

All ions investigated for quantum information pro-
cessing fall in either of these two categories. An overview
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Quantum Computing with Trapped Ions, Figure 6
Qubit-implementation in 9BeC. As indicated, the quantum information is stored in the twomagnetic sublevels jF D 2;mF D 2i and
jF D 1;mF D 1i. In order to change the state of the qubit, Raman transitions driven by laser fields E1 and E2, off-resonant from the
level P1/2, are employed

Quantum Computing with Trapped Ions, Figure 7
Qubit-implementation in 40CaC. Quantum information is stored in amagnetic sublevel of the ground state j2S1/2;mj D 1/2i and of
the metastable state j2D5/2;mj D 1/2i. The state of the qubit is changed by resonantly driving the quadrupole transition between S
and Dwith a laser field E at 729nm

of isotopes that have been used is given in Table 1. In the
remainder of this article, the two physical basis states of
a qubit will be designated by the symbols jgi for the lower
(ground-) state and jei for the higher (excited) state, as
indicated in Fig. 6 and 7. Note that in the literature, alter-
native notations are used, e. g., j#i and j"i for hyperfine
qubits, jSi and jDi symbolizing the orbital states involved,

Quantum Computing with Trapped Ions, Table 1
Isotopes used in investigations of quantum information process-
ing with trapped ions

Scheme Ion Species

Hyperfine qubit 9BeC [22,39], 43CaC [41,42], 111CdC [43],
171YbC [44,45], 25MgC [46]

Metastable qubit 40CaC [40,41], 88SrC [47,48,49,50]

or the generic j0i and j1i. The 2N basis states of a quan-
tum register with N ions are represented by analogy with
single qubit-states by specifyingN entries: jx1x2x3 : : : xNi,
where xi is either g or e.

Laser Cooling and State Initialization

Ionization

Before a quantum register can be initialized, the ion
trap must be loaded with the desired isotope. This is
most efficiently achieved by photo-ionizing an atomic
beam [51,52,53]. If one of the excitation steps in multi-
photon ionization is resonant, a specific isotope may be
loaded, distinguished by its isotope shift [51,54]. If no suit-
able laser source for photo-ionization is available, elec-
tron-impact ionization may be used instead. It is not state-
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selective and hence only suited for loading the most abun-
dant species among an ion’s isotopes. Due to the long trap
lifetimes of many hours to days, the trap has to be loaded
only infrequently.

Initialization of the QuantumRegister

Any quantum computationmust start from awell-defined,
i. e. pure state of the quantum register. Therefore, initially
all ions must be transferred to a specific internal state, typ-
ically the lower basis state, so that the register is initial-
ized to jggg : : : gi. In ions, this is achieved by the well-
established method of optical pumping [55]. A laser with
a suitable polarization repeatedly excites the ions to a set of
states fromwhich they eventually decay to the desired state
jgi. This state is either not coupled to the exciting laser or
driven to a state whose only decay channel is back to jgi
(cycling transition). In any case, all ions reach their initial
state after a few excitation-emission cycles. In contrast to
the quantum gates discussed below, the initialization of the
register is irreversible.

Not all internal states are amenable to initialization by
optical pumping with high fidelity. In some cases, it may
be necessary to pump to an auxiliary state, which is then
coherently transferred to the desired initial state by suit-
able laser pulses [39].

Vibrational Cooling of a Single Ion

In an ion-trap quantum processor, different ions are cou-
pled by the Coulomb interaction via their motional de-
grees of freedom (see Sect. “Vibrational Coupling”). In
order to transfer quantum information in this way, the
ions’ harmonic oscillation in the trapping potential must
be cooled close to its quantum mechanical ground state.
This is achieved by different stages of laser cooling, ex-
ploiting the momentum transfer between ions and light.

Initial cooling of the ions is provided by Doppler cool-
ing [56,57,58], using an atomic transition with a natu-
ral line width � larger than the vibrational frequencies
(!r or !z) of the ions in the trap. If the cooling laser
is slightly red-detuned from resonance, the Doppler-shift
from the ions’ motion ensures that photons are preferably
absorbed when an ion is moving towards the laser. The
resulting momentum transfer, averaged over many scat-
tering events, reduces the kinetic energy and thus the tem-
perature of the ion. The final temperature which can be
reached by this technique is given by the Doppler tem-
perature TD D „� /2kB [59] where kB denotes Boltzman’s
constant. TD is on the order of a few millikelvin, which for
typical trap frequencies corresponds to a residual excita-
tion of one to tens of vibrational quanta.

Quantum Computing with Trapped Ions, Figure 8
Resolved sideband cooling in a two-level system (states jgi;
jei). Associated with each level is a ladder of quantized vibra-
tional states jni, labeled by their vibrational quantum number.
Red sideband excitation (red arrow), followed predominantly by
spontaneous emission on the carrier, reduces the vibrational ex-
citation by one. After a few cycles, the vibrational ground state
(green circle) is reached, which is not coupled to the excitation

In order to reach the vibrational ground state, an addi-
tional cooling stage must be applied. To this end, a transi-
tion is used whose � is smaller than the frequency of the
vibration to be cooled, e. g., � 
 !z . In this case, the ion’s
absorption spectrum is composed of a line at the transition
frequency !0 and a series of sidebands at (!0 ˙ n!z ) with
integer n. The strength of these sidebands is given by the
vibrational excitation.

Very efficient cooling is obtained by tuning a laser to
the first red sideband at !0 � !z (see Fig. 8). If the ion is
well localized (Lamb–Dicke regime), subsequent sponta-
neous emission occurs predominantly at the carrier fre-
quency !0, so that there is a net reduction of the ion’s ki-
netic energy by „!z . After a few excitation-emission cy-
cles, the ground state of vibration is reached with high
probability.

The technique is known as sideband cooling. The ion’s
mean vibrational quantum number in the trapping po-
tential is reduced to hni D (� /2!z)2 
 1 [60,61]. The
technical challenge is to find a transition narrower than
the longitudinal trap frequency !z. In ions with cal-
cium-like level schemes, this is possible on the S1/2 � D5/2
quadrupole transition [62]. For hyperfine-qubits, it is nec-
essary to use a two-photon stimulated Raman transition
for sideband-cooling [61].

Vibrational Cooling of Ion Strings

In an ion string, the motion of ions is strongly coupled
due to their Coulomb repulsion. It is therefore more natu-
ral to consider N normal modes of motion of the string in
the z-direction, rather than N individual ions. The lowest
normal mode has frequency !z, the same as that of a sin-
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gle ion. Normal modes of ion strings will be discussed in
Sect. “Normal Modes”.

The cooling of a normal mode proceeds by analogy
with the cooling of a single ion. It is not required that
all the ions in a string are interacting with the laser. Mo-
mentum transfer from the mode can already be achieved
through a single ion in the string. This fact provides the
possibility of using different ions for cooling and data op-
erations. In this case, one ion species is used for side-
band-cooling the collective motion of the entire string,
while the remaining ions are used in the subsequent quan-
tum processing. This method is called sympathetic cool-
ing [63,64,65,66]. While only the one vibrational mode
to be used as a quantum data-bus must be cooled to
the ground state, the remaining N � 1 vibrational modes
should be cold enough not to interfere with quantum op-
erations, ideally also residing in their ground state of mo-
tion.

When all ions in the string are in a known internal
state and the vibrational modes cooled to (or close to) their
ground states of motion, the quantum register is ready for
quantum information processing [67].

Single-Ion Operations

After initialization, the state of each qubit may be modi-
fied by means of suitable laser pulses applied on the qubit
transition. Figure 10 shows the geometry for laser excita-
tion. An important precondition is that the ions may be
addressed individually. This requires the laser beam to be
focused tighter than the minimum distance between ions,
given by [12]

smin �

�
2e2

��0m!2
z

�1/3

N�0:56 (6)

for a string of N ions with mass m. For typical experi-
mental parameters, smin ranges from 4 to 10 μm. Focusing
must be considerably better to minimize residual laser in-
tensity at the position of adjacent ions and scattered light,
which would lead to unwanted excitation of other ions
in the string. The laser beam is switched between ions by
means of an electro-optic deflector.

Single-qubit operations are best visualized in the
Bloch picture. Here, a general pure state of a qubit is
parametrized by two angles, a polar angle # (0 � # � �)
and an azimuthal angle ' (0 � ' � 2�) such that

j i D cos
#

2
jgi C sin

#

2
ei' jei : (7)

Each qubit state can be represented by a vector pointing
in the direction given by (#; ') (the Bloch-vector), end-
ing on the surface of a sphere of unit radius, the so-called

Quantum Computing with Trapped Ions, Figure 9
Bloch-sphere representation of the state of a qubit. Each point
on the surface of the sphere represents a quantum state j i
of the two-level system, with the poles representing the basis
states jgi and jei. A suitable laser pulse rotates the state through
a polar angle � and an azimuthal angle �, so that arbitrary
points on the sphere can be reached

Quantum Computing with Trapped Ions, Figure 10
Geometry of selective excitation of ions in a quantum register.
Shown are the two positions of a laser beam, consecutively ad-
dressing control- and a target-ion in a two-qubit quantum gate

Bloch-sphere shown in Fig. 9. The poles represent the ba-
sis states jgi and jei, while equal weight superpositions of
these two states lie on the equator. Note that the phase as-
sociated with jgi is arbitrarily chosen to be zero. This is no
longer possible in two-qubit operations, when differences
between the phases of qubits are important.

In ionic qubits, the states can be manipulated by ex-
citing the ion with electromagnetic pulses. The transition
frequencies of qubits encoded in metastable atomic states
(see Sect. “Metastable State Qubits”) are in the optical do-
main, so that a direct transition driven by a narrowband
laser may be used. In the case of 40CaC, this is the S-D
quadrupole transition (cf. Fig. 7).

As any two-level atom resonantly excited by electro-
magnetic radiation, the qubit undergoes Rabi-oscillations,
i. e., periodically changes between the states jgi and jei.
This corresponds to a rotation of the Bloch-vector. The os-
cillation frequency ˝0 (Rabi-frequency for resonant exci-
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tation) is given by the time-dependent amplitude E0(t) of
the exciting field and the (quadrupole) coupling strength:

˝0(t) D E0(t)
!LQ
2„c

: (8)

E(t) D E0(t) � cos(k � r � !L t C �) is the electric field
strength of the laser with frequency !L and Q a compo-
nent of the electric quadrupole tensor of the transition,
determined by the excitation geometry and polarization �
of the field. The phase � of the laser determines the axis
in the xy-plane, around which the Bloch-vector is rotated.
For example, � D 0 leads to a rotation around the x-axis,
while � D �/2 rotates around the y-axis. The most im-
portant parameter is the rotation angle � . It is given by
the pulse area, obtained by integrating the Rabi-frequency
over the pulse duration: � D

R
˝0(t)dt.

After excitation by a pulse characterized by the param-
eters � and � , the initial state of a qubit cg jgi C ce jei
is therefore rotated according to the following trans-

Quantum Computing with Trapped Ions, Table 2
Important single qubit operations according to Eq. (9) and their realization with laser pulses. The corresponding transformations on
the Bloch-sphere are often referred to as R(�;�) in the literature. The symbols are used in the quantum circuits discussed below

� � Description Symbol
4	 any 4	-pulse – identity, no change of qubit:

jgi ! jgi jei ! jei

—

2	 any 2	-pulse – sign change of qubit-state.

jgi ! �jgi jei ! �jei

This has no effect if applied on the qubit -transition since both levels experience the same phase
shift. However, it is one of the most important operations in two-ion gates if applied on
a transition with selective coupling to the basis states.

—

	 0 	 -pulse – NOT-gate = qubit flip (omitting common phase factor�i):

jgi ! jei jei ! jgi

	 

2 	 -pulse, bit-flip and relative sign change:

jgi ! jei jei ! �jgi



2 0 	/2-pulse (basis states are rotated around x-axis to equally weighted superposition):

jgi !
jgi � i jei
p
2

jei !
jei � i jgi
p
2



2



2 	/2-pulse (basis states are rotated around y-axis to equally weighted superposition):

jgi !
jei C jgi
p
2

jei !
jei � jgi
p
2



2 �
2 	/2-pulse around negative y-axis – identical to combination of Hadamard -gate and Z-gate

(sign change of jei):

jgi !
jgi � jei
p
2

jei !
jgi C jei
p
2

formation:

�
cg
ce

�
!

�
cos � /2 �ie�i� sin � /2

�iei� sin � /2 cos � /2

�
�

�
cg
ce

�
:

(9)

Table 2 gives an overview of important single-qubit
operations and the way they are implemented in an ion-
trap quantum computer by choosing the pulse area � and
phase � of laser pulses resonant with the qubit transition.
Other single-qubit transformations can be implemented
by combining rotations around different axes. An exam-
ple is the Hadamard transform. The transformation ma-
trix and its realization by X- and Y-pulses in symbolic no-
tation is

�
cg
ce

�
!

1
p
2

�
1 1
1 �1

�
�

�
cg
ce

�
(10)
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Quantum Computing with Trapped Ions, Figure 11
Rabi-oscillations of a single 40CaC-ion on the blue sideband starting in the motional ground state. The Rabi-frequency is given by
Eq. (17) instead of Eq. (8), but the flopping between two states is analogous. The decay of contrast is a measure of decoherence in
the system (Sect. “Decoherence”). In the example shown, coherence is maintained for up to 1ms [62]

Pulses around the z-axis, too, are most conveniently ex-
cited by a combination of pulses around the x- and y-axes.
An example is the realization of a �-rotation around the
z-axis by three pulses:

�
cg
ce

�
!

�
1 0
0 �1

�
�

�
cg
ce

�
(11)

For the second class of qubits, hyperfine qubits, transi-
tion frequencies between the basis states are several GHz
and hence require microwave pulses if driven directly [68].
Due to the large wavelength of microwaves, different ions
in a quantum register can only be addressed individu-
ally if their transition frequencies are split, for example
by the Zeeman-effect when using a strong magnetic field
gradient.

An alternative, which has been used in most imple-
mentations of hyperfine qubits to date, is to drive the qubit
using a two-photon stimulated Raman transition involv-
ing a third electronic level, connected to the qubit states
through an electric dipole transition. In Fig. 6, the inter-
mediate state is 2P1/2. By detuning the driving fields from
resonance by an amount� which is large compared to the
inverse lifetime of the auxiliary state, excitation of this state
is largely avoided [61]. The advantage is that individual
ions may be addressed with the Raman beams.

The effective Rabi-frequency for a Raman-transition,
to be used instead of expression (8), is

˝0 D
˝1˝2

�
; ˝i D E0i

�i � �i

2„
(12)

where˝ i is the Rabi-frequency for transition i and �i the
corresponding electric dipole moment. The qubit is reso-
nantly excited if the difference frequency !L1 � !L2 of the
two lasers (which replaces!L in the direct driving scheme)
is tuned to the qubit frequency !0. The role of the k-vec-

tor in the case of direct driving is played by the difference
k1 � k2 and the relevant phase determining the single-ion
dynamics is given by the difference of the phase constants
of the two laser beams, � D �1 � �2. With these modifica-
tions, Eq. (9) applies.

The ion dynamics is more complicated if their vibra-
tion in the trapping potential is taken into account. This is
the basis of two-bit quantum gates in ion traps discussed in
Sect. “Two-Qubit Interaction and Quantum Gates”. Gen-
erally, excitation of a transition on a vibrational sideband
(see Fig. 8) leads to Rabi-oscillations with a modified Rabi-
frequency.

By measuring the state of the qubit as a function of
the length of the Rabi pulses (and hence the pulse area �),
Rabi-oscillations can be observed experimentally. An ex-
ample is shown in Fig. 11. The decay of the contrast of the
oscillations is an indication of the loss of coherence be-
tween the qubit levels. This can be used to determine the
decoherence-time of quantum memory (see Sect. “Deco-
herence”).

State Detection of Ionic Qubits

At the end of any data processing, a quantum computer
must be subjected to ameasurement of its register, in order
to determine the result of the calculation. It is important
for the success of the quantum computation to achieve
a high efficiency readout. One of the greatest advantages of
ion-trap quantum processors is that the state of each qubit
may be determined with almost 100% efficiency. This is in
contrast to other carriers of quantum information such as
photons or nuclear spins in a bulk sample.

Quantum Jump Detection

The quantum state of an ionic qubit is measured optically
by monitoring the fluorescent light emitted upon selective
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laser excitation of one basis state of the qubit on a strong
electric dipole transition. The population in the other ba-
sis state is either not affected by the probe laser due to se-
lection rules or has previously been transferred (shelved)
to another state inaccessible to the probe. The method is
therefore also known as electron shelving [69].

The crucial point of the procedure is that the fluo-
rescence is emitted on a transition back to the original
qubit-level (cycling transition), so that the cycle of excita-
tion and emission of fluorescent light can be repeated in-
definitely. In practice, transitions to levels outside the cy-
cle occur, though at a small rate. The number of photons
extracted from a single qubit can reach Nph � 106 [70].
Even for a small photon detection efficiency �d, the num-
ber of detected photons is large and can be distinguished
from the other, non-fluorescing level with almost 100%
certainty [71]. The probability for a false interpretation
of a zero-photon signal is only exp(��d Nph). Originally,
the method has been used to detect quantum jumps be-
tween two atomic levels by observing the intermittent flu-
orescence on a transition coupled to only one of the lev-
els [69,72], hence the name quantum jump detection. It is
now employed as the standard readout procedure in quan-
tum information processing with ions.

Figure 12 shows the cycling transitions used in two dif-
ferent qubit systems. Additional repumping lasers may be
required to avoid population trapping in uncoupled lev-
els. An example of typical photon counting statistics in the
two qubit states is shown in Fig. 13. By exciting the en-
tire ion string simultaneously and imaging the fluorescent
light with a CCD camera (cf. Fig. 3), the state of the entire
quantum register can be read out simultaneously.

According to the laws of quantum mechanics, a sin-
gle measurement cannot retrieve the complete informa-

Quantum Computing with Trapped Ions, Figure 12
Transitions used in the electron shelving detection of the state of an ion-qubit. Only when the ion is in state jgi, excitation occurs
(red arrow) and strong fluorescence back to the original state (wavy line) is observed. a Relevant levels in 40CaC b Relevant levels in
9BeC
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Quantum Computing with Trapped Ions, Figure 13
Histogram of detected photons after an ion is prepared in either
the jgi or the jei state. In correspondence with Fig. 12 jgi desig-
nates the fluorescing, while jei is not coupled to the probe laser
and scatters practically no photons. Using the indicated thresh-
old to determine the state of the ion, a high detection fidelity is
achieved (97.9% in the case of Yb shown above [45])

tion on the quantum state, ruling out single-shot detection
of arbitrary superpositions and entanglement between dif-
ferent qubits. Rather, a projection to the basis states is ob-
tained with a probability given by the magnitude squared
of the corresponding coefficient. Correlations between
qubits are lost in this way. Alternatively, single qubits
might be subjected to a state rotation (see Sect. “Single-
Ion Operations”) prior to measurement, mapping coher-
ent superpositions of a qubit’s states onto the basis states,
which then are probed as described above. A useful trans-
formation is achieved with �/2-pulses.
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If correlations between different qubits are of inter-
est, e. g., entanglement of two qubits, the two-ion gates
described in Sect. “Two-Qubit Interaction and Quantum
Gates” may be used to disentangle the ions first and mea-
sure the qubits separately. For a more complete character-
ization of a quantum operation, methods of quantum state
tomography must be used [73]. By preparing a certain
quantum result repeatedly and averaging over measure-
ments of 3N different observables (for an N-ion register),
the density matrix of the system may be reconstructed,
providing full information of the quantum state [74].

Two-Qubit Interaction and QuantumGates

The most important requirement for any quantum com-
puter is the implementation of gates, logically connecting
the quantum states of two or more qubits in a coherent
way. Trapped ions in a linear trap are several μm apart
and therefore do not interact directly, for example through
their dipole moments. Instead, the interaction is estab-
lished indirectly, based on two principles: (1) Due to the
long-range Coulomb repulsion between ions, their motion
is strongly coupled, leading to collective vibrations of the
ion-string. (2) By driving the qubit transition with a laser
tuned to a motional sideband, the internal state of any ion
and the collective vibration of the entire string may be
coupled.

Using the collective vibration to logically connect dif-
ferent ions requires introducing a new qubit to the system,
stored in the motional quantum state of the ion string.
Since all ions participate in the vibration, it constitutes
a quantum data bus for the entire register.

Normal Modes

The description of the collective vibration of a linear string
of ions in the trapping potential is based on the concept
of normal modes. In a normal mode, all ions oscillate in
phase at the same frequency. A single normal mode can
provide the bus for the transfer of quantum information
between different ions. A linear string of N ions has N
normal modes of collective axial vibration. The two with
the lowest vibrational frequencies are of particular sig-
nificance.

Quantum Computing with Trapped Ions, Figure 14
The two lowest normal modes of a string of four ions. The positions of the ions are shown at two different times. Arrows indicate the
motion of the ions. a COM-mode at  D !z; b stretch-mode at  Dp3 !z

The fundamental mode has a frequency � equal to
the axial frequency of the trap (� D !z) and is known
as the center-of-mass (COM) mode. Here, all ions move
synchronously, i. e., in the same direction and by equal
amounts, so that the relative positions of the ions stay the
same. It has the advantage that all ions couple to the mo-
tion with the same strength. The disadvantage is that it
also couples strongly to fluctuating ambient electric fields,
leading to large heating rates (see Sect. “Decoherence”).
Therefore, the next higher normal mode is often prefer-
able. It is known as the stretch- or breathing mode, since
the ions on opposite sides of the center move in oppo-
site directions with an amplitude proportional to their dis-
tance from the center. Its frequency is � D

p
3 !z . The

motion of a string of four ions in the COM and stretch-
mode is indicated in Fig. 14.

The higher order modes correspond to a more compli-
cated motion of the ions. Their exact frequencies depend
on the number of ions in the string and must be calculated
numerically [12]. The vibrational excitation spectrum of
an ion string becomes increasingly complex at higher ion
number N, since not only the number of normal modes
increases, but also oscillation at the sum- and difference-
frequencies contributes. This makes quantum operations
based on the selective coupling of ions to one particular
mode difficult in long strings.

In the limit of low vibrational excitation, each mode
must be treated as a quantum mechanical harmonic oscil-
lator, the state of which can only be changed in units of
single vibrational quanta of energy „� (phonons), where
� is the angular frequency of this particular mode. For
quantum computation, one collective normal mode is se-
lected for the exchange of information, while the remain-
ing N � 1 modes are treated as spectator modes, which
should remain unexcited during the calculation.

Vibrational Coupling

In order to use the motion of ions for information ex-
change, theremust be a coupling between the internal state
of an ion and the vibration. This is achieved by detun-
ing the exciting laser from the ion’s resonance at !0 to ei-
ther the red or the blue vibrational sideband of the desired
mode, i. e., to a frequency !0 ˙ �.
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Quantum Computing with Trapped Ions, Figure 15
Vibrational structure of the qubit states and transitions for excitation on a the first red sideband and b the first blue sideband. The
three lowest vibrational levels for each qubit state are shown, displaced horizontally according to the number of phonons for clarity

Assuming that the vibrational mode is in a state with
phonon number n, red sideband excitation drives the tran-
sitions

jgi jni  ! jei jn � 1i (n D 1; 2; : : : ) ; (13)

while blue sideband excitation drives the transitions

jgi jni  ! jei jnC 1i (n D 0; 1; : : : ) : (14)

Here, the first symbol represents the ion’s state and the sec-
ond the state of the vibrationalmode, with jni correspond-
ing to a number state with n phonons in the mode. The
transitions corresponding to (13) and (14) are depicted in
Fig. 15. In each case, a change of the state of the ionic qubit
coincides with a change of the phonon number, i. e., the
state of the data bus.

By analogy with the resonant case discussed in Sect.
“Single-Ion Operations”, the evolution of the system for
sideband excitation is characterized by an oscillatory
change of populations at a modified Rabi-frequency. The
probability of sideband transitions scales with a factor of
�, the so-called Lamb–Dicke parameter. It is given by

� D
2�a0


; (15)

where a0 is the size of an ion’s wavepacket and  the wave-
length of the transition. For the stretch-mode of a two-
ion crystal, for example, the Lamb–Dicke parameter in the
ground-state is given by

� D ˙
1

4p12
!L

c
cos �L

s
„

2m!z
; (16)

where �L is the angle between the laser beam and the trap
axis (cf. Fig. 10). The Rabi-frequency for the first sideband

transitions (13) and (14) depends on � and the number of
excited vibrational quanta:

Red sideband: ˝�(n) D ˝0 �
p
n

Blue sideband: ˝C(n) D ˝0 �
p
nC 1 ; (17)

where ˝0 is the Rabi-frequency for resonant excitation
from Eq. (8) or Eq. (12).

SWAP Gate

A two-qubit gate that illustrates the use of sideband exci-
tation in a system with one ionic and one vibrational qubit
is the SWAP-gate. In order to restrict the infinite ladder
of vibrational states to a binary system, the qubit is rep-
resented by the two lowest vibrational states j0i and j1i.
The computational space is then spanned by the four basis
states

jgi j0i ; jei j0i ; jgi j1i and jei j1i ; (18)

i. e. the first two pairs of levels in Fig. 15. Assuming that the
vibrational qubit is initially in the state j0i (after sideband
cooling), an arbitrary superposition state ˛ jgi C ˇ jei of
the ion can be swapped to the vibrational mode by apply-
ing a �-pulse on the first red sideband (Fig. 16). With the
state jgi j0i not coupled to the red sideband, the mapping
obtained is

(˛jgi C ˇjei)˝ j0i �! jgi ˝ (˛j0i C ˇj1i) : (19)

This operation is the basis for making the quantum state
of an ion in a string accessible to any other ion sharing
the collective motion. Two-ion gates may be realized by
combining the above SWAP operation with a gate for the
vibrational mode and a second ion.

The transformation described by Eq. (19) requires that
the vibrational mode isn’t excited initially. In particular, if
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Quantum Computing with Trapped Ions, Figure 16
Mapping of a qubit from an ion to the vibrational mode using
a�-pulse on the red sideband

state jei j1i is exposed to a red sideband pulse, a transition
to jgi j2i would occur, which is outside the computational
subspace. More elaborate pulse sequences are required to
keep the ion dynamics within the space spanned by the
four states of Eq. (18). A SWAP-gate that preserves the
computational basis was realized by pulses of blue side-
band excitation [75].

Cirac–Zoller Gate

The coupling of two ions in a string through their collec-
tive external motion was first proposed in 1995 in a semi-
nal paper by Cirac and Zoller [4]. At the heart of their pro-
posal is a two-qubit controlled Z-gatewith one qubit stored
in the vibrational state of the COM-mode and the other
stored in the internal state of an ion. The controlled Z-gate
is the simplest universal quantum gate, from which arbi-
trary logic gates may be built in conjunction with single
qubit operations. The vibrational state controls the trans-
formation of the ion state to which the Z-gate of Eq. (11)
is applied if and only if the vibration qubit is in state j1i.
Alternatively, this can be expressed as the wave function
j i of the system acquiring a change of sign if both input
qubits are in the excited state (j1i and jei) and is left un-
changed in all other cases. It corresponds to the following
truth table.

input output

j0ijgi j0ijgi
j0ijei j0ijei
j1ijgi j1ijgi
j1ijei �j1ijei

As shown in Tab. 2, a sign change, is achieved by
applying a 2�-pulse to the internal states of the ion. In
the Cirac–Zoller scheme, the required conditioning on

Quantum Computing with Trapped Ions, Figure 17
Controlled Z-gate in the Cirac–Zoller scheme. The laser pulse
couples the auxiliary level to the state jei j1i, leaving all other
levels unaffected. Using a 2�-pulse results in a sign change of
the jei j1i-component

the state jei of the ion is obtained by using a transition
which couples exclusively to the upper internal state of the
ion. This requires an auxiliary electronic level, e. g., an-
other Zeeman sublevel of the ground state. Conditioning
on the vibrational state j1i is achieved by tuning to the
first blue vibrational sideband, which induces a transition
to a lower state only if at least one vibrational quantum is
present. The scheme of this controlled Z-gate is illustrated
in Fig. 17.

Another important gate may be implemented by com-
bining the controlled Z-gate with single qubit rotations.
By applying a resonant �/2-pulse to the ion (changing the
electronic states but leaving the vibration unaffected) be-
fore the controlled Z-gate and an inverse �/2-pulse after,
a controlled NOT (CNOT) gate is realized, in which the
target bit (carried by the electronic state) is flipped de-
pending on the state of the control bit (represented by the
vibrational state). Its truth table is

input output

j0ijgi j0ijgi
j0ijei j0ijei
j1ijgi j1ijei
j1ijei j1ijgi

The �/2-pulses effectively change the computational basis
in which the controlled Z-gate is performed.

The described CNOT-gate for the internal and the vi-
brational state of a single ion was demonstrated in 1995
at NIST in Boulder [22] with 9BeC, the first implemen-
tation of an ion-trap quantum gate. The auxiliary state
jauxi D jS1/2; F D 2;mF D 0i was chosen. The experi-
mental results for different combinations of input states
are shown in Fig. 18, confirming the realization of the
above truth table.
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Quantum Computing with Trapped Ions, Figure 18
Experimental verification of the truth table of a CNOT quantum
gate, starting from the four combinations of basis states indi-
cated on the input axis [22]. The bars represent the measured
probability for being in the lower atomic state jgi (blue) and
in the first excited vibrational state j1i (red). The ionic qubit is
flipped if the vibration is initially in state j1i, while the vibra-
tional state itself is unchanged

In the original scheme of Cirac and Zoller, the qubits
are stored in the electronic states of two ions in a string,
while the center-of-mass motion of the string is used as
a data bus only during the gate operation. Therefore, be-
fore applying the controlled Z-gate to the target ion, the
state of the first ion (control qubit) must be transferred to
the vibrational motion by means of the SWAP operation
described in Sect. “SWAP Gate”. After completion of the
gate, the state of the control ion must be restored by map-
ping the state of the vibrational mode back to the first ion.

The implementation of the full Cirac–Zoller gate with
qubits stored in different ions has been accomplished re-
cently in Innsbruck [76]. In this experiment, a simplified
procedure for realizing the controlled Z-gate was used,
avoiding the need for an auxiliary level. In principle, a con-
trolled Z-operation can be accomplished by applying a 2�-
pulse on the blue sideband of the qubit transition. How-
ever, Eq. (17) implies that state jgij1i has a blue sideband
Rabi-frequency

p
2 times higher than jgij0i, so that this

state experiences a 2
p
2� pulse. A 2�-pulse for all levels

(except jeij0i, which does not couple to blue sideband ex-
citation) can be achieved by using a transition composed
of four pulses, rotating the state of the target ion with dif-
ferent angles and around different axes [77].

The dynamics of this gate is illustrated in Fig. 19, show-
ing the levels coupled by effective 2�-pulses. Note that
there is no excitation of levels outside the computational
subspace, since 2� rotations do not change the occupa-
tion of the states involved. The experimentally determined

truth table is shown in Fig. 20. The corresponding fidelity
of the gate operation is between 70% and 80%.

Geometric Gates

The direct coupling of qubits and vibration in the Cirac–
Zoller gate requires the bus-mode to be in the quantum
mechanical ground state, a condition which is not easy to
satisfy for long times in the presence of motional heating.
In addition, individual addressing of control and target ion
is needed. In order to relax these requirements, a different
type of gate was proposed, based on electronic-state-de-
pendent motional displacements [78,79,80,81,82,83]. Be-
ing simpler and less error-prone, the technology offers
high fidelity gate operation.

In a geometric gate, the state of the harmonic oscil-
lator corresponding to the vibrational bus-mode of the
ions is displaced in phase-space (i. e. its position coordi-
nate hzi and momentum hpi are changed), conditioned
on the internal state of the qubits involved. The displace-
ment is applied in such a way that it follows a closed
loop in phase space, returning the vibration to its original
state. For a detuning ı D !L � !0 between the effective
frequency difference !L of the Raman excitation and the
qubit transition frequency, this occurs after a time � given
by (� � ı)� D 2�m for integerm. At this time, any entan-
glement between the bus and the qubits vanishes. There-
fore, the only effect of the operation is that the system ac-
quires a phase � (geometric phase), equal to the area in
phase space enclosed by the trajectory of the displacement,
as shown in Fig. 21 [82]:

� D
1
„

Z

area
dz dp D 2�m

�
�˝

� � ı

�2
: (20)

The phase � has properties which make it particularly
suitable for a quantum gate:

(1) It depends on the internal state of the two qubits in-
volved (e. g., � is non-zero if and only if the two qubits
are different);

(2) It is independent of the initial state of the bus-mode, as
long as excursions stay within the Lamb–Dicke regime
(i. e. are smaller than the wavelengths of the transi-
tions involved). Therefore, the phase of the system is
much less susceptible to motional heating.

Insensitivity to the bus-mode excitation could also be
reached by making the detuning � � ı from single-photon
resonance large [79]. However, this leads to an unfavor-
ably slow evolution of the interaction between the qubits.

The selective displacement of the bus-mode for certain
qubit states is achieved through optical forces exerted by
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Quantum Computing with Trapped Ions, Figure 19
Controlled Z-gate with composite pulses. Using a sequence of four blue sideband pulses, all ions in jgi j0i, jgi j1i and jei j1i expe-
rience a 2�-rotation, while jei j0i is unchanged. This corresponds to a controlled Z-gate, up to an overall minus sign. The drawing
on the right shows the motion of the Bloch vector of a target qubit starting and ending in the state jgi j0i, picking up a phase shift
of�

Quantum Computing with Trapped Ions, Figure 20
Experimentally observed truth table of the Cirac–Zoller CNOT
derived from measurement of the joint probabilities of the two
qubits [76]

Quantum Computing with Trapped Ions, Figure 21
Phase-space representation of the bus-mode excitation during
a geometric gate. The blue and the red circle are the trajectories
for internal states jeijgi and jgijei, respectively. In each case,
a phase� is acquired

suitable Raman pulses. Two different methods have been
applied, resulting in different qubit dynamics and there-
fore different gates.

Mølmer–Sørensen or xy-Gate In this case, bichromatic
Raman beams are used. They provide two equally strong
effective fields, with opposite detunings ˙ı from the red
and the blue vibrational sideband of the qubit-transition.
This drives a two-photon transition, corresponding to the
two-qubit interaction Hamiltonian

HI D �
„

2
(�˝)2

� � ı
(�̂x ˝ �̂x ) ; (21)

where �̂x D (jgihej C jeihgj)/
p
2 is a Pauli spin-ma-

trix. In the Bloch-picture, the Hamiltonian (21) pro-
vides a synchronous rotation of the internal states of
both qubits around the x-axis (cf. Fig. 9). Alternatively,
a rotation around the y-axis could have been chosen,
hence the name xy-gate. A gate based on this type
of interaction was first implemented in an experiment
generating entangled states (jggi C ijeei)/

p
2 of two

qubits and (jggggi � ijeeeei)/
p
2 of four qubits, start-

ing from a string of ions initialized in the internal ground
state [84,85]. It has recently been used for the entangle-
ment of magnetic-field insensitive qubit-states [86,87].

z-Gate This gate is similar to the xy-gate, except that dif-
ferent basis states are affected by the interaction. Here, the
frequency difference !L of two Raman beams is chosen to
lie close to the vibrational frequency �. In this case, dis-
placement is provided by the optical dipole force from the
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Raman beams, which is different for each qubit-state. If
the spacing between the ions, as well as polarization and
detuning of the Raman-beams are chosen correctly, there
will be a vibrational displacement only if the ions are in
different states. Again, for a closed loop of the displace-
ment in phase space, the vibrational state decouples from
that of the qubits, and the state of the system acquires
a phase shift � . The Hamiltonian corresponding to this in-
teraction is similar to Eq. (21), except that the states of the
qubits are rotated around the z-axis of the Bloch-sphere.
The transformations of the basis state for the two types of
geometric gates discussed are summarized in the following
table:

input z-gate MS-gate

jgi jgi jgi jgi (jgi jgi C ie�i� jei jei)/
p
2

jgi jei ei� jgi jei (jgi jei C ie�i� jei jgi)/
p
2

jei jgi ei� jei jgi (jei jgi C iei� jgi jei)/
p
2

jei jei jei jei (jei jei C iei� jgi jgi)/
p
2

A z-gate has been realized experimentally with two
9BeC-ions [88], interacting via the stretch-mode. The en-
tangled state (j00i-ij11i)/

p
2 was produced with a fidelity

of 97%. The high fidelity confirms the benefit of reduced
requirements regarding thermally excited motion and ad-
dressing of the ions in a geometric gate. The z-gate was
used to generate and investigate entanglement between
a single 40CaC-ion and its vibrational motion [89], as well
as two 40CaC-ions [90].

CNOT-Wavepacket Gate

A different route to a simplified CNOT-gate was proposed
by Monroe and coworkers [91]. In contrast to gates of the
Cirac–Zoller type, which use sideband transitions for cou-
pling internal andmotional states, the gate ofMonroe et al.
uses pulses tuned to resonance with the qubit transition.
The necessary conditioning on the state of the vibrational
bus-mode is obtained by taking into account the higher-
order dependence of the Rabi-frequency on the Lamb–
Dicke parameter � from Eq. (15) . In fact, if the extension
of the wavepacket corresponding to the ion is not small
compared with the wavelength of the qubit transition, i. e.,
� & 1, the system is no longer in the Lamb-Dicke regime
and the resonant Rabi-frequency becomes

˝(n) D ˝0 e��
2/2 Ln(�2) ; (22)

where ˝0 is the Rabi-frequency in the Lamb–Dicke limit
given by either Eq. (8) or Eq. (12) and Ln(x) is the Laguerre
polynomial of order n.

Quantum Computing with Trapped Ions, Figure 22
CNOT-gate with control qubit stored in the motional ground
state (j0i) and second excited state (j2i) of thebus-mode. A laser
pulse drives a 4� or a 3� transition, returning the ion to its ini-
tial electronic state or toggling its state when the bus is in state
0 or 2, respectively [92]

By adjusting �, the transition can be driven by a single
pulse of a suitable length � in such a way that, for example,
the phase change of the system is � D 4� if the vibration
is in state j0i and � D 3� if it is in state j2i (note that this
requires using the basis states j0i and j2i for the bus, re-
placing the usual j0i and j1i). In the first case, there is no
change of the system, while in the latter there is a flip of
the qubit state as required for a CNOT-gate. This gate was
realized experimentally at NIST [92] using � D 0:359.

Physically the conditional dynamics of the gate relies
on the different size of the ions’s wavepacket in different
vibrational states. The advantages of this type of gate are
that only a single pulse is needed, no auxiliary levels are
involved and there are no differential Stark-shifts of the
levels during the gate operation.

Fast Gates

The two-ion gates discussed so far use one normal mode
of the string to couple the qubits. In this case, the gate
speed is limited by the mode frequency �, or, more gen-
erally, the trap frequency !z, since on a faster time-scale,
the vibrational sidebands cannot be resolved for selective
excitation. Recently, geometric gates have been proposed
which offer processing speeds beyond the vibrational fre-
quencies [93,94,95,96]. This is possible in long ion strings,
if all normal modes of vibration are excited simultane-
ously. By using suitably shaped laser pulses [93,95] or a fast
sequence of precisely timed pulses [93,94,95,96], the time
required for a two-ion phase-gate may be reduced below
2�/!z . The reason is that with fast pulses local oscillations
of the addressed ions may be excited, in which none of the
other ions undergo significant motion. This requires the
coherent excitation of a large number of normal modes
with a minimum of five laser pulses [96].



Quantum Computing with Trapped Ions Q 7237

Quantum Computing with Trapped Ions, Table 3
Important two-qubit gates employed in ion-trap quantum computation. The table lists thematrices representing the gate operators
for the joint basis states, along with the symbols used in quantum circuits. See Tab. 2 for single-ion operations

Gate Description Quantum Circuit Ref.

SWAP Ion state swapped to bus-mode

g0 g1 e0 e1

g0
g1
e0
e1

0

B
B
B
@

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

1

C
C
C
A

Method: blue sideband composite 	 -pulse

Sect. “SWAP Gate”,
[75]

CZ Controlled Z-gate:
one combination of basis states acquires minus sign
(=	 phase shift, hence the name phase gate)

0g 0e 1g 1e

0g
0e
1g
1e

0

B
BB
@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1

C
CC
A

Methods:

� 2	-pulse on auxiliary transition
� blue sideband composite 2	-pulses

Sect. “Cirac–Zoller Gate”,
[22], [76]

CNOT Controlled NOT gate:
NOT applied to target ion if control qubit (vibration) is 1

0g 0e 1g 1e

0g
0e
1g
1e

0

B
B
B
@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

C
C
C
A

Methods:

� CZ between 	/2-pulses
�wavepacket-gate
� two-ion CNOT if combined with SWAP gate

Sect. “Cirac–Zoller Gate”
[22], [76],
Sect. “CNOT-Wavepacket
Gate”,
[92]

The most important fundamental logic gates realized
in ion traps are summarized in Tab. 3, along with their
matrix representation and the corresponding notation in
quantum circuit diagrams.

Decoherence

The most important property distinguishing a qubit from
a classical bit is that its two states have a well-defined rel-
ative phase, i. e., they are coherent. Uncontrollable inter-
actions of a qubit with its environment destroy this coher-
ence, a process known as decoherence. This includes the ra-
diative decay of qubit states. Quantum memory as well as
quantum gates are affected by decoherence and decoher-
ence rates are important figures of merit for any quantum

processing device. Trapped ion systems have been demon-
strated to reach very low decoherence rates, making them
the most successful implementation of quantum informa-
tion processing to date. One way to measure decoherence
is through the loss of contrast of the coherent Rabi-oscil-
lation either on the carrier or on a sideband, as shown in
Fig. 11.

Internal State Decoherence

The coherence of internal states is limited by the radia-
tive decay of the qubit-levels. The excited states are either
metastable with lifetimes on the order of seconds or hy-
perfine ground-states with even smaller decay rates.
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Quantum Computing with Trapped Ions, Table 3
continued

Gate Description Quantum Circuit Ref.

MS Mølmer–Sørensen gate:
multi-ion entanglement

gg ge eg ee

1
p

2

0

BB
B
@

1 0 0 ie�i

0 1 ie�i 0
0 iei 1 0

iei 0 0 1

1

CC
C
A

gg
ge
eg
ee

Methods:

� bichromatic Raman excitation
� closed loop in motional phase-space
� scalable to N ions

Sect. “Mølmer-Sørensen or
xy-gate”,
[79], [84], [97]

Z� Geometric Z-phase gate:
phase shift � for ions in different basis states

gg ge eg ee
0

B
B
B
@

1 0 0 0
0 ei 0 0
0 0 ei 0
0 0 0 1

1

C
C
C
A

gg
ge
eg
ee

Methods:

� optical dipole force
� phase shift � from closed trajectory in phase space
� controlled Z up to single bit rotations

Sect. “z-gate”,
[88], [89]

The dominant contribution to the decoherence
of internal states in ions used for quantum infor-
mation processing are fluctuating ambient magnetic
fields [98,99,100]. Through the Zeeman-shift of the levels,
they result in random fluctuations of the transition fre-
quency between the qubit states. The sensitivity to mag-
netic field fluctuations may be reduced by using transi-
tions which are independent of magnetic field to first or-
der. This strategy has been successfully applied in atomic
clock systems [101]. An example are states with magnetic
quantum number m D 0 at zero magnetic field, but simi-
lar transitions also exist at finite magnetic field. For a single
magnetic field insensitive qubit, memory coherence times
greater than 10 s were observed [39], five orders of magni-
tude larger than in experiments withmagnetic field depen-
dent states in 9BeC [102]. Another source of decoherence
are the lasers driving the qubit transition. Via frequency
and intensity fluctuations, they contribute to the loss of
phase coherence of the qubits.

Coherence is more difficult to maintain as the length
of the quantum register increases. Collective dephasing is

presently the largest source of decoherence and the limit-
ing factor for the generation of large entangled states (see
Sect. “Multiparticle Entanglement”). It is caused, for ex-
ample, by variations of magnetic, electric field or laser in-
tensity across the size of a typical ion string. Ions in differ-
ent locations or ions being shuttled through a large-scale
trap architecture may be affected by these variations in
slightly different ways.

Qubits in Decoherence-free Subspace

Frequently, the environment couples to each qubit of
a quantum register in an identical way. In this case, quan-
tum information may be protected by encoding it not in
the physical basis states jgi and jei of the qubits, but in
two entangled states of two physical qubits, for example

j�˙i D
1
p
2

�
jgei ˙ jegi


: (23)

These logical states are invariant against common phase
shifts of individual basis states. For example, if both ions
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simultaneously acquire a phase shift � in state jei, i.e, un-
dergo the transformation jei ! exp(i�) jei, j�˙i is not
affected, while the individual qubits would lose their phase
coherence. The space spanned by j�˙i is called deco-
herence-free subspace (DFS) [103,104,105]. It has been
demonstrated [85], that a physical qubit can be reversibly
encoded in a DFS, achieving coherence times two orders
of magnitude longer than for the physical qubit. DFS-en-
coded states have been used in conjunction with qubits
based on field-independent transitions to produce even
longer-lived entanglement of the logical qubits [39].

Vibrational State Decoherence

The coupling required for quantum gates in a string of
trapped ions is provided by their collective motion. The
mode selected as a data-bus must preserve coherent su-
perpositions of the motional ground state j0i and the state
j1i. Any motional decoherence of the ion chain degrades
gate fidelities and must be avoided.

The ions vibrating in a string constitute an oscillating
electric dipole and hence their motion couples to fluctuat-
ing electric fields in the environment. Thesemay be gener-
ated, for example, by patch electric fields on the trap elec-
trodes. The resulting noise in the ions’ motion is a prime
source of decoherence in ion trap quantum information
processing.

The most obvious environmental influence on the vi-
bration of a string is the excitation of vibrational quanta
(phonons), corresponding to motional heating of the
mode. This has been investigated in a number of experi-
ments [62,65,106]. By measuring the motional excitation
as a function of time starting in the ground state, heat-
ing rates between 1/ms [106] and 0.005/ms [62] were ob-
served. Factors influencing the heating rate are the dis-
tance d between ions and electrodes (scaling approxi-
mately as d�4 [107]) and coating of trap electrodes with
atoms during loading of the trap, resulting in patch-po-
tentials. Therefore, careful shielding of the electrodes from
atomic beam exposure is important. Another way to re-
duce heating rates is cooling the electrodes [107,108].

For a multi-ion string, the rate of motional heating
strongly depends on which normal mode is used. The
COM-mode has heating rates comparable to that of a sin-
gle ion, as it can be excited by a homogeneous fluctuat-
ing field coupling to each individual ion in an equivalent
way. The stretch-mode, on the other hand, can only be ex-
cited by a field gradient and is thereforemuch less sensitive
to fluctuating fields emanating from the trap electrodes.
Therefore, for high fidelity gate operations, the stretch
mode is preferable.

While motional heating sets an upper limit to the co-
herence time of bus qubits, for reliable quantum oper-
ations also dephasing of motional superpositions must
be taken into account. This has been investigated at
NIST [109], in Innsbruck [110] and in Oxford [111]. De-
phasing times found are on the order of 100ms. Dephas-
ing is faster for larger differences in the quantum numbers
of the states involved, making it advantageous to use the
lowest vibrational states j0i and j1i.

Even though only one normal mode is used for quan-
tum information transfer, heating of the remaining N � 1
axial vibrationmodes in anN-ion string (spectator modes)
is detrimental, since it affects the Rabi-frequency of the
bus-mode. This may be alleviated by cooling all modes of
the string, ideally to the quantummechanical ground state.

With typical gate durations on the order of 1 μs, de-
coherence times of 1 s would permit 106 quantum oper-
ations to be performed. Another approach is to consider
the probability of error during a gate operation [112]. It
should be smaller than 10�4 to be able to successfully apply
quantum error correction. This corresponds to a fidelity
of F > 0:9999, which present quantum gates do not yet
achieve.

QuantumAlgorithms

The two-ion gates described in the previous section are
universal, i. e., any logic circuit may be realized by com-
bining themwith single qubit operations [113,114]. In this
section, examples of algorithms implemented in ion traps
are presented. The most important quantum algorithms
have been demonstrated in ion-trap systems in their sim-
plest form.

Deutsch–Jozsa Algorithm

The Deutsch–Jozsa algorithm [115] is the simplest exam-
ple of quantum parallelism. The task it performs is to de-
cide if a function f is constant, i. e., has either always the
result f (x) D 0 or always f (x) D 1, independent of the in-
put x, or if it is balanced, i. e. its output depends on the
input ( f (x) D x or f (x) D NOTx). With classical means,
two function evaluations are necessary, whereas the quan-
tum algorithm performs the task with a single application
of the function to a superposition state.

The algorithm has been demonstrated with a single
ionic qubit, using its vibrational excitation as an auxiliary
qubit [75] (see Fig. 23). The required pulses were applied
either resonantly or on the blue sideband, in the latter
case using composite pulses in order to avoid excitation
of more than one phonon (cf. Sect. “Cirac–Zoller Gate”).
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Quantum Computing with Trapped Ions, Figure 23
Quantum circuit implementing the Deutsch–Jozsa algorithm with a trapped ion. The upper line represents the ionic qubit jxi, the
lower line an auxiliary vibrational qubit. In the central box, one of four possible functions f (x) is implemented by acting on ywith the
identity, a NOT gate and/or a CNOT-gate controlled by x. A final measurement of the ion in state jei indicates a balanced function
after only a single function evaluation [75]

QuantumTeleportation

Amore complex task and one of fundamental importance
for quantum computation is quantum teleportation, the
transfer of an unknown quantum state from one qubit to
another in a distant location [116]. Even though no fi-
nite number of measurements is sufficient to obtain a full
specification of a quantum state, the transfer is possible
with the help of non-local correlations provided by an en-
tangled pair of qubits. While probabilistic teleportation
has been demonstrated with photonic qubits, two ion-
trap experiments have implemented a fully deterministic
quantum teleportation protocol. At the University of Inns-
bruck, 40CaC-ions were used [99], while at NIST the ex-
periment was performed with 9BeC [98].

The teleportation procedure requires three ionic
qubits. The essential steps are summarized in Fig. 24. Ini-
tially, ions B and C are prepared in a maximally entangled
state using the gates described in Sect. “Cirac–Zoller Gate”
(Innsbruck) and Sect. “Geometric Gates” (NIST). Subse-
quently, the state to be transferred is prepared in ion A by
a single-qubit rotation. The central step of the teleporta-
tion protocol is a so-called Bell-state measurement of the
states of ions A and B. This is achieved by using another
gate to entangle qubits A and B and, after subjecting them
to a �/2-pulse, measuring the state of both qubits. Taken
separately, none of the four possible measurement out-
comes (gg, ge, eg, or ee), nor the remaining ion C carry
any information about the original state. Only when one
of four unitary state rotations is applied to ion C, chosen
depending on the outcome of the measurement, the state
of ion C becomes identical to the original state A.

In their implementation of this protocol, the two
groups have employed quite different technologies. The
qubits are stored differently and different realizations of
the phase gate are employed. The Innsbruck group ad-
dresses individual ions with tightly focused lasers, protect-
ing the remaining ions from the target ion’s fluorescence

by hiding them in another internal state. At NIST, ions are
selectively moved to separate zones in a segmented trap,
where they can be manipulated individually while main-
taining entanglement. In spite of these differences, in both
experiments the quantum bit was transferred with a fi-
delity of around 75%. In a quantum computer, telepor-
tation may be applied to transfer quantum information
without physically moving qubits.

Quantum Fourier Transform

One of the most celebrated quantum algorithms was de-
veloped by P. Shor for finding the prime factors of a large
number [117]. A central element of this algorithm is
the quantum Fourier transform of a set of qubits. Here,
the amplitudes xk of a superposition of basis states are
Fourier-transformed, resulting in a new state with ampli-
tudes yj:

N�1X

kD0

xk jki �!
N�1X

jD0

y j j ji with y j D
N�1X

kD0

xkei2	 jk/N :

(24)

Here, jki is related to the corresponding ion-state through
its binary representation with 0 � g and 1 � e.

The quantum Fourier transform was experimentally
demonstrated in a system of three beryllium ions for states
with periods 1,2,4,8 and approximately 3 [118]. The se-
quence of gates that was applied is shown in Fig. 25a. It
comprises Hadamard transforms and controlled Z-gates
with different phase factors. In the experiment, these are
replaced by equivalent sequences of X- and Y-pulses.
A simplification of the scheme is possible by perform-
ing the read-out of each qubit immediately after the last
Hadamard-gate is applied. Measurement of the individual
ions is achieved by separating them in a segmented lin-
ear trap. The subsequent quantum gates in Fig. 25a must
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Quantum Computing with Trapped Ions, Figure 24
Schematic representation of quantum teleportation in a chain of three ions: the state of ion A (green) is transferred to ion C with
the help of an entangled pair of ions B and C. Blue arrows indicate the manipulation of ions with laser pulses, while the red arrow
corresponds to the transmission of two bit of classical information. This protocol is used in two independent experiments [98,99],
which differ only in technical details

Quantum Computing with Trapped Ions, Figure 25
a Circuit diagram for quantum Fourier transform of three qubits, composed of Hadamard transforms and controlled Z-gates (with
rotation angles � D �/2 and�/4). In the actual experiment, these gates were replaced by equivalent rotation sequences around the
x- and y-axis; b experimental output for the quantum Fourier transform of the input state jgeei C jeeeiwith period 4 [118]

then be replaced by classically controlled phase shifts. Fig-
ure 25b shows an example of the outcome of such a mea-
surement. A state with a period 4 in an 8 element space
has non-zero Fourier components with a periodicity of 2
(D 8/4). Therefore, only every other state is observed in
the output. Depending on the input state, an accuracy be-
tween 87% and 99% was reached.

Grover’s Quantum Search Algorithm

Grover’s search algorithm is another example of a quan-
tum computer outperforming its classical counterpart.

It succeeds in finding a marked entry in a database of
length n after �

p
n/4 queries, rather than n [119]. It re-

quires an operator V (oracle) marking the target state jai
of the search by flipping its sign and an operatorW to am-
plify the contribution of the target state, until, after a few
iterations, only the target state has a sizable probability.
The position of the target state in the database is then re-
vealed after a measurement. The corresponding quantum
circuit is shown in Fig. 26.

In the experiment [120], a four element database was
set up with two ionic qubits. Using �/2-pulses, an equally
weighted superposition of all basis states is prepared as
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Quantum Computing with Trapped Ions, Figure 26
Scheme of Grover’s search algorithm for N qubits encoding
n D 2N entries, illustrated for N D 2. Initially, all qubits are pre-
pared in the ground state.�/2-pulses prepare an equal superpo-
sition of all basis states. The oracle V flips the sign of onemarked
element jai. Which state is marked is determined by the opera-
tors A and B, which can be either NOT (X-gate, see Tab. 2) or the
identity. Two more �/2-pulses followed by a Mølmer–Sørensen
gate amplify the weight of the marked state. After a number of
iterations, the qubits are measured

the input: j�i D
�
jggi C jgei C jegi C jeei


/2. The ora-

cle V as well as the amplificationW were implemented us-
ing the Mølmer–Sørensen gate (Sect. “Mølmer-Sørensen
or xy-gate”) together with single-qubit rotations. The iter-
ation step in Fig. 26 takes the state j�i through the follow-
ing transformation:

j�i
V
�! (j�i � jai)

W
�! jai :

Therefore, the marked state jai should be retrieved in only
a single query. The measured probability was 60%, sur-
passing the classical limit of 50%. For a register size larger
than N D 2, the operators V andW have to be applied it-
eratively.

Quantum Error Correction

Any quantum computer is subject to noise, resulting in
uncontrolled, irreversible changes of the qubits involved.
Even using decoherence-free subspaces (see Sect. “Qubits
in Decoherence-Free Subspace”), residual noise still re-
duces the fidelity of quantummemory and quantum gates.
The ability to correct these errors is therefore of great im-
portance for the reliable operation of a quantum com-
puter. The challenge is that error correction must be ac-
complished without gaining any knowledge about the
stored information, since this would destroy any quantum
superpositions.

An example for an error which might occur during
the quantum computation is the flip of a single qubit.
The correction of an error of this type has been demon-
strated at NIST [100]. To this end, a redundant encoding

of a single logical qubit in three physical qubits was ap-
plied. A qubit state ˛ jgi C ˇ jeiwas encoded as an entan-
gled state ˛ jgggi C ˇ jeeei. At NIST, the two-ion phase
gate described in Sect. “Geometric Gates”, extended to
three ions was used. The logical qubit was then subjected
to an artificial bit-flip error of variable rate. After decod-
ing the logical qubit by reversing the three-ion entangling
gate, information on which error has occurred was ob-
tained by measuring two of the physical qubits. The out-
come determined which correction operation was applied
to the remaining qubit to restore the original state. Finally,
the qubit was analyzed to determine the efficiency of the
method. The protocol is illustrated in Fig. 27.

The data showed that quantum error correction im-
proved the fidelity if bit-flips occurred with a probabil-
ity larger than 25%. For smaller errors, the imperfections
of the gates applied during encoding and decoding of
the logical qubit outweighed the benefit of correction and
lead to a reduced fidelity. Improved gates are necessary
before a fault tolerant operation can be achieved. Since
quantum error correction schemes require a large num-
ber of physical quantum bits, passive protection against
errors, for example through decoherence-free subspaces,
is important.

Multiparticle Entanglement

As shown in the previous section, entanglement is an
essential resource in many quantum algorithms. In the
course of a quantum computation, a large number of
qubits must be entangled. It is therefore of great relevance
to investigate highly entangled quantum states of many
qubits. This is not only an important demonstration of
the amount of control over a quantum system, but can
also serve as a resource for quantum information process-
ing [121].

Entangled states may be generated with the help of
two- or multi-bit quantum gates (Sect. “Two-Qubit Inter-
action and Quantum Gates”). An early achievement was
the entanglement of four ions [84] using the Mølmer–
Sørensen gate (Sect. “Mølmer-Sørensen or xy-gate”). Since
then, the development of new gates and better control over
experimental parameters have led to the creation and ver-
ification of entangled states of up to eight ions. Each addi-
tional particle greatly increases the difficulty of the experi-
ment.

Two different classes of entangled states have been in-
vestigated. The first type is called Greenberger–Horne-
Zeilinger (GHZ) or Schrödinger cat states and consists
of equal superpositions of maximally different quantum
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Quantum Computing with Trapped Ions, Figure 27
Schematic representation of quantumerror correction of flips of a Single logical quantumbit logical quantumbit, encoded in a chain
of three ions. This protocol was demonstrated experimentally [100]

states of N ions.

jGHZN i D
1
p
2

�
j ggg : : : g
„ ƒ‚ …

N

iCei' j eee : : : e„ ƒ‚ …
N

i

: (25)

Three-ion GHZ-states were generated and controlled
in 2004 at NIST (F D 89%) [122] and the University of
Innsbruck (F D 72%) [123]. In both experiments, the po-
tential of entanglement for practical applications was ex-
plored.

The largest GHZ-state so far was generated at NIST,
using a generalization of the phase gate described in
Sect. “z-gate” for up to N D 6 ions [97]. Together with
a common single-bit rotation of all the ions before and af-
ter the phase gate, the algorithm involved three steps, ir-
respective of the number of ions to be entangled, making
this a very efficient method for multiparticle entanglement
generation. The fidelity obtained for the six-ion entangled
state was estimated to be better than 51%.

In order to verify the coherence of the entangled states,
experimenters have subjected them to another phase gate,
identical to the entangling operation, but in a reference
system rotated around the z-axis of the Bloch-sphere by an
angle � . In this way, the coherence of the state jGHZN i is
converted to a population difference, which can be directly
measured. For a perfect N-ion GHZ-state, the population

difference and hence the fluorescence signal varies as

Pgg:::g D 1
2
�
1 � cos(N�)

�
: (26)

Results of this method for GHZ-states with four, five, and
six ions are shown in Fig. 28. The observed contrast pro-
vides a lower bound for the coherence and hence the fi-
delity of the state.

This method of probing coherences is closely related
to Ramsey spectroscopy and, indeed, GHZ-states of mul-
tiple ions have been applied in spectroscopy. The N-fold
increased oscillation frequency observed in Fig. 28 can be
used to improve the phase sensitivity of a Ramsey spec-
trometer by a factor of

p
N compared to unentangled

atoms [122]. Other applications of GHZ-states include
quantum error correction (Sect. “Quantum Error Correc-
tion”) and the deterministic preparation of Bell states.

A different class of entangled states are the N-particle
W-states, consisting of a superposition ofN states with ex-
actly one particle in state jgi and all others in jei:

jWN i D
1
p
N



ei'1 je : : : eeegi C ei'2 je : : : eegei

Cei'3 je : : : egeei C � � � C ei'N jgee : : : eei
�
:

(27)

These states were generated in Innsbruck with
N D 3 [123] and later up to N D 8 [124]. First, all ions are
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Quantum Computing with Trapped Ions, Figure 28
Fluorescencemeasurement of decoded GHZ-states as a function
of the decoding phase� for N D 4;5; and 6 ions. The sinusoidal
dependence on N� is a signature of anN-ion GHZ state [97]. The
observed contrast is related to the coherence of the state

initialized in state jei and the vibrational COM-mode in
state j1i. N pulses on the blue sideband of the qubit tran-
sition, are consecutively applied to each ion in the string,
exciting the level jgi of that ion with a probability of 1/N.
The entanglement is verified by measuring allN2 elements
of the density matrix, completely characterizing the quan-
tum state. For the state jW8i, a fidelity of F D 72% was
determined.

The entanglement properties of W-states are very dif-
ferent from those of GHZ-states. If the state of one parti-
cle is measured to be jei, the remaining particles are still
entangled. In addition, W-states are robust against global
dephasing. Theymight serve as a resource for quantum in-
formation processing as well as quantum communication.

The six-ion GHZ- and eight-ion W-states define the
state-of-the-art in the generation of multiparticle entan-
glement. The generation of even larger entangled states is
a major challenge, due to the increased sensitivity to deco-
herence and inhomogeneous effects.

Distributed Quantum Information
with Trapped Ions

The quantum systems discussed so far were confined to
single ion traps. However, many important applications
require the distribution of quantum information among
different locations. A prime example is quantum commu-
nication, which at present is based on photons as carri-
ers of quantum information. Substantial benefits are ex-
pected from linking quantum communication with quan-
tum computing. For example, small systems of trapped
ions could act as routers or repeaters of quantum infor-
mation. Teleportation is another application which is rel-
evant mainly over long distances, i. e., between remote ion
traps. Even quantum computation itself could gain from
being spread among a number of local processing sites
(distributed quantum computation), linked by quantum
communication channels [125].

It is therefore an important goal to establish reli-
able quantum networks involving spatially separated traps.
A first step is to create entanglement between ions stored
in remote locations. There are three methods to achieve
this:

(1) An entangled pair of ions is prepared in one location,
and one of the particles is subsequently transported to
a distant site.

(2) Entanglement is created between an ionic and a pho-
tonic qubit, the latter transferring entanglement deter-
ministically to an ion in a distant trap.

(3) Entanglement is created locally in two distant traps be-
tween an ion and a photon on each side. Subjecting
the emitted photons to a joint measurement projects
the ions left behind to an entangled state. This scheme
works probabilistically, as it is dependent on a partic-
ular measurement outcome.

The first method is suited for entanglement distribution
within an extended trap architecture (Sect. “Large-Scale
Ion Traps”), while the latter two methods allow long dis-
tance entanglement.

Ion–Photon and Remote Ion–Ion Entanglement

A crucial step towards mapping quantum information
from an atomic ion to a photon is to generate entan-
glement between trapped ions and photons, establish-
ing a long-distance communication channel. This was
demonstrated at the University of Michigan using a single
111CdC-ion [126]. In the experiment sketched in Fig. 29a,
the ion was excited to a state with two channels of spon-
taneous decay, leading to different hyperfine states of the
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Quantum Computing with Trapped Ions, Figure 29
a Experimental setup for generation of ion-photon entanglement. Photons scattered from the excitation beam are analyzed by
a beamsplitter distinguishing V- and H-polarization. The polarization rotator is used to change the measurement basis. The qubit-
transition is driven by a microwave field. b Measured conditional probabilities after both atomic and photonic qubits are rotated
by a polar angle � D �/2 on the Bloch sphere with equal phase ˚ . If the atomic and photonic qubits were not entangled but in
a statistically mixed state, all conditional probabilities in the figure would have been 0.5 [126]

ion (jgi or jei). Information on which transition has oc-
curred is contained in the polarization of the emitted pho-
ton (horizontal=jHi or vertical=jVi). Taking into account
the relative strength of the transitions, the resulting state
is
p
1/3 jHi jei C

p
2/3 jVi jgi, which is entangled. In the

experiment, it was obtained with a fidelity of F D 97% (see
Fig. 29b). Note that this method of generating entangle-
ment is probabilistic, since it relies on the spontaneous
emission of a photon.

The generation of entanglement between ion and pho-
ton is only an intermediate step towards the goal of entan-
gling the quantum states of ions in different traps. This has
been achieved by the same group. Initially, single 171YbC-
ions are stored in two identical traps 1m apart. Using
the same principle as described above, an entangled ion-
photon state

�
jeii j�eii � jgii

ˇ
ˇ�g
˛
i


/
p
2 is created in each

trap, where the index i identifies the trap. The photon
states

ˇ̌
�g
˛
and j�ei are distinguished by their frequency.

The two photon-states are then brought to interference
on a beamsplitter and measured at its two output ports.
In case of a coincident detection, the state of the atoms is
projected to the entangled state

�
jei1 jgi2 � jgi1 jei2


/
p
2.

An experimental verification yields a fidelity of 63% [127].

Ion-Trap Cavity-QED

One of the drawbacks of entanglement using sponta-
neously emitted photons is the low success probability,

due to the emission of photons into the full solid angle.
As a result, only one ion–ion pair was entangled every
8.5min in the experiment reported in Ref. [127]. A so-
lution to this problem is to place the ion in a high-fi-
nesse Fabry–Perot optical cavity resonant with the emitted
photons. The cavity enhances the coherent interaction be-
tween ion and photon and provides a well-defined mode
for the photon, resulting in a predetermined direction of
propagation when it eventually escapes through a semi-
transparent mirror. Individual 40CaC-ions have already
been stored in and coupled to an optical cavity, localized
well within the Lamb–Dicke regime [128,129].

Optical cavities have applications beyond enhancing
the success rate of probabilistic entanglement schemes.
If the cavity mode volume is small enough, the coherent
interaction between ions and photons becomes stronger
than all spontaneous decay processes and the system dy-
namics becomes deterministic. This is known as the strong
coupling limit of cavity-QED. It has been proposed as
a technique to transfer quantum states or distribute en-
tanglement deterministically in a quantum network [130].
According to this scheme, the qubit state of an ion is
mapped to a cavity photon with the help of a laser pulse.
This photon leaks out of the first cavity and enters a second
cavity, in which it is absorbed by another ion. A require-
ment for this transfer is that the coupling between the sec-
ond ion and the second cavity is provided by a laser pulse
which is time-reversed with respect to the first pulse and
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that the photon-wavepacket carrying the quantum bit is
time-symmetric.

While the strong coupling limit hasn’t been reached
with single trapped ions yet, the system has already been
used as a source of single photons on demand, emitting
photons with a predetermined shape [131]. Cavity-QED
techniques have many potential applications in quantum
information processing with trapped ions, in particular
for the reversible mapping of qubits between photons and
ions [125].

Future Directions

As shown in this review, all essential elements of quan-
tum information processing have been demonstrated with
trapped ions, making them the most successful technology
for quantum computation to date. The biggest challenge
now is to scale up the present systems to a size where algo-
rithms of practical interest could be run. At the same time,
the fidelity of gate operations must be improved, in order
to reach the point where quantum error correction could
be successfully applied. The implementation of quantum
error correction will further increase the demand for larger
quantum registers, due to the memory overhead of logical
qubits.

The most promising route to large-scale quantum
computation is a segmented trap architecture with a large
number of zones, each storing only a few ions [25]. Present
activities in laboratories around the world are directed to-
wards building suitable traps using nanofabrication meth-
ods. It is still a major challenge to combine all the required
techniques in one scalable system. The implementation of
a quantum computer with 300 qubits is discussed by A.M.
Steane [132].

Before a universal quantum computer will be available,
trapped ion systems are expected to find applications in
the analog simulation of other quantum systems, as was
originally proposed by Feynman [2]. The idea is to use
the evolution of a system of trapped ions to mimic the
behavior of other, less accessible systems with equivalent
Hamiltonians. An example are quantum phase transitions
in spin systems, which could be investigated with trapped
ions [133]. A recent experiment has simulated the transi-
tion from paramagnetic to ferromagnetic order in a quan-
tum system of two ions [134]. A quantum simulation that
was successfully performed at NIST demonstrated the in-
creased sensitivity of 2nd- and 3rd-order nonlinear beam
splitters [135]. Trapped ions are even predicted to simulate
cosmological particle creation in the early universe [136].

Beyond quantum computation or simulation, the tech-
niques developed for ion trap quantum computers have

already started to find applications in other fields. One ex-
ample is frequency standards. Here, the use of N entan-
gled ions has been demonstrated to increase the sensitivity
by a factor of

p
N [122]. Methods from ion-trap quantum

information processing have also been applied to spectro-
scopic investigation of 27AlC by using 9BeC to cool, ini-
tialize and detect the Al-ion, which lacks a suitable level
structure [137]. The rapid progress of ion-trap technology
not only makes harnessing the power of quantum compu-
tation a realistic possibility in the near future, but already
provides new tools for fundamental and applied research.
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Glossary

Avalanche photodiode (APD) A device for counting
photons that absorbs a single photon and, with some
probability, produces a single electrical signal.
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Beam splitter A linear optical device that partially trans-
mits, and partially reflects, an incoming beam of
light.

Bell inequality The results of local measurements of di-
chotomic observables on each component of two cor-
related classical systems satisfy a correlation function
that is less than or equal to a universal bound. This
bound can be exceeded by correlated quantum sys-
tems.

Bell states Four orthogonal, maximally entangled states
of two qubits that violate a Bell inequality.

Cluster State Ahighly entangled state of many qubits that
enables quantum computation by sequences of condi-
tional single qubit measurements, each conditioned on
the results of previous measurements.

c-SIGN A two-qubit gate that leaves all logical states un-
changed unless both qubits take the value one, in
which case the state suffers a � phase shift.

Entangled state The state of a multi-component quan-
tum system which cannot be expressed as a convex
combination of tensor product states of each subsys-
tem. Entangled states cannot be prepared by local op-
erations on each subsystem, even when supplemented
by classical communication.

HOM interference Hong, Ou and Mandel discovered
that when indistinguishable single photon pulses ar-
rive simultaneously at each of the two input ports of
a fifty-fifty beam splitter, the probability for detecting
two photons, co-incidently, at each of the two output
ports drops to zero. In other words, the photons are
either both reflected or both transmitted.

Mixed state A quantum state that is not completely
known and thus has non zero-entropy.

Photon A single quantum excitation of an orthonormal
optical mode. A field in such a state has definite inten-
sity and completely random phase, so that the average
field amplitude is zero.

Pure state A quantum state that is completely known and
thus has zero entropy.

Quantum computation The ability to process informa-
tion in a physical device using unitary evolution of su-
perpositions of the physical states that encode the log-
ical states.

Qubit The fundamental unit of quantum information in
which two orthogonal states encode one bit of infor-
mation. Unlike a classical bit, the physical system that
forms the qubit can be in a superposition of the two
logical states simultaneously.

Quantum teleportation A quantum communication
protocol based on measurement, feed-forward and
shared entanglement.

Shor’s algorithm An algorithm for finding the prime fac-
tors of large integers by unitarily processing informa-
tion in a quantum computer.

Tomography A measurement scheme for experimentally
determining a quantum state in which a large sequence
of physical systems, prepared in the same state, are
subjected to measurements of a carefully chosen set of
physical observables.

Unitary A transformation of a quantum state that is phys-
ically, and thus logically, reversible. Unitary transfor-
mations take pure states to pure quantum states.

Definition of the Subject

Quantum computation is a new approach to information
processing based on physical devices that operate accord-
ing to the quantum principles of superposition and uni-
tary evolution [5,9]. This enablesmore efficient algorithms
than are available for a computer operating according to
classical principles, the most significant of which is Shor’s
efficient algorithm for finding the prime factors of a large
integer [51]. There is no known efficient algorithm for this
task on conventional computing hardware.

Optical implementations of quantum computing have
largely focused on encoding quantum information using
single photon states of light. For example, a single photon
could be excited to one of two carefully defined orthogonal
mode functions of the field with different momentum di-
rections. However, as optical photons do not interact with
each other directly, physical devices that enable one en-
coded bit of information to unitarily change another are
hard to implement. In principle it can be done using a Kerr
nonlinearity as was noted long ago [34,61], but Kerr non-
linear phase shifts are too small to be useful. Knill et al. [24]
discovered another way in which the state of one photon
could be made to act conditionally on the state of another
using a measurement based scheme. We discuss this ap-
proach in some detail here as it has led to experiments that
have already demonstrated many of the key elements re-
quired for quantum computation with optics.

Introduction

The optical fiber communication network is the largest ar-
tificial complex system on the planet, enabling the inter-
net, the growth of economies and amassive connectivity of
minds presaging a but dimly seen revolution. Information,
encoded in pulses of light, courses through the system at
more than 10 terabits per second. It is hard to believe that
it is barely 20 years since the first transoceanic optical fiber
was installed, yet the system is still growing at an astonish-
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ing pace. The insatiable appetite for bandwidth in modern
economies does not look like abating any time soon.

The entire system is held together by thin fibers of glass
guiding pulses of light. The huge increase in bandwidth
that modern communication networks have enabled fol-
lows directly from the very high carrier frequency of op-
tical pulses. A wealth of modulation techniques have been
developed to exploit the potential of this bandwidth: it is
currently limited only by the speed of the switches in the
network required to control the flow of information. Early
networks required the switches to be largely electronic and
this meant first converting the light pulses to electronic
pulses. However increasingly these switches are being re-
placed with all-optical devices.

The routers and switches in the optical fiber network
are essentially small computers processing packets of in-
formation at the fastest possible speeds. In the 1980s there
was a research program to build computers entirely from
optical switches processing information encoded optically.
The astonishing progress in silicon technology meant that
optical computers could never compete with the shrink-
ing scale of semiconductors. The size of an optical switch
is largely determined by the wavelength of light. This is
beginning to change with the rise of plasmonics and nano
photonics. However this constraint does not pose a prob-
lem for an optical communication system that spans the
entire planet and much of the early work on all-optical
switches found its way into the optical fiber system.

Optical fiber networks operate by the principles of
classical physics; the computers they connect operate by
the principles of classical logic. The semiconductors used
as light sources and detectors function by quantum prin-
ciples, but these do not influence network operation or
logic. This is the physics and logic of Newton, Faraday
andMaxwell. Themotion of charges in semiconductor cir-
cuits is governed by the classical understanding of elec-
tric and magnetic fields, while the light pulses coursing
down a glass fiber are perfectly well described byMaxwell’s
theory of electromagnetic radiation. However this situa-
tion will inevitably change and the first indications are al-
ready upon us. We have known since the early part of the
last century that the deepest description of the physical
world is not classical but quantum. It is now clear that the
quantum world enables new computation and communi-
cation tasks that are difficult, if not impossible, in a classi-
cal world.

Over the same period that the optical communication
system has been built, a small group of visionaries have
speculated on the ultimate limits to conventional compu-
tation. There are two strands to this question. The first
strand takes us down a road of ever decreasing dimen-

sions. The astonishing growth in semiconductor technol-
ogy is the direct result of acquiring the technical ability to
make transistors smaller and smaller so that billions can
fit onto a single chip. A very natural question is: how small
can it get? Ultimately the answer to this question is the do-
main of quantum mechanics.

The second strand joins a more abstract path that be-
gan with von Neumann and Turing, and took a quantum
twist in the mid 1980s when Feynman [9] asked if a physi-
cal computer operating by quantum principles would be
a more efficient computational machine than a conven-
tional classical computer. We now know that the answer
is yes.

The quantum description of light began with Einstein
in 1905 with his explanation of the photoelectric effect [7]:

when a light ray starting from a point is propagated,
the energy is not continuously distributed over an
ever increasing volume, but it consists of a finite
number of energy quanta, localized in space, which
move without being divided and which can be ab-
sorbed or emitted only as a whole.

In Einstein’s explanation, the energy of each quanta, or
photon to use the modern word, is proportional to its
frequency while the intensity of the light determines the
number of photons per second passing through some
given area. Einstein’s insight is now routinely confirmed
in a semiconductor device known as the avalanche photo-
diode (APD). This is a device that produces a current pulse
when a single photon is absorbed. If we turn the intensity
of the optical source down to very low levels and connect
the APD to an audio amplifier we can hear the individ-
ual clicks as the photons arrive on the surface of the detec-
tor. In this operational sense, a single photon is a detection
event, Fig. 1

The weak pulses of light used in conventional optical
communication systems contain a huge number of pho-

Quantum Computing Using Optics, Figure 1
A source generates a sequence of optical pulses conditional on
some classical input, e. g. electrical pulses. A detector registers
a sequence of classical electrical pulses that we interpret as due
to the propagation of individual photons from source to detec-
tor. Wemight call this the ballistic picture of a photon
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tons, and furthermore, the number of photons per pulse is
not fixed but fluctuates from pulse to pulse. This is a direct
consequence of the kind of light source that is used, the
laser.

The laser is a true quantum device but it necessarily
produces pulses of light with an indeterminate number
of photons. The reason for this is intimately connected
with the coherence properties of laser light. In a laser light
source both the amplitude of the light and its phase fluctu-
ate as little as quantum theory will permit. However these
fluctuations are related by an uncertainty principle: if we
try and produce a sequence of pulses with a well defined
number of photons we necessarily make the phase random
from pulse to pulse (we shall make this idea more precise
in what follows). The random phase would destroy the key
feature of first order optical coherence that makes a laser
so useful.

Are there any light sources that controllably produce
pulses of light each with one and only one photon per
pulse? Until very recently, the answer was no. However
the discovery of optical communication schemes (quan-
tum key distribution) and computation schemes (as de-
scribed below) based on quantum principles have given
a strong incentive for building such sources. We will now
explain how single photons enable quantum computation
and postpone our discussion of exactly what a single pho-
ton source is to later.

QuantumComputationwith Single Photons

Let us now consider the experiment depicted in Fig. 2.
A source (labeled D for downward) is producing a se-
quence of single photons which are directed towards
a 50/50 beam splitter. This is a classical optical device
which in the wave theory would be described as simply di-
viding the wave intensity equally between a reflected beam
and a transmitted beam. If we had a source of very high
intensity, each of the photodetectors in the reflected path
and the transmitted path would record on average an equal
number of counts per second. As we reduce the intensity
to the single photon level however, we see an irreducible
uncertainty in which detector will register the photon in
each trial. On average it is still the case that over many tri-
als, one half are recorded at the D-detector and one half at
the U-detector. If we were to persist in our ballistic view
of a single photon, we might be tempted to say that each
photon is either reflected or transmitted at random; it is
a simple coin toss. This picture would adequately capture
the experimental facts, for this experiment.

The beam splitter experiment has a binary outcome:
the photon is either detected at U or D. To encode the re-

Quantum Computing Using Optics, Figure 2
A single photon pulse incident on a beam splitter in the down-
ward (D) direction. It can be detected in the upward going direc-
tion (U) or the downward going direction (D)

sult at the output we need a single bit of information. In-
deed if we allow another single photon source into the up-
ward going input to the beam splitter, we will need a single
binary number to encode the input state as well. The kind
of encoding we have just described is called dual rail. In
more precise terms we have encoded a single bit into one
of two perfectly distinguishable momentum states of a sin-
gle photon.

At first sight, it would appear that the experiment we
have just described is a fanciful coin toss. That this is not
the case can be seen if we ‘toss the coin again’, that is to
say, we take the photon after the beam splitter and, instead
of running it into a photodetector, we reflect it back onto
an identical beam splitter and then ask for the probability
for it to be reflected or transmitted (see Fig. 3). It is well
known that in this case we can adjust things so that the
probability for the photon to be detected at U is certain.
Irreducible uncertainty has been turned into certainty sim-
ply by changing the experimental conditions for detecting
the photon, not by changing the state of the single photon
source.

Note that the price we pay for certainty is complete loss
of knowledge of what happened to the photon at the left
beam splitter. A photon can be detected at either detec-
tor in Fig. 3 in two indistinguishable ways corresponding
to the two (unknowable) outcomes of reflection or trans-
mission at the left beam splitter. Returning to the simple
experiment in Fig. 1, can we say that it is a simple coin toss
before the detectors register the photon? Does the output
of the beam splitter really encode one bit of information?
No. We capture the dual quantum/classical nature of the
state of a single photon after a beam splitter by saying that
it is a superposition of the two mutually exclusive alterna-
tives. In such a case the output is said to encode a single
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Quantum Computing Using Optics, Figure 3
A single photon pulse incident on a beam splitter in the down-
ward (D) direction. It can be detected in the upward going direc-
tion (U) or the downward going direction (D)

quantum bit, or qubit. Quantum computation and com-
munication runs on qubits not bits.

The quantum description of the state of the photon af-
ter a single beam splitter requires us to give a list of the
probability amplitudes for the two mutually exclusive pos-
sibilities for detection in either the downward or the up-
ward direction. The detection probabilities are then given
by the square of the probability amplitudes. For example
the input state in Fig. 1 is certain to be in the downward di-
rection, so the ordered pair of probability amplitudes (1, 0)
in which the first (second) entry corresponds to detection
in the D (U) direction. After a general (not 50/50) beam
splitter the state of the photon is depicted by the ordered
pair (r; t) where jrj2 C jtj2 D 1. So in fact the beam split-
ter has enacted the linear transformation (1; 0)! (r; t).

One might think that the input state (0, 1) is trans-
formed in exactly the same way. However these two in-
put states are physically distinguishable: in one case the
photon is going down and in the other it is going up
with certainty. Mathematically this is captured by the fact
that the input vectors are orthogonal. The beam splitter
is a perfectly reversible device and does not destroy infor-
mation by making two distinguishable alternatives indis-
tinguishable. The problem is avoided when we note that
a full quantum theory of beam splitters will in fact show
that (0; 1)! (�r; t). There is a central lesson here: oper-
ations on qubits must not take two physically distinguish-
able states and make them indistinguishable. We call this
sort of transformation unitary.

We now make a change to more conventional nota-
tion. The input states (1, 0) and (0, 1) are written as j1; 0i
and j0; 1i (ordering is preserved) so that the beam splitter
transformations are then written as

j1; 0i ! rj1; 0i C tj0; 1i (1)

j0; 1i ! �rj1; 0i C tj0; 1i : (2)

We now formalize the concept of a qubit by making a dis-
tinction between the logical state of a qubit and the phys-
ical states of the system used to encode it. In the example
used here the relation ship is

j0i D j1; 0i (3)

j1i D j0; 1i : (4)

We then say that we have a qubit code that uses one pho-
ton and two optical modes per qubit. The beam splitter
transformation on the logical code acts like

j0i ! rj0i C tj1i (5)

j1i ! �rj0i C tj1i : (6)

This transformation on logical qubits is called a one-qubit
gate.

If wewant to encode two qubits in this dual rail scheme
we will need two single photon pulses and four modes,
whichmay be achieved by two independent beam splitters.
In a notation that keeps track of the ordering of the beam
splitters by an ordering of states from left to right, the log-
ical state j1; 0i would then be represented physically by

j1i ˝ j0i D j0; 1i ˝ j1; 0i : (7)

Note that the number of mutually distinguishable output
states fromN beam splitters (andN photons) increases ex-
ponentially as 2N . This simply means that for the logical
code of N qubits there are 2N possible logical states.

If we continue in this fashion we are not going to have
a very compact notation. We can make things easier by
using the fact that our qubits are ordered corresponding to
a physical order of the underlying beam splitters. We can
then represent a state, for example j1i ˝ j0i ˝ j1i ˝ j0i,
by regarding it as the binary code for an integer, in this
case j10i as 10 D 1 � 23 C 0 � 22 C 1 � 21 C 0 � 20.

It is then clear that with N physical resources we can
code 2N binary numbers (or their corresponding integers).
If we could somehow act on all these numbers simulta-
neously we might have a very efficient processor. This is
precisely the hope of quantum computation. For example,
if we pass N photons downward through N independent
beam splitters, the state at the output is superposition state

j0i ! 2�N/2
2N�1X

xD0

jxi ; (8)

an equal superposition of all integers from zero up to
2N � 1. If we could somehow continue to postpone mea-
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surement and act unitarily on all these numbers simulta-
neously, we might gain a considerable advantage in com-
putational efficiency. This was the idea first captured in
precise form by David Deutsch [5].

Suppose for example we set aside some number, sayN,
of photons to encode the input register and some number,
say K, to encode an output register. We first prepare the N
photons so as to encode the state produced in Eq. (8) and
the K to encode the state j0i. Then the unitary process-
ing through some, as yet unspecified, physical device could
implement the transformation

X

x
jxij0i !

X

x
jxij f (x)i ; (9)

for some function f (we drop the normalization for sim-
plicity). Of course now when we read out the output reg-
ister we only get one value of the function with a random
distribution. This may not sound very useful if you are in
fact interested in a particular value of the function, but
in that case why do all computations of the function at
once? The primary reason why you might want to eval-
uate a function on all inputs is when you are not so much
interested in any particular value but rather some global
property of the function itself – for example is it constant?
It is precisely that kind of computation that Deutsch [3]
showed could be done more efficiently on a quantum
computer.

A far more interesting example was described by
Shor [51] who gave an efficient quantum algorithm for
finding the period of a modular function. The particular
modular function he used is part of an algorithm for find-
ing the prime factors of large integers, so that in effect
he gave an efficient quantum algorithm for finding such
prime factors. The assumed intractability of this problem
for a classical computer is why it is used as a method for
public-key encryption. If someone had a quantum com-
puter all these crypto systems would be vulnerable to at-
tack.We describe below a simple optical experimentwhich
captures the kind of methods by which a quantum com-
puter could implement Shor’s algorithm.

Of course no one yet has a quantum computer capable
of posing a threat to public-key crypto systems, although
it begins to look like it might be possible. The problem is
to figure out what kind of physical systems would enable
the arrow in Eq. (9). Various suggestions have been made
including single photon optical systems, which we discuss
below. At the level of logical qubits we need two types of el-
ementary transformations. The first we have already seen:
It is the single qubit transformation in Eq. (5). In addition
all we need is some form of interaction that correlates the
state of at least two qubits. One example is the controlled-

SIGN or c-SIGN, gate,

jxijyi ! (�1)x �y jxijyi : (10)

For single photon, dual rail encoding this presents a major
problem.

If we look at the c-SIGN gate at the level of physical
qubits it will require some kind of intensity dependent
phase change so that only a two photon component ac-
quires a � phase change. This is possible with a Kerr non-
linearity as was noted long ago [34,61]. Nonlinear optical
materials with an intensity dependent refractive index do
indeed exist and are generically referred to as Kerr non-
linear materials. The problem is that Kerr nonlinear phase
shifts are so small that to expect an intensity as low as two
photons to give a � phase change in an optical material
of practical size is to expect too much. Fortunately there is
another way.

Conditional Optical Two-Qubit Gates

Measurements play quite a different role in quantum me-
chanics than they do in classical mechanics. In the latter, it
is the objective of accurate measurement to reveal the pre-
existing values of dynamical variables. Of course in real-
ity both the measurement and the preparation of the ini-
tial state are subject to noise. However it is assumed that
both may be sufficiently refined to reveal the true dynami-
cal state of a system. If we know all there is to know about
a classical system, all measurements are dispersion free in
principle.

Quantum mechanics is an irreducibly statistical the-
ory. This means that even if a system has been prepared in
state about which we have maximal knowledge, there will
be at least onemeasurement the results of which are uncer-
tain. Fortunately there is also at least one physical quantity
that may be measured for which the results are certain. If
wemake a perfect measurement of this quantity we have in
effect prepared the system in a pure state of which we have
maximal knowledge. Measurement thus plays an essential
role in state preparation, where knowledge of the prepared
state is heralded by the measurement result.

Can we use the unique role that measurement plays
in quantum mechanics to conditionally implement a re-
quired state transformation? Consider the situation shown
in Fig. 4. In a dual rail scenario, two modes are mixed on
a beam splitter. One mode is assumed to be in the vacuum
state (a) or a one photon state (b), while the other mode is
arbitrary. A single photon counter is placed in the output
port of mode-2. What is the conditional state of mode-1
given a count of n photons?
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Quantum Computing Using Optics, Figure 4
A conditional state transformation conditioned on photon
counting measurements

The conditional state of mode a1 is given by (unnor-
malized),

j ̃ (i)i1 D $̂ (i)j i1 ; (11)

where

$̂ (i) D 2hijU(�)jii2 (12)

with i D 1; 0. HereU(�) is the unitary transformation im-
plemented by the beam splitter as we described in the in-
troduction. The probability for the specified photo count
event is given by,

P(i) D 1h j$
�(i)$̂ (i)j i1 ; (13)

which fixes the normalization of the state,

j (i)i1 D
1
p
P(i)
j ̃ (i)i1 : (14)

It is then possible to show that

$̂ (0) D
1X

nD0

(cos � � 1)n

n!
(a�1 )

nan1

$̂ (1) D cos $̂ (0) � sin2 �a�1 $̂
(0)a1 :

In order to see how we can use these kind of trans-
formations to effect a c-SIGN gate, consider the situation
shown in Fig. 5. Three optical modes are mixed on a se-
quence of three beam splitters with beam splitter param-
eters � i, with corresponding reflection and transmission
amplitudes, ri D cos �i ; ti D sin �i . The ancilla modes,
a1; a2 are restricted to be in the single photon states
j1i2; j0i3 respectively.

We will assume that the signal mode, a0, is restricted
to have at most two photons, thus

j i D ˛j0i0 C ˇj1i0 C � j2i0 : (15)

The reason we are only interested in two photon states is
that in dual rail encoding a general two qubit state can have

Quantum Computing Using Optics, Figure 5
A conditional state transformation on three optical modes,
conditioned on photon counting measurements on the ancilla
modes a1;a2. The signalmode, a0 is subjected to a� phase shift

at most two photons. We can now chose the beam splitter
parameters so that, conditional on the detectors both reg-
istering a one, the signal state is transformed as

j i ! j 0i D ˛j0i C ˇj1i � � j2i ; (16)

with a probability that is independent of the input state
j i. This last condition is essential as in a quantum com-
putation, the input state to a general two qubit gate is com-
pletely unknown. We will call this transformation the NS
(for nonlinear sign shift) gate. This can be achieved us-
ing [24]: �1 D ��3 D 22:5 deg and �2 D 65:53 deg. The
probability of the conditioning event (n2 D 1; n3 D 0)
is 1/4. Note that we can’t be sure in a given trial if the
correct transformation will be implemented. Such a gate
is called a nondeterministic gate. However the key point is
that success is heralded by the results on the photon coun-
ters (assuming ideal operation).

We can now proceed to a c-SIGN gate in the dual
rail basis. Consider the situation depicted in Fig. 6. We
first take two dual rail qubits encoding for j1ij1i. The
single photon components of each qubit are directed to-
wards a 50/50 beam splitter where they overlap perfectly
in space and time and produces a state of the form
j0i2j2i3 C j2i2j0i3, a effect known as Hong–Ou–Mandel
(HOM) interference [15]. We then insert an NS gate into
each output arm of the HOM interference. When the con-
ditional gates in each arm work, which occurs with prob-
ability 1/16, the state is multiplied by an overall minus
sign. Finally we direct these modes towards another HOM
interference. The output state is thus seen to be �j1ij1i.
One easily checks the three other cases for the input log-
ical states to see that this device implements the c-SIGN
gate with a probability of 1/16 and successful operation is
heralded.

Clearly a sequence of nondeterministic gates is not
going to be much use: the probability of success after
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Quantum Computing Using Optics, Figure 6
A conditional state transformation conditioned on photon
counting measurements. A c-SIGN gate that works with proba-
bility of 1/16. It uses HOM interference and two NS gates

a few steps will be exponentially small. The key idea in
using nondeterministic gates for quantum computation
is based on the idea of gate teleportation of Gottesmann
and Chuang [12]. In quantum teleportation an unknown
quantum state can be transferred from A to B provided
A and B first share an entangled state. Gottesmann and
Chuang realized that it is possible to simultaneously tele-
port a two qubit quantum state and implement a two qubit
gate in the process by first applying the gate to the entan-
gled state that A and B share prior to teleportation.

We use a non deterministic NS gate to prepare the re-
quired entangled state, and only complete the teleporta-
tion when the this stage is known to work. The teleporta-
tion step itself is non deterministic but, as we see below, by
using the appropriate entangled resource the teleportation
step can be made near deterministic. The near determin-
istic teleportation protocol requires only photon counting
and fast feed-forward. We do not need to make measure-
ments in a Bell basis.

A nondeterministic teleportation measurement is
shown in Fig. 7. The client state is a one photon state in
mode-0 ˛j0i0 C ˇj1i0 and we prepare the entangled an-
cilla state

jt1i D j01i12 C j10i12 (17)

where mode-1 is held by the sender, A, and mode-2 is held
by the receiver, B. For simplicity we omit normalization
constants wherever possible. This an ancilla state is easily
generated from j01i12 by means of a beam splitter.

If the total count is n0 C n1 D 0 or n0 C n1 D 2, an
effective measurement has been made on the client state
and the teleportation has failed. However if n0 C n1 D 1,
which occurs with probability 0.5, teleportation succeeds
with the two possible conditional states being

˛j0i2 C ˇj1i2 if n0 D 1; n1 D 0 (18)

˛j0i2 � ˇj1i2 if n0 D 0; n1 D 1 : (19)

Quantum Computing Using Optics, Figure 7
A partial teleportation system for single photons states using
a linear optics

When successful, this procedure implements a joint mea-
surement onmodes 0 and 1. In the conventional determin-
istic teleportation protocol the joint measurement is a si-
multaneousmeasurement of the commuting operators XX
and ZZ where X; Z are respectively the Pauli-x and Pauli-z
operators. This is a Bell measurement. In the teleportation
protocol considered here, we only have a partial Bell mea-
surement. We will refer to it as a non-deterministic tele-
portation protocol, T1/2. Note that teleportation failure is
detected and corresponds to a photon number measure-
ment of the state of the client qubit. Detected numbermea-
surements are a very special kind of error and can be easily
corrected by a suitable error correction protocol. For fur-
ther details see [24] and the review [26].

The next step is to use T1/2 to effect a conditional sign
flip c-SIGN1/4 which succeeds with probability 1/4. Note
that to implement c-SIGN on two bosonic qubits in modes
1, 2 and 3, 4 respectively, we can first teleport the first
modes of each qubit to two new modes (labeled 6 and 8)
and then apply c-SIGN to the newmodes.When usingT1/2,
we may need to apply a sign correction. Since this com-
mutes with c-SIGN, there is nothing preventing us from
applying c-SIGN to the prepared state before performing
the measurements. The implementation is shown in Fig. 8
and now consists of first trying to prepare two copies of
jt1i with c-SIGN already applied, and then performing two
partial Bell measurements. Given the prepared state, the
probability of success is (1/2)2. The state can be prepared
using c-SIGN1/16, which means that the preparation has to
be retried an average of 16 times before it is possible to
proceed.

The probability of successful teleportation can be
boosted to 1 � 1/(n C 1) using more entangled resource
state of the kind

jtni1:::2n D
nX

jD0

j1i jj0in� jj0i jj1in� j : (20)
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Quantum Computing Using Optics, Figure 8
A c-SIGN two qubit gate with teleportation to increase success probability to 1/4. When using the basic teleportation protocol (T1),
we may need to apply a sign correction. Since this commutes with c-SIGN, it is possible to apply c-SIGN to the prepared state before
performing themeasurements, reducing the implementation of c-SIGN to a state-preparation (outlined) and two teleportations. The
two teleportationmeasurements each succeedwith probability 1/2, giving a net success probability of 1/4. The correction operations
C1 consist of applying the phase shifter when required by the measurement outcomes

The notation jai j means jaijai : : : ; j times. Themodes are
labeled from 1 to 2n, left to right. Note that the state exists
in the space of n bosonic qubits, where the kth qubit is
encoded in modes nC k and k (in this order).

We can teleport the state ˛j0i0 C ˛j1i0 using jtni1:::2n .
We first couple the client mode to half of the ancilla modes
by applying an nC 1 point Fourier transform on modes 0
to n. This is defined by the mode transformation

ak !
1

p
nC 1

nX

lD0

! k l al ; (21)

where ! D ei2	/(nC1). This transformation does not
change the total photon number and is implementable
with passive linear optics. After applying the Fourier trans-
form, we measure the number of photons in each of the
modes 0 to n. If the measurement detects k bosons alto-
gether, it is possible to show [24] that if 0 < k < nC 1,
then the teleported state appears in mode nC k and only
needs to be corrected by applying a phase shift. The modes
2n � l are in state 1 for 0 � l < (n � k) and can be reused
in future preparations requiring single bosons. The modes
are in state 0 for n � k < l < n. If k D 0 or k D nC 1
an effective measurement of the client is made, and the
teleportation fails. The probability of these two events is
1/(nC 1), regardless of the input. Note that again failure
is detected and corresponds to measurements in the basis
j0i; j1iwith the outcome known. Note that both the neces-

sary correction and the receiving mode are unknown until
after the measurement.

Cluster StateMethods

About the same time it was realized that measurements
would provide a path to optical single photon comput-
ing, Raussendorf and Briegel [48] gave an independent
and remarkably novel method by which measurement
alone could be used to do quantum information process-
ing. In their approach to quantum computation, an array
of qubits is initially prepared in a special entangled state
called a cluster state. The computation then proceeds by
making a sequence of single qubit measurements. Each
measurement is made in a basis that depends on prior
measurement outcomes; in other words, the results of past
measurements are fed forward to determine the basis for
future measurements. Subsequently Popescu showed that
the linear optical measurement based scheme of Knill et al.
can be interpreted as a Raussendorf and Briegel measure-
ment based quantum computation [44].

Nielsen [37] realized that the LOQC model of [24]
could be used to efficiently assemble the cluster using the
nondeterministic teleportation tn. As we saw the failure
mode of this gate constituted an accidental measurement
of the qubit in the computational basis. The key point is
that such an error does not destroy the entire assembled
cluster but merely detaches one qubit from the cluster.
This enables a protocol to be devised that produces a clus-
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ter that grows on average. The LOQC cluster state method
dramatically reduces the number of optical elements re-
quired to implement the original LOQC scheme.Of course
if large single photon Kerr nonlinearities were available,
the optical cluster state method could be made determin-
istic [16].

In its simplest form the Raussendorf and Breigel
scheme begins with a two dimensional array of qubits.
Each qubit is prepared in a superposition of the computa-
tional basis states, j0i C j1i. Then an entangling operation
is performed between nearest neighbor qubits in the lattice
using the two-qubit controlled sign operation

jxijyi 7! (�1)x y jxijyi : (22)

In the next step one or more qubits are measured in a par-
ticular basis and depending on the results of that measure-
ment another basis is chosen for subsequent qubit mea-
surements. Any circuit model of a quantum algorithm can
be mapped onto the two dimensional lattice through a se-
quence of conditional measurements on subsets of qubits.

The key difficulty in doing this with a dual rail opti-
cal scheme is that, as we have noted, the transformation
in Eq. (22) is very difficult to implement using a deter-
ministic unitary transformation as optical nonlinearities
are too small. However a conditional scheme of the kind
discussed above might work by conditionally entangling
sequences of qubits, provided failure at any point did not
destroy the entire developing lattice of entanglement. This
is indeed the case because of a key feature of the LOQC
model of [24] scheme. If a teleportation gate failure is her-
alded, it corresponds to an effective measurement of one
of the qubits at input. This feature was used by Knill et al.
to establish the scalability of the scheme as detected mea-
surements errors can easily be protected by a suitable code.

The importance of this feature for a conditional clus-
ter state assembly is that an accidental measurement of
one of the qubits in a developing cluster simply detaches
it from the cluster without destroying the remaining en-
tanglement. The picture then emerges of a kind of ran-
dom cluster assembly in which the cluster grows when
a gate succeeds and gets pruned if a gate fails. As long as
the probability for gate success is greater than 0.5 there is
a chance that the cluster overall will grow. As this does not
require a very large teleportation resource, jtni1:::2n , it can
be achieved with quite modest overheads of linear optics
and single photons. For this reason optical cluster state
methods are preferred over the original LOQC scheme of
Knill et al. A number of schemes have been proposed to
efficiently assemble a cluster via this probabilistic growth.
A recent application of percolation theory is a good exam-
ple of the kind of optimization that is required [20].

Experimental Implementations

Two Qubit Gates

Considerable progress has been made on demonstrating
conditional two-qubit gates with single photon states. Af-
ter the initial proposal was made by Knill, Laflamme and
Milburn [24], there was a flurry of theoretical work to
propose linear-optical two-qubit gates that would be eas-
ier to realize experimentally. These can be divided into
two categories, internal-ancilla gates [22,41,42,46], where
the ancilla photons are intrinsic to the operation of the
logic gates, and external-ancilla gates [14,47], where an-
cilla photons can be used to verify correct gate opera-
tion by performing a quantum non-demolition measure-
ment [25] on the gate outputs. There are a variety of
configurations of internal-ancilla gates, including simpli-
fied [46] and efficient [22] versions of the KLM gate; and
gates that gain in efficiency using entangled ancilla pho-
tons [41,42].

An entangled internal-ancilla gate was soon realized
in Johns Hopkins, where entangling operation was sug-
gested by a 61:5˙ 7:4% visibility fringe [43]. An unam-
biguous demonstration of entangling gate operation was
performed at the University of Queensland with an ex-
ternal-ancilla gate [39]: all four entangled Bell states were
produced as a function of only the logical values of the
input qubits, for a single operating condition of the gate.
Both these gates filtered on photon-number, i. e. they re-
quired the four or two input photons to be detected to sig-
nal successful gate operation. An important requirement
for LOQC is that it must be possible to detect successful
gate operation by measurement of the ancilla photons and
then feed-forward this information to the logic photons:
this was realized with an external-ancilla gate at the Uni-
versity of Vienna [10].

Linear-optic gates, both internal and external ancilla,
have achieved a wide range of firsts and proof-of-prin-
ciple demonstrations: the first full characterization of
a quantum-logic gate, in any architecture [38]; produc-
tion of cluster [58] and graph [31] states, and their use for
Grover’s algorithm [58]; production of the highest entan-
glement [27] and fastest gate operation [45] of any physi-
cal architecture; and the first demonstration of Shor’s al-
gorithm exhibiting the core processes, coherent control,
and resultant entangled states required in a full-scale im-
plementation [29,30].

Measuring gate operation is non-trivial. Further, it is
desirable to diagnose, and if possible correct, error behav-
iors introduced by a real gate, such as phase or bit-flip
errors, which can induce the wrong amount or type of
entanglement, or decoherence. To date, there have been
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Quantum Computing Using Optics, Figure 9
An external-ancilla CNOT gate. When the control is in the logical-
one state, the control and target photons interfere non-classi-
cally at the central 1/3 beam splitter which causes a � phase-
shift in the upper arm of the central interferometer and the tar-
get state qubit is flipped. The qubit value of the control is un-
changed. Correct operation has probability 1/9 and occurs when
a single photon is detected in each output; this can be donewith
quantum non-demolition (QND) measurements using external
ancilla photons [25] or by filtering on photon number in the fi-
nal detection. Experimentally, the two modes of each qubit are
distinguished by orthogonal polarizations. These may be split
into separate spatialmodes and sent through normal beamsplit-
ters [38,39] or left in one spatialmode and sent throughpartially-
polarizing beamsplitters [21,27,40]

a wide variety of measures used to gauge the quality of
two-qubit gates. A comprehensive comparison of the var-
ious measures, and an architecture-independent measure-
ment standard for two-qubit gates, is given in [60]. The key
is quantum process tomography, which allows reconstruc-
tion of the quantum state transfer function of the gate.
Tomography requires sampling the statistics of a fixed
number of measurement outcomes, at least 256 for a two-
qubit gate. With these statistics data inversion can be de-
vised to reconstruct the gate process. From this we can
calculate its overlap, or fidelity, with respect to the ideal
quantum-logic gate, e. g. in recent experiments at the Uni-
versity of Queensland we obtained a process fidelity of
Fp D 98:2˙ 0:3% for a controlled-�/4 gate [28]. The pro-
cess fidelity is itself not a metric [11], but forms the basis of
several, such as the average gate fidelity, i. e. the fidelity of
every gate output state with the ideal, averaged over every
possible input state. This is given simply by,

F D
dFp C 1
d C 1

; (23)

where d is the dimension of the process matrix, e. g.
d D 16 for two-qubit gates.

These measures are useful for comparing gate perfor-
mances, but do not provide an error probability-per-gate
to allow direct comparison with fault-tolerance thresholds.
A recent publication introduces a semidefinite program-
ming technique to do exactly this, using the measured
process matrix [59]. Such fault-tolerant benchmarking
identifies the magnitude, but not the source of errors –
critical in identifying the critical technology path for im-
proving gate operation. This requires a comprehensive
theoretical model of the quantum-logic gate, and its errors.
Using such a model, Ref. [59] identifies small amounts
of multi-photon emission as the dominant, yet previously
unrecognized, source of error in linear-optical quantum
computing – higher-order terms of 0:3�0:8% lead to gate
errors of �16%! Removing multi-photon emission puts
photonic quantum computing within striking distance of
a recently predicted fault-tolerance threshold [23].

QuantumOptical Algorithms

The simplest useful algorithm for quantum optical infor-
mation processing is the quantum repeater. This is more
conventionally referred to as quantum communication
protocol rather than an algorithm, but realistic systems
will require few qubit quantum computers to do entangle-
ment distillation and purification giving it an algorithmic
flavor. Furthermore quantum repeaters could enable dis-
tributed quantum computation. We also mention it here
as the various quantum optical repeater protocols that
have been suggested [6,50,52] will have immediate appli-
cation in long distance quantum key distribution and thus
are pivotal to developing quantum optical networks across
the global optical fiber network. This raises many new
questions in the area of communication complexity and
a great deal of work remains to be done to understand such
systems [18,55].

The general idea of a quantum repeater is sketched in
Fig. 10. There are three key elements at each node of the
network: (i) a pair of entangled qubits, (ii) quantummem-
ories, (iii) a few qubit quantum computer for purification
distillation. In the first step two entangled pairs are pro-
duced at the origin, one of each pair is held there, while
the other member of each pair is sent to distant locations.
A measurement is made on the two qubits kept at the ori-
gin at step 1, leaving partially entangled qubits at the re-
mote locations, step 2. The remote qubits are then loaded
into quantum memory, step 3. The process is repeated,
steps 4 and 5 until two qubits are held at the remote loca-
tions. A purification algorithm is then run at each remote
location so that finally a maximally entangled pair is held
at the remote locations separated by twice the distance that
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Quantum Computing Using Optics, Figure 10
A simple schematic for a quantum repeater

separated the pairs in step 1. In the quantum optical real-
ization both the generation of entanglement and purifica-
tion can be done by heralded non deterministic processes.

The previous scheme of course requires a good quan-
tum memory and a great deal of research is underway
to develop such systems for photons. One promising ap-
proach is to use polarized atomic ensembles [35]. The
quantummemory itself may need to have error correction
algorithms running to maintain the coherence of the en-
tangled pairs until they required for some future quantum
information processing task.

Many current cryptographic protocols rely on the
computational difficulty of finding the prime factors of
a large number: a small increase in the size of the num-
ber leads to an exponential increase in computational re-
sources. Shor’s quantum algorithm for factoring compos-
ite numbers faces no such limitation [51], and its realiza-
tion represents a major challenge in quantum computa-
tion. Only one step of Shor’s algorithm to find the fac-
tors of a number N requires a quantum routine. Given
a randomly chosen co-prime C (where 1 < C < N and
the greatest common divisor of C and N is 1), the quan-
tum routine finds the order of C modulo N, defined to
be the minimum integer r that satisfies Cr mod N D 1. It
is straightforward to find the factors from the order. Con-
sider N D 15: if we choose C D 2, the quantum routine

finds r D 4, and the prime factors are given by the non-
trivial greatest common divisor of Cr/2 ˙ 1 and N, i. e. 3
and 5; similarly if we choose the next possible co-prime,
C D 4, we find the order r D 2, yielding the same factors.

The quantum routine in Shor’s algorithm can factor
a k-bit number using 72k3 elementary quantum gates, e. g.
factoring the smallest meaningful number, 15, requires
4608 gates operating on 21 qubits [1], where the gates are
one-, two-, or three-qubit logic gates. Recognizing this is
well beyond the reach of current technology, Ref. [1] intro-
duced a compiling technique which exploits properties of
the number to be factored, allowing exploration of Shor’s
algorithm with a vastly reduced number of resources. The
compiled algorithms are not scalable in themselves, but
do allow the characterization of core processes required in
a full-scale implementation of Shor’s algorithm – includ-
ing the ability to generate entanglement between qubits by
coherent application of a series of quantum gates. In the
only previous demonstration of Shor’s algorithm, a com-
piled set of gate operations were implemented in a liquid
NMR architecture [56]. Unfortunately, in such a system
the qubits are at all times in a highly mixed state [2], and
the dynamics can be fully modeled classically [32], so that
neither the entanglement nor the coherent control at the
core of Shor’s algorithm can be implemented or verified.

The quantum order-finding routine consists of three
distinct steps: i) register initialization, j0i˝nj0i˝m !

(j0i C j1i)˝nj0i˝m�1j1i D
P2n�1

xD0 jxij0i
˝m�1j1i, where

the argument-register is prepared in an equal coherent su-
perposition of all possible arguments (normalization omit-
ted by convention); ii) modular exponentiation, which by
controlled application of the order-finding function pro-
duces the entangled state

P2n�1
xD0 jxijC

xmod Ni; iii) the
inverse Quantum Fourier Transform (QFT) followed by
measurement of the argument-register in the logical ba-
sis, which with high probability extracts the order r after
further classical processing. If the routine is standalone,
the inverse QFT can be performed without two-qubit gates
using an approach based on local measurement and feed-
forward.

In recent experiments, Shor’s algorithm was per-
formed for N D 15 using internal-ancilla logic gates [29,
30]. Co-primes of C D 4 and C D 2 were realized us-
ing circuits of two controlled-SIGN gates, with three and
four qubit inputs, respectively. To no-ones surprise, the
prime factors of 3 and 5 were found. What was surpris-
ing is that was near-ideal algorithm performance – far
better than expected given the known errors inherent in
the logic gates. This result highlights a subtle point with
respect to benchmarking quantum algorithms: algorithm
performance is not necessarily an accurate indicator of
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the underlying circuit performance. This is particularly the
case in Shor’s algorithm, where ideally the algorithm pro-
duces mixed states. From algorithm performance alone it
is not possible to distinguish between the desired mixture
arising from entanglement with the function-register, and
the undesired mixture due to environmental decoherence.
In [29] this was quantified by using quantum state tomog-
raphy [17] to measure the joint state of the argument and
function registers after modular exponentiation. The joint
state was bothmixed and entangled, only partially overlap-
ping with the expected states, a sure indication of environ-
mental decoherence. Such accurate knowledge of circuit
performance is crucial if the circuits are to be incorporated
as sub-routines in larger algorithms.

Reprise: Single Photon States

The two key requirements for conditional quantum com-
puting with single photons are; (i) single photon sources
and, (ii) highly efficient single photon detectors capable
of resolving zero, one or two photon detection events. Of
course we will need a lot more than just this. In order to
make the scheme scalable some kind of photonic memory,
or fast switching, or both, would be desirable. Once a par-
ticular entangledmulti photon state resource has been pre-
pared it might be necessary to store it for some time until
it is required for use. We first discuss in some detail what
is required for a single photon source.

It is now time to become much more precise about
what is meant by a single photon state. The quantum elec-
tromagnetic field is described by an electric field opera-
tor [57],

EE(Ex; t) D i
X

n;�

s
„!n

2�oV

Eel ;�
h
ei(Ekn :Ex�!n t)an;� � e�i(Ekn:Ex�!n t)a�n;�

i
; (24)

where Een;� are two orthonormal polarization vectors (� D
1; 2) which satisfy Ekn :Een;� D 0, as required for a trans-
verse field, and the frequency is given by the dispersion
relation !n D cjEknj. The positive and negative frequency
amplitude operators are respectively an;� and a�m;� , with
bosonic commutation relations

[an;�; an0;�0] D ı��0ınn0 ; (25)

with all other commutations relations zero.
Typically we are interested in sources defined by op-

tical cavity modes so that emission is directional and de-
fined by the cavity spatio-temporal mode structure. Much

of the difficulty in building single photon sources is in de-
signing the optical cavity to ensure emission into a pre-
ferred set of modes. We will assume that the only modes
that are excited have the same plane polarization and are
all propagating in the same direction, which we take to be
the x-direction. The positive frequency components of the
quantum electric field for these modes are then

E(C)(x; t) D i
1X

nD0

�
„!n

2�0V

�1/2
ane�i!n (t�x/c) : (26)

In ignoring all the other modes, we are implicitly assum-
ing that all our measurements do not respond to the vac-
uum state, an assumption which is justified by the theory
of photon-electron detectors [57]. Let us further assume
that all excited modes of this form have frequencies cen-
tered on carrier frequency of˝ 	 1. Then we can approx-
imate the positive frequency components by

E(C)(x; t) D i
�
„˝n

2�0Ac

�1/2r c
L

1X

nD0

ane�i!n(t�x/c) (27)

where A is a characteristic transverse area. This operator
has dimensions of electric field. In order to simplify the
dimensions we now define a field operator that has dimen-
sions of s�1/2. Taking the continuum limit we thus define
the positive frequency operator

a(x; t) D e�i˝(t�x/c) 1
p
2�

Z 1

�1

d! 0a(! 0)e�i!
0(t�x/c) ;

(28)

where we have made a change of variable ! 7! ˝ C ! 0

and used the fact that˝ 	 1 to set the lower limit of inte-
gration to minus infinity, and

[a(!1); a�(!2)] D ı(!1 � !2) : (29)

In this form the moment n(x; t) D ha�(x; t)a(x; t)i has
units of s�1. This moment determines the probability per
unit time (the count rate) to count a photon at space-time
point (x; t) [57]. The field operators a(t) and a�(t) can be
taken to describe the field emitted from the end of an op-
tical cavity, which selects the directionality.

We will contrast single photon states with multimode
coherent states defined by a multimode displacement op-
erator acting on the vacuum Dj0i, defined implicitly by

D�a(!)D D a(!)C ˛(!) ; (30)

where consistent with proceeding assumptions, ˛(!) is
peaked at ! D 0 which corresponds to a carrier frequency
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˝ 	 1. The average field amplitude for this state is

ha(x; t)i D e�i˝(t�x/c) 1
p
2�

Z 1

�1

˛(!)e�i!(t�x/c)

� ˛(x; t)e�i˝(t�x/c) ; (31)

which implicitly defines the average complex amplitude of
the field as the Fourier transform of the frequency depen-
dent displacements ˛(!) We can also calculate the proba-
bility per unit time to detect a photon in this state at space-
time point (x; t). This is given by n(x; t) D j˛(x; t)j2. Note
that in this case the second order moment ha�(x; t)a(x; t)i
factories, a result characteristic of fields with first order co-
herence. A coherent state is is closest to our intuitive idea
of a classical electromagnetic field.

The multimode single photon state is defined by

j1i D
Z 1

�1

�(!)a�(!)j0i : (32)

Normalization requires that
Z 1

�1

d!j�(!)j2 D 1 : (33)

This last condition implies that the total number of pho-
tons, integrated over all modes, is unity,

Z 1

�1

d!ha�(!)a(!)i D 1 : (34)

This state has zero average field amplitude but

n(x; t) D j�(t � x/c)j2 ; (35)

where �(t) is the Fourier transform of �(!). So while the
state has zero average field amplitude there is apparently
some sense in which the coherence implicit in the super-
position of Eq. (32) is manifest. In fact comparing this to
the case of a coherent state, Eq. (31), we see that the ex-
pression for n(t) is also determined by the Fourier trans-
form of a coherent amplitude. For this state the function
�(�) is periodic in the phase � D t � x/c and it is not
difficult to choose a form with a well defined pulse se-
quence. However care should be exercised in interpreting
these pulses. They do not represent a sequence of pulses
each with one photon rather they represent a single pho-
ton coherently superposed over all pulses. Once a photon
is counted in a particular pulse, the field is returned to the
vacuum state. A review of current efforts to produce such
a state may be found in [53]. More recent results may be
found in [4,8,13,19].

In the absence of true single photon pulse sources,
most of the experimental work we have described has been
done with a conditional source based on photon pair pro-
duction in spontaneous parametric down conversion. We
now give amodel of the kind of state such sources produce.

In the case of a continuous wave pump, the entangled
two photon produced by SPDCmay be well approximated
by

j i D

Z 1

0
d!1

Z 1

0
d!2 �(!1; !2)a�(!1)b�(!2)j0i ;

(36)

where a; b designate distinguishable modes, for example,
distinguished either by polarization or wave vector [54].
More precisely, this is the conditional state given that
a down conversion process has in fact taken place at all.
The probability per unit time for this event is the down
conversion efficiency. For spontaneous parametric down
conversion with a continuous pump field at frequency 2˝
we can approximate

�(!1; !2) D ı(!1 C !2 � 2˝)˛(!1) : (37)

We now make the change of variable � D ˝ � !1 and as-
sume that the bandwidth, B, over which ˛(!1) is signif-
icantly different from zero is such that ˝ 	 B, then we
can write

j i D

Z 1

�1

d�ˇ(�)a�(��)b�(�)j0i ; (38)

where we have defined ˇ(�) D ˛(˝ � �) and a(��) �
a(˝ � �); b(�) � b(˝ C �). We will also assume that
ˇ(��) D ˇ(�). Normalization of j i requires that

Z 1

�1

jˇ(�)j2 D 1 : (39)

The probability per unit time to detect a photon from
this field with a unit efficiency detector is in fact unity,
na(t) D ha�(t)a(t)i D 1 The probability per unit time to
detect a photon from mode-a is thus independent of time.
This simply means that photons will be counted at ran-
domly distributed times from each of the fields a; b. This
is a reflection of the fact that the state Eq. (38) is invariant
under time translations in a Lorentzian frame.

On the other hand let us now compute the coincidence
rate,

C(t; t0) D h ja�(x; t0)a(x; t0)b�(x; t)b(x; t)j i : (40)

This is given by

C(t; t0) D
ˇ̌
ˇ
ˇ

Z 1

�1

ˇ(�)e�i�(t
0�t)

ˇ̌
ˇ
ˇ

2
(41)

D j ˜̌(�)j2 (42)

� C(�) ; (43)

where � D t0 � t. The coincidence rate is thus symmetri-
cal about t0 � t D 0 and is peaked at t0 D t. Even though
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photons are detected at random, independently from each
beam, they are highly correlated in time. In the case of
spontaneous SPDC the distributions function ˇ(�) is given
approximately [49]

ˇ(�) /
1

�2 C !2 : (44)

We can now consider a heralded single photon source
made by detecting one of the photon pairs and then ask for
the kind of single photon state conditionally produced in
the other mode. In the case of a CW pump, we first must
provide a temporal filter on the detected mode. One can
think of this as a time dependent detector that is switched
on an off over some time interval. In frequency domain
this is simply a filter. If such a detector is placed at the
b mode, the conditional state of the a mode is given by
Eq. (32) with

�(!) / e�!
2/�2 ; (45)

which corresponds to a Gaussian temporal pulse.
If we drive SPDC with a pulsed pump, the pump it-

self provides a natural temporal filter. In this case the fre-
quency distribution function in Eq. (37) is not delta corre-
lated but takes the form [54]

�(!1; !2) D exp
h
�(!1 C !2 � 2˝)2/�2p

i
˛(!1) ; (46)

where˝ is the pump carrier frequency and �p is the band-
width of the pump pulse. It is still the case however that
no photon down conversion event may take place within
the pump pulse window. Thus the source is not a deter-
ministic single photon source. Migdall [33] has proposed
a way to over come this by multiplexing many heralded
conditional SPDC sources with a conditioning detection
on one mode of each of the multiplexed pairs. Another
approach has been implemented by the Polzik group [36].
They used a cavity to enhance the parametric down con-
version to implement a frequency tunable source of her-
alded single photons with a narrow bandwidth of 8MHz.
This approach is particularly important as frequency tun-
ability makes the source compatible with atomic quantum
memories.

Future Directions

Optical systems are certain to be used for future quantum
communication protocols. Indeed the first steps have al-
ready been taken with quantum key distribution. In this
article we have seen that it is also possible to process quan-
tum information optically using heralded non determin-
istic schemes of various kinds and simple examples have

been implemented experimentally. This greatly enhances
the practicability of quantum communication schemes
that require some quantum processing, such as quantum
repeaters. While this has not yet been realized in practice,
we expect that the first demonstrations are not far away.

In the effort to produce single photon sources we are
learning new ways to encode and process information in
optical pulses. We have seen that coherent communica-
tion can be done using single photons despite the fact that
the average field amplitude for such states is zero. If in-
formation can be encoded and decoded on photon num-
ber states, this would represent a major step beyond quan-
tum communication protocols like quantum key distri-
bution.

It is far from clear however if optical schemes will be
viable for large scale quantum computation. Currently ion
trap schemes and schemes based on super-conducting de-
vices offer the most likely way forward for quantum com-
putation per se. However a number of investigators are
turning to the concept of a hybrid quantum computer
which combines optical and matter based qubits. Optical
qubits with heralded non deterministic processing com-
bined with matter based quantum memories is poised to
make significant achievements.

Hybrid schemes offer a path to distributed quantum
computation between many nodes each made up of a few
hundred qubits. The nodes do not need to be far apart:
they could simply be different parts of a single quantum
computation device. However, if you will permit us some
license, it is not too difficult to imagine a single quan-
tum computation spanning the entire planet, with matter
based nodes connected by quantum optical communica-
tion channels. Such a system would hold in its web mas-
sively entangled quantum states and exhibit a complexity
that would make our current optical communication sys-
tem look rather simple by comparison.
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Glossary

One-time pad One-time pad is a classical encryption al-
gorithm invented by Gilbert Vernam in 1917. In one-
time pad algorithm, the legitimate users share a ran-
dom key (e. g. a random binary string) that is not
known to anyone else. The message is combined with
this random key (“pad”) which is as long as the mes-
sage. The key is used only once (“one-time”). The most
typical usage is in binary case, where an XOR oper-
ation is applied between the message and the key to
achieve the ciphertext. Claudé Shannon proved that
the one-time pad provides perfect secrecy in 1949. The
perfect secrecy is defined that the ciphertext does not
give any additional information on the message.

Key distribution problem The key distribution problem
originates from the one-time pad encryption. The one-
time pad encryption requires that the two parties share
a secret random key before the communication. This
key is usually generated by one party. The key distri-
bution problem is how to distribute this random key
from one party to the other party securely. This prob-
lem is non-solvable classically, but is solvable via quan-
tum key distribution.

Quantum key distribution Quantum key distribution
(QKD) is a method to distribute a random key be-
tween two parties securely. The main idea is to encode

the bit value on the quantum state of certain particle
(usually photon) and send the particle to the receiver.
The quantum no-cloning theorem guaranteed that any
eavesdropper cannot duplicate the encoded quantum
information perfectly.

BB84 BB84 is the first and so far the most popular quan-
tum cryptography protocol. It was proposed by C. H.
Bennet and G. Brassard in 1984 [1]. In the original
BB84 proposal, the quantum information is encoded
on the polarizations of photons. Later BB84 was ex-
tended to the phase coding. Detailed description of
BB84 protocol can be found in Sect. “Introduction”.

B92 B92 is a quantum cryptography protocol proposed by
C. H. Bennet in 1992 [2]. It uses two non-orthogonal
states (e. g. the horizontally – and 45ı polarized pho-
tons) to denote “0” and “1”. It is simpler than BB84
protocol in implementation.

E91 E91 is a quantum cryptography protocol proposed by
A. Ekert in 1991 [3]. It is based on entangled photon
pairs. E91 protocol is often used in free-space quantum
key distribution.

Uni-directional QKD Uni-directional QKD is the QKD
scheme in which Alice (sender) generates the photon,
encodes the quantum information on it, and sends it
to Bob (receiver).

Bi-directional QKD, or “Plug & play” QKD
Bi-directional QKD, or “Plug & play” QKD is the QKD
scheme in which Bob generates strong laser pulses and
sends them to Alice. Alice encodes her quantum infor-
mation on the pulse and attenuates the pulse to sin-
gle-photon level, and sends it back to Bob through
the same channel. This design can automatically com-
pensate the phase and the polarization drifting in the
channel.

Single photon source Single photon source is the light
source that can generate a single photon on demand.
A perfect single photon source should have zero prob-
ability to generate multi photons once triggered. Single
photon source is required in the original BB84 proto-
col. However, it is no longer under absolute demand
due to the discovery and implementation of decoy state
QKD.

Fainted laser source Fainted laser source is the light
source that has a standard pulsed laser source and
a heavy attenuator. The average output photon num-
ber is usually set to � 0:1 photon per pulse. This low
average photon number is to suppress the production
of multi photon signals. However, due to the poisson
nature of laser source, the probability of multi pho-
ton production can never reach zero unless the laser
is turned off.
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Single photon detector Single photon detector is sensi-
tive to the weakest light signals – signals with single
photons. Most single photon detectors are threshold
by means that they can only detect the arrival of one or
more photons, but cannot count the number of pho-
tons within one signal.

Dark count Dark count is the event that the detector re-
ports a detection while no photon actually hits it. It
is a key parameter for single photon detectors. Dark
count becomes important when the channel loss be-
tween the sender and the receiver is high (i. e., when
very few photons can reach the receiver).

Qubit Qubit (or quantum bit) is the fundamental unit of
quantum information. Whereas a classical bit can take
value of either “0” or “1”, a qubit can take a value in
any superposition of two distinguishable (i. e., orthog-
onal) states commonly labeled by j0i and j1i. In other
words, a (pure) qubit state can be written in the form
aj0i C bj1i where a and b are complex numbers. The
normalization constraint is that jaj2 C jbj2 D 1. Phys-
ically, a qubit can be encoded in any two-level quan-
tum system, such as the two polarization of a single
photon or two atomic levels of an atom.

Bit-flip Bit-flip is a typical noise in both classical and
quantum communication. In quantum cryptography,
a bit-flip in the channel will transform an initial state
jii D aj0iCbj1i into the final state j f i D aj1iCbj0i.

Phase-flip Phase-flip is a typical noise that is unique in
quantum communication. A phase-flip in the quan-
tum channel will transform an initial state jii D aj0iC
bj1i into the final state j f i D aj0i � bj1i.

Definition of the Subject

Quantum cryptography is the synthesis of quantum me-
chanics with the art of code-making (cryptography). The
idea was first conceived in an unpublished manuscript
written by Stephen Wiesner around 1970 [4]. However,
the subject received little attention until its resurrection
by a classic paper published by Bennett and Brassard in
1984 [1]. The goal of quantum cryptography is to per-
form tasks that are impossible or intractable with conven-
tional cryptography. Quantum cryptography makes use of
the subtle properties of quantum mechanics such as the
quantum no-cloning theorem and the Heisenberg uncer-
tainty principle. Unlike conventional cryptography, whose
security is often based on unproven computational as-
sumptions, quantum cryptography has an important ad-
vantage in that its security is often based on the laws of
physics. Thus far, proposed applications of quantum cryp-
tography include quantum key distribution (abbreviated

QKD), quantum bit commitment and quantum coin toss-
ing. These applications have varying degrees of success.
The most successful and important application – QKD –
has been proven to be unconditionally secure. Moreover,
experimental QKD has now been performed over hun-
dreds of kilometers over both standard commercial tele-
com optical fibers and open-air. In fact, commercial QKD
systems are currently available on the market.

On a wider context, quantum cryptography is a branch
of quantum information processing, which includes quan-
tum computing, quantum measurements, and quantum
teleportation. Among all branches, quantum cryptography
is the branch that is closest to real-life applications. There-
fore, it can be a concrete avenue for the demonstrations of
concepts in quantum information processing. On a more
fundamental level, quantum cryptography is deeply re-
lated to the foundations of quantum mechanics, particu-
larly the testing of Bell-inequalities and the detection effi-
ciency loophole. On a technological level, quantum cryp-
tography is related to technologies such as single-photon
measurements and detection and single-photon sources.

Introduction

The best-known application of quantum cryptography is
quantum key distribution (QKD). The goal of QKD is to
allow two distant participants, traditionally called Alice
and Bob, to share a long random string of secret (com-
monly called the key) in the presence of an eavesdrop-
per, traditionally called Eve. The key can subsequently be
used to achieve a) perfectly secure communication (via
one-time-pad, see below) and b) perfectly secure authenti-
cation (via Wigman–Carter authentication scheme), thus
achieving two key goals in cryptography.

The best-known protocol for QKD is the Bennett and
Brassard protocol (BB84) published in 1984 [1]. The pro-
cedure of BB84 is as follows (also shown in Table 1).

1. Quantum communication phase
(a) In BB84, Alice sends Bob a sequence of photons,

each independently chosen from one of the four
polarizations – vertical, horizontal, 45-degrees and
135-degrees.

(b) For each photon, Bob randomly chooses one of the
two measurement bases (rectilinear and diagonal)
to perform a measurement.

(c) Bob records his measurement bases and results.
Bob publicly acknowledges his receipt of signals.

2. Public discussion phase
(a) Alice broadcasts her bases of measurements. Bob

broadcasts his bases of measurements.
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Quantum Cryptography, Table 1
Procedure of BB84 protocol

Alice’s bit sequence 0 1 1 1 0 1 0 0 0 1
Alice’s basis + × + + × + × × + ×
Alice’s photon polarization $ -& l l %. l %. %. $ -&

Bob’s basis + + × + + × × + + ×
Bob’s measured polarization $ l -& l $ %. %. l $ -&

Bob’s sifted measured polarization $ l %. $ -&

Bob’s data sequence 0 1 0 0 1

(b) Alice and Bob discard all events where they use dif-
ferent bases for a signal.

(c) To test for tampering, Alice randomly chooses
a fraction, p, of all remaining events as test events.
For those test events, she publicly broadcasts their
positions and polarizations.

(d) Bob broadcasts the polarizations of the test events.
(e) Alice and Bob compute the error rate of the test

events (i. e., the fraction of data for which their
value disagree). If the computed error rate is larger
than some prescribed threshold value, say 11%,
they abort. Otherwise, they proceed to the next
step.

(f) Alice and Bob each convert the polarization data of
all remaining data into a binary string called a raw
key (by, for example, mapping a vertical or 45-de-
grees photon to “0” and a horizontal or 135-de-
grees photon to “1”). They can perform classical
post-processing such as error correction and pri-
vacy amplification to generate a final key.

Notice that it is important for the classical communica-
tion channel between Alice and Bob to be authenticated.
Otherwise, Eve can easily launch a man-in-the-middle at-
tack by disguising as Alice to Bob and as Bob to Alice.
Fortunately, authentication of an m-bit classical message
requires only logarithmic in m-bit of an authentication
key. Therefore, QKD provides an efficient way to expand
a short initial authentication key into a long key. By re-
peating QKD many times, one can get an arbitrarily long
secure key.

This article is organized as follows. In Sect. “Quan-
tum Key Distribution: Motivation and Introduction”, we
will discuss the importance and foundations of QKD; in
Section “Security Proofs”, we will discuss the principles of
different approaches to prove the unconditional security
of QKD; in Section “Experimental Fundamentals”, we will
introduce the history and some fundamental components
of QKD implementations; in Section “Experimental Im-
plementation of BB84 Protocol”, we will discuss the im-

plementation of BB84 protocol in detail; in Section “Other
Quantum Key Distribution Protocols”, we will discuss the
proposals and implementations of other QKD protocols;
in Section “Quantum Hacking”, we will introduce a very
fresh and exciting area – quantum hacking – in both the-
ory and experiments. In particular, we provide a catalog of
existing eavesdropping attacks; in Section “Beyond Quan-
tum Key Distribution”, we will discuss some topics other
than QKD, including quantum bit commitment, quantum
coin tossing, etc.; in Section “Future Directions”, we will
wrap up this article with prospectives of quantum cryp-
tography in the future.

QuantumKey Distribution:
Motivation and Introduction

Cryptography – the art of code-marking – has a long and
distinguished history of military and diplomatic applica-
tions, dating back to ancient civilizations in Mesopotamia,
Egypt, India and China. Moreover, in recent years cryp-
tography has widespread applications in civilian applica-
tions such as electronics commerce and electronics busi-
nesses. Each time we go on-line to access our banking or
credit card data, we should be deeply concerned with our
data security.

Key Distribution Problem and One-Time-Pad

Secure communication is the best-known application of
cryptography. The goal of secure communication is to al-
low two distant participants, traditionally called Alice and
Bob, to communicate securely in the presence of an eaves-
dropper, Eve. See Fig. 1. A simple example of an encryp-
tion scheme is the Caesar’s cipher. Alice simply shifts each
letter in a message alphabetically by three letters. For in-
stance, the word NOW is mapped to QRZ, because N!
O! P! Q, O! P! Q! R and W! X! Y! Z.
According to legends, Julius Caesar used Caesar’s cipher
to communicate with his generals. An encryption by an
alphabetical shift of a fixed but arbitrary number of po-



7268 Q Quantum Cryptography

Quantum Cryptography, Figure 1
Communication in presence of an eavesdropper

sitions is also called a Caesar’s cipher. Note that Caesar’s
cipher is not that secure because an eavesdropper can sim-
ply exhaustively try all 26 possible combinations of the key
to recover the original message.

In conventional cryptography, an unbreakable code
does exist. It is called the one-time-pad and was in-
vented by Gilbert Vernam in 1918 [5]. In the one-time-
pad method, a message (traditionally called the plain text)
is first converted by Alice into a binary form (a string
consisting of “0”s and “1”s) by a publicly known method.
A key is a binary string of the same length as the message.
By combining each bit of the message with the respective
bit of the key using XOR (i. e. addition modulo two), Al-
ice converts the plain text into an encrypted form (called
the cipher text). i. e. for each bit ci D mi C ki mod 2.
Alice then transmits the cipher text to Bob via a broad-
cast channel. Anyone including an eavesdropper can get
a copy of the cipher text. However, without the knowl-
edge of the key, the cipher text is totally random and
gives no information whatsoever about the plain text.
For decryption, Bob, who shares the same key with Al-
ice, can perform another XOR (i. e. addition modulo two)
between each bit of the cipher text with the respective
bit of the key to recover the plain text. This is because
ci C ki mod 2 D mi C 2ki mod 2 D mi mod 2.

Notice that it is important not to re-use a key in a one-
time-pad scheme. Suppose the same key, k, is used for the
encryption of two messages, m1 and m2, then the cipher
texts are c1 D m1 C k mod 2 and c2 D m2 C k mod 2.
Then, Eve can simply take the XOR of the two cipher texts
to obtain c1 C c2 mod 2 D m1 C m2 C 2k mod 2 D
m1 C m2 mod 2, thus learning non-trivial information,
namely the parity of the two messages.

The one-time-pad method is commonly used in top-
secret communication. The one-time-pad method is un-
breakable, but it has a serious drawback: it supposes that

Alice and Bob initially share a random string of secret
that is as long as the message. Therefore, the one-time-
pad simply shifts the problem of secure communication
to the problem of key distribution. This is the key distribu-
tion problem. In top-secret communication, the key distri-
bution problem can be solved by trusted couriers. Unfor-
tunately, trusted couriers can be bribed or compromised.
Indeed, in conventional cryptography, a key is a classical
string consisting of “0” and “1”s. In classical physics, there
is no fundamental physical principle that can prevent an
eavesdropper from copying a key during the key distribu-
tion process.

A possible solution to the key distribution problem is
public key cryptography. However, the security of pub-
lic key cryptography is based on unproven computa-
tional assumptions. For example, the security of standard
RSA crypto-system invented by Rivest–Shamir–Adleman
(RSA) is based on the presumed difficulty of factoring large
integers. Therefore, public key distribution is vulnerable
to unanticipated advances in hardware and algorithms. In
fact, quantum computers – computers that operate on the
principles of quantum mechanics – can break standard
RSA crypto-system via the celebrated Shor’s quantum al-
gorithm for efficient factoring [6].

QuantumNo-Cloning Theorem
and QuantumKey Distribution (QKD)

Quantummechanics can provide a solution to the key dis-
tribution problem. In quantum key distribution, an en-
cryption key is generated randomly betweenAlice and Bob
by using non-orthogonal quantum states. In contrast to
classical physics, in quantum mechanics there is a quan-
tum no-cloning theorem (see below), which states that it is
fundamentally impossible for anyone including an eaves-
dropper to make an additional copy of an unknown quan-
tum state.

A big advantage of quantum cryptography is forward
security. In conventional cryptography, an eavesdropper
Eve has a transcript of all communications. Therefore, she
can simply save it for many years and wait for break-
throughs such as the discovery of a new algorithm or new
hardware. Indeed, if Eve can factor large integers in 2100,
she can decrypt communications sent in 2008. We remark
that Canadian census data are kept secret for 92 years on
average. Therefore, factoring in the year 2100 may violate
the security requirement of our government today! And,
no one in his/her sane mind can guarantee the impossi-
bility of efficient factoring in 2100 (except for the fact that
he/she may not live that long). In contrast, quantum cryp-
tography guarantees forward security. Thanks to the quan-
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tum no-cloning theorem, an eavesdropper does not have
a transcript of all quantum signals sent by Alice to Bob.

For completeness, we include the statement and the
proof of the quantum no-cloning theorem below.

QuantumNo-Cloning Theorem An unknown quantum
state cannot be copied.

(a) The case without ancilla: Given an unknown state j˛i,
show that a quantum copying machine that can map
j˛ij0i ! j˛ij˛i does not exist.

(b) The general case: Given an unknown state j˛i, show
that a quantum copying machine that can map
j˛ij0ij0i ! j˛ij˛iju˛i does not exist.

Proof

(a) Suppose the contrary. Then, a quantum cloning ma-
chine exists. Consider two orthogonal input states j0i
and j1i respectively. We have

j0ij0i ! j0ij0i

and

j1ij0i ! j1ij1i :

Consider a general input j˛i D aj0i C bj1i. Since
a unitary transformation is linear, by linearity, we have

j˛ij0i D (aj0i C bj1i)j0i
! aj0ij0i C bj1ij1i :

(1)

In contrast, for quantum cloning, we need:

j˛ij0i ! (aj0i C bj1i)(aj0i C bj1i)

D a2j0ij0i C abj0ij1i C abj1ij0i C b2j1ij1i :
(2)

Clearly, if ab 6D 0, the two results shown in Eqs. (1)
and (2)) are different. Therefore, quantum cloning
(without ancilla) is impossible.

(b) similar. �

More generally, for general quantum states, information
gain implies disturbance.

Theorem (Information Gain implies disturbance)
Given one state chosen from one of the two distinct non-
orthogonal states, jui and jvi (i. e. jhujvij 6D 0 or 1), any
operation that can learn any information about its identity
necessarily disturbs the state.

Proof Given a system initially in state either jui and jvi.
Suppose an experimentalist applies some operation on the

system. The most general thing that she can try to do is to
prepare some ancilla in some standard state j0i and couple
it to the system. Therefore, we have:

juij0i ! juij�ui (3)

and

jvij0i ! jvij�vi (4)

for some states j�ui and j�vi.
In the end, the experimentalist lets go of the system

and keeps the ancilla. He/she may then perform a mea-
surement on the ancilla to learn about the initial state of
the system.

Recall that quantum evolution is unitary and as such it
preserves the inner product. Now, taking the inner prod-
uct between Eqs. (3) and (4), we get:

hujvih0j0i D hujvih�u j�vi
hujvi D hujvih�u j�vi

hujvi(1 � h�uj�vi) D 0
(1 � h�uj�vi) D 0

j�ui D j�vi ;

(5)

where in the fourth line, we have used the fact that
jhujvij 6D 0.

Now, the condition that j�ui D j�vi means that the
final state of the ancilla is independent of the initial state
of the system. Therefore, a measurement on the ancilla will
tell the experimentalist nothing about the initial state of
the system. �
Therefore, any attempt by an eavesdropper to learn infor-
mation about a key in a QKD process will lead to distur-
bance, which can be detected by Alice and Bob who can,
for example, check the bit error rate of a random sample
of the raw transmission data.

The standard BB84 protocol for QKD was discussed
in Sect. “Introduction”. In the BB84 protocol, Alice pre-
pares a sequence of photons each randomly chosen in
one of the four polarizations – vertical, horizontal, 45-de-
grees and 135-degrees. For each photon, Bob chooses one
of the two polarization bases (rectilinear or diagonal) to
perform a measurement. Intuitively, the security comes
from the fact that the two polarization bases, rectilinear
and diagonal, are conjugate observables. Just like position
and momentum are conjugate observables in the standard
Heisenberg uncertainty principle, no measurement by an
eavesdropper Eve can determine the value of both observ-
ables simultaneously. In mathematics, two conjugate ob-
servables are represented by two non-commuting Hermi-
tian matrices. Therefore, they cannot be simultaneously
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diagonalized. This impossibility of simultaneous diagonal-
ization implies the impossibility of simultaneousmeasure-
ments of two conjugate observables.

Example of a Simple Eavesdropper Attack:
Intercept-Resend Attack

To illustrate the security of quantum cryptography, let us
consider the simple example of an intercept-resend at-
tack by an eavesdropper Eve, who measures each photon
in a randomly chosen basis and then resends the result-
ing state to Bob. For instance, if Eve performs a rectilin-
ear measurement, photons prepared by Alice in the diago-
nal bases will be disturbed by Eve’s measurement and give
random answers. When Eve resends rectilinear photons to
Bob, if Bob performs a diagonal measurement, then he will
get random answers. Since the two bases are chosen ran-
domly by each party, such an intercept-resend attack will
give a bit error rate of 0:5 � 0:5C 0:5 � 0 D 25%, which is
readily detectable by Alice and Bob. Sophisticated attacks
against QKD do exist. Fortunately, the security of QKD
has now been proven. This subject will be discussed fur-
ther in Sect. “Security Proofs”.

Equivalence Between Phase and Polarization Encoding

Notice that the BB84 protocol can be implemented with
any two-level quantum system (qubits). In Sect. “Intro-
duction” and the above discussion, we have described the
BB84 protocol in terms of polarization encoding. This is
just one of the many possible types of encodings. Indeed, it
should be noted that other encoding method, particularly,
phase encoding also exists. In phase encoding, a signal
consists of a superposition of two time-separated pulses,
known as the reference pulse and the signal pulse. See
Fig. 2 for an illustration of the phase encoding scheme.
The information is encoded in the relative phase between
two pulses. i. e., the four possible states used by Alice
are 1/

p
2(jRi C jSi), 1/

p
2(jRi � jSi), 1/

p
2(jRi C ijSi),

1/
p
2(jRi � ijSi).

Quantum Cryptography, Figure 2
Conceptual schematic for phase-coding BB84 QKD system. PM:
PhaseModulator; BS: BeamSplitter; SPD: Single PhotonDetector

Notice that, mathematically the phase encoding
scheme is equivalent to the polarization encoding scheme.
They are simply different embodiments of the same BB84
protocol.

Security Proofs

“The most important question in quantum cryptography
is to determine how secure it really is.” (Brassard and Cré-
peau [7]) Security proofs are very important because a)
they provide the foundation of security to a QKD proto-
col, b) they provide a formula for the key generation rate
of a QKD protocol and c) they may even provide a con-
struction for the classical post-processing protocol (for er-
ror correction and privacy amplification) that is necessary
for the generation of the final key.Without security proofs,
a real-life QKD system is incomplete because we can never
be sure about how to generate a secure key and how secure
the final key really is.

Classification of Eavesdropping Attacks

Before we discuss security proofs, let us first consider
eavesdropping attacks. Notice that there are infinitely
many eavesdropping strategies that an eavesdropper, Eve,
can perform against a QKD protocol. They can be classi-
fied as follows:

Individual attacks In an individual attack, Eve performs
an attack on each signal independently. The intercept-
resend attack discussed in Subsect. “Example of a Sim-
ple Eavesdropper Attack: Intercept-Resend Attack” is
an example of an individual attack.

Collective attacks A more general class of attacks is col-
lective attack where for each signal, Eve independently
couples it with an ancillary quantum system, com-
monly called an ancilla, and evolves the combined sig-
nal/ancilla unitarily. She can send the resulting signals
to Bob, but keep all ancillas herself. Unlike the case of
individual attacks, Eve postpones her choice of mea-
surement. Only after hearing the public discussion be-
tween Alice and Bob, does Eve decide on what mea-
surement to perform on her ancilla to extract informa-
tion about the final key.

Joint attacks The most general class of attacks is joint at-
tack. In a joint attack, instead of interacting with each
signal independently, Eve treats all the signals as a sin-
gle quantum system. She then couples the signal sys-
tem with her ancilla and evolves the combined sig-
nal and ancilla system unitarily. She hears the public
discussion between Alice and Bob before deciding on
which measurement to perform on her ancilla.
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Proving the security of QKD against the most gen-
eral attack was a very hard problem. It took more than 10
years, but the unconditional security of QKD was finally
established in several papers in the 1990s. One approach
by Mayers [8] was to prove the security of the BB84 di-
rectly. A simpler approach by Lo and Chau [9], made use
of the idea of entanglement distillation by Bennett, DiVin-
cenzo, Smolin and Wootters (BDSW) [10] and quantum
privacy amplification by Deutsch et al. [11] to solve the se-
curity of an entanglement-based QKD protocol. The two
approaches have been unified by the work of Shor and
Preskill [12], who provided a simple proof of security of
BB84 using entanglement distillation idea. Other early se-
curity proofs of QKD include Biham, Boyer, Boykin, Mor,
and Roychowdhury [13], and Ben-Or [14].

Approaches to Security Proofs

There are several approaches to security proof. We will
discuss them one by one.

1. Entanglement distillation
Entanglement distillation protocol (EDP) provides
a simple approach to security proof [9,11,12]. The basic
insight is that entanglement is a sufficient (but not nec-
essary) condition for a secure key. Consider the noise-
less case first. Suppose two distant parties, Alice and
Bob, share a maximally entangled state of the form
j�iAB D 1/

p
2(j00iAB C j11iAB). If each of Alice and

Bob measure their systems, then they will both get “0”s
or “1”s, which is a shared random key. Moreover, if we
consider the combined system of the three parties – Al-
ice, Bob and an eavesdropper, Eve, we can use a pure-
state description (the “Church of Larger Hilbert space”)
and consider a pure state j iABE. In this case, the von
Neumann entropy [15] of Eve S(�E) D S(�AB) D 0.
This means that Eve has absolutely no information on
the final key. This is the consequence of the standard
Holevo’s theorem. See, like, [16].
In the noisy case, Alice and Bob may share N pairs of
qubits, which are a noisy version of N maximally en-
tangled states. Now, using the idea of entanglement dis-
tillation protocol (EDP) discussed in BDSW [10], Alice
and Bob may apply local operations and classical com-
munications (LOCCs) to distill from the N noisy pairs
a smaller number, sayM almost perfect pairs i. e., a state
close to j�iMAB. Once such a EDP has been performed,
Alice and Bob can measure their respective system to
generate anM-bit final key.
One may ask: how can Alice and Bob be sure that their
EDP will be successful? Whether an EDP will be suc-
cessful or not depends on the initial state shared by Al-

ice and Bob. In the above, we have skipped the discus-
sion about the verification step. In practice, Alice and
Bob can never be sure what initial state they possess.
Therefore, it is useful for them to add a verification step.
By, for example, randomly testing a fraction of their
pairs, they have a pretty good idea about the properties
(e. g., the bit-flip and phase error rates) of their remain-
ing pairs and are pretty confident that their EDP will be
successful.
The above description of EDP is for a quantum-com-
puting protocol where we assume that Alice and Bob
can perform local quantum computations. In practice,
Alice and Bob do not have large-scale quantum com-
puters at their disposal. Shor and Preskill made the
important observation that the security proof of the
standard BB84 protocol can be reduced to that of an
EDP-based QKD protocol [9,11]. The Shor–Preskill
proof [12] makes use of the Calderbank–Shor–Steane
(CSS) code, which has the advantage of decoupling the
quantum error correction procedure into two parts:
bit-flip and phase error correction. They can go on to
show that bit-flip error correction corresponds to stan-
dard error correction and phase error correction corre-
sponds to privacy amplification (by random hashing).

2. Communication complexity/quantum memory
The communication complexity/quantum memory ap-
proach to security proof was proposed by Ben-Or [14]
and subsequently by Renner and Koenig [17]. See
also [18]. They provide a formula for secure key genera-
tion rate in terms of an eavesdropper’s quantum knowl-
edge on the raw key: Let Z be a random variable with
range Z, let � be a random state, and let F be a two-
universal function on Z with range S D f0; 1gs which
is independent of Z and �. Then [17]

d(F(Z)jfFg ˝ �) � 1
2 2
� 1

2 (S2([fZg˝�])�S0([�])�s) :

Incidentally, the quantum de Finnetti’s theorem [19] is
often useful for simplifying security proofs of this type.

3. Twisted state approach
What is a necessary and sufficient condition for se-
cure key generation? From the entanglement distilla-
tion approach, we know that entanglement distillation
a sufficient condition for secure key generation. For
some time, it was hoped that entanglement distillation
is also a necessary condition for secure key genera-
tion. However, such an idea was proven to be wrong
in [20,21], where it was found that a necessary and suf-
ficient condition is the distillation of a private state,
rather than a maximally entangled state. A private state
is a “twisted” version of a maximally entangled state.
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They proved the following theorem in [20]: a state is
private in the above sense iff it is of the following form

�m D Uj C2m iABh 
C
2m j ˝ %A0B0U

� (6)

where j di D
Pd

iD1 ji ii and %A0B0 is an arbitrary state
on A0; B0. U is an arbitrary unitary controlled in the
computational basis

U D
2mX

i; jD1

ji jiABhi jj ˝ UA0B0
i j : (7)

The operation (7) will be called “twisting” (note that
only UA0B0

i i matter here, yet it will be useful to consider
general twisting later).
Proof. (copied from [20]) The authors of [20] proved
for m D 1 (for higher m, the proof is analogous). Start
with an arbitrary state held by Alice and Bob, �AA0BB0 ,
and include its purification to write the total state in the
decomposition

�ABA0B0;E D aj00iABj�00iA0B0E C bj01iABj�01iA0B0E

C cj10iABj�10iA0B0E C dj11iABj�11iA0B0E

(8)

with the states ji ji on AB and � ij on A0B0E. Since
the key is unbiased and perfectly correlated, we must
have b D c D 0 and jaj2 D jdj2 D 1/2. Depending on
whether the key is j00i or j11i, Eve will hold the states

%0 D TrA0B0 j�00ih�00j; %1 D TrA0B0 j�11ih�11j: (9)

Perfect security requires %0 D %1. Thus there exists uni-
taries U00 and U11 on A0B0 such that

j�00i D
X

i

p
pi jU0�

A0B0
i ij'E

i i

j�11i D
X

i

p
pi jU1�

A0B0
i ij'E

i i :
(10)

After tracing out E, we will thus get a state of the form
Eq. (6), where %A0B0 D

P
i pi j�i ih�i j�.

The main new ingredient of the above theorem is the
introduction of a “shield” part to Alice and Bob’s sys-
tem. That is, in addition to the systems A and B used by
Alice and Bob for key generation, we assume that Alice
and Bob also hold some ancillary systems, A0 and B0,
often called the shield part. Since we assume that Eve
has no access to the shield part, Eve is further limited in
her ability to eavesdrop. Therefore, Alice and Bob can
derive a higher key generation rate than the case when
Eve does have access to the shield part.
An upshot is that even a bound entangled state can
give a secure key. A bound state is one whose for-
mation (via local operations and classical communica-

tions, LOCCs) requires entanglement, but which does
not give any distillable entanglement. In other words,
even though no entanglement can be distilled from
a bound entangled state, private states (a twisted ver-
sion of entangled states) can be distilled from a bound
entangled state.
In summary, secure key generation is a more general
theory than entanglement distillation.

4. Complementary principle
Another approach to security proof is to use the com-
plementary principle of quantum mechanics. Such an
approach is interesting because it shows the deep con-
nection between the foundations of quantum mechan-
ics and the security of QKD. In fact, both Mayers’
proof [8] and Biham, Boyer, Boykin, Mor, and Roy-
chowdhury’s proof [13] make use of this complemen-
tary principle. A clear and rigorous discussion of the
complementary principle approach to security proof
has recently been achieved by Koashi [22].
The key insight of Koashi’s proof is that Alice and Bob’s
ability to generate a random secure key in the Z-ba-
sis (by a measurement of the Pauli spin matrix �Z) is
equivalent to the ability for Bob to help Alice prepare
an eigenstate in the complementary, i. e., X-basis (�X),
with their help of the shield. The intuition is that an X-
basis eigenstate, for example, jCiA D 1/

p
2(j0iA C

j1iA), when measured along the Z-basis, gives a ran-
dom answer.

5. Other ideas for security proofs
Here we discuss two other ideas for security proofs,
namely, a) device-independent security proofs and b)
security from the causality constraint. Unfortunately,
these ideas are still very much under development and
so far a complete version of a proof of unconditional
security of QKD based on these ideas with a finite key
rate is still missing.
Let us start with a) device-independent security proofs
So far we have assumed that Alice and Bob know what
their devices are doing exactly. In practice, Alice and
Bob may not know their devices for sure. Recently,
there has been much interest in the idea of device-
independent security proofs. In other words, how to
prove security when Alice and Bob’s devices cannot be
trusted. See, for example, [23]. The idea is to look only
at the input and output variables. A handwaving argu-
ment goes as follows. Using their probability distribu-
tion, if one can demonstrate the violation of some Bell
inequalities, then one cannot explain the data by a sep-
arable system. How to develop such a handwaving ar-
gument into a full proof of unconditional security is an
important question.
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The second idea b) security from the causality con-
straint is evenmore ambitious. The question that it tries
to address is the following. How can one prove security
when even quantum mechanics is wrong? In [24] and
references cited therein, it was suggested that perhaps
a more general physical principle such as the no-sig-
naling requirement for space-like observables could be
used to prove the security of QKD.

Classical Post-processing Protocols

As noted in Sect. “Introduction”, after the quantum com-
munication phase, Alice and Bob then proceed with the
classical communication phase. In order to generate a se-
cure key, Alice and Bob have to know what classical post-
processing protocol to apply to the raw quantum data.
This is a highly non-trivial question. Indeed, a priori, given
a particular procedure for classical post-processing, it is
very hard to know whether it will give a secure key or what
secure key will be generated. In fact, it is sometimes said
that in QKD, the optical part is easy, the electronics part is
harder, but the hardest part is the classical post-processing
protocol. Fortunately, security proofs often give Alice and
Bob clear ideas on what classical post-processing protocol
to use. This highlights the importance for QKD practition-
ers to study the security proofs of QKD.

Briefly stated, the classical post-processing protocol of-
ten consists of a) test for tampering and b) key genera-
tion. In a) test for tampering, Alice and Bob may randomly
choose a fraction of the signals for testing. For example, by
broadcasting the polarizations of those signals, they can
work out the bit error rate of the test signals. Since the test
signals are randomly chosen, they have high confidence on
the bit error rate of the remaining signals. If the bit error
rate of the tested signal is higher than a prescribed thresh-
old value, Alice and Bob abort. On the other hand, if the
bit error rate is lower than or equal to the prescribed value,
they proceed with the key generation step with the re-
maining signals. They first convert their polarization data
into binary strings, the raw keys, in a prescribed manner.
For example, they can map a vertical or 45-degrees pho-
ton to “0” and a horizontal or 135-degrees photon to “1”.
As a result, Alice has a binary string x and Bob has a bi-
nary string y. However, two problems remain. First, Al-
ice’s string may differ from Bob’s string. Second, since the
bit error rate is non-zero, Eve has some information about
Alice’s and Bob’s string. The key generation step may be
divided into the following stages:

1. Classical pre-processing
This is an optional step. Classical pre-processing has

the advantage of achieving a higher key generation rate
and tolerating a higher bit error rate [25,26,27].
Alice and Bob may pre-process their data by ei-
ther a) some type of error detection algorithm or b)
some random process. An example of an error de-
tection algorithm is a B-step [25], where Alice ran-
domly permutes all her bits and broadcasts the par-
ity of each adjacent pair. In other words, starting
from Ex D (x1; x2; : : : ; x2N�1; x2N ), Alice broadcasts
a string Ex1 D (x
(1) C x
(2) mod 2; x
(3) C x
(4)
mod 2; : : : ; x
(2N�1) C x
(2N) mod 2), where � is
a random permutation chosen by Alice. Moreover, Al-
ice informs Bob which random permutation, � , she
has chosen. Similarly, starting from Ey D (y1; y2; : : : ;
y2N�1; y2N ), Bob randomly permutes all his bits using
the same � and broadcasts the parity bit of all adja-
cent pairs. I. e. Bob broadcasts Ey1 D (y
(1) C y
(2)
mod 2; y
(3) C y
(4) mod 2; : : : ; y
(2N�1) C y
(2N)
mod 2). For each pair of bits, Alice and Bob keep
the first bit iff their parities of the pair agree. For in-
stance, if x
(2k�1) C x
(2k) mod 2 D y
(2k�1) C
y
(2k) mod 2, thenAlice keeps x
(2k�1) and Bob keeps
y
(2k�1) as their new key bit. Otherwise, they drop the
pair (x
(2k�1); x
(2k)) and (y
(2k�1)x
(2k)) completely.
Notice that the above protocol is an error detection pro-
tocol. To see this, let us regard the case where xi 6D yi as
an error during the quantum transmission stage. Sup-
pose that for each bit, i, the event xi 6D yi occurs with
an independent probability p. For each k, the B-step
throws away the cases where a single error has occurred
for the two locations �(2k � 1) and �(2k) and keeps the
cases when either no error or two errors has occurred.
As a result, the error probability after the B-step is re-
duced from O(p) to O(p2). The random permutation
of all the bit locations ensures that the error model can
be well described by an independent identical distribu-
tion (i.i.d.).
An example of a random process is an adding noise
protocol [26] where, for each bit xi, Alice randomly and
independently chooses to keep it unchanged or flip it
with probabilities, 1� q and q respectively, where the
probability q is publicly known.

2. Error correction
Owing to noises in the quantum channel, Alice and
Bob’s raw keys, x and y, may be different. Therefore, it is
necessary for them to reconcile their keys. One simple
way of key reconciliation is forward key reconciliation,
whose goal is for Alice to keep the same key x and Bob
to change his key from y to x. Forward key reconcili-
ation can be done by either standard error correcting
codes such as low-density-parity-check (LDPC) codes
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or specialized (one-way or interactive) protocols such
as Cascade protocol [28].

3. Privacy amplification
To remove any residual information Eve may have
about the key, Alice and Bobmay apply some algorithm
to compress their partially secure key into a shorter one
that is almost perfectly secure. This is called privacy
amplification. Random hashing and a class of two-uni-
versal hash functions are often suitable for privacy am-
plification. See for example [29] and [18] for discussion.

Composability

A key generated in QKD is seldom used in isolation. In-
deed, onemay concatenate aQKDprocessmany times, us-
ing a small part of the key for authentication each time and
the remaining key for other purposes such as encryption.
It is important to show that using QKD as a sub-routine in
a complicated cryptographic process does not create new
security problems. This issue is called the composability of
QKD and, fortunately, has been solved in [30].

Composability of QKD is not only of academic inter-
est. It allows us to refine our definition of security [30,31]
and directly impacts on the parameters used in the classi-
cal post-processing protocol.

Security Proofs of Practical QKD Systems

As will be discussed in Sect. “Experimental Fundamen-
tals”, practical QKD systems suffer from real-life imperfec-
tions. Proving the security of QKD with practical systems
is a hard problem. Fortunately, this has been done with
semi-realistic models by Inamori, Lütkenhaus and May-
ers [32] and in a more general setting by Gottesman, Lo,
Lütkenhaus, and Preskill [33].

Experimental Fundamentals

Quantum cryptography can ensure the secure commu-
nication between two or more legitimate parties. It is
more than a beautiful idea. Conceptually, it is of great im-
portance in the understandings of both information and
quantum mechanics. Practically, it can provide an ulti-
mate solution for confidential communications, thusmak-
ing everyone’s life easier.

By implementing the quantum crypto-system in the
real life, we can test it, analyze it, understand it, ver-
ify it, and even try to break it. Experimental QKD has
been performed since about 1989 and great progress has
been made. Now, you can even buy QKD systems on the
market.

A typical QKD set-up includes three standard parts:
a source (Alice), a channel, and a detection system (Bob).

A Brief History

The First Experiment The proposal of BB84 [1] pro-
tocol seemed to be simple. However, it took another
five years before it was first experimentally demonstrated
by Bennett, Bessette, Brassard, Salvail, and Smolin in
1989 [34]. This first demonstration was based on po-
larization coding. Heavily attenuated laser pulses instead
of single photons were used as quantum signals, which
were transmitted over 30 cm open air at a repetition rate
of 10Hz.

From Centimeter to Kilometer 30 cm is not that ap-
pealing for practical communications. This short distance
is largely due to the difficulty of optical alignment in
free space. Switching the channel from open air to op-
tical fiber is a natural choice. In 1993, Townsend, Rar-
ity, and Tapster demonstrated the feasibility of phase-cod-
ing fiber-based QKD over 10 km telecom fiber [35] and
Muller, Breguet, and Gisin demonstrated the feasibility
of polarization-coding fiber-based QKD over 1.1 km tele-
com fiber [36]. (Also, Jacobs and Franson demonstrated
both free-space [37] and fiber-based QKD [38].) These
are both feasibility demonstrations by means that nei-
ther of them applied random basis choosing at Bob’s side.
Townsend’s demonstration seemed to be more promising
than Muller’s due to the following reasons.

1. The polarization dispersion in fibers is highly unpre-
dictable and unstable. Therefore polarization coding
requires much more controlling in the fiber than phase
coding. In fiber-based QKD implementations, phase
coding is in general more preferred than polarization
coding.

2. Townsend et al. used 1310 ns laser as the source, while
Muller et al. used 800 ns laser as the source. 1310 nm
is the second window wavelength of telecom fibers
(the first window wavelength is 1550 nm). The absorp-
tion coefficient of standard telecom fiber at 1310 nm is
0.35 dB/km, comparing to 3 dB/km at 800 nm. There-
fore the fiber is more transparent to Townsend et al.’s
set-up.

P. D. Townsend demonstrated QKD with Bob’s random
basis selection in 1994 [39]. It was phase-coding and was
over 10 km fiber. The source repetition rate was 105MHz
(which is quite high even by today’s standard) but the
phase modulation rate was 1.05MHz. This mismatch
brought a question mark on its security.
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Getting Out of the Lab It is crucial to test QKD tech-
nique in the field deployed fiber. Muller, Zbinden, and
Gisin successfully demonstrated the first QKD experiment
outside the labs with polarization coding in 1995 [40,41].
This demonstration was performed over 23 km installed
optical fiber under Lake Geneva. (Being under water,
quantum communication in the optical fiber suffered less
noise.)

There is less control over the field deployed fiber than
fiber in the labs. Therefore its stabilization becomes chal-
lenging. To solve this problem, A. Muller et al. designed
the “plug & play” structure in 1997 [42]. A first experi-
ment of this scheme was demonstrated by H. Zbinden et
al. in the same year [43]. Stucki, Gisin, Guinnard, Robordy,
and Zbinden later demonstrated a simplified version of the
“plug & play” scheme under Lake Geneva over 67 km tele-
com fiber in 2002 [44].

With a Coherent Laser Source The original BB84 [1]
proposal required a single photon source. However, most
QKD implementations are based on faint lasers due to the
great challenge to build the perfect single photon sources.
In 2000, the security of coherent laser based QKD systems
was analyzed first against individual attacks [45]. Finally,
the unconditional security of coherent laser based QKD
systems was proven in 2001 [32] and in a more general set-
ting in 2002 [33]. Gobby, Yuan, and Shields demonstrated
an experiment based on [45] in 2005 [46] (Note that this
work was claimed to be unconditionally secure. However,
due to the limit of [45], this is only true against individual
attacks rather than the most general attack).

The security analysis in [32,33] will severely limit the
performance of unconditionally secureQKD systems. For-
tunately, since 2003 the decoy state method has been pro-
posed [47,48,49,50,51,52] by Hwang and extensively an-
alyzed by our group at the University of Toronto and
by Wang. The first experimental demonstration of decoy
state QKD was reported by us in 2006 [53] over 15 km
telecom fiber and later over 60 km telecom fiber [54]. Sub-
sequently, decoy state QKD was further demonstrated by
several other groups [55,56,57,58,59]. The readers may re-
fer to Subsect. “Decoy State Protocols” for details of decoy
state protocols.

Sources

Single Photon Sources are demanded by the original
BB84 [1] proposal. Suggested by its name, the single
photon sources are expected to generate exactly one
photon on demand. The bottom line for a single pho-
ton source is that nomore than one photon can be gen-

erated at one time. It is very hard to build a perfect sin-
gle photon source (i. e., no multi-photon production).
Despite tremendous effort made by many groups, per-
fect single photon source is still far from practical. For-
tunately, the proposal and implementation of decoy
state QKD (see Subsect. “Decoy State Protocols”) make
it unnecessary to use single photon sources in QKD.

Parametric Down-Conversion (PDC) Sources are often
used as the entanglement source. Its principle is that
a high energy (� 400nm) photon propagates through
a highly non-linear crystal (usually BBO), producing
two entangled photons with frequency halved. PDC
sources are usually used for entanglement-based QKD
systems (e. g. Ekert [3] protocol).
PDC sources are also used as “triggered single photon
sources”, in which Alice possesses a PDC source and
monitor one arm of its outputs. In case that Alice sees
a detection, she knows that there is one photon emit-
ted from the other arm. Experimental demonstration
of QKD with PDC sources is reported in [60].

Attenuated Laser Sources are the most commonly used
sources in QKD experiments. They are essentially
the same as the laser sources used in classical op-
tical communication except for that heavy attenua-
tion is applied on them. They are simple and reli-
able, and they can reachGigahertz with little challenge.
In BB84 system and differential-phase-shift-keying
(DPSK) system (to be discussed in Subsect. “Differen-
tial-Phase-Shift-Keying (DPSK) Protocols”), the laser
source is usually attenuated to below 1 photon per
pulse. In Gaussian-modulated coherent-state (GMCS)
system (to be discussed in Subsect. “Gaussian-Mod-
ulated Coherent State (GMCS) Protocol”), the laser
source is usually attenuated to around 100 photons per
pulse.
Attenuated laser sources used to be considered to
be non-ideal for BB84 systems as they always have
non-negligible probability of emitting multi-pho-
ton pulses regardless how heavily they are atten-
uated. However, the discovery and implementation
of decoy method [47,48,49,50,51,52,53,54,55,56,57,58]
made coherent laser source much more appealing.
With decoy method, it is possible to make BB84 sys-
tem with laser source secure without significant losses
on the performance.

Channels

Standard Optical Single-Mode Fiber (SMF) is the most
popular choice for now. It can connect two arbi-
trary points, and can easily be extended to networks.
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Moreover, it is deployed in most developed urban ar-
eas.
SMF has two “window wavelengths”: one is 1310 nm
and the other is 1550 nm. The absorptions at these
two wavelengths are particularly low (� 0:35 dB/km at
1310 nm, and � 0:21 dB/km at 1550 nm). Nowadays
most fiber-based QKD implementations use 1550 nm
photons as information carriers.
The main disadvantage of optical fiber is its birefrin-
gence. The strong polarization dispersion made it hard
to implement polarization-coding system. Also it has
strong spectral dispersion, which affects the high speed
(10+ GHz) QKD systems heavily [61] as the pulses are
broadened and overlap with each other. For this rea-
son, the loss in fibers (0.21 dB/km at 1550 nm) puts an
limit on the longest distance that a fiber-based QKD
system can reach.

Free Space is receiving more andmore attention recently.
It is ideal for the polarization coding. There is negligi-
ble dispersion on the polarization and the frequency.
However, the alignment of optical beams can be chal-
lenging for long distances, particularly due to the at-
mospheric turbulence. Notice that open-air QKD re-
quires a direct line of sight betweenAlice and Bob (un-
less some forms of mirrors are used). Buildings and
mountains are serious obstacles for open-air QKD sys-
tems.
The greatest motivation for open-air QKD scheme is
the hope for ground-to-satellite [62] and satellite-to-
satellite quantum communication. As there is negligi-
ble optical absorption in the outer space, we may be
able to achieve inter-continental quantum communi-
cation with free-space QKD.

Detection Systems

InGaAs-APD Single Photon Detectors are the most
popular type of single-photon detectors in fiber-based
QKD and they are commercially available. InGaAs-
APD Single Photon Detectors utilize the avalanche ef-
fect of semiconductor diodes. A strong biased voltage
is applied on the InGaAs diode. The incident photon
will trigger the avalanche effect, generating a detectable
voltage pulse. The narrow band gap of InGaAs made
it possible to detect photons at telecom wavelengths
(1550 nm or 1310 nm).
InGaAs APD based single photon detectors have sim-
ple structure and commercially packaged. They are
easy to calibrate and operate. The reliability of InGaAs
APD is relatively high. They normally work at �50ıC
to �110ıC to lower the dark count rate. This tempera-

ture can be easily achieved by thermal-electric coolers.
The detection efficiency of InGaAs-APD based single
photon detectors is usually� 10% [63].
In single photon detectors, a key parameter (besides
detection efficiency) is the dark count rate. The dark
count is the event that the detector generates a de-
tection click while no actual photon hits it (i. e. “false
alarm”). The dark count rate of InGaAs single photon
detector is relatively high (10�5 per gate; The concept
of gating will be introduced below.) even if it is cooled.
The after-pulse effect is that the dark count rate of the
detector increases for a time period after a successful
detection. This effect is serious for InGaAs single pho-
ton detectors. Therefore the blank circuit is often in-
troduced to reduce this effect. The mechanism of the
blank circuit is that the detector is set to be deactivated
for a time period, which is called the “dead time”, af-
ter a detection event. The dead time should be set to
long enough so that when the detector is re-activated,
the after-pulse effect is negligible. The dead time for
InGaAs single photon detector is typically in the order
of microseconds [63]. The long after pulse effect, to-
gether with the large timing jitter limits the InGaAs-
APD based single photon detectors to work no faster
than severalmegahertz.Moreover, the blank circuit re-
duces the detection efficiency of InGaAs-APD based
single photon detectors.
An additional method to reduce the dark count rate is
to apply the gating mode, i. e., the detectors are only
activated when the photons are expected to hit them.
Gating mode reduces the dark count rate by several
orders and is thus used in most InGaAs-APD single
photon detectors. However, it may open up a security
loophole [64,65].
There is a trade-off between the detection efficiency
and the dark count rate. As the biased voltage on an
APD increases, both the detection efficiency and the
dark count rate increase.
Recently, it has been reported that, by gating an In-
GaAs detector in a sinusoidal manner, it is possible to
reduce the dead time and operate a QKD system at
500MHz, see [66]. This result seems to be an impor-
tant development which could make InGaAs detectors
competitive with newer single photon detector tech-
nologies such as SSPDs (to be introduced below).

Si-APD Single Photon Detectors are ideal for detection
of visible photons (say 800 nm). They have negligible
dark count rate and can work at room temperature.
They are very compact in size. More importantly, they
have high detection efficiency (> 60%) and canwork at
gigahertz. These detectors are ideal for free space QKD
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systems. However, the band gap of silicon is too large
to detect photons at telecom wavelength (1550 nm or
1310 nm), and the strong attenuation of telecom fiber
on visible wavelengths makes it impractical to use visi-
ble photons in long distance fiber-based QKD systems.

Parametric Up-Conversion Single Photon Detectors
try to use Si-APD to detect telecom wavelength pho-
tons. It uses periodically poled lithium niobate (PPLN)
waveguide and a pumping light to up-convert the
incoming telecom frequency photons into visible
frequency, and uses Si-APD to detect these visible
photons. The high speed and low timing-jitter of Si-
APDs make it possible to perform GHz QKD on fiber-
based system with up-conversion single photon detec-
tors [67,68].
The efficiency of up-conversion detectors is similar to
that of InGaAs APD single photon detectors. There is
also a trade-off between the detection efficiency and
the dark count rate. When increasing the power of the
pumping light, the conversion efficiency will increase,
improving the detection efficiency. Meanwhile, more
pumping photons and up-converted pumping pho-
tons (with frequency doubled) will pass through the
filter and enter the Si-APD, thus increasing the dark
count rate [68].

Transiting-Edge Sensor (TES) is based on critical state
superconductor rather than semiconductor APDs. It
uses squared superconductor (typically tungsten) thin
film as “calorimeter” to measure the electron temper-
ature. A biased voltage is applied on the thin film to
keep it in critical state. Once one or more photons are
absorbed by the sensor, the electron temperature will
change, leading to a change of the current. This current
change can be detected by a superconductive quan-
tum-interference device (SQUID) array [69].
The TES single photon detectors can achieve very high
detection efficiency (up to 89%) at telecomwavelength.
The dark count rate is negligible. Moreover, TES de-
tectors can resolve photon numbers. This is because
the electron temperature change is proportional to the
number of photons that have been absorbed.
The thermal nature of TES detectors limits their count-
ing rates. Once some photons were absorbed by the
sensor, it would take a few microseconds before the
heat is dissipated to the substrate. This long relaxation
time limits the counting rate of TES detector to no
more than a few megahertz [69]. This is a major draw-
back of TES.
The bandwidth of TES detector is extremely wide. The
detector is sensitive to all the wavelengths. Even the
black body radiation from the fiber or the environment

can trigger the detection event, thus increasing the
dark count rate. To reduce the dark counts caused by
other wavelengths, a spectral filter is necessary. How-
ever, this will increase the internal loss and thus reduce
the detection efficiency.
One of the greatest disadvantage of TES detector is its
working temperature: 100mK. This temperature prob-
ably requires complicated cooling devices [69].

Superconductive Single Photon Detectors (SSPDs) also
use superconductor thin film to detect incoming pho-
tons. However, instead of using a piece of plain thin
film, a pattern of zigzag superconductor (typically
NbN) wire is formed. The superconductive wire is set
to critical state by applying critical current through
it. Once a photon hits the wire, it heats a spot on the
wire and makes the spot over-critical (i. e., non-su-
perconductive). As the current is the same as before,
the current density in the areas around this hot-spot
increases, thus making these areas non-superconduc-
tive. As a result, a section of the wire becomes non-
superconductive, and a voltage spike can be observed
as the current is kept constant [61].
The SSPD can achieve very high (up to 10GHz) count-
ing rate. This is because the superconductor wire used
in SSPD can dissipate the heat in tens of picoseconds. It
also has very low dark count rate (around 10Hz) due
to the superconductive nature. The SSPDs should be
able to resolve the incident photon number in princi-
ple. However, photon number resolving SSPDs have
never been reported yet.
The efficiency of SSPD is lower than that of TES. This
is because only part (� 50%) of the sensing area is cov-
ered by the wire. The fabrication of such complicated
zigzag superconductor wire with smooth edge is also
very challenging.
The working temperature of SSPD (�3K) is signifi-
cantly higher than that of TES. SSPDs can work in
closed-cycle refrigerator.Moreover, this relatively high
working temperature significantly reduces the relax-
ation time [61].

Homodyne Detectors are used to count the photon num-
ber of a very weak pulse (� 100 photons). The princi-
ple is to use a very strong pulse (often called the local
oscillator) to interfere with the weak pulse. Then use
two photo diodes to convert the two resulting optical
pulses into electrical signals, and make a substraction
between the two electrical signals.
The homodyne detectors are in general very efficient
as there is always some detection output given some
input signals. However, the noise of the detectors as
well as in the electronics is very significant. Moreover,
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the two photo diodes in the homodyne detector have
to be identical, which is hard to meet in practice.
The homodyne detectors are commonly used in
GMCS QKD systems, and they are so far the only
choice for GMCS QKD systems. Recently, homodyne
detectors have also been used to implement the BB84
protocol.

Truly QuantumRandom Number Generators

An important but often under-appreciated requirement
for QKD is a high data-rate truly quantum random num-
ber generator (RNG). An RNG is needed because most
QKD protocols (with the exception of a passive choice of
bases in an entanglement-based QKD protocol) require
Alice to choose actively random bases/signals. Given the
high repetition rate of QKD, such a RNGmust have a high
data-rate. To achieve unconditional security, a standard
software-based pseudo-random number generator cannot
be used because it is actually deterministic. So, a high data
rate quantum RNG is a natural choice. Incidentally, some
firms such as id Quantique do offer commercial quan-
tum RNGs. Unfortunately, it is very hard to generate RNG
by quantum means at high-speed. In practice, some im-
perfections/bias in the numbers generated by a quantum
RNG are inevitable. The theoretical foundation of QKD
is at risk because existing security proofs all assume the
existence of perfect RNGs and do not apply to imper-
fect RNGs.

Experimental Implementation of BB84 Protocol

In this section, we will focus mainly on the optical layer.
We will skip several important layers. In practice, the con-
trol/electronics layer is equally important. Moreover, it
is extremely challenging to implement the classical post-
processing layer in real-time, if one chooses block sizes
of codes to be long enough to achieve unconditional
security.

Polarization Coding

Polarization coding usually uses four laser sources gen-
erating the four polarization states of BB84 [1] protocol.
A conceptual schematic is shown in Fig. 3. Note that due
to polarization dispersion of a fiber, usually people need
some compensating like the waveplates.

The polarization compensation should be imple-
mented dynamically as the polarization dispersion in the
fiber changes frequently. This is solved by introducing the
electrical polarization controller in [58].

Quantum Cryptography, Figure 3
Conceptual schematic for polarization-codingBB84QKD system.
LD: Laser Diode; CWP: Compensating Wave Plate; HWP: Half
Wave Plate; PBS: Polarizing Beam Splitter; SPD: Single Photon
Detector

Quantum Cryptography, Figure 4
Conceptual schematic for doubleMach–Zehnder interferometer
phase-codingBB84QKD system. PM: PhaseModulator; BS: Beam
Splitter; SPD: Single Photon Detector

Phase Coding

Original Scheme is basically a big interferometer as
shown in Fig. 2. However it is not practical as the sta-
bility of such a huge interferometer is extremely poor.

Double Mach–Zehnder Interferometer Scheme is an
improved version of the original proposal. It has two
interferometers and there is only one channel con-
necting Alice and Bob (comparing to the two chan-
nels in the original proposal). A conceptual set-up
is shown in Fig. 4. We can see that the two signals
travel through the same channel. They only propa-
gate through different paths locally in the two Mach–
Zehnder interferometers. Therefore people only need
to compensate the phase drift of the local interferom-
eters (the polarization drift in the channel still needs
to be compensated). This is a great improvement over
the original proposal. However, the local compensa-
tion has to be implemented in real time. This is quite
challenging. An example set-up that implemented the
real time compensation of both polarization and phase
drifting is reported in [70].

Faraday–Michelson Scheme is an improved version of
the double Mach–Zehnder interferometer scheme. It
still has two Mach–Zehnder interferometers but each
interferometer has only one beam splitter. The light
propagates through the same section of fiber twice
due to the Faraday mirror. The schematic is shown in
Fig. 5. We can see that the polarization drift is self-
compensated. This is a great advance in uni-direc-
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Quantum Cryptography, Figure 5
Conceptual schematic for Faraday–Michelson phase-coding
BB84 QKD system. FM: FaradayMirror, PM: PhaseModulator; BS:
Beam Splitter; C: Circulator; SPD: Single Photon Detector

Quantum Cryptography, Figure 6
Conceptual schematic for “Plug & Play” phase-coding BB84 QKD
system. FM: Faraday Mirror, PM: Phase Modulator; BS: Beam
Splitter; PBS: Polarizing Beam Splitter; C: Circulator; SPD: Single
Photon Detector

tional QKD implementation and is first proposed and
implemented in [71].
Nonetheless, the phase drift of local interferometers
still needs compensation. Due to the fast fluctuation
of phase drift (a drift of 2� usually takes a few sec-
onds), this compensation should be done in real-time.
A Faraday–Michelson decoy state QKD implementa-
tion over 123.6 km has been reported in [59].

Plug & Play Scheme is another improved version of the
double Mach–Zehnder interferometer scheme. It has
only one Mach–Zehnder interferometer and the light
propagates through the same channel and interferom-
eter twice due to the faraday mirror on Alice’s side.
A conceptual set-up is shown in Fig. 6. We can see that
both the polarization drift and the phase drift are auto-
matically compensated. A “Plug & Play” scheme based
decoy state QKD implementation over 60 km has been
reported in [54].
Nonetheless, the bi-directional design brings compli-
cations to security as Eve can make sophisticated oper-
ations on the bright pulses sent from Bob to Alice. This
is often called the “Trojan horse” attack [72]. Recently,
the security of “Plug and Play” QKD system has been
proven in [73].

Sagnac Loop Scheme Another bi-directional optical
layer design is to use a Sagnac loop where the quan-
tum signal is encoded in the relative phase between
the clockwise and counter-clockwise pulses that go
through the loop. The typical schematic is shown in
Fig. 7.

Quantum Cryptography, Figure 7
Conceptual schematic for Sagnac loop phase-coding BB84 QKD
system. PM: Phase Modulator; BS: Beam Splitter; C: Circulator;
SPD: Single Photon Detector

Sagnac loop QKD is simple to set up and can be easily
used in a network setting with a loop topology. How-
ever, its security analysis is highly non-trivial.

Other QuantumKey Distribution Protocols

Given the popularity of the BB84 protocol, why should
people be interested in other protocols? There are at least
three answers to this question. First, to better understand
the foundations of QKD and its generality, it is useful to
have more than one protocol. Second, different QKD pro-
tocols may have different advantages and disadvantages.
They may require different technologies to implement.
Having different protocols allows us to compare and con-
trast them. Third, while it is possible to implement stan-
dard BB84 protocol with attenuated laser pulses, its per-
formance in terms of key generation rate and maximum
transmission distance is somewhat limited. Therefore, we
have to study other protocols. Since, from a practical stand
point, the third reason is the most important one, we will
elaborate on it in the following paragraph.

The original BB84 [1] proposal requires a single pho-
ton source. However, most QKD implementations are
based on faint lasers due to the great challenge to build
perfect single photon sources. Faint laser pulses are weak
coherent states that follow Poisson distribution for the
photon number. The existence of multi-photon signals
opens up new attacks such as photon-number-splitting at-
tack. The basic idea of a photon-number-splitting attack
is that Eve can introduce a photon-number-dependent
transmittance. In other words, she can selectively suppress
single-photon signals and transmit multi-photon signals
to Bob. Notice that, for each multi-photon signal, Eve can
beamsplit it and keep one copy for herself, thus allowing
her to gain a lot of information about the raw key.

The security of coherent laser based QKD systems
was analyzed first against individual attacks in 2000 [45],
then eventually for a general attack in 2001 [32] and
2002 [33]. Unfortunately, unconditionally secure QKD
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based on conventional BB84 protocol [32,33] will severely
limit the performance of QKD systems. Basically, Alice has
to attenuate her source so that the expected number �
of photon per pulse is of the same order as the transmit-
tance, �. As a result, the key generation rate will scale only
quadratically with the transmittance of the channel.

Some of the protocols discussed in the following sub-
sections may dramatically improve the performance of
QKD over standard BB84 protocol. For instance, the de-
coy state protocol has been proven to provide a key gener-
ation rate that scales linearly with the transmittance of the
channel and has been successfully implemented in experi-
ments.

We conclude with some simple alternative QKD pro-
tocols. In 1992, Bennett proposed a protocol (B92) that
makes use of only two non-orthogonal states [2]. A six-
state QKD protocol was first noted by Bennett and co-
workers [74] and some years later by Bruss [75]. It has
an advantage of being symmetric. Even QKD protocols
with orthogonal states have been proposed [76]. Efficient
BB84 and six-state QKD protocols have been proposed
and proven to be secure by Lo, Chau and Ardehali [77].
A Singaporean protocol has also been proposed. Recently,
Gisin and co-workers proposed a one-way coherent QKD
scheme [78].

Entanglement-Based Protocols

Proposals In 1991, Ekert proposed the first entangle-
ment based QKD protocol, commonly called E91 [3]. The
basic idea is to test the security of QKD by using the viola-
tion of Bell’s inequality. Note that one can also implement
the BB84 protocol by using an entanglement source. Imag-
ine Eve prepares an entangled state of a pair of qubits and
sends one qubit to Alice and the second qubit to Bob. Each
of Alice and Bob randomly chooses one of the two conju-
gate bases to perform a measurement.

Implementations The key part of entanglement-based
quantum cryptography is to distribute an entangled pair
(usually EPR pair) to two distant parties, Alice and Bob.

Polarization entanglement is preferred in QKD as it
is easy to measure the polarization (typically via polariz-
ing beam splitter). The air has negligible birefringence and
thus is the perfect channel for polarization-entanglement
QKD.

In free-space QKD, atomspherical turbulence may
shift the light beam. Therefore the collection of incident
photon is challenging. Usually large diameter optical tele-
scope is needed to increase the collection efficiency.

Quantum Cryptography, Figure 8
Conceptual schematic entanglement-based QKD system with
the source in the middle of Alice and Bob

Quantum Cryptography, Figure 9
Conceptual schematic entanglement-based QKD system with
the source at Alice’s side. DET: Alice’s detection system

A standard approach is to put the entanglement source
right in the middle of Alice and Bob, see Fig. 8. Once an
entangled pair is generated, the two particles are directed
to different destinations. Alice and Bob measure the par-
ticles locally, and keep the result as the bit value. This ap-
proach has potential in the ground-satellite intercontinen-
tal entanglement distribution, in which the entanglement
source is carried by the satellite and the entangled photons
are sent to two distant ground stations. A recent source-
in-the-middle entanglement-based quantum communica-
tion work over 13 km and is reported in [79].

A simpler version is to include the entanglement
source in Alice’s side locally, see Fig. 9. Once Alice gen-
erates an entangled pair, she keeps one particle and send
the other to Bob. Both Alice and Bob measure the particle
locally and keep the result as the bit value. This approach is
significant simpler than the above design because only Bob
needs the telescope and compensating parts. A recent ex-
periment of source-in-Alice entanglement-basedquantum
communication over 144 km open air is reported in [80].

Decoy State Protocols

Proposals Recall that BB84 implemented with weak co-
herent state has a key generation rate that scales only
quadratically with the transmittance. The decoy state pro-
tocol can dramatically increase the key generation rate so
that it scales linearly with the transmittance. In a decoy
state protocol, Alice prepares some decoy states in addi-
tion to signal states. The decoy states are the same as the
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Quantum Cryptography, Figure 10
Conceptual schematic for decoy state BB84 QKD system (dou-
ble Mach–Zehnder interferometer phase-coding) with ampli-
tude modulator. PM: Phase Modulator; AM: Amplitude Modula-
tor; BS: Beam Splitter; SPD: Single Photon Detector

signal state, except for the expected photon number. For
instance, if the signal state has an average photon num-
ber� of order 1 (e. g. 0.5), the decoy states have an average
photon number �1, �2, etc. The decoy state idea was first
proposed by Hwang [47], who suggested using a large �
(e. g. 2) as a decoy state. Our group provided a rigorous
proof of security to decoy state QKD[48,49]. Our numer-
ical simulations showed clearly that decoy states provide
a dramatic improvement over non-decoy protocols. In the
limit of infinitely many decoy states, Alice and Bob can
effectively limit Eve’s attack to a simple beam-splitting at-
tack. Moreover, we proposed practical protocols. Instead
of using a large � as a decoy state, we proposed using
small �’s as decoy states [48]. For instance, we proposed
using a vacuum state as the decoy state to test the back-
ground and a weak � to test the single-photon contribu-
tion. We and Wang analyzed the performance of practical
protocols in detail [50,51,52].

Notice that the decoy state is a rather general idea that
can be applied to other QKD sources. For instance, decoy
state protocols have recently been proposed in [81,82,83]
for parametric down conversion sources. For a compari-
son of those protocols, see [84].

Implementations The first experimental demonstration
of decoy state QKD was reported by our group in 2006
first over 15 km telecom [53] fiber and later over 60 km
telecom fiber [54]. Subsequently, the decoy state QKDwas
further demonstrated experimentally by several groups
worldwide [55,56,57,58].

The implementation of decoy state QKD is straight-
forward. The key part is to prepare signals with different
intensities. A simple solution is to use an amplitude mod-
ulator to modulate the intensities of each signal to the de-
sired level, see Fig. 10. Decoy state QKD implementations
using amplitude modulator to prepare different states are
reported in [53,54,55,56,57].

The amplitude modulator has the disadvantage that
the preparation of vacuum state is quite challenging. An
alternative solution is to use laser diodes of different in-

Quantum Cryptography, Figure 11
Conceptual schematic for decoy state BB84 QKD system (dou-
ble Mach–Zehnder interferometer phase-coding) with multiple
laser diodes. LDx: LaserDiodes at different intensities; PM: Phase
Modulator; BS: Beam Splitter; SPD: Single Photon Detector

tensities to generate different states, see Fig. 11. This so-
lution requires multiple laser diodes and high-speed opti-
cal switch, and is thus more complicated than the ampli-
tudemodulator solution. It is also challenging to guarantee
that all the laser diodes are identical so that Eve cannot tell
which source generates some specific pulse. Nonetheless,
perfect vacuum states can be easily prepared in this way.
Decoy state QKD implementations using multiple laser
diodes are reported in [58,59]. Decoy state with a para-
metric down conversion source has been experimentally
implemented in [85].

Strong Reference Pulse Protocols

Proposals The proposal of strong reference pulse QKD
dated back to Bennett’s 1992 paper [2]. The idea is to add
a strong reference pulse, in addition to the signal pulse.
The quantum state is encoded in the relative pulse between
the reference pulse and the signal pulse. Bob decodes by
splitting a part of the strong reference pulse and interfer-
ing it with the signal pulse. The strong reference pulse im-
plementation can counter the photon number splitting at-
tack by Eve because it removes the neutral signal in the
QKD system. Recall that in the photon number splitting
attack, Eve suppresses single photon signals by sending
a vacuum. This works because the vacuum is a neutral
signal that leads to no detection. In contrast, in a strong
reference pulse implementation of QKD, a vacuum signal
is not a neutral signal. Indeed, if Eve replaces the signal
pulse by a vacuum and keeps the strong reference pulse
unchanged, then the interference experiment by Bob will
give non-zero detection probability and a randomoutcome
of “0” or “1”. On the other hand, if Eve removes both the
signal and the reference pulses, then Bob may detect Eve’s
attack by monitering the intensity of the reference pulse,
which is supposed to be strong.

In some recent papers, the unconditional security of
B92 QKD with strong reference pulse has been rigor-
ously proven. However, those proofs require Bob’s system
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to have certain properties and do not apply to standard
threshold detectors.

Implementations The B92 [2] protocol is simpler to im-
plement than BB84 [1] protocol. However, its weakness
in security limits people’s interest on its implementation.
A recent implementation of B92 protocol over 200 m fiber
is reported in [86].

Gaussian-Modulated Coherent State (GMCS) Protocol

Proposals Instead of using discrete qubit states as in
the BB84 protocol, one may also use continuous variables
for QKD. Early proposals of continuous variables QKD
use squeezed states, which are experimentally challenging.
More recently, gaussian-modulated coherent states have
also been proposed for QKD. Since a laser naturally emits
a coherent state, compared to a squeezed state QKD pro-
posal, a GMCS QKD protocol is experimentally more fea-
sible. In GMCSQKD, Alice sends Bob a sequence of coher-
ent state signals. For each signal, Alice draws two random
numbers XA and PA from a set of Gaussian random num-
ber with a mean of zero and a variance of VAN0 and sends
a coherent state jXA C iPAi to Bob. Bob randomly chooses
to measure either the X quadrature of the P quadrature
with a phase modulator and a homodyne detector. After
performing his measurement, Bob informs Alice which
quadrature he has performed for each pulse, through an
authenticated public classical channel. Alice drops the ir-
relevant data and keeps only the quadrature that Bob has
measured. Alice and Bob now share a set of correlated
Gaussian variables which they regard as the raw key. Al-
ice and Bob randomly select a subset of their signals and
publicly broadcast their data to evaluate the excess noise
and the transmission efficiency of the quantum channel. If
the excess noise is higher than some prescribed level, they
abort. Otherwise, Alice and Bob perform key generation
by some prescribed protocol.

An advantage of a GMCS QKD is that every signal can
be used to generate a key, whereas in qubit-based QKD
such as the BB84 protocol losses can substantially reduce
the key generation rate. Therefore, it is commonly believed
that for short-distance (say< 15 km) applications, GMCS
QKD may give a higher key generation rate.

GMCS QKD has been proven to be secure only against
individual attacks. The security of GMCS QKD against the
most general type of attack – joint attack – remains an
open question.

Implementations GMCS protocol has significant ad-
vantage over the BB84 [1] protocol at short distances. It

Quantum Cryptography, Figure 12
Conceptual schematic for Gaussian-modulated Coherent State
QKD system. PM: Phase Modulator; AM: Amplitude Modulator;
BS: Beam Splitter; PD: Photo Diode; HD: Homodyne Detector (in-
side dashed box)

was first implemented by F. Grosshans et al. in 2003 [87].
It was shown to be working with channel loss up to 3.1 dB,
which is equivalent to the loss of 15 km telecom fiber.
Nonetheless, the strong spectral and polarization disper-
sion of telecom fiber made it challenging to build up
a fiber-based GMCS system. Lodewyck, Debuisschert, Tu-
alle-Brouri, and Grangier built the first fiber-based GMCS
system in 2005 [88] but only over a few meters. This dis-
tance was largely extended to 14 km by Legré, Zbinden,
andGisin in 2006 [89] with the introduction of the “plug &
play” design, which brought questions on its security. The
uni-directional GMCS QKD has been later implemented
over 5 km optical fiber by Qi, Huang, Qian, and Lo in
2007 [90] and over 25 km optical fiber by J. Lodewyck et
al. in 2007 [91].

GMCS QKD requires dual-encoding on both ampli-
tude quadrature and phase quadrature, and homodyne de-
tection for decoding, see Fig. 12. Its implementation is in
general more challenging than that of BB84 protocol.

Differential-Phase-Shift-Keying (DPSK) Protocols

Proposals In DPSK protocol, a sequence of weak coher-
ent state pulses is sent from Alice to Bob. The key bit is
encoded in the relative phase of the adjacent pulses. There-
fore, each pulse belongs to two signals. DPSK protocol also
defeats the photon number splitting attack by removing
the neutral signal. Evemay attack a finite train of signals by
measuring its total photon number and then splitting off
one photon, whenever the photon number is larger than
one. But, since each pulse belongs to two signals, the pulses
in the boundary of the train will interfere with the pulses
immediately outside the boundary. Therefore, Eve’s attack
does not allow her to gain full information about all the
bit values associated with the train. Moreover, by splitting
the signal, Eve has reduced the amplitude of the pulses at
the boundary of the train. Therefore, Bob will detect Eve’s
presence by the higher bit error rates for the bit values be-
tween the pulses at the boundary and those just outside the
boundary.
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Quantum Cryptography, Figure 13
Conceptual schematic for differential phase shift keying QKD
system. PM: Phase Modulator; BS: Beam Splitter; SPD: Single
Photon Detector

While DPSK protocol is simpler to implement than
BB84, a proof of its unconditional security is still missing.
Therefore, it is hard to quantify its secure key generation
rate and perform a fair comparison with, for example, de-
coy state BB84 protocol. Attacks against DPSK has been
studied in, for example, [92,93].

Implementations DPSK protocol is simpler in hard-
ware design than the BB84 [1] protocol as it requires only
one Mach–Zehnder interferometer, see Fig. 13. It also has
the potential in high-speed applications. Honjo, Inoue,
and Takahashi experimentally demonstrated this proto-
col with a planar light-wave circuit over 20 km fiber in
2004 [94]. This distance was soon extended to 105 km [95]
in 2005. In 2007, DPSK scored both the longest and the
fastest records in QKD implementations: H. Takesue et al.
reported an experimental demonstration of DPSK-QKD
over 200 km optical fiber at 10GHz [61]. However, since
a proof of unconditional security is still missing (see last
two paragraphs), it is unclear whether the existing exper-
iments generate any secure key. Indeed, the attacks de-
scribed in [92,93] showed that with only one-way clas-
sical post-processing, all existing DPSK experiments are
insecure.

QuantumHacking

Since practical QKD systems exist and commercial QKD
systems are on the market, it is important to understand
how secure they really are. We remark that there is still
a big gap between the theory and practice of QKD. Even
though the unconditional security of practical QKD sys-
tems with semi-realistic models have been proven [32,33],
practical QKD systems may still contain fatal security
loopholes. From a historical standpoint, Bennett and Bras-
sard mentioned that the first QKD system [34] was un-
conditionally secure to any eavesdropper who happened
to be deaf! This was because the system made different
sounds depending on whether the source was sending
a “0” or a “1”. Just by listening the sounds, an eaves-

Quantum Cryptography, Figure 14
Conceptual schematic for detection efficiency mismatch in time
domain. X axis: Time, Y axis: Detector Efficiency

dropper can learn the value of the final key. This exam-
ple highlights the existence of side channels in QKD and
how easy an eavesdropper might be able to break the se-
curity of a QKD system, despite the existence of security
proofs.

In this section, we will sketch a few cleverly proposed
quantum hacking strategies that are outside standard se-
curity proofs and their experimental implementations.We
will conclude counter-measures and future outlook. No-
tice that we will skip eavesdropping attacks that have al-
ready been covered by standard security proofs.

Attacks

1) Large Pulse Attack. In a large pulse attack, Eve sends
in a strong pulse of laser signal to, for example, Alice lab-
oratory to try to read off Alice’s phase modulator setting
from a reflected pulse, see [96]. As a result, Eve may learn
which BB84 state Alice is sending to Bob.

A simple counter-measure to the large pulse attack is
to install an isolator in Alice’s system.

2) Faked State Attack. Standard InGaAs detectors suf-
fer from detection efficiency mismatch. More concretely,
as noted in Subsect. “Detection Systems”, InGaAs detec-
tors are often operated in a gated mode. Therefore, the de-
tection efficiency of each detector is time-dependent. Refer
to Fig. 14 for a schematic diagram of the detection efficien-
cies of two detectors (one for “0” and one for “1”) as func-
tions of time. At the expected arrival time, the detection
efficiency of the two detectors are similar. However, if the
signal is chosen to arrive at some unexpected times, it is
possible that the detector efficiencies of the two detectors
differ greatly.

The faked state attack proposed by Makarov and co-
workers [97] is an intercept-resend attack. In a faked state
attack, for each signal, Eve randomly chooses one of the



7284 Q Quantum Cryptography

two BB84 bases to perform ameasurement. Eve then sends
to Bob a wrong bit in the wrong basis at a time when the
detector for the wrong bit has a low detection efficiency.
For instance, if Eve has chosen the rectilinear basis and has
found a “0” in the bit value, she then prepares a state “1”
in the diagonal basis and sends it to Bob at the arrival time
where detector efficiency of the detector for “0” is much
higher than that of detector for “1”.

Now, should Eve have chosen the wrong basis in her
measurement, notice that the detection probability by Bob
is greatly suppressed. For instance, in our example, if the
correct basis is the diagonal basis, let us consider when
happens when Bob measures the signal in the correct ba-
sis. Since the bit value resent by Eve is “1” in the diago-
nal basis and Bob’s detector for “1” has a low detection
efficiency, most likely Bob will not detect any signal. On
the other hand, should Eve have chosen the correct basis
in her measurement, Bob has a significant detection effi-
ciency. For instance, in our example, if the correct basis is
in fact the rectilinear basis, let us consider what happens
when Bob measures in the correct basis. In this case, a bit
“1” in the diagonal basis sent by Eve can be re-written as
a superposition of a bit “0” and a bit “1” in the rectilinear
basis. Since the detector for “0” has a much higher detec-
tion efficiency than the detector for “1”, most likely Bob
will detect a “0”. Since “0” was exactly what was originally
sent by Alice, Bob will find a rather low bit error rate, de-
spite Eve’s intercept-resend attack.

The faked state attack, while conceptually interesting,
is hard to implement in practice. This is because it is an in-
tercept-resend attack and as such involves finite detection
efficiency in Eve’s detectors and precise synchronization
between Eve and Alice-Bob’s system. For this reason, the
faked state attack has never been implemented in practice.

3) Time-shift Attack. The time-shift attack was pro-
posed by Qi, Fung, Lo, and Ma [64]. It also utilizes the
detection efficiency mismatch in the time domain, but is
much easier to implement than the faked states attack.

As wementioned in the above section, typical InGaAs-
APD detectors usually operate in a gated mode. That is,
if the photon hits the detector at unexpected time, the
two detectors may have substantially different efficiency.
Therefore, Eve can simply shift the arrival time of each sig-
nal, creating large efficiency mismatch between “0”s and
“1”s.

Let’s take a specific example to illustrate this attack:
suppose detector 0 has higher efficiency than detector 1 if
the signal arrives earlier than the expected time, and lower
efficiency than detector 1 if the signal arrives later than ex-
pected. Eve can simply shift the arrival time of each bit by
sending it through a longer path or a shorter one. Consider

the case in which Eve sends bit i through a shorter path. In
this case bit i will hit the detector earlier than expected,
thus detector 0 has much higher efficiency. If Bob reports
a detection event for the ith bit, Eve can make a guess that
this bit is a “0” with high probability of success.

Furthermore, Eve can carefully set how many bits
should be shifted forward and howmany should be shifted
backward so that Bob gets similar counts of “0”s and “1”s.
In this way, Bob cannot observe a mismatch between the
numbers of “0”s and “1”s.

Note that the time-shift attack does not make anymea-
surement on the qubits. Therefore, quantum information
is not destroyed. That is, Eve does not change the polariza-
tion, the phase, or the frequency of any bit. This means the
time-shift attack will not increase the bit error rate of the
system in principle. Moreover, since Eve does not need to
make anymeasurement or state preparation, the time-shift
attack is practically feasible even with current technology.

The time-shift attack will introduce some loss as the
overall detection efficiency is lower if the photon hits the
detector at an unexpected time. Nonetheless, Eve can com-
pensate this loss by making the channel more transpar-
ent. Notice that, since the quantum channel between Al-
ice and Bob may contain many lossy components such as
splices and couplers, it may not be too hard for Eve to
make a channel more transparent.

The time-shift attack has been successfully imple-
mented on a commercial QKD system by Zhao, Fung, Qi,
Chen, and Lo [65] in 2007. This is the first and so far the
only experimentally successful demonstration of quantum
hacking on commercial QKD system. It is shown that the
system has no-negligible probability to be vulnerable to
the time-shift attack. Quantitative analysis shows that the
final key shared by Alice and Bob (after the error correc-
tion and the privacy amplification of the most general se-
curity analysis) has been compromised by Eve.

The success of the time-shift attack in [65] is rather
surprising as QKD has been widely believed to be uncon-
ditionally secure. The experimental success in quantum
hacking highlighted the limit of the whole research pro-
gram of device-independent security proofs [23] by show-
ing that device-independent security proofs, even if they
are found to exist in future, do not apply to a practical
QKD system. The success of time-shift attack is not due to
some technical imperfection. It is deeply connected with
the detection efficiency loophole in the verification of Bell-
inequalities. So far the InGaAs detectors have only � 10%
detection efficiencies, and the channel connecting Alice
and Bob usually has quite large attenuation for long dis-
tance communication. The low overall detection efficiency
fails the device-independent security proof.
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Notice that even non-gated detectors have dead times
and generally suffer from detection efficiency loophole.
The detection efficiencymismatch is also discussed in [98].

4) Phase remapping attack. In a bi-directional imple-
mentation of QKD such as the “Plug and Play” set-up, Eve
may attempt to tamper with Alice’s preparation process so
that Alice prepares four wrong states, instead of the four
standard BB84 state. This is called the phase remapping
attack and was proposed in [99].

In a “Plug and Play” QKD system, Alice receives
a strong pulse from Bob and she then attenuates it to a sin-
gle-photon level and encodes one of the BB84 state on it.
For instance, Alice may encode her state by using a phase
modulator. In a phase modulator, the encoded phase is
proportional to the voltage applied. In practice, a phase
modulator has a finite rise time. For each BB84 setting, one
may thus model the applied voltage (and thus the encoded
phase) as a trapezium. Ideally, Bob’s strong pulse should
arrive at the plateau region of the phase modulation, thus
getting maximal phase modulation by Alice’s phase mod-
ulator. Now, imagine that Eve applies a time-shift to Bob’s
strong pulse so that it arrives in the rise region of the phase
modulation graph instead of the plateau region. In this
case, Alice has wrongly encoded her phase only partially.

If we assume that the four settings of Alice’s encoding
(for the four BB84 states) have the same rise region, then
by time-shifting Bob’s strong pulse, Eve can force Alice to
prepare the four state with phase 0; a; 2a; 3a, rather than
0; �/2; �; 3�/2. In general, these four states are more dis-
tinguishable than the standard BB84 state. Therefore, Eve
may subsequently apply an intercept-resend attack to the
signal sent out by Alice.

It was proven in [99] that in principle Eve can break
the security of the QKD system, without alerting Alice and
Bob.

5) Attack by passive listening to side channels. The at-
tack by listening to the sounds made by the source in the
first QKD experiment is an example of an attack by pas-
sive listening to side channels. Another example is [100].
A counter-measure is to carefully locate all possible side
channels and to eliminate them one by one.

6) Saturation Attack. In a recent preprint [101],
Makarov studied experimentally how by sending a mod-
erately bright pulse, Eve can blind Bob’s InGaAs detector.
A simple counter-measure would be for Bob to measure
the intensity of the incoming signal.

7) High Power Damage Attack. In Makarov’s thesis, it
was proposed that Evemay try tomake controlled changes
in Alice’s and Bob’s system by using high power laser
damage through sending a very strong laser pulse. Again,
a simple counter-measure would be for Alice and Bob to

measure the intensity of the incoming signals andmonitor
the properties of various components from time to time to
ensure that they perform properly.

Counter-Measures

Once an attack is known, there are often simple counter-
measures. For instance, for the large pulse attack, a simple
counter-measure would be to add a circulator in Alice’s
laboratory. As for the faked state attack and time-shift at-
tack, a simple counter-measure would be for Bob to use
a four-state setting in his phase modulator. Other counter-
measures include Bob applying a random time-shift to his
received signals. However, the most dangerous attacks are
the unanticipated ones.

Notice that it is not enough to say that a counter-mea-
sure to an attack exists. It is necessary to actually imple-
ment a counter-measure experimentally in order to see
how effective and convenient it really is. This will allowAl-
ice and Bob to select a useful counter-measure. Moreover,
notice that the implementation of a counter-measure may
itself open up new loopholes. For instance, if Bob imple-
ments a four-state setting as a counter-measure to a time-
shift attack, Eve may still combine a large pulse attack with
the time-shift attack to break a QKD system.

Importance of QuantumHacking

As noted in Sect. “Security Proofs”, there has been a lot
of theoretical interest on the connection between the se-
curity of QKD and fundamental physical principles such
as the violation of Bell’s inequality. An ultimate goal of
such investigations, which has not been realized yet, is
to construct a device-independent security proof [23].
Even if such a goal is achieved in future, would any of
these theoretical security proofs applies to a quantum key
distribution system in practice? Unfortunately, the an-
swer is no. As is well-known, the experimental testing
of Bell-inequalities often suffers from the detection effi-
ciency loophole [23]. The low detection efficiency of prac-
tical detectors not only nullifies security proofs based on
Bell-inequality violation, but also gives an eavesdropper
a powerful handle to break the security of a practical QKD
system. Therefore, the detection efficiency loophole is of
both theoretical and practical interest.

A practical QKD system often consists of two or more
detectors. In practice, it is very hard to construct detectors
of identical characteristics. As a result, two detectors can
generally exhibit different detector efficiencies as functions
of either one or a combination of variables in the time, fre-
quency, polarization or spatial domains. Now, if an eaves-
dropper could manipulate a signal in these variables, then
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she could effectively exploit the detection efficiency loop-
hole to break the security of a QKD system. In fact, she
could even violate a Bell-inequality with only a classical
source. In time-shift attack, one consider an eavesdrop-
per’s manipulation of the time variable. However, the gen-
erality of detection efficiency loophole and detector effi-
ciency mismatch should not be lost.

We should remark that, for eavesdropping attacks, the
sky is the limit. The more imaginative one is, the more
new attacks one comes up. Indeed, what people have done
so far are just scratching the surface of the subject. Much
more work needs to be done in the battle-testing of QKD
systems and security proofs with testable assumptions. See
Sect. “Future Directions”.

BeyondQuantumKey Distribution

Besides QKD, many other applications of quantum cryp-
tography have been proposed. Consider, for instance, the
millionaires’ problem. Two millionaires, Alice and Bob,
would like to determine who is richer without disclosing
the actual amount of money each has to each other. More
generally, in a secure two-party computation, two distant
parties, Alice and Bob, with private inputs, x and y re-
spectively, would like to compute a prescribed function
f (x; y) in such a way that at the end, they learn the out-
come f (x; y), but nothing about the other party’s input,
other than what can be logically be deduced from the value
of f (x; y) and his/her input. There aremany possible func-
tions f (x; y). Instead of implementing them one by one,
it is useful to construct some cryptographic primitives,
which if available, can be used to implement the secure
computation of any function f (x; y). In classical cryp-
tography, to implement secure two-party computation of
a general function will require making additional assump-
tions such as a trusted third party or computational as-
sumptions. The question is whether we can do uncondi-
tionally secure quantum secure two-party computations.

Two important cryptographic primitives are namely
quantum bit commitment (QBC) and one-out-of-two
quantum oblivious transfer (QOT). In particular, it was
shown byKilian [102] that in classical cryptography, obliv-
ious transfer can be used to implement a general two-party
secure computation of any function f (x; y). Moreover, in
quantum cryptography, it was proven by Yao [103] that
a secure QBC scheme can be used to implement QOT se-
curely. For a long time back in the early 1990s, there was
high hope that QBC and QOT could be done with uncon-
ditional security. In fact, in a paper [104] it was claimed
that QBC can be made unconditionally secure. The sky fell
around 1996 whenMayers [105] and subsequently, Lo and

Chau [106], proved that, contrary to widespread belief at
that time, unconditionally secure QBC is, in fact, impossi-
ble. Subsequently, Lo [107] proved explicitly that uncon-
ditionally secure one-out-of-two QOT is also impossible.
Mayers and Lo-Chau’s result was a big step backwards and
thus a big disappointment for quantum security.

After the fall of QBC and QOT, people turned their
attention to quantum coin tossing (QCT). Suppose Alice
and Bob are having a divorce and they would like to deter-
mine by a coin toss who is going to keep their kid. They
do not trust each other. However, they live far away from
each other and have to do a coin toss remotely. How can
they do so without trusting each other? Classically, coin
tossing will require either a trusted third party or making
computational assumptions. As shown by Lo and Chau,
ideal quantum coin tossing is impossible [108]. Even for
the non-ideal case, Kitaev has proven that a strong version
of QCT (called strong QCT) cannot be unconditionally se-
cure. However, despite numerous papers on the subject
(see, for example, [109] and references therein), whether
non-idealweakQCT is possible remains an open question.

Other QKD protocols are also of interest. For in-
stance, the sharing of quantum secrets has been proposed
in [110]. It is an important primitive for building other
protocols such as secure multi-party quantum computa-
tion [111]. There are also protocols for quantum digital
signatures [112], quantum fingerprinting and unclonable
encryption. Incidentally, quantum mechanics can also be
used for the quantum sharing of classical secrets [113],
conference key agreement and third-man cryptography.

For QKD, so far we have only discussed a point-to-
point configuration. In real-life applications, it will be in-
teresting to study QKD in a network setting [114]. Note
that themultiplexing of severalQKD channels in the single
fiber has been successful performed. So has the multiplex-
ing of a classical channel together with a QKD channel.
However, much work remains to be done on the design of
both the key management structure and the optical layer
of a QKD network.

Future Directions

The subject of quantum cryptography is still in a state
of flux. We will conclude with a few examples of future
directions.

QuantumRepeaters

Losses in quantum channels greatly limit the distance and
key generation rate of QKD. To achieve secure QKD over
long distances without trusting the intermediate nodes,
it is highly desirable to have quantum repeaters. Briefly
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stated, quantum repeaters are primitive quantum comput-
ers can be perform some form of quantum error correc-
tion, thus preserving the quantum signals used in QKD. In
more detail, quantum repeaters often rely on the concept
of entanglement distillation, whose goal is, given a large
numberM of noisy entangled states, two parties, Alice and
Bob, perform local operations and classical communica-
tions to distill out a smaller number (say N) but less noisy
entangled states.

The experimental development of a quantum repeater
will probably involve the development of quantum mem-
ories together with the interface between flying qubits and
qubits in a quantum memory.

Ground to Satellite QKD

Another method to extend the distance of QKD is to per-
form QKD between a satellite and a ground station. If one
trusts a satellite, one can even build a global QKD network
via a satellite relay. Basically, a satellite can perform QKD
with Alice first, when it has a line of sight with Alice. After-
wards, it moves in orbit until it has a line of sight with Bob.
Then, the satellite performs a separate QKD with Bob. By
broadcasting the XOR of the two keys, Alice and Bob will
share the same key. Satellite to ground QKD appears to be
feasible with current or near-future technology, for a dis-
cussion, see, for example, [62].

With an untrusted satellite, one can still achieve secure
QKD between two ground stations by putting an entan-
gled source at the satellite and sending one half of each
entangled pair to each of Alice and Bob.

Calculation of the QuantumKey Capacity

Given a specific theoretical model, so far it is not known
how to calculate the actual secure key generation rate in
a noisy channel. All is known is how to calculate some
upper bounds and lower bounds. This is a highly unsat-
isfactory situation because we do not really know the ac-
tual fundamental limit of the system. Our ignorance can
be highlighted by a simple open question: what is the high-
est tolerable bit error rate of BB84 that will still allow the
generation of a secure key?

While lower bounds are known [25,26,27] and 25 per-
cent is an upper bound set by a simple intercept-resend
attack, we do not know the answer to this simple question.

Notice that this question is of both fundamental and
practical interests. Without knowing the fundamental
limit of the key generation rate, we do not know what the
most efficient procedure for generating a key in a practical
setting is.

Multi-party QuantumKey Distribution
and Entanglement

Besides its technological interest, QKD is of fundamental
interest because it is deeply related to the theory of entan-
glement, which is the essence of quantum mechanics. So
far there have been limited studies on multi-party QKD.
Notice that there are many deep unresolved problems in
multi-party entanglement. It would be interesting to study
more deeply multi-party QKD and understand better its
connection to multi-party entanglement. Hopefully, this
will shed some light on the mysterious nature of multi-
party entanglement.

Security Proofs with Testable Assumptions

The surprising success of quantum hacking highlights the
big gap between the theory and practice of QKD. In our
opinion, it is important to work on security proofs with
testable assumptions. Every assumption in a security proof
should be written down and experimentally verified. This
is a long-term research program.

Battle-Testing QKD Systems

Only through battle-testing can we gain confidence about
the security of a real-life QKD system. Traditionally,
breaking a cryptographic systems is as important as build-
ing one. Therefore, we need to re-double our efforts on
the study of eavesdropping attacks and their counter-mea-
sures.

As stated before, quantum cryptography enjoys for-
ward security. Thanks to the quantum no-cloning theo-
rem, an eavesdropper Eve does not have a transcript of
all quantum signals sent by Alice to Bob. Therefore, once
a QKD process has been performed, the information is
gone and it will be too late for Eve to go back to eaves-
drop. Therefore, for Eve to break a real-life QKD system
today, it is imperative for Eve to invest in technologies for
eavesdropping now, rather than in future.
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Glossary

Nanostructures Modern nanotechnology achieves the
arrangement of atoms into structures that are only
a few nanometers in size. The following kinds of ar-
tificial structures (semiconductor or metallic) may be
formed: two- dimensional or layered heterostructures
(superlattices); one-dimensional nanowires, or zero-
dimensional quantum dots. The characteristic size of
systems is between 0.1 and 100 nm.

Quantum dots (QDs) A quantum dot is a semiconductor
nanostructure that confines the motion of electrons in
all thee spatial directions. The confinement can be due
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to electrostatic potentials (generated by external elec-
trodes, doping, strain, or impurities). A quantum dot
has discrete allowed energy levels for which the corre-
sponding wavefunctions are spatially localized within
the quantum dot.

Wave interference Wave interference is the phenome-
non which occurs when two waves meet while travel-
ing in the same medium. If the waves have the same
phases, constructive interference takes place, and de-
structive occurs for waves with opposite phases.

Aharonov–Bohm (AB) effect The Aharonov–Bohm ef-
fect is a quantum mechanical phenomenon by which
a charged particle is affected by an electromagnetic
field which only exists in regions apart from the parti-
cle. If there are two propagation paths by which a par-
ticle can move without entering the region of space
where the magnetic field exists, then a charged quan-
tum particle can still show an observable phase shift in
its interference pattern.

Breit–Wigner (BW) resonances The Breit–Wigner reso-
nances arise due to the constructive interference of
two counter-propagating waves in the same scattering
channel (similar to resonances of the Fabry–Perot in-
terferometer in optics). For instance, the Breit–Wigner
resonances occur when an electron moves in the space
between two semiconductor layers (barriers) for some
particular electron energies (quasi-bound energies).
For this case, the Breit–Wigner resonances appear in
the transmission. In addition, the scattering amplitude
as a function of electron energy possesses a pole for
each quasi-bound state in the complex-energy plane.
The real part of a pole can be interpreted as the energy
of a quasi-bound state and the imaginary part can be
connected with the lifetime of this state.

Fano resonances The Fano resonance is a manifestation
of the interference between a localized state and the
continuum states in the transmission of multi-channel
systems. In AB rings, the Fano resonances arise from
quantummechanical interference between the discrete
states of the QD in one arm of the interferometer and
the continuum in the other arm, characterized by com-
plete transmission and complete reflection. The profile
of the Fano asymmetric line-shape in the transmission
depends on the strength of the coupling between dis-
crete and continuum states, and on the phase differ-
ence between the paths.

Definition of the Subject

Resonance phenomena are a major subject of theoretical
and experimental investigations, and the concept of reso-

nances is ubiquitous in physics. The search for new effects
related to wave interference and different kinds of reso-
nances in various physical systems continues to be of in-
terest. Interference of a localized wave with propagating
states and the resulting Fano resonances in atomic and
solid states structures have attracted much attention re-
cently. Now, it is clear that Fano interference is a univer-
sal phenomenon because the manifestation of the interfer-
ence does not depend on the configuration of the mate-
rial. The natural question then arises: Why are Fano-in-
terference phenomena so interesting in different fields of
physics? From the practical point of view, for instance, the
resonances can be considered as quantum probes that pro-
vide important information on the geometric configura-
tion and internal potential fields of low-dimensional struc-
tures. Fano interferencemay potentially be used for the de-
sign of new types of quantum electronic or spintronic de-
vices such as Fano-transistors, spin transistors, and Fano-
filters for polarized electrons. In addition, Fano phenom-
ena can also be used for lasing without population inver-
sion. The investigation of these resonances is of great im-
portance in the search for optimal working parameters of
new devices, such as the resonant diode and the resonant
transistor.

Introduction

At present, nanotechnology provides various solid state
systems such as Aharonov–Bohm (AB) rings, two-dimen-
sional (2D) electronic waveguides, nanotubes etc., where
alternative electronic paths may be realized. In modern
laboratories, various AB rings with embedded quantum
dots in the arms have been fabricated [28,29,31,32,42,
46,47]. If a quantum ring supports coherent transmission,
the wave amplitudes through the two arms interfere. The
scattering of the waves on the embedded dots, and the in-
terference of waves in the arms results in resonances in
the conductance (or transmission) of the ring. At the same
time, the electron scattering on the dots produces an addi-
tional phase shift. Thus, the interference of the waves com-
ing from the two arms contains information about the am-
plitude and phase of the waves. In the other words, an AB
electronic interferometer operates similarly to an optical
interferometer providing illumination of the phase-shift.

It is well known that resonant-transmission phenom-
ena are related to the quasi-bound states of the systems.
According to the Breit–Wigner (BW) formalism in nu-
clear systems, the scattering amplitude as a function of
energy possesses a pole for each quasi-bound state in the
complex-energy plane [8]. The real part of a pole can be
interpreted as the energy of a quasi-bound state and the
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imaginary part can be connected with the life time of this
state [15]. Thus, BW resonances arise due to the interfer-
ence of two counter-propagating waves in the same scat-
tering channel (similar to resonances of the Fabry–Perot
interferometer in optics).

In contrast to multi-barrier resonant-tunneling struc-
tures, quantum nanostructures such as AB rings and 2D-
electronic waveguides, where alternative electronic paths
may be realized, possess both transmission zeros and res-
onance poles. This characteristic of a zero-pole pair, called
a Fano resonance [14], has been specifically predicted and
observed in a hybrid system of an AB ring and a QD both
theoretically and experimentally [2,3,4,5,6,13,16,17,18,28,
29,30,31,32,34,36,42,43,45,46,47]. In order to fit the exper-
imental data near an asymmetric resonance, the authors of
experimental works have used in expression for the con-
ductance G in the form

G D Gb
jE � E0j2

(E � ER)2 C � 2 ; (1)

where Gb is the non-resonant conductance, ER is the en-
ergy of the resonance, � is the width, and E0 is a complex
parameter (in general) – the resonance zero. It has been
demonstrated that the pole is an immediate corollary of
the electron transition from the bound state to the con-
tinuum [45]. Although the nature of the zero is connected
with the bound state it also depends on the detail of the
interference with the continuum. Notice, that for systems
with time reversal symmetry, E0 always is placed on real
axis of energy.

This Fano effect arises from quantum mechanical in-
terference between the discrete state of the QD in one
arm and the continuum in other arm. The profile of the
Fano asymmetric line-shape in the transmission depends
on the strength of the coupling between discrete and con-
tinuum states, and on the phase difference between the
paths. Here, the scattering amplitude near the zero-pole
pair behaves like a dipole, where the pole plays the role
of a particle and the zero plays the role of a hole (anti-
particle) [16,17,30,34,36,43,45]. The collapse of the parti-
cle and hole has been studied in a quasi-one-dimensional
constriction with an attractive and finite-size impurity, by
modulating the parameters of the system [17,30].

When more than one resonant quasi-bound state is
present in a one-channel system, for instance, in a three-
barrier system, the resonance levels interact each other and
result in the overlapping of resonances [17,19,20,22,23,24,
25,26,30,38,39,40,41]. In this situation, therefore, the sin-
gle BW formula is no longer valid due to the overlapping of
resonances. Hence, the interference effects of resonances
have been studied by examining the formation of dou-

ble poles in the transmission amplitude and the effect of
the collision of the two poles (or merging of two reso-
nances) associated with the quasi-bound states [19,20,22,
23,24,25,26,38,39,40,41].

It was demonstrated recently that the Fano resonance
structure can be controlled by changing the confinement
parameters of the QD. Transmission through a QD em-
bedded in an AB-ring remains phase-coherent, as indi-
cated by the visibility of the AB-oscillations [28,29,31,32,
42,46,47]. An expression for the transmission amplitude
through the QD is t D

p
TQDei˛QD , which is a complex

quantity. The phase, ˛QD, is significant in its effect upon
the AB oscillations for a QD embedded in an AB-ring,
and has experimentally been seen to exhibit interesting
phase-jumps of� as the transmission passes through a res-
onance. Theoretical analysis of these systems has provided
some explanation for the phase behavior seen in experi-
ments [2,3,4,5,6,10,12,13,19,20,21,22,23,24,25,26,27,37,38,
39,40,41]. In a two-terminal device, the Onsager rela-
tions [35] of time-reversal symmetry and current conser-
vation (unitarity) constrain the transmission phase to val-
ues of 0 or � . However, if the two-terminal AB-ring is
“opened” by allowing current to flow out through addi-
tional terminals, the unitarity condition is broken and it
becomes possible to extract meaningful phase informa-
tion about the QD. Experiments with open rings demon-
strate a gradual phase change across the transmission reso-
nances. In particular, Schuster et al. produced a 4-terminal
interferometer in a GaAs–AlGaAs heterostructure which
showed smooth phase transitions [42].

In this review we shall present two typical approaches
for investigation of Fano resonances in AB rings: i) The
approach developed in quantum waveguides theory when
the arms of the ring are considered as waveguides for elec-
trons and dots are treated as a potential walls embedded
in the waveguide; ii) Tight binding theory approach in
which the dots are represented by sites which are con-
nected by one-dimensional tight binding chains with dif-
ferent topology. Because both approaches give the same
physical effects we shall focus mostly on physical mean-
ing of obtained results. In Sect. “Fano Resonance in a Two
Dimensional Electron Waveguide with a Quantum Dot”
we give an introduction to Fano phenomena using a sim-
ple model of a waveguide with a short range potential well
(QD). Applying waveguide theory to a quantum dot in AB
rings in Sect. “Model for the Quantum Dots in the Ring:
Theory of Waveguides Approach” we will demonstrate
the manifestation of the Fano resonance in this system.
In Sect. “Effects of Interference Interactions of Fano Reso-
nances on an AB Ring” some novel results regarding Fano
resonances in strong overlapping regime are presented.
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It is shown that when the overlapping of two Fano reso-
nances takes place in the transmission, two Fano dipoles
in the complex-energy plane form a quasi-particle, which
behaves as a coupled object – a Fano quadrupole. We show
a periodic motion of the resonance pole and transmis-
sion zero in the complex-energy plane as a magnetic field
through the AB ring is changed. In Sect. “Fano Resonance
Induced by a Quantum Dot in an Open Three-terminal
Interferometer”, the properties of Fano resonances in an
open AB ring are investigated in the framework of the
tight binding model. We shall discuss in this section the
phasemeasurements by using themodes of an open AB in-
terferometer. Section “Future Directions” summarizes the
properties of Fano phenomena and its manifestation in AB
rings along with future directions.

Fano Resonance in a Two Dimensional Electron
Waveguide with a QuantumDot

In order to see a main feature of the Fano phenomenon
associated with the propagating and evanescent waves in
a quantum system, we study the propagation of the elec-
tron waves in an electronic 2D waveguide of width W ar-
ranged along the x-axis [24,30]. The waveguide geome-
try is schematically depicted in Fig. 1, showing a poten-
tial region and an attractive quantum dot (gray-colored
area) in the waveguide. Here, the confining potential in
the transverse direction is characterized by the function
Vc(y) and the attractive potential (dot) by the function
V(x; y). There is a complete basis of functions describ-
ing the transverse motion �n(y) of an electron with en-
ergies, En D

„2	2n2
2mW2 (with the effective massm). The elec-

tron waves in the perfect waveguide stretched to infinity
are described by a combination of a plane wave along the
longitudinal direction and confined wave functions in the
transverse direction such as e˙i kn x�n(y), where the wave
vector along the x-direction is kn D

p
2m(E � En)/„, and

n is the number of the transverse state. These propa-
gating states can be considered as open channels in the
waveguide.

In order to find the wave function of an electron in
a waveguide with the dot, we solve the 2D Schrödinger
equation

�
„2

2m

�
@2

@x2
C

@2

@y2

�
� (x; y)

C Vc(y)� (x; y)C V(x; y)� (x; y) D E� (x; y) (2)

with plane wave boundary conditions in the leads
(x !˙1). It is convenient to expand the wave function
in the complete basis of functions describing the trans-

Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 1
Schematic illustration of the electron waveguide with embed-
ded quantum dot (gray-colored area), where the attractive po-
tential well is centered at x D 0 and y D 0 and the electron mo-
tion is not limited horizontally, �1 < x <1, but is confined
vertically, 0 < y < W

verse motion:

� (x; y) D
1X

nD1

 n(x)�n(y) : (3)

Substituting Eq. (3) into Eq. (2), we obtain the coupled-
channel equations for an electron in the form

[b] �
„2

2m
@2

@x2
 n(x)C

1X

nD1

Vnn0 (x) n0(x)

D (E � En) n(x) ; (4)

where the coupling matrix elements of the dot’s potential
(which still acts on the x-coordinate) are defined to be

Vnn0 (x) D
Z
�n(y)V (x; y)�n0(y) d y : (5)

Since Eq. (4), which is equivalent to the 2D Schrödinger
equation, cannot be solved in general, we use some simpli-
fication that allow us to use a resonant perturbation the-
ory [15] in the system under the investigation.

We model the scattering potential as a thin rectangu-
lar potential-well by assuming that the longitudinal size of
the potential well is much smaller than the characteristic
wavelengths of the electron. Then, the matrix elements of
the potential can be written as

Vnn0 (x) D �
„2

m
vnn0ı(x) ; (6)

where the parameters vnn0 of the dot are expressed in an
explicit form [30]. It can be shown that the short range
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Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 2
a Energy dispersion relation for an electron in a perfect wave-
guide and b the diagrams for a bound level (near the first sub-
band) and quasi-bound level (near the second subband) in the
dot’s effective potential

potential provides the following boundary conditions to be
imposed on themulti-component wavefunctions at x D 0:

 n(0C) D  n(0�) ;

 0n(0C) �  
0
n(0�) D �2

1X

n0D1

vnn0 n0(0˙) :
(7)

Here, we consider the situation when the energy of in-
coming electron is placed in the interval E1hEhE2 (the first
energy window), as shown schematically in Fig. 2. If the
characteristic value of matrix element V12, describing the
coupling between two nearest channels, is small compared
to the subband distance (En � En�1), then we only need
to consider two coupled equations in the first energy win-
dow to understand the main physical features of the in-
terference. It is well known that the remaining modes in
the waveguide with the attractive impurity only alter the
width and position of the resonances and hence play a mi-
nor role in Fano phenomenon. Without much difficulties
our formulation can be extended for a multi-band approx-
imation.

The wave function in the first channel, obtained from
the solutions of the Schrödinger equation, can be written
as

 1(x) D

(
a1eik1x C b1e�ik1x ; x < 0 ;
c1eik1x ; x > 0 ;

(8)

where k1 D
p
2m(E � E1)/„ is a wave vector in the first

channel. Similarly, the wavefunction in the second channel
as

 2(x) D

(
b2ejk2jx ; x < 0 ;
c2e�jk2jx ; x > 0 ;

(9)

where jk2j D
p
2m(E2 � E)/„. Notice that the wave func-

tion,  2, in the second channel is an evanescent wave.
These two waves interfere in the waveguide and the quan-
tum dot plays a role of a mixer of two different types
of waves. The undetermined amplitudes appearing in
Eqs. (8) and (9) are specified by applying the matching
conditions given in Eq. (7). Consequently, we obtain

(ik1 C v11)c1 C v12c2 D ik1a1 ;
v12c1 C (�jk2j C v22)c2 D 0 ;

(10)

which give

c1 D
ik1(�jk2j C v22)

(ik1 C v11)(�jk2j C v22) � v212
a1 ; (11)

c2 D �
ik1v12

(ik1 C v11)(�jk2j C v22) � v212
a1 : (12)

From Eq. (11) the transmission and reflection amplitudes
in the first channel are obtained as

t11 D
c1
a1
D

ik1(�jk2j C v22)
(ik1 C v11)(�jk2j C v22) � v212

; (13)

and

r11 D
b1
a1
D

�v11(�jk2j C v22)C v212
(ik1 C v11)(�jk2j C v22) � v212

; (14)

respectively. As it follows from Eq. (13), the transmission
amplitude may vanish if �jk2j C v22 D 0. When this hap-
pens, the reflection amplitude r11 is � 1 and the energy at
which the transmission becomes zero is determined to be

E0 D E2 �
„2v222
2m

: (15)

There is a full reflection of the electron wave from
a quantum dot when the electron energy is equal to the
zero-energy E0. The wavefunctions in the first and sec-
ond channels are schematically depicted in Fig. 3 at the
zero-energy. Like the classical system, we notice that the
position of the amplitude-zero depends on the number of
the channels. For instance, if we take into account another
closed channel, n D 3, by a perturbation, the zero-energy
given by Eq. (15) is shifted on the real axis of energy. In the
meantime, there is a full transmission of the electron wave
through the quantum dot when the reflection amplitude
r11 D 0. If we impose r11 D 0 in Eq. (14), we get the con-
dition for the reflection-zero, v11(�jk2j C v22)� v212 D 0.
A real solution to this condition exists at the energy Emax

Emax D E2 �
„2

2m

�
v22 �

v212
v11

�2

: (16)
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Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 3
The wave functions of the first and second channels when the
electron energy matches with the zero-energy. Note that in this
case a full reflection occurs

Note that the above expressions (Eqs. (13) and (14)) for
the transmission-zero and the reflection-zero energies are
exact in the framework of the two-channel approximation.

We have performed a numerical calculation of the
transmission using the following parameters of the wave-
guide and a quantum dot. The width of the waveguide
is set to W D 23:7 nm and the GaAs effective mass is
used as m D 0:067m0. This gives E1 D 10meV and E2 D
40meV for the first two energy levels due to trans-
verse confinement in the waveguide. The parameters of
the quantum dot are as follows: Ys D 0:55W (the posi-
tion of the dot in the waveguide), Ws D 0:5W (Ws is
the transverse width of the dot), and the scattering pa-
rameters asVs D 0:1 eVnm, where Vs D 100meV (Vs is
the depth of the attractive potential well) and as D
1 nm (as is the thickness of the potential well). The
computed transmission of the system, T(E) D jt11(E)j2,
is plotted in Fig. 4a for the chosen energy window,
where for numerical purposes the following characteris-
tic energies for the matrix elements of the potential are
used: „2v211/2m Š 11:33meV, „2v222/2m Š 4:40meV, and
„2v212/2m Š 0:34meV. The pronounced Fano resonant
structure (solid line) is clearly shown, i. e. the combined
anti-resonance at E0 D 35:60meV and the nearby reso-
nance peak at ER D 36:01meV where the width of res-
onance line is � D 0:19meV. Notice that if we put our
quantum dot at the center of waveguide (v12 D 0), then
the interference vanishes and the potential scattering takes
place. In this case, only so-called the background profile in
the transmission may be seen. This background transmis-
sion is also plotted for comparison in Fig. 4a as a dotted
line. In Fig. 4b we also show the phase shift of the trans-

Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 4
a Fano resonance in the transmission for a quantum waveguide
with a short-range attractive potential (solid line) and a back-
ground transmission (dotted line).b The phase shift of the ampli-
tude for the electron wave in the first propagating channel (solid
line) and the second evanescent channel (dotted line)

mitted electron wave with respect to the incoming wave
as a function of the electron energy for the first propagat-
ing channel (solid line) and the second evanescent channel
(dotted line). One can see that the phase '1 in the prop-
agating channel changes by � abruptly at the zero-energy
and that it jumps up around the resonance peak, thus gain-
ing essentially no net phase shift after passing through the
zero-pole structure. On the other hand, the phase '2 of the
evanescent channel changes by � rather smoothly over the
anti-resonance and resonance structure.

To obtain a simple expression for the transmission am-
plitude near a zero-pole region, we consider the system in
the weak coupling regime (i. e. v12 is assumed to be small in
Eq. (13)). Expanding the numerator and denominator of
Eq. (13) around the zero and the pole, respectively, one can
write the transmission amplitude t11 in the desired form

t11(E) �
E � E0

E � ER C i�
; (17)

where ER and � are the peak position and the width of
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the resonance, and E0 is the zero-energy of the resonance.
After performing a perturbation approximation we find
that the real part of the resonance pole can be written as
ER D E0 C ı, where ı D „2v212v11v22/m(k21 C v211) and the
width � D „2v212k1v22/m(k21 C v211). (The energy appear-
ing in k1 is taken at E D ER.) Here, we note that one can
neglect the difference between Emax and ER in the weak
coupling limit. Furthermore, the expression for the trans-
mission, Eq. (13), can be cast into the canonical Fano form
of Eq. (1). The coupling parameter q (q D v11/k1 in our
perturbation approximation) measures an asymmetry de-
gree of Fano resonance line shape between the localized
sates and the continuum states.

Model for the QuantumDots in the Ring:
Theory ofWaveguides Approach

As mentioned in the Introduction, the AB ring plays the
role of an interferometer for probing electron states on
QD’s. For this purpose, the QD’s are placed in an arm of
the interferometer, whereas the second arm is used as a ref-
erence path for the electron waves.

We shall start with a simple model where a QD is
embedded in one of its arms, as schematically shown in
Fig. 5. Here, the QDs can be formed by two electrodes
which play the role of barriers for electrons in the lower
arm. We consider both arms of the ring and the leads as
perfect waveguides and adopt a single-propagating chan-
nel in the quasi-one-dimensional approximation (see the
previous section). Propagating waves in the leads and per-
fect regions of the arms are assumed to be in the form
 (x; y) / e˙i kx'(y), where x is the local coordinate along
the waveguide, y is the transverse coordinate (transverse
wave function is '(y)), and wave vector k D

p
2mE/„ of

an electron with energy E in the open channel (we shift the
origin of energy to the band edge of the first subband).

In order to connect incoming and outgoing waves at
the junctions of the ring and the leads, we employ a simple
junction model [11] where a scattering matrix describes
the splitting of the electron wave functions at the junction.
Using the amplitudes of electron waves in the ring where
the relevant parameters are defined in Fig. 5, the electron
transmission from left to right leads through both the up-
per and lower arms can be expressed by

�
Āu
B̄u

�
D e�i� /2Mu

�
Au
Bu

�
;

�
Āl
B̄l

�
D e�i� /2Ml

�
Al
Bl

�
:

(18)

Here, � D 2�˚ /˚0 describes the phase shift introduced
by the magnetic flux ˚ threading the AB ring (˚0 D h/e

Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 5
Geometry of the AB ring with a single dot. Two electrodes in the
lower armproduce thedepletion regions in the two-dimensional
electron gas and play the role of the barriers for electrons with
potentials V1 and V2

is the elementary flux quantum), and Mu and Ml are the
transfer matrices through the upper and lower arms, re-
spectively. In order to find the transfer matrix Ml in the
lower arm, we consider the QD that is formed by two
short-range potential barriers (Vj ; j D 1; 2). Then, the
transfer matrix of each barrier has form

Mj D

�
1 � iuj �iuj
iuj 1C iuj

�
; (19)

where uj D mVj/„k with j D 1; 2. The dimensionless ma-
trix element of the potential uj describes the strength of the
repulsive potential barrier. Therefore, the transfer matrix
Ml for the lower arm with two QDs can be expressed by

Ml D X(Ll � L2)M2X(L2 � L1)M1X(L1) ; (20)

where X(x) D diag(eikx ; e�ikx ), Ll is the lower arm length,
and the L1 and L2 are distances from the left junction to
the first and second electrodes, respectively. On the other
hand, the transfer matrixMu for the upper (reference) arm
has the simple form, Mu D X(Lu) where Lu is the length
of the upper arm.

Using the transfer-matrix and the junction-matri-
ces [11], we canwrite connections between the amplitudes:

t D
p
"(Āu C Āl) ; (21)

Au D
p
"C aBu C bBl ; B̄u D aĀu C bĀl ;

Al D
p
"C bBu C aBl ; B̄l D bĀu C aĀl :

(22)

Here, " plays the role of a coupling parameter between the
leads and ring, and the coefficients a and b are expressed
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as a function of ":

a D
1
2
�p

1 � 2"C 1


and

b D
1
2
�p

1 � 2" � 1

:

After somematrix manipulations, we obtain the full trans-
mission amplitude t(E; ˚) analytically as

t(E; ˚) D
i"ei�N(E; ˚)
D(E; ˚)

: (23)

Here, the numerator of Eq. (23) can be written as

N(E; ˚) D ei(�C2(ıC�))N0(E; ˚) ; (24)

where

N0(E; ˚) D 4ifsin � C ei� /2[4u sin ı(cos 2� sin ı
C (cos ı C u sin ı) sin 2�)C sin 2(ı C �)]g

with u � u1 D u2, ı D kL1, � D k(L2 � L1), � D kLu.
On the other hand, the denominator of Eq. (23) can be
expressed by

D(E; ˚) �D0(E; ˚) D ei(�C2(ıC�))(1C ei� )

C ei� /2u2(e4iı C 4e4i� C e2i(�C2�))

� 4e2iıu(u � i)C 4(u � i)2

� ei� /2[e2i� (u � i)2 C 4e2i(ıC2�)u(u C i)

� e4i(ıC�)(u C i)2] :

From Eq. (23) we can determine the positions of trans-
mission zeros and resonance poles by setting N(E; ˚) D 0

Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring, Figure 6
The total transmission of a nanoscaleAB ring as a function of electron energy (a) and contour plot of the transmission in the complex-
energy plane (b). The Fano resonance is shown in awith pole ER D (5:32� i0:14)meV, and corresponding zero E0 D 5:21meV

and D(E; ˚) D 0. We solve these two transcendental
equations numerically by using standard routines. In ad-
dition, the total transmission probability through the ring
as a function of the electron energy and magnetic flux is
given by T D jt(E; ˚)j2 and the conductance is defined by
G D 2e2

h T according to the Landauer–Büttiker formalism.
In our calculations, we present results for the follow-

ing parameters of the ring and dots: the effective electron
mass is m D 0:067m0 for GaAs and the geometrical pa-
rameters of the ring and positions of gates are chosen to
be Lu D Ll D 80 nm; L1 D 10 nm and L2 D 70 nm. The
scattering parameters describing the QD in the lower
arm are used for asVj D 0:2 eVnm ( j D 1; 2), where the
width and heights of the barriers are set to as D 4 nm and
V1 D V3 D 50meV, respectively. Note, that themaximum
coupling between the ring and the leads is used with " D 1

2
so that the coefficients of Eq. (23) become a D �b D 1

2 .
The calculated Fano structure is presented in Fig. 6.

We show both the Fano resonance in the transmission as
a function of electron energy (a) and a contour plot of
transmission in the complex-energy plane (b) to illumi-
nate zero-pole structure of the Fano resonance. We have
investigated the energy interval near the second quasi-
bound state in the two-barrier structure (two electrodes
structure). For the chosen parameters of the system, the
odd quasi-bound state (second level) has an energy of
approximately E � 5:2meV. In single channel approx-
imation (for instance, when a one-dimensional system
with a two-barrier structure is considered) the symmet-
ric Breit–Wigner resonance will be observed in the trans-
mission. Fano resonances in the transmission appear in
Fig. 6a due to the quantum interference between the con-
tinuum states in the upper arm and the discrete states
formed by the QD’s states in the lower arm. The contribu-
tion of this isolated resonance is described by Eq. (1), with
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the corresponding parameters of the zero and the pole:
ER D (5:32 � i0:14)meV and zero: E0 D 5:21meV.

Thus, the single dot produces a Fano resonance in the
transmission when the position of the resonance is associ-
ated with the level of the dot. The profile depends on the
coupling parameters of the dots with the ring.

Effects of Interference Interactions
of Fano Resonances on an AB Ring

Next we investigate the effects of the interaction of Fano
resonances in the transmission through an AB ring with
coupled double QDs. When the overlapping of two Fano
resonances takes place in the transmission, two Fano
dipoles in the complex-energy plane form a quasi-particle,
which behaves as a coupled object – a Fano quadrupole. In
the regime of strong overlapping resonances, which can be
tuned by the interaction parameter between two QDs, the
collision of transmission zeros occurs and these zeros leave
the real-energy axis and move away in opposite directions
in the complex-energy plane. We also obtain an analyt-
ical expression of the transmission zeros, and show that
these zeros are generally complex when two quasi-bound
states lie close together in energy. To explain these effects,
an analogous two level system was introduced to demon-
strate the feature of interference attraction and repulsion
of the zeros. Finally, we show a periodic motion of the res-
onance pole and transmission zero in the complex-energy
plane as a magnetic field through the AB ring is changed.

The model we study is an AB ring where a coupled
double QD is embedded in one of its arms, as schemat-
ically shown in Fig. 7. Here, double QDs can be formed
by three electrodes which play the role of barriers for elec-
trons in the lower arm, and the coupling between two QDs
is controlled by the middle electrode.

As shown in the previous section, in order to find the
transfer matrix Ml in the lower arm, we consider the cou-
pled QDs that are formed by three short-range potential
barriers (Vj ; j D 1; 2; 3). Therefore, the transfer matrixMl
for the lower arm with two QDs can be expressed by

Ml D X(Ll � L3)M3X(L3 � L2)M2X(L2 � L1)M1X(L1):
(25)

After simple calculation we again arrive at Eq. (23), where
we now have an additional term, connected with the dots
in the form

N(E; ˚) D ei(�C2(ıC�))(N0(E; ˚)C �N1(E; ˚)) ; (26)

and

N1(E; ˚) D 8iuei� /2(cos � sin ıC(cos ıC2u sin ı) sin �) ;

Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 7
Geometry of the AB ring with coupled QDs. Three electrodes in
the lower arm produce the depletion regions in the two-dimen-
sional electron gas and play the role of the barriers for electrons
with potentials V1, V2 and V3. The interaction between two QDs
is controlled by the middle electrode marked by black color

and the interaction parameter between two QDs is
�(� u2/u1 D V2/V1). The denominator of Eq. (23) can be
expressed for two dots by

D(E; ˚) D D0(E; ˚)C �D1(E; ˚) ; (27)

where

D1(E; ˚) D iei(� /2C2�)u3(e2i� � 1)2

� iei(� /2�2(ıC�))

� fsin ı[3i cos �C sin �(1C 6iu)

� cos ı(cos �C (2u � i3) sin �)2]g :

First, we study the interaction of Fano resonances in
the transmission through the AB ring in the absence of
a magnetic field by investigating the behavior of the trans-
mission amplitude for energy near zero-pole pairs. We
consider two quasi-bound states in the double QDs, where
even and odd quasi-bound states have the energies Eb and
Ea, respectively. In Fig. 8, we show both overlapping of
the Fano resonances in the transmission as a function of
electron energy and contour plots of the transmission in
the complex-energy plane for different values of the inter-
action parameter � . For weak coupling between two QDs
(� D 2:5), two distinct Fano resonances in the transmis-
sion appear in Fig. 8a due to the quantum interference
between the continuum states in the upper arm and two
discrete states from the coupled QDs in the lower arm.
The contribution of each separate resonance is described
by Eq. (1) with the corresponding parameters of the zero
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Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring, Figure 8
The total transmission of a nanoscale AB ring as a function of electron energy (the left column) and contour plots of the transmis-
sion in the complex-energy plane (the column) with increasing of the interaction parameter �. The two distinct Fano resonances
are shown in a and d for the weak overlapping regime (� D 2:5) with poles ERb D (4:70� i0:11)meV and ERa D (5:30� i0:08)meV
(shown by circles), and corresponding zeros E0b D 4:81meV and E0a D 5:21meV (both of them are placed on real axis of energy.
The collision of Fano resonances and merging of transmission zeros appear in b and e when � D �c D 3:77, when the zeros
have position E0b D E0a D 5:12meV. The pole corresponding with the bounding level approaches to second pole with the increas-
ing of � : ERb D (4:91� i0:12)meV and ERa D (5:30� i0:08)meV for � D �c. In the strong overlapping regime of Fano resonances
(� D 5:5), the transmission zeros move away in opposite directions from the real-energy axis in c and f: E0

C
D (5:19C i0:11)meV

and E0
�
D (5:19� i0:11)meV (the poles are placed ERb D (5:06� i0:12)meV and ERa D (5:30� i0:08)meV)

and the pole. Notice that the width �a of the Fano reso-
nance through the odd quasi-bound state at E � 5:3meV
is less than the width �b of Fano resonance through the
even quasi-bound state at E � 4:7meV (�a < �b). The
two transmission zeros (E0

a and E0
b) and two resonance

poles (ẼR
a D Ea � i�a and ẼR

b D Eb � i�b) in the com-
plex-energy plane are seen in Fig. 8d, where the two ze-
ros are separately on the real-energy axis. As � becomes
a critical value �c D 3:77, the two Fano resonances in the
transmission merge (Fig. 8b) and the transmission zeros

move toward each other and collide on the real-energy
axis (Fig. 8e). When � D 5:5 > �c, the minimum of the
Fano resonance in the transmission does not reach to zero
(Fig. 8c) and the transmission zeros leave the real-energy
axis andmove away in opposite directions in the complex-
energy plane (Fig. 8f).

In order to see the behavior of transmission zeros and
resonance poles in detail, we calculate the trajectories of
the zeros and poles with the explicit expressions from the
equations N(E; ˚) D 0 and D(E; ˚) D 0. In Fig. 9, we



Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring Q 7299

QuantumDots: Fano Resonances in an Aharonov–Bohm Ring, Figure 9
The trajectories of resonance poles (ẼRa , Ẽ

R
b) and transmission zeros (E0a , E

0
b) in the complex-energy plane with increasing of the

coupling parameter �(2 < � < 10). When � increases, two zeros E0a (red arrow) and E0b (yellow arrow) move toward each other
and the collision and merging take place at �c D 3:77. After merging, two zeros move away from the real-energy axis in oppo-
site directions as complex conjugate pairs (denoted by E0

C
and E0

�
with green arrows). The resonance pole ẼRb associated with

even quasi-bound state moves to the higher energy (blue arrow), and ẼRa arising from odd quasi-bound state is nearly motionless
(ẼRa � (5:30� i0:08)meV)

present the trajectories of the zeros and poles in the com-
plex-energy plane for a variation of the interaction pa-
rameter � . As � increases, one of Fano resonance zeros
E0
b (shown as diamonds), arising from the even quasi-

bound state in the QDs, moves to higher energy and an-
other zero E0

a (shown as stars), arising from the odd quasi-
bound state in the QDs, moves to lower energy. When
� D �c, the collision and merging of E0

b and E0
a takes place

at E0
a D E0

b D 5:12meV. In the strong overlapping regime
of Fano resonances (� > �c), the transmission zeros, de-
noted by E0

C and E0
� (shown as circles), move away from

the real-energy axis in opposite directions as complex con-
jugate pairs.

It is interesting to note that the behavior of the reso-
nance poles (ẼR

b and ẼR
a ) is different from that of the trans-

mission zeros (E0
b and E0

a ). The resonance pole Ẽ
R
b arising

from the even quasi-bound state in the QDs is shifted to
higher energy as � increases. However, the movement of
ẼR
b to higher energy is hindered by one of the transmis-

sion zeros E0
� at E � 5:24meV which prevents the col-

lision of the resonance poles ẼR
b and ẼR

a . On the other
hand, the resonance pole ẼR

a arising from the odd quasi-
bound state in the QDs is nearly motionless because the
odd quasi-bound state of the double QDs is not strongly
affected by � , due to short-range potentials in the lower
arm of the ring.

In order to confirm the movement of the zeros of the
transmission amplitude away from the real axis in the case

Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 10
A schematic diagram for even and odd quasi-bound states with
energies Eb and Ea, connecting with the junction states of the
ring by the appropriate matrix elements VLb, VbL, VaL and VLa.
The matrix element of the junctions through the upper arm is
denoted by Vr .

of overlapping Fano resonances, we calculate the trans-
mission zeros analytically by employing a simple model
shown in Fig. 10. We consider two nearest quasi-bound
states in the dots which are even and odd levels with en-
ergies Eb and Ea, and bare eigenfunctions  0

b and  0
a , re-

spectively. These two orthogonal states of the dots in the
lower arm can be connected with the junction states of the
ring by the appropriate matrix elements VLb, VbL, VaL and
VLa. On the other hand, Vr is defined as the matrix ele-
ment of the junctions through the reference arm. Notice
that these matrix elements are generally complex num-
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bers and they are dependent on the phase difference be-
tween localized wave functions in the dots and propagat-
ing waves in the leads. If the energy of an incoming elec-
tron from the lead is near the resonant energies of the
dots, then the matrix elements that couple an even (odd)
quasi-bound state to the left and of the dots are real and
have same (opposite) signs: VLb > 0 and VbL > 0 (VLa > 0
and VaL < 0) (this property has been noted in [7] where
the electron tunneling through a semiconductor barrier
with complex dispersion was investigated). We shall con-
sider what happens with the two level system (see Fig. 10)
when we couple it with the leads by effective matrix
elements

Uaa D
VaLVLa
Vr

; Ubb D
VbLVLb
Vr

and

Uab D Uba D
VaLVLb
Vr

:

(28)

Using the Schrödinger equation, it may be shown that the
zeros are solutions of the eigenvalue problem

�
Ea C Uaa Uab

Uba Eb C Ubb

��
 a
 b

�
D E

�
 a
 b

�
: (29)

In the other words, the problem of finding the zeros from
an exact expression for the scattering amplitude is equiva-
lent to the problem of finding zeros from (29). This cor-
respondence takes place because the interaction matrix
obeys the property UaaUbb � UabUba D 0. The determi-
nant of the system (29) is defined by

N(E) D (E�Eb)(E�Ea)�(E�Eb)Uaa�(E�Ea)Ubb : (30)

Then, the transmission zeros (E0
b and E0

a ) can be exactly
obtained from the equation N(E) D 0, which gives

E0
a;b D

1
2
(Ēa C Ēb)˙

q
(Ēa � Ēb)2 C 4UaaUbb) ; (31)

where Ēa D Ea C Uaa, Ēb D Eb C Ubb. Because Ubb > 0
and Uaa < 0 there is an effective interference attraction
between levels (Ēa D Ea � jUaaj, Ēb D Eb C Ubb). An ex-
amination of Eq. (31) indicates that when the distance be-
tween levels Ēa � Ēb is less than the effective interaction,
2
p
jUaajUbb, in the other words when

Ea � Eb < Ubb C jUaaj C 2
p
jUaajUbb : (32)

E0
b and E0

a are off from the real axis of energy. This im-
plies that when even and odd quasi-bound states lie close
together in energy, the transmission zeros move off from
the real axis of energy. Using the location of these zeros

and poles that are generally complex numbers, the trans-
mission amplitude of Eq. (23) near the resonances in Fano
overlapping regime can be expressed as

tF(E) /
�
E � E0

a
�
E � E0

b


�
E � ECb i�b

�
E � ECa i�a

 ; (33)

which characterizes the transmission line shape in the
vicinity of the transmission zeros and resonance poles.

Since the coupled Fano resonances in the transmission
can be tuned by themagnetic flux˚ threading the AB ring,
we study the magnetic field dependence of the transmis-
sion zeros and resonance poles in the strong Fano overlap-
ping regime. The trajectories of the zeros and poles in the
complex-energy plane as a function of magnetic flux are
shown in Fig. 11 for a given interaction parameter � D 3:9.
As˚ increases, the two zeros at E0

C D (5:19C i0:11)meV
and E0

� D (5:19 � i0:11)meV for ˚ D 0 start to move
to the higher (green arrow with circles) and lower (red
arrow with stars) energies, respectively until they reach
to the real axis. When ˚ D 1

2˚0, these complex con-
jugate pairs become real numbers (E0

C D 5:45meV and
E0
� D 4:95meV) which indicates full reflection of the

transmission. When 1
2˚0 < ˚ < ˚0, these zeros continue

to move on the other half of the trajectories to complete
a stadium-like orbit. Then, the zero E0

C comes to initial
position of E0

� and vice versa for ˚ D ˚0. In other words,
the upper zero E0

Ccircumscribes half of the orbit and then
the lower zero E0

�replaces the same part of the orbit af-
ter the flux is changed by one period. On the other hand,
the behavior of the resonance poles is quite different. As
˚ increases, each pole at ER

b D (5:06 � i0:12)meV (shown
as triangles) and ER

a D (5:30 � i0:08)meV (shown as dia-
monds) for ˚ D 0 moves a short nearly-straight line pe-
riodically. (If ˚ D 1

2˚0, these two poles are located at the
opposite end of the starting points along these lines.)

It is worthwhile noting here that the transmission
through the ring is a periodical function of magnetic flux,
which changes the interference between the parts of the
wave function in the arms. Hence, the transmission ze-
ros are more sensitive to the magnetic flux because they
are defined by wave interference. However, the resonance
poles are defined by quasi-bound energy and move slowly
in a magnetic field.

Finally, we present an analytical expression for zero
trajectories in the presence of magnetic field using the
same model shown in Fig. 10. If a magnetic flux is applied
to the loop in the perpendicular direction, each wave func-
tion acquires a phase shift on the links. The phase shift on
the links connecting the dots with the leads is �/2 so that
the matrix elements between the dots and the leads are
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QuantumDots: Fano Resonances in an Aharonov–Bohm Ring, Figure 11
The trajectories of zeros and poles as a function of a magnetic flux for a fixed interaction parameter � D 3:9. The two zeros for
� D 0 at E0

C
D (5:19C i0:11)meV and E0

�
D (5:19� i0:11)meV start to move to the (green arrow) and left (red arrow), respec-

tively, and they reach to the real axis for that is a full reflection of the transmission. These zeros continue to move on the other half
of the trajectories and complete a figure-of-eight orbit for 1

2˚0 < ˚ < ˚0. The resonance poles at ERb D (5:06� i0:12)meV and
ERa D (5:30� i0:08)meV for˚ D 0 move a short nearly-straight line periodically

replaced by Vn;m ! Vn;me˙i�/2, where the sign depends
on the propagation direction of an electron. On the other
hand, the phase shift through the reference arm is � and
so we can setVr ! Vre�i� . Then, the effective matrix ele-
ments of the two level system in a magnetic field, Eq. (29),
can be written as Uaa ! Uaaei2� and Ubb ! Ubbei2� .
The analytical expression for the transmission zeros in the
presence of a magnetic field is

[b]E0
a,b D

1
2



Ea C Eb C (Uaa C Ubb)ei2�

˙
p
(Ea � Eb C (Uaa � Ubb)ei2�)2 C 4UaaUbbei4�

�
:

(34)

This expression indicates the periodic trajectories for the
transmission zeros as ˚ changes, which is shown in
Fig. 11. The analysis of the two level model gives a sim-
ple explanation for why the zeros return back to the real
axis when the flux equals˚ D 1

2˚0. Since for this value of
flux the signs of matrix elements are reversed:Ubb < 0 and
Uaa > 0, the levels are defined now by Ēa D Ea C jUaaj,
and Ēb D Eb � Ubb. Thismeans that the phase shift results
in an effective repulsion of the levels and we obtain an in-
equality 2

p
jUaajUbb < Ēa � Ēb, which is opposite to (32)

(notice that the parameter 2
p
jUaajUbb has not changed).

We note that for the non-overlapping regime when
Fano dipoles exist, the zeros move in separate circular or-
bits near their associated poles (not shown here). In the
strong overlapping regime, however, the zeros act as a cou-

pled object and move in a common figure-of-eight orbit
around the two coupled poles. This means that two over-
lapped Fano resonances can be considered as a combined
object called a Fano quadrupole.

Fano Resonance Induced by a QuantumDot
in an Open Three-Terminal Interferometer

The properties of Fano resonances may be easily demon-
strated by the use of simple lattice models in which the
dots are represented by sites which are connected by one-
dimensional tight-binding chains with different topology.
In fact, most of properties of the resonances in the AB
ring are the same as in waveguide model. We shall discuss
here the phase measurements by using the tight binding
model [2,3,4,5,6,13,19,22,41,46].

In this section, we analyze a three-terminal interferom-
eter with an embeddedQD in one arm of the AB ring. The
general structure studied in our calculations is a three-ter-
minal AB ring with magnetic flux through the ring and
an embeddedQD, sketched schematically in Fig. 12 where
relevant parameters are defined. By discretizing the sys-
tem spatially with lattice constant a, and denoting the wave
function on site n by n, the Schrödinger equation in the
tight-binding approximation can be written as

�
X

Vn;m m C "n n D E n : (35)

Here, the sum runs over the nearest neighbors of n, E is
the electron energy, and "n is the site energy. (In our cal-
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Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 12
Schematic of the three-terminal interferometer with a QD em-
bedded in one of the arms. In addition to the magnetic flux
˚ threading the AB ring, the relevant coupling parameters be-
tween sites are defined: the confinement V1 of the QD, coupling
VD to the third terminal, and coupling Vr through the reference
arm of the ring.

culations, the site energies "n are set to zero for all sites
except for the QD at n D 0 which has site energy "D.) The
parametersVn;m are overlap integrals (or coupling param-
eters) involving the overlap of the single site, atomic-like
wave functions from sitesm and n with the single-site po-
tential of site n. In the homogeneous leads, the coupling
parameters are all set to V0 D 1:0, which we use through-
out the discussion as a unit of energy. In the presence of
the magnetic flux ˚ , a phase difference between the path
through the QD and the path through the reference arm
is produced [1]. Therefore, we choose a gauge in which
the coupling parameter for each segment of the lower arm
is modified as V1 ! V1e˙i' , and the reference arm cou-
pling parameter becomes Vre˙2i' (“C” for counter-clock-
wise transits around the ring and “�” for clockwise tran-
sits). The phase ' is related to the magnetic flux ˚ by
2' D �˚ /˚0.

Let us consider an incoming wave function only from
terminal 1, with transmitted waves through the ring into
the other terminals:

 n D ein� C r11e�in� ; n � �1 ;

 n D t21ein� ; n � 1 ;

 m D t31eim� ; m � 1 ;

(36)

with � D ka. Here, k is the wave vector that is con-
nected with the energy by the dispersion relation: E D
�2V0 cos ka, t21 and t31 are the transmission amplitudes
from terminal 1 into terminal 2 and 3 respectively; and r11
is the reflection amplitude back to terminal 1. Applying the
Schrödinger equation to the three sites around the AB ring
and also to site m D 1 of the third terminal, we obtain the
following matrix equation for the complex transmission

amplitudes:

0

@
V0 �Vre�i(2'��) �V1V0ei' /VD

�Vrei(2'C�) V0 �V1V0e�i' /VD
�V1e�i('��) �V1ei('C�) �(VDei� C (E � "D)V0/VD)

1

A

�

0

@
r11
t21
t31

1

AD

0

@
�V0

Vrei(2'��)

V1e�i('C�)

1

A :

(37)

Inverting the matrix on the left side of Eq. (37), we can
find the unknown reflection and transmission amplitudes:
r11, t21 and t31. In the same way, we can find the other ele-
ments of the scattering matrix: r22, t12, t32 and r33, t13, t23
when incoming waves are chosen from terminals 2 and 3,
respectively. The transmission amplitudes for an electron
from terminal (channel) j into terminal (channel) imay be
written in the form

ti j(˚) D
Ni j(˚)
D(˚)

; (38)

where we have

N21(˚) D 2iV0 sin �e2i'
�
Vr
�
V0(E � "D)C ei�V2

D


� e�4i'V0V2
1
�
; (39)

N31(˚) D �2iV0V1VD sin �e�i'
�
V0C ei(4'C�)Vr

�
; (40)

D(˚) Dei�V2
0
�
2V2

1 C V 2
D

� e3i�V2

r V
2
D

CV0
�
V2
0 � e2i�V2

r

(E � "D)

C 2e2i�V0VrV cos(4') ; (41)

with symmetry conditions

D(˚) D D(�˚) ; Ni j(˚) D Nji (�˚) ; and
N13(˚) D N23(˚) : (42)

Thus, we have all the transmission coefficients
Ti j(˚) D jt ji(˚)j2, which obey the property

Ti j(˚) D Tji (�˚) : (43)

In order to find the non-local conductance of the open
ring, we use the Büttiker equations [9]

Ii D
2e
h
�
(1 � Ri i )�i �

X

j¤i

Ti j� j
�
; (i; j D 1; 2; 3) ;

(44)

where Ri j(˚) D jr ji (˚)j2 are the reflection coefficients
(which may be eliminated from the set of equations by us-
ing current conservation: 1 � Ri i D

P
j¤i Ti j), and�i are
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the chemical potentials of the reservoirs (terminals). The
factor of two in Eq. (44) stems from the identical contri-
bution of both electron spin states. Here, it is noteworthy
that we consider a typical situation in which two terminals
(1 and 2) are used for injection of current and measure-
ments of the conductance G12;12 (see Büttiker’s notations
in Ref. [9]), whereas the potential drop (which is charac-
terized by the resistance R12;13) is measured only between
terminals 1 and 3. For our purpose, we set the current be-
tween terminals 1 and 2 as: I � I1 D �I2. Thus, termi-
nal 3 represents an ideal probe that draws no net current
(I3 D 0). Solving the set of Eq. (44), we find the coefficient

G12;12 D
2e2

h

�
T21 C

T23T31
T31 C T32

�
(45)

between the current I and the bias U12 D (�1 � �2)/e.
The potential drop U13 between the terminals 1 and 3 is
defined by the resistance R12;13 : U13 D R12;13I, where

R12;13 D
h
2e2

�
T32

T21T31 C T23T31 C T32T21

�
: (46)

Here, we present results for the following parameters of
the system: V1 D 0:3 (QD confinement), Vr D 0:3 (the
coupling through the reference arm of the AB ring), and
"D D 0 (the site energy of the QD which positions the res-
onance in the center of the allowed energy band).

Now, we study the effect of coupling to the third out-
put terminal on the transmission T21 D jt21j2 through the
AB ring in the absence of the magnetic flux. Here, the
transmission amplitute t21 can be calculated from Eq. (38)
as

t21D
2i sin �

�
V2
1 � e4i'Vr

�
E � "D C ei�V 2

D/V0
�

e2i�VrV2
1
�
e6i' C e�2i'


/V0 C e2i'

��
2V2

1 C V 2
D

ei�

� e3i�V2
r V2

D/V
2
0 C (E � "D)

�
V0 � e2i�V 2

r /V0
�

(47)

The behavior of the transmission zero and phase in
a three-terminal interferometer as a function of energy for
various values of coupling to the third terminal (VD D 0:1
(solid), VD D 0:3 (dotted), and VD D 0:6 (dashed)) is
shown in Fig. 13. Unlike a two-terminal closed AB ring
with QD’s (VD D 0) [22,41], it is seen from Fig. 13a that in
an open ring (VD ¤ 0) the Fano resonance peak does not
reach unity because of energy loss due to the outgoing elec-
trons into the third terminal. In addition, as VD increases,
the Fano zero (obtained from N21 D 0 in Eq. (39)) shifts
progressively further off the real-energy axis into the com-
plex-energy half-plane. The Fano zero can be returned to

Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 13
TransmissionT21 and transmissionphase˛21 as a function of en-
ergy for different values of VD D 0:1 (solid curve), VD D 0:3 (dot-
ted curve), and VD D 0:6 (dashed curve). a As VD increases, the
Fano resonance no longer reaches unity and the Fano zero lifts
off the real-energy axis. b The phase jump of � at the transmis-
sion resonancediminishes and softens as the ring is openedwith
coupling to the third terminal

the real energy axis at discrete values of magnetic flux (see
below) as long as VD is less than a critical value. This flexi-
ble control over the transmission resonance features is un-
available in a closed, two-terminal interferometer.

In Fig. 13b, we show the transmission phase as a func-
tion of energy for different values of VD. The transmis-
sion phase ˛21, which can be calculated from Eq. (47) as
˛21 D tan�1[Im(t21)/ Re(t21)], no longer changes abruptly
by � at the resonance, as for non-zero VD, but is shown to
progressively soften and to smoothly change by less than�
as VD increases. We attribute this smearing of the abrupt
phase jump of � to the fact that current, which flows to
the third terminal, breaks unitarity and disrupts the inter-
ference effects due to repeated reflections of the electrons
from the junctions and back through the ring.

In order to illustrate the transmission phase changing
from an abrupt jump to a smooth transition of less than �
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in a three-terminal AB ring, we calculate the phase using
a simple analytical model which is based on the proper-
ties of the Fano resonance. In the vicinity of the Fano res-
onance in the transmission versus electron energy for an
AB ring with an embedded QD, the transmission ampli-
tude has the form [17]

t21 Š tbg
�

E � Ẽ0
E � ER C i�

�
: (48)

Here, Ẽ0 is the position of the transmission zero and ER
gives the energy of the pole. The width of the resonance �
indicates how far the pole is off the real-energy axis, and
tbg represents any background contribution to the ampli-
tude. Because the Fano transmission zero lies off the real-
energy axis for an open ring, we can write Ẽ0 in a complex
form: Ẽ0 D E0 � i� . The transmission amplitude can now
be written as the product of two complex terms:

t21 Š tbg
(E � E0 C i� )(E � ER � i� )

(E � ER)2 C � 2 D jt21j2ei�tot ; (49)

where �tot is the combined transmission phase from the
two complex terms. By separating Eq. (49) into its real and
imaginary parts, we obtain an expression for �tot as

�tot D arctan
�
(E � ER)� � (E � E0)�
(E � ER)(E � E0)C ��

�
: (50)

In Eq. (50) for �tot, there is no sharp phase jump at a par-
ticular value of energy, as exists at E D ER for a two-ter-
minal closed ring in which the Fano zero is on the real-
energy axis (� D 0). In Fig. 14, we show plots of �tot ver-
sus E for various coupling parameters VD to the third ter-
minal. It is clearly seen that as VD is increased from zero,
the abrupt phase jump of � at the resonance softens and
diminishes in magnitude. This indicates that the Onsager
relations (unitarity and time reversal-symmetry) are not
valid for an open AB interferometer with an embedded
QD [2,13].

Since the Fano zero and resonance pole in the trans-
mission can be tuned by the magnetic flux ˚ thread-
ing the AB ring, we investigate the magnetic flux depen-
dence of transmission T21 for a fixed VD. In Fig. 15, the
total transmission as a function of electron energy (the
left column) and contour plots of the transmission am-
plitude in the complex-energy plane (the column) with
fixed VD D 0:3 are shown for different magnetic flux val-
ues: ˚ /˚0 D 0:0; 0:25; 0:548; 0:75, and 0.952 (top to bot-
tom). As the magnetic flux is increased from ˚ D 0, the
Fano zero begins to move on a clockwise orbit around
the Fano pole. At ˚ /˚0 D 0:25, the zero is positioned di-
rectly below the Fano pole in the complex-energy plane.

Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 14
Modeled transmission phase �tot versus energy E for a stan-
dard Fano resonance (solid curve: E0 D 0:3, � D 0:0005,
ER D 0:04, � D 0:192), and for modified Fano resonances
(dotted curve: E0 D 0:3, � D 0:1, ER D 0:05, � D 0:3; dashed
curve: E0 D 0:38, � D 0:45, ER D 0:1, � D 0:75) based on
the approximate positions of the Fano zeros and poles for
VD D 0:01;0:3;0:6, respectively. The phase jump of � at the
transmission resonance diminishes and softens as VD increases

As ˚ continues to increase, the Fano zero moves back
up towards the real-energy axis and crosses the axis at
˚ /˚0 D 0:548. When˚ /˚0 D 0:75, the Fano zero arrives
directly above the Fano pole, attaining its most positive
imaginary value. As the flux is further increased towards
˚ /˚0 D 1:0, the Fano zero again crosses the real-energy
axis at˚ /˚0 D 0:952 on the way back to its position from
which it started at ˚ /˚0 D 0.

It is interesting to note from Fig. 15 that for a fixed
value of VD, there exist two values of magnetic flux for
which the Fano zero crosses the real-energy axis. By setting
Vr(V0(E � "D)C ei�V2

D) � e�4i'V0V2
1 D 0 from Eq. (39),

the analytical expression for the energy values of the Fano
zeros (E0) and the corresponding normalized magnetic
flux values (˚ /˚0) in terms of the coupling parameter VD
can be obtained as

E0 D ˙

vu
ut
�
V2
1 V0/Vr

2
� V 4

D

V 2
0 � V2

D
and

cos
�
2�
�
1 �

˚

˚0

��
D ˙

vuu
t 1 �

�
VrV2

D/V0V
2
1
2

1 � V4
D/
�
2V2

0 � V 2
D
2 :

(51)

Here, it is required that both the real and imaginary
parts of N21 from Eq. (39) be zero. For the parameters
used in Fig. 15 (V0 D 1:0, V1 D Vr D 0:3, and VD D 0:3),
the two Fano zeros are at E0 D �0:30 and 0.30 when
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QuantumDots: Fano Resonances in an Aharonov–Bohm Ring, Figure 15
The total transmission as a function of electron energy (the left column) and contour plots of the transmission amplitude in the
complex-energy plane (the column) with fixed VD D 0:3, for different magnetic flux˚/˚0 D 0:0;0:25;0:548;0:75, and 0.952 (top
to bottom). The Fano zero moves directly downward and crosses the real-energy axis at VD D Vcrit

D , shown in the dashed curve for
˚/˚0 D 0:75

˚ /˚0 D 0:548 and 0.952, respectively. Notice, however,
that there is a critical value of V crit

D [V crit
D D V1

p
V0/Vr,

obtained from requiring E0 to be real in Eq. (51)], which
is the maximum value of VD for which there is the pos-
sibility of placing the Fano zero on the real-energy axis
at any value of flux. We show in Fig. 15 that the Fano

zero moves directly downward and crosses the real-en-
ergy axis at V crit

D (see the dashed transmission curve for
˚ /˚0 D 0:75). When VD > V crit

D , the Fano zero passes
into the negative complex-energy half-plane and there is
no value of flux which can bring the Fano zero back to the
real-energy axis.
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Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 16
TransmissionT31 and transmissionphase˛31 as a function of en-
ergy for different values of VD D 0:1 (solid curve), VD D 0:3 (dot-
ted curve), and VD D 0:6 (dashed curve). a The BW resonances,
which arise from the fact that the amplitude t31 does not have
zeros in the energy plane, are seen for a variation of VD. b The
phase change near the BW resonance softens as VD increases

In contrast to amplitude t21, the cross amplitudes t31
and t32 do not have zeros in the actual region of energy
plane (see Eq. (40)) and hence, the behavior of the ampli-
tudes near the pole is expected to be similar to that of the
amplitudes near a BW resonance. The transmission T31
and the transmission phase ˛31 in the absence of a mag-
netic flux for different coupling parameters,VD D 0:1, 0.3,
and 0.6, are shown in Fig. 16 as solid, dotted, and dashed
curves, respectively. A simple BW resonance peak in T31,
which is less than unity, can clearly be seen in Fig. 16a, and
a corresponding phase change ˛31 near the BW resonance
is depicted in Fig. 16b. Notice here that ˛31 at the reso-
nance monotonically softens as VD increases, but the BW
peak near E � 0 has a maximum amplitude at VD D 0:5.

Finally, we investigate the magnetic flux dependence
of the conductance G12;12 and the resistance R12;13 for
an open ring with a fixed VD. In Fig. 17a, the conduc-
tance G12;12 as a function of electron energy E with a fixed
VD D 0:1 is shown for different values of magnetic flux
˚ /˚0 D 0:0 (solid), 0.25 (dotted), and 0.5 (dashed). As ˚

Quantum Dots: Fano Resonances in an Aharonov–Bohm Ring,
Figure 17
a The conductance G12;12 and b the resistance R12;13 are de-
picted as a function of electron energy with a fixed VD D 0:1
for different magnetic flux ˚/˚0 D 0:0 (solid curve), 0.25 (dot-
ted curve), and 0.5 (dashed curve). As˚ increases, the swing from
Fano to BW resonance (or vice versa) appears in the conductance
G12;12 and the resistance R12;13 increases dramatically near the
zero of the Fano resonance

increases, a transition from Fano resonance (asymmetry
parameter q < 0, peak! dip) to BW resonance and then
back to Fano resonance (q > 0, dip! peak) in G12;12 can
be observed as a sequence. The Fano resonance produces
a very strong influence on the resistance R12;13. As shown
in Fig. 17b, the resistance increases dramatically when the
electron energy approaches the zero energy E0 of the Fano
resonance. The appearance of the peak in the resistance
near the zero of the Fano resonance is connected with al-
most full reflection of the electron waves traveling from
terminal 1 to terminal 2. This indicates that at this Fermi
energy there is an additional interference resistance in the
circuit region between terminals 1 and 3.

Future Directions

Electron transmission through quantum dots and Aharo-
nov–Bohm rings has shown a rich resonance structure,
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which includes Fano resonances when the QD is em-
bedded in one arm of the AB ring. The Fano resonance
is a manifestation of interference between the localized
quasi-bound states of the QD in one arm and the contin-
uum states in the other arm, characterized by both com-
plete transmission and complete reflection. This charac-
teristic of resonance structure (a zero-pole pair) can be
controlled by changing the confinement parameters of the
QD. Transmission through a QD embedded in an AB ring
remains phase-coherent, as indicated by the visibility of
the AB oscillations. The intrinsic phase of the QD is signif-
icant in its relation to the AB oscillations when the QD is
embedded in the AB-ring, and it has experimentally been
seen to exhibit interesting phase-jumps of � in a two-ter-
minal systemwhen the conductance of the AB ring reaches
a peak. In a two-terminal device, the Onsager relations of
time-reversal symmetry and current conservation (unitar-
ity) constrain the transmission phase to values of 0 or � .
However, if the two-terminal AB-ring is “opened” by al-
lowing current to flow out through additional terminals,
the unitarity condition is broken and it becomes possible
to extract meaningful phase information about the QD.

We examine new effects resulting from the interaction
of Fano resonances in the transmission of an Aharonov–
Bohm ring with two embedded quantum dots. As the in-
teraction parameter between two quantum dots is modu-
lated, two Fano dipoles (a resonance zero-pole pair) in the
complex-energy plane form a new quasi-particle, which
behaves as a coupled object called a Fano quadrupole. In
the strong overlapping regime of the Fano resonances, the
collision and merging of resonance zeros takes place and
these zeros move off from the real axis of energy in com-
plex conjugate pairs. A simple two-level model demon-
strating the interference attraction and repulsion of the
zeros is introduced. The periodic motion of both trans-
mission zeros and resonance poles as a function of a mag-
netic field is discussed. Although we have investigated the
collision of two resonances, our approach may be applied
to multi-resonant cases in which Fano-complexes in the
transmission may be demonstrated.

These predicted effects may be observed in nanoscale
devices with geometrical dimensions smaller than the elas-
tic mean free paths. In these nanoscopic systems, electron
transport is ballistic and phase coherence can be preserved.
Because of this merit of the nanosystem, there have been
many studies on electron transmission characteristics in
semiconductor structures. Especially, interference of elec-
tron waves and Fano resonances in nanostructures have
been extensively studied both experimentally and theoret-
ically [2,3,4,5,6,12,13,19,20,21,22,23,24,25,26,27,28,29,31,
32,37,38,39,40,41,42,46,47]. For instance, a quantum in-

terference experiment for a quantum dot embedded in an
AB ring fabricated in a two-dimensional AlGaAs/GaAs
heterostructure was recently performed by Kobayashi et
al. [31]. They have studied unique properties of the Fano
effect on the phase and coherence of electrons travers-
ing the AB ring. They have also reported in this tunable
Fano experiment that the Fano line-shape in the electron
transmission through the AB ring is tunable by an exter-
nal control such as a magnetic field. In other words, the
relative phase between a discrete level in the QD and the
continuum state changes the Fano-type line shapes which
is characterized by a complex number for the asymmet-
ric parameter. Notice that as a result of their small size,
the investigated dots are operated in Coulomb blockade
regime. Meanwhile, because only a few electrons in the
channels were effective in the transport through the dot,
the Fano resonances have been observed in the trans-
mission [28,29,31,32,42,46,47]. In these references, it was
pointed out that single electron interference effects may be
responsible for the formation of resonances.

AB rings with embedded quantum dots may be used
for conductance control of quantum interference devices.
Fano interference may potentially be used for the design
of new types of quantum electronic or spintronic devices
such as Fano-transistors [18], spin transistors, and Fano-
filters for polarized electrons [44]. In addition, Fano phe-
nomena can also be used for lasing without population in-
version [33]. The developed Fano interference theory for
electrons in AB rings will allow us to gain an essential un-
derstanding of the operation of novel quantum devices,
and will open new opportunities for applications.
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Glossary

Quantum dot (QD) A man-made nanostructure, gener-
ally made with semiconductor materials, in which the
motion of particles (such as conduction band elec-
trons) is bound in all three spatial directions. As a re-
sult of this 3D spatial confinement, quantum dots ex-
hibit a discreet energy spectrum with particle wave
functions localized within the quantum dot.

Coulomb blockade The increased resistance experienced
at small bias voltages by an electronic device compris-

ing of at least two tunnel junctions (terminals), which
is manifested in the electrostatic blockade of the cur-
rent by the charge accumulation on a small conducting
island between the terminals.

Single electron transistor An electronic device charac-
terized by two tunnel junctions (“source” and “drain”)
between which a conducting “island” (QD) is located.
The electrostatic potential of the QD island is con-
trolled by a third electrode (the “base”). By changing
the controlling voltage on the base electrode, trans-
port channels for electron current through the QD
can be opened or closed. When the channel is open,
an electron can tunnel into the island on an available
energy level from the source contact and then subse-
quently tunnels out to the drain electrode (single-elec-
tron transport).

Spin blockade The suppression (partial or total) of the
current through a QD device populated by electrons
and caused by the Pauli exclusion principle.

Definition of the Subject

The electronic and transport properties of quantum dot
spin transistors are presented with emphasis on single-
electron tunneling and shell structure. A comprehensive
modeling approach based on two methods is developed:
(1) quantum dot electronic structure and confinement
potential are determined from the self-consistent solu-
tion of the Poisson and Schrödinger equations within
the spin-density-functional theory in magnetic fields and
(2) a quantum transport model based on numerically ex-
act diagonalization of the many-body Schrödinger equa-
tion is used to describe transport properties of quan-
tum dots. In the linear transport regime characterized
by a small applied source-drain voltage, single-electron
tunneling through the quantum dot reveals the existence
of a shell structure in the ground state electron addi-
tion spectra which magnetic field dependence is deter-
mined by competition among the many-body interaction
effects, confinement potential strength and magnetic field
induced localization of electrons. In the non-linear trans-
port regime, the information about excitation states of
quantum dots can be extracted from the transport spec-
tra. The current in this case is dominated by the asymme-
try in the tunneling barriers, spin selection rules and the
overlap between various many-body states. The very good
agreement between calculated and measured currents al-
lows one to put in correspondence numerous features in
transport and energy spectra of quantum dots.
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Introduction

In recent years few-electron semiconductor quantum dots
(QDs) have attracted considerable attention because these
nanostructures exhibit many features characteristic of real
atomic systems. QDs are also promising candidates for fu-
ture device applications [1]. In these man-made systems
conduction electrons are held together in a finite region of
space by the confinement potential that is usually created
by the hetero-structure barriers and/or the electrostatic
potential of remote dopant charge distributions modu-
lated by external gate voltages.

Among several types of QDs, we consider the so-called
“gated” quantum dots in which controlled single-electron
charging and shell structure was first observed [2]. In
vertical QDs, a small, quasi-two-dimensional (quasi-2D)
electron island (dot) is formed in a mesa-structure pillar
(Fig. 1a) between two heterostructure barriers (see Fig. 4).
The size of the island (or the electron occupation of the
QD) can be changed electrostatically by applying a volt-
age to the gate wrapped around the vertical structure. The
current flows vertically (hence the term “vertical QD”)
through the heterostructure in response to a bias applied
between the source and drain contacts on top and bottom
of the mesa-structure. The fact that this device has three
terminals is reminiscent of a field-effect transistor where
the base terminal corresponds to the side gate in the QD
device and controls the single-electron current through
the heterostructure.

Another method frequently utilized to fabricate QDs is
the lithographic patterning of gates, i. e., the deposition of
metal electrodes on a heterostructure surface (Fig. 1b). By
biasing the top gate electrodes, the two-dimensional (2D)
electron gas formed at the hetero-interface between differ-
ent materials such as AlGaAs and GaAs is depleted under-
neath them, thereby creating an island of non-zero elec-
tron density that can be further fine-tuned by changing
voltages on nearby gates [3]. This device is called lateral
or planar QD because the current flows in the plane of the
2D electron gas.

Single-Electron Tunneling

Single-electron effects have been known for a long time.
In his famous 1911 experiments, Millikan [4] measured
the value of the electron charge observing the falling
rate of charged oil drops. Systematically single-electron
charging effects in electron tunneling were first studied
by transport measurements on thin films of small metal-
lic grains [5,6,7]. In 1975, Kulik and Shekter [8] showed
that in a two-terminal system, the current through a small
grain at low bias voltages is blocked by the accumulated
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Figure 1
Scanning-electron micrograph of a the vertical QD structure
(analogous to the one used in [2]) and b planar system of two
laterally coupled QDs [3]

charge, whereas the differential conductance varies peri-
odically when a larger source-drain bias is applied. This
so-called Coulomb blockade and the Coulomb “staircase”
were later observed for the first time in granular sys-
tems [9] and thin-film tunnel junctions [10].

In principle, QDs are ideal systems for the investi-
gation of single-electron tunneling which can be accom-
plished by connecting the dot island to surrounding reser-
voirs [11,12,13]. Figure 2a schematically shows a QD elec-
tron island connected to the leads through hetero-barriers
as in the vertical QD structure (it can also be electrostatic
barriers as in planar QD structures), and a side gate biased
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QuantumDot Spin Transistors, Self-consistent Simulation of, Figure 2
Single-electron transport through the QD (N D 2) in a the linear regime (VSD! 0) and b non-linear regime (VSD is large). In both
cases the QD contains one electron while one channel (three channels in b) open for the tunneling of the second electron. The left
and right barrier permeabilities are �L and �R respectively

with a controlling voltage VG that changes positions of the
energy levels in the QD with respect to the chemical po-
tentials of the left (L) and right (R) leads �L and �R. The
electro-chemical potential of the dot filledwithN electrons
(the solid line in Fig. 2), is given by

�QD(N) D E(N) � E(N � 1) ; (1)

where E(N) is the ground-state energy (at zero tempera-
ture) of the N-electron QD. As the leads (the source and
the drain contacts) are weakly coupled to the QD, the elec-
trochemical potentials �L and �R become different when
a constant source-drain bias VSD is applied between the
leads, and a transport window of width �L � �R D eVSD
opens up.

In the linear transport regime, the transport window
eVSD is much smaller than the average spacing among the
quantum states, so that only the ground state of the QD
contribute to the conductance. By changing the voltageVG
on the side gate, one can achieve alignment of �QD(N)
with the transport window so that electrons can subse-
quently tunnel in and out of the QD; this situation cor-
responds to a conductance maximum when the number
of electrons in the QD cycles between N and N C 1. Oth-
erwise the current is blocked; this scenario corresponds
to zero conductance (and current) when the number of
electrons N in the dot is fixed, and it increases to N C 1
each time a conductance maximum is crossed. This mech-
anism of discrete charging and discharging of the QD
leads to Coulomb blockade oscillations in the conductance
as a function of the gate voltage. The distance between
neighboring Coulomb peaks [14] equals the difference in

the electrochemical potentials of a QD containing N C 1
and N electrons:

�2(N) D �QD(N C 1) � �QD(N) : (2)

In the non-linear transport regime, i. e. for a larger
transport window eVSD and at a fixed VG, additional peaks
in differential conductance traces occur. They are due to
the excitations in the N-electron QD system as electrons
can tunnel in and out of the QD via the ground as well
as low lying excited states (Fig. 2b). By plotting the posi-
tions of these peaks as a function of VSD and VG, a charac-
teristic diamond-shaped structure is observed, which pro-
vides information about the ground and excited states of
the QD [15,16,17,18,19]. Note that unlike optical absorp-
tion (radiation) processes in real atoms where electron ex-
citations are created by photons, the excitation mecha-
nism in artificial QD atoms is electron-only, e. g., excita-
tions can be created when one electron tunnels out from
the ground state, while another one tunnels in the excited
state. However, in general, the analysis of the various fea-
tures observed in the tunneling current through the QD in
terms of the excitation energies in the non-linear transport
regime is a challenging task that we address in Sect. “Tun-
neling Spectroscopy of a Few-Electron QD in the Non-
Linear Transport Regime”.

Shell Structure

In the three-dimensionally (3D) confined systems such as
QDs energy quantization and interaction among the con-
fined particles leads to the existence of a “shell structure”.
It can be illustrated on the following example of a simple
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two-dimensional harmonic-oscillator confinement poten-
tial:

Vconf(x; y) D 1
2m
�!2 �x2 C y2


; (3)

which can be considered as an empirical mean-field po-
tential in which N particles with effective mass m� move
independently and where ! determines the confinement
strength. The corresponding single-particle energy levels
are obviously

Enx ;n y D „!
�
nx C ny C 1


; (4)

where one easily recognizes the (N0 C 1)-fold state de-
generacy with respect to the quantum number N0 D

nx C ny D 0; 1; 2; : : : By filling the states with non-in-
teracting electrons and by accounting for the Pauli prin-
ciple, one can obtained closed shells for a sequence of
N D 2; 6; 12; 20; : : : particles. For these configurations,
a particular stability is achieved as the degeneracy of the
shell is resolved. Adding one more electron to a closed
shell results in the single occupation of an orbital belong-
ing to the next higher shell which makes this configuration
less stable since as a larger amount of energy than for the
closed shell configurations needs to be supplied to the sys-
tem. Despite its simplicity, this example illustrates some of
the basic features of few-electron QD systems such as the
existence of electron shells and the stability of closed-shell
configurations.

The periodic table of elements (Mendeleev table), with
its groups of elements characterized by similar chemi-
cal properties, is the most well-known example of shell
structure in nature. Atomic shells are clearly seen in the
pronounced maxima of the ionization energies of neutral
atoms for atomic numbers Z(D N) D 2; 10; 18; : : : cor-
responding to the noble gases He, Ne, Ar, etc. (the 3D
spherical symmetry of the rigid confinement caused by
the strong 1/r Coulomb potential of the nucleus results
in closed shells forming at different values N than in the
above 2D example). The shells are populated according
to first Hund’s rule stating that the spin is maximized for
half-filled orbitals due to the Pauli principle and the repul-
sive Coulomb interaction [20].

In a clear analogy with atoms, nuclei [21] or atomic
clusters [22], shell structure was observed in the trans-
port spectra of semiconductor QDs for the first time by
Tarucha et al. [2] in vertical structures (see Figs. 1a and 4).
The electron number N in the QD was varied one-by-one
starting from N D 0 by increasing the negative voltage VG
applied to the side gate (at VG D 0 the QD was already
populated by a large number of electrons). A current I

Quantum Dot Spin Transistors, Self-consistent Simulation of,
Figure 3
Current oscillations due to the Coulomb blockade in the linear
transport regimemeasured in the vertical QD system [2]

Quantum Dot Spin Transistors, Self-consistent Simulation of,
Figure 4
Schematic representation of the vertical QDmesa-structure [2]

flowed through the QD sandwiched between two het-
erostructure barriers in response to a very small bias VSD
(linear transport regime) between the source and drain
contacts. Bymeasuring the current as a function of the side
gate voltage, current peaks corresponding to single-elec-
tron tunneling events were observed. The separation be-
tween consecutive peaks is proportional to the difference
in energy needed to add an electron to the dot already con-
fining N particles (Eq. (2)). The current-voltage character-
istics plotted in Fig. 3 has large inter-peak separations at
electron numbers N� D 2, 6, and 12 which correspond to
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closed shells for the 2D harmonic oscillator potential (3).
The smaller inter-peak separations at the midshell regions
for N D 4, 9, . . . is a consequence of electron spin align-
ment due to first Hund’s rule (for details, see Sect. “QD
Ground State Charging in Magnetic Fields”).

Experimental Techniques

In semiconductor QDs, numerous experimental tech-
niques for probing single-electron charging effects on sin-
gle dots or arrays of dots have been implemented which
allow a detailed spectroscopic study of the ground and ex-
cited states of individual artificial atoms. Originally, far-
infrared (FIR) and optical spectroscopy were applied to
arrays [23,24] as well as to individual quantum dots [25]
because of their success in atomic and molecular physics.
However, the parabolic dependence of the confinement
potential and the long wave-length of the radiation sup-
presses most transitions in the excited states by dipole se-
lection rules [26]. In many cases, it was found that the FIR
absorption spectra are indicative of a non-interacting elec-
tron system [23,24], in which case Kohn’s theorem [27]
indicates that the effects of electron-electron interactions
in a QD can be observed only if the anharmonicity of the
confinement is sufficiently strong [28].

On the other hand, transport-based methods are ex-
pected to be largely free of the optical spectroscopy lim-
itations which makes them more attractive for studying
QDs. The first QD capacitance measurements were re-
ported by Smith et al. [29] and single-electron capacitance
spectroscopy has been used for both arrays [30,31,32] and
individual quantum dots [33]. In these experiments, elec-
tron tunneling into the QD was observed upon increas-
ing the positive bias on the top plate. The spacing between
conductance peaks was approximately constant reflect-
ing conventional Coulomb blockade effect similar to ear-
lier experiments [34] in larger, lateral quantum dots. For
smaller biases, however, the distance between consecutive
peaks increased, and the spacing between them became
nonuniform [33,35]. These deviations from the equidis-
tant Coulomb blockade spectra were attributed to the QD
energy spectrum quantization which will be explained in
details below (see Sect. “QD Ground State Charging in
Magnetic Fields”).

Many-Body Calculations of the QD Electronic
Structure

In general, electrons in GaAs-based QD mesa-structures
originate from remote ionized shallow impurities in the
(doped) leads and are confined around the lowest energy
minimum of the semiconductor conduction band. The

electron density in the leads is low with the mean elec-
tron-electron distance � 10 nm validating the effective-
mass approximation: the conduction electrons have an ef-
fectivemassm� and their Coulomb interaction is screened
with the static dielectric constant " of the semiconductor
in question.

From a theoretical point of view, interacting elec-
trons confined in a quasi-2D QD form a seemingly simple
many-body problem . The electron-electron correlations
give rise to numerous intriguing QD properties [36]. Ku-
mar et al. [37] calculated the effective single-particle con-
finement for a QD created by square-shapedmetallic gates
using a self-consistent approach, where the electrostatic
confinement potential was obtained from a self-consistent
solution of the combined Hartree and Poisson equations
for the whole 3D QD mesa-structure. In their approach,
electrons in the QD region were treated fully quantum-
mechanically via the solution of Schrödinger equation (ne-
glecting image charge effects as well as electron correla-
tions) while the charge density in the leads was described
semi-classically. They found that in the limit of small parti-
cle numbers confined in the QD, the effective confinement
has a symmetry close to circular, even if the dot region
was defined by a square-shaped gate pattern. On the ba-
sis of their work, the simple isotropic harmonic oscillator
(see Eq. (3) above) was adopted as the “standard” 2D QD
model potential for future numerous QD electronic struc-
ture calculations. Macucci, Hess, and Iafrate [38] extended
the work [37] by incorporating the exchange and correla-
tion contributions in electron-electron interaction within
the density-functional theory (DFT) and found a shell-like
structure for the electro-chemical potentials �QD(N).

However, it turns out that the addition energy calcula-
tions based on a model 2D confinement potential and the
experimental data start to deviate when the electron num-
ber N increases [39]. In this respect, analysis of a series
of experimental addition energy spectra for 14 different
structures with diameters between 0.44 and 0.6�m, which
are similar to the QD device used by Tarucha et al. [2],
finds [40] strong device-to-device variations: While all
structures show the first shell at N D 2, only 71% of them
show shells at both N D2 and 6, 64% at N D 2, 6, and
12, and 21% at N D 2, 6, 12, and 20. These observations
seem to indicate that each QD has “a mind of its own,” and
one should be cautious with a quantitative comparison be-
tween experiment and theoretical calculations based on
a fixed model confinement potential. Possible reasons for
the disagreement are either non-parabolicity of the con-
fining potential or the unavoidable inaccuracies in device
fabrication that disturb the perfect circular symmetry of
the QD.
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These deviations, at least in part, can be accounted
for by performing a full scale 3D analysis of the QD
mesa-structure without any a priori assumptions about
the shape or strength of the confinement potential (as it
was done in the above [40]). In this multi-scale approach
spin-density-function theory (SDFT) is utilized to treat
the many body interactions among the electrons in the
QD fully quantummechanically including correlation and
spin effects by solving Kohn–Sham (KS) equations. On the
other hand, a semi-classical Thomas–Fermi approach is
used to describe the influence of the charge distribution
outside the QD region. As a result, the QD confinement
potential and the quantized energy spectrum are obtained
directly from the self-consistent solution of the non-lin-
ear Poisson and Kohn–Sham (KS) equations with device
boundary conditions.

DFT calculations were also performed [41] for study-
ing the electron structure and statistical properties of the
level spacings in dots containing � 100 electrons. How-
ever, in this approach the 3D KS equations were separated
into 2D and 1D equations by taking into account quasi-
2D nature of the QD confinement. Self-consistent proce-
dure [42] was also used for solving full 3D Poisson and
Schrödinger equations for a few-electron cylindrical QDs.
Here the N-electron Schrödinger equation was solved by
the unrestricted Hartree–Fock method and the ground
state charging energies (chemical potentials) of the QD in
magnetic fields were computed [43].

In the following chapters a theoretical analysis of the
QD electronic and transport properties is given. The dis-
cussion is based on the calculations performed for the ver-
tical QD structure described in Sect. “Vertical QD Device
Structure”. An approach suitable to the simulation of the
QD ground state properties which is based on the self-
consistent solution of the Poisson and Schrödinger equa-
tions within the SDFT is presented in Sect. “Self-consis-
tent Approach”. The ground state addition energy spectra
and shell structure in magnetic fields are computed and
compared with experimental data in Sect. “QD Ground
State Charging in Magnetic Fields”. Next a description
of a numerically exact diagonalization of the many-parti-
cle Schrödinger equation (Sect. “Exact Diagonalization of
the Many-Electron Schrödinger Equation”) and the quan-
tum transport model (Sect. “Quantum Transport Model”)
is provided followed by Sect. “Tunneling Spectroscopy of
a Few-Electron QD in the Non-Linear Transport Regime,”
where the relationship between the computed current and
energy spectra in the non-linear transport regime (excited
state spectroscopy) is established and comparison with
measured data is given. Finally, Sect. “Conclusion” con-
tains concluding remarks.

Vertical QDDevice Structure

Single-electron tunneling controlled by external gates is
best illustrated on the example of a gated vertical QD
structure schematically shown in Fig. 4 which is sim-
ilar to the QD used in the pioneering experiments of
Tarucha et al. [2]. The mesa-structure was fabricated from
a double-barrier heterostructure (DBS) by etching tech-
niques [44], and the electron “puddle” (QD) was located
in the quantum well between two hetero-barriers that sep-
arated it from the outside environment. A metal Schottky
gate (side gate) was wrapped around the base of the cir-
cular pillar with a diameter of 0.5�m. The energy gap be-
tween conductance and valence bands was also reduced by
including 5% In in the 12 nm GaAs quantum well sand-
wiched between the two Al0:22Ga0:78As barriers which
were nominally 7.5 and 9.0 nm thick. The presence of In
lowered the bottom of the conduction band below that
of the n-doped GaAs leads (source and drain contacts) so
that the lowest energy level in the QDwas below the Fermi
level of the contacts, i. e., electrons could accumulate in the
dot even if no source-drain bias voltage VSD was applied.
This made it possible to study electron transport at very
small source-drain bias voltages. The side gate voltage VG
changed the effective diameter of the island, i. e., it con-
trolled the strength of the effective confinement potential,
thereby allowing one-by-one change in the QD electron
population (single-electron QD charging). As the effective
diameter of the QD is much larger than its thickness in
the vertical direction perpendicular to the hetero-barriers,
the motion of the electrons in the vertical z-direction is
“frozen” so that only the ground state in that direction is
occupied, and it is the energy quantization in lateral x–
y-plane which is affected by the side gate voltage.

Self-consistent Approach

We use the SDFT [45] to describe the ground state prop-
erties of electrons confined in the QD, in which the charge
density �(r) is calculated after solving KS equations for
electrons with spin up (") and down (#):

Ĥ"(#) "(#)(r) D ""(#) "(#)(r) ; (5)

where the single-particle Hamiltonian Ĥ"(#) is given as

Ĥ"(#) D T̂ C �(r)C�Ec(r)C v"(#)xc (r) (6)

with T̂ being the kinetic energy operator which in the pres-
ence of an external magnetic field B reads as:

T̂ D
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Here m�(r) is the position dependent electron effec-
tive mass, and A D (B/2)(y;�x) is the vector potential
in symmetric gage for the the magnetic field oriented
along the z-direction perpendicular to the QD plane (Zee-
man splitting is neglected for clarity). In Eq. (6), �Ec(r)
stands for the conduction band offset between the dif-
ferent materials. For the vertical QD structure described
in Sect. “Vertical QD Device Structure”, its values are
fixed at 180 and �40meV for Al0:22Ga0:78As/GaAs and
In0:05Ga0:95As/GaAs interfaces, respectively (note that for
the real structures with non-zero doping in the GaAs con-
tact regions, the value of �Ec(r) for In0:05Ga0:95As/GaAs
is difficult to determine precisely). In general, this method
is not limited to single vertical QD structures but can be
quite straightforwardly applied to modeling any layered
semiconductor structures such as those used for the pla-
nar (lateral) QDs [46] as well as systems of double [47] and
triple vertical QDs [48].

The exchange-correlation potential v"(#)xc (r) in Eq. (5)
is computed within the local spin density approximation
(LSDA) [49] and does not explicitly depend on magnetic
field. Comparison of DFT results with calculations using
current-spin density functional theory [50] for 2D systems
showed that this approximation is reliable over a wide
range of magnetic field, although at higher fields, effects
of paramagnetic currents in v"(#)xc (r) should become more
important [51].

The potential �(r) D �ext(r)C �ion(r)C �H(r) in
Eq. (6) is the sum of the external potential �ext(r) due
to the applied voltage, screening potential �ion(r) arising
from the ionized impurities in the structure, and Hartree
potential �H(r) accounting for the repulsive electron-elec-
tron interactions. It is obtained from the solution of the
Poisson equation:

r�(r)r�(r) D 4��(r) ; (8)

where �(r) is the dielectric constant of the medium, and
�(r) is the charge density which inside the QD region is
equal to

�(r) D �e
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with the summations spanning occupied states for elec-
trons with spin up and down (the number of those states is,
in general, different). Outside the QD region, charge dis-
tribution is determined from electron n(r) and hole p(r)
densities calculated within the semi-classical Thomas–

Fermi approximation [52]:

n(r) D
4
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�
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; (10)
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e�(r)� EG(r) ��Ec(r)

T

�
; (11)

F1/2[�] D
Z 1

0

dxx1/2

1C exp(x � �)
; (12)

where EG(r) and mh(r) are the band gap and the hole ef-
fective mass of the constituent materials, and T D 0:1K is
the temperature. These densities are screened by the (com-
pletely) ionized donors and acceptors NCD (r) and N�A (r)
distributed in the QD leads:

�(r) D �e
�
NCD (r) � N�A (r)C p(r) � n(r)

�
: (13)

Since QD regions are usually much smaller than the
physical dimensions of the device, the KS wavefunctions
actually vanish long before reaching the device bound-
aries. This allows us to embed a local region in the global
mesh for solving the KS equations. This local region is cho-
sen to be large enough to ensure vanishing wavefunctions
on its boundaries. For the Poisson equation (8), zero elec-
tric field on the lower part of the structure buried in the
substrate and on the top contact plane are used as a bound-
ary condition. On other surfaces, not covered by the side
gate, the potential � is set equal to the Schottky barrier
value VS D 0:9 eV. Boundary values of the potential on
the side gate are equal to the Schottky barrier value modi-
fied by the applied gate bias, VS–VG. The system of KS and
Poisson equations (5), (8) is solved iteratively until a self-
consistent solution for the KS orbitals  "(#)(r) and eigen-
values ""(#) is obtained.

The calculations are performed on a parallel platform
by means of the finite element method (FEM) with trilin-
ear polynomials on a variable size grid [53]. The advan-
tages of FEM utilization are the ability to systematically
improve the accuracy by expanding the basis set and its in-
herent variational nature. Due to the last reason, calculated
energy differences between two similar configurations are
usuallymore accurate than total energy computed for each
system separately since each energy is already an upper
bound to the exact value.

In our approach Poisson’s equation (8) is solved by
means of the damped Newton–Raphson method while the
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generalized eigenvalue problem obtained after discretiza-
tion of the KS equation (5) is tackled by means of a sub-
space iteration method based on a Rayleigh–Ritz analy-
sis [53]. The small number of required eigenpairs (� 10)
made this approach sufficient. A parallel conjugate-gra-
dient method preconditioned with block Jacobi with an
incomplete LU factorization on the blocks is utilized for
solving the resulting matrix equations. In the presence of
a magnetic field, the matrix obtained from the KS equation
is Hermitian and the hermitian-conjugate method with
the same preconditioner as above had to be used in solving
the eigenvalue problem. Compared to the ordinary con-
jugate gradient method with a Jacobi preconditioner, this
approach gives rise to at least an order of magnitude in-
crease in performance especially when working with Her-
mitian matrices [54].

After the eigenvalues are determined, the ground state
electron charging diagram can be calculated by directly
comparing the total energy E(N) of the N-electron system
with the system containing N � 1 electrons, the difference
of which gives the required value of the chemical potential
�QD(N) (see Eq. (1)). One can also use Slater’s rule (tran-
sition state technique) in order to calculate �QD(N) [55]:

�QD(N) D E(N) � E(N � 1) � "(1/2) ; (14)

where "(1/2) is the eigenvalue of the state with half occu-
pation in the system with N � 1/2 electrons (the transition
state). By varying the side gate voltage VG, both E(N) and
�QD(N) can be changed. If �QD(N) < 0, then the N-elec-
tron configuration is stable, otherwise the number of elec-
trons in the QD is N � 1. The side gate bias VG(N) at
which �QD(N) D 0 gives the charging voltage for the Nth
electron (or equivalently the boundary between the QD
stable configurations with N and N � 1 electrons).

An external magnetic field induces crossings among
the states with different total spins, i. e., the spin config-
uration of the system changes while the number of elec-
trons in the QD remains constant. In this regard, one
should note that Slater’s rule (14) can only be used when
there is a change in the occupation of a single eigenlevel.
If the change in the electron number is accompanied by
spin rotations of individual electrons, i. e., the occupation
of several KS levels is simultaneously changed (this hap-
pens, e. g., in N D 2 system with S D 0 at B � 5 T in Fig. 6
when the addition of a third electron results in S D 3/2
state), Slater’s rule should be invoked several times. How-
ever, such situations involving several transition states are
infrequent so that overall, the utilization of Slater’s rule
significantly reduces the amount of computational time to

calculate the full charging diagram of a QD in magnetic
fields [56].

From the �QD(N) value, the ground state electron ad-
dition energies can be determined by computing the QD
capacitive energy [57] given by Eq. (2). This quantity is
evaluated for side gate voltage VG(N C 1) corresponding
to the addition of the (N C 1)th electron to the system so
that�2(N) D ��QD(N). In the following chapter, we dis-
cuss in detail is the variation of the charging voltageVG(N)
and addition energy as functions of the electron numberN
in a QD and magnetic fields.

QDGround State Charging inMagnetic Fields

The computed electron addition energy spectra �2(N) of
the circular QD in the absence of a magnetic field are
shown in Fig. 5 together with the corresponding experi-
mental data from [58]. The spectrum exhibits pronounced
maxima for two and six electrons due to the first and sec-
ond shell closures characteristic of QDs with parabolic 2D
circular confinement. The peaks and valleys are a conse-
quence of the interplay between confinement and many-
body effects. For N D 2, the lowest single-particle state
"1 is fully occupied. The third electron populates the next
available eigenstate with "2 > "1, thus making the addition
of the electron energetically more costly than for the case
of the second electron. The same situation is repeated for
N D 6 when the second shell is closed. A smaller peak at
N D 4 is due to the fulfillment of Hund’s first rule: The
total spin of the N-electron system is equal to zero (sin-
glet) for N D 2 and 6 and to one (triplet) for N D 4. The

Quantum Dot Spin Transistors, Self-consistent Simulation of,
Figure 5
Addition energy spectra for the circular QD at zero magnetic
field. Red line represents the results of calculationswhile blue line
stands for the experimental data
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QuantumDot Spin Transistors, Self-consistent Simulation of, Figure 6
a Experimental [15] and b calculated ground state charging diagrams in magnetic fields. Dashed curves show the lowest excited
state for N D 2 (see also Fig. 8). Red circles define boundaries of regions with different total spin and angular momentum in the
ground state of the N-electron system. Blue circles depict features in the the N-electron ground state due to reconstruction of the
(N� 1)-electron system. Orange curves show the magnetic field above which the N-electron system is fully spin-polarized

agreement between the calculated and experimental spec-
tra is very good, for both peaks and valleys. From the en-
ergy separation between the two lowest adjacent eigenval-
ues, the confinement strength „! � 6meV in the empty
QD can also be deduced.

In Fig. 6 the charging voltage VG(N) for N D 1–5 elec-
trons as a function of magnetic field (charging diagram) is
shown. Comparison between experimental (Fig. 6a) and
calculated (Fig. 6b) data shows that overall agreement is
very good, albeit the confinement potential at zero mag-
netic field in our model structure is somewhat weaker, i. e.,
the curves are more closely spaced. The charging voltages
generally (in the considered range) increase with magnetic
field since the effective confinement becomes stronger.
The curves corresponding to the charging of N � 2 elec-
trons exhibit “cusps” due to variousmagnetic field induced
spin and angular momentum transitions. For N D 2, O
marks the magnetic field of the singlet-triplet transition
(see also Fig. 8), belowwhich the singlet is the ground state
while above the triplet is the ground state. For the N D 3
charging curve arising from the addition of the third elec-
tron to the two-electron system, the cusp near 5 T is due
to a change in the ground state configuration of the two-
electron system at B � 5:6 T (the singlet-triplet transition)
which affects the addition energy of the third electron. The
shift from 5.6 T to 5.0T is due to a screening effect and is

consistent with the experiment (Fig. 6a). The cusp near 6 T
reflects an increase in the total spin of the three-electron
system from S D 1/2 to S D 3/2, namely below this point
two electrons are spin-up, and one is spin-down while
above this point all three electrons in the QD are spin-up
and form a spin-polarized system.

In general, the rightmost cusp in charging diagram
(Fig. 6) always corresponds to complete spin polarization
of the electron system. The magnetic field at which the
formation of this state occurs increases with the number
of electrons since a stronger field is required to overcome
the large kinetic energy accompanying single occupation
of consecutive orbitals. Cusps in the N-electron curves in
the vicinity of B D 5 T are either due to changes in the
(N � 1)-electron configuration or due to single spin ro-
tations in the N-electron system. The two cusps around
B � 0:25 T in the N D 4 and N D 5 curves mark the
breakdown of Hund’s first rule filling in the four-electron
system and respective change in the addition energy of the
fifth electron due to the decrease of exchange energy in
the four electron system, similar to the N D 3 curve. The
cusp at B � 1:5 T in the N D 5 curve can be understood
in terms of the Fock–Darwin spectrum [59]. Around that
point, an electron undergoes a transition moving to a state
with higher angular momentum while keeping the total
spin value constant.
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Exact Diagonalization
of theMany-Electron Schrödinger Equation

In order to gain insight in the single-electron tunneling
characteristics in the non-linear transport regime at large
source-drain bias values, it is necessary first to calculate the
energy spectrum of a N-electron system. Since the above
described self-consistent SDFT-based approach is insuf-
ficient for this purpose as the DFT is predominantly the
ground state theory [45], we utilize the numerically ex-
act diagonalization of the corresponding many-electron
Hamiltonian:

Ĥ D
NX

iD1

"

�
„2

2m�

�
ri �

ie
„c

Ai

�2
C Vconf(ri )

˙
1
2
g�BB

#

C
X

i< j

e2

�jri � rjj
; (15)

where m� and � stand for the electron effective mass
and dielectric constant in In0:05Ga0:95As respectively.
A D (1/2)(Bx;�By; 0) is the vector potential in the sym-
metric gage for the magnetic field B oriented along
the z-direction. The term ˙ 1

2 g�BB accounts for Zeeman
splitting with g D �0:44 being the electron g-factor.

In this equation the confinement potential Vconf(r) is
assumed for simplicity to be two-dimensional as the width
of the vertical QD is much smaller than the lateral exten-
sion of the electron “puddle” (see, e. g., Sect. “Vertical QD
Device Structure” and [60]). Due to lithographic and na-
ture imperfections [15,61], in the following calculations it
is also assumed to be slightly elliptic, i. e.

Vconf(r) D 1
2m
�
h
!2
x x

2 C !2
y y

2
i

(16)

where the confinement energies in the x- and y-direc-
tions are taken to be „!x D 5:3 and „!y D 5:65meV,
respectively, for comparison with experimental struc-
tures [15,40,61]. Note that it is also feasible to perform hy-
brid calculations [60] where the confinement potential is
first obtained for an empty QD (N D 0) by the self-consis-
tent method of Sect. “Self-consistent Approach” and then
the electronic structure of the QD populated with N elec-
trons is computed by numerically diagonalizing the cor-
responding many-particle Hamiltonian (15) with thus ob-
tained potential. In a few-electron vertical QD structure,
this separation works well because the electron system in
the QD is sufficiently well isolated from the environment
so that interaction between the electrons in the QD and
the charges in the outside regions does not affect elec-
tron confinement strongly, and it becomes possible to keep

the confinement potential frozen and independent on the
electron number [60,62,63].

We diagonalize the above Hamiltonian (15) by ex-
panding the N-electron wave function for the ˛th state in
terms of N � N Slater determinants [64]:

�˛(N) D
X

i:::n

c˛i:::n

ˇ
ˇ̌
ˇ
ˇ̌
ˇ

'i (r1; sz1) : : : 'n(r1; sz1)
:::

:::

'i(rN ; szN ) : : : 'n(rN ; szN )

ˇ
ˇ̌
ˇ
ˇ̌
ˇ
:

(17)

Here the basis wave function 'i (r j; sz j) is the product of
a 2D anisotropic harmonic oscillator eigenfunction (with
frequencies being adjustable parameters) and a spin wave
function. Each quantum number i D (nx ; ny ; s) corre-
sponds to the set of the 2D harmonic oscillator (nx ; ny )
and spin s quantum numbers. The summation is carried
over all permutations fi : : : ng available for the particular
spin state, and the coefficients c˛i:::n are determined after
the minimization of

˝
�˛jĤj�˛

˛
for a given state which

leads to the generalized eigenvalue problem with dense
Hermitian matrices. We found that the harmonic oscil-
lator frequencies smaller than the confinement strengths
work best due to the fact that the Coulomb interaction
tends to flatten out the effective potential [65]. In case of
a 2D circular confinement, the Coulomb matrix elements
can be evaluated analytically yielding four-fold series. For
the anisotropic 2D potential (or in 3D case), the matrix
elements are also expressed through the fourfold (sixfold
in 3D) series but the auxiliary one-dimensional exponen-
tial integral evaluated numerically by means of the Gauss–
Kronrod quadrature has to be used to compute their final
numerical values [66].

The above method of numerically exact diagonaliza-
tion of the many-electron Hamiltonian (15) also known
as full configuration-interaction (CI) approach yields very
accurate values for the eigenenergies and eigenfunctions
provided that the single-particle basis set (17) is chosen
to be large enough [67]. The downside of this method re-
sides in the size and complexity of the Hamiltonian ma-
trix that grow very quickly with the number of electrons
(/ MN withM being the number of the single-particle ba-
sis states). As a result, it is usually used for QDs with highly
symmetric confinement potential containing a small num-
ber of electrons (. 10). The most crucial step in this ap-
proach is the construction of the many-particle wave func-
tion which can be achieved by using either

(1) The single-particle wave functions of the correspond-
ing Hamiltonian or
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(2) Analytic wave functions of an elementary confine-
ment potential such as a 2D (3D) harmonic oscillator
(as used in this work) or Fock–Darwin states [16,65,
68] or

(3) Multi-center expansion of the single-particle wave
functions [69].

Computations using method (1) are usually performed
fully numerically on a grid [70] and can in principle be ap-
plied to various complex confinement potentials [71]. The
disadvantage of this approach is the absence of a system-
atic way to build up an adequate basis set that ensures fast
convergence in the computed energy values and the in-
herent loss of accuracy and dramatic increase in the com-
putational time required for the numerical evaluation of
the Coulomb integrals as the basis set gets larger. A hy-
brid approach in which the single-particle contributions to
the Hamiltonian with the real confinement potential (ob-
tained by the method described in Sect. “Self-consistent
Approach” for N D 0) were computed numerically with
the harmonic oscillator basis set while the Coulomb inte-
grals were evaluated analytically has been recently used to
simulate double QD systems [72].

Quantum Transport Model

Since the tunneling hetero-barriers in the vertical
QD mesa-structure are large (with tunneling times
� 1 ns [73]), only sequential tunneling of electrons is of
interest [11,12,13]. In case of small tunneling barriers such
as in lateral (planar) QD systems [74], the probability of
electron co-tunneling [75] through the QD increases and
should also be taken into account in the current calcula-
tions [76,77]. This indicates that in order to describe trans-
port properties of the vertical QD, once the eigenspectrum
of the N-electron system is obtained, we need to compute
only the sequential current I [13]:

I D �e
X

˛ˇ

�˛ˇ
�
P˛(N)C Pˇ (N � 1)

�

�
fL(�˛ˇ � �L) � fR(�˛ˇ � �R)

�
: (18)

In this equation �˛ˇ D E˛(N)� Eˇ (N � 1) is the en-
ergy difference between the ˛th N-electron and ˇth
(N � 1)-electron energies (the electro-chemical potential,
cf. Eq. (1)) while the Fermi distributions fL(R) determine
the energy level occupation for electrons tunneling in the
QD from the left L (right R) lead (or from the source
and drain contact, respectively) with chemical potential�L
(�R). �˛ˇ is the effective tunneling rate, which in the ran-
dom phase approximation (neglecting phase correlations
between electrons in the leads and the QD) can be written

as a product of the electron “bare” single-particle tunnel-
ing rate �L(R) due to the electron permeating the barriers
separating the QD from the leads (see Fig. 2) and the over-
lap matrix element [78,79]:

X

i

ˇ
ˇ̌D
�˛(N)

ˇ
ˇ̌a�i
ˇ
ˇ̌
�ˇ (N � 1)

E
25
ˇ
ˇ̌2
; (19)

where the operator a�i is responsible for the creation of an
electron in theQD in the ith single-particle state. The over-
lap matrix element is equal to unity in the case of the non-
interacting particles but, in general, correlations among
electrons (due to the Coulomb interaction and/or spin ef-
fects) can reduce its value down to zero.

The state occupation factors P˛(N) in Eq. (18) can be
determined from the steady state solution of the coupled
master (or rate) equations [11,12,80,81]:

dP˛(N)
dt

D �
X

ˇ

�
R(˛;N)!(ˇ;N˙1)P˛(N)

� R(ˇ;N˙1)!(˛;N)Pˇ (N ˙ 1)
�
; (20)

where the transition rates are (� D L; R)

R(˛;N)!(ˇ;N˙1) D
X

�2(L;R)

�˛ˇ f (�˛ˇ � ��) ; (21)

R(ˇ;N˙1)!(˛;N) D
X

�2(L;R)

�˛ˇ
�
1 � f (�˛ˇ � ��)

�
: (22)

In the following chapter, calculations of the transport
spectra for the QD with the number of electrons N � 3
and for VSD D j��j D j�L��Rj D 5meV are presented.
In accordance with parameters of the experimental QD
structure (Sect. “Vertical QDDevice Structure”), the emit-
ter and collector barriers are assumed to be highly asym-
metrical with a ratio of permeabealities �L/�R � 30 [11].
A large number of eigenstates (up to 24) is included in so-
lution of the master equation (20) to describe properly de-
generacy effects in the addition energies arising when �˛ˇ
become equal for specific combinations of states ˛ and ˇ.

Tunneling Spectroscopy of a Few-ElectronQD
in the Non-Linear Transport Regime

In Fig. 7 we show the energy diagram for N D 1; 2; 3
electrons. Only the levels with energy within 5meV of
the ground state are plotted. The diagram becomes more
complex with increasing N as the interplay between con-
finement, electron-electron interaction, andmagnetic field
smears out the electronic spectra. Of special interest is the
behavior of the lowest singlet S D 0 and triplet S D 1 en-
ergies for N D 2 as their energy difference, the exchange
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Figure 7
Energy spectrum E(N)� EGS(N� 1) for N D 1; 2;3 electrons in
magnetic fields. Here EGS(N) is the ground state energy of
the N-electron system, EGS(N D 0) D 0. Dashed lines are the
upper boundaries of the transport windows EGS(N)C jVSDj,
jVSDj D 5meV. Zeeman splitting of the energy levels is visible
at higher magnetic fields as multiple closely separated lines. N
shows the magnetic field at which the exchange energy magni-
tude starts to decrease. All other symbols are discussed in the
text

energy J, is of interest for quantum computation schemes
involving double QDs [71,72,82]. The exchange energy J
as a function of the applied magnetic field computed
by both the numerically exact digonalization of the two-
electron Hamiltonian (Sect. “Exact Diagonalization of the
Many-Electron Schrödinger Equation”) and the self-con-
sistent approach based on the spin-density-functional the-
ory (Sect. “Self-consistent Approach”) is shown in Fig. 8.
One can see that all three computed J-curves agree very
well with the experimental data. However, the ED calcu-
lations that account for the QD finite width in the verti-
cal dimension (3D ED) have a slight lead over the pure
2D ED results and the self-consistent SDFT-based calcu-
lations. The latter method fares progressively worse with
increasing magnetic fields, probably because of the lack
of the proper accounting of the magnetic field effects in
the exchange-correlation potential. In particular, it fails to
reproduce a “kink” in the exchange energy at � 7 T vis-
ible in both experimental data and ED calculations and
which finds its origin in the crossing between the two sin-
glet states with different angular momenta [83].

When magnetic fields get larger, density of the elec-
tronic states also increases due to the level compression in
the lowest Landau band [39]. In the three-electron system,
the transition between the two lowest doublets (S D 1/2)
in the three-electron system (ı) around 3.5 T is appar-

Quantum Dot Spin Transistors, Self-consistent Simulation of,
Figure 8
Exchange energy J in magnetic fields. Dashed red curve is ob-
tained from the ED calculations including 3D effects, solid red
curve is the results of the 2D ED while green curve is for the re-
sults of the DFT calculations (Sect. “Self-consistent Approach”).
Blue curve is the experimental data [84]

ent in the energy spectrum (Fig. 7) while above � 4:5 T
the system becomes fully spin-polarized (4) and forms
a spin quartet (S D 3/2). Note also the transition between
two doublet levels with different values of the angular mo-
mentum (�) at about 1 T; its relationship with the current
traces shown in Fig. 9 will be discussed below. In general,
all states shown in Fig. 7 may be involved in the transport
process; however, a host of physical reasons make most of
them very difficult to distinguish in the measured trans-
port spectra (“dark transport states”).

The computed tunneling current in magnetic fields is
shown in Fig. 9 for forward (VSD > 0, Fig. 9a) and re-
verse (VSD < 0, Fig. 9b) source-drain biases VSD. In the
former case, electrons injected in the QD through the thin
(forward bias) rather than the thick (reverse bias) emitter
barrier. The regions with finite current (the so-called cur-
rent stripes) of width jVSDj D 5meV, in which the num-
ber of electrons in the QD cycles between N and N � 1
(see Sect. “Introduction” for the general description of the
sequential transport through the QD), are separated by
black regions with zero current. Inside each stripe, the cur-
rent variations are reflected by different colors depend-
ing on the current increase (color shifts towards the red)
or decrease (color shift towards the blue). One can im-
mediately see the striking differences between the forward
and reverse bias spectra: the stripes in the latter one have
a much more complex structure with a larger number of
visible current features. Indeed, since in the single-elec-
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Figure 9
Tunneling current (in arb. units) as a function of the gate volt-
age potential eVG (vertical axis) and magnetic field B (horizontal
axis) for a VSD > 0, and b for VSD < 0. N and H mark the mag-
netic fields at which the lowest region with the constant current
and themagnitudeof the exchange energy, respectively, start to
decrease. The symbols � and are discussed in the text while all
other symbols are the same as in Fig. 7

tron tunneling process, the QD electronic configuration
fluctuates between N- and (N � 1)-electron systems, the
carrier transmission depends on the detailed occupation
of the many-body energy states [11,85]. Hence, in a struc-
ture with asymmetric barriers, electrons injected in the
QD through the thick rather than the thin emitter barrier
give rise to different electron configurations, as in the for-
mer case the dot will be in the (N � 1)-electron state most
of the time (because of the thin collector barrier allowing
easy escape of electrons from the QD), while in the latter
case it will be predominantly occupied byN electrons [11].

This behavior is clearly visible in the first stripe
for VSD > 0 where the current remains unchanged even
though there are several single-particle levels present
within the bias window (cf. Fig. 7). However, these lev-

els becomes clearly discernable for VSD < 0. In the lim-
iting case of the barrier permeabealities �L 	 �R with
fL(R) D 0(1), one can find approximate solutions of the
master equation (20) as P˛(1) � 0, P(0) � 1 for VSD < 0
and as P˛(1) � 1/MND1, P(0) � 0 for VSD > 0 (MND1 is
the number of “active” states in the transport window at
the given VG and B, ˛ D 1; : : : ;MND1), i. e., all one-elec-
tron levels are occupied with the same probability. Sub-
stituting these occupation factors in the equation for the
current (18), one can indeed see that in the former case
(VSD < 0) the current exhibits step-like increase (broad-
ened by the temperature) when a new energy level dips
below the Fermi energy as each new level represents an
additional transport channel. On the other hand, when
VSD > 0, the current remains independent on the num-
ber of the levels in the transport window since the sumPMND1
˛D1 P˛ (see Eq. (18)) remains largely unchanged.
Similar interpretation can be given for other N, al-

though in these cases the various values of the overlap ma-
trix elements (19) complicate the matter. In the second
stripe for VSD > 0 (Fig. 9a), the dominant feature is the
sharp decrease of the current around themiddle of the bias
window (the sharp transition from yellow to blue). The
large drop in the current is due to the non-zero occupation
of the first excited N D 1 state which induces a redistribu-
tion of the electrons among available N D 2 energy levels,
i. e., the occupation factors P˛(N), Pˇ (N � 1) change, so
that the tunneling process associated with this state leaves
a visible footprint in the transport spectrum. Physically
this corresponds to the situation in which an electron tun-
nels out of the N D 2 ground state within the stripe and
leaves the system with the other electron in the excited
state [86]. Such process has no corresponding counterpart
in the N-electron energy spectrum computed with respect
to the ground (N � 1)-electron state (Fig. 7). In the back-
ground of this large current drop, smaller changes in the
current due to other processes are also visible (Fig. 9a).
In particular, spin effects manifest themselves as a total
spin blockade [87] of the current through specific levels
when S(N) � S(N � 1) > 1/2 or as a partial spin blocking
of the transport channels for jSz(N)� Sz(N � 1)j > 1/2
which lead to current suppression when the corresponding
state become available, i. e., the current decreases when the
number of channels in transport window increases. These
effects become especially clear for smaller values of the
source drain bias (VSD � 1mV) when the contributions
from individual transport channels become discernible in
both experimental and calculated current stripes [72].

For reverse source-drain bias (VSD < 0, Fig. 9b), the
current in the second stripe tends to increase with VG,
though this increase is neither gradual nor monotonic. In
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this case, the current variation due to the excited N D 1
state is barely noticeable, and in its absence transport pro-
cesses involving other N D 2 energy levels become more
apparent. Note that this drastic difference between the cur-
rent in the two stripes (for VSD > 0 and VSD < 0) occurs
mostly because of the large difference in the emitter and
collector barrier permeabealities �L(R). When �L � �R the
current spectrum becomes even more complex due to the
mixture of these two distinct tunneling processes.

In principle, important information about the QD
electronic structure – such as the behavior of the exchange
energy in magnetic fields – can be extracted from the
transport spectra, but caution should be exerted. For in-
stance, if one naively assumes that the current in the Nth
stripe may only change when a N-electron level enters
into the transport window (Fig. 7), then the exchange en-
ergy could be simply determined by tracing the boundaries
of the lowest region in the N D 2 stripe characterized by
a constant current. This is because the exchange energy
is given by the difference between the two lowest N D 2
electron states with different spins which are bound to be
occupied first upon increasing gate voltage. By inspecting
the current spectrum of Fig. 9b, one can easily see that this
region starts to shrink above 5 T (H), which, according to
the above argument, should indicate the decrease in the
exchange energy (in magnitude) above this magnetic field.
In reality, however, this energy difference continues to in-
crease up to 7 T (Fig. 8) and only then decreases (N): It is
due to contributions from excited N D 1 states at � 5 T
for VSD D 5.

Another example of inconsistency between the current
and energy spectra can be observed in the third stripe,
where a prominent kink at about 2 T (marked by � in
Fig. 9b) has no counterpart in the energy spectrum shown
in Fig. 7. Analysis of the electrochemical potentials shows
that the crossing between two�˛ˇ curves originating from
the lowest N D 2 triplet/the N D 3 quartet and the lowest
N D 2 triplet/N D 3 doublet at B � 2 T is responsible for
this kink. This feature was also observed experimentally
(Fig. 10) but was interpreted simply in terms of the cross-
ing between the two N D 3 doublet levels [15]; however,
the corresponding kink in the energy diagram at � 1 T
(marked as � in Figs. 7 and 9) is barely noticeable in the
current spectrum.

The above examples indicate that simplistic interpreta-
tion of the transport spectra (assignment of features in the
measured current) in terms of the many-particle energies
can be inadequate and, in general, for the accurate analysis
of the QD transport processes in the non-linear regime at
finite VSD [84] the quantum-mechanical overlap between
various many-body states [13,78], their non-equilibrium

Quantum Dot Spin Transistors, Self-consistent Simulation of,
Figure 10
Experimental current stripes [15]. All symbols are the same as in
Figs. 7 and 9b. Overall, these early measurements do not show
any noticeable features above� 5 T and suffer from the extreme
variations in the current due to the random dopant distribution
in the leads [15]

occupancies [11,12,13] and the inherent asymmetry of the
double barrier hetero-structure [11] should all be consid-
ered simultaneously.

Conclusion

While QD artificial atoms offer high potential for quan-
tum electronics and continue to be a fast-growing area of
research, they provide exciting opportunities for investi-
gating the basic physical properties of interacting many-
body system in vertical structures. Single-electron trans-
port spectroscopy within the Coulomb blockade regime
bears signatures of individual tunneling events through
the QD which provide invaluable tools to investigate the
interaction between incident electrons and resident parti-
cles. In the few-electron regime, a comparison between ex-
perimental electron addition energies and theoretical cal-
culations confirms the existence of electronic shells occu-
pied according to Hund’s rules, as in real atoms. Closed
shells are particularly stable as the electron addition energy
to access the next shell is large, implying the existence of
a “noble-gas” structure for specific numbers of electrons.
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In contrast to real atoms, the confinement potential
in vertical QDs is relatively weak and long-range so that
the electronic structure of QDs can be easily probed by
relatively small magnetic fields that induce transitions be-
tween the various electronic states as the number of parti-
cles and the strength of field are varied. In particular, tran-
sitions from a low-spin state to a completely spin-polar-
ized system have been observed experimentally in single
QDs and computed theoretically within a self-consistent
approach based on SDFT.

Non-linear transport spectroscopy in QDs has been
used to probe the excited states of a few-electron system.
In this case excitations in the QD electronic structure are
electron-only (Auger-like), unlike in real atoms where the
excitations are the result of electron-photon interaction.
The theoretical description of non-linear transport pro-
cesses in QDs requires the simultaneous knowledge of the
energy spectrum and the overlaps between various many-
body states. Here, the significant increase in computa-
tional effort pays off by a good agreement between exper-
iments and theory as well as by new insights in the elec-
tronic and transport properties of QDs.

Future Directions

Recently a novel type of artificial atoms based on elec-
tron confinement in semiconductor nanowires (quantum
wires) has emerged. The principal difference from the
quasi-2D QDs is the 3D nature of the electron confine-
ment potential that bounds the particles wave functions
in all three spatial dimensions. Similarly to 2D QDs, elec-
tric gates are used to confine the electron motion along
the nanowire direction leading to the formation of a quan-
tum dot in the quantum wire (QDQW). Accurate control
over the electron population and the Coulomb diamonds
characterizing single electron charging have been recently
demonstrated in these systems [88]. From the simulation
point of view, modeling QDQWs is more challenging as
the geometry do not easily permit omission of the third
dimension and, consequently, a simplified 2Dmodel is in-
adequate. In this respect, the 3D self-consistent approach
discussed in this work is more suitable as it does not rely
on 2D approximation.

Within traditional 2D QD devices, more complicated
systems of multiple dots, such as triple QDs, are now be-
ing investigated. They represent natural steps in creating
QD networks with potential applications in single-elec-
tron logic circuits. In these devices a very large parame-
ter space (sizes of individual QDs, number of electric gates
and their positions, applied biases, etc) makes both sim-
ulation and design of the triple dot system very difficult,

thereby leading to a wealth of possible electronic struc-
ture configurations such as spin density-waves and double
charging of electrons [48], usually not present in single QD
devices. Our preliminary results [48] also showed that in
order to ensure a sizable coupling among the constituent
QDs, a very careful optimization of the mesa structure
physical dimensions should be performed; this can be eas-
ily achieved with the methods discussed in this article.
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Glossary

Ancilla qubits Refers to qubits that are used to facilitate
quantum computations, but serve neither as input nor
as output of the computation. The twomain uses of an-
cilla qubits are a) for the purpose of a scratch pad dur-
ing a quantum computation, i. e., states that are initial-
ized in a known state and can be used during a compu-
tation such that they are returned to the initial state at
the end, and b) for the purpose of quantum error cor-
rection where they serve as space for holding the error
syndrome.

Bit-flip error An error that affects a single qubit and in-
terchanges the basis states of that qubit.

CSS code A special class of quantum codes named af-
ter their inventors Calderbank, Steane, and Shor. CSS
codes allow to construct quantum codes from certain
classical error-correcting codes.

CNOT gate The controlled-NOT gate is an example of
a quantum gate. It is a two qubit gate and – together
with single qubit gates – can be shown to be a univer-
sal gate for quantum computation.

Error syndrome A classical bit-vector that describes
a quantum error that has affected a quantum code.
Contrary to the classical case where there is a one-to-
one correspondence between syndromes and errors,
in the quantum case a syndrome does in general not
uniquely identify a quantum error.

Fault-tolerant quantum computing The discipline that
studies how to perform reliable quantum computa-
tions with imperfect hardware.

Phase-flip error An error that affects a single qubit and
gives a relative phase of �1 to the basis states of that
qubit. Contrary to the bit-flip error, this error has no
classical analog.

Quantum channel A term describing a general physi-
cal operation that can affect the state of a quantum-
mechanical system. Another name for quantum chan-
nels are completely-positive trace preserving maps.

Quantum error-correcting code (QECC) A method to
introduce redundancy to a quantum mechanical sys-

tem in such a way that certain errors that are affecting
the system can be detected or corrected.

Quantum circuits Operations that a quantum computer
can carry out. Quantum circuits are composed of
quantum gates and, when acting on an n qubit system,
correspond to unitary matrices of size 2n � 2n .

Quantum gate A basic operation that a quantum com-
puter can carry out. Common choices for quantum
gates are certain unitary matrices of size 2 � 2 (single
qubit gates) or 4 � 4 (two qubit gates).

Qubit Shortened form of quantum bit. A physical object
that can support states in a two-dimensional complex
Hilbert space. Contrary to the classical case where a bit
refers to both, the physical object and the states it can
hold, a qubit refers to the physical object only. Qubits
are the basic units of a quantum computer’s memory.

Stabilizer code A class of quantum codes that is defined
as the joint eigenspace of a group of commuting op-
erators. Stabilizer codes give rise to many examples
of quantum codes, comprise the class of CSS codes as
a special case, and are equivalent to additive codes over
GF(4) that are self-orthogonal with respect to the Her-
mitian inner product.

Threshold theorem An important result of the theory of
fault-tolerant quantum computing, stating that there is
a threshold value for this noise level such that arbitrar-
ily long quantum computations become possible if the
gates have a noise level that is under the threshold.

Transversal gates Special class of operations acting on
encoded quantum data. Transversal gates have the im-
portant property to exhibit benign behavior in case er-
rors happen during the application of the gate.

Definition of the Subject

Quantum error correction offers a solution to the problem
of protecting quantum systems against noise induced by
interactions with the environment or caused by imperfect
control of the system. The need for error correction arises
not only in communication, when quantum information
is sent over some distance, but also in locally, when stor-
ing and processing quantum information. Fault-tolerant
quantum computing builds on quantum error correction
and denotes techniques that allow computations to be per-
formed on a quantum system with faulty gates as well
as storage errors. Without mechanisms for quantum er-
ror correction and fault-tolerance, quantum computing
would be impossible even for moderate error rates.

The idea of quantum error correction was first con-
ceived in a paper [64] by Shor in 1995 in which a par-
ticular quantum code was given that encodes one quan-
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tum bit (qubit) into nine quantum bits, while being able
to correct against one arbitrary error on one of these nine
qubits. Before long, Bennett et al. [11] developed a theory
of error correction describing a quantum code that en-
codes one quantum bit into five while still being able to
correct against arbitrary single qubit errors. Around the
same time, Calderbank, Shor [15] and Steane [66] con-
structed quantum codes from suitable pairs of classical
codes. Named after their inventors, this important class of
error correcting codes is called CSS codes.

Other noteworthy work in the early days of quantum
error correction were the contributions by Calderbank et
al. [14], which related quantum codes to classical codes
over the finite field GF(4) that are additively closed and
self-orthogonal with respect to the Hermitian inner prod-
uct, and by Gottesman [25,26], who developed the theory
of stabilizer codes. These two constructions are equivalent.

As far as fault-tolerant quantum computing is con-
cerned, again the first method was given by Shor [65]
who introduced the idea of performing a universal set of
quantum gates fault-tolerantly, including syndrome mea-
surements required for quantum error correction. Around
the same time, ideas based on concatenation of quantum
codes were used by Aharonov and Ben-Or [2], Kitaev [42],
Gottesman [26], Knill, Laflamme and Zurek [45], and
Preskill [58], to derive fault-tolerant schemes that work
even if only faulty gates are available. The characteristic
feature of all these constructions is that there is a certain
value for the error rate such that if the actual error rate is
below this value, then arbitrarily long quantum computa-
tions can be performed with any desired accuracy, whereas
if the actual error rate is above this value, then quantum
computing is impossible with the same scheme. This wa-
tershed type behavior is characterized in the threshold the-
orem which is a central result in fault-tolerant quantum
computing. As the task to determine the exact value of the
threshold is daunting, much of work has been done to get
upper and lower bounds as well as to perform numerical
simulations that give indications of the threshold value.

Introduction

In the early days of quantum computing, Haroche and
Raimond asked the poignant question whether the dream
of quantum computing could ever be realized in a real
physical system or if “the large-scale quantum machine . . .
is the experimenter’s nightmare” [39]. At the time the ar-
ticle was written, the first quantum error-correcting code
had just been proposed [64]. However, Haroche and Rai-
mond argued that “the implementation of error-correct-
ing codes will become exceedingly difficult” given any de-

tection efficiency less than 100%. It was only later that it
was shown that evenwith imperfect quantummemory and
imperfect quantum operations it is possible to implement
an arbitrarily long quantum computation, provided that
the failure probability of each element is below a certain
threshold [2,45].

Here we provide an overview of the ingredients lead-
ing to fault-tolerant quantum computation (FTQC). In the
first part, we present the theory of quantum error-cor-
recting codes (QECCs) and, in particular, two important
classes of QECCs: CSS codes and stabilizer codes. Both are
related to classical error-correcting codes, so we start with
some basics from this area. In the second part of the arti-
cle, we present a high-level view of themain ideas of FTQC
and the threshold theorem.

For the background of quantum computing in general,
we refer the reader to the related articles in this volume as
well as the book by Nielsen and Chuang [56].

Basics of Classical Error Correction

Block Codes

Before discussing the principles of quantum error correc-
tion, we briefly summarize some results from classical er-
ror correction. For more information see MacWilliams
and Sloane [53]. Error correction is part of information
theory whose foundations were laid by Claude Shannon
in his landmark paper “A Mathematical Theory of Com-
munication” [63]. In that paper, Shannon introduced the
basic mathematical concepts for communication systems
that are used to send messages from one point in space or
time to another point:

“The fundamental problem of communication is that
of reproducing at one point either exactly or approx-
imately a message selected at another point. Fre-
quently the messages have meaning; that is they re-
fer to or are correlated according to some system with
certain physical or conceptual entities. These seman-
tic aspects of communication are irrelevant to the en-
gineering problem. The significant aspect is that the
actual message is one selected from a set of possible
messages. The systemmust be designed to operate for
each possible selection, not just the one which will ac-
tually be chosen since this is unknown at the time of
design.”

Hence we can model the set of all possible messages, for
example, by a set of binary strings of fixed length.

Definition 1 (block code) A block code B of length n is
a subset of all possible sequences of length n over an al-
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phabetA, i. e., B �An . The rate

R D
log jBj
log jAnj

D
log jBj

n log jAj

of the code is a measure of the amount of information that
is transmitted per symbol in the code.

While the rate of the code should be as high as possible,
using only a proper subset of all possible messages allows
us to correct some errors. On the highest level of abstrac-
tion, one distinguishes only whether a symbol is transmit-
ted correctly or not. This yields to the following measure
for the distance between two sequences of length n.

Definition 2 (Hamming distance) The Hamming
distance between two sequences x D (x1; : : : ; xn) and
y D (y1; : : : ; yn) equals the number of positions where x
and y differ, that is,

dH(x; y) :D jfi : 1 � i � n j xi ¤ yigj :

If the alphabet contains a symbol zero, the Hamming
weight of a sequence is defined as the number of non-zero
elements of the sequence.

If we send two copies of every symbol to the receiver, we
get a repetition code of length n D 2 and rate R D 1/2.
The Hamming distance between any two codewords is
two. In this situation, the receiver can detect an error if at
most one of the symbols has been corrupted during trans-
mission. If we repeat every symbol three times (n D 3,
R D 1/3), the receiver can even deduce the correct mes-
sage from the majority of the symbols, assuming that no
more than one symbol is erroneous. The general situation
is as follows:

Theorem 1 Let B be a block with minimum distance d,
that is, any two codewords differ in at least d positions. Then
one can either detect errors that affect less than d positions
or correct errors that affect strictly less than d/2 positions.

Proof As the minimum distance of the code is d, chang-
ing up to d � 1 positions of a codeword does not yield
another codeword. So in order to detect up to d � 1 er-
rors, it is sufficient to check whether the received word is
a codeword or not. In order to correct errors, note that
the spheres of radius b(d � 1)/2c around any codeword are
disjoint. In the error correction process, every word in that
sphere will be mapped to the corresponding codeword. �

In this setting, finding a good error-correcting code, by
which we mean a code with both high rate and high min-
imum distance, amounts to packing spheres of words of
length nwith radius b(d � 1)/2c with respect to Hamming

distance. In general, the resulting code will be a set of
codewords without further structure so that to succeed we
would have to store the list of all codewords.

Linear Block Codes

Developing more efficient ways of describing all code-
words and testing whether a given word lies in the code
requires that the code has some additional structure. First,
we assume that the alphabet of the code is a finite field
GF(q) with q elements. Second, we require that any lin-
ear combination of two codewords is again a codeword.
The resulting code is a linear block code, denoted by
C D [n; k; d] (for more details see [53]). Here k is the
dimension of the code as a subspace of the vector space
GF(q)n , and d denotes the minimum distance of the code.
Instead of listing all qk codewords, it is sufficient to spec-
ify a basis with k linearly independent vectors of the linear
space. Alternatively, a subspace of dimension k is uniquely
described as the space of solutions of n � k linearly inde-
pendent homogeneous linear equations.

Definition 3 (generator matrix/parity check matrix)
A generator matrix of a linear block code C D [n; k; d] is
a matrixGwith k rows and n columns of full rank such that
the row span of G equals the code C. A parity check matrix
is a matrix H with n � k rows and n columns of full rank
such that the row-nullspace of H equals the code C.

The generator matrix G provides both a compact descrip-
tion of a linear block code and an efficient way of encod-
ing a message which can be represented by a vector i of
length k. The corresponding codeword is obtained by the
linear mapping i 7! c :D iG. The parity check matrix pro-
vides an efficient way to detect errors.

Theorem 2 (error syndrome) Let H be a parity check ma-
trix of the linear block code C D [n; k; d]. Then a vector v
is a codeword if and only if the error syndrome s :D vHt

is zero. Furthermore, for an erroneous codeword v D cC e
the error syndrome depends only on the error e, but not on
the codeword c.

Proof By definition, the code C equals the row-nullspace
of the parity check matrix H. Furthermore, any erroneous
codeword can be written as v D cC e. Then we have

s D vHt D (cC e)Ht D cHt C eHt D eHt :

�

Later we will need the concept of the dual code which also
motivates the definition of the parity check matrix with n
columns and n � k rows.
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Proposition 1 (dual code) Let C D [n; k; d] be a linear
block code. Then the (Euclidean) dual code C? is the space
of all vectors that are orthogonal to all codewords with re-
spect to the Euclidean inner product v � w :D

Pn
iD1 viwi ,

i. e.

C? D fv : v 2 GF(q)n j v � c D 0 for all c 2 Cg :

If G is a generator matrix and H is a parity check matrix
for C, then G is a parity check matrix and H is a generator
matrix for C?, i. e., the role of G and H is interchanged.

The parity check matrix can also be used to compute the
minimum distance of a linear block code.

Theorem 3 If any d � 1 columns of the parity check ma-
trix H of a linear block code C are linearly independent,
then the minimum distance of the code is at least d.

Proof First note that for a linear code, the minimum dis-
tance equals the minimum Hamming weight of a non-
zero codeword as dH(x; y) D dH(x � y; 0). Assume that c
is a codeword of Hamming weight d � 1, that is, there are
d � 1 indices i1; : : : ; id�1 such that ci j ¤ 0. The syndrome
is computed as 0 D cHt D ci1h(i1) C � � � C cid�1h(id�1),
where h(i) denotes the ith column of H. Hence we have
a non-trivial linear combination of d � 1 columns of H
that is zero, contradicting the fact that any d � 1 columns
of H are linearly independent. �

Hamming Codes

The previous theorem can be used to construct codes with
a prescribed minimum distance d. For a code that can cor-
rect a single error, theminimumdistance dmust be at least
three, that is, any two columns of the parity check ma-
trix must be linearly independent. For the simplest case in
which the field has two elementsGF(2) D f0; 1g, that is, all
operations are modulo two, it is sufficient that all columns
of H are distinct and nonzero. This yields the following
family of single error-correcting codes (see [38,53]).

Proposition 2 (binary Hamming code) The rth binary
Hamming code is a linear binary block code of length
n D 2r � 1, dimension k D 2r � r � 1, and minimum dis-
tance d D 3. A parity check matrix H of the Hamming code
is a matrix whose 2r � 1 columns are all nonzero binary
vectors of length r.

The columns of H can be arranged such that the ith col-
umn equals the binary expansion of i. Then for an error e
of weight one, the syndrome eHt equals the binary expan-
sion of the position of the error. For r D 3, we get the fol-

lowing parity check matrix

H D

0

@
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

1

A :

For the error e D (0; 0; 1; 0; 0; 0; 0), the syndrome is
eHt D (0; 1; 1), that is, the binary expansion of three.

In general it is difficult to deduce the error of small-
est Hamming weight—which is often the most likely er-
ror—from the error syndrome. More precisely, given a bi-
nary parity check matrix H, an error syndrome s, and
a positive integer w it is NP complete to decide whether
there is an error vector e whose weight does not exceed w
such that eHt D s [12]. Nonetheless, for some classes of
codes, such as BCH codes or Reed–Solomon codes, there
exist efficient algorithms for the correction of all errors up
to a certain weight (see [53]).

Basic Ideas of Quantum Error Correction

In the classical setting of error correction, information is
represented, for example, by a binary string of length n.
The extremal case is that we have only one bit that is
either zero or one. In the context of quantum informa-
tion, the simplest quantum system is modeled by a two-
dimensional complex vector space. A quantum bit (or
qubit, for short) corresponds to a normalized vector in
this space (for more details see the book by Nielsen and
Chuang [56]). The qubit is given by

j i D ˛j0iCˇj1i; where j˛j2Cjˇj2 D 1; ˛; ˇ 2 C :

Here j0i and j1i denote two orthogonal vectors in the two-
dimensional vector space. While these basis states corre-
spond to the two classical values 0 and 1 of a bit, a qubit
can be in a superposition of both j0i and j1i. When the
qubit is measured with respect to the basis fj0i; j1ig, the
result is either “0” or “1” with probability j˛j2 and jˇj2,
respectively.

As we have seen in Subsect. “Block Codes”, a sim-
ple classical one-error correcting code can be obtained by
sending the information three times and taking a major-
ity decision at the receiver’s end. However, this does not
work in the context of quantum information. First, it is not
possible for the sender to compute copies of an unknown
quantum state (see [69]). The main idea of this so-called
no-cloning theorem is as follows.

Theorem 4 There is no quantum operation that maps an
arbitrary quantum state j i and a fixed state j�0i to two
independent copies j ij i.
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Quantum Error Correction and Fault Tolerant Quantum Computing, Figure 1
Similarities between classical and quantum error-correcting codes

Proof Let j i D ˛j0i C ˇj1i. Two independent copies of
j i are given by

j ij i D
�
˛j0i C ˇj1i


˝
�
˛j0i C ˇj1i



D ˛2j00i C ˛ˇj01i C ˛ˇj10i C ˇ2j11i :

If j i is one of the basis states, we have j0ij�0i 7! j00i
and j1ij�0i 7! j11i. By the linearity of quantum
mechanics, starting with a superposition we get�
˛j0i C ˇj1i


j�0i 7! ˛j00i C ˇj11i. This equals j ij i

only when ˛ D 0 or ˇ D 0. �

Second, even if independent copies of a quantum state j i
are sent (for example, if the sender knows how to pre-
pare the state j i), the direct quantum mechanical ana-
logue of a majority decision is not possible for the receiver.
Instead, the receiver may, for example, check whether the
joint quantum state of all received copies is invariant un-
der permutation of the copies. This allows us to detect and
correct some errors [9].

Although the classical repetition code does not have
a direct quantum mechanical analogue, we will see that
quantum error correction can be related to classical error
correction codes. For this we recall that, in general, a clas-
sical code is given by a proper subset of the finite set of all
possible messages of fixed length. In contrast, quantum in-
formation is represented by an arbitrary normalized vector
in a complex vector space. In order to achieve the possi-
bility of correcting quantum errors, a quantum error-cor-
recting code must be a proper subspace of a larger vector
space. Similar to the problem of packing spheres for clas-
sical codes, the subspace has to be chosen in such a way
that the spaces corresponding to the quantum errors do

not overlap (see Fig. 1). Before addressing this question in
more detail in Sect. “Conditions for Quantum Error Cor-
rection”, we present a simple example.

A Simple Example and Shor’s Nine-Qubit Code

The Three-Qubit Code

The shortest classical code that encodes one bit and can
correct one error is the repetition code of length three
which coincides with the second binary Hamming code.
Hence a parity check matrix H and a generator matrix G
are given by

H D
�
0 1 1
1 0 1

�
and G D

�
1 1 1


:

We use the codewords (000) and (111) of the binary code
to define the basis states of a three-qubit code, that is, the
encoding operation is given by

C : C2 ! (C2)˝3

j0i 7! j000i
j1i 7! j111i :

Hence a superposition ˛j0i C ˇj1i is encoded as
C(˛j0i C ˇj1i) D ˛j000i C ˇj111i. The encoding trans-
formation C can be implemented using two controlled-
NOT (CNOT) gates (see [56]). The CNOT gate is given by

CNOT: jxijyi 7! jxijx ˚ yi ;

where x ˚ y denotes addition modulo two (XOR). Hence
the second (target) qubit is flipped if and only if the first
(control) qubit is one. The states j000i and j111i span the
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Quantum Error Correction and Fault Tolerant Quantum Computing, Figure 2
Quantum circuit for the three-qubit code. Two ancilla qubits are used for the encoding, and another two for the error syndrome. The
measurement yields two classical syndrome bits

quantum code C which is a two-dimensional subspace of
C2 ˝C2 ˝ C2. A classical error flips a bit, interchanging
0 and 1. The quantummechanical analogue is given by the
matrix

�x D

�
0 1
1 0

�

interchanging the basis states j0i and j1i. Applying �x to at
most one of the three subsystems we obtain the following
states:

error state subspace
no error ˛j000iCˇj111i (I ˝ I ˝ I)CD:C0
1st position ˛j100iCˇj011i (�x ˝ I ˝ I)CD:C1
2nd position ˛j010iCˇj101i (I ˝ �x ˝ I)CD:C2
3rd position ˛j001iCˇj110i (I ˝ I ˝ �x )CD:C3

(1)

The four different cases yield four mutually orthogonal
subspaces, that is, the Hilbert space of three qubits can be
decomposed as follows:

C2 ˝C2 ˝C2 D (I ˝ I ˝ I)C ˚ (�x ˝ I ˝ I)C
˚ (I ˝ �x ˝ I)C ˚ (I ˝ I ˝ �x )C :

In principle it is possible to construct a quantummechani-
cal observable whose eigenspaces are the four two-dimen-
sional spaces Ci in (1). The corresponding projective mea-
surement projects onto one of these spaces and provides
information about the error, but preserves the superposi-
tion within the spaces. Alternatively, we can compute in-
formation about the error using two auxiliary qubits (an-
cillae). Recall that for the binary Hamming code, the error
syndrome s D eHt equals the binary expansion of the po-
sition of the error, provided that there is at most one er-
ror. The computation of the error syndrome can also be

implemented using CNOT gates (see Fig. 2). The gates in
the box labeled “syndrome computation” implement the
transformation

jcij00i D jc1c2c3ij0ij0i 7! jc1c2c3ijc2 ˚ c3ijc1 ˚ c3i
D jcijcHti : (2)

Measuring the two ancilla qubits yields a two-bit syn-
drome s D (s2s1) encoding the position of the error. This
classical information can be used to correct the error. In-
stead of measuring the syndrome qubits, one can use con-
trolled quantum operations to correct the errors as illus-
trated in Fig. 3.

While this three-qubit code allows us to correct the
quantum mechanical analogue of a single bit-flip error,
it cannot correct an arbitrary single qubit error. For in-
stance, measuring any of the three qubits with respect
to the standard basis fj0i; j1ig for the encoded state
j˚i D ˛j000i C ˇj111i has the same effect as measuring
the unencoded qubit ˛j0i C ˇj1i. In order to turn the
three-qubit code into a code that can correct the effect of
measuring one qubit, we first use the following identities
for projection onto the basis states:

j0ih0j D
�
1 0
0 0

�
D

1
2
(I C �z) and

j1ih1j D
�
0 0
0 1

�
D

1
2
(I � �z) ; (3)

where �z D
� 1 0
0 �1


. The relation between �x and � z is

given by �z D H�xH, whereH D 1/
p
2
� 1 1
1 �1


. Hence the

HadamardmatrixH turns bit-flip errors �x into phase-flip
errors � z. Since the three-qubit code C is able to correct
a single bit-flip error, the code Cphase D (H ˝ H ˝ H)C
can correct a single phase-flip error. By linearity, this code
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Quantum Error Correction and Fault Tolerant Quantum Computing, Figure 3
Quantum circuit for the three-qubit code. In contrast to Fig. 2, the error is corrected without measuring the syndrome qubits

can also correct the effect of measuring one subsystem. As-
sume that we measured the first qubit of the encoded state
j˚i and the result was 0. Using (3), for the state after the
measurement we compute

�
j0ih0j ˝ I ˝ I


j˚i D

1
2
j˚i C

1
2
�
�z ˝ I ˝ I


j˚i ;

that is, the state is a superposition of the states correspond-
ing to “no error” and “phase error at the first position”.
Measuring the error syndrome projects either onto the er-
ror free state j˚i or onto the state with a single phase-flip
error that can be corrected. The measurement result 1, as
well as measuring one of the other qubits, can be treated
similarly.

Shor’s Nine-Qubit Code

The three-qubit code C and its Hadamard transformed
version Cphase of the previous section can correct a sin-
gle bit-flip error or a single phase-flip error, respectively.
However, none of the codes can correct both types of
errors. For an encoded state j�i D ˛j000i C ˇj111i of
the three-qubit code, a single phase-flip error � z results
in the state (�z ˝ I ˝ I)j�i D ˛j000i � ˇj111i. In terms
of the encoded or logical basis states j0iL D j000i and
j1iL D j111i corresponding to the encoding of j0i and j1i,
respectively, a single phase-flip has the effect of an en-
coded � z operation. Note that the operations �z ˝ I ˝ I,
I ˝ �z ˝ I, and I ˝ I ˝ �z all have the same effect on the
code. Hence, in order to correct also for phase-flip errors,
we can add another layer of encoding using the codeCphase

with the encoded basis states

j0i 7!
1
2
(j000i C j011i C j101i C j110i)

j1i 7!
1
2
(j001i C j010i C j100i C j111i) :

(4)

Each qubit in (4) is replaced by its encoded version with
respect to the three-qubit code C, that is, we get the en-
coding

j0i 7!
1
2
(j000000000i C j000111111i

C j111000111i C j111111000i)

j1i 7!
1
2
(j000000111i C j000111000i

C j111000000i C j111111111i) :

(5)

This nine-qubit code has been constructed by Shor [64]. It
turns out it can correct an arbitrary single-qubit error. For
this, first note that the errors �x and � z can be corrected
independently on the two levels of encoding, respectively.
Therefore, the code can correct not only these errors, but
also their combination �x�z . Together with identity we
have the matrices

I D
�
1 0
0 1

�
; �x D

�
0 1
1 0

�
;

�z D

�
1 0
0 �1

�
; and �x�z D

�
0 �1
1 0

�
: (6)

Any 2 � 2 matrix can be written as linear combination
of the four matrices in (6). Similar to the arguments fol-
lowing (3), it can be shown that in order to correct an
arbitrary single-qubit error it is indeed sufficient to cor-
rect the errors corresponding to the matrices in (6). The
quantum error-correcting code given by (5) is denoted by
C D [[9; 1; 3]], indicating that one qubit is encoded into
nine qubits and that the minimum distance of the code is
three.

Before presenting further constructions for quantum
codes, we will discuss necessary and sufficient conditions
for quantum error correction.
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Conditions for Quantum Error Correction

QuantumChannels

Errors in quantum systems are due to interaction of the
system with its environment or imperfection in the con-
trol of quantum operations. The latter can be modeled by
a perfect operation that additionally depends on the state
of the environment. The Hilbert space of the combined
system is given by Hsys/env DHsystem ˝Henvironment. If
the dimension of both spaces is sufficiently large, we can
assume that the initial state is a pure state. Additionally,
we assume that there are no initial correlations between
the system and its environment, that is, the initial state
is a product state j�isysj"ienv. Again, for sufficiently large
dimensions of the Hilbert spaces we can assume that the
dynamics of the joint system are given by a unitary trans-
formation Usys/env. The resulting state of the system is ob-
tained by tracing out the environment:

�out D Trenv


Usys/env(j�ih�j ˝ j"ih"j)U

�
sys/env

�
: (7)

The output state in (7) can equivalently be expressed as
a function of the input state �in D j�ih�j in the form

�out D
X

i

Ei �in E
�
i ;

where the operators Ei are the so-called error operators
or Kraus operators [47]. They depend on both the initial
state j"i of the environment and the unitary interaction
Usys/env. In the following, some important special cases of
quantum channels are presented.

Example (depolarizing channel) The depolarizing channel
on the Hilbert spaceH with error parameter p, 0 � p � 1,
is given by

� 7! (1 � p) � �C p � I/ dimH :

The input � is transmitted faithfully with probability
1 � p. With probability p, the state is replaced by the com-
pletely random state I/ dimH . Note that even in this case,
the probability of measuring a particular pure state j i is
1/ dimH ¤ 0.

While the depolarizing channel treats all input states uni-
formly, the next quantum channel is basis-dependent.

Example (dephasing channel) The dephasing channel
on the Hilbert space H with orthonormal basis B D
fjbii : i 2 Ig and error parameter p, 0 � p � 1, is given
by

� 7! (1 � p) � �C p
X

i2I
jbiihbi j�jbiihbi j :

With probability p, the channel performs a projectivemea-
surement with respect to the basis B. is derived from the
fact that this is equivalent to randomizing the phases of the
basis states. The dephasing channel allows us to perfectly
transmit classical information by encoding the informa-
tion as basis states. Coherent superpositions of basis states,
however, are changed into classical mixtures.

The final example is a channel that provides the side-in-
formation that an error has occurred.

Example (quantum erasure channel [35]) The quantum
erasure channel on the Hilbert spaceH with error param-
eter p, 0 � p � 1, is given by

� 7! (1 � p) � �C p � j�ih�j ;

where j�i is a quantum state in the Hilbert spaceH 0 �H
that is orthogonal to all states inH . The input � is trans-
mitted faithfully with probability 1 � p. With probabil-
ity p, the state is replaced by the state j�ih�j. As j�i is
orthogonal to all states in H , the receiver can perform
a measurement which detects that an error has occurred.

The quantummechanical analogue of a memoryless chan-
nel is a product channel which is defined for a quantum
system with n subsystems of, say, equal dimension, that is,
on H DH˝n

0 . The product channel is given by n uses
of a channel onH0 which acts independently on each of
the n subsystems. If the channel onH0 is given by the er-
ror operators E0 D fEi : i 2 Ig, the error operators of the
product channel onH are

E D E˝n
0 :D fEi1˝Ei2˝: : :˝Ein : (i1; i2; : : : ; in) 2 Ing:

Characterization of QuantumCodes

As we have seen in Fig. 1, a quantum error-correcting code
is a subspace C of the Hilbert spaceH . What is more, the
full Hilbert spaceH can be decomposed into mutually or-
thogonal unitary images of C, corresponding to different
error events (see Eq. (1)). In general, the error operators Ei
describing the quantum channel need not be unitary. This
leads to the question whether a subspaceC ofH is a quan-
tum error-correcting code (QECC) for a given quantum
channel.

Theorem 5 (QECC characterization [44]) Let Q
be a quantum channel on H with error operators
fEi : i 2 IQg. A subspace C �H with orthonormal basis
fjci i : i 2 ICg is a quantum error-correcting code for Q if
and only if the following conditions hold:

8k; ` 2 IQ8i ¤ j 2 IC : hci jE�kE`jc ji D 0 (8a)
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8k; ` 2 IQ8i; j 2 IC : hci jE�kE`jcii
D hc jjE

�
kE`jc ji D: ˛k` 2 C (8b)

Denoting by PC :D
P

i2IC jciihci j the projection onto the
code C, we obtain the following equivalent condition which
is independent of the basis of the code:

8k; ` 2 IQ : PCE�k E`PC D ˛k`PC :

In principle, the proof of Theorem 5 implies an algorithm
that allows the correction of errors (see [31]). However, as
error correction is NP hard in the classical case we cannot
expect to have an efficient algorithm for the more general
situation of the quantum case.

If the conditions (8) are fulfilled, then the errors corre-
sponding to the operators Ei can be corrected. It must be
stressed that this implies that one can correct any operator
that is a linear combination of the error operators Ei. For
this, we show that the conditions (8) are linear in the error
operators. Consider the new error operators

A :D
X

k

kEk and B :D
X

l

�l El

which are arbitrary linear combinations of the Ei. Us-
ing (8) we compute

hci jA�Bjc ji D
X

k;l

k�l hci jE
�
kEl jc ji

D
X

k;l

k�l ıi; j˛k;l

D ıi; j � ˛
0(A; B) ;

where ˛0(A; B) 2 C is some constant depending on the
operators A and B only. From this it also follows that it
is sufficient to check the conditions (8) for a vector space
basis of E and hence for a finite set of errors. For qubit
systems, the Pauli matrices

X D �x D
�
0 1
1 0

�
; Y D �y D

�
0 �i
i 0

�
;

and Z D �z D
�
1 0
0 �1

�
; (9)

together with identity form a vector space basis of all op-
erators in C2�2. For a quantum code using n qubits, we
consider the tensor product of Pauli matrices and identity
as the so-called error basis. The number of tensor factors
different from identity is referred to as the number of errors
or the weight of an error.

QuantumCodes from Classical Codes

CSS Codes

The three-qubit code of Sect. “The Three-Qubit Code” is
based on the classical triple repetition code. Both codes
can correct a single bit-flip error. The Hadamard trans-
formation yields the code Cphase which can correct a single
phase-flip error. In the following we present a similar con-
struction of quantum codes based on linear binary block
codes, but the resulting codes will allow both the correc-
tion of bit-flip errors and phase-flip errors. For the con-
struction we need the following lemma.

Lemma 1 Let C � GF(2)n denote a k-dimensional lin-
ear subspace of GF(2)n and let a; b 2 GF(2)n be two arbi-
trary binary vectors. Furthermore, by H2n :D H˝n, where
H D 1/

p
2
�
1 1
1 �1


, we denote the Hadamard transforma-

tion on n qubits. Then the state

j i :D
1

p
jCj

X

c2C

(�1)a�cjcC bi

is mapped by the Hadamard transformation to

H2n j i D
(�1)a�b
p
jC?j

X

d2C?
(�1)b�djdC ai :

Proof The Hadamard transformation on n qubits can be
written as

H2n D
1
p
2n

X

x;y2GF(2)n
(�1)x�yjxihyj ;

where x � y denotes the inner product of the binary vec-
tors x and y. Then

H2n j i D
1

p
2n jCj

X

x;y2GF(2)n
(�1)x�yjxihyj

X

c2C

(�1)a�cjcCbi

D
1

p
2n jCj

X

x;y2GF(2)n

X

c2C

(�1)x�yCa�cjxihyjcC bi

D
1

p
2n jCj

X

x2GF(2)n

X

c2C

(�1)x�(cCb)Ca�cjxi

D
1

p
2n jCj

X

x2GF(2)n
(�1)b�xjxi

X

c2C

(�1)(xCa)�c

(�)
D

jCj
p
2n jCj

X

x2C?Ca

(�1)b�xjxi

D
(�1)a�b
p
jC?j

X

d2C?
(�1)b�djdC ai :
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In () we have used that the sum
P

c2C(�1)
x�c vanishes if

and only if x ¤ C?. �

Lemma 1 shows that the Hadamard transformation not
only changes phase-flip errors into bit-flip errors, it also
maps superpositions of all codewords of the linear bi-
nary code C to superpositions of all codewords of the dual
code C? (cf. Proposition 1).

Example (seven-qubit code) The 3rd binary Hamming
code C D [7; 4; 3] (cf. Proposition 2) contains its dual
code C? D [7; 3; 4], that is, C? � C. Hence we can par-
tition the codewords of C into two cosets of C? as follows:

C D


C? C x0

�
[̇


C? C x1

�
;

where x0 D (0000000) and x1 D (1111111) :

The Hamming weight of all codewords of C? is even,
while the weight of all vectors in the coset C? C x1 is odd.
Based on this decomposition, we define the following en-
coding:

j0i 7! j0iL D
1

p
jC?j

X

c2C?
jcC x0i D

1
p
jC?j

X

c2C?
jci

(10a)

j1i 7! j1iL D
1

p
jC?j

X

c2C?
jcC x1i : (10b)

Hadamard transformation of these states yields

H27 j0iL D
1

p
jCj

X

c2C

(�1)c�x0 jci D
1

p
jCj

X

c2C

jci

D
1
p
2
(j0iL C j1iL) (11a)

H27 j1iL D
1

p
jCj

X

c2C

(�1)c�x1 jci D
1
p
2
(j0iL � j1iL) :

(11b)

A superposition j i D ˛j0iL C ˇj1iL of the logical qubits
is a superposition of words of the Hamming code
C D [7; 4; 3]. Similar to the transformation (2) it is pos-
sible to compute an error syndrome for the bit-flip errors
using a parity check matrix of the Hamming code. Mea-
suring the error syndrome provides information about the
position of a single bit-flip, allowing us to correct this er-
ror. From (11) it can be seen that the Hadamard transfor-
mation of the state j i is again a superposition of words of
the Hamming code, so a single phase-flip error can be cor-
rected as well. Similar to Shor’s nine-qubit code, for this

seven-qubit code C D [[7; 1; 3]] given by (10), bit-flips and
phase-flips can be corrected independently (for more de-
tails see [31]).

Equation (11) additionally shows that applying the
Hadamard transformation to all seven qubits corresponds
to a Hadamard transformation of the logical qubits j0iL
and j1iL . Similarly, applying �x or � z to all qubits trans-
forms the encoded qubits like encoded versions of �x and
� z , respectively (see also Sect. “Transversal Gates”).

The generalization of this construction principle yields so-
called CSS codes. This class of codes was independently
derived by Calderbank and Shor [15] and Steane [66,67].

Theorem 6 (CSS code) Let C1 D [n; k1; d1] and C2 D

[n; k2; d2] be linear binary codes of length n, dimen-
sion k1 and k2, respectively, and minimum distance d1
and d2, respectively, with C?2 � C1. Furthermore, let
W D fw1; : : : ;wKg � GF(2)n be a system of representa-
tives of the cosets of C?2 in C1.

The K D 2k1�(n�k2) mutually orthogonal states

j ii D
1

q
jC?2 j

X

c2C?2

jcC wi i (12)

span a quantum error-correcting code C D [[n; k; d]] with
k :D k1 C k2 � n. The code corrects at least b(d1 � 1)/2c
bit-flip errors and simultaneously at least b(d2 � 1)/2c
phase-flip errors. Its minimumdistance is d � minfd1; d2g.

Proof An arbitrary combination of bit-flip and phase-flip
errors can be written as

e :D
�
�
ex;1
x �

ez;1
z

˝ : : :˝

�
�
ex;n
x �

ez;n
z


; (13)

where the binary vectors ex and ez indicate the positions
with bit-flip and sign-flip errors, respectively. An arbitrary
state of the CSS code is a superposition of the encoded ba-
sis states j ii in (12). Rewriting the superposition shows
that the state is a superposition of codewords of the binary
code C1:

j i D

KX

iD1

˛i j ii D

KX

iD1

˛0i

X

c2C?2

jcCwii D
X

c2C1

ˇcjci :

(14)

Combining (13) and (14) the erroneous state reads

ej i D
X

c2C1

ˇc(�1)c�ez jcC ex i : (15)

Using a parity check matrix H1 for the linear binary
code C1 we can implement the mapping

S1 : jxijyi 7! jxijxHt
1 C yi :
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Applying S1 to the state (15) and n � k1 ancilla qubits in
the state j0i, we get

X

c2C1

ˇc(�1)c�ez jcC ex ij(cC ex )Ht
1i

D

X

c2C1

ˇc(�1)c�ez jcC ex i
�
˝ jexHt

1i

D
�
ej i


˝ jexHt

1i : (16)

As the syndrome sx D exHt
1 depend only on the error ex ,

not on the codeword c, the state in (16) is a tensor product.
Hence we can measure the syndrome of the bit-flip errors
without disturbing the state ej i. A classical algorithm for
the decoding of the code C1 can then be used to deduce the
error vector ex from the syndrome sx . In order to correct
phase-flip errors, we recall that the Hadamard transfor-
mation interchanges �x and � z . Applying the Hadamard
transformation to the erroneous state (15) we get

H2nej i D (H2neH2n )H2n

0

B
@

KX

iD1

˛0i

X

c2C?2

jcC wi i

1

C
A

D

KX

iD1

˛00i

X

c2C2

(�1)c�ex (�1)c�wi jcC ezi :

The last equation follows using Lemma 1. Similar to (16)
we can use a parity check matrix H2 of the binary code C2
to define the mapping S2 : jxijyi 7! jxijxHt

2 C yi. Using
n � k2 additional ancilla qubits, we obtain the state
�
H2nej i


˝ jexHt

1i ˝ jezH
t
2i :

Undoing the Hadamard transformation on the first n
qubits we finally get
�
ej i


˝ jexHt

1i ˝ jezH
t
2i

D

X

c2C1

ˇc(�1)c�ez jcC ex i
�
˝ jexHt

1i ˝ jezH
t
2i :

Again we can measure the syndrome sz D ezHt
2 and use

a decoding algorithm for the linear binary code C2 to find
the error vector ez . �

Stabilizer Codes

The construction of CSS codes uses two binary codes
which define a decomposition of the set of all binary
strings of length n. Using the binary strings as labels of
quantum states, one obtains a decomposition of the com-
plex vector space (C2)˝n (cf. Fig. 1). Such a decomposi-
tion can also be defined via eigenspaces of operators.

Let Pn denote the group which is generated by tensor
products of n Pauli matrices (cf. (9)) and identity. Every

element g 2 Pn has a unique representation of the form

g D ic � � gx;1
x �

gz;1
z ˝ � � � ˝ �

gx;n
x �

gz;n
z ;

where c 2 f0; 1; 2; 3g and gx and gz are binary vectors of
length n. Two elements g and h of Pn either commute or
anti-commute, that is, gh D ˙hg.

Let S be an Abelian subgroup of Pn , that is, any two
elements of S commute. Furthermore, we assume that S
does not contain �I. Then S has 2n�k elements and
there are n � k generators. The spectrum of every gener-
ator gi is fC1;�1g. Furthermore, there are 2n�k common
eigenspaces, each of dimension 2k , which can be labeled by
the eigenvalues of the generators. We choose one of these
eigenspaces as our quantum code C, e. g., the eigenspace
with all eigenvaluesC1. For the analysis of the error-cor-
recting properties of this code, recall that any two ele-
ments in Pn either commute or anti-commute. Assume
that E 2 Pn anti-commutes with some generator gi of S.
Then for every state j i 2 C we have

gi (Ej i) D �Egi j i D �Ej i ; (17)

that is, Ej i lies in the eigenspace of gi with eigenvalue� 1
which is orthogonal to the code. Hence every error E that
anti-commutes with at least one of the generators gi of S
can be detected. From the definition of S it follows that
Ej i D j i for all E 2 S and every state j i 2 C, that is,
these “errors” E have no effect on the code. However, if
E … S commutes with all elements in S, then E preserves
the code space, but acts non-trivially on it. When design-
ing a code, we want the weight of these undetectable errors
to be large, that is, we want the number of tensor factors
of E that are different from identity to be high.

This construction of so-called stabilizer codes has been
found independently by Gottesman [25] and Calderbank
et al. [14]. In the latter paper, a connection to additive
codes over the finite field GF(4) has been established
which allows us to use results from classical coding theory
for the construction of good quantum codes.

Theorem 7 (stabilizer codes) Let S be an Abelian sub-
group of the n-qubit Pauli group Pn that does not contain
�I. The stabilizer code C with stabilizer S is the common
eigenspace with eigenvalue + 1 of all operators in S. The di-
mension of C is 2k if jSj D 2n�k . The normalizerN (S) is
defined as

N (S) D fx : x 2 Pn j x�1Sx D Sg
D fx : x 2 Pn j xg D gx for all g 2 Sg :

The normalizer has 2nCk elements and contains the stabi-
lizer S. If the weight of all elements of the setN (S) n S is at
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Quantum Error Correction and Fault Tolerant Quantum Com-
puting, Figure 4
Quantum circuit to measure the eigenvalue of
g D �z ˝ �x ˝ I˝ �y

least d, then all errors of weight strictly less than d can either
be detected or have no effect on the code. Equivalently, one
can correct all errors of weight up to b(d � 1)/2c. The code
is denoted by C D [[n; k; d]].

In a manner similar to error correction for CSS codes,
error correction for stabilizer codes is based on measur-
ing a syndrome of the error. Recall that an error can
be detected if it anti-commutes with one of the genera-
tors gi of the stabilizer S. Then the erroneous state lies
in the eigenspace of gi with eigenvalue � 1 (see (17)).
Hence measuring the eigenvalues of the generators gi pro-
vides information about the error E. Since the Pauli ma-
trices are both unitary and Hermitian, the generators de-
fine a quantum mechanical observable. However, if the
weight of the generator gi is m, one would have to mea-
sure anm-qubit observable. Alternatively, one can use one
ancilla qubit per generator gi to compute an error syn-
drome. Assume that we want to measure the eigenvalue of
g D �z ˝ �x ˝ I ˝ �y . For this, we can use the quantum
circuit shown in Fig. 4.

The eigenstates of � z are j0i and j1i with eigenvalues
+ 1 and � 1, respectively. Hence the first CNOT gate flips
the state of the ancilla qubit if and only if the first qubit is in
the eigenspace of � z with eigenvalue� 1. The control qubit
of the next CNOT gate is conjugated with the Hadamard
matrix which interchanges �x and � z. Hence the ancilla
qubit is flipped if and only if the second qubit is in the
eigenspace of �x with eigenvalue � 1. In order to mea-
sure the eigenvalue of � y, the control of the final CNOT
gate is conjugated with the matrix	 D 1/

p
2
� 1 �i
�i 1


that

maps � y to � z . If measuring the ancilla qubit jsi yields
the result 0 or 1, the state of the first four qubits is pro-
jected onto the eigenspace of g with eigenvalue + 1 or � 1,
respectively.

On the one hand, the elements of the normalizerN (S)
which do not lie in the stabilizer S correspond to errors
that cannot be detected. On the other hand, these elements
can be used to perform operations on the code, as we will
see in the following example.

Example (five-qubit code) The shortest quantum code
that can correct an arbitrary single-qubit error is the code
C D [[5; 1; 3]] which is a stabilizer code. The stabilizer S of
this code is generated by

g1 D �z ˝ �x ˝ �x ˝ �z ˝ I D ZXXZI ;
g2 D I ˝ �z ˝ �x ˝ �x ˝ �z D IZXXZ ;
g3 D �z ˝ I ˝ �z ˝ �x ˝ �x D ZIZXX ;
g4 D �x ˝ �z ˝ I ˝ �z ˝ �x D XZIZX :

The normalizer of S is generated by g1; : : : ; g4 together
with

h1 D �x ˝ �z ˝ �x ˝ I ˝ I D XZXII ;
h2 D �z ˝ �z ˝ I ˝ �x ˝ I D ZZIXI :

Both h1 and h2 commute with all gi, and h1 and h2 anti-
commute with each other. Hence h1 and h2 act on the code
as encoded versions of �x and � z .

We close this section by noting that CSS codes are also sta-
bilizer codes. The stabilizer of the seven-qubit code of Ex-
ample 4 is generated by

g1 D XIXIXIX ; g4 D ZIZIZIZ ;
g2 D IXXIIXX ; g5 D IZZIIZZ ;
g3 D IIIXXXX ; g6 D IIIZZZZ :

The additional generators of the normalizer are given by

h1 D XXXXXXX ; h2 D ZZZZZZZ :

As already mentioned at the end of Example 4, h1 and h2
correspond to the encoded version of �x and � z , respec-
tively.

Techniques for Fault-Tolerant QuantumComputing

The theory of quantum codes as described in the previ-
ous sections is a prerequisite to be able to achieve a larger
goal, namely, reliable quantum computations performed
with imperfect hardware. Imperfections arise from the fact
that every physical device is subject to noise. This includes
memory elements as well as gate elements. Not only is
memory affected by errors, but the operations by which
this memory is modified can also be faulty, so the task
of devising reliable quantum computations is very deli-
cate. The idea behind fault-tolerant quantum computing
(FTQC) is to achieve this very goal, provided that the noise
level introduced by the memory and the gates is not too
high.

It should be noted that FTQC is quite different from
the techniques used in classical fault-tolerance and de-
pendability of systems (see [7] for an overview). In general,
the supply of techniques that can be drawn from in the
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quantum case is less rich than in the classical case, where
fault-tolerance techniques are known on basically all lev-
els of abstraction, for hardware as well as for software. The
reason for this difference is that in the quantum case there
are strong restrictions on how quantum information can
be maintained.One examplemight be the “no cloning the-
orem” that was alreadymention as Theorem 4. Not having
the ability to copy quantum information rules out many
classical fault-tolerance techniques such as error-detection
for rollback recovery [23].

The results shown in FTQC have the flavor of some of
the results shown in the early days of gate level fault-toler-
ance in the classical case, such as the celebrated threshold
result for faulty NAND gates due to J. von Neumann [55].
An important result of the theory of FTQC is that also in
the quantum case there is a threshold value for this noise
level such that arbitrarily long quantum computations be-
come possible if the gates have a noise level that is under
the threshold. We will briefly discuss the current state of
the art of estimates of this threshold value from below and
above in Sect. “The Threshold Theorem”.

FTQC comprises methods to perform the following
tasks on encoded quantum states in such a way that errors
do not accumulate. This means that during the application
of a single gate, errors do not spread out in an uncontrolled
fashion over the whole circuit. Instead, errors stay locally
confined so that they can be taken care of by error correc-
tion routines that are applied periodically to the system:

� Preparation of initial states and ancilla states
� Algorithms for quantum error-correction
� Measurement of quantum states
� Universal set of quantum gates.

Throughout, in FTQC it is assumed that quantum data
is never given in a form where it is unencoded. Instead, it
is assumed that whenever a qubit consisting of two (log-
ical) basis states j0iL , j1iL is given, that these states are
encoded into some higher-dimensional Hilbert space and
that the need never arises to decode this quantum infor-
mation from its encoded physical representation to its log-
ical representation.

Transversal Gates

FTQC requires careful design of how quantum informa-
tion is encoded. A first indication of the inherent diffi-
culties is given by the observation that errors have the
tendency to be propagated through quantum gates. The
CNOT gate might serve as a simple example. A simple
calculation reveals that it propagates (even when work-
ing perfectly) a single X-error on the control qubit to

QuantumError Correction and Fault Tolerant QuantumComput-
ing, Figure 5
Fault-tolerant quantumgates. Shown are two examples, namely
a local operations that operate on encoded qubits without en-
tangling them, thereby avoiding any error propagation between
them, and b transversal gateswhich in this case are givenby a se-
quence of controlled gates. An error in one of these gates will
have only a local effect to at most two of the encoded qubits
and therefore can be corrected by one round of quantum er-
ror-correction provided thequbits are encoded usinga quantum
code that can correct at least one error. In both a and b the gates
U1;U2; : : :, are arbitrary unitaries

a double X-error on both control and target qubit. Con-
versely, the same CNOT gate propagates a single Z-error
on the target qubit to a double Z-error on control and tar-
get qubit. A basic requirement for all quantum gates that
are used to operate on encoded quantum data is that they
should not propagate errors, that is, errors should stay lo-
cally confined to a small set of qubits (see Fig. 5).

It was shown in [27] how to perform encoded Clif-
ford operations transversally on any stabilizer code. Clif-
ford operations are those quantum operations that leave
the group of tensor products of Pauli matrices unchanged
under conjugation. Clifford operations are not universal
for quantum operations. For certain inputs, they can even
be efficiently simulated classically [1,5]. However, it was
also shown in [27] that, using transversal gates together
with local measurements, a universal set of quantum gates
can be implemented on any stabilizer code.

Teleporting Gates

While in the beginnings of FTQC universal gate sets were
realized using ad hoc constructions involving measure-
ments [65], later it was realized that teleportation [10]
also can be used to implement universal sets of quantum
gates. This has the following unique advantage: suppose
that a particular gate U has to be applied during the com-
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putation. Then as shown in [30], under some conditions
(which characterize a set of gates more general than Clif-
ford gates, hence a universal set of gates), such a quan-
tum gate can be “precomputed” and stored into a quan-
tum state j Ui. Once the gate U has to be applied, this
state j Ui is used in a generalized teleportation scheme
which can be shown to have the same effect as applying U.
The advantage of this method of teleporting the gate U is
that j Ui can be prepared and verified offline. Then only
very high fidelity specimens of j Ui are actually used in
the computation.

Fault-Tolerant Error Correction

Several fault-tolerant methods are known to measure the
syndrome of a quantum code. We first describe Shor’s
method which relies on generalized cat states and which
can be applied to any stabilizer code. Next, we describe
Steane’s method which is applicable whenever the code is
a CSS code. Finally, we describe Knill’s method which is
based on teleportation and post-selection.

Shor’s Method In Fig. 4 we have seen an example of
how the eigenvalue of a generator of the stabilizer can
be measured. The principle underlying this example is to
compute a controlled operation for each of the non-triv-
ial Pauli operators contained in the generator and to com-
pute the output of this controlled gate into a fresh qubit
which is then subsequently measured. Unfortunately, this
method is not fault-tolerant as the CNOT has the men-
tioned property of propagating X-errors from control
qubits to target qubits and Z-errors from target qubits to
control qubits. Therefore, a different method is needed to
implement a fault-tolerant measurement of stabilizer gen-
erators. As shown by Shor [65], such a method of fault-
tolerant syndrome measurements exists, provided that
a supply of cat states, that is, quantum states of the form
1/
p
2(j0 : : : 0i C j1 : : : 1i), is available. Such a cat state is

first transformed using the Hadamard transform applied
to all qubits, yielding the equal superposition of all even
weight binary words. Next, the same controlled operations
as in Fig. 4 are applied but instead of having the same tar-
get qubit, they are controlled to individual qubits of the
cat state. Afterwards, all ancilla qubits are measured in the
standard basis, and the parity of the measurement results
is computed classically.

The remaining problem is how to ensure the supply
of cat states. This is done in a separate, offline procedure
which first performs an encoding of a cat state followed
by suitable tests to verify that, indeed, the correct state has
been produced.

Steane’s Method A different method can be applied if
the given quantum code is a CSS code. In this so-called
Steane method [68], first an X-error correction is per-
formed, followed by a Z-error correction. Here, these two
error correction routines are performed in a very special
way. To correct X-errors, an ancilla is prepared in an en-
coded state jCiL D 1p

2
(j0iL C j1iL) that corresponds to

the superposition of all logical codewords. Then transver-
sal CNOTs from the encoded codeword (control) into the
ancillas (target) are applied. Afterwards, the ancilla is mea-
sured in the standard basis and, if necessary, a correction
is applied. For the Z-errors, the corresponding operations
in the Hadamard basis are applied.

A fault-tolerant measurement for a CSS code derived
from C?2 � C1 is defined with respect to the orthogonal
projectors onto the states j ii as in Eq. (6):

jiiL D j ii D
1

q
jC?2 j

X

c2C?2

jcC wii :

First, we describe a way of measuring jiiL that is fault-tol-
erant but does not implement the orthogonal projectors
given by the CSS basis states (6). Measuring all qubits of
j ii in the computational basis yields a random codeword
of the classical code C1, possibly with some error added.
Using a classical error-correction strategy for C1, this error
can be corrected, resulting in a random element of a coset
C?2 C wi . Then, computing the error-syndrome with re-
spect to the classical code C?2 , it is possible to infer what i
was. In order to obtain a measurement that also imple-
ments the orthogonal projection operators, we use ancilla
qubits which can be prepared in the state j0iL and tested
offline [68]. Next, the quantum information is transferred
from the encoded qubits to the ancilla using transversal
CNOTs. Finally, the ancillas are measured in the compu-
tational basis and the information about i is computed as
described above.

Knill’s Method Knill [43] suggested a scheme for fault-
tolerant quantum computation based on error detection
and post-selection. Knill’s scheme involves a “sieving” step
in which ancillas are prepared in a suitable state that is
later used to teleport a gate into a computation. The gates
involved in this sieving phase are protected using a con-
catenated code that is error-detecting. If an error occurs in
this phase, the preparation of the ancilla state is aborted
and a new attempt is started. A rigorous threshold for
Knill’s scheme was given in [4] where it was shown that
ı � 1:04 � 10�3 is a lower bound on the threshold. It
should be noted that Knill’s numerical simulations [43]
indicate a much higher value of the threshold of about



Quantum Error Correction and Fault Tolerant Quantum Computing Q 7339

ı � 3 � 10�2, albeit at the price of a significant (but ad-
ditive) hardware overhead.

Both Knill’s and Steane’s schemes have in common
that they are based on post-selection, a feature that also
underlies the proposed implementation of a quantum
computer based on linear optical elements [46].

The Threshold Theorem

In its simplest form, FTQC is achieved by recursively en-
coding qubits using a fixed quantum code C. This is the
idea underlying several papers in which accuracy thresh-
olds for quantum computing are proven. We briefly de-
scribe the reasoning as to why a threshold for FTQC exists
and conclude with some historical remarks and pointers
to further reading.

Intuition Behind the Threshold Theorem

Let C be a quantum code that encodes only one qubit into
several qubits, that is, it is an [[n; 1; d]] which can correct
up to t D b d�12 c errors. Encoding one qubit with respect
to this code will lead to an improved error rate of pt over
the given error rate of p. Repeating this process h times re-
sults in a quantum code Ch with parameters [[nh ; 1; dh]].
Although the codeCh has a very poor rate, it leads to a dra-
matic reduction of the error probability with a relatively
small price in terms of overhead: for h levels of concatena-
tion the error probability becomes p�(p/p�)2

h , where p�
denotes the threshold probability. This threshold is given
by p� D 1/c�, where c� roughly denotes the number of
events that can cause a logical error under the constrain-
ing assumptions made about the physical error model.

It should be noted that, in FTQC, usually one param-
eter is given, namely the probability p of any gate fail-
ing during the computation. This probability p is actu-
ally a property of a given, fixed set of universal quantum
gates. The quantity 1 � p is given as the minimum of the
probability of projecting the state obtained from the faulty
gate onto the correct quantum state, where the minimum
is taken over all gates in the universal set and all states of
the Hilbert space.

History of the Threshold Theorem

The first method for FTQC was given by Shor [65], who
introduced the idea of alternating error-correction and ac-
tual quantum gates in order to do long quantum compu-
tations that can tolerate more noise than unencoded op-
erations. He introduced and used universal fault-tolerant
gates and showed how to measure the syndrome of a sta-
bilizer code fault-tolerantly by using cat states.

Around the same time, ideas based on concatena-
tion of quantum codes were used by Aharonov and Ben-
Or [2], Kitaev [42], Gottesman [26], Knill, Laflamme and
Zurek [45], and Preskill [58], to derive FTQC schemes
that can perform arbitrarily long computations provided
the given error rate lies below a certain value, namely
the threshold for FTQC. In these early works, the QECCs
used had to be at least two-error correcting. This require-
ment was later relaxed and it was shown by Reichardt [62]
and Aliferis, Gottesman, and Preskill [3] that also one-
error correcting quantum codes yield a positive threshold.
This allowed us to obtain much higher estimates of the
threshold.

In the following years, several attempts have been
made to obtain good bounds on the true value of the
threshold. Starting with [70] there have been attempts to
compute numerical approximations to the true value of
the threshold viaMonte-Carlo simulations. For this, a par-
ticular quantum error-correcting code and a particular er-
ror-correction strategy are fixed. Then, in a classical sim-
ulation, errors are introduced randomly and it is checked
to see how many of them cause uncorrectable errors. This
result can be then used to obtain an estimate of the thresh-
old. This technique was later criticized [3] as being prone
to overestimating the true threshold value. A further dis-
advantage is that more advanced error models such as
local non-Markovian noise cannot be captured by this
method.

On the other hand, in FTQC, there has been a tradi-
tion of giving rigorous, analytical proofs for bounds on
the threshold by analyzing the recursion. Examples for this
method include [2,45]. Typically, this gives a fairly low
bound for the true value of the threshold because all error
effects are assumed to be worst-case. A recently-studied
intermediate model of proving bounds on the threshold
makes educated guesses that certain effects are negligi-
ble, then calculates the threshold based on that. An ad-
vantage of this method is that it never underestimates the
true value of the threshold while giving significantly higher
values.

Similar to the DiVincenzo criteria for building a quan-
tum computer [21], there is a list of requirements and
desiderata for universal FTQC attributable to Gottes-
man [29] which we repeat here. The point of this list is
that any quantum computer that performs its computa-
tions in a fault-tolerant fashion must have the following
features:

� The gate error rates must be low.
� The architecture must support the ability to perform

operations in parallel.
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Quantum Error Correction and Fault Tolerant Quantum Computing, Figure 6
Concatenated quantum codes. Shown is one level of concatenation for the seven qubit [[7;1;3]] code. Each of the seven physical
qubits in the first layer is replaced by seven qubits encoded again into a [[7;1;3]] quantum code. If the initial error rate is given
by ", then iterating this construction h times yields a quantum codewith parameters [[7h; 1;3h]] and a resulting error rate of roughly
c2

h
�1

�
"2

h

� There must be a way of remaining in, or of returning
to, the computational Hilbert space, thereby preventing
leakage errors.

� Theremust be a source of fresh initialized qubits during
the computation.

� The error scaling must be benign, that is, the error rates
must not increase as the computer gets larger. Also,
there must not be any large-scale correlated errors dur-
ing the computation.

Further Reading

For an overview of results on FTQC including noise
thresholds for models based on post-selection and a de-
tailed treatment of many FTQC constructions, we rec-
ommend Reichardt’s PhD thesis [61]. That reference also
gives a discussion of alternative techniques to achieve
FTQC such as topological quantum computing [20]. For
an overview on developments on non-Markovian mod-
els, extended rectangles and gadgets used for fault-toler-
ant error correction, the reader is referred to [3]. Com-
plementing the lower bound results on the threshold are
results which give upper bounds, that is, results which de-
termine noise levels above which no quantum computa-
tion is possible. Results in this direction were first obtained
by Razborov [60] and have been further improved [40].
Finally, for a comparison between different methods for
FTQC based on short block codes combined with concate-
nation, see the recent paper [19].

Further Aspects

In this article we have considered only qubit systems.
Both quantum error-correction and fault-tolerant quan-
tum computation can be generalized to quantum sys-

tems that are composed of higher dimensional systems
(see [6,28,36]). The stabilizer formalism has also been
extended from block codes to quantum convolutional
codes [17,24,57]. This class of codes allows us to encode
and decode a stream of quantum information without par-
titioning it into blocks of fixed size. For both quantum
block codes and quantum convolutional codes there are ef-
ficient ways for encoding quantum information [18,33,37].

Building on the connection between stabilizer codes
and classical additive codes, various constructions of
QECCs have been proposed (for an overview see [41]).
Among those are cyclic codes, for which efficient encod-
ing and sub-optimal decoding algorithms are known [32],
as well as families of good QECCs based on classical codes
from algebraic geometry [54]. More recently, the use of
classical LDPC codes for quantum error correction has
been proposed [16,52]. Since classical LDPC codes achieve
very good performance, it is hoped that their quantum ver-
sions result in a high threshold for FTQC. Allowing non-
additive classical codes in the construction of QECCs can
lead to QECCs whose dimension is larger than those of
stabilizer codes [34,59].

Instead of using active methods to obtain information
about an error and subsequently correct the error, some
physical systems allow for passive error-protection. If the
interaction of the quantum system with its environment
possesses some symmetry, the quantum information can
be stored in a so-called decoherence free subspace on which
the environment has no effect [22,51,71]. A generaliza-
tion of this concept is given by decoherence free subsys-
tems (more details can be found in the review article [50]).
Combining the ideas of active quantum error correction
and encoding information into subsystems yields to oper-
ator quantum error correction [48,49]. Within this frame-
work it is possible to derive simplified active error-cor-
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recting schemes where the error is only partially corrected
while the residual error affects only the state of a gauge
subsystem [8]. These codes yield to a higher threshold for
FTQC.

In a communication scenario, quantum information
can be sent via teleportation. For this one needs entan-
gled quantum states shared by the sender and receiver. It is
possible to distill these entangled states from noisy entan-
gled states [11]. More recently, the construction of QECCs
which combine active error correction with pre-shared en-
tanglement has been proposed [13].
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Glossary

Quantum dot device nanoscopic electronic device re-
sembling a transistor which incorporates a quantum
dot as the central active element; sometimes also called
single electron transistor. A quantum dot is an ex-
tremely small puddle of electrons which can be con-
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sidered as an artificial atom since the confinement of
electrons leads to quantized energy levels: the electrons
form orbitals much like the electrons in orbit around
an atomic nucleus. Gate-defined semiconductor quan-
tum dots provide precisely tunable physical realiza-
tions of quantum impurity models.

Quantum impurity system system of a localized mag-
netic impurity in interaction with itinerant free elec-
trons from a conduction band of an otherwise clean
metal. It can be described using an idealized quantum
impurity model such as Kondo or Anderson model.

Tunneling transmission of electrons from one electrode
to another through classically-forbidden potential bar-
riers such as thin insulators or empty space. Tunneling
is a characteristic quantum phenomenon that is com-
monly at play on the nanoscopic scale.

Kondo effect Kondo effect is a many-particle effect which
occurs in quantum impurity systems due to increased
spin-flip scattering of the conduction band electrons
on the magnetic impurity at low temperatures. It leads
to various anomalies in thermodynamic and dynamic
properties. In the context of the electronic transport
through a quantum dot, the Kondo effect is reflected in
enhanced conductance (zero-bias anomaly) at reduced
temperatures.

Channel In the context of impurity physics, a channel is
a set of energy levels in the conduction band which are
coupled to the impurity. Several independent channels
may be coupled to a single impurity. In the context of
quantum dots, the relevant channels may be identified
with the conduction channels in the leads attached to
the nanostructure, however the number of channels in
the effective impurity problem may be lower than the
number of physical conduction channels.

Quantum phase transition A quantum phase transition
is a zero-temperature phase transition triggered by
tuning system parameters. While thermal phase
transitions occur due to thermal fluctuations, quan-
tum phase transitions emerge from zero-point quan-
tum fluctuations in the ground state.

Particle-hole symmetry Idealized impurity models ex-
hibit particle-hole symmetry if the model remains un-
changed when all occupied levels are mapped into un-
occupied levels and vice versa. This occurs for half-
filled systems, when precisely one electron occupies
each impurity on the average.

Definition of the Subject

Advances in the field of nanoscience and nanotechnol-
ogy empower us with new tools for probing electronic

systems of increasingly small sizes. Nowadays one can,
for example, measure electrical conduction of semicon-
ductor quantum dots with lateral extent of a few 10 nm,
single molecules, and even individual atoms trapped be-
tween two electrodes. Nanodevices of practical interest
typically consist of an active element (such as a quan-
tum dot [1,2,3]) weakly coupled to two conducting leads
by tunneling junctions so that electric current can flow
through the device. The active element confines a small
number of electrons. Particularly interesting is the case
where this number is an odd integer; the excess single elec-
tron is then unpaired and carries magnetic moment. It has
been recently demonstrated that a quantum dot of this
type behaves as an artificial magnetic atom which can be
experimentally tuned using electrodes [4,5,6]. The advan-
tage of performing experiments on such artificial atoms is
that various effects that depend on the number of electrons
can be studied simply by changing voltages applied on gate
electrodes, rather than performing experiments on differ-
ent chemical elements.

It is now possible to produce nanodevices consisting
of a small number of quantum dots which are coupled
by tunneling junction between each other and to external
electrodes [7,8,9,10,11,12]. Multiple quantum dot systems
can be used to study various magnetic effects, such as anti-
ferromagnetic and ferromagnetic ordering, Kondo screen-
ing, and other phenomena in which the role of electron-
electron interactions is essential. This provides insight into
the behavior of similar macroscopic magnetic systems and
reveals how magnetic behavior scales from the atomic
size. Furthermore, these devices are interesting in their
own right as candidates for quantum information stor-
age and processing. They represent the ultimate degree of
miniaturization of electronic devices and they are likely
to evolve into the building blocks of the circuitry of to-
morrow.

Introduction

Real metal is never an ideally clean and homogeneous ma-
terial. Instead, any metal sample invariably contains a fi-
nite concentration of various impurities. Impurities affect
resistivity of the metal particularly at low temperatures
when electron scattering of thermal origin is suppressed
and the residual scattering on static impurities determines
at which value the resistivity ultimately saturates. It was
remarked very early that in some samples the resistance
after the initial decrease unexpectedly increases at the low-
est temperatures: this behavior constitutes the “problem
of the resistance minimum” [13]. Further experimental
work indicated that such anomalies are due to the pres-
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ence of magnetic impurities, such as iron, cobalt or man-
ganese, in a non-magnetic metal host. Theoretical under-
standing was lacking until the work of J. Kondo in 1964
who had shown that the rate of scattering events in which
the magnetic moment of the impurity is changed (mag-
netic or spin-flip scattering) surprisingly increases as the
temperature is lowered [14]; this behavior of impurity sys-
tems became known as the Kondo effect. More detailed
understanding became possible with the development of
advanced theoretical tools based on the idea of the renor-
malization group by P. W. Anderson, K. G. Wilson and
others [15].

Impurity models and the Kondo effect are widely stud-
ied for several reasons. The Kondo effect is one of the
very few non-trivial many-particle effects where an inten-
sive theoretical effort eventually resulted in a very good
and detailed understanding. In fact, the Kondo problem
was historically the primary motivation for the develop-
ment of many widely applicable theoretical approaches
and has driven the progress in the field of the many-
particle physics for many decades. More generally, the im-
purity models have attracted the condensed matter com-
munity due to their unexpectedly complex and rich be-
havior. On a more practical level, Kondo physics plays
an important role in many complex materials which may
have practical applications. The Kondo screening of lo-
cal moments namely competes with magnetic ordering;
the result of this competition determines the magnetic
properties of materials at low temperatures. Fermi and
non-Fermi liquid behaviors, ferromagnetic and antifer-
romagnetic correlations, and diverse behavior of heavy
fermion systems [16] are the outcome of the competition
between the Kondo effect and magnetic exchange inter-
action [8].

More recently, the Kondo problem became popular
due to the advances in the field of nanoscience and nan-
otechnology. It is now possible to perform electron trans-
port measurements on very small systems, such as quan-
tum dots [17], segments of carbon nanotubes [18], single
molecules with an embeddedmagnetic ion [19] and in the
extreme case even single magnetic atoms deposited on the
surface of a normal metal [20,21,22]. The Kondo effect was
predicted to occur in quantum dots in late 1980s [23,24]
and experimentally observed a decade later [4,5]. Again, it
was found that the Kondo effect leads to transport anoma-
lies at low temperatures. By studying the Kondo physics in
systems where parameters can be continuously tuned, we
better understand systems where such control is not possi-
ble, as in the case of bulk materials. Quantum dot systems
are thus a laboratory for studying various effects driven by
strong electron correlations.

QuantumDots as Impurity Systems

Semiconductor QuantumDots

Particularly interesting devices are quantum dots pat-
terned in high-quality semiconductor heterostructures.
In heterostructures a subsurface layer of high-electron-
mobility two-dimensional electron gas is confined near the
interface between gallium arsenide (GaAs) and aluminum
gallium arsenide (AlGaAs) [25]. Such crystal structures
may be grown very accurately one atomic layer at a time
bymolecular beam epitaxy [26]. Lateral quantum dots [27]
are then defined by patterning metallic gates on the sam-
ple surface (Fig. 1). Using a sufficiently negative gate volt-
age, the two-dimensional electron gas is depleted in the re-
gion below the electrode and a barrier is formed: quantum
dot is said to be electrostatically defined. This “split-gate”’
technique is also used to build quantum point contacts,
quantum wires and similar devices [28]. By changing the
voltage on the pinch electrodes, the strength of the cou-
pling of the dot with the electron gas in the leads is con-
trolled. By applying voltage on the gate electrode near the
quantum dot region, the number of electrons confined in
the dot can be accurately tuned. Nowadays it is possible to
fabricate few-electron quantum dots and exactly control
the number of electrons starting from zero.

Quantum Impurity Models

An idealized quantum impurity model describes a sin-
gle point-like impurity (a zero-dimensional defect) in an
otherwise homogeneous host environment composed of
a gas of particles that form a continuum of extended states.
The impurity is assumed to have internal degrees of free-

Quantum Impurity Physics in Coupled Quantum Dots, Figure 1
Schematic representation of a semiconductor quantumdot elec-
trostatically defined by the voltages applied on surface metal
gate electrodes
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dom (such as intrinsic angular momentum, or “spin”) and
interacts with the continuum particles. A paradigmatic
quantum impurity model is the Kondo model for a mag-
netic impurity atom, such as cobalt, embedded in a host
metal which is non-magnetic, such as copper; the mag-
netic impurity interacts with the conduction band elec-
trons via anti-ferromagnetic exchange interaction. Gen-
eralized quantum impurity models may involve several
impurities or more complex, non-homogeneous environ-
ment. The theoretical significance of the quantum impu-
rity models stems from their ubiquitous applicability to
a vast array of physical systems such as bulk Kondo sys-
tems, heavy-fermion compounds and other strongly cor-
related systems, dissipative two-level systems, single mag-
netic impurities and quantum dots.

In nanoscopic electronic devices the electron-electron
interactions are particularly strong and they induce inter-
esting many-particle effects, among them the Kondo ef-
fect which appears to be a relatively generic feature of
nanodevices [4,19,29,30]. As in bulk systems, the Kondo
effect gives rise to various anomalies in the thermody-
namic and transport properties, in particular to increased
conductance through nanostructures. The conductance
through a quantum dot in the Kondo regime is in agree-
ment with theoretical predictions that such dots behave
rather universally as single magnetic impurities [17] and
can be modelled using single impurity Anderson and
Kondo models [17,31]. Quantum dots thus serve as tun-
able realizations of the quantum impurity models.

Anderson Impurity Model

Due to electron confinement, the quantum-mechanical
energy levels in a quantum dot form a series of discrete
quantized levels. We focus on the electrons in the levels
closest to the Fermi level in the leads, i. e. in the last oc-
cupied and first unoccupied orbital states of the dot. In the
simplest case, a single electron level is relevant and a quan-
tum dot with an odd number of confined electrons is ex-
pected to behave as a spin-1/2 magnetic impurity, similar
to magnetic ions [32].

In the formalism of the second quantization, the Ha-
miltonian for interacting electrons in the quantum dot is

Hdot D �d(n" C n#)C Un"n# : (1)

�d is the energy of the electron orbital in the quantum dot
(also named “on-site energy”), U is the strength of the ef-
fective electron-electron repulsion between two electrons
in the same orbital, and the number operator n� is de-
fined as n� D d��d�, where d�� and d� are the creation

Quantum Impurity Physics in Coupled QuantumDots, Figure 2
Representations of the single impurity Anderson model for
a quantum dot

and annihilation operators; the spin index � takes val-
ues � D ˙1/2 or, equivalently, � D";#. The on-site en-
ergy �d can be regulated using gate voltages which allows
the charge state (occupancy) on the dots to be tuned. We
may rewrite the Hamiltonian in an equivalent but more
symmetric manner as

Hdot D ın C
U
2
(n � 1)2 ; (2)

where n D n" C n# and ı D �d C U/2. For ı D 0, the
model is particle-hole symmetric and the level is occupied
by a single electron on the average. The four possible con-
figurations of the Anderson model and their energies are
represented in Fig. 2a.
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The conduction bands in the leads are described as

Hband D
X

k�˛

�k c
�
k�˛ ck�˛ : (3)

�k is the energy of an electron with wave-vector k in
left (˛ D L) or right (˛ D R) lead described by the cre-
ation/annihilation operator pair c�k�˛ and ck�˛ . A con-
duction band behaves as a sea of electrons: all states be-
low some energy (Fermi level) are occupied, while all other
high-energy states are empty. When a source-drain bias
voltage Vsd is applied on the leads (Fig. 2b), the Fermi lev-
els are displaced and the electrons in an energy interval of
width eVsd will attempt to flow from the lead with higher
Fermi level through the quantum dot to the other lead,
Fig. 2c. Tunneling of electrons through the junctions is de-
scribed by the Hamiltonian

Hcoupling D
X

k�˛

Vk˛(c
�
k�˛d� C d��ck�˛) ; (4)

where Vk˛ are the amplitudes for electron tunneling from
lead ˛ to the dot. The Anderson impurity model is then
given by the sum H D Hdot C Hband C Hcoupling.

Assuming that the coupling to the left and right elec-
trode is equal, only symmetric combinations c�k�L C c�k�R
of conduction band electrons play a role at small bias volt-
age Vsd, while antisymmetric combinations c�k�L � c�k�R
are decoupled [23]. The use of a single channel Anderson
model is then justified and the index ˛ is unnecessary. This
simplification occurs only for simple systems; in general,
systems of coupled quantum dots are true multichannel
quantum impurity problems.

Often the approximation of taking a constant hopping
Vk � V is taken. Further simplification consists of con-
sidering the conduction band to have a constant density
of states � D 1/(2D), where 2D is the bandwidth. The hy-
bridization strength � which characterizes how strongly
the impurity is coupled to the conduction band is then also
a constant, � D ��V 2.

Validity of the approximation of describing the elec-
tron in the highest occupied electron level in the quan-
tum dot using the Anderson model has been experimen-
tally well tested: the temperature, magnetic field and gate
and bias voltage dependence of the conductance through
quantum dots may be described by the simple Anderson
model, however the agreement is qualitative, not quan-
titative [17].

In some parameter regimes, Anderson model reduces
to a simpler Kondo model. Kondo model consists of a sin-

gle spin in interaction with the conduction band:

H D
X

k�

�k c
�
k�ck� C JS � s(0) ; (5)

where J � 8V2/U is the effective Kondo antiferromag-
netic exchange constant, S is the impurity spin-1/2 oper-
ator and s(0) is the spin density of the conduction band
electrons at the position of the impurity. Despite their
seeming simplicity, Anderson and Kondo models are both
difficult many-particle problems.

Multi-Impurity Models

Several quantum dots (artificial atoms) can be intercon-
nected to form an “artificial molecule” [33,34]. Systems
of multiple coupled impurities are realizations of gen-
eralized Kondo models where more exotic types of the
Kondo effect may occur. The research in this field has re-
cently intensified due to a multitude of new experimen-
tal results; the multi-impurity magnetic nanostructures
under study are not only systems of multiple quantum
dots [8,9,10,35,36], but also clusters of magnetic adsor-
bates on surfaces of noble metals (such as Ni dimers [37],
Ce trimers [38] and molecular complexes [39]). Systems
of two impurities are the simplest systems where one can
study a number of very interesting effects, such as the ef-
fects of inter-dot electron hopping, formation of ionic or
covalent inter-dot bonds, and the competition between
magnetic ordering and Kondo screening, leading to quan-
tum phase transitions [40,41]. Recently, few-electron triple
quantum dot structures have also been fabricated [11,12]
and even more complex multi-dot nanostructures can in
principle also be assembled.

Systems of multiple quantum dots can be modeled by
suitably generalizing the Anderson model. The properties
depend in an essential way on the coupling topology, i. e.
on how the various impurities are inter-connected, as rep-
resented in the examples in Fig. 3. The system can be mod-
eled using discrete lattice models as an impurity cluster in
contact with two conduction leads. Each dot (indexed by
the subscript i) is described using a Hamiltonian

Hdot;i D ıi ni C
Ui

2
(ni � 1)2 : (6)

Junctions between the dots are described by “hopping
Hamiltonian”

Hhopping D
X

hi; ji;�

ti; j


d�i;�dj;� C d�j;�di;�

�
; (7)

and junctions between the dots and the conduction leads
by suitable generalizations of Eq. (4). The impurity Hamil-
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Quantum Impurity Physics in Coupled QuantumDots, Figure 3
Representations of various multiple-impurity generalizations of the Anderson model

tonian is thus similar in form to the Hubbard model for
correlated systems.

Theoretical Tools

Most quantum impurity models are non-perturbative: the
commonly used technique of expanding a problem in
terms of a small perturbation around an exactly solv-
able non-interacting model cannot be applied in all pa-
rameter regimes due to divergences [13]. The difficulties
occur in particular at low temperatures where the sys-
tems have anomalous properties. New techniques have
been developed to tackle this problem: large-N expan-
sion [42], Bethe-Ansatz [43,44], bosonization-refemion-
ization [45], conformal field theory [46,47], variational
methods [48,49] and various renormalization group tech-
niques [15,50,51,52]. Large-N techniques (such as slave-
boson mean-field-theory and various improvements) al-
low in many cases to obtain results in closed form and
often provide a qualitatively correct description; in the
case of multi-impurity models, however, these meth-
ods may fail or they become impractical. Bethe-Ansatz
approach provides an exact solution to the thermody-
namics of the Kondo model; furthermore, very recently
a method to calculate non-equilibrium dynamics was de-
veloped [53]. It seems, however, difficult to expand this ap-
proach to general multi-impurity models. Bosonization-
refermionization technique has been instrumental in pro-
viding additional exact results at some special points in the
parameter space, however they are less useful for explor-
ing generic problems. Conformal field theory approach
based on the non-Abelian bosonization has provided im-
portant conceptual insights into the nature of the Kondo
effect: the impurity degrees of freedom are engulfed by the
continuum and the only residual effect are the modified
boundary conditions for continuum electron scattering at

the impurity site. The actual implementation of this ap-
proach depends from case to case and has not yet been per-
formed for complex multi-impurity problems. Variational
methods were the first approach that allowed to study dy-
namics of quantum impurity models and has been recently
generalized to multi-impurity models [54,55,56]. The dif-
ficulty in this approach is to correctly describe physics at
very low energy scales. Since quantum impurity models
become strongly renormalized at low temperatures, the
development of renormalization group methods was es-
sential in building correct understanding of the nature of
the low-temperature behavior. These methods range from
simple scaling of model parameters [52], to mapping to
a particle gas [50,51], and finally to Wilson’s numerical
renormalization group [15,57].

Renormalization

The renormalization is a way of describing and under-
standing the relation between the different ways a physi-
cal system behaves at different energy scales [58]. To study
a system at low energies, the irrelevant high-energy de-
grees of freedom are eliminated from the problem (“in-
tegrated out”) to obtain an effective description in terms
of modified, “renormalized” coupling constants gi which
specify the strengths of various interaction terms in the
Hamiltonian, Figs. 4 and 5. The renormalization process
can be described using scaling equations, which typically
take the form of a system of partial differential equations

@g j/@l D ˇ j(fgig) ; (8)

where l is a “running parameter” which runs towards �1
as the energy scale is decreased and ˇ j are “beta” functions.
Negative beta function corresponds to a relevant coupling
constant which grows at low energies, i. e. to an interac-
tion which becomes important at low temperatures. Pos-
itive beta function corresponds to an irrelevant coupling
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Quantum Impurity Physics in Coupled QuantumDots, Figure 4
Cutoff renormalization: the particle and hole excitations from the hatched regions at the top andbottom of the conduction band are
integrated out to obtain an effective Hamiltonian at lower energy scale

Quantum Impurity Physics in Coupled QuantumDots, Figure 5
Schematic representation of the renormalization flow in the An-
derson model. The horizontal direction represents the direction
of decreasing energy scale (temperature), while the vertical di-
rection represents the multi-dimensional space of the effective
Hamiltonians (which can be considered to be parametrized by
some large set of coupling constants). When the system is near
a fixed point (dashed boxes), its properties can be described
by a perturbative expansion around the fixed-point Hamilto-
nian. The diagram also illustrates the idea of universality: even
for widely different original microscopic Hamiltonians, the low-
temperature behavior of the systems in the same universality
class is essentially the same

constant, which diminishes at low energies. If the coupling
constants change only little as the renormalization proce-
dure is performed, the system is said to be near a “fixed
point”. As the temperature is reduced, the system typically
crosses over several times between different fixed points
which correspond to particular kinds of system’s behavior
at different temperature scales, until it ultimately ends up
in a stable fixed point which describes the essence of the
low energy physics [58].

Generally a simple effective Hamiltonian arises from
more complicated ones. A set of model Hamiltonians with
the same low energy behavior constitute a universality
class, see also Fig. 5. Renormalization is thus an essential
ingredient in model building in many-particle theory.

Numerical Renormalization Group

The numerical renormalization group (NRG) was devel-
oped in 1970s by K. G. Wilson as a way of numerically
exactly solving the Kondo problem [15]. It was later suc-
cessfully extended to Anderson model and other quantum
impurity models [59]. The NRG makes possible to com-
pute the spectrum of excitations of the system, thermody-
namic quantities such as magnetic and charge susceptibili-
ties, entropy, and specific heat, dynamic quantities such as
spectral functions, dynamical charge and spin susceptibil-
ities, and expectation values of operators such as impurity
occupancy, charge fluctuations and spin-spin correlations.
The NRG is a non-perturbative method and as such does
not suffer from various divergencies as other techniques
do. It provides information about the behavior on all tem-
perature scales, from the high-temperature perturbative
regime to the low-temperature strong-coupling regime. It
can be applied to multi-impurity and multi-channel prob-
lems; the complexity of the problem that is still manage-
able depends on the skillful use of the symmetries present
in the problem and ultimately on the available computa-
tional resources.

The NRG consists of several steps (Fig. 6):

� Reduction of the quantum impurity problem to an ef-
fective one-dimensional problem. Since the impurity
is by assumption a zero-dimensional point-like object,
it always effectively couples to a continuum of states
which can be parametrized by a single variable (or a fi-
nite number of such continua that we denote as “chan-
nels”).

� The one-dimensional continuum of states is discretized
into bins (intervals) of geometrically decreasing widths
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Quantum Impurity Physics in Coupled QuantumDots, Figure 6
Numerical renormalization group. a Logarithmic discretization. b Chain Hamiltonian (one-channel case). c Onion-shell representa-
tion ofWannier orbitals around the impurity. d Chain Hamiltonians and the successive iterations in theNRGprocedure: one site from
each channel is added during each renormalization group transformation

proportional to ��m , where the parameter� controls
the fineness of the discretization andm is the bin index,
Fig. 6a. The continuum limit is recovered for � D 1,
while in practical calculations � & 2 is used. In each
interval, a spectral Fourier decomposition is performed
(index l in Fig. 6a). In practical calculations, only the
lowest l D 0 Fourier mode is retained in each interval,
i. e. an interval of states is represented by the energy-
averaged state. This procedure is named logarithmic
discretization since the continuum degrees of freedom
near the Fermi level are described with a logarithmic
accuracy. A further transformation allows the prob-
lem to be formulated as an impurity attached to a one-
dimensional chain of sites with exponentially decreas-
ing hopping parameters, Fig. 6b. The sites in this chain
can be interpreted as forming “onion shell”-like or-
bitals encircling the impurity, Fig. 6c.

� Iterative diagonalization of the chain Hamiltonian is
performed, Fig. 6d. The first step consists of an exact di-
agonalization of the initial cluster, typically composed
of the impurity sites and one chain site for each con-

tinuum channel in the problem. Additional sites are
then added consecutively, one from each channel in ev-
ery iteration: a new Hamiltonian is constructed and di-
agonalized exactly. In NRG, this procedure represents
the renormalization group transformation and the iter-
ation corresponds to the renormalization flow.

� The problem of the exponential growth of the size of
the Hilbert space with the number of sites in the chain
is alleviated by truncating the number of states retained
at each iteration to a predefined small number of the
order thousand. This turns out to be a good approxi-
mation for quantum impurity problems since there is
little mixing between low-energy and high-energy ex-
citations as the chain sites are added at each step (this
property is known as the energy-scale separation).

Each iteration corresponds to the behavior of the system
on a temperature scale TN / ��N/2, where N is the itera-
tion number. The full description of the system at step N
consists of the eigenstates and irreducible matrix elements
for creation operators f �N�˛ in the chain. This description
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is clearlymuchmore complex compared to that in the sim-
ple renormalization approach where a small set of running
coupling constants is used; the advantage is that the NRG
is unbiased and, in some sense, essentially exact.

Quantum Transport and Kondo Physics

Experiments

Experiments probing fundamental properties of semicon-
ductor quantum dots are typically performed in helium-
3 dilution refrigerators at extremely low temperatures in
the range of 100mK or even less. At low temperatures,
electrons occupy distinct energy levels and the Coulomb
energy plays a crucial role [26]. Performing experiments
at the lowest attainable temperatures is important since
the energy resolution of spectroscopic techniques used is
limited solely by the sample temperature [26]. Systems are
characterized by performing gate-voltage and bias-voltage
sweeps (gated transport spectroscopy), or by magnetic
spectroscopy. This allows to obtain information about the
energy levels, number of confined electrons, and electron–
electron repulsion. Furthermore, finite-bias current can be
approximately related to the impurity spectral function at
finite frequencies.

Three elements affect the transport properties of cou-
pled quantum dots in a characteristic manner: quantum
coherence, discrete nature of the electric charge and strong
electron–electron interactions.

In nanodevices made of very clean semiconductors the
coherence length of electrons at low temperatures exceeds
the size of the device through which the electric current
flows; electrons then travel coherently through the system
and behave in a wave-like manner so that quantum me-
chanical interference effects can occur. As the electrons
scatter only off the boundaries (walls) of the device, rather
than on the defects or phonons, the transport is said to be
ballistic.

The conductance through nanoscopic constrictions is
often found to be quantized in terms of the conductance
quantum,

G0 D 2e2/h D e2/�„ � 12:9 k˙�1 : (9)

This is the conductance of a fully transmitting single-
mode conduction channel taking into account both spin
orientations and is experimentally measured in quantum
point contacts and quantumwires. In lateral quantum dots
the tunnel barriers from the 2DEG to the quantum dot
are obtained by successively pinching off the propagating
channels using the gate electrodes. When the last channel
is pinched off, the Coulomb blockade regime develops. In

this regime, only one channel from each lead is coupled to
the dot.

Coulomb Blockade and Cotunneling

According to the analogy between a quantum dot and an
atom, we expect that removing an electron from the dot
(or adding it) takes energy as this is similar to the ion-
ization of an atom. The transfer of an electron electrically
charges the dot and increases the electrostatic energy by
EC D e2/2C where C is the effective capacitance between
the dot and the surrounding electrodes. If the available en-
ergy is lower than the charging energy EC (i. e. for small
voltage drop across the system and for low temperature),
the conductance is suppressed. This is the Coulomb block-
ade effect. Unless the energies of quantum dot configu-
rations with N and N C 1 confined electrons happen to
be aligned by suitably tuning the gate voltages (Fig. 7a),
the current can flow only by cotunneling (high-order pro-
cesses in hybridization strength � ) through the virtual
state with excess energy� EC [26,60], Fig. 7b.

Cotunneling is an electric conduction process whereby
an electron makes a virtual transition to a high-energy ex-
cited intermediate state in the quantum dot to travel from
source to destination electrode in a single quantum step. It
is to be opposed to a sequential tunneling process, where
the electron makes a real transition to an energetically ac-
cessible state inside the device and the tunneling proceeds
in two steps. Cotunneling is a characteristically quantum
phenomenon related to the Heisenberg’s uncertainty prin-
ciple and becomes relevant at low temperatures. Occupa-
tion of the virtual state is allowed for a short time, � h/E,
where h is the Planck constant and E the energy cost in-
volved.

In spin-flip co-tunneling process the impurity spin is
effectively flipped from spin up to spin down, or vice versa:
electron with a given spin orientation tunnels in, while an-
other electron with the opposite spin orientation tunnels
out, Fig. 7c. Processes of this type are responsible for the
emergence of the Kondo effect.

Conductance Formulas

Particularly important transport quantity is the conduc-
tance in the limit of zero source-drain bias voltage G D
limVsd!0 I/Vsd, i. e. the linear response of the system to
an imposed bias. Linear conductance is an equilibrium
property of the system which can be reliably calculated
for impurity models. Finite-bias problems require non-
equilibrium techniques which are not yet developed to
a comparable degree.
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Quantum Impurity Physics in Coupled QuantumDots, Figure 7
a First-order tunneling, b cotunneling, c cotunneling with a spin-flip

For the purpose of theoretical modeling, an electronic
nanodevice may be idealized and considered as a very
small scatterer embedded between two metallic contacts.
According to R. Landauer, the conductance of a coherent
mesoscopic device is related to the transmission probabil-
ity for incident electrons [61], i. e. to the scattering proper-
ties of the impurity region. At zero temperature, the con-
ductance is simply proportional to the transmission prob-
ability [62,63]

G(T D 0) D G0jSRLj2 ; (10)

where SRL is the right-left component of the scatteringma-
trix, i. e. the amplitude for the scattering of an electron
from right to left lead.

In the vast majority of the quantum impurity problems
the system behaves at low temperatures as a local Fermi
liquid even if it is strongly renormalized. Fermi liquid sys-
tems are described in terms of weakly interacting quasi-
particles and are fully characterized by the quasiparticle
scattering phase shifts which quantify how the quasiparti-
cles scatter in the quantum dot structure [17,64,65]. In the
absence of the magnetic field, a single phase shift ıqp per
channel is required. Matrix element SRL can be expressed
in terms of the phase shifts and an additional angle param-
eter � which depends on the symmetry of the problem,
yielding the following conductance formula [66]:

G D G0 sin2(2�) sin2(ıaqp � ı
b
qp) : (11)

For left-right symmetric problems, it is found that
� D �/4 and that the relevant channels are formed by the
symmetric (even) and antisymmetric (odd parity) linear
combinations of the conduction electron states from left
and right lead, so that

G D G0 sin2(ıevenqp � ı
odd
qp ) : (12)

Conductance can also be computed from the impurity
spectral functions using the Meir–Wingreen formula [67]:

G D G0
�
�ImTr

�
� Gr� ; (13)

where � is a coupling matrix and Gr is the matrix of re-
tarded Green’s functions of the impurity region. Green’s
function is essentially the Fourier transform of the prob-
ability amplitude for adding an electron to the impurity
and extracting it at a later time. The imaginary part of the
Green’s function is the impurity spectral function. Peaks in
the spectral function correspond to electronic excitations
of the quantum dot and the value of the spectral function
at the Fermi level is directly related to the conductance at
zero temperature and can be related to the quasiparticle
phase shifts in Fermi liquid systems. Meir–Wingreen for-
mula is actually more general and it is in particular valid
also for systems which are not Fermi liquids.

The Kondo Effect

The Kondo effect arises due to strongly enhanced spin-
flip scattering of the conduction band electrons on the im-
purity at low temperatures. In conventional bulk Kondo
systems this leads to increased resistivity since electrons
scatter isotropically in all directions which impedes the
flow of the current. As a consequence, the temperature de-
pendence of the resistivity is non-monotonic and exhibits
a minimum at small temperatures, which was the first
experimentally observed manifestation of the Kondo ef-
fect [14]. Curiously, in quantum dot systems the increased
scattering leads to the opposite behavior: at very low tem-
peratures the conductance increases up to the theoretical
limit of one conductance quantum, G0 [68],. The origin of
this seeming discrepancy lies in the reduced dimensional-
ity of the problem. In quantum dot problems, scattering is
effectively one-dimensional: backwards (reflection back to
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Quantum Impurity Physics in Coupled QuantumDots, Figure 8
Spectral functions A(!) and conductance through a quantum dot described by the single-impurity Anderson model for a range of
parameters ı with U/D D 0:5,� /U D 0:08. Color of each spectral function corresponds to the value of the conductance

the lead) or forwards (transmission to the other lead). The
scattering increases in forward direction, which in this case
corresponds to increased electric current.

The temperature scale where the scattering increases
is called the Kondo temperature, TK. The Kondo effect is
not a phase transition, but rather a cross-over, therefore
the change in conductance is a very smooth function of
the temperature. The Kondo temperature is a non-analytic
function of model parameters, TK / exp(�1/�J), where �
is the density of states in the conduction band at the Fermi
level and J is the effective Kondo exchange constant. Itmay
be noted that the exponential dependence of TK reflects the
non-perturbative nature of this problem.

At temperatures much below TK, the impurity spin is
screened by the conduction band electrons and the system
as a whole is non-magnetic. Properties below TK are uni-
versal and can be described using functions of argument
T/TK; a single parameter TK fully characterizes the system
instead of the microscopic �d;U; � , etc.

The Kondo exchange scattering processes generate an
additional resonance in the impurity spectral function
at the Fermi level. This “Kondo resonance” is of many-
particle origin: the correlated behavior of a large number
of electrons is required to produce it. Since properties at
low temperatures are predominantly determined by the
electron states near the Fermi level, the Kondo resonance
significantly modifies the behavior of the system. In par-
ticular it leads to the predicted increase of the conductance
through the quantum dot, Fig. 8.

The Kondo effect is clearly a magnetic effect related
to electron spin. As such, it is strongly perturbed when
an external magnetic field is applied. The Kondo reso-
nance splits, the zero-bias voltage is reduced and there are
two conductance peaks at finite bias. The characteristic
magnetic-field dependence of the transport properties is
an ultimate proof that Kondo physics is at play in a nano-
structure.

Competing Physical Effects

Physical systems tend to reduce their entropy as the tem-
perature is lowered. In the context of systems of coupled
quantum impurities with spin degrees of freedom, this is
most often achieved either by Kondo screening, or bymag-
netic ordering of some kind [69]. Both mechanism of re-
lieving the entropy can be in competition which leads to
interesting behavior [69].

Inter-Impurity Magnetic Interactions

There are several possible origins of the inter-impurity ex-
change interaction in quantum impurity models. One is
the super-exchange mechanism which is mediated by the
direct inter-impurity electron hopping (tunneling). Vir-
tual excursions of an electron from one impurity to an-
other modify the energy: it is reduced if the spins are anti-
aligned, so that the effective exchange interaction is an-
tiferromagnetic. It may be represented by an interaction
term JeffS1 � S2, where S i is the impurity spin operator on
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Quantum Impurity Physics in Coupled QuantumDots, Figure 9
Processes leading to effective inter-impurity exchange interac-
tion. a Superexchange interaction due to electron tunneling be-
tween the dots. b RKKY interaction mediated by the conduction
band

dot i. For two dots decoupled from the leads, the exchange
constant is given by the expression

Jeff D
t
2

0

@

s�
U
t

�2
C 16 �

U
t

1

A �
4t2

U
; (14)

where t is the inter-impurity hopping parameter (tunnel-
ing amplitude).

Another important mechanism is the Ruderman–
Kittel–Kasuya–Yosida (RKKY) effective exchange interac-
tion. One impurity polarizes the conduction band elec-
trons in its vicinity; these electrons in turn interact with the
other impurity. The intensity and the sign of the resulting
exchange interaction depends on the inter-impurity sep-
aration. It is ferromagnetic at very short distances, it os-
cillates with a period proportional to 1/kF where kF is the
Fermi momentum, and decays as (kFR)�D where D is the
effective dimensionality of the conduction band electron
gas.

Effects of the Dot-Lead
and Inter-Dot Coupling Topology

In multiple dot systems, the coupling of the quantum dots
between each other and to the conduction leads affects the
conductance in a non-trivial way since the entire system
behaves in a quantum coherent way and no part of the sys-
temmay be considered separately from other parts. Simple
circuit theory is not applicable. The effects of the coupling
topology can be conveniently studied in the case of double
quantum dot [70]. As an illustration, we will consider the
significantly different behavior of serial and side-coupled
double quantum dot [70,71].

Serial Double Quantum Dot The zero-temperature
conductance of two quantum dots coupled in series be-
tween two electrodes is shown in Fig. 10a for a range of the
inter-dot hopping parameters t. The conductance is cal-
culated from the scattering phase shifts obtained in NRG
calculations. For large t, the coupling between the dots
is strong and the system behaves as an artificial molecule
composed of two atoms. When the system is occupied by
an odd number of electrons, only the unpaired electron
plays an important role and the system may be mapped
to an effective single-impurity Anderson model where the
role of the in purity orbital is played by the bonding (sym-
metric) or anti-bonding (anti-symmetric) “molecular or-
bital”. Thus for t/U D 0:5, the conductance is high for
jı/Uj D 0:5; : : : ; 1:2 when the system is occupied by 1 or 3
electrons. For jı/Uj < 0:5 the conductance is low.

As t decreases, the system starts to behave as two lo-
calized magnetic moments and may be approximately de-
scribed by the two-impurity Kondo model. It is found that
the conductance at the particle-hole symmetric point at-
tains the theoretical limit of G0 at the point where the
inter-impurity exchange interaction Jeff is comparable to
the scale of the Kondo temperature for one impurity
coupled to a single conduction lead, TK, i. e. for Jeff � TK
(which corresponds to t/U � 0:05, see Fig. 10a). In the
true two-impurity Kondo model, this point in the pa-
rameter space corresponds to a quantum phase transition
between a regime of local antiferromagnetic singlet and
a regime of separate Kondo screening of each impurity
moment. In the double quantum dot system, however, this
quantum phase transition is replaced by a smooth cross-
over due to charge transfer between the two conduction
leads [72].

Finally, for very small t, the conductance tends to zero
for all values of ı as the system becomes separated in two
parts which no longer communicate.

Side-Coupled Double Quantum Dot In the side-
coupled configuration, the first quantum dot is embed-
ded between source and drain electrodes while the sec-
ond dot is coupled to the first through a tunneling junc-
tion; there is no direct coupling of the second dot to the
leads. By changing the gate voltage and the inter-dot tun-
neling rate, this system can be tuned to one of the fol-
lowing low-temperature regimes: i) a non-conducting lo-
cal spin-singlet state, ii) the conventional Kondo regime
with odd number of electrons occupying the dots, iii)
the two-stage Kondo regime with two confined electrons,
or iv) a valence-fluctuating state [71]. In addition, at fi-
nite temperatures a Fano resonance appears in the con-
ductance; its origin lies in the sudden filling of the side-
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Quantum Impurity Physics in Coupled QuantumDots, Figure 10
Zero-temperature conductance G/G0 of the double quantum dot system in a serial configuration and b side-coupled configuration
as a function of the gate voltage for a range of the inter-dot hopping parameters t

coupled dot when its on-site energy crosses the Fermi
level [71].

For large inter-dot tunneling coupling t, there are two
wide regimes where the conductance is enhanced due to
the conventional Kondo effect, for example in the ranges
jı/Uj D 0:5; : : : ; 1:5 for t/U D 0:5 (Fig. 10b) when the
dot is occupied by 1 or 3 electrons. These regimes are
separated by a low-conductance regime where the local-
ized spins of two electrons are antiferromagnetically cou-
pled for jı/Uj . 0:5. For large t, the side-coupled and se-
rial configurations of quantum dots thus have qualitatively
similar properties.

For small t, in the two stage Kondo regime the two
local moments are screened at different Kondo tempera-
tures [71,73,74,75]. The two-stage Kondo effect is a generic
name for successive Kondo screening of the impurity lo-
cal moments at different temperatures [66,71,73,74,76,77,
78,79]. This term has been used in two different (but
closely related) contexts: 1) two-step screening of a S D 1
spin in the presence of two channels [76], 2) two step
screening of two local moments in the single-channel
case [73,77,78]. In the first case, the first-stage Kondo
screening is an underscreened spin-1 Kondo effect which
reduces the spin to 1/2, while the second-stage Kondo
screening is a perfect-screening spin-1/2 Kondo effect
which leads to a spin singlet ground state [77,80]. This
first case is relevant when the lowest-energy impurity con-
figuration is a spin triplet. In the second case, at a higher
Kondo temperature T(1)

K the Kondo effect occurs on the
more strongly coupled impurity; the Fermi liquid quasi-

particles associated with the Kondo effect on the first im-
purity participate in the Kondo screening of the second
impurity on an exponentially reduced Kondo temperature
scale T(2)

K [71,73,74]. This case occurs when the lowest-
energy configuration is a singlet, but there is a nearby ex-
cited triplet state [78].

In the double quantum dot system, the two-stage
Kondo effect occurs when the effective exchange interac-
tion between the dots is such that Jeff < TK, where TK D
T(1)
K is the Kondo temperature of the single-impurity An-

derson model that describes impurity 1 (without impu-
rity 2) [71,74]. The second Kondo crossover then occurs
at

T(2)
K D c2T(1)

K exp(�c1T(1)
K /Jeff) : (15)

Constants c1 and c2 are of the order of 1 and they are
problem-dependent. The spectral function A1(!) of im-
purity 1 increases at ! � T(1)

K , but then drops at ! � T(2)
K ,

i. e. there is a gap in the spectral function and the system is
non-conducting at zero temperature.

The conductance increases to G0 on the temperature
scale of T(1)

K , then drops to zero on the scale of T(2)
K . The

conductance can be high at finite temperatures even in
the vicinity of the particle-hole symmetric point, ı D 0, if
T(2)
K < T < T(1)

K .

Capacitive Coupling and Charge Ordering

The effect of the inter-impurity electron repulsion (in-
duced by capacitive coupling between two quantum dots)
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may be modeled using the following Hamiltonian term:

Hdots D

2X

iD1

Hdot;i C U12(n1 � 1)(n2 � 1) : (16)

The inter-impurity repulsion is not an important pertur-
bation as long as U12 < U ; finite U12 only modifies the
Kondo temperature, while the behavior of the system re-
mains qualitatively unchanged [81]. ForU12 > U the elec-
trons can lower their energy by forming on-site singlets
and the system enters the charge-ordering regime [82].
The system behaves in a peculiar way at the transition
point U12 D U , when an intermediate temperature fixed
point with a six-fold symmetry of states appears. In serial
dots, this leads to an exotic SU(4) Kondo effect [56,82].
For parallel dots, however, the coupling of impurities to
the leads breaks the orbital symmetry and conventional
Kondo screening occurs [81].

Universal Behavior Versus Complex Particularities

Near the particle-hole symmetric point (or, equivalently,
at half filling when one electron occupies each quantum
dot on the average), systems consisting of even or odd
number of quantum dots have radically different behavior
due to the distinct properties of integer and half-integer
spin states. The half-integer spin states are always degen-
erate and quantum dot systems with such impurity config-
uration tend to exhibit some form of the Kondo effect for
any coupling strength; the zero-temperature conductance
of systems of an odd number of dots will tend to be high.
In systems with an even number of quantum dots, how-
ever, the range of half filling is generally associated with
Mott–Hubbard insulating behavior [65]: the conductance
for a half-filled system decreases exponentially with elec-
tron–electron repulsion U [83]. Actual behavior also cru-
cially depends on the coupling topology. The cases of serial
and parallel dots will be considered in the following.

Linear Chains of QuantumDots

The simplest non-trivial system with an odd number of
quantum dots consists of three quantum dots coupled in
series between two conduction leads. This triple quantum
dot system is usually modelled as a three-site Hubbard
chain. The special feature of this system is the presence
of two equivalent screening channels combined with two-
stage Kondo screening and/or magnetic ordering. Triple
quantum dot structures have been manufactured in recent
years and the analysis of their stability diagrams demon-
strates that a description in terms of a Hubbard-like model
is in deed a good approximation [11,12].

Quantum Impurity Physics in Coupled QuantumDots, Figure 11
M1, M3: molecular-orbital Kondo regime with hni � 1;3. M2:
non-conductive even-occupancy state. L3: local Kondo regime
with hni � 3. TSK: two-stage Kondo regime. Due to the particle-
hole symmetry of the problem, the diagram is mirror-symmetric
with respect to the ı D �d C U/2 D 0 axis; for negative ı < 0
we thus find M4 non-conductive regime and M5 molecular-
orbital Kondo regime

The behavior of the system depends strongly on the
values of the on-site energies and on the inter-impurity
hopping. Based on extensive calculations using several
complementary methods, a phase diagram has been estab-
lished, Fig. 11 [55]. It indicates the parameter ranges where
the zero-temperature conductance is high.

For strong inter-impurity coupling t, the system may
be mapped to an effective single-impurity Anderson
model where the role of the impurity orbital is played
by the bonding, non-bonding, or anti-bonding “molecu-
lar orbital”. In this regime, the conductance is high when
the occupancy is odd, and it is nearly zero when the occu-
pancy is even, see Fig. 12a for t/U D 1:0, 0.5 and 0.2. For
smaller inter-impurity coupling (t/U . 0:1), the molecu-
lar orbital description becomes inappropriate as the local
behavior of the spins becomes important. The system then
behaves as a necklace of magnetic atoms, rather than as
a strongly-bound molecule.

When there are three electrons in the dots (i. e. for
ı D 0) and the coupling t is gradually decreased, the sys-
tem crosses over from the molecular orbital M3 regime
(t & U) to the antiferromagnetic spin-chain L3 regime
(Jeff � t), and finally to the two-stage Kondo (TSK) regime
(Jeff < T(1)

K ), see Fig. 11. In the spin-chain regime, the
three spins lock at T � Jeff into a rigid spin-1/2 spin-
chain state; at lower temperature, this collective spin is
screened by the conventional spin-1/2 Kondo effect. In



7356 Q Quantum Impurity Physics in Coupled QuantumDots

Quantum Impurity Physics in Coupled QuantumDots, Figure 12
ConductanceG/G0 of the triple and quadruple quantumdot systems as a function of the gate voltage for a rangeof inter-dot hopping
parameters t

the two-stage Kondo regime, the spins on the first and
third sites are screened at higher Kondo temperature T(1)

K ,
then the spin on the central site is screened at an ex-
ponentially reduced second Kondo temperature T(2)

K /

T(1)
K exp(�cT(1)

K /Jeff), where Jeff � 4t2/U .
Antiferromagnetic and two-stage Kondo regimes are

separated by a cross-over region with unusual properties
at finite temperatures where the system approaches the so-
called two-channel Kondo model non-Fermi liquid fixed
point [75]. The non-Fermi liquid behavior emerges as the
temperature is decreased below the Kondo temperature
(Tscr screening temperature in Fig. 13) and disappears be-
low the temperature T# below which the behavior again
corresponds to that of a Fermi liquid system.

Non-Fermi liquid behavior can be experimentally
detected by measuring the differential conductance in
a three-terminal configuration (see the insets in Fig. 14).
The qualitative temperature dependence of the zero-bias
conductance through the system can be approximately
inferred from the frequency dependence of the spectral
functions. The conductance through the system (from
left to right conduction lead) is given by Gserial/G0 �

4(�� A13)2 [84] and the conductance through a side
dot in the three-terminal configuration by Gside/G0 �

�� A1 [67]. The appropriately normalized spectral den-
sities are shown in Fig. 14 for the cases of cross-over
regime with a non-Fermi liquid region and the antiferro-
magnetic regime with no discernible non-Fermi liquid be-
havior. When non-Fermi liquid fixed point is approached
(for t/D D 0:005 and T# . T . Tscr), the conduc-

Quantum Impurity Physics in Coupled Quantum Dots, Figure 13
Cross-over scales of triple quantum dot as function of the inter-
dot coupling. The magnetic screening temperature Tscr is de-
fined by Tscr�(Tscr)/(g�B)2 D 0:07; it is equal to the Kondo tem-
perature when screening is due to the single-channel Kondo ef-
fect. T� is defined through simp(T�)/kB D ln 2/4, where simp(T) is
the impurity contribution to the total entropy at temperature T.
Here ln 2/4 is half the impurity entropy in the non-Fermi liquid
fixed point

tance Gside � G0/2, while Gserial � 0. The increase of
the conductance Gserial through the system at T . T# is
concomitant with the cross-over from the non-Fermi liq-
uid to Fermi liquid fixed point [72]. In the antiferromag-
netic regime with no non-Fermi liquid region, both con-
ductances increase below the same temperature scale, i. e.
at T . Tscr.
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Quantum Impurity Physics in Coupled QuantumDots, Figure 14
Dynamic properties of triple quantum dot in the antiferromag-
netic (dashed lines) and in the cross-over regime (full lines).Upper
panel: on-site spectral function A1(!) of the left dot. Lower panel:
out-of-diagonal spectral function A13(!) squared. Temperature
T�

�
is of order T�, T�

K is of order Tscr

The conductance for four quantum dots coupled in se-
ries is shown in Fig. 12b. For large t the description in
terms of molecular orbitals is again appropriate and we
observe four conductance peaks [65]. There is a wide re-
gion of low conductance around the particle-hole symmet-
ric point which corresponds to the Hubbard gap, and two
pairs of conductance peaks which correspond to the Hub-
bard sub-bands. As t is reduced, the two inner peaks be-
come rapidly extremely sharp, while the outer peaks cen-
tered at jı/Uj D 1/2 narrow downmore progressively. For
very small t, the system is fully insulating at zero tempera-
ture for (almost) all values of ı.

On one hand, at zero temperature short chains of even
and odd number of dots in a chain are seen to have widely
different properties. On the other hand, for a very large
number of dots, i. e. in the limit of a macroscopic sys-
tem, insulating behavior is expected at half-filling irrespec-
tive of the even or odd parity of N. These two contrast-
ing predictions can be reconciled by considering the or-
der of taking the T ! 0 and N !1 limits [65]. Taking
the T ! 0 limit first, the even/odd alternation is obtained.
If the N !1 limit is taken first, which is the physically
correct procedure, the conductance will vanish since the
Kondo temperature (at which the conductance would in-
crease for odd N) decreases with N [65].

Parallel QuantumDots

Systems of N parallel quantum dots (see Fig. 3 for N D 2
and N D 3 cases) can be described by the multi-impurity

single-channel Anderson model [81]. This model is de-
fined by H D Hband C

PN
iD1 Hi , where Hband describes

the conduction band and

Hi D ıniC
U
2
(ni�1)2CV

X

k�

(c�k�di�Cd�i�ck�); (17)

describe the N quantum dots.
It is assumed that all impurities hybridize with

the same left-right symmetric combinations of states
from both leads with a constant hybridization function
� D ��V 2 [81]. This model may equally be applicable
to other system where the RKKY interaction is ferromag-
netic, for example to clusters of neighboring magnetic
adatoms on metallic surfaces [38,85,86].

It is assumed the inter-dot tunneling coupling t and
capacitive coupling (inter-dot charge repulsion) U12 are
negligible, so that all dots are equivalent. At low tempera-
ture, the multi-impurity Anderson modelmaps to a multi-
impurity Kondo model. At the particle-hole symmetric
point, ı D 0, the conduction-band-mediated RKKY ex-
change interaction is ferromagnetic, JRKKY � U(�JK )2 D
(64/�2)(� 2/U), therefore the impurity spins order and the
system effectively behaves as a single-impurity spin-N/2
Kondo model which undergoes spin-N/2 Kondo effect.
This behavior is named the strong coupling (SC) regime.
The Kondo temperature is approximately the same irre-
spective of the number of the impurities N. The residual
spin at zero-temperature is N/2 � 1/2 if there is no cou-
pling to additional screening channels. The ferromagneti-
cally ordered regime and the ensuing spin-N/2 Kondo ef-
fect are fairly robust against various perturbations. Very
strong perturbations lead, however, to quantum phase
transitions of different kinds [81].

For very large ı/U , the impurities are unoccupied
and the system is in the so-called frozen-impurity (FI)
fixed-point with no residual spin. In the single-impurity
(N D 1) case, the SC and FI fixed points are closely related:
they belong to the same class of fixed points which differ
in the strength of the potential scattering of the conduction
band electrons on the impurity [87]. For multiple impuri-
ties (N � 2), however, the SC and FI lines of fixed points
are qualitatively different (each corresponding to a differ-
ent residual spin) and must be separated by at least one
quantum phase transition [88].

At ı D 0, the systems are fully conducting for any N
and there is a wide plateau of high conductance as-
sociated with the spin-N/2 Kondo effect, Fig. 15 [81].
While the N D 1 system smoothly crosses over from the
highly-conducting Kondo regime to the non-conducting
FI regime, in the multi-impurity case we observe sharp
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Quantum Impurity Physics in Coupled QuantumDots, Figure 15
a Zero-temperature conductance through systems of N parallel
quantum dots as a function of the gate voltage. Only ı > 0 is
shown due to the symmetry of the problem. b Zero-temperature
phase diagram delimiting the different regimes as a function of
the gate voltage. Filled circles (
) correspond to quantum phase
transitions visible in the conductance curves, while the empty
circle (ı) denotes the phase transition with no associated con-
ductance discontinuity

conductance discontinuities: one discontinuity for N even
and two discontinuities for N odd. The conductance cul-
minates in a unitary peak slightly below � D 0 (i. e. be-
low ı/U D 1/2) for all N � 2. The origin of this peak
is simply potential scattering. The magnetic field B has
a strong effect on the Kondo plateau: the conductance
is significantly reduced as soon as B is of the order of
the Kondo temperature TK. The potential scattering peak,
however, is only affected by extremely high fields of the
order of U.

Conductance discontinuities find their counterparts
in the jumps of the total electron occupancy and spin-
spin correlation functions hS i � S ji, i ¤ j; a new feature,
however, is the existence of two points of discontinu-
ity for N D 4 even though the conductance only ex-

hibits one. In the Kondo regime for ı < ıc1, the systems
are nearly half-filled and spins are ferromagnetically or-
dered [81]. As we cross ıc1, the occupancy slightly de-
creases and the spin correlations turn from ferromag-
netic to antiferromagnetic. For N � 3, a second discon-
tinuity occurs at somewhat higher ıc2; its characteristic
property is that the occupancy changes by almost exactly
N � 2, from N � 1 to 1. According to the Friedel sum
rule, a change in the average total impurity occupancy by
n is mirrored in a change of the scattering phase shift by
�ıq:p: D n�/2. This explains the conductance jump from
G D G0 sin2[(N � 1)�/2] D 0 to G D G0 sin2(�/2) D G0
in the case of odd N � 3 and the absence of the second
conductance discontinuity for even N � 4, as 1 and N � 1
are both odd integers. It is remarkable that the second
quantum phase transition occurs precisely at the point
where the conductance is extremal.

For N � 3, the N-impurity Anderson model thus un-
dergoes two phase transitions. The first transition sepa-
rates the ferromagnetically ordered regime and associated
spin-N/2 Kondo screening from the antiferromagnetically
ordered regime and (for odd N) Kondo screening of the
spin-1/2 moment [89]. The second transition reflects the
instability of the phases with the occupancy in the inter-
val 1 < hntoti < N � 1. Furthermore, for odd N the sys-
tem abruptly switches from being fully conducting to zero
conductance; this would facilitate the experimental obser-
vation of similar effects in quantum dot systems.

Future Directions

Further research in quantum transport theory will likely be
centered at non-equilibrium, time-dependent and finite-
temperature properties of interacting impurity systems.
This is required to better understand transport at finite
applied dc source-drain bias or for ac bias in real nanode-
vices. While the basic transport formalism is well devel-
oped, calculations of non-equilibrium properties of corre-
lated system is still a formidable problem. The recently de-
veloped time-dependentNRG technique [90] appears very
promising in this respect.

In recent years, the interest in quantum impurity
physics has intensified once again due to an observation
that extended lattice models of correlated electron sys-
tems may be exactly mapped in the limit of infinite lat-
tice connectivity to effective impurity models subject to
self-consistency conditions. This forms the foundation of
a rapidly developing technique which has become known
as the dynamical mean-field theory [91]. Results obtained
in this way are believed to be a good approximation to the
true behavior of such systems.
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Experimental research is making progress toward cre-
ating artificial materials consisting of a large number of
interconnected quantum dots. Studies of such systems
would shed light on the behavior of extended bulk corre-
lated materials. Furthermore, one could study how to tune
material parameters to obtain desirable properties.

Bibliography
1. McEuen PL (1996) Artificial atoms: Newboxes for electrons. Sci-

ence 278:1729
2. Kouwenhoven LP, Marcus CM, McEuen PL, Tarucha S, Wester-

velt RM, Wingreen NS (1997) Electron transport in quantum
dots. In: Sohn LL, Kouwenhoven LP, Schön G (eds) Mesoscopic
electron transport. E, vol 345. NATO ASI, Kluwer, Dordrecht, pp
105–214

3. Kouwenhoven L, Marcus C (1998) Quantum dots. Phys World
June 1998

4. Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Mag-
der D, Meirav U, Kastner MA (1998) Kondo effect in a single-
electron transistor. Nature 391:156

5. Cronenwett SM, Oosterkamp TH, Kouwenhoven LP (1998)
A tunable kondo effect in quantum dots. Science 281:540

6. Kouwenhoven L, Glazman L (2001) Revival of the kondo effect.
Phys World Jan

7. Waugh FR, BerryMJ,Mar DJ,Westervelt RM, CampmanKL, Gos-
sard AC (1995) Single-electron charging in double and triple
quantum dots with tunable coupling. Phys Rev Lett 75:705

8. Jeong H, Chang AM, Melloch MR (2001) The kondo effect in an
artificial quantum dot molecules. Science 293:2221

9. Chen JC, Chang AM, Melloch MR (2004) Transition between
quantum states in a parallel-coupled double quantum dot.
Phys Rev Lett 92:176801

10. Craig NJ, Taylor JM, Lester EA,Marcus CM, Hanson MP, Gossard
AC (2004) Tunable nonlocal spin control in a coupled-quantum
dot system. Science 304:565

11. Gaudreau L, Studenikin SA, Sachrajda AS, Zawadzki P, Kam A,
Lapointe J, Korkusinski M, Hawrylak P (2006) Stability diagram
of a few-electron triple dot. Phys Rev Lett 97:036807

12. Korkusinski M, Gimenez IP, Hawrylak P, Gaudreau L, Stu-
denikin SA, Sachrajda AS (2007) Topological hund’s rules
and the electronic properties of a triple lateral quantum dot
molecule. Phys Rev B 75:115301 2007

13. Hewson AC (1993) The Kondo Problem to Heavy-Fermions.
Cambridge University Press, Cambridge

14. Kondo J (1964) Resistance minimum in dilute magnetic alloys.
Prog Theor Phys 32:37

15. Wilson KG (1975) The renormalization group: Critical phenom-
ena and the kondo problem. Rev Mod Phys 47:773

16. Stewart GR (1984) Heavy-fermion systems. Rev Mod Phys
56:755

17. Pustilnik M, Glazman L (2004) Kondo effect in quantum dots.
J Phys: Condens Matter 16:R513

18. Nygard J, Cobden DH, Lindelof PE (2000) Kondo physics in car-
bon nanotubes. Nature 408:342

19. Liang W, Shores MP, Bockrath M, Long JR, Park K (2002) Kondo
resonance in a single-molecule transistor. Nature 417:725

20. Madhavan V, Chen W, Jamneala T, Crommie M, Wingreen NS
(1998) Tunneling into a single magnetic atom: Spectroscopic
evidence of the kondo resonance. Science 280:567

21. Li J, Schneider W-D, Berndt R, Delley B (1998) Kondo scattering
observed at a single magnetic impurity. Phys Rev Lett 80:2893

22. Manoharan HC, Lutz CP, Eigler DM (2000) Quantum mirages
formed by coherent projection of electronic structure. Nature
403:512

23. Glazman LI, Raikh ME (1988) Resonant kondo transparency of
a barrier with quasilocal impurity states. JETP Lett 47:452

24. Ng TK, Lee PA (1988) On-site coulomb repulsion and resonant
tunneling. Phys Rev Lett 61:1768

25. Kouwenhoven LP, Oosterkamp TH, Danoesastro MWS, Eto M,
Austing DG, Honda T, Tarucha S (1997) Excitation spectra of
circular, few-electron quantum dots. Science 278:1788

26. Ashoori RC (1996) Electrons in artificial atoms. Science 379:413
27. Kastner MA (1992) The single-electron transistor. Rev Mod

Phys 64:849
28. Thornton TJ, Pepper M, Ahmed H, Andrews D, Davies GJ (1986)

One-dimensional conduction in the 2d electron gas of a gaas-
algaas heterojunction. Phys Rev Lett 56:1198

29. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR,
Rinkoski M, Sethna JP, AbrunaHD, McEuen PL, RalphDC (2002)
Coulomb blockade and the kondo effect in single-atom tran-
sistors. Nature 417:722

30. Yu LH, Natelson D (2004) The kondo effect in c60 single-
molecule transistors. Nanoletters 4:79

31. Schmid J, Weis J, Eberl K, v Klitzing K (2000) Absence of odd-
even parity behavior for kondo resonance in quantum dots.
Phys Rev Lett 84:5824

32. Anderson PW (1961) Localized magnetic states in metals. Phys
Rev 124:41

33. Schedelbeck G, Wegscheider W, Bichler M, Abstreiter G (1997)
Coupled quantum dots fabricated by cleaved edge over-
growth: From artificial atoms to molecules. Science 278:1792

34. Oosterkamp TH, Fujisawa T, van der Wiel WG, Ishibashi K, Hij-
man RV, Tarucha S, Kouwenhoven LP (1998) Microwave spec-
troscopy of a quantum-dot molecule. Nature 395:873

35. Holleitner AW, Blick RH, Hüttel AK, Eberl K, Kotthaus JP (2002)
Probing and controlling the bonds of an artificialmolecule. Sci-
ence 297:70

36. van der Wiel WG, De Franceschi S, Elzerman JM, Fujisawa T,
Tarucha S, Kouwenhoven LP (2003) Electron transport through
double quantum dots. Rev Mod Phys 75:1

37. Madhavan V, Jamneala T, Nagaoka K, Chen W, Li J-L, Louie SG,
Crommie MF (2002) Observation of spectral evolution during
the formation of ni2 kondo molecule. Phys Rev B 66:212411

38. Jamneala T, Madhavan V, Crommie MF (2001) Kondo response
of a single antiferromagnetic chromium trimer. Phys Rev Lett
87:256804

39. Wahl P, Diekhoner L, Wittich G, Vitali L, Schneider MA, Kern K
(2005) Kondo effect of molecular complexes at surfaces: ligand
control of the local spin coupling. Phys Rev Lett 95:166601

40. Jones BA, VarmaCM,Wilkins JW (1988) Low-temperature prop-
erties of the two-impurity kondo hamiltonian. Phys Rev Lett
61:125

41. Affleck I, Ludwig AWW, Jones BA (1995) Conformal-field-
theory approach to the two-impurity kondo problem: Compar-
ison with numerical renormalization-group results. Phys Rev B
52:9528

42. Bickers NE (1987) Review of techniques in the large-n expan-
sion for dilute magnetic alloys. Rev Mod Phys 59:845

43. Andrei N, Furuya K, Lowenstein JH (1983) Solution of the
kondo problem. Rev Mod Phys 55:331



7360 Q Quantum Impurity Physics in Coupled QuantumDots

44. Tsvelick AM,Wiegmann PB (1983) Exact results in the theory of
magnetic alloys. Adv Phys 32:453

45. Gogolin AO,Nersesyan AA, Tsvelik AM (1999) Bosonization and
strongly correlated systems. Cambridge University Press, Cam-
bridge

46. Affleck I (1990) A current algebra approach to the kondo effect.
Nucl Phys B 336:517

47. Affleck I, LudwigAWW (1991) The kondo effect, conformal field
theory and fusion rules. Nucl Phys B 352:849

48. Varma CM, Yafet Y (1976) Magnetic susceptibility of mixed-
valence rare-earth compounds. Phys Rev B 13:2950

49. Gunnarsson O, Schönhammer K (1983) Electron spectro-
scopies for ce compounds in the impurity model. Phys Rev B
28:4315

50. Anderson PW, Yuval G (1996) Exact results in the kondo prob-
lem: Equivalence to a classical one-dimensional coulomb gas.
Phys Rev Lett 23:89

51. Anderson PW, Yuval G, Hamann DR (1970) Exact results in the
kondo problem ii: Scaling theory, qualitatively correct solution
and some new results on one-dimensional classical statistical
models. Phys Rev B 1:4464

52. Anderson PW (1970) A poor man’s derivation of scaling laws
for the kondo problem. J Phys C: Solid St Phys 3:2436

53. Mehta P, Andrei N (2006) Nonequilibrium transport in quan-
tum impuritymodels: The bethe ansatz for open systems. Phys
Rev Lett 96:216802

54. Rejec T, Ramšak A (2003) Formulas for zero-temperature
conductance through a region with interaction. Phys Rev B
68:035342
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Glossary

Algorithm A systematic procedure for solving a problem,
frequently implemented as a computer program.

Bit The fundamental unit of information, representing
the distinction between two possible states, conven-
tionally called 0 and 1. The word ‘bit’ is also used to
refer to a physical system that registers a bit of infor-
mation.

Boolean algebra The mathematics of manipulating bits
using simple operations such as AND, OR, NOT, and
COPY .

Communication channel A physical system that allows
information to be transmitted from one place to an-
other.

Computer A device for processing information. A digi-
tal computer uses Boolean algebra (q. v.) to processes
information in the form of bits.

Cryptography The science and technique of encoding in-
formation in a secret form. The process of encoding is
called encryption, and a system for encoding and de-
coding is called a cipher. A key is a piece of information
used for encoding or decoding. Public-key cryptogra-

phy operates using a public key by which information
is encrypted, and a separate private key by which the
encrypted message is decoded.

Decoherence A peculiarly quantum form of noise that
has no classical analog. Decoherence destroys quan-
tum superpositions and is the most important and
ubiquitous form of noise in quantum computers and
quantum communication channels.

Error-correcting code A technique for encoding infor-
mation in a form that is resistant to errors. The syn-
drome is the part of the code that allows the error to be
detected and that specifies how it should be corrected.

Entanglement A peculiarly quantum form of correlation
that is responsible for many types of quantum weird-
ness. Entanglement arises when two or more quan-
tum systems exist in a superposition of correlated
states.

Entropy Information registered by the microscopic mo-
tion of atoms and molecules. The second law of ther-
modynamics (q. v.) states that entropy does not de-
crease over time.

Fault-tolerant computation Computation that uses er-
ror-correcting codes to perform algorithms faithfully
in the presence of noise and errors. If the rate of errors
falls below a certain threshold, then computations of
any desired length can be performed in a fault-tolerant
fashion. Also known as robust computation.

Information When used in a broad sense, information is
data, messages, meaning, knowledge, etc. Used in the
more specific sense of information theory, information
is a quantity that can be measured in bits.

Logic gate A physical system that performs the opera-
tions of Boolean algebra (q. v.) such asAND,OR,NOT,
and COPY , on bits.

Moore’s law The observation, first made by Gordon
Moore, that the power of computers increases by a fac-
tor of two every year and a half or so.

Quantum algorithm An algorithm designed specifically
to be performed by a quantum computer using quan-
tum logic. Quantum algorithms exploit the phenom-
ena of superposition and entanglement to solve prob-
lems more rapidly than classical computer algorithms
can. Examples of quantum algorithms include Shor’s
algorithm for factoring large numbers and break-
ing public-key cryptosystems, Grover’s algorithm for
searching databases, quantum simulation, the adia-
batic algorithm, etc.

Quantum bit A bit registered by a quantum-mechani-
cal system such as an atom, photon, or nuclear spin.
A quantum bit, or ‘qubit’, has the property that it can
exist in a quantum superposition of the states 0 and 1.
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Qubit A quantum bit.
Quantum communication channel A communication

channel that transmits quantum bits. The most com-
mon communication channel is the bosonic channel,
which transmits information using light, sound, or
other substances whose elementary excitations consist
of bosons (photons for light, phonons for sound).

Quantum computer A computer that operates on quan-
tum bits to perform quantum algorithms. Quantum
computers have the feature that they can preserve
quantum superpositions and entanglement.

Quantum cryptography A cryptographic technique that
encodes information on quantum bits. Quantum cryp-
tography uses the fact that measuring quantum sys-
tems typically disturbs them to implement cryptosys-
tems whose security is guaranteed by the laws of
physics. Quantum key distribution (QKD) is a quan-
tum cryptographic technique for distributing secret
keys.

Quantum error-correcting code An error-correcting
code that corrects for the effects of noise on quan-
tum bits. Quantum error-correcting codes can correct
for the effect of decoherence (q. v.) as well as for con-
ventional bit-flip errors.

Quantum information Information that is stored on
qubits rather than on classical bits.

Quantummechanics The branch of physics that de-
scribes how matter and energy behave at their most
fundamental scales. Quantum mechanics is famously
weird and counterintuitive.

Quantumweirdness A catch-all term for the strange
and counterintuitive aspects of quantum mechanics.
Well-known instances of quantum weirdness include
Schrödinger’s cat (q. v.), the Einstein–Podolsky–Rosen
thought experiment, violations of Bell’s inequalities,
and the Greenberger–Horne–Zeilinger experiment.

Reversible logic Logical operations that do not discard
information. Quantum computers operate using re-
versible logic.

Schrödinger’s cat A famous example of quantum weird-
ness. A thought experiment proposed by Erwin
Schrödinger, in which a cat is put in a quantum su-
perposition of being alive and being dead. Not sanc-
tioned by the Society for Prevention of Cruelty to An-
imals.

Second law of thermodynamics The second law of ther-
modynamics states that entropy does not increase. An
alternative formulation of the second law states that it
is not possible to build an eternal motion machine.

Superposition The defining feature of quantummechan-
ics which allows particles such as electrons to exist in

two or more places at once. Quantum bits can exist in
superpositions of 0 and 1 simultaneously.

Teleportation A form of quantum communication that
uses pre-existing entanglement and classical commu-
nication to send quantum bits from one place to
another.

Definition of the Subject

Quantum mechanics is the branch of physics that de-
scribes how systems behave at their most fundamental
level. The theory of information processing studies how
information can be transferred and transformed. Quan-
tum information science, then, is the theory of communi-
cation and computation at the most fundamental physical
level. Quantum computers store and process information
at the level of individual atoms. Quantum communication
systems transmit information on individual photons.

Over the past half century, the wires and logic gates
in computers have halved in size every year and a half,
a phenomenon known as Moore’s law. If this exponential
rate of miniaturization continues, then the components
of computers should reach the atomic scale within a few
decades. Even at current (2008) length scales of a little
larger than one hundred nanometers, quantum mechan-
ics plays a crucial role in governing the behavior of these
wires and gates. As the sizes of computer components
press down toward the atomic scale, the theory of quan-
tum information processing becomes increasingly impor-
tant for characterizing how computers operate. Similarly,
as communication systems become more powerful and ef-
ficient, the quantum mechanics of information transmis-
sion becomes the key element in determining the limits of
their power.

Miniaturization and the consequences of Moore’s law
are not the primary reason for studying quantum infor-
mation, however. Quantummechanics is weird: electrons,
photons, and atoms behave in strange and counterintu-
itive ways. A single electron can exist in two places simul-
taneously. Photons and atoms can exhibit a bizarre form of
correlation called entanglement, a phenomenon that Ein-
stein characterized as spukhafte Fernwirkung, or ‘spooky
action at a distance’. Quantum weirdness extends to in-
formation processing. Quantum bits can take on the val-
ues of 0 and 1 simultaneously. Entangled photons can be
used to teleport the states of matter from one place to an-
other. The essential goal of quantum information science
is to determine how quantum weirdness can be used to
enhance the capabilities of computers and communica-
tion systems. For example, even a moderately sized quan-
tum computer, containing a few tens of thousands of bits,
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would be able to factor large numbers and thereby break
cryptographic systems that have until now resisted the
attacks of even the largest classical supercomputers [1].
Quantum computers could search databases faster than
classical computers. Quantum communication systems al-
low information to be transmitted in a manner whose se-
curity against eavesdropping is guaranteed by the laws of
physics.

Prototype quantum computers that store bits on indi-
vidual atoms and quantum communication systems that
transmit information using individual photons have been
built and operated. These prototypes have been used to
confirm the predictions of quantum information theory
and to explore the behavior of information processing at
the most microscopic scales. If larger, more powerful ver-
sions of quantum computers and communication systems
become readily available, they will offer considerable en-
hancements over existing computers and communication
systems. In the meanwhile, the field of quantum informa-
tion processing is constructing a unified theory of how in-
formation can be registered and transformed at the funda-
mental limits imposed by physical law.

The remainder of this article is organized as follows:

� Section “Introduction”
A review of the history of ideas of information, com-
putation, and the role of information in quantum me-
chanics is presented.

� Section “Quantum Mechanics”
The formalism of quantum mechanics is introduced
and applied to the idea of quantum information.

� Section “Quantum Computation”
Quantum computers are defined and their properties
presented.

� Section “Noise and Errors”
The effects of noise and errors are explored.

� Section “Quantum Communication”
The role of quantum mechanics in setting limits to
the capacity of communication channels is delineated.
Quantum cryptography is explained.

� Section “Implications and Conclusions”
Implications are discussed.

This review of quantum information theory is mathe-
matically self-contained in the sense that all the neces-
sary mathematics for understanding the quantum effects
treated in detail here are contained in the introductory
section on quantum mechanics. By necessity, not all top-
ics in quantum information theory can be treated in detail
within the confines of this article. We have chosen to treat
a few key subjects in more detail: in the case of other top-
ics we supply references to more complete treatments. The

standard reference on quantum information theory is the
text by Nielsen and Chuang [1], to which the reader may
turn for in depth treatments of most of the topics covered
here. One topic that is left largely uncovered is the broad
field of quantum technologies and techniques for actually
building quantum computers and quantum communica-
tion systems. Quantum technologies are rapidly changing,
and no brief review like the one given here could ade-
quately cover both the theoretical and the experimental as-
pects of quantum information processing.

Introduction

Information

Quantum information processing as a distinct, widely rec-
ognized field of scientific inquiry has arisen only recently,
since the early 1990s. Themathematical theory of informa-
tion and information processing dates to the mid-twen-
tieth century. Ideas of quantum mechanics, information,
and the relationships between them, however, date back
more than a century. Indeed, the basic formulae of in-
formation theory were discovered in the second half of
the nineteenth century, by James Clerk Maxwell, Lud-
wig Boltzmann, and J. Willard Gibbs [2]. These statistical
mechanicians were searching for the proper mathemati-
cal characterization of the physical quantity known as en-
tropy. Prior to Maxwell, Boltzmann, and Gibbs, entropy
was known as a somewhat mysterious quantity that re-
duced the amount of work that steam engines could per-
form. After their work established the proper formula for
entropy, it became clear that entropy was in fact a form of
information — the information required to specify the ac-
tual microscopic state of the atoms in a substance such as
a gas. If a systemhasW possible states, then it takes log2 W
bits to specify one state. Equivalently, any system with
distinct states can be thought of as registering informa-
tion, and a system that can exist in one out of W equally
likely states can register log2 W bits of information. The
formula, S D k logW , engraved on Boltzmann’s tomb,
means that entropy S is proportional to the number of bits
of information registered by the microscopic state of a sys-
tem such as a gas. (Ironically, this formula was first writ-
ten down not by Boltzmann, but by Max Planck [3], who
also gave the first numerical value 1:38 10�23 J/K for the
constant k. Consequently, k is called Planck’s constant in
early works on statistical mechanics [2]. As the fundamen-
tal constant of quantum mechanics, h D 6:63 10�34 joule
seconds, on which more below, is also called Planck’s con-
stant, k was renamed Boltzmann’s constant and is now
typically written kB.)
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Although the beginning of the information process-
ing revolution was still half a century away, Maxwell,
Boltzmann, Gibbs, and their fellow statistical mechani-
cians were well aware of the connection between infor-
mation and entropy. These researchers established that
if the probability of the ith microscopic state of some
system is pi, then the entropy of the system is S D
kB(�

P
i pi ln pi ). The quantity

P
i pi ln pi was first in-

troduced by Boltzmann, who called it H. Boltzmann’s
famous H-theorem declares that H never increases [2].
TheH-theorem is an expression of the second law of ther-
modynamics, which declares that S D �kBH never de-
creases. Note that this formula for S reduces to that on
Boltzmann’s tomb when all the states are equally likely, so
that pi D 1/W .

Since the probabilities for the microscopic state of
a physical system depend on the knowledge possessed
about the system, it is clear that entropy is related to in-
formation. The more certain one is about the state of
a system – the more information one possesses about the
system – the lower its entropy. As early as 1867, Maxwell
introduced his famous ‘demon’ as a hypothetical being
that could obtain information about the actual state of
a system such as a gas, thereby reducing the number of
states W compatible with the information obtained, and
so decreasing the entropy [4]. Maxwell’s demon therefore
apparently contradicts the second law of thermodynam-
ics. The full resolution of the Maxwell’s demon paradox
was not obtained until the end of the twentieth century,
when the theory of the physics of information processing
described in this review had been fully developed.

QuantumMechanics

For the entropy, S, to be finite, a system can only pos-
sess a finite number W of possible states. In the context
of classical mechanics, this feature is problematic, as even
the simplest of classical systems, such as a particle mov-
ing along a line, possesses an infinite number of possible
states. The continuous nature of classical mechanics frus-
trated attempts to use the formula for entropy to calcu-
late many physical quantities such as the amount of en-
ergy and entropy in the radiation emitted by hot objects,
the so-called ‘black body radiation’. Calculations based
on classical mechanics suggested the amount of energy
and entropy emitted by such objects should be infinite, as
the number of possible states of a classical oscillator such
as a mode of the electromagnetic field was infinite. This
problem is known as ‘the ultraviolet catastrophe’. In 1901,
Planck obtained a resolution to this problem by suggest-
ing that such oscillators could only possess discrete energy

levels [3]: the energy of an oscillator that vibrates with fre-
quency � can only come in multiples of h�, where h is
Planck’s constant defined above. Energy is quantized. In
that same paper, as noted above, Planck first wrote down
the formula S D k logW , where W referred to the num-
ber of discrete energy states of a collection of oscillators.
In other words, the very first paper on quantummechanics
was about information. By introducing quantum mechan-
ics, Planck made information/entropy finite. Quantum in-
formation as a distinct field of inquiry may be young, but
its origins are old: the origin of quantum information co-
incides with the origin of quantum mechanics.

Quantum mechanics implies that nature is, at bottom,
discrete. Nature is digital. After Planck’s advance, Einstein
was able to explain the photo-electric effect using quan-
tum mechanics [5]. When light hits the surface of a metal,
it kicks off electrons. The energy of the electrons kicked
off depends only on the frequency � of the light, and not
on its intensity. Following Planck, Einstein’s interpreta-
tion of this phenomenon was that the energy in the light
comes in chunks, or quanta, each of which possesses en-
ergy h�. These quanta, or particles of light, were subse-
quently termed photons. Following Planck and Einstein,
Niels Bohr used quantum mechanics to derive the spec-
trum of the hydrogen atom [6].

In the mid nineteen-twenties, Erwin Schrödinger and
Werner Heisenberg put quantum mechanics on a sound
mathematical footing [7,8]. Schrödinger derived a wave
equation – the Schrödinger equation – that described the
behavior of particles. Heisenberg derived a formulation of
quantum mechanics in terms of matrices, matrix mechan-
ics, which was subsequently realized to be equivalent to
Schrödinger’s formulation. With the precise formulation
of quantum mechanics in place, the implications of the
theory could now be explored in detail.

It had always been clear that quantum mechanics
was strange and counterintuitive: Bohr formulated the
phrase ‘wave-particle duality’ to capture the strange way
in which waves, like light, appeared to be made of parti-
cles, like photons. Similarly, particles, like electrons, ap-
peared to be associated with waves, which were solutions
to Schrödinger’s equation. Now that the mathematical un-
derpinnings of quantum mechanics were in place, how-
ever, it became clear that quantum mechanics was down-
right weird. In 1935, Einstein, together with his collabo-
rators Boris Podolsky and Nathan Rosen, came up with
a thought experiment (now called the EPR experiment af-
ter its originators) involving two photons that are cor-
related in such a way that a measurement made on one
photon appears instantaneously to affect the state of the
other photon [9]. Schrödinger called this form of corre-
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lation ‘entanglement’. Einstein, as noted above, referred
to it as ‘spooky action at a distance’. Although it became
clear that entanglement could not be used to transmit
information faster than the speed of light, the implica-
tions of the EPR thought experiment were so apparently
bizarre that Einstein felt that it demonstrated that quan-
tum mechanics was fundamentally incorrect. The EPR ex-
periment will be discussed in detail below. Unfortunately
for Einstein, when the EPR experiment was eventually per-
formed, it confirmed the counterintuitive predictions of
quantum mechanics. Indeed, every experiment ever per-
formed so far to test the predictions of quantum mechan-
ics has confirmed them, suggesting that, despite its coun-
terintuitive nature, quantum mechanics is fundamentally
correct.

At this point, it is worth noting a curious historical
phenomenon, which persists to the present day, in which
a famous scientist who received his or her Nobel prize
for work in quantum mechanics, publicly expresses dis-
trust or disbelief in quantum mechanics. Einstein is the
best known example of this phenomenon, but more recent
examples exist, as well. The origin of this phenomenon
can be traced to the profoundly counterintuitive nature of
quantum mechanics. Human infants, by the age of a few
months, are aware that objects – at least, large, classical ob-
jects like toys or parents – cannot be in two places simulta-
neously. Yet in quantum mechanics, this intuition is vio-
lated repeatedly. Nobel laureates typically possess a power-
ful sense of intuition: if Einstein is not allowed to trust his
intuition, then who is? Nonetheless, quantum mechanics
contradicts their intuition just as it does everyone else’s.
Einstein’s intuition told him that quantum mechanics was
wrong, and he trusted that intuition. Meanwhile, scien-
tists who are accustomed to their intuitions being proved
wrong may accept quantum mechanics more readily. One
of the accomplishments of quantum information process-
ing is that it allows quantum weirdness such as that found
in the EPR experiment to be expressed and investigated
in precise mathematical terms, so we can discover exactly
how and where our intuition goes wrong.

In the 1950’s and 60’s, physicists such as David Bohm,
John Bell, and Yakir Aharonov, among others, investi-
gated the counterintuitive aspects of quantum mechan-
ics and proposed further thought experiments that threw
those aspects in high relief [10,11,12]. Whenever those
thought experiments have been turned into actual physi-
cal experiments, as in the well-known Aspect experiment
that realized Bell’s version of the EPR experiment [13], the
predictions of quantum mechanics have been confirmed.
Quantum mechanics is weird and we just have to live
with it.

As will be seen below, quantum information process-
ing allows us not only to express the counterintuitive as-
pects of quantum mechanics in precise terms, it allows us
to exploit those strange phenomena to compute and to
communicate in ways that our classical intuitions would
tell us are impossible. Quantum weirdness is not a bug,
but a feature.

Computation

Although rudimentary mechanical calculators had been
constructed by Pascal and Leibnitz, amongst others, the
first attempts to build a full-blown digital computer also lie
in the nineteenth century. In 1822, Charles Babbage con-
ceived the first of a series of mechanical computers, be-
ginning with the fifteen ton Difference Engine, intended
to calculate and print out polynomial functions, includ-
ing logarithmic tables. Despite considerable government
funding, Babbage never succeeded in building a working
difference. He followed up with a series of designs for an
Analytical Engine, which was to have been powered by
a steam engine and programmed by punch cards. Had it
been constructed, the analytical engine would have been
the first modern digital computer. ThemathematicianAda
Lovelace is frequently credited with writing the first com-
puter program, a set of instructions for the analytical en-
gine to compute Bernoulli numbers.

In 1854, George Boole’s An investigation into the laws
of thought laid the conceptual basis for binary computa-
tion. Boole established that any logical relation, no matter
how complicated, could be built up out of the repeated ap-
plication of simple logical operations such as AND, OR,
NOT, and COPY . The resulting ‘Boolean logic’ is the basis
for the contemporary theory of computation.

While Schrödinger and Heisenberg were working out
the modern theory of quantum mechanics, the modern
theory of information was coming into being. In 1928,
Ralph Hartley published an article, ‘The Transmission of
Information’, in the Bell System Technical Journal [14]. In
this article he defined the amount of information in a se-
quence of n symbols to be n log S, where S is the number of
symbols. As the number of such sequences is Sn, this def-
inition clearly coincides with the Planck–Boltzmann for-
mula for entropy, takingW D Sn .

At the same time as Einstein, Podolsky, and Rosen
were exploring quantum weirdness, the theory of com-
putation was coming into being. In 1936, in his paper
“On Computable Numbers, with an Application to the
Entscheidungsproblem”, Alan Turing extended the earlier
work of Kurt Gödel onmathematical logic, and introduced
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the concept of a Turing machine, an idealized digital com-
puter [15]. Claude Shannon, in his 1937 master’s thesis,
“A Symbolic Analysis of Relay and Switching Circuits”,
showed how digital computers could be constructed out of
electronic components [16]. (Howard Gardner called this
work, “possibly the most important, and also the most fa-
mous, master’s thesis of the century”.)

The Second World War provided impetus for the de-
velopment of electronic digital computers. Konrad Zuse’s
Z3, built in 1941, was the first digital computer capable of
performing the same computational tasks as a Turing ma-
chine. The Z3 was followed by the British Colossus, the
Harvard Mark I, and the ENIAC. By the end of the 1940s,
computers had begun to be built with a stored program or
‘von Neumann’ architecture (named after the pioneer of
quantummechanics and computer science John von Neu-
mann), in which the set of instructions – or program – for
the computer were stored in the computer’s memory and
executed by a central processing unit.

In 1948, Shannon published his groundbreaking arti-
cle, “A Mathematical Theory of Communication”, in the
Bell Systems Journal [17]. In this article, perhaps the most
influential work of applied mathematics of the twenti-
eth century (following the tradition of his master’s the-
sis), Shannon provided the full mathematical characteri-
zation of information. He introduced his colleague, John
Tukey’s word, ‘bit’, a contraction of ‘binary digit’, to de-
scribe the fundamental unit of information, a distinction
between two possibilities, True or False, Yes or No, 0 or 1.
He showed that the amount of information associated with
a set of possible states i, each with probability pi, was
uniquely given by formula �

P
i pi log2 pi . When Shan-

non asked vonNeumannwhat he should call this quantity,
von Neumann is said to have replied that he should call
it H, ‘because that’s what Boltzmann called it’. (Recalling
the Boltzmann’s original definition of H, given above, we
see that von Neumann had evidently forgotten the minus
sign.)

It is interesting that von Neumann, who was one of
the pioneers both of quantum mechanics and of informa-
tion processing, apparently did not consider the idea of
processing information in a uniquely quantum-mechan-
ical fashion. Von Neumann had many things on his mind,
however – game theory, bomb building, the workings of
the brain, etc. – and can be forgiven for failing to make the
connection. Another reason that von Neumann may not
have thought of quantum computation was that, in his re-
search into computational devices, or ‘organs’, as he called
them, he had evidently reached the impression that com-
putation intrinsically involved dissipation, a process that
is inimical to quantum information processing [18]. This

impression, if von Neumann indeed had it, is false, as will
now be seen.

Reversible Computation

The date of Shannon’s paper is usually taken to be the be-
ginning of the study of information theory as a distinct
field of inquiry. The second half of the twentieth century
saw a huge explosion in the study of information, compu-
tation, and communication. The next step towards quan-
tum information processing took place in the early 1960s.
Until that point, there was an impression, fostered by von
Neumann amongst others, that computation was intrinsi-
cally irreversible: according to this view, information was
necessarily lost or discarded in the course of computa-
tion. For example, a logic gate such as an AND gate takes
in two bits of information as input, and returns only one
bit as output: the output of an AND gate is 1 if and only
if both inputs are 1, otherwise the output is 0. Because
the two input bits cannot be reconstructed from the out-
put bits, an AND gate is irreversible. Since computations
are typically constructed from AND, OR, and NOT gates
(or related irreversible gates such as NAND, the combina-
tion of an AND gate and a NOT gate), computations were
thought to be intrinsically irreversible, discarding bits as
they progress.

In 1960, Rolf Landauer showed that because of the
intrinsic connection between information and entropy,
when information is discarded in the course of a com-
putation, entropy must be created [19]. That is, when an
irreversible logic gate such as an AND gate is applied, en-
ergymust be dissipated. So far, it seems that von Neumann
could be correct. In 1963, however, Yves Lecerf showed
that Turing Machines could be constructed in such a way
that all their operations were logically reversible [20]. The
trick for making computation reversible is record-keep-
ing: one sets up logic circuits in such a way that the values
of all bits are recorded and kept. To make an AND gate
reversible, for example, one adds extra circuitry to keep
track of the values of the input to the AND gate. In 1973,
Charles Bennett, unaware of Lecerf’s result, rederived it,
and, most importantly, constructed physical models of re-
versible computation based on molecular systems such as
DNA [21]. Ed Fredkin, Tommaso Toffoli, Norman Mar-
golus, and Frank Merkle subsequently made significant
contributions to the study of reversible computation [22].

Reversible computation is important for quantum in-
formation processing because the laws of physics them-
selves are reversible. It’s this underlying reversibility that is
responsible for Landauer’s principle: whenever a logically
irreversible process such as an AND gate takes place, the
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information that is discarded by the computation has to
go somewhere. In the case of an conventional, transistor-
based AND gate, the lost information goes into entropy:
to operate such an AND gate, electrical energy must be
dissipated and turned into heat. That is, once the AND
gate has been performed, then even if the logical circuits
of the computer no longer record the values of the inputs
to the gate, the microscopic motion of atoms and electrons
in the circuit effectively ‘remember’ what the inputs were.
If one wants to perform computation in a uniquely quan-
tum-mechanical fashion, it is important to avoid such dis-
sipation: to be effective, quantum computation should be
reversible.

QuantumComputation

In 1980, Paul Benioff showed that quantum mechanical
systems such as arrays of spins or atoms could perform re-
versible computation in principle [23]. Benioffmapped the
operation of a reversible Turing machine onto the a quan-
tum system and thus exhibited the first quantum-mechan-
ical model of computation. Benioff’s quantum computer
was no more computationally powerful than a conven-
tional classical Turingmachine, however: it did not exploit
quantum weirdness. In 1982, Richard Feynman proposed
the first non-trivial application of quantum information
processing [24]. Noting that quantum weirdness made it
hard for conventional, classical digital computers to sim-
ulate quantum systems, Feynman proposed a ‘universal
quantum simulator’ that could efficiently simulate other
quantum systems. Feynman’s device was not a quantum
Turing machine, but a sort of quantum analog computer,
whose dynamics could be tuned to match the dynamics of
the system to be simulated.

The first model of quantum computation truly to em-
brace and take advantage of quantumweirdness was David
Deutsch’s quantum Turing machine of 1985 [25]. Deutsch
pointed out that a quantum Turing machine could be de-
signed in such a way as to use the strange and counterintu-
itive aspects of quantum mechanics to perform computa-
tions in ways that classical Turing machines or computers
could not. In particular, just as in quantum mechanics it
is acceptable (and in many circumstances, mandatory) for
an electron to be in two places at once, so in a quantum
computer, a quantum bit can take on the values 0 and 1 si-
multaneously. One possible role for a bit in a computer is
as part a program, so that 0 instructs the computer to ‘do
this’ and 1 instructs the computer to ‘do that’. If a quan-
tum bit that takes on the values 0 and 1 at the same time is
fed into the quantum computer as part of a program, then
the quantum computer will ‘do this’ and ‘do that’ simul-

taneously, an effect that Deutsch termed ‘quantum par-
allelism’. Although it would be years before applications
of quantum parallelism would be presented, Deutsch’s pa-
per marks the beginning of the formal theory of quantum
computation.

For almost a decade after the work of Benioff, Feyn-
man, and Deutsch, quantum computers remained a cu-
riosity. Despite the development of a few simple algo-
rithms (described in greater detail below) that took advan-
tage of quantum parallelism, no compelling application of
quantum computation had been discovered. In addition,
the original models of quantum computation were highly
abstract: as Feynman noted [24], no one had the slight-
est notion of how to build a quantum computer. Absent
a ‘killer ap’, and a physical implementation, the field of
quantum computation languished.

That languor dissipated rapidly with Peter Shor’s dis-
covery in 1994 that quantum computers could be used
to factor large numbers [26]. That is, given the product r
of two large prime numbers, a quantum computer could
find the factors p and q such that pq D r. While it might
not appear so instantaneously, solving this problem is in-
deed a ‘killer ap’. Solving the factoring problem is the key
to breaking ‘public-key’ cryptosystems. Public-key cryp-
tosystems are a widely used method for secure communi-
cation. Suppose that you wish to buy something from me
over the internet, for example. I openly send you a pub-
lic key consisting of the number r. The public key is not
a secret: anyone may know it. You use the public key
to encrypt your credit card information, and send me
that encrypted information. To decrypt that information,
I need to employ the ‘private keys’ p and q. The security
of public-key cryptography thus depends on the factor-
ing problem being hard: to obtain the private keys p and q
from the public key r, one must factor the public key.

If quantum computers could be built, then public-key
cryptography was no longer secure. This fact excited con-
siderable interest among code breakers, and some con-
sternation within organizations, such as security agen-
cies, whose job it is to keep secrets. Compounding this
interest and consternation was the fact that the year be-
fore, in 1993, Lloyd had shown how quantum comput-
ers could be built using techniques of electromagnetic res-
onance together with ‘off-the shelf’ components such as
atoms, quantum dots, and lasers [27]. In 1994, Ignacio
Cirac and Peter Zoller proposed a technique for building
quantum computers using ion traps [28]. These designs
for quantum computers quickly resulted in small proto-
type quantum computers and quantum logic gates being
constructed by DavidWineland [29], and Jeff Kimble [30].
In 1996, Lov Grover discovered that quantum comput-
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ers could search databases significantly faster than classi-
cal computers, another potentially highly useful applica-
tion [31]. By 1997, simple quantum algorithms had been
performed using nuclear magnetic resonance based quan-
tum information processing [32,33,34]. The field of quan-
tum computation was off and running.

Since 1994, the field of quantum computation has ex-
panded dramatically. The decade between the discovery
of quantum computation and the development of the first
applications and implementations saw only a dozen or so
papers published in the field of quantum computation.
As of the date of publication of this article, it is not un-
common for a dozen papers on quantum computation
to be posted on the Los Alamos preprint archive (ArXiv)
every day.

QuantumCommunication

While the idea of quantum computation was not intro-
duced until 1980, and not fully exploited until the mid-
1990s, quantum communication has exhibited a longer
and steadier advance. By the beginning of the 1960s, J.P.
Gordon [35] and Lev Levitin [36] had begun to apply
quantummechanics to the analysis of the capacity of com-
munication channels. In 1973, Alexander Holevo derived
the capacity for quantum mechanical channels to trans-
mit classical information [37] (the Holevo–Schumacher–
Westmoreland theorem [38,39]). Because of its many
practical applications, the so-called ‘bosonic’ channel has
received a great deal of attention over the years [40].
Bosonic channels are quantum communication channels
in which the medium of information exchange consists of
bosonic quantum particles, such as photons or phonons.
That is, bosonic channels include communication chan-
nels that use electromagnetic radiation, from radio waves
to light, or sound.

Despite many attempts, it was not until 1993 that Ho-
race Yuen and Masanao Ozawa derived the capacity of
the bosonic channel, and their result holds only in the ab-
sence of noise and loss [41]. The capacity of the bosonic
channel in the presence of loss alone was not derived until
2004 [42], and the capacity of this most important of chan-
nels in the presence of noise and loss is still unknown [43].

A second use of quantum channels is to transmit quan-
tum information, rather than classical information. The
requirements for transmitting quantum information are
more stringent than those for transmitting classical infor-
mation. To transmit a classical bit, one must end up send-
ing a 0 or a 1. To transmit a quantum bit, by contrast, one
must also faithfully transmit states in which the quantum
bit registers 0 and 1 simultaneously. The quantity which

governs the capacity of a channel to transmit quantum
information is called the coherent information [44,45].
A particularly intriguing method of transmitting quantum
information is teleportation [46]. Quantum teleportation
closely resembles the teleportation process from the televi-
sion series Star Trek. In Star Trek, entities to be teleported
enter a special booth, where they are measured and dema-
terialized. Information about the composition of the en-
tities is then sent to a distant location, where the entities
rematerialize.

Quantum mechanics at first seems to forbid Trekkian
teleportation, for the simple reason that it is not possible
to make a measurement that reveals an arbitrary unknown
quantum state. Worse yet, any attempt to reveal that state
is likely to destroy it. Nonetheless, if one adds just one in-
gredient to the protocol, quantum teleportation is indeed
possible. That necessary ingredient is entanglement.

In quantum teleportation, an entity such as a quan-
tum bit is to be teleported from Alice at point A to Bob
at point B. For historical reasons, in communication pro-
tocols the sender of information is called Alice and the
receiver is called Bob; an eavesdropper on the communi-
cation process is called Eve. Alice and Bob possess prior
entanglement in the form of a pair of Einstein–Podolsky–
Rosen particles. Alice performs a suitable measurement
(described in detail below) on the qubit to be teleported to-
gether with her EPR particle. This measurement destroys
the state of the particle to be teleported (‘dematerializing’
it), and yields two classical bits of information, which Alice
sends to Bob over a conventional communication channel.
Bob then performs a transformation on his EPR particle.
The transformation Bob performs is a function of the in-
formation he receives from Alice: there are four possible
transformations, one for each of the four possible values of
the two bits he has received. After the Bob has performed
his transformation of the EPR particle, the state of this par-
ticle is now guaranteed to be the same as that of the origi-
nal qubit that was to be teleported.

Quantum teleportation forms an integral part of quan-
tum communication and of quantum computation. Ex-
perimental demonstrations of quantum teleportation have
been performed with photons and atoms as the systems
whose quantum states are to be teleported [47,48]. At the
time of the writing of this article, teleportation of larger
entities such as molecules, bacteria, or human beings re-
mains out of reach of current quantum technology.

QuantumCryptography

A particularly useful application of the counterintuitive
features of quantum mechanics is quantum cryptogra-
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phy [49,50,51]. Above, it was noted that Shor’s algorithm
would allow quantum computers to crack public-key cryp-
tosystems. In the context of code breaking, then, quantum
information processing is a disruptive technology. Fortu-
nately, however, if quantum computing represents a cryp-
tographic disease, then quantum communication repre-
sents a cryptographic cure. The feature of quantum me-
chanics that no measurement can determine an unknown
state, and that almost any measurement will disturb such
a state, can be turned into a protocol for performing quan-
tum cryptography, a method of secret communication
whose security is guaranteed by the laws of physics.

In the 1970s, Stephen Wiesner developed the concept
of quantum conjugate coding, in which information can
be stored on two conjugate quantum variables, such as
position and momentum, or linear or helical polariza-
tion [49]. In 1984, Charles Bennett and Gilles Brassard
turned Wiesner’s quantum coding concept into a proto-
col for quantum cryptography [50]: by sending suitable
states of light over a quantum communication channel,
Alice and Bob can build up a shared secret key. Since any
attempt of Eve to listen in on their communication must
inevitably disturb the states sent, Alice and Bob can de-
termine whether Eve is listening in, and if so, how much
information she has obtained. By suitable privacy ampli-
fication protocols, Alice and Bob can distill out secret key
that they alone share and which the laws of physics guar-
antee is shared by no one else. In 1990 Artur Ekert, un-
aware of Wiesner, Bennett, and Brassard’s work, indepen-
dently derived a protocol for quantum cryptography based
on entanglement [51].

Commercial quantum cryptographic systems are now
available for purchase by those who desire secrecy based
on the laws of physics, rather than on how hard it is to fac-
tor large numbers. Such systems represent the application
of quantum information processing that is closest to every
day use.

The Future

Quantum information processing is currently a thriving
scientific field, with many open questions and potential
applications. Key open questions include,

� Just what can quantum computers do better than clas-
sical computers? They can apparently factor large num-
bers, search databases, and simulate quantum systems
better than classical computers. That list is quite short,
however. What is the full list of problems for which
quantum computers offer a speed up?

� How canwe build large scale quantum computers? Lots
of small scale quantum computers, with up to a dozen

bits, have been built and operated. Building large scale
quantum computers will require substantial techno-
logical advances in precision construction and con-
trol of complex quantum systems. While advances in
this field have been steady, we’re still far away from
building a quantum computer that could break exist-
ing public-key cryptosystems.

� What are the ultimate physical limits to communica-
tion channels? Despite many decades of effort, funda-
mental questions concerning the capacity of quantum
communication channels remain unresolved.

Quantum information processing is a rich stream with
many tributaries in the fields of engineering, physics, and
applied mathematics. Quantum information processing
investigates the physical limits of computation and com-
munication, and it devises methods for reaching closer to
those limits, and someday perhaps to attain them.

QuantumMechanics

In order to understand quantum information processing
in any non-trivial way, some math is required. As Feyn-
man said, “. . . it is impossible to explain honestly the beau-
ties of the laws of nature in a way that people can feel,
without their having some deep understanding of mathe-
matics. I am sorry, but this seems to be the case” [52]. The
counterintuitive character of quantummechanics makes it
even more imperative to use mathematics to understand
the subject. The strange consequences of quantum me-
chanics arise directly out of the underlying mathematical
structure of the theory. It is important to note that every
bizarre and weird prediction of quantum mechanics that
has been experimentally tested has turned out to be true.
Themathematics of quantummechanics is one of themost
trustworthy pieces of science we possess.

Luckily, this mathematics is also quite simple. To un-
derstand quantum information processing requires only
a basic knowledge of linear algebra, that is, of vectors and
matrices. No calculus is required. In this section a brief
review of the mathematics of quantum mechanics is pre-
sented, along with some of its more straightforward conse-
quences. The reader who is familiar with this mathematics
can safely skip to the following sections on quantum in-
formation. Readers who desire further detail are invited to
consult reference [1].

Qubits

The states of a quantum system correspond to vectors.
In a quantum bit, the quantum logic state 0 corresponds
to a two-dimensional vector,

�1
0

, and the quantum logic
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state 1 corresponds to the vector
�0
1

. It is customary to

write these vectors in the so-called ‘Dirac bracket’ nota-
tion:

j0i �

 
1
0

!

; j1i �
�
0
1

�
: (1)

A general state for a qubit, j i, corresponds to a vec-
tor

�
˛
ˇ


D ˛j0i C ˇj1i, where ˛ and ˇ are complex num-

bers such that j˛j2 C jˇj2 D 1. The requirement that the
amplitude squared of the components of a vector sum
to one is called ‘normalization’. Normalization arises be-
cause amplitudes squared in quantum mechanics are re-
lated to probabilities. In particular, suppose that one pre-
pares a qubit in the state j i, and then performs a mea-
surementwhose purpose is to determinewhether the qubit
takes on the value 0 or 1 (such measurements will be dis-
cussed in greater detail below). Such a measurement will
give the outcome 0 with probability j˛j2, and will give the
outcome 1 with probability jˇj2. These probabilities must
sum to one.

The vectors j0i; j1i; j i are column vectors: we can
also define the corresponding row vectors,

h0j �
�
1 0


; h1j �

�
0 1


; h j �

�
¯̨ ¯̌ : (2)

Note that creating the row vector h j involves both trans-
posing the vector and taking the complex conjugate of its
entries. This process is called Hermitian conjugation, and
is denoted by the superscript �, so that h j D j i�.

The two-dimensional, complex vector space for a qubit
is denoted C2. The reason for introducing Dirac bracket
notation is that this vector space, like all the vector spaces
of quantum mechanics, possesses a natural inner product,
defined in the usual way by the product of row vectors and

column vectors. Suppose j i D
�
˛

ˇ

�
and j�i D

�
�

ı

�
, so

that h�j D
�
�̄ ı̄


The row vector h�j is called a ‘bra’ vec-

tor, and the column vector j i is called a ‘ket’ vector. Mul-
tiplied together, these vectors form the inner product, or
‘bracket’,

h�j i �
�
�̄ ı̄

 �˛
ˇ

�
D ˛�̄ C ˇı̄ : (3)

Note that h j i D j˛j2 C jˇ2j D 1. The definition of the
inner product (3) turns the vector space for qubits C2 into
a ‘Hilbert space’, a complete vector space with inner prod-
uct. (Completeness means that any convergent sequence
of vectors in the space attains a limit that itself lies in
the space. Completeness is only an issue for infinite-di-
mensional Hilbert spaces and will be discussed no further
here.)

We can now express probabilities in terms of brack-
ets: jh0j ij2 D j˛j2 � p0 is the probability that a mea-
surement that distinguishes 0 and 1, made on the state j i,
yields the output 0. Similarly, jh1j ij2 D jˇj2 � p1 is the
probability that the samemeasurement yields the output 1.
Another way to write these probabilities is to define the
two ‘projectors’

P0 D
�
1 0
0 0

�
D

�
1
0

� �
1 0


D j0ih0j

P1 D
�
0 0
0 1

�
D

�
0
1

� �
0 1


D j1ih1j :

(4)

Note that

P20 D j0ih0j0ih0j D j0ih0j D P0 : (5)

Similarly, P21 D P1. A projection operator or projector P is
defined by the condition P2 D P.Written in terms of these
projectors, the probabilities p0; p1 can be defined as

p0 D h jP0j i ; p1 D h jP1j i : (6)

Note that h0j1i D h1j0i D 0: the two states j0i and j1i are
orthogonal. Since any vector j i D ˛j0i C ˇj1i can be
written as a linear combination, or superposition, of j0i
and j1i, fj0i; j1ig make up an orthonormal basis for the
Hilbert space C2. From the probabilistic interpretation of
brackets, we see that orthogonality implies that a measure-
ment that distinguishes between 0 and 1, made on the state
j0i, will yield the output 0 with probability 1 (p0 D 1), and
will never yield the output 1 (p1 D 0). In quantum me-
chanics, orthogonal states are reliably distinguishable.

Higher Dimensions

The discussion above applied to qubits. More compli-
cated quantum systems lie in higher dimensional vec-
tor spaces. For example, a ‘qutrit’ is a quantum system
with three distinguishable states j0i; j1i; j2i that live in
the three-dimensional complex vector space C3. All the
mechanisms of measurement and definitions of brack-
ets extend to higher dimensional systems as well. For
example, the distinguishability of the three states of the
qutrit implies hij ji D ıi j . Many of the familiar systems
of quantum mechanics, such as a free particle or a har-
monic oscillator, have states that live in infinite dimen-
sional Hilbert spaces. For example, the state of a free
particle corresponds to a complex valued function  (x)
such that

R1
�1  ̄(x) (x)dx D 1. The probability of find-

ing the particle in the interval between x D a and x D b is
then

R b
a  ̄(x) (x)dx. Infinite dimensional Hilbert spaces
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involve subtleties that, fortunately, rarely impinge upon
quantum information processing except in the use of
bosonic systems as in quantum optics [40].

Matrices

Quantum mechanics is an intrinsically linear theory:
transformations of states are represented by matrix multi-
plication. (Nonlinear theories of quantum mechanics can
be constructed, but there is no experimental evidence for
any intrinsic nonlinearity in quantum mechanics.) Con-
sider the set of matrices U such that U�U D Id, where Id
is the identity matrix. Such a matrix is said to be ‘unitary’.
(For matrices on infinite-dimensional Hilbert spaces, i. e.,
for linear operators, unitarity also requires UU� D Id.) If
we take a normalized vector j i, h j i D 1, and trans-
form it by multiplying it by U, so that j 0i D Uj i, then
we have

h 0j i D h jU�Uj i D h j i D 1 : (7)

That is, unitary transformations U preserve the normal-
ization of vectors. Equation (7) can also be used to show
that any U that preserves the normalization of all vectors
j i is unitary. Since to be given a physical interpretation
in terms of probabilities, the vectors of quantum mechan-
ics must be normalized, the set of unitary transformations
represents the set of ‘legal’ transformations of vectors in
Hilbert space. (Below, we’ll see that when one adds an en-
vironment with which qubits can interact, then the set of
legal transformations can be extended.) Unitary transfor-
mations on a single qubit make up the set of two-by-two
unitary matrices U(2).

Spin and Other Observables

A familiar quantum system whose state space is repre-
sented by a qubit is the spin 1/2 particle, such as an elec-
tron or proton. The spin of such a particle along a given
axis can take on only two discrete values, ‘spin up’, with
angular momentum „/2 about that axis, or ‘spin down’,
with angular momentum �„/2. Here, ¯ is Planck’s re-
duced constant: „ � h/2� D 1:05457 10�34 joule-sec. It is
conventional to identify the state j "i, spin up along the z-
axis, with j0i, and the state j #i, spin up along the z-axis,
with j1i. In this way, the spin of an electron or proton can
be taken to register a qubit.

Now that we have introduced the notion of spin, we
can introduce an operator or matrix that corresponds to
the measurement of spin. Let P" D j "ih" j be the projec-
tor onto the state j "i, and let P# D j #ih# j be the pro-
jector onto the state j #. The matrix, or ‘operator’ corre-

sponding to spin 1/2 along the z-axis is then

Iz D
„

2
(P" � P#) D

„

2

�
1 0
0 �1

�
D
„

2
�z ; (8)

where �z �
�
1 0
0 �1

�
is called the z Pauli matrix. In what

way does Iz correspond to spin along the z-axis? Suppose
that one starts out in the state j i D ˛j "i C ˇj #i and
then measures spin along the z-axis. Just as in the case of
measuring 0 or 1, with probability p" D j˛j2 one obtains
the result ", and with probability p# D jˇj2 one obtains
the result #. The expectation value for the angularmomen-
tum along the z-axis is then

hIzi D p"(„/2)C p#(�„/2) D h jIzj i : (9)

That is, the expectation value of the observable quantity
corresponding to spin along the z-axis is given by taking
the bracket of the state j i with the operator Iz corre-
sponding to that observable.

In quantummechanics, every observable quantity cor-
responds to an operator. The operator corresponding
to an observable with possible outcome values fag is
AD

P
a ajaihaj D

P
a aPa , where jai is the state with

value a and Pa D jaihaj is the projection operator corre-
sponding to the outcome a. Note that since the outcomes
of measurements are real numbers, A� D A: the operators
corresponding to observables are Hermitian. The states
fjaig are, by definition, distinguishable and so make up an
orthonormal set. From the definition of A one sees that
Ajai D ajai. That is, the different possible outcomes of
the measurement are eigenvalues of A, and the different
possible outcome states of the measurement are eigenvec-
tors of A.

If more than one state jaii corresponds to the out-
come a, then AD

P
a aPa , where Pa D

P
i jaiihaj is

the projection operator onto the eigenspace correspond-
ing to the ‘degenerate’ eigenvalue a. Taking, for the mo-
ment, the case of non-degenerate eigenvalues, then the ex-
pectation value of an observable A in a particular state
j�i D

P
a �a jai is obtained by bracketing the state about

the corresponding operator:

hAi � h�jAj�i D
X

a
j�aj

2a D
X

a
paa ; (10)

where pa D j�aj
2 is the probability that the measurement

yields the outcome a.
Above, we saw that the operator corresponding to spin

along the z-axis was Iz D („/2)�z . What then are the oper-
ators corresponding to spin along the x- and y-axes? They
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are given by Ix D („/2)�x and Iy D („/2)�y , where �x
and �y are the two remaining Pauli spin matrices out of
the trio:

�x D

�
0 1
1 0

�
�y D

�
0 �i
i 0

�
�z D

�
1 0
0 �1

�
:

(11)

By the prescription for obtaining expectation values (10),
for an initial state j�i the expectation values of spin along
the x-axis and spin along the y-axis are

hIxi D h�jIx j�i ; hIyi D h�jIyj�i : (12)

The eigenvectors of Ix ; �x and Iy ; �y are also easily de-
scribed. The eigenvector of Ix ; �x corresponding to spin

up along the x-axis is j !i D
�
1/
p
2

1/
p
2

�
, while the eigen-

vector of Ix ; �x corresponding to spin down along the x-

axis is j  i D
�

1/
p
2

�1/
p
2

�
. Note that these eigenvectors

are orthogonal and normalized – they make up an or-
thonormal set. It’s easy to verify that, �x j "i D C1j "i,
and �x j #i D �1j #i, so the eigenvalues of �x are˙1. The
eigenvalues of Ix D („/2)�x are ˙„/2, the two different
possible values of angular momentum corresponding to
spin up or spin down along the x-axis. Similarly, the eigen-
vector of Iy ; �y corresponding to spin up along the y-axis

is j˝i D
�
1/
p
2

i/
p
2

�
, while the eigenvector of Iy; �y corre-

sponding to spin down along the y-axis is jˇi D
�
i/
p
2

1/
p
2

�
.

(Here, in deference to the right-handed coordinate system
that we are implicitly adopting, ˝ corresponds to an ar-
row heading away from the viewer, andˇ corresponds to
an arrow heading towards the viewer.)

Rotations and SU(2)

The Pauli matrices �x ; �y ; �z play a crucial role not only in
characterizing the measurement of spin, but in generating
rotations as well. Because of their central role in describ-
ing qubits in general, and spin in particular, several more
of their properties are elaborated here. Clearly, �i D �

�
i :

Pauli matrices are Hermitian. Next, note that

�2x D �
2
y D �

2
z D Id D

�
1 0
0 1

�
: (13)

Since �i D �
�
i , and �

2
i D Id, it’s also the case that ��i �i D

Id: that is, the Pauli matrices are unitary. Next, defining
the commutator of two matrices A and B to be [A; B] D

AB � BA, it is easy to verify that [�x ; �y] D 2i�z . Cyclic
permutations of this identity also hold, e. g., [�z ; �x ] D
2i�y .

Now introduce the concept of a rotation. The oper-
ator e�i(� /2)
x corresponds to a rotation by an angle �
about the x-axis. The analogous operators with x replaced
by y or z are expressions for rotations about the y- or z-
axes. Exponentiating matrices may look at first strange,
but exponentiating Pauli matrices is significantly simpler.
Using the Taylor expansion for the matrix exponential,
eA D IdC AC A2/2!C A3/3!C : : :, and employing the
fact that �2j D Id, one obtains

e�i(� /2)
 j D cos(� /2)Id � i sin(� /2)� j : (14)

It is useful to verify that the expression for rota-
tions (14) makes sense for the states we have defined. For
example, rotation by � about the x-axis should take the
state j "i, spin z up, to the state j #i, spin z down. Inserting
� D � and j D x in (14), we find that the operator corre-
sponding to this rotation is the matrix �i�x . Multiplying
j "i by this matrix, we obtain

� i�x j "i D �i
�
0 1
1 0

��
1
0

�
D �i

�
0
1

�
D �ij #i: (15)

The rotation does indeed take j "i to j #i, but it also intro-
duces an overall phase of �i.

What does this overall phase do? The answer is Noth-
ing! Or, at least, nothing observable. Overall phases can-
not change the expectation value of any observable. Sup-
pose that we compare expectation values for the state j�i
and for the state j�0i D ei� j�i for some observable corre-
sponding to an operator A. We have

h�jAj�i D h�je�i�Aei� j�i D h�0jAj�0i : (16)

Overall phases are undetectable. Keeping the undetectabil-
ity of overall phases in mind, it is a useful exercise to ver-
ify that other rotations perform as expected. For example,
a rotation by �/2 about the x-axis takes j˝i, spin up along
the y-axis, to j "i, together with an overall phase.

Once rotation about the x,>y, and z axes have been
defined, it is straightforward to construct rotations about
any axis. Let �̂ D (�x ; �y ; �z), �2x C �2y C �2z D 1, be a unit
vector along the �̂ direction in ordinary three-dimensional
space. Define �̂ D �x�x C �y�y C �z�z to be the general-
ized Pauli matrix associated with the unit vector �̂. It is easy
to verify that �̂ behaves like a Pauli matrix, e. g., �2

̂
D Id.

Rotation by � about the �̂ axis then corresponds to an op-
erator e�i(� /2)
�̂ D cos(� /2)Id � i sin(� /2)�̂. Once again,
it is a useful exercises to verify that such rotations be-
have as expected. For example, a rotation by � about the
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(1/
p
2; 0; 1/

p
2) axis should ‘swap’ j "i and j !i, up to

some phase.
The set of rotations of the form e�i� /2
�̂ forms the

group SU(2), the set of complex 2 by 2 unitary matrices
with determinant equal to 1. It is instructive to compare
this group with the ‘conventional’ group of rotations in
three dimensions, SO(3). SO(3) is the set of real 3 by 3 ma-
trices with orthonormal rows/columns and determinant 1.
In SO(3), when one rotates a vector by 2� , the vector re-
turns to its original state: a rotation by 2� corresponds to
the 3 by 3 identitymatrix. In SU(2), rotating a vector by 2�
corresponds to the transformation �Id: in rotating by 2� ,
the vector acquires an overall phase of �1. As will be seen
below, the phase of�1, while unobservable for single qubit
rotations, can be, and has been observed in two-qubit op-
erations. To return to the original state, with no phase, one
must rotate by 4� . A macroscopic, classical version of this
fact manifests itself when one grasps a glass of water firmly
in the palm of one’s hand and rotates one’s arm and shoul-
der to rotate the glass without spilling it. A little experi-
mentation with this problem shows that one must rotate
glass and hand around twice to return them to their initial
orientation.

Why QuantumMechanics?

Why is the fundamental theory of nature, quantum me-
chanics, a theory of complex vector spaces? No one knows
for sure. One of the most convincing explanations came
from Aage Bohr, the son of Niels Bohr and a Nobel lau-
reate in quantum mechanics in his own right [53]. Aage
Bohr pointed out that the basic mathematical representa-
tion of symmetry consists of complex vector spaces. For ex-
ample, while the apparent symmetry group of rotations in
three dimensional space is the real group SO(3), the actual
underlying symmetry group of space, as evidencedby rota-
tions of quantum-mechanical spins, is SU(2): to return to
the same state, one has to go around not once, but twice. It
is a general feature of complex, continuous groups, called
‘Lie groups’ after Sophus Lie, that their fundamental rep-
resentations are complex. If quantummechanics is a man-
ifestation of deep, underlying symmetries of nature, then
it should come as no surprise that quantum mechanics is
a theory of transformations on complex vector spaces.

Density Matrices

The review of quantum mechanics is almost done. Before
moving on to quantum information processing proper,
two topics need to be covered. The first topic is how to
deal with uncertainty about the underlying state of a quan-
tum system. The second topic is how to treat two or more

quantum systems together. These topics turn out to pos-
sess a strong connection which is the source of most coun-
terintuitive quantum effects.

Suppose that don’t know exactly what state a quantum
system is in. Say, for example, it could be in the state j0i
with probability p0 or in the state j1i with probability p1.
Note that this state is not the same as a quantum super-
position,

p
p0j0i C

p
p1j1i, which is a definite state with

spin oriented in the x � z plane. The expectation value of
an operator A when the underlying state possesses the un-
certainty described is

hAi D p0h0jAj0i C p1h1jAj1i D tr�A ; (17)

where � D p0j0ih0j C p1j1ih1j is the density matrix corre-
sponding to the uncertain state. The density matrix can be
thought of as the quantummechanical analogue of a prob-
ability distribution.

Density matrices were developed to provide a quan-
tum mechanical treatment of statistical mechanics. A fa-
mous density matrix is that for the canonical ensem-
ble. Here, the energy state of a system is uncertain,
and each energy state jEi i is weighted by a probability
pi D e�Ei /kBT /Z, where Z D

P
i e
�Ei /kBT is the partition

function. Z is needed to normalize the probabilities fpig
so that

P
i pi D 1. The density matrix for the canonical

ensemble is then �C D (1/Z)
P

i e
�Ei /kBT jEiihEi j. The ex-

pectation value of any operator, e. g., the energy opera-
tor H (for ‘Hamiltonian’) is then given by hHi D tr�CH.

Multiple Systems and Tensor Products

To describe two or more systems requires a formal-
ism called the tensor product. The Hilbert space for
two qubits is the space C2 ˝ C2, where ˝ is the tensor
product. C2 ˝ C2 is a four-dimensional space spanned
by the vectors j0i ˝ j0i; j0i ˝ j1i; j1i ˝ j0i; j1i ˝ j1i.
(To save space these vectors are sometimes writ-
ten j0ij0i; j0ij1i; j1ij0i; j1ij1i, or even more compactly,
j00i; j01i; j10i; j11i. Care must be taken, however, to
make sure that this notation is unambiguous in a partic-
ular situation.) The tensor product is multilinear: in per-
forming the tensor product, the distributive law holds.
That is, if j i D ˛j0i C ˇj1i, and j�i D � j0i C ıj1i, then

j i ˝ j�i D (˛j0i C ˇj1i)˝ (� j0i C ıj1i)
D ˛� j0i ˝ j0i C ˛ıj0i ˝ j1i
C ˇ� j1i ˝ j0i C ˇıj1i ˝ j1i :

(18)

A tensor is a thing with slots: the key point to keep track of
in tensor analysis is which operator or vector acts onwhich
slot. It is often useful to label the slots, e. g., j i1 ˝ j�i2 is
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a tensor product vector in which j i occupies slot 1 and
j�i occupies slot 2.

One can also define the tensor product of operators or
matrices. For example, �1x ˝ �2z is a tensor product opera-
tor with �x in slot 1 and �z in slot 2. When this operator
acts on a tensor product vector such as j i1 ˝ j�i2, the
operator in slot 1 acts on the vector in that slot, and the
operator in slot 2 acts on the vector in that slot:

(�1x ˝ �
2
z )(j i1 ˝ j�i2) D (�1x j i1)˝ (�2z j�i2) : (19)

The No-Cloning Theorem

Now that tensor products have been introduced, one of
the most famous theorems of quantum information – the
no-cloning theorem – can immediately be proved [54].
Classical information has the property that it can be
copied, so that 0! 00 and 1! 11. How about quantum
information? Does there exist a procedure that allows one
to take an arbitrary, unknown state j i to j i ˝ j i? Can
you clone a quantum? As the title to this section indicates,
the answer to this question is No.

Suppose that you could clone a quantum. Then there
would exist a unitary operatorUC that would take the state

j i ˝ j0i ! UC j i ˝ j0i D j i ˝ j i ; (20)

for any initial state j i. Consider another state j�i.
Since UC is supposed to clone any state, we have then we
would also have UC j�i ˝ j0i D j�i ˝ j�i. If UC exists,
then, the following holds for any states j i, j�i:

h�j i D (1h�j ˝ 2h0j)(j i1 ˝ j0i2)

D (1h�j ˝ 2h0j)(U
�
CUC )(j i1 ˝ j0i2)

D (1h�j ˝ 2h0jU
�
C )(UC j i1 ˝ j0i2)

D (1h�j ˝ 2h�j)(j i1 ˝ j i2)
� (1h�j i1)(2h�j i2)

D h�j i2 ;

(21)

where we have used the fact that UC is unitary
so that U�CUC D Id. So if cloning is possible, then
h�j i D h�j i2 for any two vectors j i and j�i. But this
is impossible, as it implies that h�j i equals either 0 or 1
for all j i, j�i, which is certainly not true. You can’t clone
a quantum.

The no-cloning theorem has widespread conse-
quences. It is responsible for the efficacy of quantum cryp-
tography, which will be discussed in greater detail below.
Suppose that Alice sends a state j i to Bob. Eve wants to
discover what state this is, without Alice or Bob uncov-
ering her eavesdropping. That is, she would like to make

a copy of j i and send the original state j i to Bob. The
no-cloning theorem prevents her from doing so: any at-
tempt to copy j i will necessarily perturb the state. An
‘optimal cloner’ is a transformation that does the best pos-
sible job of cloning, given that cloning is impossible [55].

Reduced Density Matrices

Suppose that one makes a measurement corresponding to
an observable A1 on the state in slot 1. What operator do
we take the bracket of to get the expectation value? The
answer is A1 ˝ Id2: we have to put the identity in slot 2.
The expectation value for this measurement for the state
j i1 ˝ j�i2 is then

1h j ˝ 2h�jA1 ˝ Id2j i1 ˝ j�i2 D

1h jA1j i1 ˝ 2h�jId2j�i2 D 1h jA1j i1 :
(22)

Here we have used the rule that operators in slot 1 act on
vectors in slot 1. Similarly, the operators in slot 2 act on
vectors in slot 2. As always, the key to performing tensor
manipulations is to keep track of what is in which slot.
(Note that the tensor product of two numbers is simply
the product of those numbers.)

In ordinary probability theory, the probabilities for
two sets of events labeled by i and j is given by a joint
probability distribution p(ij). The probabilities for the first
set of events on their own is obtained by averaging over
the second set: p(i) D

P
j p(ij) is the marginal distribu-

tion for the first set of events labeled by i. In quantum me-
chanics, the analog of a probability distribution is density
matrix. Two systems 1 and 2 are described by a joint den-
sity matrix �12, and system 1 on its own is described by
a ‘reduced’ density matrix �1.

Suppose that systems 1 and 2 are in a state described
by a density matrix

�12 D
X

i i 0 j j0
�i i 0 j j0 jii1hi0j ˝ j ji2h j0j ; (23)

where fjii1g and fj ji2g are orthonormal bases for systems
1 and 2 respectively. As in the previous paragraph, the ex-
pectation value of a measurement made on �12 alone is
given by tr�12(A1 ˝ Id2). Another way to write such ex-
pectation values is to define the reduced density matrix,

�1 D tr2�12 �
X

i i 0 j j0
�i i 0 j j0 jii1hi0j ˝2 h j0j ji2

D
X

i i 0 j

�i i 0 j jjii1hi0j :
(24)

Equation (24) describes the partial trace tr2 over sys-
tem 2. In other words, if �12 has components, f�i i 0 j j0g,
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then reduced density matrix �1 D tr2�12 has components
f
P

j �i i 0 j jg. The expectation value of a measurement A
made on the first system alone is then simply hAi D tr�1A.
Just as in ordinary probability theory, where the marginal
distribution for system 1 is obtained by averaging over the
state of system 2, so in quantum mechanics the reduced
density matrix that describes system 1 is obtained by trac-
ing over the state of system 2.

Entanglement

One of the central features of quantum information pro-
cessing is entanglement. Entanglement is a peculiarly
quantum-mechanical form of correlation between quan-
tum systems, that has no classical analogue. Entanglement
lies at the heart of the various speedups and enhancements
that quantum information processing offers over classical
information processing.

A pure state j i12 for two systems 1 and 2 is en-
tangled if the reduced density matrix for either system
taken on its own has non-zero entropy. In particular,
the reduced density matrix for system 1 is �1 D tr2�12,
where �12 D j i12h j. The entropy of this density ma-
trix is S(�1) D �tr�1 log2 �1. For pure states, the entropy
of �1 is equal to the entropy of �2 and is a good measure
of the degree of entanglement between the two systems.
S(�1) D S(�2) measures the number of ‘e-bits’ of entan-
glement between systems 1 and 2.

A mixed state �12 for 1 and 2 is entangled if it is not
separable. A density matrix is separable if it can be written
�12 D

P
j p j�

j
1 ˝ �

j
2. In other words, a separable state is

one that can be written as a classical mixture of uncorre-
lated states. The correlations in a separable state are purely
classical.

Entanglement can take a variety of forms and man-
ifestations. The key to understanding those forms is the
notion of Local Operations and Classical Communication
(LOCC) [56]. Local operations such as unitary transfor-
mations and measurement, combined with classical com-
munication, can not, on their own, create entanglement. If
one state can be transformed into another via local opera-
tions and classical communication, then the first state is ‘at
least as entangled’ as the second. LOCC can then be used
to categorize the different forms of entanglement.

Distillable entanglement is a form of entanglement
that can be transformed into pure-state entanglement [57].
Systems 1 and 2 posses d qubits worth of distillable en-
tanglement if local operations and classical communica-
tion can transform their state into a pure state that con-
tains d e-bits (possibly with some leftover ‘junk’ in a sep-
arate quantum register). Systems that are non-separable,

but that possess no distillable entanglement are said to
possess bound entanglement [58].

The entanglement of formation for a state �12 is equal
to the minimum number of e-bits of pure-state entangle-
ment that are required to create �12 using only local oper-
ations and classical control [59]. The entanglement of for-
mation of �12 is greater than or equal to �12’s distillable
entanglement. A variety of entanglement measures exist.
Each one is useful for different purposes. Squashed entan-
glement, for example, plays an important role in quantum
cryptography [60]. (Squashed entanglement is a notion of
entanglement based on conditional information.)

One of the most interesting open questions in quan-
tum information theory is the definition of entanglement
for marti-partite systems consisting of more than two sub-
systems. Here, even in the case of pure states, no unique
definition of entanglement exists.

Entanglement plays a key role in quantum compu-
tation and quantum communication. Before turning to
those fields, however, it is worth while investigating the
strange and counterintuitive features of entanglement.

QuantumWeirdness

Entanglement is the primary source of what for lack of
a better termmay be called ‘quantumweirdness’. Consider
the two-qubit state

j i12 D
1
p
2
(j0i1 ˝ j1i2 � j1i1j0i2) : (25)

This state is called the ‘singlet’ state: if the two qubits cor-
respond to two spin 1/2 particles, as described above, so
that j0i is the spin z up state and j1i is the spin z down
state, then the singlet state is the state with zero angular
momentum. Indeed, rewriting j i12 in terms of spin as

j i12 D
1
p
2
(j "i1 ˝ j #i2 � j #i1j "i2) : (26)

one sees that if one makes a measurement of spin z, then if
the first spin has spin z up, then the second spin has spin z
down, and vice versa.

If one decomposes the state in terms of spin along
the x-axis, j !i D (1/

p
2)(j "i C j #i), j  i D (1/

p
2) �

(j "i � j #i), then j i12 can be rewritten

j i12 D
1
p
2
(j !i1 ˝ j  i2 � j  i1 ˝ j !i2) : (27)

Similarly, rewriting in terms of spin along the y-axis, we
obtain

j i12 D
1
p
2
(j˝i1jˇi2 � jˇi1j˝i2) ; (28)
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where j˝i is the state with spin up along the y-axis and
jˇi is the state with spin down along the y-axis. No matter
what axis one decomposes the spin about, if the first spin
has spin up along that axis then the second spin has spin
down along that axis, and vice versa. The singlet state has
angular momentum zero about every axis.

So far, this doesn’t sound too strange. The singlet sim-
ply behaves the way a state with zero angular momentum
should: it is not hard to see that it is the unique two-spin
state with zero angular momentum about every axis. In
fact, the singlet state exhibits lots of quantum weirdness.
Look at the reduced density matrix for spin 1:

�1 D tr2�12 D tr2j i12h j D
1
2
(j "i1h" j C j #i1h# j

D Id/2 :
(29)

That is, the density matrix for spin 1 is in a completely in-
definite, or ‘mixed’ state: nothing is known about whether
it is spin up or spin down along any axis. Similarly, spin 2 is
in a completely mixed state. This is already a little strange.
The two spins together are in a definite, ‘pure’ state, the
singlet state. Classically, if two systems are in a definite
state, then each of the systems on its own is in a definite
state: the only way to have uncertainty about one of the
parts is to have uncertainty about the whole. In quantum
mechanics this is not the case: two systems can be in a def-
inite, pure state taken together, while each of the systems
on its own is in an indefinite, mixed state. Such systems are
said to be entangled with each other.

Entanglement is a peculiarly quantum form of corre-
lation. Two spins in a singlet state are highly correlated
(or, more precisely, anticorrelated): no matter what axis
one measures spin along, one spin will be found to have
the opposite spin of the other. In itself, that doesn’t sound
so bad, but when one makes a measurement on one spin,
something funny seems to happen. Both spins start out in
a completely indefinite state. Now one chooses to make
ameasurement of spin 1 along the z-axis. Suppose that one
gets the result, spin up. As a result of the measurement,
spin 2 is now in a definite state, spin down along the z-
axis. If one had chosen to make a measurement of spin 1
along the x-axis, then spin 2 would also be put in a definite
state along the x-axis. Somehow, it seems as if one can af-
fect the state of spin 2 by making a measurement of spin 1
on its own. This is what Einstein called ‘spooky action at
a distance’.

In fact, such measurements involve no real action at
a distance, spooky or otherwise. If one could really act on
spin 2 bymaking ameasurement on spin 1, thereby chang-

ing spin 2’s state, then one could send information instan-
taneously from spin 1 to spin 2 by measuring spin 1 alone.
Such instantaneous transmission of information would vi-
olate special relativity and give rise to all sorts of paradox-
ical capabilities, such as the ability to travel backwards in
time. Luckily, it is easy to see that it is impossible to send
information superluminally using entanglement: no mat-
ter what one does to spin 1, the outcomes ofmeasurements
on spin 2 are unaffected by that action. In particular, op-
erations on spin 1 correspond to operators of the form
A1 ˝ Id2, while operations on spin 2 correspond to opera-
tors of the form Id1 ˝ B2. The commutator between such
operators is

[A1 ˝ Id2; Id1 ˝ B2] D A1 ˝ B2 � A1 ˝ B2 D 0 : (30)

Since they commute, it doesn’t matter if one does some-
thing to spin 1 first, and then measures spin 2, or if one
measures spin 2 first and then does something to spin 1:
the results of the measurement will be the same. That is,
nothing one does to spin 1 on its own can effect spin 2.

Nonetheless, entanglement is counterintuitive. One’s
classical intuition would like to believe that before the
measurement, the system to be measured is in a definite
state, even if that definite state is unknown. Such a definite
state would constitute a ‘hidden variable’, an unknown,
classical value for the measured variable. Entanglement
implies that such hidden variables can’t exist in any re-
motely satisfactory form. The spin version of the EPR ef-
fect described above is due to David Bohm [61]. Subse-
quently, John Bell proposed a set of relations, the ‘Bell in-
equalities’, that a hidden variable theory should obey [62].
Bell’s inequalities are expressed in terms of the probabil-
ities for the outcomes of measurements made on the two
spins along different axes.

Suppose that each particle indeed has a particular
value of spin along each axis before it is measured. Des-
ignate a particle that has spin up along the x-axis, spin
down along the y-axis, and spin up along the z-axis by
(xC; y�; zC). Designate other possible orientations sim-
ilarly. In a collection of particles, let N(xC; y�; zC) be
the number of particles with orientations (xC; y�; zC).
Clearly, N(xC; y�) D N(xC; y�; zC)CN(xC; y�; z�).
Now, in a collection of measurements made on pairs of
particles, originally in a singlet state, let #(x1C; y2�) be
the number of measurements that give the result spin up
along the x-axis for particle 1, and spin down along the y-
axis for particle 2. Bell showed that for classical particles
that actually possess definite values of spin along different
axes before measurement, #(x1C; y2C) � #(x1C; z2C)C
#(y1�; z2�), together with inequalities that are obtained
by permuting axes and signs.
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Quantum mechanics decisively violates these Bell in-
equalities: in entangled states like the singlet state, parti-
cles simply do not possess definite, but unknown, values
of spin before they are measured. Bell’s inequalities have
been verified experimentally on numerous occasions [13],
although not all exotic forms of hidden variables have
been eliminated. Those that are consistent with experi-
ment are not very aesthetically appealing however (de-
pending, of course, on one’s aesthetic ideals). A stronger
set of inequalities than Bell’s are the CHSH inequalities
(Clauser–Horne–Shimony–Holt), which have also been
tested in numerous venues, with the predictions of quan-
tum mechanics confirmed each time [63]. One of weird-
est violation of classical intuition can be found in the
so-called GHZ experiment, named after Daniel Green-
berger, Michael Horne, and Anton Zeilinger [64].

To demonstrate the GHZ paradox, begin with the
three-qubit state

j�i D (1/
p
2)(j """i � j ###i) (31)

(note that in writing this state we have suppressed the ten-
sor product ˝ signs, as mentioned above). Prepare this
state four separate times, and make four distinct measure-
ments. In the first measurement measure �x on the first
qubit, �y on the second qubit, and �y on the third qubit.
Assign the value C1 to the result, spin up along the axis
measured, and �1 to spin down. Multiply the outcomes
together. Quantum mechanics predicts that the result of
this multiplication will always be C1, as can be verified
by taking the expectation value h�j�1x ˝ �2y ˝ �3y j�i of the
operator �1x ˝ �2y ˝ �3y that corresponds to making the
three individual spin measurements and multiplying their
results together.

In the second measurement measure �y on the first
qubit, �x on the second qubit, and �y on the third qubit.
Multiply the results together. Once again, quantum me-
chanics predicts that the result will be C1. Similarly, in
the third measurement measure �y on the first qubit, �y
on the second qubit, and �x on the third qubit. Multiply
the results together to obtain the predicted result C1. Fi-
nally, in the fourth measurement measure �x on all three
qubits and multiply the results together. Quantum me-
chanics predicts that this measurement will give the result
h�j�1x ˝ �

2
x ˝ �

3
x j�i D �1.

So far, these predictions may not seem strange. A mo-
ment’s reflection, however, will reveal that the results of
the four GHZ experiments are completely incompatible
with any underlying assignment of values of˙1 to the spin
along the x- and y-axes before the measurement. Suppose
that such pre-measurement values existed, and that these

are the values revealed by the measurements. Looking at
the four measurements, each consisting of three individ-
ual spin measurements, one sees that each possible spin
measurement appears twice in the full sequence of twelve
individual spinmeasurements. For example,measurement
of spin 1 along the x-axis occurs in the first of the four
three-fold measurements, and in the last one. Similarly,
measurement of spin 3 along the 3-axis occurs in the first
and second three-fold measurements. The classical conse-
quence of each individual measurement occurring twice is
that the product of all twelvemeasurements should beC1.
That is, if measurement of �1x in the first measurement
yields the result �1, it should also yield the result �1 in
the fourth measurement. The product of the outcomes
for �1x then gives (�1) � (�1) D C1; similarly, if �1x takes
on the valueC1 in both measurements, it also contributes
(C1) � (C1) D C1 to the overall product. So if each spin
possesses a definite value before the measurement, classi-
cal mechanics unambiguously predicts that the product of
all twelve individual measurements should beC1.

Quantummechanics, by contrast, unambiguously pre-
dicts that the product of all twelve individual measure-
ments should be �1. The GHZ experiment has been per-
formed in a variety of different quantum-mechanical sys-
tems, ranging from nuclear spins to photons [65,66]. The
result: the predictions of classical mechanics are wrong
and those of quantum mechanics are correct. Quantum
weirdness triumphs.

QuantumComputation

Quantummechanics has now been treated in sufficient de-
tail to allow us to approach the most startling consequence
of quantumweirdness: quantum computation. The central
counterintuitive feature of quantum mechanics is quan-
tum superposition: unlike a classical bit, which either takes
on the value 0 or the value 1, a quantum bit in the super-
position state ˛j0i C ˇj1i takes on the values 0 and 1 si-
multaneously. A quantum computer is a device that takes
advantage of quantum superposition to process informa-
tion in ways that classical computers can’t. A key feature of
any quantum computation is the way in which the compu-
tation puts entanglement to use: just as entanglement plays
a central role in the quantum paradoxes discussed above,
it also lies at the heart of quantum computation.

A classical digital computer is a machine that can per-
form arbitrarily complex logical operations. When you
play a computer game, or operate a spread sheet, all that
is going on is that your computer takes in the information
from your joy stick or keyboard, encodes that informa-
tion as a sequence of zeros and ones, and then performs
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sequences of simple logical operations one that informa-
tion. Since the work of George Boole in the first half of
the nineteenth century, it is known that any logical expres-
sion, no matter how involved, can be broken down into
sequences of elementary logical operations such as NOT,
AND,OR and COPY . In the context of computation, these
operations are called ‘logic gates’: a logic gates takes as in-
put one or more bits of information, and produces as out-
put one or more bits of information. The output bits are
a function of the input bits. ANOT gate, for example, takes
as input a single bit, X, and returns as output the flipped
bit, NOT X, so that 0! 1 and 1! 0. Similarly, an AND
gate takes in two bits X,Y as input, and returns the out-
put X AND Y . X AND Y is equal to 1 when both X and Y
are equal to 1; otherwise it is equal to 0. That is, an AND
gate takes 00! 0, 01! 0, 10! 0, and 11! 1. An OR
gate takes X,Y to 1 if either X or Y is 1, and to 0 if both X
and Y are 0, so that 00! 0, 01! 1, 10! 1, and 11! 1.
A COPY gate takes a single input, X, and returns as output
two bits X that are copies of the input bit, so that 0! 00
and 1! 11.

All elementary logical operations can be built up from
NOT, AND, OR and COPY . For example, implication can
be written A! B � AOR (NOT B), since A! B is false
if and only if A is true and B is false. Consequently, any
logical expression, e. g.,
��

AAND (NOT B)

OR

�
C AND (NOT A)



AND
�
NOT(C OR B)

�
; (32)

can be evaluated using NOT, AND, OR, and COPY gates,
where COPY gates are used to supply the different copies
of A, B and C that occur in different places in the expres-
sion. Accordingly, {NOT,AND,OR,COPY} is said to form
a ‘computationally universal’ set of logic gates. Simpler
computationally universal sets of logic gates also exist, e. g.
{NAND, COPY}, where X NAND Y D NOT(X AND Y).

Reversible Logic

A logic gate is said to be reversible if its outputs are
a one-to-one function of its inputs. NOT is reversible, for
example: since X D NOT(NOT X), NOT is its own in-
verse. AND and OR are not reversible, as the value of their
two input bits cannot be inferred from their single output.
COPY is reversible, as its input can be inferred from either
of its outputs.

Logical reversibility is important because the laws of
physics, at bottom, are reversible. Above, we saw that
the time evolution of a closed quantum system (i. e., one

that is not interacting with any environment) is given by
a unitary transformation: j i ! j 0i D Uj i. All uni-
tary transformations are invertible: U�1 D U�, so that
j i D U�Uj i D U�j 0i. The input to a unitary trans-
formation can always be obtained from its output: the time
evolution of quantum mechanical systems is one-to-one.
As noted in the introduction, in 1961, Rolf Landauer
showed that the underlying reversibility of quantum (and
also of classical) mechanics implied that logically irre-
versible operations such as AND necessarily required
physical dissipation [19]: any physical device that per-
forms an AND operation must possess additional degrees
of freedom (i. e., an environment) which retain the infor-
mation about the actual values of the inputs of the AND
gate after the irreversible logical operation has discarded
those values. In a conventional electronic computer, those
additional degrees of freedom consist of the microscopic
motions of electrons, which, as Maxwell and Boltzmann
told us, register large amounts of information.

Logic circuits in contemporary electronic circuits con-
sist of field effect transistors, or FETs, wired together to
perform NOT, AND, OR and COPY operations. Bits are
registered by voltages: a FET that is charged at higher volt-
age registers a 1, and an uncharged FET at Ground volt-
age registers a 0. Bits are erased by connecting the FET
to Ground, discharging them and restoring them to the
state 0. When such an erasure or resetting operation oc-
curs, the underlying reversibility of the laws of physics in-
sure that the microscopic motions of the electrons in the
Ground still retain the information about whether the FET
was charged or not, i. e., whether the bit before the erasure
operation registered 1 or 0. In particular, if the bit regis-
tered 1 initially, the electrons in Ground will be slightly
more energetic than if it registered 0. Landauer argued that
any such operation that erased a bit required dissipation of
energy kBT ln 2 to an environment at temperature T, cor-
responding to an increase in the environment’s entropy of
kB ln 2.

Landauer’s principle can be seen to be a straightfor-
ward consequence of the microscopic reversibility of the
laws of physics, together with the fact that entropy is
a form of information – information about the micro-
scopic motions of atoms and molecules. Because the laws
of physics are reversible, any information that resides in
the logical degrees of freedom of a computer at the begin-
ning of a computation (i. e., in the charges and voltages of
FETs) must still be present at the end of the computation
in some degrees of freedom, either logical or microscopic.
Note that physical reversibility also implies that if infor-
mation can flow from logical degrees of freedom to micro-
scopic degrees of freedom, then it can also flow back again:
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the microscopic motions of electrons cause voltage fluctu-
ations in FETs which can give rise to logical errors. Noise
is necessary.

Because AND, OR, NAND are not logically reversible,
Landauer initially concluded that computation was nec-
essarily dissipative: entropy had to increase. As is often
true in the application of the second law of thermody-
namics, however, the appearance of irreversibility does
not always imply the actual fact of irreversibility. In 1963,
Lecerf showed that digital computation could always be
performed in a reversible fashion [20]. Unaware of Lecerf’s
work, in 1973 Bennett rederived the possibility of re-
versible computation [21]. Most important, because Ben-
nett was Landauer’s colleague at IBMWatson laboratories,
he realized the physical significance of embedding com-
putation in a logically reversible context. As will be seen,
logical reversibility is essential for quantum computation.

A simple derivation of logically reversible computa-
tion is due to Fredkin, Toffoli, and Margolus [22]. Un-
aware of Bennett’s work, Fredkin constructed three-in-
put, three-output reversible logic gates that could perform
NOT, AND, OR, and COPY operations. The best-known
example of such a gate is the Toffoli gate. The Toffoli
gate takes in three inputs, X,Y , and Z, and returns three
outputs, X 0;Y 0 and Z0. The first two inputs go through
unchanged, so that X 0 D X, Y 0 D Y . The third output is
equal to the third input, unless both X and Y are equal to
1, in which case the third output is the NOT of the third
input. That is, when either X or Y is 0, Z0 D Z, and when
both X and Y are 1, Z0 D NOT Z. (Another way of say-
ing the same thing is to say that Z0 D Z XOR (X AND Y),
where XOR is the exclusive OR operation whose output
is 1 when either one of its inputs is 1, but not both. That
is, XOR takes 00! 0, 01! 1, 10! 1, 11! 0.) Because
it performs a NOT operation on Z controlled on whether
both X and Y are 1, a Toffoli gate is often called a con-
trolled-controlled-NOT (CCNOT) gate.

Quantum Information Processing, Figure 1
A Toffoli gate

To see that CCNOT gates can be wired together to
perform NOT, AND, OR, and COPY operations, note
that when one sets the first two inputs X and Y both to
the value 1, and allows the input Z to vary, one obtains
Z0 D NOT Z. That is, supplying additional inputs allows
a CCNOT to perform a NOT operation. Similarly, set-
ting the input Z to 0 and allowing X and Y to vary yields

Z0 D X AND Y . OR and COPY (not to mention NAND)
can be obtained by similar methods. So the ability to set
inputs to predetermined values, together with ability to ap-
plyCCNOT gates allows one to perform any desired digital
computation.

Because reversible computation is intrinsically less dis-
sipative than conventional, irreversible computation, it
has been proposed as a paradigm for constructing low
power electronic logic circuits, and such low power cir-
cuits have been built and demonstrated [67]. Because ad-
ditional inputs and wires are required to perform compu-
tation reversibly, however, such circuits are not yet used
for commercial application. As the miniaturization of the
components of electronic computers proceeds according
to Moore’s law, however, dissipation becomes an increas-
ingly hard problem to solve, and reversible logic may be-
come commercially viable.

QuantumComputation

In 1980, Benioff proposed a quantum-mechanical imple-
mentation of reversible computation [23]. In Benioff’s
model, bits corresponded to spins, and the time evolu-
tion of those spins was given by a unitary transforma-
tion that performed reversible logic operations. (In 1986,
Feynman embedded such computation in a local, Hamil-
tonian dynamics, corresponding to interactions between
groups of spins [68].) Benioff’s model did not take into
account the possibility of putting quantum bits into su-
perpositions as an integral part of the computation, how-
ever. In 1985, Deutsch proposed that the ordinary logic
gates of reversible computation should be supplemented
with intrinsically quantum-mechanical single qubit op-
erations [25]. Suppose that one is using a quantum-me-
chanical system to implement reversible computations us-
ing CCNOT gates. Now add to the ability to prepare qubits
in desired states, and to perform CCNOT gates, the ability
to perform single-qubit rotations of the form e�i�
̂/2 as
described above. Deutsch showed that the resulting set of
operations allowed universal quantum computation. Not
only could such a computer perform any desired classical
logical transformation on its quantum bits; it could per-
form any desired unitary transformation U whatsoever.

Deutsch pointed out that a computer endowed with
the ability to put quantum bits into superpositions and
to perform reversible logic on those superpositions could
compute in ways that classical computers could not. In
particular, a classical reversible computer can evaluate any
desired function of its input bits: (x1 : : : xn ; 0 : : : 0) !
(x1 : : : xn; f (x1 : : : xn)), where xi represents the logical
value, 0 or 1, of the ith bit, and f is the desired function. In
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order to preserve reversibility, the computer has been sup-
plied with an ‘answer’ register, initially in the state 00 : : : 0,
into which to place the answer f (x1 : : : xn). In a quantum
computer, the input bits to any transformation can be in
a quantum superposition. For example, if each input bit
is in an equal superposition of 0 and 1, (1/

p
2)(j0i C j1i),

then all n qubits taken together are in the superposition

1
2n/2

(j00 : : : 0i C j00 : : : 1i C � � � C j11 : : : 1i

D
1

2n/2
X

x1;:::;xnD0;1

jx1 : : : xni : (33)

If such a superposition is supplied to a quantum com-
puter that performs the transformation x1 : : : xn !

f (x1 : : : xn), then the net effect is to take the superposition

1
2n/2

X

x1;:::;xnD0;1

jx1 : : : xnij00 : : : 0i

!
1

2n/2
X

x1;:::;xnD0;1

jx1 : : : xnij f (x1 : : : xn)i : (34)

That is, even though the quantum computer evaluates the
function f only once, it evaluates it on every term in the
superposition of inputs simultaneously, an effect which
Deutsch termed ‘quantum parallelism’.

At first, quantum parallelism might seem to be spec-
tacularly powerful: with only one function ‘call’, one per-
forms the function on 2n different inputs. The power
of quantum parallelism is not so easy to tease out,
however. For example, suppose one makes a measure-
ment on the output state in (33) in the fj0i; j1ig ba-
sis. The result is a randomly selected input-output pair,
(x1 : : : xn; f (x1 : : : xn)). One could have just as easily ob-
tained such a pair by feeding a random input string into
a classical computer that evaluates f . As will now be seen,
the secret to orchestrating quantum computations that are
more powerful than classical computations lies in arrang-
ing quantum interference between the different states in
the superposition of equation (34).

The word ‘orchestration’ in the previous sentence
was used for a reason. In quantum mechanics, states of
physical systems correspond to waves. For example, the
state of an electron is associated with a wave that is
the solution of the Schrödinger equation for that elec-
tron. Similarly, in a quantum computer, a state such as
jx1 : : : xnij f (x1 : : : xn)i is associated with a wave that is
the solution of the Schrödinger equation for the underly-
ing quantum degrees of freedom (e. g., electron spins or
photon polarizations) that make up the computers quan-
tum bits. The waves of quantum mechanics, like waves of

water, light, or sound, can be superposed on each other
to construct composite waves. A quantum computer that
performs a conventional reversible computation, in which
its qubits only take on the values 0 or 1 and are never in
superpositions ˛j0i C ˇj1i, can be thought of as an ana-
logue of a piece of music like a Gregorian chant, in which
a single, unaccompanied voice follows a prescribed set of
notes. A quantum computer that performs many compu-
tations in quantum parallel is analogous to a symphony,
in which many lines or voices are superposed to create
chords, counterpoint, and harmony. The quantum com-
puter programmer is the composer who writes and or-
chestrates this quantum symphony: her job is to make that
counterpoint reveal meaning that is not there in each of
the voices taken separately.

Deutsch–Jozsa Algorithm

Let’s examine a simple example, due to David Deutsch and
Richard Jozsa, in which the several ‘voices’ of a quantum
computer can be orchestrated to solve a problem more
rapidly than a classical computer [69]. Consider the set of
functions f that take one bit of input and produce one bit
of output. There are four such functions:

f (x) D 0; f (x) D 1; f (x) D x ; f (x) D NOT x : (35)

The first two of these functions are constant functions; the
second two are ‘balanced’ in the sense that half of their in-
puts yield 0 as output, while the other half yield 1. Suppose
that one is presented with a ‘black box’ that implements
one of these functions. The problem is to query this black
box and to determine whether the function the box con-
tains is constant or balanced.

Classically, it clearly takes exactly two queries to deter-
mine whether the function in the box is constant or bal-
anced. Using quantum information processing, however,
one query suffices. The following quantum circuit shows
how this is accomplished.

Deutsch–Jozsa Circuit

Quantum Information Processing, Figure 2
2-Qubit Deutsch–Jozsa circuit

Quantum circuit diagrams are similar in character to
their classical counterparts: qubits enter on the left, un-
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dergo a series of transformations effected by quantum
logic gates, and exit at the right, where they are measured.
In the circuit above, the first gate, represented by H is
called a Hadamard gate. The Hadamard gate is a single-
qubit quantum logic gate that effects the transformation

j0i ! (1/
p
2)(j0i C j1i) ;

j1i ! (1/
p
2)(j0i � j1i) :

(36)

In other words, the Hadamard performs a unitary trans-

formationUH D

�
1/
p
2 1/

p
2

1/
p
2 �1/

p
2

�
on its single-qubit in-

put. Note that the Hadamard transformation is its own in-
verse: U2

H D Id.
The second logic gate implements the unknown,

black-box function f . It takes two binary inputs, x, y, and
gives two binary outputs. The gate leaves the first in-
put unchanged, and adds f (x) to the second input (mod-
ulo 2), so that x ! x and y ! y C f (x)( mod 2). Such
gates can be implemented using the controlled-NOT op-
eration introduced above. Recall that the controlled-NOT
or CNOT leaves its first input bit unchanged, and flips the
second if and only if the first input is 1. In the symbol
for a controlled-NOT operation, the � part represents the
control bit and the ˚ part represents the bit that can be
flipped. The circuits required to implement the four dif-
ferent functions from one bit to one bit are as follows:

f (x) D 0 : f (x) D 1 : f (x) D x : f (x) D NOT x :
(37)

The black box in the Deutsch–Jozsa algorithm contains
one of these circuits. Note that the black-box circuits are
‘classical’ in the sense that they map input combinations
of 0’s and 1’s to output combinations of 0’s and 1’s: the
circuits of (37) make sense as classical circuits as well as
quantum circuits.

Any classical circuit that can determine whether f is
constant or balanced requires at least two uses of the f gate.
By contrast, the Deutsch–Jozsa circuit above requires only
one use of the f gate. Going through the quantum logic
circuit, one finds that a constant function yields the output
j0i on the first output line, while a balanced function yields
the output j1i (up to an overall, unobservable phase). That
is, only a single function call is required to reveal whether f
is constant or balanced.

Several comments on the Deutsch–Jozsa algorithm are
in order. The first is that, when comparing quantum algo-
rithms to classical algorithms, it is important to compare
apples to apples: that is, the gates used in the quantum al-
gorithm to implement the black-box circuits should be the

same as those used in any classical algorithms. The differ-
ence, of course, is that the quantum gates preserve quan-
tum coherence, a concept which is meaningless in the clas-
sical context. This requirement has been respected in the
Deutsch–Jozsa circuit above.

The second comment is that the Deutsch–Jozsa algo-
rithm is decidedly odd and counterintuitive. The f gates
and the controlled-NOT gates from which they are con-
structed both have the property that the first input passes
through unchanged j0i ! j0i and j1i ! j1i. Yet some-
how, when the algorithm is identifying balanced func-
tions, the first bit flips. How can this be? This is the part
where quantum weirdness enters. Even though the f and
controlled-NOT gates leave their first input unchanged in
the logical basis fj0i; j1ig, the same property does not hold
in other bases. For example, let jCi D (1/

p
2)(j0iCj1i) D

UH j0i, and let j1i D (1/
p
2)(j0i � j1i) D UH j1i. Strait-

forward calculation shows that, when acting on the basis
fjCi; j�ig, the CNOT still behaves like a CNOT, but with
roles of its imputs reversed: now the second qubit passes
through unchanged, while the first qubit gets flipped.

That is, when acting on the basis fjCi; j�ig, the CNOT
still behaves like a CNOT, but with the roles of its inputs
reversed: now the second qubit passes through unchanged,
while the first qubit gets flipped. It is this quantum role re-
versal that underlies the efficacy of the Deutsch–Jozsa al-
gorithm. Pretty weird.

It is important to note that the Deutsch–Jozsa algo-
rithm is not just a theoretical point. The algorithm has
been implemented using techniques from nuclear mag-
netic resonance (NMR) [33]. The results are exactly as pre-
dicted by quantum mechanics: a single function call suf-
fices to determinewhether that function is constant or bal-
anced.

The two-qubit algorithm was first described by David
Deutsch. Later, with Richard Jozsa, he extended this al-
gorithm to a multi-qubit algorithm. Now consider func-
tions f from n qubits to a single qubit. Once again, the
problem is to determine whether or not f is constant or
balanced. That is, the function f in the black box is either
constant: f (x) D 0 for all n-bit inputs x, or f (x) D 1 for
all x, or balanced: f (x) D 0 for exactly half of its 2n possi-
ble input strings, and f (x) D 1 for the other half. (If this
problem statement seems somewhat artificial, note that the
algorithm works equally well for distinguishing between
constant functions and ‘typical’ functions, which are ap-
proximately balanced.)

On average, a classical algorithm takes a little more
than two function calls to distinguish between a constant
or a balanced function. However, in the worst case, it
takes 2n�1 C 1 calls, as more than half the inputs have to
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be sampled. As before, the quantum algorithm takes but
a single function call, as the following circuit shows.

Quantum Information Processing, Figure 3
Caption: n-Qubit Deutsch–Jozsa circuit

To determine whether the f is constant or balanced,
one measures the first n output bits: if they are all 0, then
the function is constant; if one or more is 1, then the func-
tion is balanced.

Other Algorithms: The Quantum Fourier Transform

While it conclusively demonstrates that quantum comput-
ers are strictly more powerful than classical computers for
certain problems, the Deutsch–Jozsa algorithm does not
solve a problem of burning interest to applied computer
scientists. Once it was clear that quantum computers could
offer a speedup over classical algorithms, however, other
algorithms began to be developed. Simon’s algorithm [70],
for example, determines whether a function f from n bits
to n bits is (a) one-to-one, or (b) two-to-one with a large
period s, so that f (x C s) D f (x) for all x. (In Simon’s al-
gorithm the addition is bitwise modulo 2, with no carry
bits.)

Simon’s algorithm has a similar ‘flavor’ to the
Deutsch–Jozsa algorithm: it is intriguing but does not
obviously admit wide application. A giant step towards
constructing more useful algorithms was Coppersmith’s
introduction [71] of the Quantum Fourier Transform
(QFT). The fast Fourier transform maps a function of n
bits to its discrete Fourier transform function:

f (x)! g(y) D
2n�1X

xD0

e2	 i x y/2n f (x) : (38)

The fast Fourier transform takes O(n2n) steps. The quan-
tum Fourier transform takes a wave function over n qubits
to a Fourier transformed wave function:

2n�1X

xD0

f (x)jxi ! 2�n/2
2n�1X

x;yD0

e2	 i x y/2n f (x)jyi : (39)

It is not difficult to show that the quantum Fourier trans-
form is a unitary.

To obtain a quantum logic circuit that accomplishes
the QFT, it is convenient to express states in a binary
representation. In the equations above, x and y are n-
bit numbers. Write x as xn : : : x1, where xn ; : : : x1 are
the bits of x. This is just a more concise way of saying
that x D x120 C � � � C xn2n�1. Similarly, the expression
0:y1 : : : ym represents the number y1/2C : : : ym/2�m . Us-
ing this binary notation, it is not hard to show that the
quantum Fourier transform can be written:

jx1 : : : xni !2�n/2(j0i C e2	 i0:x1 j1i)(j0i

C e2	 i0:x2x1 j1i) : : : (j0i C e2	 i0:xn:::x1 j1i) :
(40)

When the quantum Fourier transform is written in this
form, it is straightforward to construct a circuit that im-
plements it (see Fig. 4).

Note that the QFT circuit for wave functions over n
qubits takes O(n2) steps: it is exponentially faster than the
FFT for functions over n bits, which takes O(n2n) steps.
This exponential speedup of the quantum Fourier trans-
form is what guarantees the efficacy of many quantum al-
gorithms.

The quantum Fourier transform is a potentially pow-
erful tool for obtaining exponential speedups for quan-
tum computers over classical computers. The key is to find
a way of posing the problem to be solved in terms of find-
ing periodic structure in a wave function. This step is the
essence of the best known quantum algorithm, Shor’s al-
gorithm for factoring large numbers [26].

Shor’s Algorithm

The factoring problem can be stated as follows: Given
N D pq, where p, q are prime, find p and q. For large p
and q, this problem is apparently hard for classical com-
puters. The fastest known algorithm (the ‘number sieve’)
takes O(N1/3) steps. The apparent difficulty of the factor-
ing problem for classical computers is important for cryp-
tography. The commonly used RSA public-key cryptosys-
tem relies on the difficulty of factoring to guarantee secu-
rity. Public-key cryptography addresses the following so-
cietally important situation. Alice wants to send Bob some
secure information (e. g., a credit card number). Bob sends
Alice the number N, but does not reveal the identity of p
or q. Alice then uses N to construct an encrypted version
of the message she wishes to send. Anyone who wishes to
decrypt this message must know what p and q are. That is,
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Quantum Information Processing, Figure 4
Quantum Fourier Transform

encryption can be performed using the public key N, but
decryption requires the private key p, q.
In 1994, Peter Shor showed that quantum computers
could be used to factor large numbers and so crack
public-key cryptosystems that whose security rests on the
difficulty of factoring [26]. The algorithm operates by solv-
ing the so-called ‘discrete logarithm’ problem. This prob-
lem is, given N and some number x, find the smallest r
such that xr � 1( mod N). Solving the discrete logarithm
allows N to be factored by the following procedure. First,
pick x < N at random. Use Euclid’s algorithm to check
that the greatest common divisor of x and N is 1. (Euclid’s
algorithm is to divide N by x; take the remainder r1 and
divide x by r1; take the remainder of that division, r2 and
divide r1 by that, etc. The final remainder in this procedure
is the greatest common divisor, or g.c.d., of x andN.) If the
g.c.d. of x and N is not 1, then it is either p or q and we are
done.

If the greatest common divisor of x and N is 1, sup-
pose that we can solve the discrete logarithm problem to
find the smallest r such that xr � 1( mod N). As will be
seen, if r is even, we will be able to find the factors of N
easily. If r turns out to be odd, just pick a new x and start
again: continue until you obtain an even r (since this oc-
curs half the time, you have to repeat this step no more
than twice on average). Once an even r has been found, we
have (xr/2 � 1)(xr/2 C 1) � 1( mod N). In other words,
(xr/2 � 1)(xr/2 C 1) D bN D bpq for some b. Finding the
greatest common divisor of xr/2 � 1, xr/2 C 1 and N now
reveals p and q. The goal of the quantum algorithm, then,
is to solve the discrete logarithm problem to find the small-
est r such that xr � 1 mod N. If r can be found, thenN can
be factored.

In its discrete logarithm guise, factoring possesses a pe-
riodic structure that the quantum Fourier transform can

reveal. First, find an x whose g.c.d. with N is 1, as above,
and pick n so that N2 < 2n < 2N2. The quantum algo-
rithm uses two n-qubit registers. Begin by constructing
a uniform superposition 2�n/2

P2n�1
kD0 jkij0i. Next, per-

form exponentiation modulo N to construct the state,

2�n/2
2n�1X

kD0

jkijxk mod Ni : (41)

This modular exponentiation step takes O(n3) operations
(note that x2k mod N can be evaluated by first construct-
ing x2 mod N, then constructing (x2)2 mod N, etc.). The
periodic structure in (41) arises because if xk � amod N,
for some a, then xkCr � amod N , xkC2r � amod N,
. . . , xkCmr � amod N , up to the largest m such that
k C mr < N2. The same periodicity holds for any a. That
is, the wave function (41) is periodic with with period r.
So if we apply the quantum Fourier transform to this wave
function, we can reveal that period and find r, thereby solv-
ing the discrete logarithm and factoring problems.

To reveal the hidden period and find r apply the QFT
to the first register in the state (41). The result is

2�n
2n�1X

jkD0

e2	 i jk/2n j jijxk mod Ni : (42)

Because of the periodic structure, positive interference
takes place when j(k C `r) is close to a multiple of 2n. That
is, measuring the first register now yields a number j such
that jr/2n is close to an integer: only for such j does the
necessary positive interference take place. In other words,
the algorithm reveals a j such that j/2n D s/r for some
integer s. That is, to find r, we need to find fractions s/r
that approximate j/2n . Such fractions can be obtained us-
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ing a continued fraction approximation. With reasonably
high probability, the result of the continued fraction ap-
proximation can be shown to yield the desired answer r.
(More precisely, repetition of this procedure O(2 log N)
times suffices to identify r.) Once r is known, then the fac-
tors p and q of N can be recovered by the reduction of fac-
toring to discrete logarithm given above.

The details of Shor’s algorithm reveal considerable
subtlety, but the basic idea is straightforward. In its re-
duction to discrete logarithm, factoring possesses a hidden
periodic structure. This periodic structure can be revealed
using a quantum Fourier transform, and the period itself
in turn reveals the desired factors.

More recent algorithms also put the quantum Fourier
transform to use to extract hidden periodicities. Notably,
the QFT can be used to find solutions to Pell’s equa-
tion (x2 � ny2 D 1, for non-square n) [72]. Generaliza-
tions of the QFT to transforms over groups (the dihedral
group and the permutation group on n objects Sn) have
been applied to other problems such as the shortest vec-
tor on a lattice [73] (dihedral group, with some success)
and the graph isomorphism problem (Sn, without much
success [74]).

The Phase-Estimation Algorithm

One of the most useful applications of the quantum
Fourier transform is finding the eigenvectors and eigen-
values of unitary transformations. The resulting algorithm
is called the ‘phase-estimation’ algorithm: its original form
is due to Kitaev [75]. Suppose that we have the ability to
apply a ‘black box’ unitary transformation U. U can be
written U D

P
j e

i� j j jih jj, where j ji are the eigenvectors
of U and ei� j are the corresponding eigenvalues. The goal
of the algorithm is to estimate the ei� j and the j ji. (The
goal of the original Kitaev algorithm was only to estimate
the eigenvalues ei� j . However, Abrams and Lloyd showed
that the algorithm could also be used to construct and es-
timate the eigenvectors j ji, as well [76]. The steps of the
phase estimation algorithm are as follows.

(0) Begin with the initial state j0ij i, where j0i is
the n-qubit state 00 : : : 0i, and j i is the state that
one wishes to decompose into eigenstates: j i DP

j  jj ji.
(1) Using Hadamards or a QFT, put the first register into

a uniform superposition of all possible states:

! 2�n/2
2n�1X

kD0

jkij i :

(2) In the kth component of the superposition, apply Uk

to j i:

! 2�n/2
2n�1X

kD0

jkiUk j i

D 2�n/2
2n�1X

j;kD0

jkiUk jj ji

D 2�n/2
2n�1X

j;kD0

 kei k� j jkij ji :

(3) Apply inverse QFT to first register:

! 2�n
2n�1X

j;k;lD0

 kei k� je�2	 i k l /2n jlij ji :

(4) Measure the registers. The second register contains
the eigenvector j ji. The first register contains jli
where 2� l/2n � � j . That is, the first register contains
an n-bit approximation to � j .

By repeating the phase-estimation algorithm many times,
one samples the eigenvectors and eigenvalues of U. Note
that to obtain n-bits of accuracy, one must possess the abil-
ity to apply U 2n times. This feature limits the applicabil-
ity of the phase-estimation algorithm to a relatively small
number of bits of accuracy, or to the estimation of eigen-
values of Us that can easily be applied an exponentially
large number of times. We’ve already seen such an exam-
ple of a process in modular exponentiation. Indeed, Kitaev
originally identified the phase estimation algorithm as an
alternative method for factoring.

Even when only a relatively small number of applica-
tions of U can be performed, however, the phase-estima-
tion algorithm can provide an exponential improvement
over classical algorithms for problems such as estimating
the ground state of some physical Hamiltonian [76,77], as
will now be seen.

Quantum Simulation

One of the earliest uses for a quantum computer was sug-
gested by Richard Feynman [24]. Feynman noted that
simulating quantum systems on a classical computer was
hard: computer simulations of systems such as lattice
gauge theories take up a substantial fraction of all super-
computer time, and, even then, are often far less effective
than their programmers could wish them to be. The reason
why it’s hard to simulate a quantum system on a classical
computer is straightforward: in the absence of any sneaky
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tricks, the only knownway to simulate a quantum system’s
time evolution is to construct a representation of the full
state of the system, and to evolve that state forward us-
ing the system’s quantum equation of motion. To repre-
sent the state of a quantum system on a classical computer
is typically exponentially hard, however: an n-spin system
requires 2n complex numbers to represent its state. Evolv-
ing that state forward is even harder: it requires exponen-
tiation of a 2n by 2n matrix. Even for a small quantum
system, for example, one containing fifty spins, this task
lies beyond the reach of existing classical supercomputers.
True, supercomputers are also improving exponentially in
time (Moore’s law). Nomatter how powerful they become,
however, they will not be able to simulate more than 300
spins directly, for the simple reason that to record the 2300

numbers that characterize the state of the spins would re-
quire the use of all 2300 particles in the universe within the
particle horizon.

Feynman noted that if one used qubits instead of clas-
sical bits, the state of an n-spin system can be represented
using just n qubits. Feynman proposed a class of systems
called ‘universal quantum simulators’ that could be pro-
grammed to simulate any other quantum system. A uni-
versal quantum simulator has to possess a flexible dynam-
ics that can be altered at will to mimic the dynamics of the
system to be simulated. That is, the dynamics of the uni-
versal quantum simulator form an analog to the dynamics
of the simulated system. Accordingly, one might also call
quantum simulators, ‘quantum analog computers’.

In 1996, Lloyd showed how Feynman’s proposal could
be turned into a quantum algorithm [78]. For each degree
of freedom of the system to be simulated, allocate a quan-
tum register containing a sufficient number of qubits to
approximate the state of that degree of freedom to some
desired accuracy. If one wishes to simulate the system’s
interaction with the environment, a number of registers
should also be allocated to simulate the environment (for
a d-dimensional system, up to d2 registers are required to
simulate the environment). Now write the Hamiltonian of
the system an environment as H D

Pm
`D1 H`, where each

H` operates on only a few degrees of freedom. The Trotter
formula implies that

e�iHı t De�iH1#t : : : e�iHm#t �
1
2

X

jk

[Hj;Hk]�t2

C O
�
�t3


:

(43)

Each e�iH`#t can be simulated using quantum logic oper-
ations on the quantum bits in the registers corresponding
to the degrees of freedom on which H` acts. To simulate
the time evolution of the system over time t D n�t, we

simply apply e�iH#t n times, yielding

e�iHt D


e�iH#t

�n

D


˘`e�iH`#t

�n
�
n
2

X

jk

[Hj;Hk]�t2

C O
�
�t3


:

(44)

The quantum simulation takes O(mn) steps, and repro-
duces the original time evolution to an accuracy h2t2m2/n,
where h is the average size of k[Hj;Hk]k (note that for
simulating systems with local interactions, most of these
terms are zero, because most of the local interactions com-
mute with each other).

A second algorithm for quantum simulation takes ad-
vantage of the quantum Fourier transform [79,80]. Sup-
pose that one wishes to simulate the time evolution of
a quantum particle whose Hamiltonian is of the form
H D P2/2mC V(X), where P D �i@/@x is the momen-
tum operator for the particle, and V(X) is the poten-
tial energy operator for the particle expressed as a func-
tion of the position operator X. Using an n-bit dis-
cretization for the state we identify the x eigenstates
with jxi D jxn : : : x1i. The momentum eigenstates are
then just the quantum Fourier transform of the posi-
tion eigenstates: jpi D 2�n/2

P2n�1
xD0 e2	 i x p/2n jxi. That is,

P D UQFTXU
�
QFT .

By the Trotter formula, the infinitesimal time evolu-
tion operator is

e�iH#t D e�iP
2#t/2me�iV (X)#t C O

�
ıt2

: (45)

To enact this time evolution operator one proceeds as
above. Write the state of the particle in the x-basis: j i DP

x  x jxi. First apply the infinitesimal e�iV (X)#t oper-
ator:

X

x
 x jxi !

X

x
 xe�iV (x)jxi : (46)

To apply the infinitesimal e�iP2ı t/2m operator, first apply
an inverse quantum Fourier transform on the state, then
apply the unitary transformation jxi ! e�i x2#t/2m jxi,
and finally apply the regular QFT. Because X and P are re-
lated by the quantum Fourier transform, these three steps
effectively apply the transformation e�iP2#t/2m . Applying
first e�iV (X)#t then e�iP2#t/2m yields the full infinitesimal
time evolution (45). The full time evolution operator e�iHt

can then be built up by repeating the infinitesimal operator
t/�t times. As before, the accuracy of the quantum simu-
lation can be enhanced by slicing time ever more finely.
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Quantum simulation represents one of the most pow-
erful uses of quantum computers. It is probably the ap-
plication of quantum computers that will first give an
advantage over classical supercomputers, as only one
hundred qubits or fewer are required to simulate, e. g.,
molecular orbitals or chemical reactions, more accu-
rately than the most powerful classical supercomputer. In-
deed, special purpose quantum simulators have already
been constructed using nuclear magnetic resonance tech-
niques [81]. These quantum analog computers involve in-
teractions between many hundreds of nuclear spins, and
so are already performing computations that could not be
performed by any classical computer, even one the size of
the entire universe.

Quantum Search

The algorithms described above afford an exponen-
tial speedup over the best classical algorithms currently
known. Such exponential speedups via quantum compu-
tation are hard to find, and are currently limited to a few
special problems. There exists a large class of quantum al-
gorithms afford a polynomial speedup over the best pos-
sible classical algorithms, however. These algorithms are
based on Grover’s quantum search algorithm.

Grover’s algorithm [31] allows a quantum computer
to search an unstructured database. Suppose that this
database contains N items, one of which is ‘marked’, and
the remainder of which are unmarked. Call the marked
item w, for ‘winner’. Such a database can be represented
by a function f (x) on the items in the database, such that f
of the marked item is 1, and f of any unmarked item is 0.
That is, f (w) D 1, and f (x ¤ w) D 0. A classical search
for the marked item must take N/2 database calls, on av-
erage. By contrast, a quantum search for the marked item
takes O(

p
N) calls, as will now be shown.

Unstructured database search is an ‘oracle’ problem.
In computer science, an oracle is a ‘black box’ function:
one can supply the black box with an input x, and the
black box then provides an output f (x), but one has no
access to the mechanism inside the box that computes
f (x) from x. For the quantum case, the oracle is repre-
sented by a function on two registers, one containing x,
and the other containing a single qubit. The oracle takes
jxijyi ! jxijyC f (x)i, where the addition takes place
modulo 2.

Grover originally phrased his algorithm in terms of
a ‘phase’ oracle Uw, where jxiUw jxi D (�1) f (x)jxi. In
other words, the ‘winner’ state acquires a phase of �1:
jwi ! �jwi, while the other states remain unchanged:
jx ¤ wi ! jxi. Such a phase oracle can be constructed

from the original oracle in several ways. The first way in-
volves two oracle calls. Begin with the state jxij0i and call
the oracle once to construct the state jxij f (x)i. Now ap-
ply a �z transformation to the second register. The effect
of this is to take the state to (�1) f (x)jxij f (x)i. Applying
the oracle for a second time yields the desired phase-oracle
state (�1) f (x)jxij0i. A second, sneakier way to construct
a phase oracle is to initialize the second qubit in the state
(1/
p
2)(j0i � j1i). A single call of the original oracle on the

state jxi(1/
p
2)(j0i � j1i) then transforms this state into

(�1) f (x)jxi((1/
p
2)(j0i � j1i)). In this way a phase oracle

can be constructed from a single application of the original
oracle.

Two more ingredients are needed to perform Grover’s
algorithm. Let’s assume that N D 2n for some n, so
that the different states j ji can be written in binary
form. Let U0 be the unitary transformation that takes
j0 : : : 0i ! �j0 : : : 0i, that takes j ji ! j ji for j ¤ 0. That
is,U0 acts in the same way asUw, but applies a phase of�1
to j0 : : : 0i rather than to jwi. In addition, let H be the
transformation that performs Hadamard transformations
on all of the qubits individually.

Grover’s algorithm is performed as follows. Pre-
pare all qubits in the state j0i and apply the global
Hadamard transformation H to create the state j i D
(1/
p
N)
PN�1

jD0 j ji. Apply, in succession, Uw, then H,
then U0, then H again. These four transformations make
up the composite transformation UG D HU0HUw . Now
apply UG again, and repeat for a total of � (�/4)

p
N

times (that is, the total number of times UG is applied
is equal to the integer closest to (�/4)

p
N). The system

is now, with high probability, in the state jwi. That is,
U
p

N
G j0 : : : 0i � jwi. Since each application of UG con-

tains a single call to the phase oracle Uw, the winner state
jwi has now been identified with O(

p
N) oracle calls, as

promised.
The quantum algorithm succeeds because the transfor-

mation UG acts as a rotation in the two-dimensional sub-
space defined by the states j i and jwi. The angle of the
rotation effected by each application of UG can be shown
to be given by sin � D 2/

p
N. Note that j i and jwi are

approximately orthogonal, h jwi D 1/
p
N , and that after

the initial Hadamard transformation the system begins in
the state j i. Each successive application of UG moves it
an angle � closer to jwi. Finally, after � (�/4)

p
N itera-

tions, the state has rotated the full� �/2 distance to jwi.
Grover’s algorithm can be shown to be optimal [82]:

no black-box algorithm can find jwi with fewer than
O(
p
N) iterations of the oracle. The algorithm also

works for oracles where there are M winners, so that
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f (x) D 1 for M distinct inputs. In this case, the an-
gle of rotation for each iteration of UG is given
by sin � D (2/N)

p
M(N �M), and the algorithm takes

� (�/4)
p
N/M steps to identify a winner.

The Adiabatic Algorithm

Many classically hard problems take the form of opti-
mization problems. In the well-known traveling salesman
problem, for example, one aims to find the shortest route
connecting a set of cities. Such optimization problems can
be mapped onto a physical system, in which the function
to be optimized is mapped onto the energy function of the
system. The ground state of the physical system then rep-
resents a solution to the optimization problem. A common
classical technique for solving such problems is simulated
annealing: one simulates the process of gradually cooling
the system in order to find its ground state [83]. Simulated
annealing is bedeviled by the problem of local minima,
states of the system that are close to the optimal states in
terms of energy, but very far away in terms of the particu-
lar configuration of the degrees of freedom of the state. To
avoid getting stuck in such local minima, one must slow
the cooling process to a glacial pace in order to insure that
the true ground state is reached in the end.

Quantum computing provides a method for getting
around the problem of local minima. Rather than try-
ing to reach the ground state of the system by cooling,
one uses a purely quantum-mechanical technique for find-
ing the state [84]. One starts the system with a Hamilto-
nian dynamics whose ground state is simple to prepare
(e. g., ‘all spins sideways’). Then one gradually deforms the
Hamiltonian from the simple dynamics to the more com-
plex dynamics whose ground state encodes the answer to
the problem in question. If the deformation is sufficiently
gradual, then the adiabatic theorem of quantum mechan-
ics guarantees that the system remains in its ground state
throughout the deformation process. When the adiabatic
deformation is complete, then the state of the system can
be measured to reveal the answer.

Adiabatic quantum computation (also called ‘quan-
tum annealing’) represents a purely quantum way to find
the answer to hard problems. How powerful is adiabatic
quantum computation? The answer is, ‘nobody knows for
sure’. The key question is, what is ‘sufficiently gradual’
deformation? That is, how slowly does the deformation
have to be to guarantee that the transformation is adia-
batic? The answer to this question lies deep in the heart
of quantum matter. As one performs the transformation
from simple to complex dynamics, the adiabatic quantum
computer goes through a quantum phase transition. The

maximum speed at which the computation can be per-
formed is governed by the size of the minimum energy gap
of this quantum phase transition. The smaller the gap, the
slower the computation. The scaling of gaps during phase
transitions (‘Gapology’) is one of the key disciplines in the
study of quantum matter [85]. While the scaling of the
gap has been calculated for many familiar quantum sys-
tems such as Ising spin glasses, calculating the gap for adi-
abatic quantum computers that are solving hard optimiza-
tion problems seems to be just about as hard as solving the
problem itself.

While few quantum computer scientists believe that
adiabatic quantum computation can solve the traveling
salesman problem, there is good reason to believe that adi-
abatic quantum computation can outperform simulated
annealing on a wide variety of hard optimization prob-
lems. In addition, it is known that adiabatic quantum com-
putation is neither more nor less powerful than quan-
tum computation itself: a quantum computer can simulate
a physical system undergoing adiabatic time evolution us-
ing the quantum simulation techniques described above;
in addition, it is possible to construct devices that per-
form conventional quantum computation in an adiabatic
fashion [86].

QuantumWalks

A final, ‘physics-based’, type of algorithm is the quan-
tum walk [87,88,89,90]. Quantum walks are coherent ver-
sions of classical random walks. A classical random walk
is a stochastic Markov process, the random walker steps
between different states, labeled by j, with a probability wij
for making the transition from state j to state i. Here wij
is a stochastic matrix, wi j � 0 and

P
j wi j D 1. In a quan-

tum walk, the stochastic, classical process is replaced by
a coherent, quantum process: the states j ji are quantum
states, and the transition matrix Uij is unitary.

By exploiting quantum coherence, quantum walks can
be shown typically to give a square root speed up over
classical randomwalks. For example, in propagation along
a line, a classical random walk is purely diffusive, with the
expectation value of displacement along the line going as
the square root of the number of steps in the walk. By con-
trast, a quantum walk can be set up as a coherent, propa-
gating wave, so that the expectation value of the displace-
ment is proportional to the number of steps [88]. A partic-
ularly elegant example of a square root speed up in a quan-
tum walk is the evaluation of a NAND tree [90]. A NAND
tree is a binary tree containing a NAND gate at each ver-
tex. Given inputs on the leaves of the tree, the problem is
to evaluate the outcome at the root of the tree: is it zero
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or one? NAND trees are ubiquitous in, e. g., game theory:
the question of who wins at chess, checkers, or Go, is de-
termined by evaluating a suitable NAND tree. Classically,
a NAND tree can be evaluated with a minimum of steps.
A quantum walk, by contrast, can evaluate a NAND tree
using only 2n/2 steps.

For some specially designed problems, such as propa-
gation along a random tree, quantumwalks can give expo-
nential speedups over classical walks [89]. The question of
what problems can be evaluated more rapidly using quan-
tum walks than classical walks remains open.

The Future of QuantumAlgorithms

The quantum algorithms described above are potentially
powerful, and, if large-scale quantum computers can be
constructed, could be used to solve a number of important
problems for which no efficient classical algorithms exist.
Many questions concerning quantum algorithms remain
open. While the majority of quantum computer scientists
would agree that quantum algorithms are unlikely to pro-
vide solutions to NP-complete problems, it is not known
whether or not quantum algorithms could provide solu-
tions to such problems as graph isomorphism or shortest
vector on a lattice. Such questions are an active field of re-
search in quantum computer science.

Noise and Errors

The picture of quantum computation given in the previ-
ous section is an idealized picture that does not take into
account the problems that arise when quantum computers
are built in practice. Quantum computers can be built us-
ing nuclear magnetic resonance, ion traps, trapped atoms
in cavities, linear optics with feedback of nonlinear mea-
surements, superconducting systems, quantum dots, elec-
trons on the surface of liquid helium, and a variety of other
standard and exotic techniques. Any system that can be
controlled in a coherent fashion is a candidate for quan-
tum computation. Whether a coherently controllable sys-
tem can actually be made to computer depends primarily
on whether it is possible to deal effectively with the noise
intrinsic to that system. Noise induces errors in computa-
tion. Every type of quantum information processor is sub-
ject to its own particular form of noise.

A detailed discussion of the various technologies for
building quantum computers lies beyond the scope of this
article. While the types of noise differ from quantum tech-
nology to quantum technology, however, the methods for
dealing with that noise are common between technologies.
This section presents a general formalism for characteriz-
ing noise and errors, and discusses the use of quantum er-

ror-correcting codes and other techniques for coping with
those errors.

Open-System Operations

The time evolution of a closed quantum-mechanical
system is given by unitary transformation: �! U�U�,
where U is unitary, U� D U�1. For discussing quantum
communications, it is necessary to look at the time evo-
lution of open quantum systems that can exchange quan-
tum information with their environment. The discussion
of open quantum systems is straightforward: simply ad-
join the system’s environment, and consider the coupled
system and environment as a closed quantum system. If
the joint density matrix for system and environment is

�SE(0)! �SE(t) D USE�SE(0)U
�
SE : (47)

The state of the system on its own is obtained by taking
the partial trace over the environment, as described above:
�S(t) D trE�SE(t).

A particularly useful case of system and environmen-
tal interaction is one in which the system and environment
are initially uncorrelated, so that �SE(0) D �S(0)˝ �E(0).
In this case, the time evolution of the system on its own can
always be written as �S(t) D

P
k Ak�S(0)A

�
k . Here the Ak

are operators that satisfy the equation
P

k A
�
kAk D Id:

the Ak are called Kraus operators, or effects. Such a time
evolution for the system on its own is called a completely
positive map. A simple example of such a completely
positive map for a qubit is A0 D Id/

p
2, A1 D �x /

p
2.

fA0;A1g can easily be seen to obey A�0A0 C A�1A1 D Id.
This completely positive map for the qubit corresponds to
a time evolution in which the qubit has a 50% chance of
being flipped about the x-axis (the effect A1), and a 50%
chance of remaining unchanged (the effect A0).

The infinitesimal version of any completely positive
map can be obtained by taking �SE(0) D �S(0)˝ �E(0),
and by expanding (46) to second order in t. The result is
the Lindblad master equation:

@�S

@t
D �i[H̃S; �S]�

X

k

(L�kLk�S�2Lk�SŁkC�SL
�
kLk) :

(48)

Here H̃S is the effective system Hamiltonian: it is equal to
the Hamiltonian HS for the system on its own, plus a per-
turbation induced by the interaction with the environment
(the so-called ‘Lamb shift’). The Lk correspond to open
system effects such as noise and errors.
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Quantum Error-Correcting Codes

One of the primary effects of the environment on quan-
tum information is to cause errors. Such errors can be
corrected using quantum error-correcting codes. Quan-
tum error-correcting codes are quantum analogs of clas-
sical error-correcting codes such as Hamming codes or
Reed–Solomon codes [91]. Like classical error-correcting
codes, quantum error-correcting codes involve first en-
coding quantum information in a redundant fashion; the
redundant quantum information is then subjected to noise
and errors; then the code is decoded, at which point the
information needed to correct the errors lie in the code’s
syndrome.

More bad things can happen to quantum information
than to classical information. The only error that can oc-
cur to a classical bit is a bit-flip. By contrast, a quantum
bit can either be flipped about the x-axis (the effect �x ),
flipped about the y-axis (the effect �y), flipped about the z-
axis (the effect �z), or some combination of these effects.
Indeed, an error on a quantum bit could take the form of
a rotation by an unknown angle � about an unknown axis.
Since specifying that angle and axis precisely could take
an infinite number of bits of information, it might at first
seem impossible to detect and correct such an error.

In 1996, however, Peter Shor [92] and Andrew
Steane [93] independently realized that if an error cor-
recting code could detect and correct bit-flip errors (�x )
and phase-flip errors (�z), then such a code would in fact
correct any single-qubit error. The reasoning is as fol-
lows. First, since �y D i�x�z , a code that detects and cor-
rects first �x errors, then �z errors will also correct �y er-
rors. Second, since any single-qubit rotation can be writ-
ten as a combination of �x ; �y and �z rotations, the code
will correct arbitrary single qubit errors. The generaliza-
tion of such quantum error-correcting codes to multi-
ple qubit errors are called Calderbank–Shor–Steane (CSS)
codes [94]. A powerful technique for identifying and char-
acterizing quantum codes is Gottesman’s stabilizer for-
malism [95].

Concatenation is a useful method for constructing
codes, both classical and quantum. Concatenation com-
bines two codes, with the second code acting on bits
that have been encoded using the first code. Quantum
error-correcting codes can be combined with quantum
computation to perform fault-tolerant quantum compu-
tation. Fault-tolerant quantum computation allows quan-
tum computation to be performed accurately even in the
presence of noise and errors, as long as those errors occur
at a rate below some threshold [96,97,98]. For restricted
error models [99], this rate can be as high as 1% � 3%.

For realistic error models, however, the rate is closer to
10�3 — 10�4.

Re-focusing

Quantum error-correcting codes are not the only tech-
nique available for dealing with noise. If, as is frequently
the case, environmentally induced noise possesses some
identifiable structure in terms of correlations in space and
time, or obeys some set of symmetries, then powerful tech-
niques come into play for coping with noise.

First of all, suppose that noise is correlated in time.
The simplest such correlation is a static imperfection: the
Hamiltonian of the system is supposed to be H, but the
actual Hamiltonian is H C�H, where �H is some un-
known perturbation. For example, an electron spin could
have the Hamiltonian H D �(„/2)(! C�!)�z , where
�! is an unknown frequency shift. If not attended to,
such a frequency shift will introduce unknown phases in
a quantum computation, which will in turn cause errors.

Such an unknown perturbation can be dealt with quite
effectively simply by flipping the electron back and forth.
Let the electron evolve for time T; flip it about the x-axis;
let it evolve for time T; finally, flip it back about the x-axis.
The total time-evolution operator for the system is then

�xei(!C#!)T
z�xei(!C#!)T
z D Id : (49)

That is, this simple refocusing technique cancels out the
effect of the unknown frequency shift, along with the time
evolution of the unperturbed Hamiltonian.

Even if the environmental perturbation varies in time,
refocusing can be used significantly to reduce the effects
of such noise. For time-varying noise, refocusing effec-
tively acts as a filter, suppressing the effects of noise with
a correlation time longer than the refocusing timescale T.
More elaborate refocusing techniques can be used to cope
with the effect of couplings between qubits. Refocusing
requires no additional qubits or syndromes, and so is
a simpler (and typically much more effective) technique
for dealing with errors than quantum error-correcting
codes. For existing experimental systems, refocusing typ-
ically makes up the ‘first line of defence’ against environ-
mental noise. Once refocusing has dealt with time-corre-
lated noise, quantum error correction can then be used to
deal with any residual noise and errors.

Decoherence-free Subspaces and Noiseless Subsystems

If the noise has correlations in space, then quantum in-
formation can often be encoded in such a way as to be
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resistant to the noise even in the absence of active er-
ror correction. A common version of such spatial corre-
lation occurs when each qubit is subjected to the same
error. For example, suppose that two qubits are sub-
jected to noise of the form of a fluctuating Hamiltonian
H(t) D („/2)� (t)(�1z C �2z ). This Hamiltonian introduces
a time-varying phase � (t) between the states j "ii ; j #ii .
The key point to note here is that this phase is the same for
both qubits. A simple way to compensate for such a phase
is to encode the logical state j0i as the two-qubit state
j "i1j #i2, and the logical state j1i as the two-qubit state
j #i1j "i2. It is simple to verify that the two-qubit encoded
states are now invariant under the action of the noise: any
phase acquired by the first qubit is canceled out by the
equal and opposite phase acquired by the second qubit.
The subspace spanned by the two-qubit states j0i; j1i is
called a decoherence-free subspace: it is invariant under
the action of the noise.

Decoherence-free subspaces were first discovered by
Zanardi [100] and later popularized by Lidar [101]. Such
subspaces can be found essentially whenever the genera-
tors of the noise possess some symmetry. The general form
that decoherence-free subspaces take arises from the fol-
lowing observation concerning the relationship between
noise and symmetry.

Let fEkg be the effects that generate the noise, so that
the noise takes �!

P
k Ek�E

�
k , and let E be the algebra

generated by the fEkg. LetG be a symmetry of this algebra,
so that [g; E] D 0 for all g 2 G; E 2 E. The Hilbert space
for the system then decomposes into irreducible represen-
tation of E and G in the following well-known way:

H D
X

j

H j
E ˝H

j
G ; (50)

where H j
E are the irreducible representations of E, and

H j
G are the irreducible representations of G.
The decomposition (49) immediately suggests a sim-

ple way of encoding quantum information in a way that is
immune to the effects of the noise. Look at the effect of the
noise on states of the form j�i j ˝ j i j where j�i j 2H j

E,
and j i j 2H j

G for some j. The effect Ek acts on this state
as (E j

k j�i j)˝ j i j , where Ek
j is the effect corresponding

to Ek within the representationH j
E. In other words, if we

encode quantum information in the state j i j , then the
noise has no effect on j i j . A decoherence-free subspace
corresponds to anH j

G where the corresponding represen-
tation of E,H j

E, is one-dimensional. The case whereH j
E,

is higher dimensional is called a noiseless subsystem [102].

Decoherence-free subspaces and noiseless subsystems
represent highly effective methods for dealing with the
presence of noise. Like refocusing, these methods exploit
symmetry to encode quantum information in a form that
is immune to noise that possesses that symmetry. Where
refocusing exploits temporal symmetry, decoherence-free
subspaces and noiseless subsystems exploit spatial symme-
try. All such symmetry-based techniques have the advan-
tage that no error-correcting process is required. Like refo-
cusing, therefore, decoherence-free subspaces and noise-
less subsystems form the first line of defense against noise
and errors.

The tensor product decomposition of irreducible rep-
resentations in (49) lies behind all known error-correcting
codes [103]. A general quantum-error correcting code be-
gins with a state j00 : : : 0iAj i, where j00 : : : 0iA is the ini-
tial state of the ancilla. An encoding transformation Uen is
then applied; an error Ek occurs; finally a decoding trans-
formation Ude is applied to obtain the state

jekiAj i D UdeEkUenj00 : : : 0iAj i : (51)

Here, jekiA is the state of the ancilla that tells us that
the error corresponding to the effect Ek has occurred.
Equation. (50) shows that an error-correcting code is just
a noiseless subsystem for the ‘dressed errors’ fUdeEkUeng.
At bottom, all quantum error-correcting codes are based
on symmetry.

Topological QuantumComputing

A particularly interesting form of quantum error correc-
tion arises when the underlying symmetry is a topologi-
cal one. Kitaev [104] has shown how quantum computa-
tion can be embedded in a topological context. Two-di-
mensional systems with the proper symmetries exhibit
topological excitations called anyons. The name, ‘anyon’,
comes from the properties of these excitations under ex-
change. Bosons, when exchanged, obtain a phase of 1;
fermions, when exchanged, obtain a phase of �1. Anyons,
by contrast, when exchanged, can obtain an arbitrary
phase ei� . For example, the anyons that underlie the frac-
tional quantum Hall effect obtain a phase e2	 i/3 when ex-
changed. Fractional quantum Hall anyons can be used
for quantum computation in a way that makes two-qubit
quantum logic gates intrinsically resistant to noise [105].

The most interesting topological effects in quan-
tum computation arise when one employs non-abelian
anyons [104]. Non-abelian anyons are topological exci-
tations that possess internal degrees of freedom. When
two non-abelian anyons are exchanged, those internal de-
grees of freedom are subjected not merely to an additional
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phase, but to a general unitary transformation U. Kitaev
has shown how in systems with the proper symmetries,
quantum computation can be effected simply by exchang-
ing anyons. The actual computation takes place by drag-
ging anyons around each other in the two-dimensional
space. The resulting transformation can be visualized as
a braid in two dimensional space plus the additional di-
mension of time.

Topological quantum computation is intrinsically
fault tolerant. The topological excitations that carry quan-
tum information are impervious to locally occurring noise:
only a global transformation that changes the topology of
the full system can create a error. Because of their potential
for fault tolerance, two-dimensional systems that possess
the exotic symmetries required for topological quantum
computation are being actively sought out.

QuantumCommunication

Quantum mechanics provides the fundamental limits to
information processing. Above, quantum limits to com-
putation were investigated. Quantum mechanics also pro-
vides the fundamental limits to communication. This sec-
tion discusses those limits. The session closes with a sec-
tion on quantum cryptography, a set of techniques by
which quantum mechanics guarantees the privacy and se-
curity of cryptographic protocols.

Multiple Uses of Channels

Each quantum communication channel is characterized
by its own open-system dynamics. Quantum communi-
cation channels can possess memory, or be memoryless,
depending on their interaction with their environment.
Quantum channels with memory are a difficult topic,
which will be discussed briefly below. Most of the discus-
sion that follows concerns the memoryless quantum chan-
nel. A single use of such a channel corresponds to a com-
pletely positive map, �!

P
k Ak�A

�
k , and n uses of the

channel corresponds to a transformation

�1:::n !
X

k1:::kn

Akn ˝ � � � ˝ Ak1�1:::nA
�
k1 ˝ � � � ˝ A�kn

�
X

K

AK�1:::nA
�
K ;

(52)

where we have used the capital letter K to indicate the n
uses of the channel k1 : : : kn . In general, the input state
�1:::n may be entangled from use to use of the channel.
Many outstanding questions in quantum communication

theory remain unsolved, including, for example, the ques-
tion of whether entangling inputs of the channel helps for
communicating classical information.

Sending Quantum Information

Let’s begin with using quantum channels to send quantum
information. That is, we wish to send some quantum state
j i from the input of the channel to the output. To do this,
we encode the state as some state of n inputs to the chan-
nel, send the encoded state down the channel, and then
apply a decoding procedure at the output to the channel.
It is immediately seen that such a procedure is equivalent
to employing a quantum error-correcting code.

The general formula for the capacity of such quan-
tum channels is known [44,45]. Take some input or ‘sig-
nal’ state �1:::n for the channel. First, construct a purifi-
cation of this state. A purification of a density matrix �
for the signal is a pure state j iAS for the signal together
with an ancilla, such that the state �S D trAj iASh j is
equal to the original density matrix �. There are many
different ways to purify a state: a simple, explicit way is
to write � D

P
j p jj jih jj in diagonal form, where fj jig is

the eigenbasis for �. The state j iAS D
P

j
pp jj jiAj jiS,

where fj jiAg is an orthonormal set of states for the ancilla,
then yields a purification of �.

To obtain the capacity of the channel for sending
quantum information, proceed as follows. Construct a pu-
rification for the signal �1:::n : j ni D

P
J
ppJ jJinAjJi

n
S ,

where we have used an index J instead of j to indicate that
these states are summed over n uses of the channel. Now
send the signal state down the channel, yielding the state

�AS D
X

J J0

p
pJ pJ0 jJinAhJ

0j ˝
X

K

AK jJinS hJ
0jA�K ; (53)

where as above K D k1 : : : kn indicates k uses of the chan-
nel. �AS is the state of output signal state together with the
ancilla. Similarly, �S D trA�AS is the state of the output sig-
nal state on its own.

Let I(AS) D �tr�AS log2 �AS be the entropy of �AS,
measured in bits. Similarly, let I(S) D �tr�S log2 �S be the
entropy of the output state �S, taken on its own. De-
fine I(S/A) � I(S) � I(AS) if this quantity is positive, and
I(S/A) � 0 otherwise. The quantity I(S/A) is a measure of
the capacity of the channel to send quantum information
if the signals being sent down the channel are described
by the density matrix �1:::n . It can be shown using either
CSS codes [106] or random codes [45,107] that encodings
exist that allow quantum information to be sent down the
channel and properly decoded at the output at a rate of
I(S/A)/n qubits per use.
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I(S/A) is a function only of the properties of the chan-
nel and the input signal state �1:::n . The bigger I(S/A) is,
the less coherence the channel has managed to destroy.
For example, if the channel is just a unitary transforma-
tion of the input, which destroys no quantum informa-
tion, then I(AS) D 0 and I(S/A) D I(S): the state of the
signal and ancilla after the signal has passed through the
channel is pure, and all quantum information passes down
the channel unscathed. By contrast, a completely deco-
hering channel takes an the input

P
j
pp jj jiAj jiS to the

output
P

j p jj jiAh jj ˝ j jiSh jj. In this case, I(AS) D I(S)
and I(S/A) D 0: the channel has completely destroyed all
quantum information sent down the channel.

In order to find the absolute capacity of the channel
to transmit quantum information, we must maximize the
quantity I(S/A)/n over all n-state inputs �1:::n to the chan-
nel and take the limit as n!1. More precisely, define

IC D limn!1min sup I(S/A)/n ; (54)

where the supremum (sup) is taken over all n-state inputs
�1:::n . IC is called the coherent information [44,45]: it is the
capacity of the channel to transmit quantum information
reliably.

Because the coherent information is defined only in
the limit that the length of the input state goes to infinity, it
has been calculated exactly in only a few cases. One might
hope, in analogue to Shannon’s theory of classical commu-
nication, that for memoryless channels one need only op-
timize over single inputs. That hope is mistaken, however:
entangling the input states typically increases the quantum
channel capacity even for memoryless channels [108].

Capacity of QuantumChannels
to Transmit Classical Information

One of the most important questions in quantum commu-
nications is the capacity of quantum channels to transmit
classical information. All of our classical communication
channels – voice, free space electromagnetic, fiber optic,
etc. – are at bottom quantummechanical, and their capac-
ities are set using the laws of quantummechanics. If quan-
tum information theory can discover those limits, and de-
vise ways of attaining them, it will have done humanity
a considerable service.

The general picture of classical communication using
quantum channels is as follows. The conventional discus-
sion of communication channels, both quantum and clas-
sical, designates the sender of information as Alice, and
the receiver of information as Bob. Alice selects an en-
semble of input states �J over n uses of the channel, and
send the Jth input �J with probability pJ . The channel takes

the n-state input �J to the output �̃J D
P

K AK�JA
�
K . Bob

then performs a generalized measurement fB`g with out-
comes f`g to try to reveal which state Alice sent. A gener-
alized measurement is simply a specific form an open-sys-
tem transformation. The fB`g are effects for a completely
positive map:

P
` B

�

`
B` D Id. After making the general-

ized measurement on an output state �̃J , Bob obtains the
outcome ` with probability p`jJ D trB`�̃JB

�

`
, and the sys-

tem is left in the state (1/p`jJ )B`�̃JB
�

`
.

Once Alice has chosen a particular ensemble of sig-
nal states f�J ; pJg, and Bob has chosen a particular
generalized measurement, then the amount of informa-
tion that can be sent along the channel is determined
by the input probabilities pJ and the output probabil-
ities p`jJ and p` D

P
J pJ p`jJ . In particular, the rate

at which information can be sent through the channel
and reliably decoded at the output is given by the mu-
tual information I(in : out) D I(out) � I(outjin), where
I(out) D �

P
` p` log2 p` is the entropy of the output and

I(outjin) D
P

J pJ(�
P
` p`jJ log2 p`jJ ) is the average en-

tropy of the output conditioned on the state of the input.
To maximize the amount of information that can be

sent down the channel, Alice and Bob need to maxi-
mize over both input states and over Bob’s measurement
at the output. The Schumacher–Holevo–Westmoreland
theorem, however, considerably simplifies the problem
of maximizing the information transmission rate of the
channel by obviating the need to maximize over Bob’s
measurements [37,38,39]. Define the quantity

� D S

0

@
X

J

pJ �̃J

1

A �
X

J

pJ S(�̃J) ; (55)

where S(�) � �tr� log2 �. � is the difference between
the entropy of the average output state and the average
entropy of the output states. The Schumacher–Holevo–
Westmoreland theorem then states that the capacity of
the quantum channel for transmitting classical informa-
tion is given by the limit as limn!1min sup�/n, where
the supremum is taken over all possible ensembles of in-
put states f�J; pJg over n uses of the channel.

For Bob to attain the channel capacity given by �, he
must in general make entangling measurements over the
channel outputs, even when the channel is memoryless
and when Alice does not entangle her inputs. (An entan-
gling measurement is one the leaves the outputs in an en-
tangled state after the measurement is made.) It would
simplify the process of finding the channel capacity still
further if the optimization over input states could be per-
formed over a single use of the channel for memoryless
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channels, as is the case for classical communication chan-
nels, rather than having to take the limit as the number of
inputs goes to infinity. If this were the case, then the chan-
nel capacity for memoryless channels would be attained
for Alice sending unentangled states down the channel.
Whether or not one is allowed to optimize over a single
use for memoryless channels was for many years one of
the primary unsolved conjectures of quantum information
theory.

Let’s state this conjecture precisely. Let �n be the max-
imum of � over n uses of a memoryless channel. We then
have the

Channel Additivity Conjecture: �n D n�1 Shor
showed that the channel additivity conjecture is equiv-
alent to two other additivity conjectures, the additivity of
minimum output entropy and the additivity of entangle-
ment of formation [109]. Entanglement of formation was
discussed in the section on entanglement above. The min-
imum output entropy for n uses of a memoryless channel
is simply the minimum over input states �n , for n uses of
the channel, of S(�̃n), where �̃n is the output state arising
from the input �n . We then have the

Minimum Output Entropy Additivity Conjecture:
The minimum over �n of S(�̃n) is equal to n times the
minimum over �1 of S(�̃1).

Shor’s result shows that the channel additivity conjec-
ture and the minimum output entropy additivity conjec-
ture are equivalent: each one implies the other. If these
additivity conjectures could have been proved to be true,
that would have resolved some of the primary outstanding
problems in quantum channel capacity theory. Remark-
ably, however, Hastings recently showed that the min-
imum output entropy conjecture is false, by exhibiting
a channel whose minimum output entropy for multiple
uses is achieved for entangled inputs [110]. As a result,
the question of just how much classical information can
be sent down a quantum channel, and just which quan-
tum channels are additive and which are not, remainswide
open.

Bosonic Channels

Themost commonly used quantum communication chan-
nel is the so-called bosonic channel with Gaussian noise
and loss [40]. Bosonic channels are ones that use bosons
such as photons or phonons to communicate. Gaussian
noise and loss is the most common type of noise and loss
for such channels, it includes the effect of thermal noise,
noise from linear amplification, and leakage of photons or

phonons out of the channel. It has been shown that the ca-
pacity for bosonic channels with loss alone is attained by
sending coherent states down the channel [42]. Coherent
states are the sort of states produced by lasers and are the
states that are currently used in most bosonic channels.

It has been conjectured that coherent states also max-
imize the capacity of quantum communication channels
with Gaussian noise as well as loss [43]. This conjecture, if
true, would establish the quantum-mechanical equivalent
of Shannon’s theorem for the capacity of classical chan-
nels with Gaussian noise and loss. The resolution of this
conjecture can be shown to be equivalent to the following,
simpler conjecture:

Gaussian Minimum Output Entropy Conjecture: Co-
herent states minimize the output entropy of bosonic
channels with Gaussian noise and no loss.

The Gaussian minimum output entropy is intuitively
appealing: an equivalent statement is that the vacuum in-
put state minimizes the output entropy for a channel with
Gaussian noise. In other words, to minimize the output
entropy of the channel, send nothing.

Despite its intuitive appeal, the Gaussian minimum
output entropy conjecture has steadfastly resisted proof
for decades. This conjecture is related to the additivity
conjectures above: in particular, if the additivity conjec-
tures can be shown to be true, then the Gaussian mini-
mum output entropy conjecture is also true [110]. It is not
known whether the converse implication also holds. Prov-
ing the additivity conjectures and the Gaussian minimum
output entropy conjecture is one of the primary goals of
quantum information theory.

Entanglement Assisted Capacity

Just as quantum bits possess greater mathematical struc-
ture than classical bits, so quantum channels possess
greater variety than their classical counterparts. A classical
channel has but a single capacity. A quantum channel has
one capacity for transmitting quantum information (the
coherent information), and another capacity for transmit-
ting classical information (the Holevo quantity �). We can
also ask about the capacity of a quantum channel in the
presence of prior entanglement.

The entanglement assisted capacity of a channel arises
in the following situation. Suppose that Alice and Bob have
used their quantum channel to build up a supply of en-
tangled qubits, where Alice possesses half of the entangled
pairs of qubits, and Bob possesses the other half of the
pairs. Now Alice sends Bob some qubits over the channel.
How much classical information can these qubits convey?
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At first one might think that the existence of shared
prior entanglement should have no effect on the amount
of information that Alice can send to Bob. After all, entan-
glement is a form of correlation, and the existence of prior
correlation betweenAlice and Bob in a classical setting has
no effect on the amount of information sent. In the quan-
tum setting, however, the situation is different.

Consider, for example, the case where Alice and Bob
have a perfect, noiseless channel. When Alice and Bob
share no prior entanglement, then a single qubit sent
down the channel conveys exactly one bit of classical in-
formation. When Alice and Bob share prior entangle-
ment, however, a single quantum bit can convey more
than one bit of classical information. Suppose that Al-
ice and Bob share an entangled pair in the singlet state
(1/
p
2)(j0iAj1iB � j1iAj0iB). Alice then performs one of

four actions on her qubit: either she does nothing (per-
forms the identity Id on the qubit), or she flips the qubit
around the x-axis (performs �x ), or she flips the qubit
around the y-axis (performs �y), she flips the qubit around
the z-axis (performs �z).

Now Alice sends her qubit to Bob. Bob now pos-
sesses one of the four orthogonal states, (1/

p
2) �

(j0iAj1iB�j1iAj0iB), (1/
p
2)(j1iAj1iB�j0iAj0iB), (i/

p
2) �

(j1iAj1iB C j0iAj0iB), (1/
p
2)(j0iAj1iB C j1iAj0iB). By

measuring which of these states he possesses, Bob can de-
termine which of the four actions Alice performed. That
is, whenAlice and Bob share prior entanglement, Alice can
send two classical bits for each quantum bit she sends. This
phenomenon is known as superdense coding [111].

In general, the quantum channel connecting Alice to
Bob is noisy. We can then ask, given the form of the
quantum channel, how much does the existence of prior
entanglement help Alice in sending classical information
to Bob? The answer to this question is given by the fol-
lowing theorem, due to Shor et al. The entanglement
assisted capacity of a quantum channel is equal to the
maximum of the quantum mutual information between
the input and output of the channel [112]. The quan-
tum mutual information is defined as follows. Prepare
a purification j iAS of an input state � and send the
signal state S down the channel, resulting the state �AS
as in (52) above. Defining �S D trA�AS, �A D trS�AS,
as before, the quantum mutual information is defined
to be IQ (A : S) D S(�A)C S(�S) � S(�AS). The entangle-
ment assisted capacity of the channel is obtained by max-
imizing the quantum mutual information IQ (A : S) over
input states �.

The entanglement assisted capacity of a quantum
channel is greater than or equal to the channel’s Holevo
quantity, which is in turn greater than or equal to the chan-

nel’s coherent information. Unlike the coherent informa-
tion, which is known not to be additive over many uses
of the channel, or the Holevo quantity, which is suspected
to be additive but which has not been proved to be so, the
entanglement assisted capacity is known to be additive and
so can readily be calculated for memoryless channels.

Teleportation

As mentioned in the introduction, one of the most strange
and useful effects in quantum computation is teleporta-
tion [46]. The traditional, science fiction picture of tele-
portation works as follows.

An object such as an atom or a human being is placed
in a device called a teleporter. The teleporter makes com-
plete measurements of the physical state of the object, de-
stroying it in the process. The detailed information about
that physical state is sent to a distant location, where a sec-
ond teleporter uses that information to reconstruct an ex-
act copy of the original object.

At first, quantum mechanics would seem to make
teleportation impossible. Quantum measurements tend to
disturb the object measured. Many identical copies of the
object are required to obtain even a rough picture of the
underlying quantum state of the object. In the presence
of shared, prior entanglement, however, teleportation is in
fact possible in principle, and simple instances of telepor-
tation have been demonstrated experimentally.

A hint to the possibility of teleportation comes from
the phenomenon of superdense coding described in the
previous section. If one qubit can be used to convey two
classical bits using prior entanglement, then maybe two
classical bits might be used to convey one qubit. This hope
turns out to be true. Suppose that Alice and Bob each pos-
sess one qubit out of an entangled pair of qubits (that is,
they mutually possess one ‘e-bit’). Alice desires to teleport
the state j i of another qubit. The teleportation protocol
goes as follows.

First, Alice makes a Bell-state measurement on the
qubit to be teleported together with her half of the en-
tangled pair. A Bell-state measurement on two qubits
is one that determines whether the two qubits are
in one of the four states j�00i D (1/

p
2)(j01i � j10i),

j�01i D (1/
p
2)(j00i � j11i), j�10i D (1/

p
2)(j00i C j11i),

or j�11i D (1/
p
2)(j01i C j10i). Alice obtains two classi-

cal bits of information as a result of her measurement,
depending on which j�i ji the measurement revealed. She
sends these two bits to Bob. Bob now performs a unitary
transformation on his half of the entangled qubit pair. If
he receives 00, then he does nothing. If he receives 01, then
he applies �x to flip his bit about the x-axis. If he receives
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10, then he applies �y to flip his bit about the y-axis. If he
receives 11, then he applies �z to flip his bit about the z-
axis. The result? After Bob has performed his transforma-
tion conditioned on the two classical bits he received from
Alice, his qubit is now in the state j i, up to an overall
phase. Alice’s state has been teleported to Bob.

It might seem at first somewhat mysterious how
this sequence of operations can teleport Alice’s state
to Bob. The mechanism of teleportation can be elu-
cidated as follows. Write j i D ˛j0ii C ˇj1ii . Alice
and Bob’s entangled pair is originally in the state
j�00iAB D (1/

p
2)(j0iAj1iB � j1iAj0iB). The full initial

state of qubit to be teleported together with the entangled
pair can then be written as

j ij�00iAB D (˛j0ii C ˇj1ii)
1
p
2
(j0iAj1iB � j1iAj0iB)

D
1

2
p
2
(j0ii j1iA � j1ii j0iA)˝ (˛j0iB C ˇj1iB)

C
1

2
p
2
(j0ii j0iA � j1ii j1iA)˝ (˛j1iB C ˇj0iB)

C
1

2
p
2
(j0ii j0iA C j1ii j1iA)˝ (˛j1iB � ˇj0iB)

C
1

2
p
2
(j0ii j1iA C j1ii j0iA)˝ (˛j0iB � ˇj1iB)

D
1
2
(j�00iiA ˝ j iB C j�01iiA ˝ �x j iB

C j�10iiA ˝ i�y j iB C j�11iiA ˝ �z j iB) :
(56)

When the initial state is written in this form, one sees im-
mediately how the protocol works: the measurement that
Alice makes contains exactly the right information that
Bob needs to reproduce the state j i by performing the
appropriate transformation on his qubit.

Teleportation is a highly useful protocol that lies at
the center of quantum communication and fault tolerant
quantum computation. There are several interesting fea-
tures to note. The two bits of information that Alice ob-
tains are completely random: 00; 01; 10; 11 all occur with
equal probability. These bits contain no information about
j i taken on their own: it is only when combined with
Bob’s qubit that those bits suffice to recreate j i. During
the teleportation process, it is difficult to say just where
the state j i ‘exists’. After Alice has made her measure-
ment, the state j i is in some sense ‘spread out’ between
her two classical bits and Bob’s qubit. The proliferation of
quotation marks in this paragraph is a symptom of quan-
tum weirdness: classical ways of describing things are in-
adequate to capture the behavior of quantum things. The

only way to see what happens to a quantum system during
a process like teleportation is to apply the mathematical
rules of quantum mechanics.

QuantumCryptography

A common problem in communication is security. Sup-
pose that Alice and Bob wish to communicate with each
other with the secure knowledge that no eavesdropper
(Eve) is listening in. The study of secure communication
is commonly called cryptography, since to attain security
Alice must encrypt her messages and Bob must decrypt
them. The no-cloning theorem together with the fact that
if one measures a quantum system, one typically disturbs
it, implies that quantum mechanics can play a unique role
in constructing cryptosystems. There are a wide variety
of quantum cryptographic protocols [49,50,51]. The most
common of these fall under the heading of quantum key
distribution (QKD).

The most secure form of classical cryptographic proto-
cols is the one-time pad. Here, Alice and Bob each possess
a random string of bits. This string is called the key. If no
one else possesses the key, then Alice and Bob can send
messages securely as follows. Suppose that Alice’s message
has been encoded in bits in some conventional way (e. g.,
mapping characters to ASCII bit strings). Alice encrypts
the message by adding the bits of the key to the bits of
her message one by one, modulo 2 (i. e., without carrying).
Quantum information theory is a rich and fundamental
field. Its origins lie with the origins of quantum mechan-
ics itself a century ago. The field has expanded dramati-
cally since the mid 1990s, due to the discovery of practical
applications of quantum information processing such as
factoring and quantum cryptography, and because of the
rapid development of technologies for manipulating sys-
tems in a way that preserves quantum coherence.

As an example of the rapid pace of development in
the field of quantum information, while this article was in
proof, a new algorithm for solving linear sets of equations
was discovered [116]. Based on the quantum phase algo-
rithm, this algorithm solves the following problem: given
a sparse matrix A and a vector Eb, find a vector Ex such that
AEx D Eb. That is, construct Ex D A�1Eb. If A is an n by n
matrix, the best classical algorithms for solving this prob-
lem run in time O(n). Remarkably, the quantum matrix
inversion algorithm runs in time O(log n), an exponential
improvement: a problem that could take 1012 – 1015 oper-
ations to solve on a classical computer could be solved on
a quantum computer in fewer than one hundred steps.

When they were developed in the mid twentieth cen-
tury, the fields of classical computation and communica-
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tion provided unifying methods and themes for all of en-
gineering and science. So at the beginning of the twenty
first century, quantum information is providing unify-
ing concepts such as entanglement, and unifying tech-
niques such as coherent information processing and quan-
tum error correction, that have the potential to transform
and bind together currently disparate fields in science and
engineering.

The idea of quantum cryptography was proposed, in
embryonic form, by Stephen Wiesner in [49]. The first
quantum cryptographic protocol was proposed by Bennett
and Brassard in 1984 and is commonly called BB84 [50].
The BB84 protocol together with its variants is the one
most commonly used by existing quantum cryptosystems.

In BB84, Alice sends Bob a sequence of qubits. The
protocol is most commonly described in terms of qubits
encoded on photon polarization. Here, we will describe
the qubits in terms of spin, so that we can use the nota-
tion developed in Sect. “Quantum Mechanics”. Spin 1/2
is isomorphic to photon polarization and so the quantum
mechanics of the protocol remains the same.

Alice chooses a sequence of qubits from the set
fj "i; j #i; j  i; j !ig at random, and sends that se-
quence to Bob. As he receives each qubit in turn, Bob picks
at random either the z-axis or the x-axis and measures the
received qubit along that axis. Half of the time, on average,
Bob measures the qubit along the same axis along which it
was prepared by Alice.

Alice and Bob now check to see if Eve is listening in.
Eve can intercept the qubits Alice sends, make a measure-
ment on them, and then send them on to Bob. Because she
does not know the axis along which any individual qubit
has been prepared, however, here measurement will in-
evitably disturb the qubits. Alice and Bob can then detect
Eve’s intervention by the following protocol.

Using an ordinary, insecure form of transmission, e. g.,
the telephone, Alice reveals to Bob the state of some of the
qubits that she sent. On half of those qubits, on average,
Bob measured them along the same axis along which they
were sent. Bob then checks to see if he measured those
qubits to be in the same state that Alice sent them. If he
finds them all to be in the proper state, then he and Al-
ice can be sure that Eve is not listening in. If Bob finds
that some fraction of the qubits are not in their proper
state, then he and Alice know that either the qubits have
been corrupted by the environment in transit, or Eve is
listening in. The degree of corruption is related to the
amount of information that Eve can have obtained: the
greater the corruption, the more information Eve may
have. From monitoring the degree of corruption of the re-
ceived qubits, Alice and Bob can determine just howmany

bits of information Eve has obtained about their trans-
mission.

Alice now reveals to Bob the axis along which she pre-
pared the remainder of her qubits. On half of those, on
average, Bob measured using the same axis. If Eve is not
listening, those qubits on which Bob measured using the
same axis along which Eve prepared them now constitute
a string of random bits that is shared by Alice and Bob and
by them only. This shared random string can then be used
as a key for a one-time pad.

If Eve is listening in, then from their checking stage,
Alice and Bob know just howmany bits out of their shared
random string are also known by Eve. Alice and Bob
can now perform classical privacy amplification proto-
cols [113] to turn their somewhat insecure string of shared
bits into a shorter string of shared bits that is more secure.
Once privacy amplification has been performed, Alice and
Bob now share a key whose secrecy is guaranteed by the
laws of quantum mechanics.

Eve could, of course, intercept all the bits sent, measure
them, and send them on. Such a ‘denial of service’ attack
prevents Alice and Bob from establishing a shared secret
key. No cryptographic system, not even a quantum one, is
immune to denial of service attacks: if Alice and Bob can
exchange no information then they can exchange no se-
cret information! If Eve lets enough information through,
however, then Alice and Bob can always establish a secret
key.

A variety of quantum key distribution schemes have
been proposed [50,51]. Ekert suggested using entangled
photons to distribute keys to Alice and Bob. In practi-
cal quantum key distribution schemes, the states sent are
attenuated coherent states, consisting of mostly vacuum
with a small amplitude of single photon states, and an even
smaller amplitude of states with more than one photon. It
is also possible to use continuous quantum variables such
as the amplitudes of the electric and magnetic fields to
distribute quantum keys [114,115]. To guarantee the full
security of a quantum key distribution scheme requires
a careful examination of all possible attacks given the ac-
tual physical implementation of the scheme.

Implications and Conclusions

Quantum information theory is a rich and fundamental
field. Its origins lie with the origins of quantummechanics
itself a century ago. The field has expanded dramatically
since themid 1990s, due to the discovery of practical appli-
cations of quantum information processing such as factor-
ing and quantum cryptography, and because of the rapid
development of technologies for manipulating systems in
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a way that preserves quantum coherence. When they were
developed in the mid twentieth century, the fields of clas-
sical computation and communication provided unifying
methods and themes for all of engineering and science. So
at the beginning of the twenty first century, quantum in-
formation is providing unifying concepts such as entangle-
ment, and unifying techniques such as coherent informa-
tion processing and quantum error correction, that have
the potential to transform and bind together currently dis-
parate fields in science and engineering.

Indeed, quantum information theory has perhaps even
a greater potential to transform the world than classical
information theory. Classical information theory finds its
greatest application in theman-made systems such as elec-
tronic computers. Quantum information theory applies
not only to man-made systems, but to all physical sys-
tems at their most fundamental level. For example, entan-
glement is a characteristic of virtually all physical systems
at their most microscopic levels. Quantum coherence and
the relationship between symmetries and the conservation
and protection of information underlie not only quan-
tum information, but the behavior of elementary particles,
atoms, and molecules.

When or whether techniques of quantum information
processing will become tools of mainstream technology is
an open question. The technologies of precision measure-
ment are already fully quantum mechanical: for example,
the atomic clocks that lie at the heart of the global posi-
tioning system (GPS) rely fundamentally on quantum co-
herence. Ubiquitous devices such as the laser and the tran-
sistor have their roots in quantum mechanics. Quantum
coherence is relatively fragile, however: until such a time
as we can construct robust, easily manufactured coher-
ent systems, quantum information processing may have
its greatest implications at the extremes of physics and
technology.

Quantum information processing analyzes the uni-
verse in terms of information: at bottom, the universe is
composed not just of photons, electrons, neutrinos and
quarks, but of quantum bits or qubits. Many aspects of
the behavior of those elemental qubits are independent of
the particular physical system that registers them. By un-
derstanding how information behaves at the quantumme-
chanical level, we understand the fundamental behavior of
the universe itself.
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Quantum information science is a hugely exciting fairly
new field that has attracted many researchers from di-
verse fields such as physics, chemistry, computer science,
and mathematics. A driving force is that Moore’s law will
soon end due to a number of factors. These include tun-
neling, the heat problem, approaching atomic size, diffi-
culty of design, and cost of fabrication facilities. Multi-
cores andmanycoresmay provide a near term fix. But if we
are to continue Moore’s Law exponential trajectory long
term entirely new technologies are needed. Possible fu-
ture technologies include molecular, biological, photonic,
or quantum computers. Quantum computers are based on
the laws of quantum mechanics.

We’ve seen progress on quantum algorithms and com-
plexity. But can quantum computers be built? Two of the
impediments include the small number of qubits to date
and the short decoherence times. Will there be enough
qubits to do new science especially with the requirements
of error correction and fault tolerant computing? Will
there be enough time to do new science before decoher-
ence sets in? In contrast to quantum computation some
quantum communication applications have already been
realized.

This section begins with a broad overview of quan-
tum information science. The articles that follow discuss
quantum algorithms, quantum algorithms and complexity
for continuous problems, quantum computational com-
plexity, quantum error correction and fault tolerant com-
puting, quantum computing with trapped ions, quantum
computing using optics, and finally cryptography.

Lloyd (see � Quantum Information Processing) ar-
gues that the most important reason for studying quan-
tum information science is to construct a unified theory
of how information can be registered and transformed at
the fundamental limits imposed by physical law. He intro-
duces the formalism of quantum mechanics and applies
it to the idea of quantum information. He then identifies
quantum superposition and entanglement as being at the
heart of quantum computation. He discusses the Deutsch–
Josza algorithm which solves a problem faster than could
be done by any classical computer. This is an artificial ex-
ample. Decidably not artificial is Shor’s algorithm for fac-
toring large integers in polynomial time. The fastest classi-

cal algorithm known is exponential in the number of bits.
Shor’s algorithm is important for cryptography since the
commonly used RSA public-key system relies on the dif-
ficulty of factoring to guarantee security. The importance
of the quantum Fourier transform for algorithm design is
discussed.

Lloyd does not describe the various technologies that
can be used to build quantum computers. Every one of
them is subject to its own particular form of noise. He does
present a general formalism for characterizing noise and
errors and discusses techniques for coping with them.

Mosca (see � Quantum Algorithms) defines quan-
tum algorithms as algorithms that run on any realistic
model of quantum computation. The most commonly
used model of quantum computation is the circuit model
(more strictly, the model of uniform families of acyclic
quantum circuits), and the quantum Strong Church–
Turing thesis states that the quantum circuit model can ef-
ficiently simulate any realistic model of computation. Sev-
eral other models of quantum computation have been de-
veloped, and indeed they can be efficiently simulated by
quantum circuits. Quantum circuits closely resemblemost
of the currently pursued approaches for attempting to con-
struct scalable quantum computers.

Papageorgiou and Traub (see�Quantum Algorithms
and Complexity for Continuous Problems) point out that
most continuous mathematical formulations arising in
science and engineering can only be solved numerically
and therefore approximately. There are two major moti-
vations for studying quantum algorithms and complexity
for continuous problems.
1. Are quantum computers more powerful than classi-

cal computers for important scientific problems? How
much more powerful?

2. Many important scientific and engineering problems
have continuous formulations. These problems occur
in fields such as physics, chemistry, engineering and
finance.

The continuous formulations include path integration,
partial differential equations (in particular, the Schrö-
dinger equation) and continuous optimization.

To answer the first question the classical computa-
tional complexity of the problem must be known. There
have been decades of research on the classical complexity
of continuous problems in the field of information-based
complexity. The reason the complexity of many continu-
ous problems is known is that adversary arguments can
be used to obtain their query complexity. Regarding the
second motivation, in this article they report on high-di-
mensional integration, path integration, Feynman path in-
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tegration, the smallest eigenvalue of a differential equa-
tion, approximation, partial differential equations, ordi-
nary differential equations and gradient estimation. They
also briefly report on the simulation of quantum systems
on a quantum computer.

Watrous (see � Quantum Computational Complex-
ity) provides a survey of quantum computational com-
plexity, with a focus on three fundamental notions: poly-
nomial-time quantum computations, the efficient verifi-
cation of quantum proofs, and quantum interactive proof
systems. Based on these notions he defines quantum com-
plexity classes that contain computational problems of
varying hardness. Properties of these complexity classes,
and the relationships among these classes and classical
complexity classes, are presented. As these notions and
complexity classes are typically defined within the quan-
tum circuit model, this article includes a section that fo-
cuses on basic properties of quantum circuits that are im-
portant in the setting of quantum complexity. A selection
of other topics in quantum complexity, including quan-
tum advice, space-bounded quantum computation, and
bounded-depth quantum circuits, is also presented.

Grassl and Rotteler (see � Quantum Error Correc-
tion and Fault Tolerant Quantum Computing) point out
that it has been shown that even with imperfect quantum
memory and imperfect quantum operations it is possible
to implement arbitrary long quantum computation, pro-
vided that the failure probability of each element is be-
low a certain threshold. They provide an overview of the
ingredients leading to fault tolerant quantum computa-
tion (FTQC). In the first part, they present the theory of
quantum error-correcting codes (QECCs) and in particu-
lar two important classes of QECCs, namely the so-called
CSS codes and stabilizer codes. Both are related to clas-
sical error-correcting codes, so they start with some ba-
sics from this area. In the second part of the article, they
present a high-level view of the main ideas of FTQC and
the threshold theorem.

Lange (see � Quantum Computing with Trapped
Ions) summarizes the state-of-the-art of quantum com-
puting with trapped ions. All the necessary components
of a trapped ion quantum computer have been demon-
strated, from quantum memory and fundamental quan-
tum logic gates to simple quantum algorithms. Current
experimental efforts are directed towards scaling up the
small systems investigated so far and enhancing the fidelity
of operations to a level where error correction can be ap-
plied efficiently. The first task at which a quantum com-
puter is expected to outperform a classical one is the effi-
cient simulation of quantum systems too complex for clas-
sical treatment.

Milburn and White (see � Quantum Computing Us-
ing Optics) point out that optical implementations of
quantum computing have largely focused on encoding
quantum information using single photon states of light.
For example, a single photon could be excited to one of
two carefully defined orthogonal mode functions of the
field with different momentum directions. However, as
optical photons do not interact with each other directly,
physical devices that enable one encoded bit of informa-
tion to unitarily change another are hard to implement. In
principle it can be done using a Kerr nonlinearity, but Kerr
nonlinear phase shifts are too small to be useful. Knill et al.
discovered another way in which the state of one photon
could be made to act conditionally on the state of another
using a measurement based scheme. They discuss this ap-
proach in some detail as it has led to experiments that have
already demonstrated many of the key elements required
for quantum computation with optics.

Lo and Zhao (see � Quantum Cryptography) point
out that the goal of quantum cryptography is to per-
form tasks that are impossible or intractable with conven-
tional cryptography. Quantum cryptography makes use of
the subtle properties of quantum mechanics such as the
quantum no-cloning theorem and the Heisenberg uncer-
tainty principle. Unlike conventional cryptography, whose
security is often based on unproven computational as-
sumptions, quantum cryptography has an important ad-
vantage in that its security is often based on the laws of
physics. Thus far, proposed applications of quantum cryp-
tography include quantum key distribution (abbreviated
QKD), quantum bit commitment and quantum coin toss-
ing. These applications have varying degrees of success.
The most successful and important application (QKD) has
been proven to be unconditionally secure. Moreover, ex-
perimental QKD has now been performed over hundreds
of kilometers over both standard commercial telecom op-
tical fibers and open-air. In fact, commercial QKD systems
are currently available on the market.
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Glossary

Ballistic transport A regime of conduction where charge
carriers do not exhibit appreciable scattering while
moving in a certain material region.

Band structure The effective energy-momentum disper-
sion followed by valence and conduction electrons in
a crystal, when represented as quasi-particles moving
in a uniform medium equivalent to the actual crystal
environment characterized by a periodic distribution
of atomic potential wells.

Hot carriers Electrons or holes in a semiconductor, with
energy and velocity appreciably exceeding the average
values for thermal equilibrium with the lattice, typi-
cally in regions of high electric fields.

Quantum correction Addition of terms to a semi-classi-
cal model to cause particles obeying classical motion
laws to follow collectively quantum behavior, for the
purpose to simulate correctly quantum transport ef-
fects with considerably cheaper computations.

Scattering Collisions experienced by charge carriers
moving through a semiconductor with vibrational
modes of the crystal lattice (phonon scattering), with
charged or neutral impurities (impurity scattering),
with other charge carriers in proximity (short-range
charge-charge scattering) or with collective charge vi-
brational modes of other carriers over a long-range
(plasmon scattering).

Quantum sub-band Discrete projection of the band
structure in the directions of unrestricted motion, cor-
responding to a specific discrete state created by size
quantization.

Size quantization Separation of electronic states into dis-
crete energy levels, in a region of restricted dimension-
ality, typically at interfaces between different materials
which create a quantumpotential well. In semiconduc-
tor devices, size quantization is normally present in the
transverse cross-section of narrow conduction chan-
nels delimited by heterojunction interfaces.

Definition of the Subject

Semiconductor devices are the building blocks of inte-
grated circuits at the heart of computer chips and other
electronics systems which are ubiquitous in modern so-
ciety. While quantum physics is essential to describe the
properties of semiconductor materials, transport of elec-
tronic carriers can be treated with classical laws of motion,
as long as particles experience random scattering events
with the crystal lattice along their path. However, in many
practical devices, carriers are confined in narrow chan-
nels, so that size quantization effects should be included
in the direction normal to the conduction path to model
accurately particle density. As the device size is reduced
to pack more and more functionality in integrated cir-
cuits, quantum coherence may eventually become impor-
tant in the direction of propagation if there is a sufficient
decrease of scattering events approaching quasi-ballistic
transport conditions. If the device structure presents po-
tential barriers along the direction of propagation, coher-
ence may also manifest itself via quantum tunneling. It is
essential to have a detailed understanding of quantum ef-
fects in electronic transport to design effectively devices at
the nanoscale, sustain the miniaturization trends of inte-
grated circuits, and create new engineered nanostructures.

Introduction

In the second half of the 20th century, semiconductor de-
vices have progressively made their way into nearly ev-
ery aspect of technology and everyday life. The introduc-
tion of integrated circuits and microprocessors ushered
the present era of computers, internet, and mobile com-
munications. This unprecedented growth has been made
possible by the ability to scale down the size of devices and
to increase their speed of operation, so that the complexity
of integrated circuits has steadily climbed, leading to new
and more powerful applications. The pace of innovation is
exemplified by Moore’s law [49], an empirical observation
which has predicted the doubling of transistors on a chip
every two years. This hasmeant that over the last thirty five
years the number of transistors on a commercial micro-
processor has increased from slightly over two thousand
to nearly one billion.

The most common transistor found in integrated cir-
cuits is the metal-oxide-semiconductor field-effect tran-
sistor (MOSFET) [50,67] based on a thin layer of sili-
con dioxide (SiO2) sandwiched between a silicon con-
ducting channel and a gate electrode, which forms a ca-
pacitive structure controlling the flow of charge in the
channel when one varies the voltage applied to the gate.
A schematic diagram is shown in Fig. 1. In modern com-
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Quantum Phenomena in Semiconductor Nanostructures, Fig-
ure 1
Schematic diagram of the metal-oxide-semiconductor field-ef-
fect transistor (MOSFET)

Quantum Phenomena in Semiconductor Nanostructures, Fig-
ure 2
Schematic diagram of a high electron mobility transistor (HEMT)

mercial devices, the effective length of the channel has
shrunk to about 50 nm and the thickness of the oxide layer
can be of the order of just 1 nm.

The use of silicon MOSFETs has become so wide-
spread for a number of reasons. Silicon is a readily avail-
able material and it is very easy to grow layers of oxide on
a silicon surface. When compared to other semiconduc-
tor materials, however, silicon does not seem to possess
particularly outstanding properties. Electrons move some-
what slowly under the application of an electric field, be-
cause of a relatively heavy effective mass and the high rate
of scattering events with the vibrations (phonons) of the
atoms forming the crystal structure. Other III–V semicon-
ductor materials like GaAs have a smaller effective mass,
so that electrons can move much faster in a certain range
of electric fields with a higher drift velocity. It was widely
thought at some point that for high-performance applica-
tions it would be better to adopt such semiconductor ma-
terials with an intrinsically faster mechanism for transistor
switching. Also, if a heterojunction is formed betweenma-
terials like GaAs and the AlGaAs alloy, electron mobility
could be increased by orders of magnitudes for motion on
the interface plane, leading to high electron mobility tran-
sistors (HEMT) [11,67] shown schematically in Fig. 2.

Despite their potential, III–V compound materials
have not been widely employed for computing chips and
have been mainly relegated to niche applications in mi-
crowaves and optoelectronics. Silicon has had of course
the advantage of severalmore decades of development and
the corresponding lower production costs and higher reli-
ability, but in many regards the perceived weaknesses of
silicon have been the reason for its success in integrated
circuits applications. For miniaturization, it is very im-
portant for a device to retain its behavior essentially un-
changed when scaled, so that fabrication approaches and
system architectures do not need to change radically from
one generation to the next. The carrier transport behavior
in GaAs and other III–V materials is strongly dependent
on the actual electric fields established inside the conduc-
tion channel. While electron mobility is very high at low
fields, the saturation velocity, at fields established in a prac-
tical device, is actually slightly lower than in silicon, due
to the intervalley scattering mechanisms to upper conduc-
tion valleys which have a higher effective mass and lower
mobility [26].

To realize even higher mobility, devices need to be suf-
ficiently small so that they can operate in the so-called
overshoot regime, where electrons traverse the channel be-
fore intervalley transfer events can take place and never
reach the saturation velocity in a bulk material at a com-
parable electric field. However, by scaling further the de-
vice, a regime of quasi-ballistic transport can be estab-
lished more easily where quantum effects and coherence
of the electron wave need to be dealt with. Silicon, with its
heavier effective mass, has essentially retained until today
most of its classical behavior as far as transport along the
channel axis is concerned. Size quantization effects in the
cross-section of the channel are becoming more influen-
tial but the nature of electronic transport has not changed
substantially even in the nanometer size range. Genera-
tions of device designers have been able to gradually adapt
their approaches to make new devices behave acceptably
as they have been scaled, but the process has been an evo-
lutionary rather than a revolutionary one. From the point
of view of circuit realization, the broad adoption of sili-
con MOSFETs has been aided by the availability of the
C-MOS architecture [50,61] based on a basic inverter
structure which only conducts current when the switching
between two logic states takes place. If millions of transis-
tors are packed in the same integrated circuit it is crucial
to minimize power consumption to avoid the possibility of
thermal failure. The ready availability of SiO2 oxide for the
gate insulator has been of fundamental importance, since
realization of comparable gate oxides in alternative mate-
rial systems is in general costly, impractical or not possi-
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ble at all. To-date, there is simply no other technology that
can approach, even remotely, what can be achieved with
present C-MOS silicon technology for large-scale device
integration.

This contribution deals with quantum models and
simulation techniques used for the analysis of semicon-
ductor structures within the effectivemass approximation.
These are applicable to devices with standard topology
which are scaled down to the nanometer range. At even
smaller scale, one has to deal with small clusters of ma-
terials and atomistic models are necessary to capture the
full physics of the problem, since a bulk description is no
longer sufficient to characterize the properties which may
be strongly dependent on the cluster size. A detailed treat-
ment of atomistic approaches is beyond the scope of this
work.

Quantum Effects in Semiconductors

Quantum effects manifest themselves in a number of ways
in semiconductor structures. First of all, the underlying
model of transport in bulk material is based on the semi-
conductor band structure, which is derived from a quan-
tum mechanical description of the crystal lattice [30]. The
band structure describes the extended valence and con-
duction band states originating from superposition of the
individual atomic states of the lattice nodes. The motion of
actual electrons can then be studied in terms of quasi-par-
ticles obeying the energy-momentum dispersion relation
expressed by the band structure. Negative electron quasi-
particles are considered for the excited states in the con-
duction band and positive hole quasi-particles (vacancies
of electrons) are considered in the valence band. Semicon-
ductors normally have a band of forbidden energies (band
gap) separating conduction and valence band states, as one
can see in Fig. 3 showing the band structure of silicon.

Although the realistic band structure for a 3-D bulk
semiconductor has in general a rather complicated shape
and multiple eigenvalue branches, for simple considera-
tions a two-band model can be used to describe hole mo-
tion at the top of the valence band and electron motion at
the bottom of the conduction band, adopting an approxi-
mately parabolic energy-momentum dispersion relation.
The curvatures of these parabolic dispersions define ef-
fective masses to express the kinetic energy of the quasi-
particles. The effective masses for electrons and holes in
a semiconductor normally differ significantly from the ac-
tual mass of an electron in vacuum. The essential quantum
effects of the crystal are encapsulated in the effective mass,
which is adequate to study particle transport at least in
conditions not very far from equilibrium. In a bulk region,

Quantum Phenomena in Semiconductor Nanostructures, Fig-
ure 3
Simplified band structure of silicon in the standard textbook rep-
resentation, drawnalong crystalmomentum directions connect-
ing the main symmetry points, with the � point corresponding
to zero crystalmomentum. Calculations were performed with an
empirical pseudo-potential approach. The band gap EG between
the top of the valence band and the bottom of the conduction
band is slightly larger than 1eV in silicon

classical laws of motions can be used by applying the effec-
tive mass to relate momentum and energy. In conditions
of reduced dimensionality at interfaces, the wave nature
of quasi-particles may have to be considered and a simple
quantummodel also adopts the effectivemass, for instance
to express the kinetic energy term in the Schrödinger equa-
tion. The effective mass parabolic band model is widely
used in a quantum model because of its simplicity. When
the system is driven sufficiently out of equilibrium, a more
complete band structure should be included but the com-
plexity of the model increases rapidly resulting in consid-
erable numerical complications for the solution of trans-
port equations. Often, an intermediatemodel is acceptable
for practical applications, where a nonparabolic relation is
introduced to express the deviation from parabolic behav-
ior of the dispersion relation at higher kinetic energies, still
retaining the effective mass of the parabolic model as a pa-
rameter that calibrates the model.

Significant quantum effects are first encountered when
an interface between dissimilar materials (heterojunction)
is formed. The two materials will have in general different
band gap and different positioning of conduction and va-
lence band edges with respect to a common energy refer-
ence. As a result, at the interface there is a potential energy
discontinuity between the bands. For the Si/SiO2 interface
of MOS systems, the typical discontinuity of the conduc-
tion band is on the order of 3.0 eV because the oxide is
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a dielectric medium with a large band gap, while hetero-
junctions between usual III–V materials is typically only
a fraction of eV. Carriers may be concentrated electrostat-
ically at the heterojunction interface, creating a thin poten-
tial well, where electronic states are quantized. In theMOS
system, the space charge in the semiconductor side is cre-
ated by applying an appropriate potential bias on a gate
electrode placed on top of the oxide layer [50,61,67]. In
III–V compound systems, the technique known as mod-
ulation doping is used instead, where doping atoms are
placed in the layer of semiconductor with a wider band
gap [10,67]. Considering for illustration the case of n-type
doping, the excess electrons provided by the doping mi-
grate to the semiconductor layer with a smaller band gap
where the conduction band is at lower potential energy.
Thus, a layer of negative charge is formed at the interface,
leaving behind a positive layer due to the ionized donor
atoms in the wide band gap semiconductor. Ametallic gate
is also used in this case to control the flow of carriers in the
channel and shut the device off.

The mobile charge at the interface forms a thin sheet,
confined by the self-consistent potential well which has
a nearly triangular profile close to the interface. Geomet-
ric confinement may also be added, by placing a second
interface underneath, so that the narrow band gap mate-
rial layer is sandwiched between layers of oxide or wider
band gap semiconductor. The mobile charge sheet is usu-
ally called a two-dimensional electron gas (2-DEG). Be-
cause carriers reside in the potential well, transport nor-
mal to the interface is restricted, but they are free to move
on a 2-D plane parallel to the interface. The Hamiltonian
of the carriers may be decomposed into normal and par-
allel components. The confined quantum energy states in
the potential well define sub-bands [11], for transport in
the parallel plane, which are 2-D projections of the band
structure. Each transverse quantum level becomes the ref-
erence zero of kinetic energy in the corresponding 2-DEG
sub-band. When an electric field parallel to the interface
is applied, motion of the carriers is two-dimensional and
scattering is also restricted to the plane, so that the mo-
mentum of the final states cannot acquire a component
normal to the interface. MOSFET and HEMT devices are
realized by placing a source and a drain electrode at the
two ends of a conduction channel realized with a 2-DEG.
The gate electrode in the middle regulates the flow of car-
riers and can be biased with a repulsive potential to shut
the device off.

For illustration, Fig. 4 shows an example of self-con-
sistent equilibrium calculations of electron energy states
in MOS structure at the Si/SO2 interface aligned on the
[100] direction of the crystal. Silicon has six degenerate

Quantum Phenomena in Semiconductor Nanostructures, Fig-
ure 4
Example of potential distribution and energy states obtained on
the silicon layer of an MOS capacitor structure. The reference
zero energy is the Fermi level in the semiconductor

equivalent valleys, close to the X point of the band struc-
ture which, at relatively low energy values, are associated
with ellipsoidal iso-energy surfaces aligned two by two
along the three principal axes of symmetry perpendicu-
lar to equivalent <100> planes. On the interface, two el-
lipsoids project as degenerate energy circles, correspond-
ing to a first set of quantum state solutions (first ladder).
The other four ellipsoids project sideways as ellipses, cor-
responding to a second set of solution at higher eigenener-
gies (second ladder). Figure 4 shows the first three energy
solutions for each ladder and the corresponding self-con-
sistent potential energy profile obtained from the quantum
calculation as well as the profile obtained with a classical
model neglecting the quantum states. The corresponding
quantum and classical charge distributions are shown in
Fig. 5. One can see that the classical model predicts a max-
imum of charge density exactly at the interface. The quan-
tum density, obtained from the detail of energy states and
wave functions, shows nearly zero density at the interface,
while the maximum of charge has shifted to a depth of al-
most 1.0 nm.

As a further step, motion can be restricted in one of
the parallel plane directions, either by geometrical con-
finement, for instance by etching the material, electrical
confinement by placing additional electrodes or both. One
could obtain in this way a one-dimensional electron gas,
confining the carriers to a quantum wire [54]. A 1-D sub-
band structure is associated with the motion along the
channel direction corresponding to the only remaining de-
gree of freedom for kinetic energy. In such a structure,
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Quantum Phenomena in Semiconductor Nanostructures, Fig-
ure 5
Example of inversion electron charge concentration under the
gate of an MOS structure as a function of depth below the oxide
interface

scattering events can only result in a final state with mo-
mentum pointing forward or backwards, with reference to
the axis of the conduction channel. Motion in a section of
quantumwire can also be further restricted by placing geo-
metric or electrostatic barriers, to create a 3-D cavity called
a quantumdot, where states are fully quantized [58]. There
are no sub-bands associated with these discrete quantum
states because motion is completely restricted. Coupling
of the states with the environment outside the cavity may
take place, for instance by penetration of evanescent waves
through potential barriers delimiting the cavity.

The quantum effects discussed above are the result of
size quantization. Restriction of motion in a specific direc-
tion causes the energy to be quantized in that direction,
in terms of discrete eigenvalues, but quantum effects may
also appear along a direction of unrestricted motion where
energy belongs to a continuum distribution, if there are
sufficiently abrupt potential or geometric discontinuities.
A step in potential energy, for instance, creates quantum
mechanical reflection, while motion against a thin poten-
tial barrier may result in tunneling with evanescent prop-
agation inside the barrier region. Interesting phenomena
of mode coupling take place in a quantum wire undergo-
ing changes in the geometric cross-section, because of the
relative shifts of the transverse energy states [44].

A much-studied quantum problem in semiconductor
devices is resonant tunneling [22,36,56,64]. Here, two nar-
rowly spaced layers of a wide band gap material are em-
bedded in a semiconducting medium of lower band gap,

creating two potential barriers. The region between the
barriers is a potential well with quantum states which are
resonantly coupled with the continuum states on the two
sides of the structure. Tunneling is mostly favorable at
incident energies corresponding to these resonant states,
because the multiple reflections at the interface discon-
tinuities create a constructive interference for transmis-
sion and destructive interference for reflection. The cur-
rent-voltage characteristics peak in correspondence of the
resonances, therefore exhibiting negative differential re-
sistance behavior. One can extend the concept and cre-
ate a large number of wide band gap material layers, thus
creating an artificial material called a superlattice [72]. In
the direction normal to the interfaces, the coupling be-
tween multiple quantum reflections creates ranges of en-
ergies with favorable transmission (minibands) and for-
bidden energy gaps that create an effective artificial band
structure.

Size Quantization

In the size quantization problem, discrete stationary states
are associated with mobile carriers, obeying the time-in-
dependent Schrödinger equation for the coordinates re-
stricted to motion with a general form

Ĥ j D Ej j ; (1)

where Ĥ is the Hamiltonian, Ej the energy eigenvalues of
the confined states and  j the corresponding wave func-
tions. For simplicity, the following consideration will be
for electrons in the conduction band. Similar considera-
tions hold in principle for holes in the valence band, al-
though the details of the band structure may require some
more involved formalism.

For 1-D confinement, where the motion in the quan-
tum channel is delimited by a planar interface, e. g. a het-
erojunction, the electron states can be characterized by an
envelope wave function

 (Er) D � j(z) exp(iEk � Er) ; (2)

where z is the direction perpendicular to the heterojunc-
tion, and Er and Ek are the 2-D position vector and wave vec-
tor for motion parallel to the interface. In the plane paral-
lel to the interface the wave function component is simply
a plane wave, while confinement is described by the func-
tion � j(z) which corresponds to the jth confined sub-band
and satisfies the 1-D time-independent Schrödinger equa-
tion in the z direction

�
„2

2m�
d
dz

�
1
m�

d� j(z)
dz

�
CU(z)� j(z) D Ej� j(z) : (3)
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The potential energy U(z) is given by

U(z) D �e�(z)C Vh (z)C Vex(z) ; (4)

where �(z) is the electrostatic potential, Vh(z) is a step
function describing the interface barrier, and Vex(z) is the
local exchange-correlation potential. Assuming the case of
an electron channel obtained on a p-type substrate, the
electrostatic potential is obtained from a solution of Pois-
son’s equation

d
dz

�
"d

d�(z)
dz

�
D �e

�X

j
N j
ˇ
ˇ� j(z)

ˇ
ˇ2 � p (z; �)

CN�A (z) � NCD (z)
�
D �� : (5)

NA(z) and ND(z) are the concentrations of ionized ac-
ceptor and donor dopants, Nj represents the sub-band
electron concentration, p is the hole concentration in the
substrate, "d is the space dependent permittivity and �
represents the net charge density. The hole concentration
may be approximated as a classical equilibrium distribu-
tion with a space profile that is nonlinearly dependent on
the electrostatic potential. The formulation for Nj involves
the integral of the Fermi function which, in the case of
a 2-DEG, can be integrated analytically, giving [11]

Nj D
D
e
gvkBT ln

�
1C exp

�
EF � Ej

kBT

��
: (6)

Here, gv is the valley degeneracy for the specific eigen-
value ladder, related to the band structure symmetry and
the projection of the conduction band valleys on the in-
terface plane. The 2-DEG density of states is a constant as
a function of energy and it is given by

D D
em�

�„2
: (7)

If a qualitative approximation is sought, starting from
a fixed potential profile, solutions of the Schrödinger equa-
tion for the wave functions may just be available analyti-
cally in some cases. For instance, for a potential approxi-
mated by an infinite barrier at a heterojunction interface
(z D 0) and by a triangular distribution V (z) D eFsz for
z > 0 in the semiconductor (where Fs is an effective elec-
tric field assumed to be constant throughout the layer) so-
lutions for wave functions and energy eigenvalues can be
expressed in terms of Airy functions [1]

� j(z) D Ai

(�
2m�eFs
„2

� 1
3
�
z �

�
Ej

eFs

��)

; (8)

Ej(z) D
�
„2

2m�

� 1
3
�
3
2
� eFs

�
jC

3
4

�� 2
3
: (9)

For double confinement, the mathematical formulation of
the problem is very similar with more general differential
operators [38]

�
„2

2m�
r �

�
1
m�
r j

�
C U(z) j D Ej j ; (10)

r �("dr�) D �e
�X

j
N j
ˇ
ˇ j

ˇ
ˇ2 � p (�)C N�A � NCD

�
:

(11)

The main formal difference is in the expression for
the sub-band carrier concentration since, except for the
2-DEG case, the Fermi function cannot be integrated ex-
actly. This quantity is now expressed in terms of the Fermi
integral of order �1/2

Nj D
gv
�

�
2m�kBT
„2

� 1
2
F�1

2

�
EF � Ej

kBT

�
; (12)

which needs to be evaluated numerically. An efficient and
very accurate approach is based on rational function ap-
proximations [2]. For practical applications, the most in-
teresting quantity is the quantum electron density, which
is obtained from combined information given by the wave
function and the energy eigenstates as

nq (�) D
gv
�

�
2m�kBT
„2

� 1
2 X

j

 2
j F�12

�
EF � Ej

kBT

�
: (13)

The time-independent Schrödinger equation specifies an
eigenvalue problem and the Poisson equation is an ellip-
tical partial differential equation. Because of the different
mathematical nature, the two equations cannot be solved
simultaneously and an iterative procedure is necessary in-
stead. A simple iteration by itself does not converge and
usually an underrelaxation in the electron density is ap-
plied with a relaxation parameter !(m) which may have to
be adaptively modified as the iteration progresses. The al-
gorithm flow of this simple approach can be summarized
as follows:

(1) Solve the nonlinear Poisson equation using the quan-
tum electron density from the last iteration

r �


"r�(mC1)

�
D ��

h
n(m)
q ; �(mC1)

i
:

(2) Solve Schrödinger equation using the old n(m)
q

Ĥ
h
�(mC1);Vxc



n(m)
q

�i
 

(mC1)
i D E(mC1)

i  
(mC1)
i :
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(3) Calculate an intermediate new quantum electron den-
sity n(mC1)

q;int

n(mC1)
q;int D nq

h
E(mC1)
i ;  

(mC1)
i

i
:

(4) Underrelax in nq to achieve convergence

n(mC1)
q D !(mC1)n(mC1)

q;int C


1 � !(mC1)

�
n(m)
q :

(5) Repeat the iteration until nq becomes stationary
���n(mC1)

q � n(m)
q

���
2
� tolerance :

The problem with this method is the inherent instability of
the outer iteration which is controlled by the underrelax-
ation procedure only. The necessary relaxation parameter
!(m) is not known in advance and needs to be readjusted
during the iteration. If !(m) is too large, the integral of the
quantized charge oscillates without converging or if it is
too small, convergence may be unbearably slow.

The algorithmmay be modified to address these short-
comings, in a way that partially decouples the differential
equations and dampens the electric charge oscillation. If
one knew the exact dependence of the quantum electron
density nq on the electrostatic potential, it would be suf-
ficient to solve the nonlinear Poisson equation, without
the need for coupling with the Schrödinger equation by an
outer iteration, but what one can do practically is to find
a suitable approximate expression for the quantum elec-
tron density ñq(�) and use such an expression in a predic-
tor-corrector type of approach [71]. This procedure would
approximately decouple both equations and move most of
the nonlinearities in a Poisson equation of the type

r � ("r�) D ��
�
ñq (�) ; �

�
: (14)

The predicted result for nq and� from this equation would
then be corrected in an outer iteration step by an exact
solution of Schrödinger equation. The electrostatic poten-
tial enters the quantum electron density nq(�) through the
potential dependence of sub-band energy levels and wave
functions, following the form of Eq. (13)

nq (�) D
gv
�

�
2m�kBT
„2

� 1
2

�
X

j

 2
j (�) F�12

�EF � Ej (�)
kBT

�
: (15)

By using the derivative property of the Fermi–Dirac inte-
gral,

d
dx

Fk(x) D Fk�1(x) ; (16)

one can show [71] that, under a perturbation ı� of the
potential, the corresponding variation in quantum density
can be approximated as

ıñq (�; ı�) D
gv
�

�
2m�kBT
„2

� 1
2

�
X

j

 2
j (�) F�32

�
EF � Ej (�)

kBT

�
qı�
kBT

: (17)

Since for a perturbation one can write

ñq (� C ı�) D ñq (�)C ıñq (�; ı�) ; (18)

using once more the derivative properties of the Fermi–
Dirac integrals, one obtains

ñq (� C ı�) D
gv
�

�
2m�kBT
„2

� 1
2

�
X

j

 2
j (�) F�12

�
EF � Ej (�)C qı�

kBT

�
: (19)

Compared with the expression for nq(�) one can see that
the effect of the potential perturbation is simply translated
into a variation of the energy levels by a corresponding po-
tential amount

En (�)! En (�)� qı� : (20)

Using this result, the predictor-corrector procedure starts
with the solution of a nonlinear Poisson equation

r � ("r�) D �q
�
ñq (�)� p (�)� NCD (�)C N�A (�)

�
;

(21)

where we use the potential dependent solution for the
quantum electron density (predictor)

ñq (�) D
gv
�

�
2m�kBT
„2

� 1
2

�
X

j



 

(m)
j

�2
F�1

2

 
EF � E(m)

n C q
�
� � �(m)

kBT

!

:

(22)

The superscripts (m) denote quantities obtained at the pre-
vious outer iteration step. Solution of the nonlinear Pois-
son equation is conveniently accomplished with a New-
ton–Raphson procedure, since terms of the Jacobian ma-
trix are easily obtained in terms of F�3/2. The electrostatic
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potential �(mC1) obtained from solving the Poisson equa-
tion is then used within the Schrödinger equation (correc-
tor) formulated as

�
„2

2
r �

�
1
m�
r 

(mC1)
j

�
C
h
Vh � q�(mC1)

CVxc


ñ(mC1)
q

�i
 

(mC1)
j D E(mC1)

j  
(mC1)
j ; (23)

to calculate the update of the corrected quantum density

n(mC1)
q D

gv
�

�
2m�kBT
„2

� 1
2

�
X

j



 

(mC1)
j

�2
F�1

2

0

@
EF � E(mC1)

j

kBT

1

A : (24)

The predictor-corrector algorithm steps can be summa-
rized as follows:

(1) Solve the nonlinear Poisson equation using the ap-
proximation ñq(�).

(2) Solve Schrödinger equation using the latest predictor
value ñ(mC1)

q .
(3) Calculate the exact quantum electron density n(mC1)

q .
(4) Repeat iteration until the electron density becomes

stationary
��
�n(mC1)

q � n(m)
q

��
�
2
� tolerance :

Note that at step (2) the latest predictor value ñ(mC1)
q is

also used to evaluate the exchange correlation term in
the Schrödinger equation, since practical observation sug-
gests that convergence would be much worse if the previ-
ous value ñ(m)

q was used. A range of numerical tests have
also shown that the predictor-corrector algorithm does
not need an additional underrelaxation and that the sim-
ple outer iteration is inherently stable and convergent.

Size quantization is important in narrow channel de-
vices. As the channel is shortened, the bulk region under
the interface makes it difficult to shut the device off com-
pletely because stray carriers may transfer from source to
drain causing a parasitic current. The situation is in prin-
ciple improved by using a double gate MOSFET struc-
ture [21], as shown in Fig. 6, which reduces the silicon re-
gion to a thin slab which may emphasize the effects of size
quantization since two interfaces are now present. Realiza-
tion of a double gate structure with horizontal interfaces is
technologically difficult, because a layer of silicon would
need to be grown on oxide.

An approximate practical realization is madewith a fin
structure with oxide and gate contact wrapped around as

Quantum Phenomena in Semiconductor Nanostructures, Fig-
ure 6
Schematic structure of a double gate MOSFET

Quantum Phenomena in Semiconductor Nanostructures, Fig-
ure 7
Structure of a finFET to realize approximately a double gate
MOSFET from the two vertical oxide interfaces with the silicon
fin

Quantum Phenomena in Semiconductor Nanostructures, Fig-
ure 8
Cross-section of conduction channels in finFET (a) and tri-gate
MOSFET (b)

in the finFET of Fig. 7 [12,37,52], so that on the cross-
section of the channel in Fig. 8a the electronic charge is
concentrated at the two vertical interfaces where the ox-
ide is thinner. To increase the total charge in the channel,
the channel cross-section may be widened as in Fig. 8b to
realized the so-called tri-gate MOSFET [69] where charge
accumulates at the three interfaces controlled by the wrap-



Quantum Phenomena in Semiconductor Nanostructures Q 7409

Quantum Phenomena in Semiconductor Nanostructures, Figure 9
Example of self-consistent calculation of quantum electron distribution on the square cross-section of tri-gate MOS channels with
sides 10nm (left) and 5 nm (right). One may notice the concentration peaks at the top corners of the structure

Quantum Phenomena in Semiconductor Nanostructures, Figure 10
Top left: quantum wire formation under a trench in the gate oxide for a structure formed with a layer of undoped silicon on top of
a highly doped ground plane; top right: energy states in the structure with thickness of the undoped silicon layer W = 50nm; bottom
left: trench confining potential as function of layer of thicknessW; bottom right: corresponding total chargedensities in the quantum
well. Gate voltages are 1.6V, 1.0 V, 0.7 V and 0.3V for increasingW. The metal gate is assumed to be aluminum



7410 Q Quantum Phenomena in Semiconductor Nanostructures

around gate structure. Examples of charge distribution ob-
tained on the cross-section by 2-D self-consistent solution
of the Schrödinger/Poisson problem are shown in Fig. 9,
for tri-gate square cross-sections with sides of 10 nm and
5 nm. Peak concentration of charge close to the top cor-
ners of the structure is noticeable.

A simpler planar structure may be realized instead
with a gate contact embedded in a trench of the oxide
(Fig. 10) to form a quasi-1-D quantum wire, as studied
in [24]. This structure may be advantageous because of
reduced interface scattering and simpler fabrication, but
carriers are confined in the channel by an electrostatic po-
tential, rather than physical interface walls, so that there
is less channel isolation. Figure 10 shows several examples
of the potential well formed by the trench structure of the
gate for various thicknessesW of the undoped silicon layer
placed above a highly p-doped ground plane.

Inclusion of Realistic Band Structure

For high carrier concentrations or high confinement bar-
riers in a conduction channel, the range of energies neces-
sary to account for size quantization may be much above
the conduction band edge, so that a simple parabolic de-
scription of the band structure is questionable. The next
approximation level is to describe the deviation from
the simple behavior with the addition of non-parabolic
terms. There are various possible approaches which can
be followed to improve the description of the band struc-
ture. A general expression provides the energy as a series
expansion

E D a0C a2k2C a4k4C a6k6C� � � D
1X

iD0

a2i k2i : (25)

Examples in the literature simply add the fourth order
term to include nonparabolic effects in the Schrödinger
equation [15,53]. Other attempts have tried to define an
energy-dependent effective mass, but such a formulation
is in general not a sound approach and may lead to erro-
neous results [53]. Another commonly followed approach
is to represent the wave vector instead as a series expansion
of energy

„2k2

2m�
D E

�
1C ˛E C ˇE2 C �E3 C � � �


: (26)

Most commonly, the expression is truncated to include
only up to the quadratic energy term, leading to the stan-
dard nonparabolic approximation widely used in the liter-
ature

„2k2

2m�
D E (1C ˛E) ; (27)

where ˛ is the coefficient of nonparabolicity with dimen-
sions of an inverse energy. Application of this simple non-
parabolic form into the Schrödinger equation for the case
of a 2-DEG system was presented in [43].

The nonparabolic dispersion relation can be easily in-
verted by solving the quadratic equation for energy and
then applying a series to the resulting square root
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1C 4˛
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�2
:

(28)

If we then substitute the crystal momentum k by the mo-
mentum operator ir we may write the Schrödinger equa-
tion in the form [23,43]

1
2˛

1X

nD1

� 1
2
n

��
�4˛
„2

2

�n �
r2

m�

�
 (Er)C U(Er) (Er)

D " (Er) : (29)

One should realize that if the dispersion relation is not
strictly parabolic, the effective mass does not contain com-
plete information on the lattice periodic potential effects
and that the eigenfunctions are not strictly approximated
by plane waves.However, rather thanmodifying the eigen-
functions, this procedure chooses to modify the form of
the Schrödinger equation. In order to proceed, an ansatz
is necessary on the form of the wave function, by associat-
ing plane waves to the coordinates of unrestricted motion.
For instance, if a 1-D confining potential is present along
the z-direction, one can write explicitly

 (Er) D ei(kx xCk y y)�(z) ; (30)

or for double confinement on the (y; z) plane

 (Er) D ei kx x�(y)�(z) : (31)

The forms used for the wave function contain an implicit
assumption that the symmetry axes of the effective-mass
tensor are along the Cartesian coordinate axes. The energy
can be split into components that individually still verify
the nonparabolic dispersion relation along the directions
of unrestricted motion. For single confinement one can
use " D "z C "k with

"k(1C ˛"k) D
„2

2

"
k2x
mx
C

k2y
my

#

; (32)
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leading, after several manipulations, to the modified
Schrödinger equation [43]

1C 2˛"k
2˛

1X

lD1

� 1
2
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�4˛
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2mz
�
1C 2˛"k

2

!l

�
@2l �(z)
@z2l

C U(z)�(z) D "z�(z) : (33)

For a quantum wire system which is doubly confined,
there is no straightforward way to develop a general model
for nonparabolicity. An approximate solution is to extend
the procedure above for 2-DEG, by decomposing the solu-
tion space into two transverse directions and solving two
1-D quantization problems. Following a similar procedure
as for 1-D confinement, one obtains the analogous modi-
fied equation [23]
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C U(y; z)�(y)�(z) D "yz�(y)�(z) : (34)

Both equations recover the usual parabolic form in the
limit ˛ ! 0. It is of course very difficult to use directly the
modified forms of the Schrödinger equation because they
involve infinite series. However, one can derive a disper-
sion relationship if appropriate test functions are formu-
lated for given boundary conditions. For example, consid-
ering double confinement, we have for "yz > U(y; z) (os-
cillatory condition for electron energy above the conduc-
tion band edge)

�(y) D Aei k y y C Be�i k y y ; �(z) D Cei kzz CDe�i kzz ;
(35)

and for "yz < U(y; z) (evanescent condition with decay-
ing behavior)

�(y) D Aek y yCBe�k y y ; �(z) D CekzzCDe�kzz ; (36)

with dispersion relationship (choosing “+” for oscillatory
and “�” for evanescent)
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: (37)

In order to get a numerical solution, one can use a shoot-
ing method. First, a value of the transverse energy "yz is

selected as a guess. Then the dispersion relation is applied
to test whether the corresponding wave function satisfies
the necessary conditions as number of zeros and derivative
sign, within a specified accuracy for satisfying the bound-
ary conditions considering continuity and probability cur-
rent of the envelope wave function.

The full numerical band structure may be included in
a 3-D treatment of the Schrödinger equation [70]. This
method is useful for relatively large structures for which
an atomistic model is impractical while at the same time
a simple analytical band approximation is inadequate. The
kinetic energy of carriers can be described by a function
E(Ep) which may not be available in analytical form but
only as an interpolated table, as is common for the out-
put of band structure calculations. The usual quantization
rules still apply and one may replace the momentum Ep
by the momentum operator p̂ to obtain the Hamiltonian.
The Schrödinger equation for envelope wave functions,
describing carrier motion under the influence of an exter-
nal potential V(Ex), can be written as

i„
@ (Ex; t)
@t

D E(p̂) (Ex; t)C V(Ex) (Ex; t)

p̂ D
„

i
r :

(38)

This model is reasonable as long as V(Ex) does not vary too
rapidly within a lattice constant a and the dimensions of
the device structure are much larger than a as well.

It is not straightforward to solve an equation of this
kind, because the kinetic energy operator may contain
high order powers of the momentum. Since p̂ is propor-
tional to the gradient vector in the position representation,
this means that one has to solve an equally high-order dif-
ferential equation. Numerical solutions based on finite dif-
ferences or finite elements require a Taylor expansion of
E(Ep), for instance, at least up to an order nC 1 in Ep to
compute E(Ep) to order n. While it is numerically possible
to implement such a high order scheme, the approach be-
comes inefficient for large n, and depending on the func-
tional form of E(Ep) the convergence radius of its Taylor
series may be too small for polynomial approximations.

Since the kinetic energy operator E(Ep) is diagonal
in momentum space, a spectral solution approach using
Fourier transforms seems a natural choice for this prob-
lem. Starting from the equation in position space, we may
insert Fourier transforms around the kinetic energy oper-
ator, which then reduces to simple multiplication in mo-
mentum space. The Schrödinger equation has the form

i„
@ (Ex; t)
@t

D FT�1
�
E(Ep)FT (Ex; t)

�
CV(Ex) (Ex; t); (39)
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where one could view

E(p̂) (Ex; t) D FT�1
�
E(Ep)FT (Ex; t)

�
; (40)

as the definition for the operator E(p̂) in position
space. An alternative approach could be to express the
Schrödinger equation in momentum space by inserting
Fourier transforms around the potential energy as

i„
@ (Ep; t)
@t

D E(Ep) (Ep; t)C FT
�
V(Ex)FT�1 (Ep; t)

�
;

(41)

which provides a Hamiltonian similar to those employed
in density functional calculation. In both position andmo-
mentum formulation the numerically difficult problem of
applying a high-order kinetic energy operator on a wave
function has now been reduced to a more manageable cal-
culation of Fourier transforms.

Electronic structure calculations are usually formu-
lated in momentum space and device simulation in posi-
tion space. It is not clear which of the two formulations
might lead to a numerically superior algorithm for the
problem at hand, but position space seems to be a more
natural choice. In any case, fast Fourier transforms must
be used for an efficient numerical implementation, involv-
ing only O(N log N) computational steps on a grid with
N nodes, as compared to O(N2) for other methods.

The use of fast Fourier transforms imposes restrictions
on the choice of computational grid. Grid lines should
be equidistant in each coordinate direction and for most
available fast Fourier transforms the number of grid lines
should be a power of 2 in each direction as well. If the
grid is too coarse, only parts of momentum space are sam-
pled providing insufficient spatial resolution, as one would
readily expect. However, also an excessively fine grid cre-
ates problems as well, since one would obtain a computa-
tional first Brillouin zone larger than the lattice one, open-
ing the question of how to deal numerically with the states
at high momentum values outside the lattice Brillouin
zone, which would create spurious solutions if mapped in-
side the zone. Although this approach allows one, in prin-
ciple, to account for general band structures, if a parabolic
band is acceptable in the quantum problem at hand, it is
always more efficient to use a traditional finite difference
solver for large problems. Model calculations using this
generalized band approach in 3D silicon quantum cavity
structures were demonstrated in [70] using a numerical
tabulation of a nonparabolic ellipsoidal valley.

Brief Survey of Quantum Transport Models

While size quantization models have been well developed,
the treatment of transport remains a complicated quan-
tum problem even in the assumption of envelope wave
function under the effective mass approximation. In the
most elementary applications, the single particle time-de-
pendent Schrödinger equation as given in Eq. (38) can be
used to probe ballistic transport in a nanostructure, as-
suming a parabolic band [7,25]. Coupled with appropri-
ate conditions to simulate open contacts, one can study
transients and switching between ON and OFF states in
a quantum structure [59]. The standard approaches that
can be used apply finite differences with a direct dis-
cretization in time [7,25,41,45,47,59,62] or the split-oper-
ator technique [79] based on a spectral method requiring
Fast Fourier Transform at each step. The main limitation
of the time-dependent Schrödinger equation is that it can
treat a single energy at a time and that is naturally suitable
for ballistic transport since scattering cannot be easily in-
cluded, unless a set of coupled equations is set up. Simula-
tion of contacts for an open system requires the numerical
development of absorbing boundary conditions, which is
not a trivial problem [41,45,47,59,62,68,79].

A more sophisticated transport model that includes
a set of states in the formulation is based on the density
matrix [48], the evolution of which is governed by the Li-
ouville–von Neumann equation. For a simple parabolic
band single-particle Hamiltonian, the evolution equation
has the form

i„
@�

@t
D �

„2

2m�

�
@2

@x2
�

@2

@x02

�
�C

�
U(x) � U(x0)

�
� ;

(42)

with the density matrix �(x; x0) defined as a summation
of the real-valued probabilities pi over a complete set of
states i in the system to be studied

�
�
x; x0


D
X

j

p j hxj ji
˝
jjx0
˛
: (43)

Note that, for transport through an open system, a reason-
able normalization of the density matrix is not to equate
the trace to one, but to relate it to the actual particle den-
sity in the system, giving also an intuitive picture of the
density matrix. Another approach uses instead theWigner
distribution function [5,46] which is amathematical trans-
form (Wigner–Weyl transformation) of the density ma-
trix. Starting from the density matrix the Wigner function
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is defined as
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�ipr0

„

�
;

(44)

where the coordinate transformations r D (x C x0)/2 and
r0 D x � x0. The corresponding transport equation is ob-
tained by applying the same transformation to the Liou-
ville equation, obtaining the Wigner transport equation
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The equation above has similarities with the semi-classical
Boltzmann transport equation and the Wigner distribu-
tion approaches the classical distribution function as the
system tends to a classical state at slowly varying poten-
tials or sufficiently high temperatures. The kernel of the
potential operator is provided by the relation
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��
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(46)

Numerical implementation of the Wigner equation
presents a number of challenges. First of all, it is a par-
tial differential equation with hyperbolic behavior and it
requires special solution techniques. Because of the wave
nature of the equation, spurious numerical dispersion is
difficult to contain since a range of momentum compo-
nents are solved for simultaneously. Second, both posi-
tion and momentum and coordinates are included in the
Wigner function model, as is the case for the semi-classi-
cal Boltzmann equation, so the numerical cost increases
quite rapidly for a multi-dimensional problem. On the
other hand, fairly detailed scattering models can be imple-
mented [27]. In recent applications, the Wigner function
approach has also been combined with particle simulation
for resonant tunneling structures [63].

An approach which has gained popularity in recent
times is the nonequilibrium Green’s function (NEGF)
which is governed by Dyson’s equation. This approach
looks at a nano-system with a unified picture of a quantum
channel for charge transport connecting two reservoirs
held at different electro-chemical potentials [9,60,74]. The
availability of numerical approaches to study a variety of
systems, from nanoscale MOSFETs to molecular devices,

has greatly contributed to the increase in interest in NEGF.
Even an introductory treatment of NEGF would be rather
cumbersome and beyond the scope of this work. The inter-
ested readers are directed to consult the relevant literature
and the material available on line, as detailed in a section
below. The main issue with a Green’s function approach is
that practical applications are possible under carefully de-
fined assumptions. While the approach is potentially the
most general and powerful to treat dissipative transport,
the formalism and the computational cost may quickly be-
come unmanageable in general conditions.

For a nanoscale system relatively close to equilibrium,
a ballistic Green’s function model is equivalent to the
Schrödinger equation and it is quite useful to readily ob-
tain the transmission and reflection properties of quan-
tumwire and electronwave guide structures requiring 2-D
or 3-D simulation [44,65,66]. For a nonrectilinear system
with single input and output leads the formulation is very
flexible, since it can be split into an equivalent 1-DGreen’s
function problem for the transport and a size quantization
problem to resolve transverse states in the cross-section of
linear channel elements or cavity states for more general
nonrectilinear elements. Another advantage is that appli-
cation of open-boundary conditions in a Green’s function
problem is very straightforward, because it is very easy
to define the Green’s function of a semi-infinite lead. In-
clusion of detailed scattering models is possible, but typ-
ically complications increase very rapidly, particularly if
self-consistent treatment is applied. Reasonable simplified
models are possible, for instance the approximate Büttiker
probe treatment of scattering [6], which makes a NEGF
formulation much less costly.

QuantumCorrections in Particle Simulation

For practical device simulation, it is still desirable to re-
tain the mature and computationally inexpensive semi-
classical techniques, extending their validity by the in-
troduction of quantum corrections, to account for size
quantization and tunneling effects. In many applications
this is a reasonable alternative, since quantum coher-
ence along the transport path is not expected to be-
come significant or dominant for room temperature op-
eration in MOS devices, until channel lengths are scaled
down to the sub-10 nm range. The particle Monte Carlo
method solves stochastically the Boltzmann Transport
Equation [16,29,33,34], by a computer experiment where
particle motion is explicitly simulated as sequences of ran-
dom free flights interrupted by scattering events. The com-
plete details of the band structure may be included in
tabular form and the scattering model is very detailed,
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so that the description of semi-classical transport pro-
vided by a Monte Carlo simulation can be very accu-
rate [13,19,29,42].

Physically based models, such as particle simulation
based on Monte Carlo methods, are a useful starting point
to add quantum corrections because they adequately de-
scribe the nonequilibrium and hot carrier phenomena
which dominate present devices, and can be used to cal-
ibrate simpler models in the simulation hierarchy, such as
drift-diffusion. The computationally expensive alternative
to add quantum effects in Monte Carlo simulation is to re-
solve in detail the transverse sub-bands in a conduction
channel and describe particle dynamics within the sub-
bands. This requires a detailed model for intra-sub-band
and inter-sub-band scattering rates [20,80], as well as 2-D
to 3-D scattering mechanisms if a continuum of states is
used at high energies [55]. When a complete device simu-
lation is assembled, with contacts characterized by contin-
uum states, one also needs to implement a model that re-
solves the discontinuity between quantum and continuum
description at the channel entrance. Because of the con-
siderable cost associated with a detailed sub-band Monte
Carlo model, applications have been limitedmainly to uni-
form 2-DEG simulation under constant electric field con-
ditions [20,80]. In device simulation typical approaches
use the global information from the details of quantum
states to formulate a potential correction that congregates
otherwise semi-classical particles in a configuration that
mimics the quantum distributions. The goal is not to sim-
ulate individual particles to behave as quantum ones, but
to obtain a particle distribution that globally approximates
the quantum charge flow, resolving noncoherent quan-
tum effects, like size quantization and non-resonant tun-
neling [17,73,76].

The motivation to pursue quantum corrections in
semi-classical simulation is that full quantum transport
remains impractical for many cases. Also, in most realis-
tic device structures one may identify regions where ei-
ther quantum or classical features of the transport domi-
nate, therefore, a quantum-corrected semi-classical model
is useful to treat the whole structure in a unified way.
In addition, while a complete quantum simulation may
be extremely expensive, there is little computational cost
added by quantum corrections to the standard semi-clas-
sical Monte Carlo simulators. Quantum corrections to
semi-classical simulation may follow various approaches
by coupling different quantum formalisms: Feynman ef-
fective potential,Wigner transport equation, Bohm poten-
tial, Schrödinger equation.

The simplest approach to quantum correction follows
the effective potential idea introduced originally by Feyn-

man for statistical mechanics [18]. In this model, parti-
cles feel the nearby potential due to quantum fluctuations
around the classical path of least action, via a nonlocal
function effective potential Veff obtained by convoluting
a Gaussian function with the electrostatic potential

Veff(x) D
Z

V(x)e�
(x�x0 )2

2a2 dx0 ; a D
„2

12mkBT
: (47)

The effective potential is very simple to implement and
computationally inexpensive. In addition it is not sensi-
tive to the intrinsic statistical noise ofMonte Carlo simula-
tion [17]. This approach works best for smooth, symmetric
potentials. The parameter a describes the effective “size” of
the particle and can be treated as a fitting parameter. The
detailed solution next to a heterointerface is typically in-
correct. Fitting may be applied to obtain the correct aver-
age displacement of the charge from an abrupt interface to
correspond to the maximum of quantum charge, but the
space distribution is not very accurate, because the Gaus-
sian weight function is not suitable to resolve asymmetries.
A more general effective potential is possible, which de-
pends explicitly on the wave vector k and does not contain
fitting parameters [39]. The Feynman effective potential is
a particular case of this general potential correction which
has the form

VQ (x; k) D
1

(2�)3

Z
2m�

ˇ„2k � �
sinh

�
ˇ„2k � �
2m�

�

� exp
�
�
ˇ„2

8m�
j�j2

�
V
�
y

ei��(x�y) dyd� : (48)

The cost of applying this correction is much higher if
done self-consistently. For specific structures like the dou-
ble gate MOSFET, one can show that much better agree-
ment is obtained by using a Pearson distribution instead
of a Gaussian one for the formulation of the effective po-
tential [35].

TheWignermethodwas also developed as a correction
to statistical dynamics [75], by writing the Wigner trans-
port equation for the distribution function in a form that
casts it as the standard Boltzmann transport equation plus
a correction containing the quantum terms [73]
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At first order, one simply stops the first summation term
for ˛ D 1 and the formula can be rewritten in a form that
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closely resembles the standard Boltzmann equation [73]
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where the term Fqc is the quantum corrected force. The
particles move as if under the influence of a classical po-
tential but following approximately equivalent quantum
trajectories. By making an assumption on the distribu-
tion function, like a displaced Maxwellian, and a band
structure, like the simple parabolic dispersion, one can
formulate expressions for the quantum corrected force
that depend explicitly on momentum. These correction
forces still have some problems near sharp interfaces,
where quantum effects are prominent. To alleviate this,
a smooth potential approximation can be obtained by in-
tegrating the displaced Maxwellian distribution with mo-
mentum [73]. Simplified versions of the force can be ob-
tained by assuming a thermal energy to specify the mo-
mentum. Although this formulation has solid physical
foundations, the result for the corrected force depends on
the mobile charge density as r2 ln(n). Since in a particle
simulation the density is recovered from a temporal aver-
age of particle occupation in space, convergence is slow,
particularly in small structures with few particles and the
overall procedure is sensitive to simulation noise. Correc-
tions of this type work instead very well in continuum
models like drift-diffusion, where noise is not an issue.
From simulation experiments it was found that for a MOS
interface no fitting is required in the semiconductor re-
gion, but at the oxide interface one has to specify a finite
value of the carrier concentration which becomes the fit-
ting parameter in the procedure.

An approximate correction can also be based on
Bohm’s potential, deriving an effective conduction band
edge [78]. If we express the wave function  and the
eigenenergy E as
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the effective conduction band edge is defined as
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Using the approximate relation for carrier density
n / exp (�V�/kBT) one can obtain a 1-D effective con-

duction band equation, valid for conditions close to equi-
librium

d2V�

dy2
�

1
2kBT

�
dV�

dy

�2
D

4m�kBT
„2

�
V� � V(y)


: (53)

The equation represents a first-order quantum correction
to the semi-classical BTE by taking into account the effect
of carriers only occupying the quantized ground state. This
is reasonable in many situations since usually, where the
quantum correction is needed, density is not too high and
the Fermi level is below the first excited state.

Another technique for quantum correction of par-
ticle simulation is based on a direct application of the
Schrödinger equation [76]. This technique is strictly suit-
able for size quantization in the direction perpendicular
to transport, while the other techniques can be used in
the direction of transport to simulate barrier lowering in
tunneling, for instance. The Schrödinger correction, how-
ever, does not have the drawbacks of the other approxi-
mations, since it is very accurate, requires no fitting pa-
rameters and is not sensitive to particle simulation noise.
The procedure requires explicit solutions of 1-D or 2-D
Schrödinger equations along the channel, but this can be
done very efficiently on the regular grids used for particle
simulation and it does not affect appreciably the overall
computational time. What is lost in cost per iteration is
gained in excellent convergence properties.

When the Schrödinger equation is solved at different
channel locations, the self-consistent Monte Carlo poten-
tial, already available from the overall simulation, is the in-
put while the output is a quantum density, nq, obtained
from the detailed sub-band structure and an assumption
of quasi-equilibrium distribution on the transverse cross
section. If one assumes a simple Maxwellian behavior for
the quantum carrier distribution

nq(z) / exp
�
�fVp(z)C Vqc(z)g

kT

�
; (54)

the potential quantum correction has a shape as

Vqc(z) D �kT log
�
nq(z)


� Vp(z)C V0 ; (55)

where V0 is a reference potential where the quantum
charge is zero. When the Monte Carlo simulation runs,
application of the potential correction forces the shape of
the quantum density onto the semi-classical particles. The
actual simulated density does not need to be evaluated to
formulate the correction, since only the potential solution
from solving the Poisson equation is needed. The potential
is normally very smooth and therefore the iteration is not
affected appreciably by numerical noise.
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Quantum Phenomena in Semiconductor Nanostructures, Figure 11
Electron concentration in an inverted MOS capacitor calculated with the Schrödinger-corrected Monte Carlo and self-consistent
Schrödinger–Poisson methods over a range of gate bias

Monte Carlo simulations of MOS capacitor structures
match very closely the result of the self-consistent 1-D
Schrödinger/Poisson solution, without the need for any
calibration or tuning parameter, proving the overall ro-
bustness of the procedure. In the case of device simulation
transport occurs in the direction of the channel, therefore,
energy is acquired by particles. In this case, the actual lat-
tice temperature should not be used to evaluate the shape
of the quantum density profile on the transverse section.
One can define an effective parameter with dimension of
temperature which has been dubbed transverse tempera-
ture, to account for heating of the distribution. The trans-
verse temperature is in general smaller than the temper-
ature obtained from the average carrier energy along the
channel. It should be stressed that temperature is really
a tensorial quantity and that the parameter called trans-
verse temperature cannot be identified with a well-defined
physical quantity. In a structure without a clearly defined
substrate reference for the potential, like in a double gate
structure, the definition of transverse temperaturemay be-
come ambiguous. A more detailed analysis can be carried
out invoking the stress tensor along each transverse direc-
tion, to account for the variation of the electron temper-
ature along the longitudinal direction [77]. Comparisons
have been carried out with a NEGF simulator for double

gate MOSFET structures. Results are in good agreement
as long as the thickness of the channel layer is larger than
3 nm. For thinner layers, a quantum correction does not
seem to be adequate any longer andmore sub-band details
should be included [57].

Monte Carlo simulations were conducted with the
Schrödinger correction on MOS capacitor structures to
verify the quality of the approach. Figure 11 shows a set
of simulations conducted at several gate voltages, show-
ing a consistently good agreement.With no adjustable pa-
rameter involved, the interface concentration is always ac-
curately resolved. Figure 12 shows a set of simulation for
double gate structures with separation between the oxide
interfaces from 5 to 40 nm, againwith excellent agreement.

Finally, representative results from a complete 3-D fin-
FET simulation, including a 2-D quantum correction ap-
proach, are shown for a channel cross-section in Fig. 13.
Potential and carrier distribution are shown both for
a classical transport model (left) and with the addition
of quantum corrections (right). In this particular simula-
tion both gate and drain bias are 1V, the side oxide thick-
ness is 1 nm and the background acceptor concentration is
1016 cm�3. Figure 14 shows how the quantum correction
potential is added to the electrostatic potential to cause
charge repulsion from the interfaces.
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Quantum Phenomena in Semiconductor Nanostructures, Figure 12
Electron concentration in a double-gate MOS capacitor calculated with the Schrödinger-corrected Monte Carlo and self-consistent
Schrödinger–Poisson methods over a range of body thicknesses

Quantum Phenomena in Semiconductor Nanostructures, Figure 13
Potential (top row) and electron concentration (bottom row) in the cross-section of a finFET as simulated by 3-D Monte Carlo sim-
ulation. Results on the left correspond to a classical simulation without quantum correction. The application of the Schrödinger
quantum correction, in the results on the right, causes a shift of the charge concentration maximum away from the interfaces. Note
that the figures are oriented upside down so that the top oxide interface corresponds to z D 0
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Quantum Phenomena in Semiconductor Nanostructures, Fig-
ure 14
The quantum correction potential (red curve) added to the elec-
trostatic potential solution from the Poisson equation resulted
in a quantum corrected potential that repels electrons from the
interface

Online Resources

Over the last several years, the availability of advancedma-
terial on internet services has increased dramatically. The
readers of this article will be particularly interested in ex-
ploring the many relevant resources accessible at http://
www.nanohub.org, the portal of the Network for Compu-
tational Nanotechnology, an initiative funded by the Na-
tional Science Foundation. The nanohub provides an ever
increasing portfolio of online simulations that allow users
to access fully functional research codes through compre-
hensive interactive interfaces. Many of the available ap-
plications in the nanoelectronics section of the nanohub
relate directly to topics outlined in this work, includ-
ing solvers for band structure, size quantization, quan-
tum-corrected Monte Carlo, NEGF applied to nanodevice
structures. Besides nanoelectronics, the site provides tools
for nano-electro-mechanical system and nanobiology sim-
ulation. The unique approach of this organization has
been to embed mature and working research codes, vir-
tually unmodified, within a powerful infrastructure which
provides at the same time a complete graphical user inter-
face with intuitive selection menus and controls to initial-
ize and start a simulation, access to large computational
resources on efficient computer clusters, visualization of
the results in the interface window with a range of facili-
ties for data exploration. Because of this arrangement, de-

ployment time of simulation codes has been drastically
shortened, leading to availability of a vast array of appli-
cations which is expected to keep growing considerably in
the future. With integration of all simulation aspects un-
der one single interface, the nanohub services are appeal-
ing not only to computational experts in the field, but also
to experimentalists and students. Beyond online compu-
tation, the nanohub is also the depository of a large num-
ber of tutorials, lectures and seminars which are regularly
augmented with new contributions. The identification of
specific material of interest is facilitated by flexible search
tools.

Future Directions

The saturation in our ability to scale further down the di-
mensions of standard silicon devices for integrated cir-
cuits, which is expected to occur in the near future, opens
many questions which make the formulation of future di-
rections quite difficult. The main issue is that a replace-
ment for standard silicon MOSFET technology has not
been clearly identified, despite a flurry of activities that
have explored many possibilities. Molecular systems have
been studied as possible candidates for new nanotechnolo-
gies. One can find in nature a variety of stable and robust
molecules that could be produced or harvestedwith nearly
perfect uniformity of shapes and properties and which ex-
hibit device-like behavior under external stimuli. In cer-
tain areas of electronics, organic materials have already
made promising inroads, particularly for the realization
of optical devices and displays [28]. Conduction through
organic molecules is being studied with the goal to real-
ize elementary computational or memory elements while
a great deal of attention is also being paid to carbon nano-
tubes, which yield solid-state structures dominated in their
behavior by the specific molecular footprint achieved dur-
ing growth and which may allow a rich variety of new ap-
plications [3,40]. There is also interest in biomolecular sys-
tems. DNA molecules, which have long wire shapes, have
been suggested as possible structures for computing ap-
plications [51]. Even biological ionic channels [31], that
act as natural nanoscale devices in every cell and display
a range of behaviors, have been examined for possible ap-
plications as switches, sensors and actuators [8]. Finally,
semiconductor materials with magnetic properties are in-
vestigated to provide the ability to select the spin quantum
number of carriers injected into a device [4]. Since the time
decay constant of a given spin state can be much longer
than characteristic device operation times, the possibility
to encode information in spin states provides a new com-
putational paradigm full of intriguing possibilities. Fun-

http://www.nanohub.org
http://www.nanohub.org
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damental research on quantum computation in general is
currently receiving considerable attention [32] but practi-
cal applications are still a matter of considerable specula-
tion and the main limitation today is due to the fact that
extremely low temperatures are still necessary to demon-
strate working quantum computing applications of any
kind.

While molecular systems are attractive to attempt the
realization of more advanced nanoscale device elements,
realistically one cannot expect a rapid technological de-
velopment that may quickly provide an alternative to
present semiconductor devices. One should expect that
evenwhen intrinsic scaling limits are reached, silicon tech-
nology would continue to be refined, still playing a fun-
damental role in any electronics application. Even if to-
tally new devices become practical, we are likely to see
for a long period of time the emergence of hybrid tech-
nologies where new systems, made of nanoscale building
blocks that realize specialized tasks, will be implanted onto
host systems based on traditional semiconductor technol-
ogy approaches. Systems completely realized with molec-
ular technologies are still difficult to envision. Many ef-
forts are focused on finding a one-to-one replacement for
the MOSFET but, arguably, completely new architecture
and computational paradigms are necessary to realize the
promise of new potential molecular approaches. Biologi-
cal or artificial (biomimetic) nano-channels may find uses
as single molecule detectors in novel sensing applications,
possibly operating as a combination of analog and digital
computing elements.

This preamble provides some grounds to venture into
a prediction of future directions. It is unquestionable that
miniaturization will continue and that elementary devices
will continue to seek the true ultimate physical limit, which
is arguably on the order of the size of an atom. Quan-
tum and first principle calculations will be indispensable
to provide the necessary predictive power for the design
of reliable systems. Today, computer aided design (CAD)
is already an essential stage in the design and fabrication
loop. Design of large systemswould be inconceivable with-
out the use of CAD tools for circuit simulation [14]. While
it was possible in the past to fine tune a device structure by
trial-and-error in the laboratory, at the nanoscale regime
of today one has to rely more andmore on process and de-
vice simulators to optimize and calibrate design and fabri-
cation stages to achieve the necessary performance and re-
liability. As the scale of device elements decreases, so is our
ability to observe and measure directly anything related to
device behavior. In the future, the exploration of new de-
vice concepts will have to rely even more on new genera-
tions of multi-scale and multi-physics computational ap-

proaches, while development teams will be by necessity
increasingly interdisciplinary. One may envision that the
computational approaches described earlier will continue
to be used and improved, but increasingly in the context
of coupled physical effects, where electrical, mechanical
and thermal behavior are intimately connected to deter-
mine the behavior of a complex nanoscale system. For all
of these aspects, quantum mechanics will play a pivotal
role, but one should expect that the standard envelope-
function effective-mass picture, adopted so successfully in
most semiconductor device applications until now, will
have to be complemented often by an atomistic approach
requiring new practical simulation tools able to perform
first principle calculations at various levels of complexity,
from electronic structure to molecular dynamics.

This outlook opens up more general issues for which
the science community needs to be prepared. Quantum
mechanics is not going to be any longer the domain of
a limited number of specialists, but it will permeate amuch
broader range of disciplines and applications. At the same
time, computational requirements will be much greater
and the complexity of simulations will make it impracti-
cal for single individuals to manage complete simulation
codes alone. The computational community is already ac-
tively addressing the issues of Peta-scale computing tech-
nology which is expected to debut in the next five years.
This unprecedented computing power will create new dif-
ficulties in data management, visualization, and numerical
strategies for efficient use of the resources, while new ed-
ucational challenges will have to be addressed in order to
prepare professionals who can deal with the complexity of
the simulation models and of the computational environ-
ments. This is why this author firmly believes that large
cyber-infrastructure initiatives in nanotechnology will be
crucial to create virtual collaborative communities and to
develop the necessary educational and computational re-
sources that an academic institution or industrial labora-
tory may not be able to provide individually to solve the
electronics problems of the future.
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79. Yalabik MC, Ecemiş MI (1995) Numerical implementation of
absorbing and injecting boundary conditions for the time-de-
pendent Schrödinger equation. Phys Rev B 51:2082–2086

80. Yamakawa S, Ueno H, Taniguchi K, Hamaguchi C, Miyatsuji K,
Masaki K, Ravaioli U (1996) Study of interface roughness de-
pendence of electron mobility in Si inversion layers using the
Monte Carlomethod. J Appl Phys 79:911–916

Books and Reviews
Datta S (1995) Electronic transport in mesoscopic systems. Cam-

bridge University Press, New York
Ferry DK, Goodnick SM (1997) Transport in nanostructures. Cam-

bridge University Press, New York
Frensley WR (1990) Boundary conditions for open quantum sys-

tems driven far from equilibrium. Rev Mod Phys 62:745–791
Fu Y, Willander M (1999) Physical models of semiconductor quan-

tum devices. Kluwer Academic Publishers, Norwell
Hamaguchi C (2001) Basic semiconductor physics. Springer, Berlin
Lundstrom M (2000) Fundamentals of carrier transport. Addison-

Wesley, Reading
Nag BR (2000) Physics of quantumwell devices. Springer, Berlin
Paiella R (2006) Intersubband transitions in quantum structures.

Mc-Graw Hill, New York



7422 Q Quantum Similarity and QuantumQuantitative Structure-Properties Relationships (QQSPR)

Quantum Similarity and Quantum
Quantitative Structure-Properties
Relationships (QQSPR)
RAMON CARBÓ-DORCA, ANA GALLEGOS
Institut de Química Computacional,
Universitat de Girona, Girona, Spain

Article Outline

Glossary
Definition of the Subject
Introduction
Mathematical Background of Quantum Similarity
Quantum Similarity
Linear Quantum QSPR Fundamental Equation
Non-Linear Terms and ExtendedWave Functions
QQSPR Operators, Quantum Similarity Measures and the

Fundamental QQSPR Equation
Future Trends
Bibliography

Glossary

There is a brief description of the terms used herein. The
defined items appear in alphabetical order.When in a defi-
nition a term already defined in the glossary is mentioned,
it is written in bold face; then, the reader has to refer to
the corresponding glossary item, where more information
is given.
Carbó (similarity) index The Carbó (Similarity) Index is

a QS index, which corresponds to the cosine of the
angle subtended by the density function (DF) tags of
any pair of quantum objects. The values of the Carbó
index lie within the interval (0; 1]. The lower bound
corresponds to a complete dissimilarity, while the unit
value is encountered when comparing a quantum ob-
ject with itself. See also: Euclidian Distance (Similar-
ity) Index.

Core set A QOS with the additional information of
a known and well-defined property value for every
QO.

(First order) density function (DF) The first order DF is
a quantum theory concept, associated to a known elec-
tronic submicroscopic system. To be understood by
this term is a wave function squared module or the
full DF, reduced by integration over the space and spin
coordinates to a function of the space coordinates of
a unique electron. As it is customary in the literature,
the name will be shortened to DF. Such a function can
be also obtained via direct computation within Density

Functional Theory (DFT). DF can be employed as tags
associated to well-defined quantum objects. DF are
non-negative functions. According to the usual quan-
tum mechanical interpretation, within the DF collec-
tion there is contained all the information one can ex-
tract from the system. This last statement is the basic
postulate which appears in first place when developing
QQSPR theory.

(Full) density function A quantum theoretical concept,
associated to a known electronic (or other particle sets)
system. It corresponds to the system’s wave function
squared module.

Density function (DF) tags The tag set, (see: tagged set)
collecting the quantum mechanical density functions
used as descriptors in aQOS.

DQOS Discrete Quantum Object Set. A QOS whose tags
are finite dimensional vectors, whose elements, in turn,
are computed as quantum similarity measures.

Euclidean distance (similarity) index Like the Carbó
Index the Euclidean Distance Index is a quantum
similarity index, involving the Euclidean distance be-
tween two density functions. The range of this index
is [0;1), thus their minimal values correspond to two
identical quantum objects, while the index grows in
relation to the difference in the compared quantum
objects.

FQQSPR equation Fundamental Quantum Quantitative
Structure-Properties Relationships equation. The sub-
ject of study and analysis of the present contribution.
A non-empirical equation, which can be deduced by
quantum mechanical theoretical means, serving as the
basic tool to obtainQQSAR orQuantum QSAR. Here,
only the linear FQQSPR equations are deeply dis-
cussed, as they are the main source of QQSPR studies,
but the FQQSPR equation can easily be extended to
any order.

Molecular descriptors Parameters of varied origin: em-
pirical, theoretical or experimental, or functions ob-
tained from quantum mechanical manipulations like
the Density Function or the Electrostatic Molecular
Potential, or by empirical considerations, associated
to a given molecule, which represent the molecular
structure environment and can be employed to ob-
tain QSPR. Any set of parameters or functions, which
can be used as tags in a tagged set, whose objects are
molecules.

QO Quantum Object. An element of a QOS, a tagged set
where every element is constructed as a composite of
a submicroscopic system description (the object) and
a density function (the tag). The possibility to repre-
sent all the information contained within any quan-
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tum system by the full or reduced DF, permits one to
describe such an entity formed by the structure of the
system and its DF together; this can be called a QO.
Plural: QO’s.

QOS Quantum Object Set. A tagged setmade of QO’s.
QS Quantum Similarity: A discipline dealing with simi-

larity measures between submicroscopic systems. Such
kinds of quantum similarity measures (QSM) can be
computed using the quantum theoretical description
of such kinds of objects. According to quantum the-
ory all the information one can obtain about a quan-
tum system is contained in the state DF and the set
of possible reduced forms, hence quantum similarity
is part of this information contained in the DF. Usu-
ally, for computational convenience, the (first order re-
duced) DF has been employed as a universal descrip-
tor for comparison purposes and it is the employed tag
of a QO. Similarity comparisons become possible by
means of comparing the QODF tags.

QSAC Quantum Similarity Aufbau Condition: A condi-
tion that the QS Matrix has to comply with in order
to be positive definite and admit Choleski decomposi-
tion.

QSAR& QSTR QSAR are QSPR employed to estimate
biological molecular activity values via molecular de-
scriptors. When QSPR are employed to estimate
molecular toxicity, they can be called QSTR.

Quantum similarity matrices (QSmatrices)
[Depending on the context so as not to cause con-
fusion with the term QS Measures the abbreviation
QSM can also be used to denote QS Matrices]: Any
matrix which contains computed QSM results involv-
ing several QO. Usually the QS Matrix is symmetric
and square when the QSM on the involved elements
of a unique QOS are ordered in pairs. In this case the
QSAC must hold. The QS Matrix can be rectangular
when computing and ordering into a matrix the QSM
of two differentQOS.QSHypermatrices appear when
higher orderQSM associated to more than twoDF are
involved.

Quantum similarity measures (QSM) and indices (QSI)
A positive definite integral, computed employing the
QO DF tags as integrands and, if necessary, including
a positive definite operator which can be supposed to
act as a weight. Possessing the structure of a measure,
such an integral can be interpreted as a generalized
volume. QSM between two or several QO correspond
to integrals, which can be constructed primarily with
integrands made with the product of the density tags
of the compared quantum objects plus a positive def-
inite operator. Such a definition ensures the positive

definite nature of the QS integrals. A quantum self-
similaritymeasure corresponds to theQSM computed
with the density function tags of a unique QO. QSI
are manipulations of the QSM in order to obtain QS
comparisons within an adequate range.

QSPR (Classical) Quantitative Structure-Properties Rela-
tionships. This term refers to any empirical relation-
ship permitting the connection between molecular
structure, represented by a set of parameters (molec-
ular descriptors) of any origin and molecular prop-
erties. Usually, by a classical QSPR can be understood
a non-causal multilinear relationship, obtained via sta-
tistical reasoning and procedures. This is the generic
name given to any functional (usually linear) con-
necting the properties of a molecule with the attached
molecular descriptors. The QSPR functionals are em-
pirically obtained by statistical analysis, usually em-
ploying (non-)linear regression techniques or any vari-
ant of it.

QQSPR Quantum Quantitative Structure-Properties Re-
lationships. These are non-empirical functionals de-
rived from the structure of a FQQSPR equation. Thus,
this kind of relationship, if it exists, to some extent can
be considered causal. A QQSPR permits us to com-
pute themolecular properties ofU-molecules, just em-
ploying non-empirical considerations and parameters
ormolecular descriptors of quantum mechanical ori-
gin. In this sense, these relationships can be consid-
ered universal, applicable to any molecular structure.
However, due to the quantum mechanical nature of
the QQSPR, one can obtain structure-properties re-
lationships between QO’s of any kind: nuclei, atoms,
molecules. By QQSPR are here understood QSPR ob-
tained by means of the application of canonical quan-
tum theoretical methods to obtain expectation values
of a Hermitian operator, which within QQSPR theory
is described by functionals of the density function tags
of a givenQOS, acting as a basis set. QQSPR are more
general than classical QSPR as they can be obtained
for anyQO, incorporating information difficult to take
into account with classicalmolecular descriptors. The
descriptors in the QQSPR framework are the DF tags
of theQO.

QSmatrix Quantum Similarity Matrix. The matrix pos-
sessing positive definite elements, constructed by
quantum similarity measures using the DF tags of
the elements of a QOS. See: Quantum Similarity
Matrices.

Tagged set A set constructed as the Cartesian product of
two separate sets. One of them, the object set is com-
posed of well-defined elements of any nature, called
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objects. The other set in the tagged set is the tag set,
made of some descriptors attached to every object,
which is supposed to contain information about the
objects; tags can bemathematical elementsmade by bit
strings, vectors, matrices, functions. . .

U-m Unknown (properties) molecule. A molecule which
can be described as a QO, but lacks the property in-
formation associated to the molecules belonging to the
Core Set. U-m properties act as the unknowns to be
evaluated in theQQSPR theory developed here.

U-molecule A U-m.
U-m set AQOS containing U-m’s as elements.
Wave function A by-product of solving the Schrödinger

equation. When studying stationary submicroscopic
systems by means of classical quantum mechanics, the
pair energy – wave function correspond to the eigen-
value – eigenfunction pairs of the Hermitian Hamilto-
nian operator constructed for the system, which sub-
stitutes the classical Hamilton function. The squared
module of the stationary wave functions for each sys-
tem state is customarily interpreted, since Born times,
as the probability density function to find the system as
a whole in some space infinitesimal element of volume.

Definition of the Subject

The concept of Quantum Similarity (QS) was introduced
for the first time in 1980 in a paper by Carbó et al. [1] enti-
tled:How Similar is a Molecule to Another? There the basic
aspects of the theory were set up. The backbone of QS was
constituted by the conceptual support of the QSM.

QSM. A QSM between two quantum objects (QO): as-
sociated to the density function (DF) tags: f�A; �Bg was
defined as the density overlap integral:

ZAB D

Z

D
�A(r)�B(r)dr D h�A�Bi D h�B�Ai D ZBA ;

which is always a positive real number, because the in-
volved DF are non-negative definite real functions. Self-
similaritymeasure integrals were defined in the sameman-
ner:

I D A; B : ZII D

Z

D
�I(r)�I(r)dr D

˝
�2I
˛
:

QS Matrix. A simple example, which remains formally
valid for larger QO sets, can illustrate the basic procedures
of QS. For a set of two QO a symmetric QS matrix can be
set up:

Z D
�
ZAA ZAB
ZBA ZBB

�
D ZT  ZAB D ZBA :

The columns (or rows) of the QS matrix:

jzAi D
�
ZAA
ZBA

�
^ jzBi D

�
ZAB
ZBB

�

can be interpreted here as the construction of a two dimen-
sional discrete representation of the DF tags pair, quantum
mechanically associated to the two involved QO. In this
way one can write the association:

8I D A; B : �I $ kzIi :

QSI. From the QS matrix elements several kinds of QS
indices (QSI) can also be described. Two indices were de-
scribed in the seminal paper:

A) Carbó Index; defined as a cosine of the angle sub-
tended by the pair of DF tags f�A; �Bg:

RAB D ZAB(ZAAZBB)�
1
2 2 [0; 1]! RAB D RBA :

B) Euclidean Distance Index; constructed with the well-
known form:

D2
AB D

Z

D
j�A(r) � �B(r)j2 dr

D ZAA C ZBB � 2ZAB 2 [0;C1]
! DAB D DBA :

Ordering a QOS and Mendeleyev Conjecture. QSM or
QSI, computed as previously described on the elements of
a Quantum Object Set (QOS), are sufficient to permit or-
dering the elements of the set; thus, opening the way to
construct non-artisan periodic tables of molecular sets, for
instance.

The possibility to order QOS by means of their DF
tags opened the way to estimate unknown properties of
some QO; provided a set of QO with known properties
was previously ordered. This has led to the path towards
Mendeleyev conjecture, described by Carbó and Besalú [2]
in 1996.

QQSPR. Mendeleyev conjecture opened the way to em-
ploy QS techniques in order to obtain QSPR (Quantitative
Structure-Properties Relationships), providing the neces-
sary background for the description of quantum QSPR
(QQSPR); a new kind of QSPR functionals that possess
the properties to be: (1) Universal: as it can be employed
to study any QOS. (2) Unbiased: as the user cannot choose
any other QO descriptor than the DF tag. (3)Causal: as the
QQSPR functionals are based on a non-empirical equa-
tion, derived from the application of quantum theoretical
methodology.
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Aims. This contribution pretends to provide a mathe-
matical basis for the understanding of the quantum QSPR
problem, which tries to find out how to construct univer-
sal, unbiased and causal QSPRmodels. In turn these QSPR
models can be employed to predict complex (in the sense
of complicated observables) molecular properties. The ul-
timate purpose of such a theoretical framework is aimed at
overcoming the fact that in previous applications molec-
ular quantum similarity numerical values, ordered in the
form of similarity matrices, have been employed just like
molecular descriptors within a classical QSPR computa-
tional way. The future of molecular quantum similarity
must be foreseen within the description and further devel-
opment of an autonomous QQSPR set of computational
procedures.

Introduction

Quantum Object Sets and Core Sets. QSPR studies are
based on some set of molecules: M, attached to a collec-
tion of descriptors and properties; the whole is the core
set, symbolized as: C. For all the elements of the set M, via
the Schrödinger equation for everymolecule in the core set
a wave function can be computed, providing in turn a set
of density functions: P D �I , which can be considered as
unique continuous molecular descriptors, by means of the
quantum mechanical interpretation [3,4].

According to this it can be considered that:

8mI 2 M! 9�I 2 P ^ 8I : mI $ �I :

Therefore, quantum similarity theory [5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22], permits us to perform
a Cartesian product of the M and P sets, which is used to
build up a tagged set [23] Q DM � P, named a quantum
object set (QOS). In a QOS themolecules constitute the ob-
ject set and the density functions the tag set [23,24,25]. The
elements of a QOS are quantum objects (QO). QO ordered
pairs, are constructed in the following way:

8mI 2 M ^ 8�I 2 P! 8!I 2 Q: !I D (mI ; �I) : (1)

Then the core set, C is a well-defined QOS. Because of the
QOS definition in Eq. (1), C can have the form:

8!I 2 Q ^ 9�I 2 ˘

! 8cI 2 C D Q�˘ : cI D (!I ;�I) � (mI ; �I ;�I);

˘ contains the properties of some elements of M. Hence,
C elements are triples made of molecular structures, den-
sity functions and properties: C D M � P �˘ .

In classical QSPR density functions are replaced by fi-
nite dimensional vectors, whose elements are the so-called
molecular descriptors. Construction of the core setwith dis-
crete vector spaces, substituting P, will also appear within
the QQSPR. The substitution of the continuous density
tags by discrete vectors in QQSPR has a mathematical-the-
oretical meaning, while in empirical QSPR this remains ar-
bitrary. The elements of the core set C are core molecules,
C-molecules or briefly C-m.

QQSPR Operators, Quantum Similarity Measures and the
Fundamental QQSPR Equation. Correspondence prin-
ciple provides the rules to construct Hermitian opera-
tors, with expectation values associated to the experimen-
tal outcomes of submicroscopic systems observables [3,4].
For some complex (complicated) observables, like bio-
logical activities, the correspondence principle cannot be
applied, as Hermitian operators are unavailable or diffi-
cult to be obtained. The QQSPR operators and the at-
tached fundamental QQSPR equation, create an approx-
imate quantum mechanical computational environment
in order to estimate the expectation values of complicated
observables.

QQSPR Operators. The fundamental QQSPR equation
arises when density function tags: f�I(r)g of someQOS are
used to construct a QQSPR operator as:

˝(r1; r2; r3; : : :) D x0	0(r1)C
X

I

xI�I(r2)	1(r1; r2)

C
X

I

X

J

xIxJ�I(r2)�J(r3)	2(r1; r2; r3)C O(3) (2)

in Eq. (2), x0 is an arbitrary constant; f	!(R)j! D

0; 1; 2; : : :g is a known positive definite operator set, acting
as a weight set; and fxIg is a set of parameters, determined
through the fundamental QQSPR equation.

The structure of a QQSPR operator (2) has to be seen
as a first step algorithm permitting us to define approxi-
mate quantum mechanical operators. The QQSPR opera-
tors can be employed afterwards to evaluate their quantum
mechanical expectation values.

Expectation Values of the QQSPROperator. To determine
the parameter set fxIg, it is necessary to compute the set of
expectation values over the elements, the core molecules
or C-m, of the core set C. Besides a well-defined structure
and a known density function, as members of a QOS, the
C-m possess a known property value of the set:˘ D fxIg,
attached to each one.
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Then, every known property of the C-m elements can
be expressed as an expectation value of aQQSPR operator:

8mK 2 C: �K � h˝�Ki D x0h	0�Ki

C
X

I

xIh�I	1�Ki C
X

I

xIxJh�I�J	2�Ki C O(3) :

(3)

Zero-th Order Term. In the expectation values (3) of the
elements of C, the Zero-th order term is:

�K[	0] D x0h	0�Ki D x0
Z

D
	0(r1)�K(r1)dr1

being a constant for each C-m, the Zero-th order term:
x0	0(r) acts as an origin shift. Choosing: 	0(r) D I, this
term becomes proportional to the number of electrons of
the C-m considered:

�K[I] D x0h�Ki D x0
Z

D
�K (r1)dr1 D x0NK :

The Zero-th order term can be omitted if it is no longer
necessary to shift the property values of the C-m.

Quantum Similarity Measures in First and Second-Order
Expectation Value Terms. The first-order term in Eq. (3)
contains QSM integrals between pairs of C-m density
function tags, long time known [15]:

zIK [	1] D h�I	1�Ki

D

Z

D

Z

D
�I(r2)	1(r1; r2)�K(r1)dr1 dr2 ;

and the second-order term is made of triple-density quan-
tum similarity measures [16]

zIJK[	2] D h�I�J	2�Ki

D

Z

D

Z

D

Z

D
�I(r2)�J(r3)	2(r1; r2; r3)

�K(r1)dr1 dr2 dr3 :

The matrix symbol Z will be used to represent any col-
lection of QSM: fzIJg, independently of the nature of the
weighting operator	1.

Quantum Similarity Matrices (QSM) in the Construction
of First-Order QSPR Operators and the Definition of Dis-
crete QOS (DQOS). The first-order approach of the QSPR
operator [13,14,15,16,17], applied to the core set with the
known property set: ˘ D f�Ig, produces the equation
collection:

8I : pI D �I � h	0[�I]i

�
X

J

xJh�J	1[�I]i D
X

J

xJzJI : (4)

If 	1 D I is used, the first-order integrals (4) are:
�
h�J[�I]i D

Z

D
�J�I dV D zJI D zIJ

D

Z

D
�I�J dV D h�I[�J]i

�
;

and can be ordered into a (n � n) symmetric array, con-
structing in this way the so-called quantum similarity ma-
trix: Z D fzIJg (QS Matrix) [18]. The property set form
a column vector: jpi D fpIg. Equations (4) are a linear sys-
tem, which can be used to evaluate unknown molecular
properties for some QOS members of the core set.

Every column of the QSM [19]: Z D fjzIi D fzJIgg,
is a discrete representation of each QO density function
in: P D f�Ig. A one-to-one correspondence exists between
the density tag set and the QSM column submatrices:

8mI 2 M : �I $ jzIi ) P, Z :

The QSM column set can be used as a n-dimensional
vector tag set, attached to the molecular set, build-
ing up a tagged set, called discrete quantum object set
(DQOS) [19,20,21,22,26]:

QZ D M � Z : (5)

In DQOS, the density function tags of the original QOS, Q,
belonging to the tag set P, are substituted by the columns
of the QSM. There also exists a one-to-one correspon-
dence between both QOS: Q $ QZ .

Fundamental QQSPR Equation Setup. Expectation values
of the QQSPR operator (3) can be collected in a column
vector, providing the fundamental QQSPR equation:

jpi � Z1jxi C hxjZ2jxi C O(3) : (6)

In (6), jpi D fpKg is the shifted C-m properties vector:
jpi D j�i � j�i, where j�i D f�Ig is the original property
vector and j�i D f�Kg is the completely determined Zero-
th order origin shift vector, fZ!j! D 1; 2; : : :g is a ma-
trix set containing the quantum similarity measures, for
instance: Z1 D fzIKg; Z2 D fzIJKg; : : :, and: jxi D fxIg is
a column vector bearing the unknown coefficients, which
define explicitly the QQSPR operator (2).

The unknown coefficients jxi D fxIg can be obtained
solving the linear equation contained in the fundamental
QQSPR Eqs. (4):

j�i � j�i D jpi D Z1jxi ! jxi D (Z1)�1jpi : (7)

Equation (7) has no predictive power. This is so because
the first-order similarity matrix Z1 has to be chosen posi-
tive definite by construction. By predictive power it is un-
derstood the possible computation of the property value
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for an also known quantum object, a U-m, which as such
possesses a well-defined structure and density function,
but belongs to the U set.

In the last years, since the description of QS measures
for the first time [1], the predictive power of the infor-
mation contained in the QS matrices set has been ma-
nipulated within the classical QSPR. This is the same as
considering the similarity matrices as a source of molec-
ular parameters to construct empirical QSPR. See refer-
ences [5] and [27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46].

First-Order Fundamental QQSPR Equation. The study of
QQSPR predictive potential starts with the first-order fun-
damental QQSPR equation, involving the core set, con-
taining the associatedDQOSmolecules, possessing known
values of some complex property.

The first-order QQSPR fundamental equation in
a compact matrix form [60] is written as:

Zjxi D jpi ; (8)

Where the matrix Z is the already described symmetric
QSM, jpi is the known core set shifted property vector and
jxi is a (n � 1) vector, whose coefficients have to be evalu-
ated.

The predictive power of such an equation is a priori
null. This is so because the QSM: Z, is by construction
non-singular, then exists a QSM inverse Z�1, with the re-
lationships: Z�1Z D ZZ�1 D I. This leads to the trivial re-
sult, defining the unknown coefficient vector:

jxi D Z�1jpi : (9)

And exact property values for any molecule of the core set,
can be reproduced just choosing the scalar products:

8I : pI D hzIjxi : (10)

QSM for varied core sets have been used in a set of predic-
tion studies [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46], employing up to date statistical tools, typ-
ical of classical QSPR studies, [47,48,49,50,51,52,53,54,55,
56,57,58]. The use of the fundamental QQSPR equation
to construct algorithms, which can be utilized as predic-
tive tools independently of classical QSPR algorithms, has
been previously attempted [59], but it has not been con-
tinued in practice until recently [60,61,62]. Here will be
discussed in several places not only the QQSPR problem
itself, but various points of view and a future perspective
as well.

Symmetrical Similarity Matrices. The fundamental
QQSAR equation has been presented within the particular

case where the basis and probe molecular QOS coincide,
forming a square symmetric QS Matrix. This choice has
the drawback that the fundamental QQSPR linear system
becomes well defined, with a unique solution, whenever
the similarity matrix is non-singular as no QO coincides
with another within the QOS C. Even then, there is quite
a wide range of solutions to overcome this apparent limi-
tation. Among other procedures, one can use the C sym-
metric QSM, Z, as a source of molecular descriptors and
afterwards employ them in classical statistical treatments.
This choice, as has been already commented, has been
studied in many publications of our laboratory with suc-
cess [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
44,45,46]. Other possible QSM can be constructed bearing
rectangular structure, for example using known molecu-
lar structures acting as a basis set, which in turn can be
compared with the core set.

Origin of Hansch QSAR Models. An interesting possibil-
ity of the symmetric square representation for the QS Ma-
trices corresponds to its potential to unveil the origin of
one parameter classical QSAR models, such as those Han-
sch [63] described some years ago. A fundamental QQSPR
linear equation can be associated to a set of � equations
with the same number of unknowns, and can be rewritten
as:

8J D 1; � : pJ '
�X

ID1

xIzIJ D xJzJ J C
�X

I¤J

xIzI J : (11)

There is no need to attach the QSM elements to any spe-
cific QOS, as all of them are computed over a unique ba-
sis of density function tags. Considering (11), two terms
can be seen. The first one is attached to a self-similarity
measure zJ J , while the second term in cases of some not
so strongly varying QOS, can be considered almost a con-
stant, that is using:

8J : ˛ D xI ^ ˇ '
�X

I¤J

xIzI J : (12)

Equation (11) takes the final form:

8J D 1; � : pJ ' ˛zJ J C ˇ (13)

which has the required appearance to be considered as
possessing a Hansch-like structure.

Equation (13) proves self-similarities can be substi-
tutes of the classical Hansch analysis parameters [63].
They constitute, for co-generic QOS, molecular descrip-
tors with the property to be directly attached to a tri-di-
mensional molecular structure. Quantum self-similarity
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measures vary slowly with conformational changes [10,
64], so their values for the optimalmolecular geometry can
be safely used.

Mathematical Background of Quantum Similarity

InwardMatrix Product (IMP)

IMP Definition. An essential piece of QSM theory is
the matrix operation called the inward matrix product
(IMP) [65,66,67,68,69], which is based on the structure of
the Hadamard product [70]1. Such an operation is an in-
ternal composition law, which can be defined within a ma-
trix (or hypermatrix) vector space M(m�n)(K) of arbitrary
dimension (m � n) and defined over a field K , producing
a matrix whose elements are products made in turn by the
elements of the matrices appearing in the IMP itself, ac-
cording to the straightforward algorithm:

8A D fai jg;B D fbi jg 2 M(K) : P D A  B! P
D fpi jg 2 M(K) ^ 8i; j : pi j D ai jbi j : (14)

IMP is an operation, which can be applied not only to ma-
trix spaces but over a wide variety of mathematical objects,
producing another mathematical object of the same kind
as the ones involved in the operation.

IMP Properties. On the other hand, IMP is equivalent to
a feature involving arrays, present in high-level computer
languages such as Fortran 95 [71], so practical program-
ming of the IMP properties and characteristics is straight-
forward. IMP is commutative, associative, and distributive
with respect to the matrix sum. Moreover, it has a multi-
plicative neutral element, the unity matrix, which has been
customarily represented by a bold real unit symbol and
formally defined as: 1 D f1i j D 1g.

IMP Powers and Functions. By an IMP power over a ma-
trix A D fai jg, noted as: A[p] is understood the matrix
whose elements are the corresponding powers of the el-
ements of A, that is: A[p] D

˚
api j
�
. In the same manner,

an IMP function of a matrix, noted as: f [A], is defined as

1The Hadamard product (sometimes also called Schur or Kro-
necker product) is related to the multiplication result of two sums and
constructed by the sum of the resultant diagonal cross-terms only.
In this way, the inward (or Hadamard) product of two sums can be
specified by the following algorithm:

� NX

I
aI
�
�

� NX

I
bI
�
D

NX

I
aIbI :

Both sums shall have the same number of terms N, for the IMP being
feasible.

the matrix whose elements are the functions of the original
matrix: f [A] D f f (ai j)g.

Scalar Product as an IMP Composite Operation. A useful
application example of IMP is associated to the total sum
of the elements of an arbitrary matrix, A D fai jg 2 M, by
means of the symbol:

hAi D
X

i

X

j

ai j : (15)

Connecting this definition with IMP, one can easily write:

hA  Bi D hAi  hBi :

Then, it is simple to construct the scalar product of
two matrices of the same dimension, symbolized here
as:hAjBi, by means of the IMP structure:

hAjBi D
X

i

X

j

ai jbi j D hA  Bi : (16)

In this way, the definition of distances and cosines of the
angle between two matrices can be also outlined. For in-
stance, the cosine of the angle subtended by two matrices
can be written, according to Eq. (16), as:

cos(˛) D (hA  AihB  Bi)�
1
2 hA  Bi :

Vector Semispaces (VSS)

A vector semispace (VSS) [23,24,25,72,73] is a vector space,
where the additive group has been substituted by an addi-
tive semigroup. An additive semigroup [74] is an additive
group without reciprocal elements, which is the same as to
consider negative elements not present in VSS. A matrix
VSS will be made by matrices whose elements are posi-
tive definite or semi-definite. QS matrix structures belong
to positive definite VSS. This is the same as to consider
the matrix elements forming a VSS constructed by posi-
tive definite real numbers, extracted in turn from the RC

half-line. All the elements of a matrix VSS are non-singu-
lar matrices from the IMP point of view, while any matrix
possessing a zero element will be non-existent in a VSS, if
this strict sense is adopted. A functional VSS can be con-
structed by positive definite functions over a given domain
and lacking of the null function in order to comply with
the strict VSS characteristics.

Minkowski Norms in VSS. Because of the positive definite
structure of the components of a VSS, the easiest way to
define a norm within such a mathematical configuration is
Minkowski’s. In a matrix VSS one can write:

8A 2 M(RC)! hAi 2 RC : (17)
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Meanwhile, in any general functional VSS, an equivalent
form can also be defined:

8�(r) 2 F(RC)! h�i D
Z

D
�(r)dr 2 RC : (18)

As final information one can see that aMinkowski norm in
M(RC), and, thus, the complete sum of a matrix elements,
can be considered as a linear operator, that is:

h˛xC ˇyi D ˛hxi C ˇhyi :

�-Shell Structure in VSS. Minkowski-like norms classify
the VSS elements in subsets, the �-shells, S(�), whose ele-
ments are defined by the value of such a norm:

8x 2 S(�) � V(RC)! hxi D � 2 RC : (19)

The unit shell S(1) is a VSS subset, which can generate all
the other VSS shells. The existence of this property can be
easily constructed as follows:

8z 2 S(�)! 9x 2 S(1) : z D �x : (20)

Convex Conditions. The idea underlying convex condi-
tions, associated to a numerical set, a vector, a matrix, or
a function, has been described since the initial work on
VSS and the related questions [23,24,25,72,73]. By the con-
vex conditions symbol: K(x) is meant that the conditions:

hxi D 1 ^ x 2 V(RC) ;

hold simultaneously for a given mathematical object x.
Convex conditions become the same as considering that
the object belongs to the unit shell of some VSS. Then, for
such kinds of elements:

K(x) D fhxi D 1 ^ x 2 V(RC)g � fx 2 S(1)g :

Conversely, the following property holds over any element
of the unit shell: 8x 2 S(1)! K(x).

Convex Linear Combinations Within a �-Shell. Given an
arbitrary �-shell: S(�) � V(RC), of some VSS, then con-
vex linear combinations of the elements of the ��shell
produce a new element of S (�). That is, suppose that the
convex conditions:

K(f�Ig) D
� X

I

�I D 1 ^ 8I : �I 2 RC
�
; (21)

hold on a known set of scalars f�Ig. Then, the following
property will be fulfilled for any arbitrary subset of ele-
ments belonging to the chosen ��-shell:

fxIg � S(�) ^ K(f�Ig)! x D
X

I

�IxI 2 S(�) ;

owing to the fact that the summation symbol, associated
here to a Minkowski norm, is a linear operator, thus:

hxi D
�X

I

�IxI
	
D
X

I

�IhxIi

D
X

I

�I� D �
X

I

�I D � ! x 2 S(�) :

Such a property is related to the possibility of constructing
approximate atomic and molecular DF, by means of con-
vex linear combinations, using a basis set of structurally
simpler functions, which shall belong to the same VSS
�-shell. One of the possible technical options has been de-
scribed in a series of papers, where the choice of the sim-
plified functions, in atomic electronic density fitting, was
made by sets of 1s GTO. The approach was termed atomic
shell approximation (ASA) [75,76,77,78,79,80,81,82,83]
and has been successfully employed, among other possi-
bilities, to make the integral computation and molecular
superposition inherent in molecular quantum similarity
measures (MQSM) easier.

Generating Vector Spaces

Generating Symbols. Any VSS �-shell structure can be
supposedly generated by a conventional vector space (VS).
Such VS can be defined over the complex or real fields. It
can be additionally provided by convenience with a posi-
tive definite metric structure. Indeed, suppose such a VS,
defined for the sake of generality over the complex field:
V(C). Then, from a very general point of view, the follow-
ing algorithm can be envisaged:

8v 2 V(C) ^ v ¤ 0! hvjvi D � 2 RC

) 9x D v�  v 2 S(�) � V(RC) : (22)

Where the IMP: x D v�  v has been used to construct the
VSS vector. Then the following sequence:

hxi D hv�  vi D hvjvi D �

holds and has been employed to set the form of Eq. (22).
The quantum mechanical image of the density func-

tion construction appears as a particular case of the def-
inition attached to Eq. (22). In addition, from a com-
plementary point of view, a symbol to briefly summarize
Eq. (22) could be described. One can say compactly that
the vector generates a VSS vector x, using a generating sym-
bol: R(v ! x), whenever the sequence of relationships in
Eq. (22) holds [23,24,25,72,73].

Probability Density Distributions. From the quantumme-
chanical point of view, when a wave function � (r) is
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known, then the attached DF �(r) is generated in the fol-
lowing way: R(� ! �) [25].

Another interesting point to be noted is that any
probability distribution, discrete or continuous, belongs
to some VSS unit shell. Probability distributions can be
generated by the conveniently normalized elements of
some normed or metric space, in order that the resul-
tant VSS element belongs to the unit shell, S(1). Poten-
tially, in this way they can belong to any other �-shell:
8�(r) 2 S(1) ^ � 2 RC ! p(r) D ��(r) 2 S(�).

Thus, in VSS one can consider that the unit shell re-
sumes every other �-shell. In this manner, probability dis-
tributions of any kind can be transformed into any other
element of the associated VSS. One can also say that any
VSS �-shell, S(�), can be considered like a homothetic
construct of the unit shell, S(1) [72]. Because the elements
of the unit shell comply with the adequate form of a prob-
ability distribution, then they also fulfil the convenient
convex conditions. That is: 8x 2 S(1)! K(x). In other
words, any probability distribution can be considered as
an element of the unit shell forming part of a VSS.

Scalar Products and Measures in VSS. Because of these
possible connections attached to probability vectors, scalar
products of two distinct compatible probability distribu-
tions are always positive definite, as one has:

8x; y 2 S(1)! hxjyi D hx  yi 2 RC : (23)

Therefore, the cosine of the angle subtended by two prob-
ability distributions has to be contained in the open inter-
val: (0; 1], due to Eq. (23). This is so, because the cosine
of the subtended angle between two elements can be com-
puted as:

8x; y 2 S(1) : cos(˛) D (hxxihyyi)�
1
2 hxyi 2 (0; 1]:

Furthermore, Eq. (23) shows that the scalar product be-
tween two, or more, elements of the unit shell of a given
metric VSS, constitute in any case a measure. In this way,
such a scalar product can be considered a generalized
volume.

Quantum Similarity

QSM over the Unit Shell. A similarity measure over the
unit shell of any VSS can be defined through the descrip-
tion of the mathematical elements described so far. Quan-
tum similaritymeasures (QSM) were described a long time
ago [1] and have been constantly used since then [84,85,86,
87,88,89,90,91,92,93]. In the most simple and at the same
time general way, within the easier formalism available,

a QSM can be defined knowing the appropriate DF of two
quantum systems: f�A; �Bg, adapted to the unit shell of the
corresponding VSS, and using as weight some positive def-
inite operator: f˝g, then the integral measure:

zAB (˝) D
“

D
�A(r1)˝(r1; r2)�B(r2)dr1 dr2

D h�A˝�Bi 2 RC (24)

will correspond to a weighted scalar product, defined over
the unit shell elements, made in turn by the compatible
quantum DF. The QSM (24) can be associated to a prop-
erty very comparable to the one encountered in Eq. (24)
and in any instance has to possess a positive definite
nature.

Quantum Object Sets. Suppose a set of quantum sys-
tems: S D fsIg, in a well-defined set of states. Suppose
that to every quantum system there is attached a known
state DF, forming the set: P D f�Ig, belonging to the unit
shell of some functional VSS. A tagged set [23,24,25] can
be constructed, using the Cartesian product: T D S � P,
where each element, �I 2 T , is constructed by the ordered
pair composition rule: �I D (sI ; �I), forming in this way
a quantum object. The tagged set T constitutes a quantum
object set, that is: T D f�Ig. The QSM earlier defined in
Eq. (24), can be interpreted, in turn, as a tensor product of
the tag part of the QOS.

Quantum Object Sets and Core Sets. The usual problem
in all QSPR studies is customarily based on the previous
knowledge of somemolecular set: M, of cardinality n, such
that the structures and properties of the set elements are
known beforehand. From now on, one can refer to this
collection of molecules, molecular descriptors and prop-
erties as the core set and name it as: C. With the molecular
structures of the elements of the set M known, one can
solve the Schrödinger equation associated to, in principle,
the ground state of every molecule in the set and compute
an attached set of density functions: P D f�Ig, which can
be connected to sole continuous molecular descriptors, ac-
cording to the quantum mechanical usual custom; such
that:

8mI 2 M! 9�I 2 P ^ 8I : mI $ �I :

In terms of the theoretical settings related with quantum
similarity, the Cartesian product of the molecular and the
density function sets is used to construct a tagged set:
Q D M � P. Such a tagged set has been formerly named
a quantum object set, where the molecules constitute the
object set and the density functions act as the tag set. Thus,
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from now on, one can consider the core set as a well-de-
fined QOS. One can name the elements of a QOS as quan-
tum objects. Therefore, ordered pairs, constructed in the
following way, define any QO:

8mI 2 M^8�I 2 P! 8!I 2 Q: !I D (mI ; �I) : (25)

However, the core set shall be structured in an even ex-
tendedmanner. Starting from the QOS definition, the core
set C has also to be associated with the following charac-
teristic:

8!I 2 Q ^ 9�I 2 ˘

! 8cI 2 C D Q�˘ : cI D (!I�I) � (mI ; �I ;�I) ;

Where the set˘ contains all the properties of the elements
of the molecular set M. Hence, core set elements are well-
defined triples consisting of molecular structures, density
functions, and properties: C D M � P �˘ .

In classical QSPR, based on the empirical description
of the set M, the set of density functions is replaced by
a set of vectors, belonging to a finite dimensional space,
whose elements are the chosen molecular descriptors. The
possible construction of the core set within discrete vector
spaces, substituting the density tag set P is a characteristic,
which will also appear within the QQSPR theoretical de-
velopment, as will be explained below. It must be said that
the QQSPR substitution of the continuous density tags by
discrete vectors has a quite well-structured mathematical-
theoretical meaning, while in empirical QSPR remains ar-
bitrarily chosen.

SimilarityMatrices. Collecting all the QSM computed be-
tween the element pairs of a given QOS, a so-called Quan-
tum SimilarityMatrix (QSM) is obtained, and constructed
according to the definition (24) by means of: Z D fzi jg.
Because of the QSmatrix elements structure, the matrix it-
self can be considered as an element of someVSS of the ap-
propriate dimension. The QS matrix Z is a symmetric ma-
trix with positive definite elements, whose columns fzIg
(or rows) are also elements of some N-dimensional VSS.
As such, there exists a real symmetric matrix, X, such that,
in general R(X! Z), that is:

Z D X  X D X[2] _ X D Z
�
1
2

�
: (26)

As a consequence, any QS matrix belongs to a pre-
cise �-shell of some VSS. That is:

8Z : hZi D
X

i

X

j

zi j D � ! Z 2 S(�) � M(RC) :

Stochastic Similarity Matrices. Even if the columns or
rows of the QS matrix Z belong to different �-shells of

some VSS, they can be easily brought to the unit shell, by
using a set of simple homothetic transformations, involv-
ing a product by a diagonal matrix, with elements con-
structed by theMinkowski norms of the columns (or rows)
of the QS matrix. That is, the diagonal matrix:

D D Diag(hz1i; hz2i; : : : ; hzIi; : : :) ; (27)

can transform the QS matrix Z into a column (or row)
stochastic matrix, simply by multiplying on the right (or
the left) of Z by the inverse of D, respectively [59]. For in-
stance, the stochastic column matrix associated to the QS
matrix is:

S D ZD�1 : (28)

In this way, the columns fsIg of the stochastic matrix,S,
belong to the unit shell of the column vector VSS of the
appropriate dimension. That is:

S D fsIg

! 8I : hsIi D
˝
hzIi�1zI

˛
D hzIi�1hzIi D 1

! sI 2 S(1) :

However, the column stochastic QSmatrix (28) appears to
be no longer symmetric as his originating QS matrix Z is.

Quantum Similarity Matrix Aufbau Procedure [94]

Suppose a known given Quantum Object Set formed by N
molecules, with density tags described as: f�I(r)g. Up to
now, the usual procedure to construct the QSM has been
to maximize each of the integrals of type (26) with respect
to the translations and rotations of one of the implied QO
in relation to the others. This can be expressed formally,
for instance, as:

8I > J : zIJ D h�I�Ji D
Z

D
�I(r)�J(r)dr D zJI ; (29)

However, as has been well known since the first paper on
the subject [1] the set of quantum similaritymeasures fzIJg
depend on the relative position in 3D space of the im-
plied Quantum Objects (QO’s). As the QO density func-
tion labels are positive definite functions, the integrals of
type (29) can be considered as measures; thus, they are
positive definite too. Up to now the usual procedure to
construct the QSM has been to maximize each of the in-
tegrals of type (29) with respect to the translations and ro-
tations of one of the implied QO in relation to the other.
This can be expressed formally, for instance, as:

8I > J : zIJ D max
t;˝

Z

D
�I(r)�J (rjt;˝)dr (30)
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where the pairs: ft;˝g are translations and rotations re-
spectively, performed on the center of coordinates of
the Jth QO. It is irrelevant which one of the QOpair is cho-
sen in order to optimize the integral (29) by means of the
algorithm (30), the same result shall be obtained choosing
the Ith QO for undertaking translations and rotations.

Apparently, such a procedure, repeated for every non-
redundant couple of QO’s, shall provide a QSM Zwith ap-
propriate characteristics associated to a metric matrix. The
most important one is that the attachedQSMhas the prop-
erty to be positive definite; as the density tag set is linearly
independent, if the QOS is made of different QO’s, then Z
has to be a metric matrix of a pre-Hilbert space [94]. How-
ever, in many cases the use of algorithm (30) does not pro-
vide a QSM whose whole spectrum is positive definite, but
a small amount of the Z eigenvaluesmay appear to be neg-
ative. This non-definite behavior of the metric matrix Z
can be attributed to the fact that following algorithm (30),
when facing the Jth QO to the rest of the QOS elements,
then for every distinct QO a different relative position of
the Jth QO is found, while reaching the optimal value of
the similarity measure (29) for every pair of QO’s; that is:
the relative position of the Jth QO with respect to the Ith
QO, 8I : J ¤ I, in order to optimize every element zIJ , be-
comes different, and therefore when optimizing Eq. (30)
one will obtain a set of different optimal translations-rota-
tions: ftI ;˝ Ig8I ¤ J.

When computing any optimal quantum similarity
measure by means of algorithm (30), one also must be
aware that the final result, can be used to construct the
symmetric (2 � 2) matrix:

ZI J D

�
zII zI J
zJI zJ J

�
^ zIJ D zJI ; (31)

and also has to provide at least a positive definite ma-
trix (31), which is the same as to consider the following
property has to be fulfilled:

Det jZI Jj D zII zJ J � z2I J > 0! zII zJ J > z2I J : (32)

The restriction (32) can also be written as:

zJ J > z2I J z
�1
II ; (33)

and this will provide a form of the (2 � 2) positive defi-
nite restrictions to be easily related to the general analy-
sis which follows. Therefore, the algorithm (30) has to be
modified accordingly incorporating the inequality (32) as
a restriction:

8I > J :

zIJ D max
t;˝

Z

D
�I(r)�J(rjt;˝)dr ^ z2I J < zII zJ J (34)

and one can expect that the general QSM Z, can approach
in this way the required complete positive definiteness,
although this cannot be completely assured. In fact, this
(2 � 2) restriction constitutes an incomplete point of view,
as nothing can be said about the positive definiteness of
higher dimensional submatrices of the QSM Z. In this
sense, the restricted algorithm (34) is more or less simi-
lar to the triangle distance relationship coherence, sought
by an already published procedure [91].

The Quantum Similarity Matrix Aufbau Recursive Algo-
rithm. Although one can use the Gershgorin theorem to
test the positive definiteness of any QSM, a complete QSM
calculation algorithm, based on the generalization of prop-
erty (33) for (2 � 2)matrices, in order to assure the QSM Z
positive definiteness, shall be based on an Aufbau proce-
dure; that is: starting from any pair of QO, algorithm (34)
is put forward. The result will be a positive definite matrix,
Z0 say, with a structure like the matrix (31) defined above.
A simple recursive Aufbau algorithm can be described in
order to obtain a final positive definite QSM.

Suppose that for some index P < N, a (P � P) posi-
tive definite QSM Z0 has been obtained, using the QO’s
sequence: fIK ;K D 1; Pg. One can add a new QO to the
Aufbau procedure, the Qth QO, say, in such a way that
an augmented QSM, Z1, is obtained possessing the parti-
tioned structure:

Z1 D

�
Z0 jzi
hzj �

�
;

with the (1 � P) row vector defined as: hzj D (zI1Q ;
zI2Q ; : : : ; zIPQ ), and the column vector jzi, being just
the transpose of the former; finally, � � zQQ is the self-
similarity of the added QO.

The sufficient relationship, which can be written here
as the set of conditions:

� > hjzii^8K D 1; P : zIK IK >
X

L¤K

zIK ILC zIKQ ; (35)

assuring that the augmented matrix Z1 has a positive def-
inite structure, can be alternatively rewritten via a recur-
sive Cholesky decomposition algorithm, described in sev-
eral places [17,96].

The necessary and sufficient condition for the positive
definiteness of the augmented QSM Z1 can be stated as:

� � hzjZ�10 jzi > 0

! zQQ >
X

K

X

L

zIKQzILQZ
(�1)
0;IK IL : (36)

The Cholesky decomposition condition, which can
be called here Quantum Similarity Aufbau Condition
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(QSAC), means that it cannot be reliable to use a pair
of QO’s every time that a new element of the QSM has
to be computed, but that the added QO density function:
�Q (rjt;˝) has to be translated-rotated with the same val-
ues of the pair: ft;˝g, for every computed element of the
vector jzi, connecting recursively the QO Q with all the
ones previously employed in constructing the QS subma-
trix Z0. When the QS submatrix Z0 has scalar (1 � 1) di-
mension as occurs in the submatrix (31) case, then the
QSAC (36) becomes the relationship (33). Moreover, the
QSAC condition is a stronger positive definiteness condi-
tion than the diagonal dominance, as QSAC becomes the
necessary and sufficient condition for constructing a posi-
tive definite augmented matrix.

The maximal pair condition (30) can be substituted in
the general (P � P) case, for instance, by maximizing the
sum of the whole vector jzi, which due to the positive def-
initeness of its elements is coincident with the search of
a maximal Minkowski norm:

max
t;˝

[hjzii] D max
t;˝

� PX

KD1

Z

D
�IK (r)�Q (rjt;˝)dr

�

D max
t;˝

� PX

KD1

zIKQ
�
: (37)

This can be done admitting the same translation-rota-
tion sequence performed on every term of the vector jzi
in Eq. (37), whenever such transformation increases the
Minkowski norm. However, while the maximal value of
the sum leading to the Gershgorin radius is searched as in
the condition (37) of the previous sentence, the QSAC re-
lationship (36) has to be equally tested and if not fulfilled
the pair ft;˝g rejected. Such a procedure will assure the
positive definiteness of the QSM Z at the final step of the
recursion and will provide the same relative position in the
calculation of the quantum similarity measures for every
recursively added QO.

Geometrical Interpretation of the QSAC. Leaving apart
the linear algebra concept of diagonal dominance which
similarity matrices usually do not fulfill, the alternative
Cholesky decomposition condition property leading to
the QSAC, assuring in this manner the positive defi-
nite structure of the final QSM form and written as
in Eq. (36), has a clear geometrical meaning. The pos-
itive definite quadratic form:

˝
z
ˇ̌
Z�10

ˇ̌
z
˛
2 RC, is noth-

ing else than the Euclidean norm of the vector jzi in
the reciprocal metric space defined by the density tags:
f�IK (r);K D 1; Pg. The QO’s tags are employed to form
the QSM Z0, which because of the QSAC construction
has been structured positive definite and acts accordingly

as a metric matrix of a P-dimensional pre-Hilbert space.
Since in the quadratic form appearing in Eq. (36), the
inverse of the metric Z0 appears, the implicit Euclidean
norm equivalent to the aforementioned quadratic form
is computed in the metric reciprocal space with the ma-
trix Z�10 , acting as a positive definite metric matrix, be-
cause: Sp[Z0] 2 RC ! Sp

�
Z�10

�
2 RC. Accordingly, the

QSAC forces this Euclidean norm in the reciprocal P-di-
mensional pre-Hilbert space to be less than the self-simi-
larity of the recursively addedQth QO.

This permits us to associate the described Quantum
Similarity Aufbau procedure as an algorithm maximizing
the Minkowski norm of each recursive column jzi of the
QSM, submitted to the QSAC restriction which means
that its Euclidean norm, computed in the recursive re-
ciprocal pre-Hilbert space, remains less than the recursive
QSM diagonal self-similarity elements.

Finally, the following points must be taken into ac-
count:

1. Because it is not necessary to start the recursive QSAC
with any a priori chosen QO, the final QSM will cer-
tainly depend on the QO recursive order chosen. Thus,
there are just N! possible choices, each one producing
an equally positive definite QSM. However, the order-
ing imposed by the self-similarity measures can be cho-
sen as a way to reach a systematic QSMAufbau. That is,
if one calls the QSM diagonal self-similarity measures
set computed on the QOS elements: D(Z) D fzIIg,
then the obvious choices are defined by the maximal
ordering:

z11 D max
I
[D(Z)]! z22 D max

I
[D(Z) � z11] : : :

or by the minimal:

z11 D min
I
[D(Z)]! z22 D min

I
[D(Z) � z11] : : :

This ensures that the QO’s will be ordered in decreas-
ing or increasing complexity, while providing a generic
reproducible way of computing QSM under QSAC
premises.

2. When constructing the QSM according to the proposed
Aufbau procedure, it is well known that the overlap
quantum similarity measures, as defined in Eq. (29),
can be substituted by a more general form involving
a positive definite operator:˝(r1; r2); so, in general, the
similarity measures can be described as the integral:

zIJ (˝) D
“

D
�I(r1)˝(r1; r2)�J(r2)dr1 dr2 ;

while the positive definite operator choice ensures that
the QSM, when constructed according to the equiva-
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lent QSAC, like the one depicted previously for over-
lap quantum similarity measures in Eq. (36), is pos-
itive definite. One just shall make the substitution:
zIJ  zIJ (˝).

3. The QSAC is also valid for quantum similarity mea-
sures involving the off-diagonal terms of the density
matrix.

Linear QuantumQSPR Fundamental Equation

Expectation Values

In quantum mechanics, the expectation value of some QO
observable, associated in turn to some Hermitian opera-
tor W, is measured in the usual statistical way [97,98,99],
using the tag part �A of the corresponding QO:

h�Ai D hWj�Ai D
Z

D
W�AdV : (38)

At the same time, in general, the operator W can be de-
composed as follows:

W D Q˝ :

˝ bears a positive definite and known form. On the other
hand, the operator: Q, can be approximately expressed in
terms of an appropriate linear (or multilinear) combina-
tion of a known density function set f�Ig, provided with
the adequate variable count, in order to match the one of
�A , that is:

Q '
X

I

wI�I : (39)

The structure associated to an operator like: W, permits
us to construct expectation values of entangled or compli-
cated observables of submicroscopic systems. Such entan-
gled observables can be considered connected to experi-
mental outcomes, like biological activity, whose Hermitian
operator cannot be completely well defined. So, this way
to proceed appears quite appropriate for cases where the
complexity of the observed phenomenon does not possess
a straightforward association with any known or easily de-
scribable Hermitian operator. One shall stress the fact that
the set up (39) is not appropriate for well-defined observ-
ables like kinetic energy, Coulomb energy, dipole andmul-
tipole moments,. . .

QuantumQSPR Fundamental Equation

Substituting the expression of the operator, described by
Eq. (39) into expectation value expression (38), one arrives

at the following result, related to the corresponding QO:

h�Ai D hQ˝j�Ai D hQj˝�Ai

'
X

I

wIh�Ij˝�Ai D
X

I

wIzIA(˝)

which, after supposing that several QO or the whole ele-
ments of a QOS are considered, this result can be brought
into the matrix form of a linear equation:

Zw ' j�i : (40)

Where the column vector j�i contains the collection of ex-
pectation values of the considered QOS, Z D fzIA(˝)g is
a quantum similarity matrix and, finally, the column vec-
tor w collects the coefficients by which the operator Q is
approximately expressed by means of Eq. (39).

Interpretation and Characteristics
of the QuantumQSPR Fundamental Equation

The interpretation of the linear system (40) can proceed as
follows. The vector j�i can supposedly contain known val-
ues of a well-defined, but arbitrarily complicated observ-
able property of the chosen QOS. The quantum similarity
matrix Z can be computed, once the elements of the QOS
are supposedly known. The coefficient vector w has to be
determined.

Put in such terms, Eq. (40) has the same well-known
structure as the usual classical QSPR problems. However,
this fact constitutes a very important and crucial result:
Because, it permits us to interpret the columns (or rows)
of the quantum similarity matrix, Z, as being the QSM fi-
nite-dimensional, discrete, descriptors of every QO used in
the study. These considerations are sufficient to allow us to
name Eq. (40) the quantum QSPR (QQSPR) fundamental
equation.

Characteristics of the QQSPR Fundamental Equation.
Unlike the problems present in classical QSPRmodels, the
QQSPR fundamental equation has several characteristics
lacking in the former usual equations, these are:

1. Universal applicability, because Eq. (40) can be used to
model any kind of QOS: nuclei, atoms, molecules . . .

2. Unbiased background descriptor structures, because the
QSM elements, forming the quantum similarity matrix,
Z, appearing in Eq. (40), are not arbitrarily chosen by
the user, among those belonging to a given descriptor
pool, but appear as a consequence of the theory.

3. Causal character, as the QQSPR models obtained are
the result of solving a well-defined equation, as shown
through the set up of Eq. (40), and are deducible
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from the general theoretical structure of quantum
mechanics.

Quantum SimilarityMatrices (QSM) in the Construction of
First-Order QSPR Operators and the Definition of Discrete
QOS. The first-order approach of the QSPR operator, for
the core set known molecular property tag set: ˘ D f�Ig

generates the following equation collection:

8I D 1; n :

pI D �I � h�[�I]i �
X

J

xJh�J[�I]i D
X

J

xJzJI :

(41)

The set of integrals:

�
h�J[�I]i D

Z

D
�J�I dV D zJI

D zIJ D
Z

D
�I�J dV D h�I[�J]i

�
;

appearing in Eqs. (197) can be ordered into a (n � n) sym-
metric array, constructing in this way the so-called quan-
tum similarity matrix: Z D fzIJg (QSM). In turn, the or-
dered set of shifted properties: fpIg can form a (n � 1) col-
umn vector: jpi D fpIg. Therefore, the equation set (197)
is simply a linear system, which will be discussed next, in
order to describe its possible use for evaluating U-m un-
known molecular properties.

Discrete QOS. Every column of the QSM: Z D fjzIi D
fzJIgg, can be interpreted as a discrete matrix representa-
tion of each QO density matrix, present within the density
function tag set: P D f�Ig. In this way a one-to-one corre-
spondence can be established between the density tag set
and the QSM column submatrices, which can be written
as:

8mI 2 M: �I $ jzIi ) P, Z :

In other words, the QSM column set can be used as
a new n-dimensional vector tag set, attached to the molec-
ular set M, in order to build up a new tagged set, namely
a discrete quantum object set:

QZ D M � Z : (42)

In this DQOS, the density function tags of the original
QOS, Q, belonging to the tag set P, are substituted by the
columns of the QSM. Therefore, there also exists a one-to-
one correspondence between both QOS: Q$ QZ.

The Nature of the QSM Descriptors. In both the quantum
similarity matrix Z, or its stochastic column transforma-
tion S, the involved columns forming both matrices pos-
sess a very special character, besides the fact that they be-
long to some VSS of the appropriate dimension.

Starting from the QOS, where each QO is defined by
the ordered pair of submicroscopic systems and state den-
sity functions:

�A D (sA; �A) 2 T D S � P ;

then, when dealing with the construction of the QSM or
the stochastic transformation (28), which one can consider
expressed through the decomposition of its columns as:
Z D fzIg or S D fsIg, it can be deduced that both matri-
ces induce a new possible QOS, made with discrete N-di-
mensional tags, instead of the infinite dimensional density
function ones, namely:

�A D (sA ; zA) 2 	 D S � Z ; (43)

or one can see the equivalent structure, which can also be
considered alternatively as:

�A D (sA; sA) 2 ˙ D S � S : (44)

Sw ' p :

The discrete QOS, represented by the definitions (43)
or (44), can be admittedly considered, without doubt, as
finite dimensional representations of the original QOS,
based on density function tags. This can be so, as both zA
and sA discrete tags, essentially are elements of some VSS.
Perhaps the representation (44), with tags belonging to the
unit shell, corresponds to the most adequate of such dis-
crete forms and, at the same time, the one which is more
connected to the original infinite dimensional unit shell
made by the collection of density functions.

Even if the choice to build up the problem is the
DQOS, represented by Eq. (44), the fundamental QQSPR
Eq. (40) can be transformed conveniently into the new row
stochastic system:

Sw ' p ; (45)

simply by multiplying on the left by the inverse of the di-
agonal matrix (27), and using accordingly the transformed
properties vector: p D D�1j�i. The column stochastic
transformation can be used straightforwardly too, and so
it will not be discussed here anymore, as it has been ex-
haustively studied within several papers [59,100].
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First-Order Fundamental QQSPR (FQQSPR) Equation

The analysis of the QQSPR problem can start with the first
order or linear fundamental QQSPR equation, involving
the core set, formed with the molecules of the associated
DQOS, which are also linked with known values of some
property.

One can write the first-order QQSPR fundamental
equation in a compact matrix form:

Zjxi D jpi ; (46)

Where the matrix Z is the already described symmetric
QSM, jpi is the known core set property vector and jxi is
a (n � 1) vector, whose coefficients have to be evaluated.

The predictive power of such an equation is a priori
null, because being the QSM: Z, by construction non-sin-
gular (otherwise two density functions will be exactly the
same), then there always can be computed a QSM inverse:
Z�1, obeying the usual relationships: Z�1Z D ZZ�1 D I,
in such a way that the trivial result, defining the unknown
coefficient vector:

jxi D Z�1jpi ; (47)

will be always obtained within a core set scenario. Further-
more, one can retrieve the exact value of the property for
anymolecule of the core setQOS choosing the scalar prod-
ucts:

8I : pI D hzIjxi : (48)

The QSM for diverse core sets has been used in a quite large
set of prediction studies, in every case employing up-to-
date statistical tools, the usual procedures currently avail-
able in classical QSPR studies. In the present study, the
reader can find in the following sections new theoretical
developments of the fundamental QQSPR equation pre-
diction ability. However, a reminder of some simple linear
algebra for the FQQSPR equation is needed first in order
to understand the following arguments; therefore this will
be described in the following sections.

Partitioning the FQQSPR Equation and the QSM Inverse.
Supposing now one can organize the QSM in the funda-
mental Eq. (40) in such a way that the last column and
row correspond to a U-m, then, the unknown property el-
ement will be supposedly stored in the last position, the
(n C 1)th, of the vector jpi and will be symbolized by an
a priori undefined parameter: � . With this in mind, one
can design a partition of the QSM and the entire FQQSPR
Eq. (40) in the following way:

�
Z0 jzi
hzj �

��
jx0i
x

�
D

�
jp0i
�

�
: (49)

Where, the (n � 1) column vector jzi corresponds to the
representation of the U-m in terms of the density tags of
the core set and � is theU-m self-similaritymeasure, which
according to the simplified formalism of the expectation
values can be defined by means of a simple overlap quan-
tum similarity measure, as the Euclidean norm:

� D

Z

D
�2U (r)dr :

One can find the solution of the partitioned linear system
by using the following symbols for the partitioned QSM
inverse:

Z�1 D

 
Z(�1)
0 jz(�1)i
hz(�1)j � (�1)

!

; (50)

and one can evaluate the inverse elements for partitioned
QSM matrices in the usual way.

Remarks on the Structure
of the Fundamental QQSPR Equation

The following remarks relate to the result given by the fun-
damental QQSPR equation that was discussed in the pre-
vious section. Each of these remarks poses new problems
that will be studied separately in subsequent sections.

Symmetrical SimilarityMatrices. In the first place, it must
be said that the fundamental QQSAR equation has been
usually presented in previous literature within the partic-
ular case where the basis and probe molecular quantum
object tagged sets coincide, providing a square symmetric
similarity matrix, and thus the equality: A D Z, between
the involved similarity matrices holds. This choice has the
drawback that the fundamental QQSPR linear system be-
comes well defined, with a unique solution, whenever the
similarity matrix is non-singular, which shall be the usual
case, as far as no quantum object coincides with another
within the quantum object set.

But even then, there is quite a wide range of solutions
to overcome this apparent limitation. Among other pro-
cedures, one can use the symmetric similarity matrix as
a source of molecular descriptors and afterwards employ
them in classical statistical treatments. This choice, as was
already commented, has been studied in many publica-
tions of our laboratory with success. In the same way, the
similarity matrix can be transformed into a column or row
stochastic matrix and, as a consequence, this form sug-
gests several possibilities, which still are far from being ex-
ploited. Some analysis of the stochastic issue will be devel-
oped in a forthcoming section of this paper.
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Origin of Hansch QSAR Models. An interesting possibil-
ity of the symmetric square representation of the quantum
similarity matrices corresponds to its potential to unveil
the origin of one parameter classical QSAR models, such
as those Hansch described some years ago. Indeed, under
the equivalence of both the basis B and probe P quantum
object sets, the FQQSPR linear equation corresponds to
a set of N equations with the same number of unknowns,
and can be rewritten as:

8J D 1;N : pJ '
NX

ID1

!IzI J D !J zJ J C
NX

I¤J

!IzI J ; (51)

where there is no need to attach the similarity matrix el-
ements to any specific quantum object set, as all of them
are computed over a unique basis of density function tags.
Considering the two terms at the end of the previous equa-
tion, it can be seen that the first one, with a diagonal value
of the similaritymatrix, is attached to a self-similaritymea-
sure zJJ , while the second term in cases of a not so strongly
varying family of quantum objects, can be considered al-
most a constant, that is using:

8J : ˛ D !J ^ ˇ '

NX

I¤J

!IzI J ; (52)

the above equation takes the final form:

8J D 1;N : pJ ' ˛zJ J C ˇ ; (53)

which has the required appearance to be considered as
possessing a Hansch structure.

Besides this last deduction, it must be said that self-similar-
ity measures of different kinds have been used to test this
simple linear equation with quite a large series of quan-
tum objects, yielding usually good results. Self-similarities
can be sound substitutes of the classical Hansch analysis
parameters. They constitute for co-generic molecular sets
molecular descriptors with the property to be directly at-
tached to a tri-dimensional molecular structure. Self-sim-
ilarity measures vary slowly with conformational changes,
so their values for the optimal geometry can be safely used,
knowing that the magnitude of the descriptor will differ
not very much from the one which is attached to the active
conformation associated to the observable property.

Solutions of the Linear QQSPR Fundamental Equation

Equation (40) can be solved choosing the customary
methods, as in the usual algorithms employed within
the QSPR field [20]. They have been manipulated in

this fashion, since its first description on a great deal
of cases, as well as for a large variety of problems and sub-
jects [26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,
43,44,45,46,101]. This means that in all these studies the
QQSPR fundamental equation has been solved with some
algorithm, based on the least squares or similar tech-
nique [102,103,104,105,106,107,108,109,110,111,112,113,
114,115,116,117,118,119,120,121,122,123,124,125,126,127,
128,129,130,131,132,133,134,135,136,137,138,139,140,141,
142,143,144,145,146].

However, the characteristic features of the QQSPR
fundamental equation, and its definition within the VSS
formalism, show that several alternative possibilities can
be described, which will be studied next. Such non-classi-
cal solutions have in turn provided a collection of many
new properties, concepts and application examples related
to the tagged sets, VSS and IMP definitions.

Therefore, in order to exploit the QQSPR a plausible
alternative to the principal components analysis will be
proposed and then, the use of IMP and other techniques to
obtain approximate solutions of the QQSPR fundamental
equations will also be discussed.

Similarity Matrix Eigenvectors as Basis Sets to Construct
the Solutions of the QQSPR Fundamental Equations. Sup-
pose we set the fundamental QQSPR Eq. (40) for a given
problem. The secular equation of the involved quantum
similarity matrix, Z, can be written as:

ZC D C	 ; (54)

where: C D (c1; c2; : : : ; cN ) is the matrix collection of
the eigenvectors of the similarity matrix and: 	 D

Diag(�1; �2; : : : ; �N) is a diagonal matrix made by the or-
dered eigenvalues in descending order. The eigenvector
matrix can be considered orthogonal, that is, the follow-
ing property holds: CCT D CTC D IN , with the symbol:
CT indicating matrix transposition. The eigenvector asso-
ciated to the greater eigenvalue has their entire elements
positive definite, according to the Perron–Frobenius theo-
rems [147]. The spectral decomposition:

Z D C	CT D
X

I

�IcIcTI (55)

can be used in Eq. (40), to obtain, after straightforward re-
arrangements, the equation:

X

I

�I(cTI w)cI ' j�i ; (56)

so, renaming the set of scalars in Eq. (56) as:

�I D �I(cTI w)! j�i D f�Ig ;
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then, the new equation could be written by means of a lin-
ear combination of the similarity matrix eigenvectors:

X

I

�IcI D Cj�i ' j�i : (57)

Equation (57) permits us to compute the new coefficients
j�i in an obvious way, by using the orthogonal nature of
the eigenvector matrix:

j�i ' CTj�i :

In fact, the original fundamental QQSPR equation coeffi-
cient vector can be obtained taking into account the spec-
tral decomposition of the similarity matrix inverse, that is:

w ' C	�1CTj�i D
X

I

��1I cIcTI j�i

D
X

I

�
��1I

�
cTI j�i

�
cI D

X

I

!IcI : (58)

Therefore, Eq. (58) indicates that the coefficient vector,
the solution of the previous Eq. (40), may be expressed
by a linear combination of the eigenvectors of the simi-
larity matrix too. Then, to every eigenvector, cI , there is
associated a well-defined scalar coefficient, !I , which may
be used as a reordering rule in order to obtain approxi-
mate solutions of the fundamental QQSPR equation. That
is, suppose the eigenvectors are now ordered by the de-
creasing values of the set: j!i D f!Ig, then one can write:

w '
X

I

ı(!I > ")!IcI C
X

J

ı(!J � ")!JcJ

D wa C werror ;

where " is a given threshold splitting the vector construc-
tion in an approximate vector, wa, and the remaining one,
werror, which can be interpreted or used as a residual error
vector.

Stochastic Matrix Eigenvectors
as Basis Sets to Construct the Solutions
of the Fundamental QQSPR Equations

Similar treatments can be designed for the QQSPR fun-
damental equation of the stochastic matrices, like the one
employed for Eq. (50). The problem is that the stochastic
matrix S is no longer symmetric and the attached eigen-
system, apparently appears to be more laboriously solved,
than in the case of the symmetric quantum similarity ma-
trix Z. The problem has been already discussed in a general
manner [59], so here only some simplified discussion will
be given.

Suppose the secular equation, attached to the stochas-
tic matrix S is written as:

SX D X˙ (59)

substituting the matrix S by the expression of the row
stochastic transformation as in Eq. (50), then:

D�1ZX D X˙ ;

which can readily be transformed by simple matrix ma-
nipulations and by using the square root of the diagonal
matrixD, into the new secular equation:

D�
1
2ZD�

1
2D

1
2X D X˙ ;

which from here, calling: A D D�
1
2ZD�

1
2 and Y D D

1
2X,

a new equivalent secular equation is readily made:

AY D Y˙ : (60)

Equation (60) has the advantage that the matrix A is sym-
metric, hence the eigenvector matrix Y appears to be or-
thogonal: YTY D YYT D I. Then, the sought eigenvectors
of the stochastic matrix can be obtained by using the rela-
tionship between Yand X, that is:

X D D�
1
2Y :

The matrixD, in these circumstances acts as a metric with
respect to the eigenvectors of S, as one can see that the
orthogonality relationships:

XTDX D XDXT D I ;

hold, due to the orthogonality of the eigenvector matrixY.
This proves finally that, in any case, Eq. (50) can

be solved in the same way as previously commented for
Eq. (40), simply by using the appropriate spectral decom-
position:

S D X˙XT D
X

I

�IxIxTI :

Similarity Matrix IMP Decomposition
in Order to Construct Approximate Solutions
of the QQSPR Fundamental Equations

QQSPR Fundamental Equation over VSS. Going back to
the QQSPR fundamental Eq. (40), now one can consider
the positive definite nature of the elements, which appear
to build the quantum similarity matrix. This can be ex-
pressed by means of the symbol: Z > 02. The structure

2By the symbol: A� > 0, applied to an arbitrary matrix
A D fai jg, is meant that 8i; j : ai j > 0.
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of the property vectors can also be taken into account.
In the case when the following characteristic also holds:
j�i > 0, for the involved QOS property or activity vec-
tor, then Eq. (40) can be associated to some linear trans-
formation occurring on a VSS, for it can be written:

Zw D
X

I

wIzI ' j�i ; (61)

showing that a linear combination of vectors, belonging to
a VSS, has to be brought into another vector belonging to
a VSS.

This situation could only be generally achieved by us-
ing the condition: w > 0, which means that the linear
system solution also shall belong to the VSS. Equ. (61)
above becomes a constrained linear system of equations,
since one is seeking solutions for which:

Zw ' j�i ^ w > 0 :

Approximate Restricted Solutions of Fundamental QQSPR
Equation in VSS. An approximate solution of the QQSPR
fundamental equation can be obtained in the following
way. As all the involved columns of the problem belong
to a VSS, they can be decomposed by means of an IMP
in terms of some IMP square powers of real matrices. If
the treatment has to be more general the squared module
of some complex matrices can be alternatively employed,
but the treatment becomes slightly more difficult and the
needed set of symbols heavier, so just real matrices will
be supposed in this discussion. Therefore, owing to these
considerations one can write:

Z D A  A ^ w D x  x ^ j�i D p  p :

So Eq. (61) can now be rewritten as:

(A  A)(x  x) ' p  p ; (62)

suggesting an alternative approximate equation, which
may be written in the following terms:

(Ax)  (Ax) ' p  p ; (63)

which has been obtained in turn, simply using the plausi-
ble approximation:

(A  A)(x  x) � (Ax)  (Ax) :

However, the approximate Eq. (63), suggests that the new
linear system:

Ax ' p (64)

can now be solved, as it does not have to be submitted to
any restriction at all, then:

x ' A�1p ;

and finally, the approximate solutions of the original sys-
tem can be written as:

aw D x  x ' (A�1p)  (A�1p) ;

however this is sufficient to ensure:

w � aw > 0 :

The only problem, which now arises, is the existence of an
inverse of the IMP square root of a non-singular matrix.
Since the system (64) furnishes approximate solutions to
the original problem (61) has to be found, there will be no
major problem then to use approximate solutions in the
least squares sense of the Eq. (64), as a way to obtain the
approximate solution of the QQSPR fundamental equa-
tion, restricted to belonging to a VSS.

Convex Conditions Imposed on the Solution Vector
of the QQSPR Fundamental Equations

Generating Vector Considerations. The associated prob-
lem, to a form like Eq. (61), can also be solved, for in-
stance, as in the well-known ASA fitting procedure [75,
76,77,78,79,80,81,82,83]. That is, by using a convex con-
dition on the solution vector: K(w), with the additional
meaning that the solution is now forced to belong not only
to a VSS, but also to the unit shell.

If the solution of the linear Eq. (61) has to be found
as an element of a VSS, w > 0, necessarily it has to be
expressible as an IMP power of some generating real vec-
tor like:w D x  x. In choosing the convex conditions over
the solution: K(w), then the additional restriction is admit-
ted to hold too:

hwi D hx  xi D 1 : (65)

However, this becomes the same as to consider that the
generating vector R(x! w) is normalized. Orthogonal
transformations on the generating vector leaves the vector
norm invariant, that is: whenever the condition (65) holds,
and an orthogonal transformation U is performed on the
generating vector, still the generating rule and the asso-
ciated convex conditions apply: R(Ux! Uw) ^ K(Uw).
Such an idea has been applied to obtain the ASA ap-
proximate density functions, using elementary Jacobi ro-
tations [148] as a source of orthogonal transformations.
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Stochastic Transformations. Still more interesting ap-
pears the structure of the fundamental QQSPR equation,
when the stochastic transform of the similarity matrix is
considered. Equation (40) can thus be multiplied by the
inverse of the diagonal matrix D on the right as defined
in (27), providing:

ZD�1Dw D j�i ;

which can be transformed into:

Sv D j�i ; (66)

whenever it is considered that the following equalities
hold:

S D ZD�1 ^ v D Dw : (67)

Equation (66) can be also written as a linear combination
of the columns of the stochastic matrix S D fsIg:
X

I

vIsI D j�i :

Therefore, this is the same considering the �-shells of the
vectors v and j�i as being almost the same, as:

hj�ii D

�X

I

vIsI
	
D
X

I

vIhsIi D
X

I

vI D hvi :

Thus, if the vector j�i is transformed so as to become
a unit shell element, this will be completely equivalent to
applying the same transformation into the transformed
unknown vector v. Therefore, the following implications
are straightforwardly deduced:

j�i 2 S(1)! v 2 S(1)! K(v) :

Demonstrating that in the stochastic QQSPR fundamental
Eq. (66) case, the solution contained within a given VSS
amounts to the same as obtaining a convex combination
of the stochastic matrix columns.

Stochastic QQSPR Least Squares Solution via Jacobi Ro-
tations. After all the previous discussions, there appears
to be another possibility which has remained unexplored.
Starting from the transformed Eq. (66), with the appropri-
ate definitions (67) in mind, one can seek an approximate
solution of the stochastic equation in the least squares
sense, defining the quadratic error function by means of
the difference vector:

jıi D Sv � j�i ;

whose Euclidean norm furnishes the quadratic error func-
tion, expressible in terms of a scalar product or the inward

product sum:

"(2) D hıjıi D (Sv � j�i)T(Sv � j�i)
D h(Sv � j�i)  (Sv � j�i)i :

One easily arrives at the quadratic form:

"(2)(v) D vTSTSv � vTSTj�i � h� jSvC h� j�i ; (68)

however, the quadratic error function optimization has to
be carried out preserving the condition of convexity K(v)
on the solution vector, otherwise one risks obtaining solu-
tions that do not belong to the unit shell. In order to obtain
an appropriate algorithm to perform this task, the follow-
ing considerations can be taken into account.

The vector v can be expressed as an IMP of an auxiliary
vector a, that is:

v D a  a! 8I : vI D a2I ; (69)

then the belonging of v to the unit shell is equivalent to the
Euclidean normalization of a:

hvi D
X

I

vI D
X

I

a2I D hajai :

The quadratic error function (68) can be expressed in
terms of the auxiliary vector:

"(2)(a) D a[2]TSTSa[2]�T a[2]TSTj�i�h� jSa[2]Ch� j�i ;
(70)

where the symbol: a[2] D v D a  a has been used. Also,
employing to simplify the notation the following conven-
tional symbols:

H D STS D fHIJg

^ h D STj�i D fhIg ^ hT D h� jS D fhIg
^ � D h� j�i ;

so Eq. (70) can be explicitly written as:

"(2)(a) D
X

I

X

J

HIJa2I a
2
J � 2

X

I

hI a2I C � : (71)

Starting with an approximate normalized auxiliary vector,
orthogonal transformations can be performed, preserv-
ing the norm, thus keeping the condition K(v) D K(a[2])
constant along the optimization of Eq. (71). Orthogonal
transformations can be chosen as elementary Jacobi rota-
tions [148], which at every application over the vector a,
change two chosen elements faP ; aQg into a pair of new
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rotated ones faRP ; a
R
Qg, according to the well-known algo-

rithm:

aRP  caP � saQ
aRQ  saP C caQ ;

(72)

where fc; sg are the cosine and the sine of the rotation, with
the additional obvious relationship: c2 C s2 D 1.

Over the generating vector coefficients in Eq. (69) it is
easy to apply the EJR represented by Eq. (72), and then, the
variation of the quadratic error ı"(2), with respect to the
active pair of elements faP ; aQgmay be easily expressed.

Taking also into account that the quadratic elements,
for example, will transform and yield variations like:

ıa2P ! s2(a2Q � a2P) � 2csaP aQ
ı(aPaQ )! cs(a2P � a2Q )� 2s2aPaQ

ıa2Q ! s2(a2Q � a2P)C 2csaP aQ D �ıa2P :

A Jacobi rotation as shown in the expression (72) will pro-
duce a variation in the quadratic error (71) in the chosen
rotated elements, when taking also into account the sym-
metric nature of the matrix H, of the form:

ı"(2)(a) D HPP(ıa2P)
2 C HQQ (ıa2Q )

2 C 2HPQıa2Pıa
2
Q

C 2
X

I¤P;Q

a2I (HIPıa2P C HIQıa2Q )

so, also needed are the quartic variations of the auxiliary
vector elements, which can be easily computed as in the
second-order case.

Substituting such variations into the corresponding
equation and collecting terms one finally arrives at a quar-
tic polynomial on the rotation sine:

ı"(2) D E04s4 C E13cs3 C E02s2 C E11cs ; (73)

where the parameters fEIJg, appearing in Eq. (73), are de-
scribed as follows:

E04 D 	
h�
a2P � a2Q

2
� 4a2P a

2
Q

i

E13 D 4	
�
a2P � a2Q


aPaQ

E02 D 4	a2Pa
2
Q � 2

�
a2P � a2Q


G

E11 D �4aPaQG

using the following auxiliary terms:

	 D HPP C HQQ � 2HPQ ;

and

G D
X

I¤P;Q

a2I (HIP � HQI)C a2PHPP � a2QHQQ

�
�
a2P � a2Q


HPQ � hP C hQ :

The optimal sine can be chosen with the null gradient con-
dition dı"(2)/ds D 0, taking into account that: s/c D t and
that: dc/ds D �t, then:

dı"(2)

ds
D �c

�
T1t2 � 2T2t � T3


D 0 ; (74)

holds with the auxiliary definitions:

T1 D E13s2 C E11
T2 D 2E04s2 C E02
T3 D 3E13s2 C E11 :

The best Jacobi rotation angle is found solving the
quadratic polynomial equation in the EJR tangent {t}, ap-
pearing in expression (74). The optimization can be con-
ducted through an iterative procedure, until the global
variation of Jacobi rotation angles or the quadratic error
integral function become negligible. The interested reader
is conducted to the references [78,79,80] for more details,
where a complete account of all the Jacobi rotation tech-
niques can be found. A simplified algorithm can be also
used and it will be briefly commented upon here. The pro-
cedure is based on the fact that sine and cosine can be writ-
ten in function of the rotation angle:

s D ˛ �
1
6
˛3 C O(5)

c D 1 �
1
2
˛2 C O(4) ;

and for small angles it is only necessary to use, up to sec-
ond order:

s ' ˛ ^ c ' 1 � ˛ ;

so Eq. (73) can be transformed into a second-order poly-
nomial in the rotation angle:

ı"(2) ' (E02 � E11)˛2 C E11˛ ;

which submitted to the extremum conditions yields:

˛ '
1
2
�
1 � E02E�111

�1
' s :

Non-Linear Terms and ExtendedWave Functions

Sobolev Spaces

From early times, quantummechanics has been emphasiz-
ing not only the role of well-behaved wave functions, but
also the relevance of their gradients and Laplacian forms.
The reason for such requirements, necessarily holding on
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the current wave functions, can be simply connected to the
presence, in the Schrödinger equation set up, of a second-
order derivative, the result of a Laplace operator appli-
cation, associated to the quantum system kinetic energy
term, see for example the references [28,149].

Usually, the adequate quantum mechanical behavior
of the wave function is focused, among other simple and
obvious mathematical features, to the compulsive prop-
erty that wave functions have to be square summable. In
some reference books such a property has been promoted
to the category of a postulate [150] and in the very early
development times of quantum mechanics [98] has been
interpreted by Born as the fact that the square module
of the wave function can be associated to a probability
density function. It was von Neumann [97], who related
such properties, among other crucial quantummechanical
theoretical elements, with the mathematical structures of
Hilbert–Banach spaces [94,151,152]. More recently, Lan-
dau and Lifshitz [153] described the role of the wave func-
tion gradient as a descriptor of infinitesimal translations
and rotations. These authors settled as well the use of the
square module of the wave functions gradient, in order
to obtain an alternative kinetic energy expectation value
expression, more likely related to the statistical formalism
than the Laplace operator form.

On the other hand no utilization has been reported
of the so-called Sobolev spaces [154] in applied quantum
mechanics, at least to our knowledge. Curiously enough,
Sobolev spaces where defined as early as 1938, and appar-
ently have been of practical use in some remotely related
theoretical landscape, associated to generalized relativity
applications [155]. It was not until recently that Sobolev
spaces were proposed by us as a vehicle to take into ac-
count the role of the wave function squared module:j� j2,
as well as to make simultaneously relevant the presence of
the wave function gradient squared module:jr� j2 in an
extended density function. In all this previous work both
terms were also presented as forming part of a new quan-
tummechanical composite norm. In this way, the classical
quantum mechanical Banach space has been transformed
into a Sobolev space structure [14,156,157], without losing
generality, but gaining flexibility instead.

Sobolev spaces can be defined in several ways, leading
all of them to simple forms, ready to be used in reinterpret-
ing the approximate solution of the Schrödinger equation
and prone to be included with immediate applications,
such as those found among the references [156,157]. They
can be constructed in such a way as possessing extended
forms even more complex, in order to be used to include
arbitrary non-linear terms in the same equation [14]. This
can be understood by recognizing the fact that the Banach

space can be considered the limiting simplified form of
a quite large collection of Sobolev spaces.

Quantum Mechanical Hilbert and Banach Spaces. In or-
der to present the Sobolev spaces step by step, the simplest
formalism will be defined first, and other extended pos-
sibilities will be described later on. To achieve this objec-
tive, suppose a quantummechanical wave function Hilbert
space, which can formally be described as:

H1(C) D f� (r)jr 2 VP (R) ^ � (r) 2 Cg ; (75)

where the symbol r, used as the wave function variables,
shall be considered as a vector, containing all the necessary
particle position coordinates as its components. The num-
ber of particles is shortly noted with the dimension P of the
coordinates vector space. The wave function elements of
the Hilbert space (75), possess as a sine qua non condition,
the following well-known property about the existence of
a positive definite density function, which is remembered
here, just to present the notation that will be hereafter em-
ployed:

8� (r) 2 H1(C)! 9�(r) D j� (r)j2 2 H1(RC) : (76)

Besides, the density function attached to every wave func-
tion, as proposed in Eq. (76), can be seen as belonging
to a Hilbert semispace, H1(RC), where all function val-
ues and coefficients are strictly allowed to be positive real
numbers only. That is: in the same way as in the Hilbert
space (75), one can write the corresponding formal defini-
tion for the density function semispace:

H1(RC) D
˚
�(r)jr 2 VP(R) ^ �(r) 2 RC

�
; (77)

where the dimension of the coordinates vector space,
VP (R), containing the density function variables, has the
same meaning as in definition (75). Moreover, the Hilbert
space (75) is a Banach space, as all of their elements shall
compulsively fulfill the normalization condition:

8� (r) 2 H1(C)!
Z

D
j� (r)j2 dr D 1 ; (78)

which obviously amounts to the same as imposing on ev-
ery element of the Hilbert semispace (77), a convexity con-
dition:

8�(r) 2 H1(RC)!
Z

D
�(r)dr D 1 : (79)

Gradient of the Wave Function. As was previously com-
mented, the whole quantummechanical Hilbert space ele-
ments shall present other existence properties, mainly re-
lated to their derivatives, for instance:

8� (r) 2 H1(C)! 9r� (r) ; (80)
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where the nabla operator r refers to the gradient with re-
spect to the vector coordinates r. That is, formally it can
be also written: r� � @� /@r. The ordering of the resul-
tant gradient vector elements can be somewhat arbitrary;
this means that they can be adapted to the structure of the
operating mathematical context. In addition, associated to
this mentioned component ordering, the resultant gradi-
ent vector can be considered to belong to some appro-
priate Cartesian product of the initial Hilbert space (75),
which can be generally defined and noted in a simplified
fashion as:

H(P)
1 (C) D

P
�
ID1

H1(C) ; (81)

because in any ordering case, the resultant gradient vec-
tors will depend on the particle number P. At the same
time, the gradients of type (80), can also be easily associ-
ated to squared gradient modules, which shall belong to
some Hilbert semispace, very similar to the one defined in
Eq. (77):

8r� (r) 2 H(P)
1 (C)! 9�(r) D jr� (r)j2 2 H1(RC) ;

(82)

where the positive definite function �(r), will produce,
when integrated, twice the quantum mechanical kinetic
energy expectation value hKi of the attached system:

Z

D
�(r)dr D

Z

D
jr� (r)j2 dr D 2hKi ; (83)

which as is well known, can be described alternatively like
the classical quantum mechanical expectation value of the
Laplace operator:

2hKi D �
Z

D
��(r)r2� (r)dr ; (84)

just employing Green’s theorem [158].
The interesting thing to be said now consists in

proposing some sentences on the nature of the inte-
grals (83) and (84), which are real and positive definite as
kinetic energy shall be, either classically speaking or quan-
tum mechanically, thus providing the integral (83) with
a well-defined structure, capable of being interpreted as
a norm. It should also be noted that the imaginary unit,
usually employed in the quantummechanical definition of
linearmomentumdoes not need to be used here in front of
the nabla operator. The reason can be found in the fact that
the imaginary unit has no active role in the above defini-
tions, unless a Hermitian matrix representation is needed
for the r operator. Such an imaginary factor has to be

present in such a Hermitian representation case, because
the matrix associated to the bare nabla operator is Skew-
Hermitian, that is:
Z

D
��I (r)(r�J (r))dr D �

Z

D
(r�I(r))��J(r)dr ;

a property which can be easily interpreted as a conse-
quence of the application of Green’s theorem again.

The Simplest Sobolev Space. In any case, the existence of
the wave function norm (78) and the subsequent convex-
ity condition (79), can both be recognized as the parallel
properties holding for the gradient of the wave function,
and corresponding to Eq. (83), which proves collaterally
the positive definite nature of the quantummechanical ki-
netic energy expectation value. Thus, if the sequence of
equations from (75) up to (83) must hold simultaneously,
just to obtain a coherentmathematical structure within the
quantum mechanical framework, it is feasible to consider
that both Banach spaces (75) and (82), can be supposedly
forming a composite norm, in the way of the following def-
inition present within the equation shown below. Simpli-
fying the wave function notation from the variable depen-
dence, in order to ease the form of the subsequent equa-
tions, one can define the following norm:

8� 2 H1(C)!

9k�k11 D

Z

D
j� j2 drC

Z

D
jr� j2 dr D 1C 2hKi :

(85)

Such a composition provides the first definition of the sim-
plest element among the collection of all possible Sobolev
spaces, which can be connected to quantum theory. Thus,
it can be assumed from now on that the most adequate
quantum mechanical wave function space structure is
a Sobolev space.

Sobolev Spaces. The notation for the norm (85) will be
made immediately obvious, by means of defining a general
Sobolev space norm as:

8� 2 H1(C)!

k�k
ˇ
˛ D

X̨

aD1

Z

D

ˇX

bD0

jrb� j2a dr : (86)

The usual Hilbert–Banach space norm can be retrieved
from definition (86), simply supposing that the null power
of the gradient operator can be substituted by the iden-
tity: r0 � I, and using afterwards: ˛ D 1 ^ ˇ D 0. In ad-
dition, the earlier Sobolev space norm, simplified as in
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Eq. (85), is also found employing Eq. (86), but choosing:
˛ D ˇ D 1.

However, although Eq. (86) contains the classical
quantum mechanical Sobolev r-norm, it implicitly pos-
sesses the restriction consisting in that both wave func-
tion and gradient norm powers shall be the same in any
circumstance. Consequently, they cannot be monitored as
independent terms in the norm definition. An appropriate
choice to avoid this situation may be described with the
more general formulation:

8� 2 H1(C)!

k�k
ˇ;�
˛ D

X̨

aD1

Z

D
j� j2a drC

�X

cD1

Z

D

ˇX

bD1

jrb� j2c dr

(87)

Therefore, Eq. (87) will transform into expression (86),
whenever: ˛ D � . In order to avoid further interpretation
problems, the squared module of the nabla powers has to
be considered a contraction operation; or has to be con-
sidered a scalar product of the corresponding matrix ele-
ments, represented by the result of the operation rb� :

jrb� j2c � jhrb� jrb�ijc : (88)

Nested Summation Symbols. This last remark, repre-
sented by the Eq. (88), can be alternatively written in a very
elegantmanner employing the definition of an inwardma-
trix product (IMP), already discussed.

Taking the IMP definition into account, then in
Eqs. (86) and (87) it can be understood that the present
square modules are computed over the resultant wave
function derivative hypermatrices as:

jrb� j2c D jh(rb� )�  (rb� )ijc ;

where the symbol h i, associated to any matrix, means
a sum of the whole matrix elements, for instance:

8P D fpi jg ! hPi D
X

i

X

j

pi j ; (89)

which constitutes a definition possessing obvious gen-
eralization possibilities, within any kind of hypermatrix
structure.

This generalization power can be easily seen, taking
into account the nested summation symbol (NSS) formal-
ism, which was developed several years ago, see refer-
ences [159,160] for example. Then, using NSS, the expres-
sion of the total sum of the elements of an arbitrary hyper-
matrix can be generally written without any further prob-
lem. A NSS is a symbolic device, which has a linear op-
erator nature, and in this way resumes the presence of an

undefined number of nested sums and corresponds to an
easily programmable algorithm, which generalizes in prac-
tice an indefinite number of do loops. In turn, a NSS acts
over any kind of complex expression, bearing all the in-
volved indices present within the sums, that is:

X

N
(i)�(i) �

n1X

i1

n2X

i2

: : :

nNX

iN

�(i1; i2; : : : ; iN) ;

where by the index vector i it is understood: i D (i1;
i2; : : : ; iN ). Thus, if by the definition the following
subindex structure is assumed:

Z D fzi1 i2:::iN g � fz(i)g ;

by which is represented any (n1 � n2 � : : : nN )-dimen-
sional hypermatrix element, then the symbolic device as-
sociated to the total summation of the elements, partic-
ularly defined in Eq. (89), can be generally described by
means of the compact NSS expression:

hZi D
X

N
(i)z(i) :

Extended Wave and Density Functions

Sobolev spaces appear, after the previous discussion, as
a very general kind of extended Hilbert–Banach spaces,
which within the quantummechanical framework are able
to put into a unique statement the nature of both the
wave function and its gradient. Alternatively, they can pro-
duce completely general structures, somehow involving
usual quantum mechanical operators, attachable to any
system observable. It is a matter of straightforward anal-
ysis to translate the subjacent Sobolev mathematical struc-
ture into the Hilbert space elements themselves, produc-
ing a new breed of spaces, which can be obviously called
Hilbert–Sobolev spaces 3. As has been done before, within
the previous description of Sobolev spaces, the extension
of the wave function and the possible application of the
resultant formal structure will be here gradually discussed.

Extended Wave Functions. By a r-extended wave func-
tion j˚i has been understood a composite column vector,
or alternatively a diagonal matrix, if one prefers, whose el-
ements are the original wave function � and its gradient
r� . That is:

j˚i D

�
�

r�

�
� Diag(� ;r� ) D

�
� 0
0 r�

�
: (90)

3In the case where the nature of the operator or the set of opera-
tors, active in the Sobolev norm definition, has to be specified, then
the notation Hilbert–Sobolev r-,˝- or ) -spaces, can be obviously
employed.
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The column vector form, as will be discussed later on,
better represents some applications and the mathematical
manipulations one can perform over them; while in other
cases the diagonal matrix structure produces more elegant
expressions and it is easier to deal with. However, both
choices provide equivalent results. This is so because the
proposed representations constitute the elements of a pair
of isomorphic vector spaces.

The previous discussion on Sobolev spaces permits us
to define the extendedwave function within a generalHer-
mitian operator scheme, simply as:

j˚i D

�
�

˝�

�
� Diag(� ;˝� ) D

�
� 0
0 ˝�

�
: (91)

The definition of Eq. (91) can be called an ˝-extended
wave function. For example, the quantum mechanical
complementary definition of the r-extended wave func-
tion (90) can be easily written employing the position vec-
tor r, that is:

j	i D

�
�

r�

�
� Diag(� ; r� ) D

�
� 0
0 r�

�
: (92)

producing an r-extended wave function accordingly.
By inspection of the adopted structure until now, ex-

tended wave functions can be also considered as the re-
sult of applying some adequate operator over the origi-
nal Schrödinger wave function. For instance, within the
already-mentioned diagonal formalism of the˝-extended
wave function (91), defining the diagonal operator:

� D Diag(I;˝) ;

where I is the unit operator, it will be sufficient to see that:

j˚i D � [� ] D Diag(I;˝)[� ]
D Diag(I[� ];˝[� ])
D Diag(� ;˝� ) : (93)

The same can be said if the corresponding vector operator
is constructed by means of the vector structure:

� D

�
I
˝

�
;

which, upon application over the original scalar wave
function form, permits us to alternatively obtain the iso-
morphic vector picture of the diagonal expression (93).

Energy Expectation Values. Returning to the r-extended
wave function in Eq. (90), it is easy to see how the energy
expectation value of the associated Schrödinger equation

can be expressed, without loosing any information, when
writing the final form it takes. For this purpose, the appro-
priate Hamilton operator, H, can be structured by means
of a diagonal form, as:

H D Diag(U; 12 I) D
�
U 0
0 1

2 I

�
; (94)

where the symbol: U, corresponds to the potential energy
operator and I is just a unit operator built to fit the ade-
quate dimensions of the extended wave function (90) gra-
dient part. Using Eq. (94) and the r-extended wave func-
tion (90) in the appropriate way, it is immediate to write:

E D hHi D h˚ jHj˚i D h� jUj�i C 1
2 hr� jr�i

D hUi C hKi : (95)

In the same way, whenever the normalization of the wave
function holds: h� j�i D 1, the r-extended wave func-
tion (90) can be manipulated in order to obtain a positive
definite norm like:

h˚ j˚i D h� j�i C hr� jr�i D 1C 2hKi ; (96)

which corresponds to the same result as the one provided
by the norm obtained in the definition of the simplest
Sobolev space, as presented first in Eq. (85). Obviously,
such a Sobolev space can be interpreted as a composite
Hilbert space, whose elements are defined by the r-ex-
tended wave function (90). That is, employing the Carte-
sian product of the Hilbert spaces (75) and (81), upon re-
ordering the ordered pair in the form of column vector:

H1 � H(P)
1 D

�
j˚i D

�
�

r�

��
: (97)

Extended Density Functions. The Hilbert semispace cor-
responding to the Hilbert space (97), can be supposedly
formed by the total density functions and computed by us-
ing the trace of the extendedwave function tensor product,
for instance:

�(r) D Tr j˚ih˚ j D Tr
�
j� j2 � (r� )�

(r� )�� jr� j2

�

D �(r)C �(r) ; (98)

that is: as the superposition of the electronic density �(r)
and the kinetic energy density �(r) D jr� j2. Such a result
appears to be consistent with the previous definitions, as
already expressed in Eqs. (85) and (96). An alternative def-
inition of the total density (98) can be also obtained, em-
ploying the already defined IMP, in association with the
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total sum of elements of a vector, as previously given in
Eq. (89) and generalized afterwards:

�(r) D hj˚i  j˚�ii D
��

�

r�

�


�
��

(r� )�

�	

D

��
j� j2

jr� j2

�	
D

��
�(r)
�(r)

�	
D �(r)C �(r) : (99)

Such superposition of density functions, producing the
total density function �(r), can be obviously named as
a r-extended density function.

It must be noted now, that the total density function,
as defined in Eqs. (98) or (99), possesses the statistical in-
terpretation of observing, within a space infinitesimal vol-
ume element, both the position of the associated system
of particles or the same system within a corresponding re-
lated infinitesimal kinetic energy range. The conjunction
or, is a consequence of the obtained statistical expressions,
where both densities are summed up, and it is in agree-
ment with Heisenberg’s uncertainty principle, which will
forbid the practical use of the product of both distribu-
tions, position and momentum not being simultaneously
observable.

Quantum Self-Similarity Measures and Non-linear Schrö-
dinger Equation. The previous experience, crystallized in
definitions (90) and (91), about the extended wave func-
tions and the details of their subsequent use in the energy
definition (95), as well as the construction of the extended
density function in Eqs. (98) or (99) formalisms, shows
a plausible way to generalize the presented wave function
extensions. This effort can be employed as a way to try, af-
terwards, to obtain information on the possible utility of
such extended general wave function forms.

In the same way as the generalization of Sobolev
spaces, starting from the simplest form (85), the ˝-ex-
tended expression (91) of the wave function can be gen-
eralized accordingly.

In order to do so, a systematic exposition will be fol-
lowed, in the same way as has been previously done. Thus,
the first new breed of extended wave functions will be de-
fined by means of the vector, or diagonal, form:

j˚i D

0

@
�

j� j2

˝�

1

A � Diag(� ; j� j2;˝� ) : (100)

As the second element of the vector (100), is simply the
electronic density function, such a vector can be written
equivalently as:

j˚i D

0

@
�

�

˝�

1

A � Diag(� ; �;˝� ) ; (101)

and the corresponding possible energy expression could
be written in turn, employing aHamilton operator and fol-
lowing the previous experience as presented in Eq. (94) in
the form:

H D

0

@
U 0 0
0 ˛I 0
0 0 1

2 I

1

A D Diag(U;˛I; 12 I) ; (102)

where the first and the last non null elements are the same
as shown before in Eq. (94), and besides ˛ is an arbitrary
real parameter. Thus, the energy expectation value equiv-
alent to the expression (95), employing in the extended
wave function (101) the substitution˝ D r , gives:

E D h˚ jHj˚i D hUi C ˛h�j�i C hKi : (103)

So, calling the classical Schrödinger energy (95):

E0 D hUi C hKi ;

and owing to the fact that the second term in the expecta-
tion value (103), can be manipulated as follows:

z D h�j�i D
Z

D
j� j2j� j2 dr D

Z

D
��j� j2� dr

D h�k� j2j�i D h� j�j�i D h�i ; (104)

then, one can simply write:

E D E0 C ˛z : (105)

The nature of the integral (104) is well known in the
theoretical formulation and definitions of quantum sim-
ilarity measures (QSM), corresponding to the so-called
quantum self-similarity measure (QSSM) associated to the
density function �. As is evident upon inspecting the
QSSM appearing in Eq. (104), the integral also corre-
sponds to a scalar product of the density function by it-
self. That is: a simple Euclidean norm within the associ-
ated Hilbert semispace, containing �. In addition, it can
be quantum mechanically interpreted as the expectation
value of the density function over itself. Finally, the inte-
gral is also closely related to a relativistic correction ap-
pearing in the definition of the Breit Hamiltonian: the term
named spin-spin contact [161,162,163], although in the
present form (104) the two-electron Dirac ı-function is
absent. The characteristic non-trivial features of this kind
of QSSM integral, as appear in this particular formalism,
andmore precisely with respect of the spin part of the wave
function, have been deeply analyzed in two separate pa-
pers [87,164].
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Moreover, Eqs. (101) up to (105), tell that, in fact, the
new extended wave function produces an energy expecta-
tion value, which can be seen to be in correspondence with
the non-linear Schrödinger equation.

Upon inspecting definition (100), or Eq. (101), the
corresponding extended density function can be deduced,
employing the same technique as the one that was previ-
ously used in Eq. (99):

� (r) D hj˚i  j˚�ii D

*0

@
�

�

r�

1

A 

0

@
��

�

(r� )�

1

A

+

D

*0

@
j� j2

�2

jr� j2

1

A
+

D

*0

@
�(r)
�2(r)
�(r)

1

A
+

D �(r)C�2(r)C�(r) :

(106)

So, the total density now can be written as the r-extended
density function (99), with an extra term made of the
squared electronic density:

� (r) D �(r)C �2(r) :

Finally, the Sobolev norm of the extended wave func-
tion (101) will be easily obtained by integrating the ex-
tended density function (106):

h˚ j˚i D 1C 2hKi C z ; (107)

the QSSM integral z, defined in Eq. (104), can be also con-
sidered as a norm, associated by construction, to the el-
ements of a Hilbert semispace, then this fact assures the
positive definition of the integral (107). It is not difficult
to associate the norm in Eq. (107), with a Sobalev norm of
type (87), with the parameters chosen accordingly: k�k1;12 .

Thus, a naïve generalization of the idea underlying
the r-extended wave function definition has revealed it-
self as a powerful tool, which permits the formal descrip-
tion of the non-linear Schrödinger equation. Such for-
malism allows producing another kind of Hilbert–Sobolev
space, and at the same time, within their integral steps, fi-
nally puts into evidence the connection of Sobolev spaces
and extended wave functions with the concept of QSSM.

Expectation Values Within Extended
Density Functions Framework

Landau and Lifshitz proposed the interpretation of ex-
pectation values in a statistical formulation, instead of
the usual quantum mechanical form. This was antici-
pated somewhere in the already quoted volume of refer-
ence [153], published within a series dedicated to study-
ing the mechanics of particle systems. The same point of

view was also masterly described and adopted, later on, by
McWeeny and Sutcliffe in the book of reference [165]. In
the present paper, employing the concepts associated to
the extended wave functions, it will be shown that a simi-
lar possibility as the one mentioned in these previous ref-
erences can be exactly deduced. The difference with the
above-mentioned sources consists of the fact that, in the
present way, one only needs to base the arguments on the
structure of the already described Hilbert–Sobolev spaces.
Some related point of view has been found in the same di-
rection, precluding this property, when the deduction of
the energy expectation values has been discussed, as can
be noticed when observing Eqs. (95) and (103). According
to this, the purpose of this section is to deduce a general
Hilbert–Sobolev formalism for the expectation values as-
sociated to the extended wave functions and provide an
application example.

Statistical Form of Expectation Values in the Extended
Wave Function Formalism. One can deduce the general
composition of an extended density function, correspond-
ing to the extended function (91). For this purpose, an ap-
propriate operator shall be defined. It has to be able to act
over the extended wave function structure. Accordingly, it
is sufficient to take into account that a diagonal-like oper-
ator can be constructed in the following way:

	 D Diag(� ;�) ; (108)

where, in order to be applied along the appropriate ex-
tended wave function elements, the involved operators �
and � themselves have to possess an adequate structure.
When, within the global expectation value expression,
the ˝-extended wave function is used quantum mechan-
ically over the operator (108), in order to obtain the cor-
responding equation, then owing to the properties of di-
agonal matrices, both the wave function and the diago-
nal operator can be manipulated, in the forthcoming man-
ner, employing obvious notation and symbols, to arrive to-
wards a statistical formulation final form:

h	i D h˚ j	j˚i

D hTr(Diag(��; (˝� )�)Diag(� ;�)Diag(� ;˝� ))i
D hTr(Diag(� ;�)Diag(��; (˝� )�)Diag(� ;˝� ))i

D hTr(Diag(� ;�)Diag(j� j2; j˝� j2))i
D hTr(Diag(��;�!))i D h��C�!i
D h��i C h�!i � h� j�i C h�j!i :

(109)

Now it must be taken into account that the external sum-
mation symbol employed in the above equation, has to be
taken, when appropriate, as an integration procedure.
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Energy Expectation Value of a Set of Interacting Quantum
Objects. Among the possible uses of the present formal-
ism, it seems worthwhile to consider some theoretical ar-
rangement associated to a previous discussion made by
Huzinaga and co-workers [166,167]. This procedure is re-
lated to the model potential method, proposed by Boni-
facic and Huzinaga [168] in order to study the optimal
valence AO, transforming the core electron structure into
an electrostatic potential. In the following discussion the
structure and final form will be presented, which can take
the total energy, when the problem of several interacting
quantum objects is studied in a somehow approximate
way from the point of view of the wave function. In or-
der to perform such a study, one can suppose known a set
of quantum objects [25], whose Hamiltonian operators in
this case can be considered constructed with a diagonal
structure, similar to the one described in Eq. (102).

However, the second diagonal term has to be trans-
formed necessarily into a new operator and described with
the appropriate construction rule, as follows:

L D 1 � I D f(i ¤ j)g : (110)

This operator is in some way the reciprocal mirror image
of the well-known unit operator:

I D fı(i D j)g : (111)

In the last definition (111) as well as in the operator pre-
viously defined in Eq. (110), a logical Kronecker symbol
has been utilized [159,160]. Considering the definition of
the unit operator (111), the logical Kronecker symbols ap-
pear obviously structured, adopting a self-explanatory de-
scription. The definition, for instance, can bemade clearer,
considering a logical expression� taken as the Kronecker
symbol argument, and then its resultant value can be gen-
erally described by means of the logical content of the pos-
sible issues of such an argument, that is:

ı(�) 2 fı(� � :T:) D 1 ^ ı(� � :F:) D 0g :

The operator 1, the unity operator as used in Eq. (110),
means the multiplicative unit of the IMP, that is: 1 D
f1i j D 1g.

Considering ˛ as a parameter to be adjusted, according
to the nature of the problem, then the Hamiltonian could
be written in this case as:

H D

0

@
UI 0 0
0 ˛L 0
0 0 1

2 I

1

A D Diag(UI;˛L; 12 I) ; (112)

whereU is a scalar potential operator, defined by means of
the expression:

U D
X

I

(VI C RI) ;

with the sum encompassing all the involved quantum ob-
jects. By the symbol VI is understood an attractive poten-
tial; while by RI , the repulsion terms can be somehow de-
scribed. Both operator terms have to be associated in turn
to the whole set of particles, constituting the Ith quan-
tum object. For instance: when dealing with atoms and
molecules, these operators could be associated to the nu-
clear attraction operator and to the Coulomb-exchange
operator terms, respectively.

Then, in this problem the appropriate extended wave
function can be taken as ther-extended form of Eq. (101),
that is:

j˚i D

0

@
�

�

r�

1

A � Diag(� ; �;r� ) ; (113)

where the wave and the density functions present in the
extended function (113) shall be taken as vectors, having as
elements the wave and density functions of every quantum
object in the considered set, respectively.

Thus, the expectation value of the Hamiltonian (112)
under the extended wave function (113), can be easily
written, using the technique of Eq. (109) as:

h˚ jHj˚i D
X

I


X

J

hVJCRJ j�IiC˛
X

J¤I

h�J j�IiCh�Ii
�
;

(114)

in the above expression the first term corresponds to the
potential energy of the objects plus their interactions; the
second term can be associated to the expectation value of
the projection operator over each quantum object except
itself, and the role of this part of the expectation value is
intended to prevent the collapsing tendency of the parti-
cles, belonging to each separated quantum object, towards
a unique system; finally, the third term corresponds to the
global kinetic energy obtained in a way such as the quan-
tum objects were non-interacting.

The second element of the expectation value (114)
can be also easily interpreted as a sum of the overlap
QSM [169] between pairs of quantum objects. In this
sense, one can observe Huzinaga’s treatment as a proce-
dure, taking into account non-linear terms in the approx-
imate solution of the Schrödinger equation.
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Quantum Similarity Measures
in Extended Hilbert–Sobolev Spaces

QSM in Hilbert semispaces have been studied from the
theoretical point of view as well as considering the po-
tential applications of quantum similarity over quantum
objects. In this paragraph, the structure of QSM over ex-
tendedwave and density functions will be analyzed. Before
proceeding towards such an analysis, it must be said that,
as QSM are essentially defined over density functions, they
can be constructed even in the Hilbert–Sobolev spaces
framework, provided that the extended density function is
known. This is so, because, whenever a total density func-
tion can be well defined, like the one present in Eq. (98),
for instance, then the construction of any similarity mea-
sure can also be put forward. Such a general possibility was
analyzed in a particular way several years ago [170], when
discussing the extension of the QS concepts into partition
functions. Statistical mechanics partition functions can be
obviously observed as probability distributions and, thus,
they can be considered as elements belonging to a char-
acteristic vector set: a Boltzmann semispace, for example.
From such a fact they can be used in the general defini-
tions of QSM, as any probability density function can be
used for the same purpose.

The most usual way to produce a QSM, corresponds to
the integral constructed as:

zIJ(˝) D
“

D
�I(r1)˝(r1; r2)�J(r2)dr1 dr2 : (115)

Where in Eq. (115), f�I(r1); �J (r2)g is a pair of homo-
geneous order density functions, and ˝(r1; r2) is a posi-
tive definite operator. The attached properties of the set
of integrands ensure that in any case the values of the
QSM, defined such as in Eq. (115), will produce a pos-
itive real element. For the present purposes, the integral
form (115) is sufficient. The already mentioned overlap
QSM, which appears in the building up of energy expecta-
tion values within non-linear Schrödinger equations, such
as those in expressions (104) and (114), are overlap-like
QSM, and can be deduced from the QSM Eq. (115), by
simply using a Dirac delta function as operator, that is:
˝(r1; r2) D ı(r1 � r2).

The definition of kinetic energy density and other pos-
sible density kinds, deducible from the ˝-extended wave
function concepts, as discussed earlier, opens the way to
produce QSM using the integral (115), upon substitution
of the density function pairs by the appropriate extended
density function.

So it seems now clear that the QSM integral form, as
described in Eq. (115), can be used as it is for extended

density functions, just substituting the usual electronic
density by the corresponding expression in terms of the
chosen extended density functions. Here, the interesting
new feature consists of the emergence of QSM integrals,
associated to density functions of different origin. For in-
stance, suppose the r-extended density function as de-
fined in Eq. (98): the total density defined there, associated
to a pair of quantum objects produces a QSM, which can
be written in terms of four hybrid QSM integrals as:

zIJ D
“

D
�I(r1)˝(r1; r2)�J(r2)dr1 dr2

D

“

D
�I(r1)˝(r1; r2)�J(r2)dr1 dr2

C

“

D
�I(r1)˝(r1; r2)�J(r2)dr1 dr2

C

“

D
�I(r1)˝(r1; r2)�J(r2)dr1 dr2

C

“

D
�I(r1)˝(r1; r2)�J(r2)dr1 dr2 :

The first term being exactly the one in Eq. (115), and the
last one being a QSM over kinetic energy density distribu-
tions, the central terms corresponding to hybrid QSM be-
tween electronic and kinetic density functions. Total den-
sity QSM integrals of any kind still are waiting to be practi-
cally employed in a systematic way. It is important to con-
sider them as potentially interesting quantum object de-
scriptors. Because of their flexible generality, the extended
density functions may provide new insights and refine-
ments within QSPR models. In the next sections of this
work a discussion of several possible uses of the extended
densities technique will be discussed.

Fundamental QuantumQSPR (QQSPR) Equation
in Sobolev Spaces

From the previous considerations and the ad hoc defi-
nitions, it can be said, without doubt, that the general
structure of Sobolev spaces can be easily associated to
the extended Hilbert wave functions, producing a new
mathematical structure, which has been named a Hilbert–
Sobolev space.

Hilbert–Sobolev spaces have been used too to obtain
up to now, with the appropriate definition of the Hamilton
operator, adapted to every circumstance, the correspond-
ing energy expectation values. Elementary reasoning per-
mits us to arrive towards the conclusion that the expecta-
tion values of a given observable can be obtained in a simi-
lar generalizedmanner and within the formalism, which is
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the most valuable finding, perhaps, of the present discus-
sion: the possibility to write the expectation value expres-
sions using a statistical method.

Thus, if some observable O, has attached the Hermi-
tian operator 	, and the associated quantum object ex-
tended density function is � , then the associated quantum
mechanical expectation value, h#i, can be written, accord-
ing to the previous considerations as:

h#i D h	j�i :

In QQSPR reasoning, the expression above can be further
arranged in the following way. The Hermitian operator 	
is usually not known, but it can be expressed as the product
of a still unknown operatorW by a known one˝ , associ-
ated at the same time with a positive definite property, that
is:

h#i D hW˝j�i : (116)

Because˝ is chosen as having a positive definite form, one
is always assured that knowing	, thenW can be obtained
in turn as:

˝ > 0! 9˝�1 ! W D 	˝�1 :

However, in practice 	 and W are unknown, and in the
expectation value formalism there is always the need to ob-
tain W in an approximate way, employing a least squares
procedure. This can be easily done whenever a set of com-
patible density functions, connected to a certain quan-
tum object set as quantum object tags, is already known:
T D f�Ig and can be used in order to express the opera-
torW as a superposition such that:

W(r) D
X

I

wI�I(r) : (117)

Then, the expectation value (116) becomes expressible as:

h#i D
X

I

wIh�Ij˝j�i ;

being the resultant QSM integrals, defined in the usual way
in Eq. (115). The well-described procedure to obtain the
coefficients: w D fwIg is the least-squares technique, or
anyone of the existing variants, as previously described, by
means of an alternative method based on IMP reasoning.

The first step is, in any case, to proceed with the con-
struction of a linear system of equations, whose solution
is the coefficient vector w. To obtain such a linear system
it is necessary first to know, for a given quantum object
set, a set of properties: f�Ig, which can be associated to the

corresponding expectation values: f#Ig. Then, employing
the quantum objects density functions, which in particu-
lar will coincide with the set T D f�Ig, used to construct
the unknown part of the operator, although not necessarily
both density function sets shall be the same, it is possible
to write:

8K : h#Ki � �K D
X

I

wIh�I j˝j�Ki ;

so collecting in a vector like j�i, the property values, and
defining the integral matrix elements by means of:

Z D fzIK D h�I j˝j�Ki D h�K j˝j�Ii D zKIg ; (118)

it is easy to transform the system into a matrix equation in
the form of:

Zw D j�i : (119)

The solution of the above system will make known an ap-
proximate form of the implied operator and, in this way,
provides a possible path to be followed in order to obtain
estimates of the property values of any unknown quantum
object, just as in the classical QSPR model procedures.

However, the present kind of quantitative structure
(represented by the QSM)-property model is completely
based on quantum mechanical propositions. More than
this, there are no other suppositions than the usual ones,
associated to density function algebra and quantum me-
chanical basic mathematical background. Hence, the re-
sults obtained through the linear system of Eqs. (119), do
not depend on user choice, but rely directly on theoreti-
cal grounds and because of this are statistically unbiased.
Equation (119) can be properly called the fundamental
QQSPR equation. Moreover, the models obtained in this
way can be interpreted in the light of the quantum me-
chanical expectation value concept. By this simple fact,
contrary to the classical QSPR modeling results, they can
be associated to a causal relationship relying on quantum
object properties and QSM.

Due to the unavoidable presence of the QSM ma-
trix (118) into the fundamental QQSPR equation, the
columns of such a matrix play a fundamental role in the
discrete representation of quantum objects. Consequently,
the columns of the QSM matrix, involving a given quan-
tum object density function, interacting with the whole
basis set of density functions employed to represent the
unknown operator W, can be safely considered as natural
quantummechanical discrete descriptors of the associated
quantum object.
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Non-Linear Terms in QQSPRModels

The usual relationships between structure and properties
sometimes needs the presence of non-linear terms. Non-
linear terms are needed in order to represent accurately
the property as a function of the structural descriptors.

The fundamental QQSPR equation can be deduced
to introduce in a natural way these terms, if needed. To
see this, it is only necessary to think about the easy path,
which was used to introduce the non-linear terms in the
Schrödinger equation, just by using simple considerations,
associated to the structure of the Hilbert–Sobolev spaces.

Suppose that the extended wave function (106) is em-
ployed, along with the corresponding extended density
functions. In this case, although the Eq. (117), producing
the unknown operator expression, can be supposedly set
in the same manner as has been proposed in the usual
framework, the kinetic energy distribution as well as the
non-linear density terms can be employed separately. That
is, the unknown operator can be written now as:

W D
X

I

wI�I C
X

J

kJ�J C
X

L

lLj�Lj2 : (120)

Such an approach will produce a set of linear equations,
with an extended number of parameters, but also a ma-
trix representation of the unknown operator with added
dimensions. The matrix elements, involving squared den-
sity functions, are candidates to be interpreted as the quan-
tum representatives of the possible presence of non-linear
terms in the fundamental QQSPR equation.

Non-linearity can be introduced in several alternative
ways, due to the flexibility promoted by the ideas around
the Hilbert–Sobolev concepts. For example, within the
QSM matrix definition (118), the operator ˝ can be seen
as formed by the expression:

˝ D exp(a�) D
1X

pD0

ap

p!
j�jp

D I C a�C
a2

2
j�j2 C O(3) ; (121)

which is assured to be positive definite whenever the ex-
ponent a possesses positive values. Convergence can be as-
sured whenever: a 2 (0; 1).

In fact, such an expansion can be generalized by using
a set of positive definite coefficients AD faIg, such that:

˝ D

1X

pD0

apj�jp D a0I C a1�C a2j�j2 C O(3) :

In such a general case, the QSM matrix elements will be
written as a superposition of terms like:

zIK D h�I j˝j�Ki D
�
�I

ˇ
ˇ̌
ˇ

1X

pD0

ap

ˇ
ˇ̌
ˇ�j

pj�K

	

D

1X

pD0

ap
˝
�Ik�j

pj�K
˛

D a0h�Ij�Ki C a1h�Ij�j�Ki

C a2
˝
�Ik�j

2j�K
˛
C O(3) : (122)

Where, in the last line of Eq. (122), it is easy to observe
the overlap similarity integrals as the zero-th order term,
the triple density similarity integrals as the second ele-
ment constituting the first-order term, and finally, in the
second-order term, the quadruple density integrals ap-
pear. Such integrals can be readily defined by means of the
expression, chosen among other possible definitions, for
example, as:

h�Ik�j
2j�Ki D

Z

D
�I(r)�K (r)�2(r)dr :

This result is still more obvious if the following operator
structure is employed: upon substituting in Eq. (121) the
density function by a convex superposition like the one in
Eq. (120), which to obtain simpler expressions will be writ-
ten as a convex superposition like:

� D
X

A

!A�A ;

being the coefficients f!Ag such that: 8A : !A 2 RC ^P

A
!A D 1.

In this case, the QSM integral (122) will take the fol-
lowing form:

zIK D h�I j˝j�Ki D
�
�I

ˇ̌
ˇ̌
1X

pD0

ap

p!

ˇ̌
ˇ̌�jpj�K

	

D

1X

pD0

ap

p!
˝
�Ik�j

pj�K
˛

D h�I j�Ki C a
X

A

!Ah�I j�Aj�Ki

C
a2

2

X

A

X

B

!A!Bh�Ij�A�B j�Ki

C O(3) :

It can be seen that quadratic or higher order terms can nat-
urally appear in the structure of the fundamental QQSPR
equation in this way.
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Non-Linear Terms and Variational Approach in
QuantumQSPR

Fundamental QQSPR Equation in (N �M) SimilarityMa-
trix Spaces. Suppose a quantum object basis set B com-
posed by M quantum systems, whose homogeneous den-
sity functions, acting as quantum object tags, are known:
B D

˚
�BI jI D 1;M

�
. Suppose also that a probe quantum

object set P is well defined and composed by N quantum
systems, which have also known density tags:

˚
�PI
�
, and

at least is also known a set of property values: fpJg at-
tached to every quantum object of the set; in this manner:
P D

˚
�PJ ^ pJ jJ D 1;N

�
.

A general operator ˝ can be associated to the expec-
tation value computation of the observable property � , in
such a way that, knowing the appropriate quantum state
density function tag � for a given quantum system, such
a quantum object observable property can be evaluated in
general by using the integral form:

h�i D h˝j�i D

Z

D
˝(r)�(r)dr ; (123)

where D is an appropriate integration domain, where the
density and operator variables are defined.

Being the operator ˝ , in principle, after the adoption
of quantummechanical rules, a Hermitian operator, with-
out loss of generality can be supposedly decomposed into
a product of two commutative operators:

˝(r) D W(r)	(r) ^ [W(r);	(r)] D 0 ; (124)

the operator 	 being a known chosen positive definite
one, the remnant Hermitian operator is thus defined as:

W(r) D ˝(r)	�1(r) : (125)

Using Eq. (123) and the operator composition shown in
Eq. (124), then it can be formally written:

h�i D hW	j�i � hWj	�i D hWj	j�i ; (126)

suggesting that the operator W could be approximately
obtained, even in the case that it is unknown, due to the
nature of the observable attached to the property.

In the case, most usual in QQSPR framework, that an
approximate construction of the operator W is needed, if
an appropriate quantum object set density function tag set,
acting as a basis set, B say, is known, as stated at the begin-
ning, that is: B D

˚
�BI jI D 1;M

�
, then the operatorW can

be written within a first-order linear approach as:

W '
MX

ID1

!I�
B
I ; (127)

so upon substituting this approximate first-order linear
expression into the expectation value in Eq. (126), is ob-
tained:

h�i '

MX

ID1

!I
˝
�BI j	j�

˛
; (128)

where the integral in Eq. (128), can be interpreted as
a quantum similarity measure, that is:

˝
�BI j	j�

˛
�

“

D
�BI (r1)	(r1; r2)�(r2)dr1 dr2 : (129)

The unknown coefficient set in Eq. (128): j!i D f!IjI D
1;Mg, which can be collected into anM-dimensional col-
umn (or row) vector, will represent the operator W in
terms of the known density function basis set B. This situ-
ation, clearly represented by Eq. (128), still has a set of un-
determined parameters, associated now to the vector j!i
components, instead of the operatorW.

Equation (128) can be used to obtain the vector j!i. As
is usually the case in classical QSPR, it is only necessary to
know, a quantum object tag set, associated to somemolec-
ular probe set P of cardinalityN, P D

˚
�PJ ^ pJ jJ D 1;N

�
,

where, as previously commented, every quantum object
structure in P has also necessarily to be attached to
a known value of the involved observable: jpi D fpJ jJ D
1;Ng, which can be also collected in form of a N-dimen-
sional column (or row) vector. Then, Eq. (128) can be
rewritten for every element in P, employing the known
property values instead of the expectation observable val-
ues, that is:

8J D 1;N : pJ '
MX

ID1

!I
˝
�BI j	j�

P
J
˛
; (130)

in this way the following set of quantum similarity mea-
sures is generated:

aBPIJ (	) � aBPIJ D
˝
�BI j	j�

P
J
˛
; (131)

which in turn can be considered, after an appropriate re-
arrangement, as elements of a (M � N) similarity matrix,
involving the basis and probe quantum object molecular
sets respectively: A D

˚
aBPIJ

�
.

With this matrix definition inmind, then Eq. (130) can
be rewritten as a linear system in matrix form, connecting
the already defined vectors in row space form:

hpj D h!jA : (132)

Such a linear system can be associated to the most com-
mon dual problem in column vector space, just defining
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the transpose of the similarity matrix, using the usual def-
inition:

Z D AT ! 8I D 1;N ^ J D 1;M : zPBJI D aBPIJ ; (133)

and in this manner, the fundamental QQSPR equation is
set up, writing a column equivalent dual expression of the
former row Eq. (132):

Zj!i D jpi : (134)

As in classical QSPR, the solutions of Eq. (134) may pro-
vide the knowledge of the coefficient vector j!i. However,
it must again be stressed that Eq. (134) differs from the
classical QSPR setup in the sense that such an equation can
be deduced from the quantummechanical statistical struc-
ture, associated to expectation value calculations. In this
way, the causal connection between molecular structure
and molecular properties can be deduced from employing
quantummechanical theoretical fundaments, via the ideas
of quantum similarity. The interest of such a relationship
lies in the fact that fundamental QQSPR equations can be
extended to any quantum object structure and properties.
So, obviously, these relationships can be applied to molec-
ular systems as well, provided they can be described as
quantum objects, making QQSPR universal in the sense
that it can be applied, under the same conditions, to any
sub-microscopic quantum object set.

Non-Linear QQSPR Equations. In a second remark step,
which appears to be sufficiently important as to merit
a separate section treatment, the approximate operator lin-
ear description (127) may be extended with non-linear
terms, which can be easily provided by the nature of the
involved quantum object density function tags, which can
be founded in turn on the theoretical development of ex-
tended wave functions.

In this case, Eq. (127), can be written in a more struc-
tured manner as a truncated Taylor series, where only the
first two terms are kept for simplicity:

W '
MX

ID1

!I�
B
I C

MX

PD1

MX

Q�P

!PQ�
B
P�

B
Q C O(3) ; (135)

however, with the potential prospect to add terms up to
any order. Equation (135) can be perhaps also considered
a simplification of a series involving density functions of
growing orders, that is:

W '
MX

ID1

!
(1)
I �

(1)B
I C

MX

PD1

!
(2)
P �

(2)B
P C O(3) : (136)

The second-order coefficient set f!PQg in Eq. (135), can be
also substituted as well, in order to retain a minimal num-
ber of unknowns, by products of first-order coefficients, in
the following way:

8P;Q : !PQ ' !P!Q : (137)

Then, just if this is the case, Eq. (130), transforms into
a more computationally convenient form:

8J D 1;N : pJ '
MX

ID1

!I
˝
�BI j	j�

P
J
˛

C

MX

PD1

MX

Q�P

!P!Q
˝
�BP�

B
Q j	j�

P
J
˛
C O(3) ; (138)

Triple Density Quantum Similarity Integrals. The inte-
grals included in the second-order terms of Eq. (138) are
triple density similarity measures, which can have the form
chosen, among many other possibilities, in the following
way:

˝
�BP�

B
Q j	j�

P
J
˛

�

•

D
�BP (r1)�

B
Q (r2)	(r1; r2; r3)�PJ (r3)dr1 dr2 dr3 :

(139)

Moreover, the usual computational form of the triple den-
sity measures can be the one, where the operator becomes
unit and all the integrand density functions bear the same
variable, so the integral in Eq. (139) acquires a simpler
structure, like the triple density overlap integral form:

˝
�BP�

B
Q�

P
J
˛
�

Z

D
�BP (r)�

B
Q (r)�

P
J (r)dr ; (140)

while, first-order similarity measures (129) become, under
an equivalent simplification, overlap-like integrals:

˝
�BI �

P
J
˛
�

Z

D
�BI (r)�

P
J (r)dr : (141)

Equations (140) and (141), could be obtained defining the
respective weighting operators in terms of an integral op-
erator, involving as many products of Dirac’s delta func-
tions as density functions appear into the integrand. For
instance, in Eq. (139), the operator	(r1; r2; r3) can be sub-
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stituted inside the integral in the following manner:

˝
�BP�

B
Q�

P
J
˛
�

Z

D

�•

D
�BP (r1)�

B
Q (r2)

� (ı(r1 � r)ı(r2 � r)ı(r3 � r))

� �PJ (r3)dr1 dr2 dr3
�
dr

D

Z

D

� Z

D
�BP (r1)ı(r1 � r)dr1

�

Z

D
�BQ (r2)ı(r2r)dr2

�

Z

D
�PJ (r3)ı(r3 � r)dr3

�
dr

D

Z

D
�BP (r)�

B
Q (r)�

P
J (r)dr (142)

It is, then, straightforward to use the same technique to ob-
tain equations possessing a higher number of density func-
tion terms, and so it is easily seen how to take into account
and to handle them in the same manner, adding higher
order terms within non-linear fundamental QQSPR equa-
tions of type (138).

Hansch-Type QQSPR Quadratic Models. In the same
manner as above in the linear case, the fundamental
quadratic QQSPR Eq. (138) can be simplified, so only the
diagonal terms of the initial equation remain. First using
just a probe set, taking B D P and then supposing that the
remnant equation summation terms are constant under
the study of some quantum objects, possessing a great deal
of homogeneity. In this case one can write:

8J D 1;N :

pJ ' ˇ C ˛
˝
�PJ j	j�

P
J
˛
C ˛2

˝
�PJ �

P
J j	j�

P
J
˛
C O(3) ;

(143)

which constitutes a quadratic extension of the linear
Hansch-type relationships.

Quadratic Fundamental QQSPR Equation inMatrix Form.
Having set up in the way outlined above the formal struc-
ture of the fundamental QQSPR equations, we now need
to discuss its matrix implementation, which is an obliga-
tory step when seeking computational algorithms in prac-
tical cases. Two possible equivalent modes will be dis-
cussed in this section: the first one corresponds to clas-
sical matrix product formalism, while a second part will
present an equivalent form just employing inward matrix
products. The reason for this second formal presentation
is the easiness of setting a general framework up to any
approximation order.

a) Classical Form
Equation (138) can be easily written inmatrix form. For
this purpose it is only necessary to define, besides the
column vector of the first-order coefficients:

j!i D f!IjI D 1;Mg ; (144)

also, for every quantum object within the probe set, the
first-orderM-dimensional similarity matrix columns:

J D 1;N :
ˇ̌
z(1)I J
˛
D
˚
z(1)I J D

˝
�BI j	j�

P
J
˛
jI D 1;M

�
;

(145)

as well as the second-order (M �M)-dimensional sim-
ilarity matrices:

J D 1;N :
ˇ
ˇZ(2)

J
˛
D
˚
z(2)J;PQ D

˝
�PJ j	j�

B
P�

B
Q
˛
jP;Q D 1;M

�
;

(146)

shall be constructed.
Taking the above-defined similarity matrices into ac-
count, Eq. (138) can be written as:

J D 1;N : pJ '
˝
z(1)J j!

˛
C
˝
!jZ(2)

J j!
˛
CO(3) ; (147)

so, collecting the property observable values into a col-
umn vector, as already discussed and then, reordering
first- and second-order matrix components in the fol-
lowing way:

Z(1) D
˚ˇ̌
z(1)J
˛
jJ D 1;N

�
; (148)

and

Z(2) D
˚
Z(2)
J jJ D 1;N

�
; (149)

then the second-order fundamental QQSPR equation
becomes a quadratic system of equations in matrix
form:

jpi ' (Z(1) C [h!jZ(2)])j!i C O(3) : (150)

b) Inward Matrix Product Form as a Generalization De-
vice
Alternatively, there is the possibility to express the
equations of the previous description by means of in-
ward matrix products. The first-order term in Eq. (147)
can be expressed within inward product formalism at
once, as it is a simple scalar product between the in-
volved vectors, so:

J D 1;N :
˝
z(1)J j!

˛
�
˝ˇ̌
z(1)J
˛
 j!i

˛
; (151)
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while the second-order term may be expressed in in-
ward product form with the aid of the coefficient vector
tensor product, forming a square (N � N) matrix:

W D j!i˝j!i � fwIJ D !I!J j8I; J D 1;Ng ; (152)

so, one can write then the quadratic term of Eq. (150)
as an inward matrix product too:

J D 1;N :
˝
!jZ(2)

J j!
˛
�
˝
Z(2)
J W

˛
D
˝
Z(2)
J  (j!i ˝ j!i)

˛
;

(153)

and consequently Eq. (147), can be rewritten as:

J D 1;N :

pJ '
˝ˇˇz(1)J

˛
 j!i

˛
C
˝
Z(2)
J  (j!i˝ j!i)

˛
C O(3) :

(154)

Inward Matrix Product Formalism of Fundamental
QQSPR Equation nth Order Terms. Both, classical and
inward product, formalisms are equivalent; however, the
inward product Eq. (154), permits one to easily imagine
any sequence of corrections into the fundamental QQSPR
equation, up to any arbitrarily chosen nth order term, just
writing:

J D 1;N : pJ '
nX

RD1

D
Z(R)
J 


 R
˝
SD1
j!i

�E
CO(nC1); (155)

where the leading equation terms are
˚
Z(R)
J jJ D 1;N

�

the Rth order similarity matrices, which can be con-
structed as:

J D 1;N : Z(R)
J D

˚
z(R)J;S(i) D

˝
�PJ j	j�

B
S1�

B
S2 : : : �

B
SR

˛
j8˛

D 1; R : L˛ 2 f1; 2; : : : ;Mg
�
; (156)

with the index set: S(i) D fS1; S2; : : : ; SRg formed by any
of theMR combinations with repetition of R elements cho-
sen within theM integers and, finally, the Rth order tensor
products of the coefficient vector are noted as:˝R

SD1 j!i.

Stochastic Transformations. We will now discuss a third
remark step, dealing with the stochastic transformation of
similarity matrices, because it also merits a separate sec-
tion. Recently, several studies have dealt with stochastic
transformations of the fundamental QQSPR equation in
linear symmetric form, that is: using B D P.

At the light of the previous manipulation presented in
this study, the stochastic structure transformation of the

fundamental QQSPR equation has to be performed, at any
operator-equation approximation level, using the possi-
bility to compute the sum of the elements of the Rth or-
der similarity matrices as have been previously defined in
Eq. (156), that is:

�
(R)
J D

˝
Z(R)
J
˛
D
X

(i)z(R)J;S(i) ; (157)

where a nested summation symbol
P

(i) has been em-
ployed in order to indicate the nested sums over the R in-
dices, represented by the index sets: S(i) D fS1; S2; : : : ;
SRg. Using the sum of the similarity matrix elements (157),
then the elements of the new matrices scaled by this sum
become scaled in turn as follows:

S(R)J D
�
�
(R)
J )�1Z(R)

J ; (158)

and the new Rth order stochastic similarity matrices be-
have as a discrete probability distribution, as: 8S(i) :
z(R)J;S(i) 2 RC ! s(R)J;S(i) 2 RC and besides:

˝
S(R)J

˛
D 1 : (159)

Both properties can be cast into a unique convex condition
symbol:

K
�
S(R)J


D
˚
8S(i) : s(R)J;S(i) 2 RC ^

˝
S(R)J

˛
D 1

�
: (160)

So, in this way, the stochastic matrix set: S D
˚
S(R)J jR D

1; n
�
can be considered, up to nth order, as a set of MR-

dimensional unit shell elements, belonging to some vec-
tor semispace with the same dimensions. In these cir-
cumstances one can consider the fundamental QQSPR
Eq. (155) as to be written:

J D 1;N : pJ D
nX

RD1

D
S(R)J 


 R
˝
SD1
j!i

�E
CO(nC1); (161)

where everything is the same as in the former Eq. (155),
except for the similarity matrix set, which has been substi-
tuted by the stochastic matrices (158).

The coefficient vector has been left unchanged, but
evidently its character could be no longer the same as
in Eq. (155). However, the nature of the coefficient vec-
tor can be more precise in this case of the fundamental
QQSPR stochastic Eqs. (161). This is due to the character-
istic convex condition properties, which possess the semis-
pace unit shell elements obtained transforming the simi-
larity matrices.
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In fact, the stochastic similarity matrix set:
˚
S(R)J jR D

1; n
�
, so naturally obtained from the original similarity

matrix set, can be interpreted as a sequential discrete rep-
resentation of the continuous normalized density func-
tion, associated to the involved Jth quantum object. Then,
from the quantum mechanical point of view, the whole
stochastic matrix set can be viewed as a discrete quantum
object tag collection. Thus, in this case, the tensor products
of the coefficient vector can be easily considered as arrays
of convex sets, that is:

W(R) D
R
˝
SD1
j!i D

˚
w(R)
S(i)
�

! hW(R)i D
X

(i)w(R)
S(i) D 1 ^ 8S(i) : w(R)

S(i) 2 RC

(162)

because, whenever the generating coefficient vector is
a convex vector, that is, fulfilling the convex conditions:

K(j!i) D
�
8I : !I 2 RC^hj!ii D

X

I

!I D 1
�
; (163)

then, any tensor product of the convex vector j!i fulfils:
K
�
˝R

SD1 j!i

. Indeed, if convex conditions (163) hold,

then it is easy to see that convex conditions are present
within any arbitrary order tensor product of the coefficient
vector, as shown in the following deduction:

W(R) D
R
˝
SD1
j!i D

˚
w(R)
S(i) D !S1!S2 : : : !SR 2 RC

�

^ hW(R)i D
X

(i)w(R)
S(i) D

�X

I

!I

�R

D (hj!Iii)R D (1)R D 1

! K

 R
˝
SD1
j!i

�
� K(W(R)) :

(164)

Variational QQSPR. So far the fundamental QQSPR
equation has been solved using the usual strategy associ-
ated to classical QSPR. Equations (134), (150) or (161) as
in classical terms, can be solved for the coefficient vector
j!i. As has been previously commented this is done, by
substituting in the expectation value expression (138) the
vector j�i by an experimental property vector jpi, associ-
ated to the probe quantum object set P. The result will be
obtained in the same way as in classical QSPR, but using
the quantum similarity matrices as molecular descriptors.
However, it can be proven that the fundamental QQSPR
equation can be solved within the usual quantum varia-
tional procedures.

a) Similarity Matrix Unrestricted Variational Treatment
For such a purpose it is sufficient to rewrite the second-
order expectation value Eq. (138) as:

8J D 1;N :

h�Ji '

MX

PD1

!Pz
(1)
J;PC

MX

PD1

MX

Q�P

!P!Qz
(2)
J;PQCO(3)

(165)

then, considering every quantum object expectation
value as a variational function of the parameters within
the coefficient vector j!i, the resulting expression can
be varied, taking into account that the density func-
tions, supposedly obtained by quantum mechanical
procedures, no longer need variation. In this way, ev-
ery Jth quantum object will have to possess a specific
coefficient vector j!i, which can be thus named as j!Ji.
That is:

8J D 1;N : ıh�Ji '

MX

PD1

ı!Pz
(1)
J;P

C 2
MX

PD1

MX

Q�P

!P!Qz
(2)
J;PQ C O(3) ; (166)

then, using the variation condition for the Jth quantum
object:

ıh�Ji D 0 ; (167)

is obtained:

8J D 1;N : 0 '
MX

PD1

ı!Pz(1)J;P

C 2
MX

PD1

MX

Q�P

ı!P!Qz(2)J;PQ C O(3) ; (168)

which can be rewritten as:

8J D 1;N ^ P D 1;M :

0 ' z(1)J;P C 2
MX

QD1

!Qz
(2)
J;PQ C O(3) : (169)

This last equation can be expressed in matrix form, us-
ing the appropriate similarity matrices as previously de-
fined in Eqs. (145) and (146):

8J D 1;N : z(1)J C 2Z(2)
J j!Ji D 0 ; (170)
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thus, the specific coefficients for each quantum object
may be computed as:

8J D 1;N : j!Ji D �
1
2
�
Z(2)
J
��1z(1)J : (171)

This is the same as associating a particular operator W
to each quantum object, and such a result is not too sur-
prising a feature, as the operator W can be easily sup-
posed to vary from one quantum object to another, in
the sameway as Hamilton operators do. The variational
expectation value for the Jth object could be obtained in
this case as:

h�Ji '
˝
!Jjz

(1)
J
˛
C
˝
!JjZ

(2)
J j!J

˛
C O(3) : (172)

Using Eq. (171) into Eq. (172), the following expecta-
tion value final optimal form will result:

h�Ji ' �
1
4
˝
z(1)J
ˇ̌�
Z(2)
J
��1 ˇ̌z(1)J

˛
C O(3) : (173)

b) Expectation Versus Experimental Values
Then, the set of stationary expectation values j�i can
be compared with the experimental value vector jpi, in
such a way as to have:

jpi D aC bj�i ; (174)

fa; bg being some origin and scale parameters, respec-
tively. They can be obtained by the usual well-known
regression techniques.

c) Algorithm for Unrestricted Variational QQSPR
Once the set of coefficients fa; bg is obtained by us-
ing Eq. (174) for a given probe quantum object set, the
property expectation value h�Ki of any new quantum
object K , say, with known density function �K , can be
employed to estimate the experimental value �K of the
quantum object studied property, by using the follow-
ing steps:
1. Compute:

˚
z(1)K ;Z(2)

K
�
using the basis set B.

2. Evaluate: h�Ki ' �
1
4
˝
z(1)K
ˇ̌�
Z(2)
K
��1 ˇ̌z(1)K

˛
C O(3)

3. Obtain the estimated property: pK D aC bh�K i.

Stochastic SimilarityMatrices Restricted Variational Treat-
ment. Of course, all that has been said up to now in
this section remains valid for stochastic similarity matri-
ces:

˚
s(1)K ; S(2)K

�
, they just have to be used instead of the

similarity matrix pair:
˚
z(1)K ;Z(2)

K
�
in the above algorithm.

However, the stochastic casemay be interesting if the coef-
ficient set j!i can be obtained obeying convex conditions
as a restriction, so that the previous unrestricted variation
algorithm may no longer be applicable.

Expectation Value Jacobi Rotations Variational Form. To
obtain the desired restricted variation over the coefficient
vector involved in expectation value expressions, a simi-
lar procedure as the one employed in developing the ASA
technique [75,76,77,78,79,80,81,82,83] could be easily set
up to perform the variational computation over Eq. (165),
but taking into account the additional restriction of ob-
taining a convex vector, as a result of the optimization pro-
cess.

a) Preliminary Considerations
When this option as discussed above is chosen, it is
only necessary to express the operator W variational
coefficients with the aid of a new free normalized aux-
iliary vector; in order to ensure the convex conditions
hold throughout the entire optimization process, that
is:

j!i D jxi  jxi ^ hxjxi D 1! hj!ii

D
X

I

!I D
X

I

x2I D 1 ^ 8I : !I D x2I 2 RC :

(175)

After this consideration, it is only necessary to obtain
the variation of Eq. (165), by applying norm conserv-
ing, orthogonal elementary Jacobi rotations [148] into
the auxiliary vector jxi element pairs, in order to arrive
at an expression, depending on the elementary Jacobi
rotation angle, which could be easily optimized later
on.
An interesting point at this stage is to realize that such
a restricted variational procedure can be applied to
higher order equations, with orders larger than the
ones studied up to now. This is due to the fact that
Jacobi rotations over the auxiliary vector just change
a couple of the coefficient auxiliary vector elements
each time an elementary Jacobi rotation is performed,
and the same occurs with the coefficient vector. This
knowledge of the coefficient vector variation can be
easily brought into the tensor products and worked out
up to any tensor order.
The rest becomes a procedure with somehow a grow-
ing technical computational complexity, but defined
within a well-structured theoretical background algo-
rithm.

b) Elementary Jacobi Rotations Algorithm Scheme
Elementary Jacobi rotations need the cosine, c, and the
sine, s, of a rotation angle. These involved trigono-
metric functions fulfil the usual convex relationship:
c2 C s2 D 1. When acting over a vector, the Jacobi ro-
tations will change two vector components, the Kth
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and Lth, say, leaving the remaining components as they
are:

jxi D

0

BBB
B
@

� � �

xK
� � �

xL
� � �

1

CCC
C
A
!

0

BBB
B
@

� � �

cxK � sxL
� � �

sxK C cxL
� � �

1

CCC
C
A

) jwi D

0

BB
BB
@

� � �

x2K
� � �

x2L
� � �

1

CC
CC
A
!

0

BB
BB
@

� � �

(cxK � sxL)2

� � �

(sxK C cxL)2

� � �

1

CC
CC
A
: (176)

It is easy to obtain the variation in the coefficient vector
due to an elementary Jacobi rotation as:

jı!i D vKL

0

BB
BB
@

� � �

�1
� � �

C1
� � �

1

CC
CC
A
D vKL(jeLi � jeKi) ; (177)

where fjeKi; jeLig are the corresponding canonical ba-
sis set vectors. The scalar coefficient vKL possesses the
form:

vKL D s2
�
x2K � x2L


C 2csxKxL : (178)

Then, employing this result in the equivalent expres-
sion of Eq. (147), but written in expectation value ma-
trix form, the following can be deduced:

hı�i D hı!j(jz(1)iC2Z(2)j!i)Chı!jZ(2)jı!i; (179)

where the quantum object subindex has been taken out
to simplify the notation. Then, upon substituting the
coefficient vector variation:

hı�i D vKL

��
z(1)L � z(1)K


C 2

X

I

!I
�
Z(2)
IL � Z(2)

IK
�

C v2KL
�
Z(2)
KK C Z(2)

LL � 2Z(2)
KL


(180)

which, upon equalization to zero and terms rearrange-
ment, can be expressed as a second-order equation on
the elementary Jacobi rotation sine and cosine:

As2 C Bsc C ˇ D 0 ; (181)

with the coefficients A and B defined as:

AD ˛(!K � !L)
B D 2˛xKxL

(182)

and, besides, the parameters are constructed by the el-
ements of the similarity matrices in the following way:

˛ D Z(2)
KK C Z(2)

LL � 2Z(2)
KL

ˇ D
�
z(1)L � z(1)K


C 2

X

I

!I
�
Z(2)
IL � Z(2)

IK

:

(183)

Higher Order Stochastic Expectation Value Variational
Treatment.

a) General Comments
Whenever Eq. (161) is studied, after being conveniently
modified for the expectation values form,

8J D 1;N : h�Ji D

nX

RD1

˝
S(R)J W

(R)˛CO(nC1) (184)

the obvious fact appears that the variation will affect
just the Rth order tensor products W(R) of the coeffi-
cient vector. So it can be written, dropping the quan-
tum object subindex J just for convenience, as before:

hı�i D

nX

RD1

hS(R)  ıW(R)i C O(n C 1) ; (185)

so the relevant variation will be associated to the terms
ıW(R), which can be easily written, using a tensor no-
tation as:

ıW(R) D ı

 R
˝
SD1
j!i

�

D

RX

SD1

�
R
S

� h
 R�S
˝
PD1
j!i

�
˝

 S
˝
QD1
jı!i

�i
;

(186)

but being the definition of the coefficient vector varia-
tion, upon Jacobi rotations, well known from Eq. (177),
it can be written:

ıW(R) D

RX

SD1

�
R
S

�
(vKL)S

�
h
 R�S
˝
PD1
j!i

�
˝

 S
˝
QD1

[(jeLi � jeKi)]
�i
: (187)

So in this way, the restricted variation of the expecta-
tion value QQSPR equations, using elementary Jacobi
rotations, is clearly defined up to any order.

b) A Computational Detail Concerning Tensor Products
of the Difference of Two Canonical Vectors
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The tensor product of the difference between the pair
of canonical basis set vectors:

jeLi� jeKi D

0

BBB
B
@

� � �

�1
� � �

C1
� � �

1

CCC
C
A
� jLi� jKi � jL�Ki ; (188)

which appears in Eq. (187), may be expressed in terms
of a nested summation symbol. For example, up to sec-
ond order the sum of the four tensor terms is readily
written as:

jL � Ki ˝ jL � Ki
D jL˝ Li � jL˝ Ki � jK ˝ Li C jK ˝ Ki

(189)

with the obvious meaning for the involved tensors:

jL˝ Li D jeLi˝ jeLi D ELL D feLL; PQ D ıLPıLQg
(190)

and so on.
In general, up to Sth order:

S
˝

QD1
jL � Ki D

X
(i)�(Q(i))jQ(i)i ; (191)

where Q(i) D fQ1 ˝ Q2 : : :˝ QSg is any of the possi-
ble 2n combinations with repetition of the indices K
and L, the symbol jQ(i)i meaning a tensor product
of the initial canonical basis set vectors with such
an index repetition. That is: an object equivalent to
a canonical hypermatrix, whose elements are all zero,
except the one with indices associated to those enter-
ing the set. Also �(Q(i)) corresponds to the sign, as-
sociated to the fact that the index K appears in Q(i) an
even, �(Q(i)) D C1, or odd, �(Q(i)) D �1, number of
times.

QQSPROperators, Quantum SimilarityMeasures
and the Fundamental QQSPR Equation

The correspondence principle in quantum theory fur-
nishes the rules to construct Hermitian operators, whose
expectation values can be associated with the experimen-
tal outcomes of submicroscopic system observables. How-
ever, as has been previously commented, for some observ-
ables of complex submicroscopic systems, like some bio-
logical activities of pharmaceutical interest, the correspon-
dence principle cannot be applied. The construction of the

QQSPR operators and the attached fundamental QQSPR
equation provide the possibility to attach an approximate
quantummechanical operator to estimate expectation val-
ues for these cases.

The QQSPR Operator. The fundamental QQSPR equa-
tion arises when from the known quantum objects, be-
longing to some quantum object set; one realizes that their
density function tags: f�I(r)g can be used to construct
a QQSPR operator in the form:

˝(r1; r2; r3; : : :) D w0	0(r1)C
X

I

wI�I(r2)	1(r1; r2)

C
X

I

X

J

wIwJ�I(r2)�J(r3)	2(r1; r2; r3)C O(3) ;

(192)

in the Eq. (192) above, w0 is an arbitrary constant;
f	!(R)j! D 0; 1; 2; : : :g is a known positive definite op-
erator set, acting as a weight for each term development;
finally, fwIg a set of unknown parameters which shall be
determined through the fundamental QQSPR equation as
will be explained below.

Thus, the structure of a QQSPR operator like the one
defined in Eq. (192) has to be seen as the first step of
an algorithm permitting the construction of approximate
quantummechanical operators, associated in turn to some
observables of complex submicroscopic systems, whose
nature do not permit the application of the correspon-
dence principle to construct Hermitian operators for the
evaluation of observable values.

The Expectation Values of the QQSPR Operator. In order
to determine the parameter set fwIg, defining in this way
the QQSPR operator as written in Eq. (192), it is just nec-
essary to compute the set of expectation values over the
elements of a quantum object set which belong to the core
set C, constituted by the core molecules or C-m. Besides
a well-defined structure and a known density function, as
members of a quantum object set, the C-m are supposed
to possess an element of a known property set P D fpKg,
attached to each one.

In this way one can express every known property of
the C-m elements as the expectation value of someQQSPR
operator:

pK � h˝�Ki D w0h	0�Ki C
X

I

wIh�I	1�Ki

C
X

I

wIwJh�I�J	2�Ki C O(3) : (193)

Zero-th Order Term. When describing the expectation
values of the C-m as computed in Eq. (193), one can con-
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sider first the Zero-th order term:

�K[	0] D w0h	0�Ki D w0

Z

D
	0(r1)�K(r1)dr1 ;

as being a constant for each C-m, which can be used as an
origin shift of the C-m property tags, thus the Zero-th or-
der term: w0	0(r) appearing in the above operator defini-
tion acts as a gauge. Choosing the Zero-th order operator
as the unit, this term becomes proportional to the number
of electrons of the C-m considered:

�K[I] D w0h�Ki D w0

Z

D
�K(r1)dr1 D w0NK :

In case shape functions, defined as:

�K(r) D N�1K �K(r)!
Z

D
�K (r)dr D 1 ;

are employed in the QQSPR operator definition (192) and
in the expectation value expression (193), then the Zero-th
order contribution to the expectation values �K[I] is a con-
stant for all C-m.

The Zero-th order term can be omitted if it is no longer
necessary to shift the property values of the C-m.

First- and Second-Order Expectation Value Terms. The
first-order term of the expectation value Eq. (193) con-
tains quantum similarity measure integrals among pairs of
density function tags of the C-m, which have been defined
a long time ago as:

zIK [	1] D h�I	1�Ki

D

Z

D

Z

D
�I(r2)	1(r1; r2)�K (r1)dr1 dr2 ;

and in the second-order term the triple density quantum
similarity measures appear, defined as well as:

ZIJK[	2] D h�I�J	2�Ki D

Z

D

Z

D

Z

D
�I(r2)�J(r3)

�	2(r1; r2; r3; )�K (r1)dr1 dr2 dr3 :

Fundamental QQSPR Equation Setup. The expectation
values of the QQSPR operator, as described in Eq. (193),
can be collected in a column vector providing the funda-
mental QQSPR equation:

jpi � j�i C Z1jwi C hwjZ2jwi C O(3) ; (194)

where in Eq. (194) the following compact symbols have
been used: jpi D fpKg is the C-m properties vector,

j�i D f�Kg is the completely determined gauge shift vec-
tor, fZ! j! D 1; 2; : : :g is a matrix set containing the quan-
tum similarity measures, for instance: Z1 D fzIKg;Z2 D

fzIJKg; : : :, and jwi D fwIg is a column vector bearing the
unknown coefficients, which define explicitly the QQSPR
operator.

The easiest way to obtain the unknown coefficients
jwi D fwIg is obviously the linear equation contained in
the fundamental QQSPR Eq. (194); that is, they can be
evaluated by solving:

jpi D j�i C Z1jwi ! jwi D (Z1)�1(jpi � j�i) : (195)

However, Eq. (195) has no predictive power whatsoever.
This is so because the first-order similarity matrix Z1 has
to be chosen positive definite by construction, therefore
the coefficient vector has a unique determined form.

By predictive power is meant here the possibility to
compute the value of the property, which precisely de-
fines the C-m set, for an also known quantum object,
which as such possesses well-defined structure and density
function, but belongs to the Unknown property molecu-
lar set:U, whose elements are made by unknown property
molecules or quantum objects, the U-m.

In the last years, since the description of quantum sim-
ilarity measures, the predictive power of the information
contained in the similarity matrices set has been manipu-
lated in the classical QSPR way. For example, using sim-
ilarity matrices principal components, and finding with
them a QSAR model, usually multilinear. This multilin-
ear model can be employed, afterwards, to estimate U-m
properties. This amounts to the same as considering the
similarity matrices as a source of molecular parameters to
construct empirical QSPR.

However, there is a possible way to use the sys-
tem (195) for predicting properties of U-m without fur-
ther considerations than the involved algebraic proce-
dures. The possible QQSAPR prediction algorithms will
be developed in a separate section.

Evaluation of UnknownMolecular Properties
as Expectation Values

In general, one can choose any molecular structure U,
possessing an unknown value of the property needed to
build up the core set triads. Thereafter, one can call such
a QO the U-molecule or U-m, for sake of simplicity. The
U-molecule can supposedly be associated to a correspond-
ing density function:�U too. Hence, the U-m can be cer-
tainly considered as a QO. On the other hand, one must
keep in mind that, by construction of the QSPR problem,
the property lacking in the information about U has to be
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already known for all elements of the core set. One can
easily express an approximate value of the U-m unknown
property through the simplified Minkowski norm:

h˝[�U ]i D
Z

D
˝[�U ]dV

� h�[�U ]i C
NX

PD1

X
P(i)x(i)h�(i)[�U ]i

C O(N C 1) ; (196)

provided that the set of coefficients fxIg is well-defined.
The Minkowski norm in Eq. (196) can be computed in

more sophisticated ways, using a known positive definite
operator, W say, as a weight in the expectation value defi-
nition: h˝W[�U ]i, producing weighted quantum similar-
ity measures of type: h�(i)W[�U ]i in the right part of the
expression (196). In order to simplify the formalism, here
the convention:W D I, has been adopted.

Within the QQSPR problem settings, the set of coeffi-
cients: fxIg, in Eq. (196), which can be ordered as a column
vector: jxi D fxIg, is unknown beforehand, but can be al-
ready computed from the first-order approach using the
core set known property values, as will be discussed below.

Quantum Similarity Matrices in the Construction of First-
Order QSPR Operators and the Definition of Discrete QOS.
The first-order approach of the QSPR operator for the core
set knownmolecular property tag set:˘ D f�Ig generates
the following equation collection:

8I D 1; n : pI D �I � h�[�I]i

�
X

J

xJh�J[�I]i D
X

J

xJzJI : (197)

The set of integrals:

�
h�J[�I]i D

Z

D
�J�I dV D zJI

D zIJ D
Z

D
�I�J dV D h�I[�J]i

�
;

appearing in Eqs. (197) can be ordered into a (n � n) sym-
metric array, constructing in this way the quantum sim-
ilarity matrix: Z D fzIJg (QSM). In turn, the ordered set
of shifted properties: fpIg can form a (n � 1) column vec-
tor: jpi D fpIg. Therefore, the equation set (197) is sim-
ply a linear system, which will be discussed next, in order
to describe its possible use for evaluating U-m unknown
molecular properties.

Empirical QSPR. In the empirical QSPR problems, the
equivalent matrix to the QSM of the QQSPR framework,

as described in Sect. “Quantum Similarity”, can be ob-
tained in the following manner. Suppose that every molec-
ular structure of M possesses an arbitrarily chosen empir-
ical descriptor vector, in that way:

8mI 2 M! 9jdIi 2 D ^ 8I : mI $ jdIi ;

then the descriptor set D acts as a tag set to construct an
empirical discrete tagged set:

QD D M � D ;

such that:

8�I 2 QD ! �I D (mI ; jdIi) ^ mI 2 M; jdIi 2 D :

The discrete tag set D of molecular descriptors can be con-
sidered, in turn, as a linearly independent subset of car-
dinality n belonging to some real m-dimensional column
vector space, that is: D � Vm (R). The linear independence
of the set D is strictly necessary to construct a matrix
comparable in properties to QSM, and in this way, each
molecule becomes independently described from the rest.
With this information in mind it is easy to construct, SD,
a symmetric (n � n) matrix bearing analogous character-
istics as the QSM:

8fjdIi; jdJig 2 D: SD D fsD;I J D hdI jdJi

D dJ jdIi D sD;JIg D fjsD;Ii D fsD;JIgg : (198)

In fact, constructing the (m � n) matrix: D D fjdIig,
whose columns are the elements of the empirical descrip-
tor set D, then the matrix SD can also be defined as the
product:

SD D DTD ;

where DT D fhdIjg is the (n � m) transpose of matrix D,
whose rows are the descriptor vectors ordered in such
a way. It is easy to see that matrix SD, defined in this man-
ner, is coincident with the Gramian matrix of the tag set
D. In order to comply with the same standard properties
as the QSM the matrix SD has to fulfil: Det jSDj > 0. If this
is the case, a discrete empirical object set QS can be defined
as:

QS D M � SD ;

in close resemblance to the discrete quantum object set QZ
described in Eq. (42).

Finally, one shall comment now that, as a consequence
of this definition of the setQS, the presentation and discus-
sion about the following procedures, which will be studied
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in this paper for QSM, can also be applied to the Gramian
matrices, associated to empirical descriptor tag sets and
thus to the classical QSPR problem.

However, the different background between quantum
and empirical points of view induces the necessary emer-
gence of the following considerations. The QQSPR equa-
tions are deductible from the usual quantum theoretical
considerations; within the same context, they can be eas-
ily generalized to contain higher approximation orders.
Therefore, the QQSPR equations of any order can cer-
tainly possess in general some causal background; while,
except for very particular cases, empirical QSPR equations
remain arbitrarily constructed and without a clear causal
fundament.

First-Order Fundamental QQSPR (FQQSPR) Equation

The analysis of the QQSPR problem can start with the first
order or linear fundamental QQSPR equation, involving
the core set, formed with the molecules of the associated
DQOS, which are also linked with known values of some
property, according to the considerations noted above.

One can write Eq. (197) in a compact matrix form:

Zjxi D jpi ; (199)

Where the matrix Z is the already described symmetric
QSM, jpi is the known core set property vector and jxi is
a (n � 1) vector, whose coefficients have to be evaluated.

The predictive power of such an equation is a priori
null, because being the QSM: Z, by construction non-sin-
gular (otherwise two density functions will be exactly the
same), then there always can be computed a QSM inverse:
Z�1, obeying the usual relationships: Z�1Z D ZZ�1 D I,
in such a way that the trivial result, defining the unknown
coefficient vector:

jxi D Z�1jpi ; (200)

will be always obtained within a core set scenario. Further-
more, one can retrieve the exact value of the property for
anymolecule of the core setQOS choosing the scalar prod-
ucts:

8I : pI D hzIjxi : (201)

The QSM for diverse core sets has been used in a quite large
set of prediction studies [26,27,28,29,30,31,32,33,34,35,36,
37,38,39,40,41,42,43,44,45,46], in every case employing up
to date statistical tools, the usual procedures currently
available in classical QSPR studies, see for example refer-
ence [171]. The use of the first-order fundamental QQSPR
equation to construct algorithms, which can be utilized as

predictive tools, has been previously attempted [59], but it
has not been continued in practice. In the present study,
the reader can find in the following sections new theoret-
ical developments of the prediction ability of the funda-
mental QQSPR equation. However, a reminder of some
simple linear algebra relating to the FQQSPR equation is
needed first in order to understand the following argu-
ments; therefore it will be described in the forthcoming
final section.

Future Trends

Procedure for Adding One Molecular Structure
to a Known Core Set

The Partition of the FQQSPR Linear Equation. The gen-
eral setup described until now, amounts to the same as
virtually considering the U-m as forming part of the core
set, but with a parametrized value of the unknown prop-
erty. One can refer to this extension of the core set as the
parametrized core set.

The following coefficient vector partitioned expression
can be easily written in terms of the inverse partitioned
QSM matrix elements:

�
jx0i
x

�
D

 
Z(�1)
0 jp0i C � jz(�1)i
hz(�1)jp0i C �� (�1)

!

:

However, in order to obtain equivalent expressions pos-
sessing less entanglement with the elements of the inverse
matrix, themost convenient way is to restart the procedure
writing explicitly:

�
Z0jx0i C xjzi
hzjx0i C x�

�
D

�
jp0i
�

�
: (202)

From the augmented linear equation first component
structure, one can obtain:

jx0i D Z�10 jp0i � xZ�10 jzi ; (203)

taking into account that the QSM Z0, associated to the
initial core set, is non-singular by construction. There-
fore, the first right-hand term is just the solution of the
FQQSPR linear equation for the initial core set, as shown
in Eq. (200). Thus, calling:

jqi D Z�10 jp0i ^ jai D Z�10 jzi ; (204)

then, Eq. (203) could be rewritten as any of the two follow-
ing equalities:

jx0i D jqi � xjai D Z�10 (jp0i � xjzi) : (205)
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Taking into account Eq. (205), the second component can
be written as:

� D hzjqi C (� � hzjai)x D a0 C a1x ; (206)

where:

a0 D hzjqi ^ a1 D � � hzjai ; (207)

expression (207) shows the expected trivial result consist-
ing of how the U-m property and the coefficient, still not
evaluated, obviously are linearly related.

Analysis of the FQQSPR Equation. Only in the case that
the U-m property can be associated to a concrete numeri-
cal value: �U , say; then the exact linear coefficient: xU can
be written in terms of the quantities appearing in Eq. (206)
as:

xU D
�U � a0

a1
D
�U � hzjqi
� � hzjai

D
�U �

˝
zjZ�1jp0

˛

� � hzjZ�1jzi
:

(208)

Equation (208), although it will never hold exactly by con-
struction, tells us about several interesting features.

First, admitting through the previous discussion that
the vector jqi is nothing else than the exact linear co-
efficient set for the core set, then the scalar product:
a0 D hzjqi � � (0), is nothing else than an estimation of
the U-m property, � (0), say, using the discrete representa-
tion of the U-m with respect to the core set. Thus, the nu-
merator of Eq. (208) corresponds to the difference between
this rough approximation and the exact property value,
if known, of the U-m. Obviously enough, if: �U D � (0)

holds, then the U-m coefficient will be null, as the U-m
property could be solely computed by the descriptor jzi.

Second, the denominator in Eq. (208), tells us about
the difference between U-m self-similarity and the norm
of the vector jzi computed in the QSM reciprocal space,
defined as the vector space where the inverse of the QSM
acts as a metric matrix. An identity as: � D hzjZ�1jzi, will
produce an unacceptable linear algebra result, whichever
value the U-m property could be. It is plausible to sup-
pose, therefore, that in well-behaved FQQSPR predic-
tion problems, the following inequality shall always hold:
� ¤ hzjZ�1jzi.

One can conclude, within the settings of the U-m pre-
diction problem, that the linear structure of the FQQSPR
equation does not permit the evaluation of the U-m prop-
erty in Eq. (206), unless the coefficient x appears defined
in some way. The exact coefficient value xU can be de-
rived, if and only if, a given concrete value of the property

is known, but in this case, the prediction problem will not
a priori exist as such. Only if the property of the U-m ap-
pears in a parametrized form, the problem can be handled
in an approximate way.

Thus, one arrives at the logical conclusion in that a pre-
diction obstacle is already present in the case of a one-di-
mensional representation of the QSPR operator ˝ , even
if the quantum similarity description discrete vector tag:�
jzi
�

�
is known for the extra addedU-m structure, but the

corresponding property value is not defined, but consid-
ered as a parameter.

Analysis of U-m Predicted Property Values. Therefore, the
aim of the following discussion will be to find an appropri-
ate way to determine a reasonable optimal approach for
the U-m coefficient x, by means of manipulating Eq. (205)
in order that the unknown property parametrized value �
could be estimated using Eq. (206). If some optimal coef-
ficient value x(opt) is found, Eq. (206) can be rewritten as:

� (Estimate) D � (0) C (� � hzjai)x(opt) ; (209)

in this way the role of the estimated coefficient x(opt) ap-
pears with a clear meaning now: it constitutes one of the
factors to correct the rough initial estimate of the U-m
property � (0), which can be obtained from the primary in-
formation provided by the core set by just using Eq. (201).
Equation (209) above also enhances the leading role of
the U-m self-similarity � for such a property correction-
estimation task. In Eq. (209), the U-m self-similarity ap-
pears shifted, in turn, by the norm of the U-m discrete
representation vector, jzi, with respect to the core set:
hzjai D hzjZ�1jzi, computed over reciprocal space.

Formulation of the Optimization Problem

In any of both direct and reciprocal space cases, as ex-
pected from the linear structure of the fundamental equa-
tions used and provided that:  2 R, then it can be written
for the unknown sought property:

� D aC b (210)

also, the equation for the core set unknowns can be written
in general as:

jui D A(j�i � jai) ; (211)

where A is a positive definite matrix.
The unknown property in Eq. (210) will be well-de-

fined whenever, using Eq. (211), one could obtain a well-
defined value of the parameter: . As the solution of
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Eq. (210) corresponds to an infinite collection of real el-
ements, the restricted solution in the case of putting one
molecule in, is not unique, as from Eq. (211) one can de-
scribe several possible ways to obtain optimal values of the
parameter . For instance:

a) Defining the difference vector: jdi D j�i � jai, a dif-
ference norm can be constructed:

hdjdi D h� j�i � 2h� jai C 2hajai ; (212)

optimizing the expression (212) with respect to the pa-
rameter, provides:

opt D
h� jai
hajai

;

besides the optimal value of the difference norm will
be a minimum, as the second-order coefficient in
Eq. (212) is a Euclidean norm of a non-null vector.

b) One can consider the norm of vector jui as defined in
Eq. (211) the objective function to be optimized; in this
case it can be written:

hujui D h� jAj�i � 2h� jAjai C 2hajAjai ;

So the optimal value of the parameter is now:

opt D
h� jAjai
hajAjai

;

which provides a similar form as in the previous pro-
cedure, weighted by the transformation matrix A.

c) The scalar product of the vectors fui; j�ig can be opti-
mized, the objective function is now:

jh� juij2 D jh� jAj�i � h� jAjaij2

D jh� jAj�ij2 � 2h� jAj�ih� jAjai

C 2jhajTjaij2 ;

producing:

opt D
h� jAj�i
h� jAjai

:

d) The scalar product of the vectors fui; jaig can be now
optimized, in an equivalent way as in the previous pro-
cedure; that is, using the objective function:

jhtjuij2 D jhajAj�i � hajAjaij2

D jhajAj�ij2 � 2hajAj�ihajAjai

C 2jhajAjaij2 ;

which permits one to obtain the optimal value:

opt D
hajAj�i
hajAjai

;

this result, however, corresponds to the same restric-
tion as the one previously studied in procedure II of
reference [60]. Thus, optimizing the norm hujui seems
to be equivalent to optimizing the squared module:
jhajuij2.

AQuadratic Error Restricted
First-Order (n+1) Estimation

The easiest procedure to overcome the previously men-
tioned evaluation impasse for the unknown property of
the U-m, concretely the approximate evaluation of the co-
efficient x, appears naturally associated to the possibility
to introduce a restriction of some sort into the FQQSPR
equation solution. Here follows the description of one
among some possible restriction procedures. One will dis-
cuss a second option and sketch some alternative proce-
dures as well, within a separate section below.

Setting up the Problem. By inspecting Eq. (205), one can
define the difference vector:

j
i D jp0i � xjzi ; (213)

and compute with it the following associated quadratic er-
ror, which in this case describes a second-order polyno-
mial of the unknown coefficient x:

"(2) D h
j
i D hp0jp0i � 2xhzjp0i C x2hzjzi (214)

which, in turn, using the usual null gradient condition,
allows us to obtain an optimal value of the coefficient x,
obeying the simple quotient expression:

x(opt) D
hzjp0i
hzjzi

: (215)

The optimal coefficient value (215) produces a minimum
of the quadratic error, being the second-order coefficient
of the quadratic error polynomial (214), associated to the
positive definite Euclidean norm of the U-m discrete rep-
resentation with respect to the core set density tags, that
is: hzjzi > 0. Such a quadratic error restriction is equiv-
alent to constructing a difference vector (213) with ele-
ments as small as possible. In the case, quite unlikely to
occur, where the known property vector jp0i and the U-m
quantum similarity vector jzi are linearly dependent, the
present restriction will construct a difference vector (213),
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which will be exactly the null vector at the optimal value of
the unknown.

Using x(opt), the optimal value obtained with Eq. (215),
the corresponding unknown property for the U-m can be
straightforwardly predicted using Eq. (206):

� (opt) D hzjci C
�
� �

˝
z
ˇ
ˇZ�10

ˇ
ˇz
˛
x(opt)

D
˝
z
ˇ̌
Z�10

ˇ̌
p0
˛
C
�
� �

˝
z
ˇ̌
Z�10

ˇ̌
z
˛ hzjp0i
hzjzi

;

providing an expression, which can be easily rearranged
by defining the matrix:

A D Z�10 C ˛I ^ ˛ D hzjzi
�1�� �

˝
z
ˇ
ˇZ�10

ˇ
ˇzi) :

Therefore, one can compactly write the optimal property
equation for the U-m as:

� (opt) D hzjAjp0i ;

moreover, defining the (1 � n) row vector: hbj D hzA;
then, this new description permits us to write the esti-
mated property by means of the following scalar product
form:

� (opt) D hbjp0i D
X

I

bI p0;I : (216)

Hence, within the linear FQQSPR equation under the
minimal quadratic error restriction, the result (216)
shows that the estimated optimal unknown property for
any U-m, is always expressible as a linear functional of the
known molecular properties of the core set. Such a result is
in agreement with usual classical QSPR treatments.

Additionally, in a very unlikely case, where a linear de-
pendence of the core set property vector jp0i and the U-m
quantum similarity vector: jzi applies, that is whenever:
jp0i D jzi; then, the optimal estimated property value
will be expressible as a multiple of the U-m self-similarity:

�
(opt)
k
D �x(opt) D �

hzp0i
hzzi

D � : (217)

It must be finally noted in any case that the gauge operator
expectation value: h�[�U ]i, for the U-m, if different from
zero, shall be added to the optimal value of the property in
Eq. (216) or (217) in order to retrieve the predicted value
corresponding to the original property set.

A (2C 1) Naïve Application Example. In order to illus-
trate the above procedure one can consider a simple case
as follows. Supposing that the core set is made of just
two molecular structures: fA; Bg say, with a known shifted
property vector:

jpi D
�
pA
pB

�
;

and also admitting that the U-m, possessing the unknown
parametric property, � , could be labeled as fUg; then, the
QSM of the core set and the similarity vector of the U-m
can be respectively written as:

Z0 D

�
zAA zAB
zAB zBB

�
^ jzi D

�
zAU
zBU

�
;

with zUU representing the U-m self-similarity measure.
One can readily compute the core set similarity matrix in-
verse:

Z�10 D D�1
�

zBB �zAB
�zAB zAA

�
^ D D zAAzBB � z2AB :

It must be now said that when doing this kind of calcula-
tion care must be taken with the values of the (2 � 2) sim-
ilarity matrix determinantD, because a value approaching
zero can render the procedure useless and generate un-
predictable computational errors. For all molecular pairs
fA; Bg of the core set, the value of the determinant D has
to be checked to be significantly greater than a positive def-
inite threshold, that is:

8fA; Bg : D � " > 0 ;

failure to comply with this condition for any core set
molecular pair may well represent a computationally un-
balanced QSM triplet fA; B;Ug. This test shall be added
to the already described coherent calculation procedures,
when accurate QSM have to be computed.

However, the positive definite determinant condition
can also be rewritten in a positive definite quantum simi-
larity matrix condition, that is:

zBB > z�1AAz
2
AB :

A (N � N) positive definite condition problem, which cor-
responds in general to the positive definite nature of the
quantum similarity matrices, can be shown that it can be
readily solved for any core set cardinality, but the nature of
this subject, although of capital importance for application
purposes, appears to be marginal in the present work and
hence will be studied elsewhere.

Thus, one can express the needed vector resulting from
the product: Z�10 jzi as:

Z�10 jzi D D�1
�
zBBzAU � zABzBU
zAAzBU � zABzAU

�
;

and the same can be obtained for the scalar products en-
tering the restricted optimal solution:

hzjzi D z2AU C z2BU ^ hzjpi D zAU pA C zBU pB :
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Finally, one can also write:

˝
z
ˇ̌
Z�10

ˇ̌
z
˛
D D�1[zAU (zBBzAU � zABzBU )

C zBU (zAAzBU � zABzAU )]

and

˝
z
ˇ
ˇZ�10

ˇ
ˇpi D D�1[pA(zBBzAU � zABzBU )

C pB(zAAzBU � zABzAU )] :

Therefore, one can obtain the unknown optimal prop-
erty value, after some trivial manipulation of the previous
quantities as:

�
opt
AB;U D

�
D
�
z2AU C z2BU

��1[(˛zAU � ˇzBU )pA
C (˛zBU C ˇzAU )pB] ; (218)

where the following symbols are used:

˛ D DzUU

ˇ D zAU zBU (zAA � zBB)C zAB(z2BU � z2AU ) :

The expression (218) for the optimal quadratic error re-
stricted property of the U-m self-similarity, constitutes
an explicit example involving a very limited number of
molecular structures. However, it also corresponds to
a general equation involving any triad of molecules, where
one of them acts as the U-m.

This simple way of estimating a property can be struc-
tured into a procedure involving all the: N D 1/2[n(n�1)]
possible core set distinct molecular pairs. Indeed, given
a core set and a U-m, one can compute all the possible
property estimates using Eq. (218). Such a process will
produce a set of N values of the U-m estimated property:

˚
�
Opt
I J;U

ˇ̌
8(I D 1; n � 1; J D I C 1; n)

�
;

which can be finally manipulated in the usual statistical
way.

Such an example opens the way to other possible
choices using as probe core sets three or another number
of QO. In order to leave this study within reasonable limits
this possibility will not be further investigated here.

The (nC m) Case Under a Quadratic Error Restriction.
One can extend the estimation procedure, outlined in the
previous section, in order to include a U-m set of arbitrary
cardinality, m say, so a general quadratic error restricted
scheme can be also described in this more general case.
One may write the partition of the QSM into the core set,

bearing the label 0 and the U-m set, bearing the label 1,
then the FQQSPR equation can be written as:

�
Z00 Z01
ZT
01 Z11

��
jx0i
jx1i

�
D

�
jp0i
jp1i

�
; (219)

which produce the two matrix equations, as follows:

Z00jx0i C Z01jx1i D jp0i

ZT
01jx0i C Z11jx1i D jp1i :

(220)

So, from the first element of Eq. (220), one can deduce:

jx0i D Z�100 [jp0i � Z01jx1i]

with the possibility to construct a difference vector:

jdi D jp0i � Z01jx1i : (221)

Then, one may immediately use the difference vector (221)
to define a quadratic error function like:

"(2) D hdjdi

D hp0jp0i � 2hp0jZ01jx1i C hx1jZT
01Z01jx1i ; (222)

which upon derivation and submitted to the extremum
condition of null gradient, produces:

@"(2)

@jx1i
D �2ZT

01jp0i C 2ZT
01Z01jx1i D j0i ;

so, the U-m set unknown coefficients, restricted to mini-
mal quadratic error, can be obtained by means of the ma-
trix expression:
ˇ
ˇxOpt1 i D

�
ZT
01Z01

�1ZT
01jp0i : (223)

The solution in Eq. (223) depends only on the circum-
stance that the matrix:

A11 D ZT
01Z01

shall be non-singular. In fact, the matrix A11 corresponds
to the scalar products of the matrix representations of
the U-m set with respect to the core set elements. This
condition, if the computed similarities are not faulty, con-
stitutes a metric matrix of the U-m space, subtended by
the U-m QSM columns. Thus, provided that the U-m dis-
crete representations with respect to the core set are lin-
early independent, the inverse of A is guaranteed to ex-
ist, as it will be positive definite; moreover, implying the
quadratic error (222) is a minimum at the value

ˇ̌
xOpt1

˛

given by Eq. (223).
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One can easily estimate the unknown parame-
trized U-m property vector jp1i, submitted to the quad-
ratic error restriction, after defining the auxiliary matrix:

X10 D A11ZT
01 ;

and performing some rearrangements using trivial matrix
algebra, it is obtained:
ˇ̌
pOpt1

˛
D
�
ZT
01Z
�1
00 C

�
Z11�ZT

01Z
�1
00 Z01


X10

�
jp0i : (224)

Equation (224) shows that the predicted U-m set prop-
erty vector is a linear transformation of the core set known
properties, a result consistent with the unique U-m case,
already described in the previous section and coincident
with the usual classical QSPR procedures.

Alternative Restrictions
and the Associated Prediction Algorithms

The case analyzed in Sect. “Formulation of the Optimiza-
tion Problem” is not at all unique. One can describe other
possible alternative restrictions, which can be imposed to
the FQQSPR equation, as follows in this section.

An Alternative Orthogonality Restriction. Here, choosing
one of the possible procedures, a deep discussion will be
carried out for a U-m set bearing one element only, be-
cause the extension to the case of several elements is triv-
ial and similar to the previous Subsect. “A Quadratic Error
Restricted First-Order (n+1) Estimation” development, al-
though a brief outline will be given for the sake of com-
pleteness. Finally, the remnant plausible restrictions will
be only sketched, because the procedure to obtain the ap-
plication algorithms follows the same trends as in the ex-
plicit examples.

a) The (nC 1) framework
For the purpose of finding an alternative restric-
tion to the one described in the previous Sub-
sect. “A Quadratic Error Restricted First-Order (n+1)
Estimation”, it is necessary to recover the first matrix
equation of the partition (202), leading to Eq. (203).
Then, upon left multiplying both sides by the row vec-
tor hzj, one can obtain:

hzjx0i D hzjZ�10 jp0i�xhzjZ
�1
0 jzi D ˛0�˛1x : (225)

Then, one can use the resulting Eq. (225) to minimize
the scalar product hzjx0i, appearing on the left-hand
side. As in the previous treatment, the right-hand side
of Eq. (225) can be considered a difference, which can
generate a quadratic error function to be minimized
with respect to the unknown parameter, x, which can

be evaluated in this manner afterwards. After a trivial
manipulation one finds:

"(2) D jhzjx0ij2 D j˛0�˛1xj2 D ˛20�2˛0˛1xC˛
2
1x

2 ;

(226)

and in this way the extremum condition imposed upon
Eq. (226), becomes a manner to obtain the optimal
value of the unknown coefficient:

2˛0˛1�2˛21x D 0! xopt
?
D
˛0

˛1
D
hzjZ�10 jp0i
hzjZ�10 jzi

: (227)

The result depicted in the quotient of expression (227),
turns out to be equivalent to agreeing that the im-
posed restriction considers the vectors orthogonal in
the scalar product (225), or: hzjx0i D 0. Admitting
that, such a restriction produces a second equation in
the system (202), which simplifies to:

�
opt
?
D �xopt

?
D �
hzjZ�10 jp0i
hzjZ�10 jzi

D �
hzjqi
hzjai

: (228)

Expression (228) resembles the limiting case value of
the unknown property: �opt

? , for the quadratic error
restriction studied in Subsect. “A Quadratic Error Re-
stricted First-Order (n+1) Estimation”, as shown into
Eq. (217), when the vector of the known properties and
theU-m discrete representation with respect to the core
set become linearly dependent. Similar scalar products
appear in both expressions. However, in the present or-
thogonal restriction, they are evaluated using as a met-
ric the inverse of a matrix, which is nothing else than
the QSM, associated to the core set space. Thus, the
scalar products entering Eq. (228) are computed in the
reciprocal space of the vector space possessing a metric
Z0, as previously commented in Sect. “Linear Quantum
QSPR Fundamental Equation”. Moreover, the approx-
imate coefficient value in Eq. (227) resembles the ex-
act expression of the U-m coefficient, as described in
Eq. (208). Rewriting Eq. (228) as:

�
opt
? D

�
�

hzjai

�
� (0) D !� (0) :

It can be easily seen how the ratio between the U-m
self-similarity and the norm of the U-m representation
with respect to the core set in reciprocal space, corrects
in this case the rough estimate of the U-m property.

b) An alternative restriction case
A variant of the restriction discussed up to now can be
easily described. Instead to optimize the scalar prod-
uct: hzjx0i, the alternative scalar product: hp0jx0i can



7468 Q Quantum Similarity and QuantumQuantitative Structure-Properties Relationships (QQSPR)

be minimized, so the optimal coefficient will be given
by:

xopt D
hp0jZ�10 jp0i
hp0jZ�10 jzi

: (229)

c) The simplified (2C 1) framework as a naïve applica-
tion example
The simplified situation (2C 1), concerning three
molecules, as in the former case of Subsect. “Extended
Wave and Density Functions”, is simple to solve, for
the previous resultant equation in Section 6.1.1, as the
involved elements have already been described, when
the quadratic error restriction (214) was studied. Un-
der the present orthogonal restriction and using the
same notation as the one appearing in the former dis-
cussion in Subsect. “ExtendedWave andDensity Func-
tions”, now one can express the estimated property of
the U-m as the quotient:

�
opt
?;AB;U D zUU

�
pA(zBBzAU � zABzBU )
CpB(zAAzBU � zABzAU )

�

�
zAU (zBBzAU � zABzBU )
CzBU (zAAzBU � zABzAU )

� :

An equivalent statistical procedure involving the core
set pairs, as the one described at the end of Sub-
sect. “Extended Wave and Density Functions”, can be
obviously followed in this case too.

d) The (nC m) framework
The (n C m) algorithm can be also easily set, employ-
ing the partition (219) and also Eqs. (220), thus gener-
alizing the algorithm described in Subsect. “Evaluation
of Unknown Molecular Properties as Expectation Val-
ues”. The first equationmultiplied by the matrix ZT

01 on
the left in both sides of the equality sign, provides:

ZT
01jx0i D ZT

01Z
�1
00 [jp0i � Z01jx1i] ;

and the restriction:

ZT
01jx0i D j0i

corresponds to considering the vector jx0i as a mem-
ber of the null space of the matrix ZT

01. Such equality
permits, in turn, to write the optimal vector jx1i as:
ˇ̌
xOpt
?;1
˛
D
�
ZT
01Z
�1
00 Z01

�1�ZT
01Z
�1
00

jp0i ;

so, the estimated property vector under the null space
restriction simply becomes:

jpOpt?;1i D Z11jx
Opt
?;1i ;

As in the former quadratic error restriction discussed
in Subsect. “Expectation ValuesWithin ExtendedDen-
sity Functions Framework”, one obtains an expression
which shows that this result is nothing else than a linear
transformation of the vector of the core set properties.

Other Possible Restriction Choices. Besides the previously
discussed pair of alternative restriction choices and the one
outlined in Section 6.1.2, one can describe other possible
procedures to compute the optimal U-m coefficient. They
will be briefly explained for aU-m set bearing one element
only, as their generalization to (nC m) situations and the
(2C 1) simplification could be done using the same pro-
cedures as before.

a) Quadratic error in reciprocal space vectors: jx0i norm
restriction
First, one can recall for this purpose Eq. (204), then the
core set coefficient vector jx0i may be expressed with
the two basic vectors fjp0i; jz0ig transformed into the
reciprocal space: fjqi; jaig:

jx0i D jqi � xjai : (230)

Now, the Euclidean norm of the vector jx0i can be op-
timized, providing the optimal U-m coefficient as:

xOpt D
hqjai
hajai

D
hp0jZ�20 jzi
hzjZ�20 jzi

; (231)

which is a variant of the form obtained in Eq. (215).
The (nC m) case can be easily handled as within the
previous discussion on the two described restrictions.

b) Several alternative plausible restrictions within recip-
rocal space
Finally, another possible restriction set must be de-
scribed, which can be associated to Eq. (230). Instead of
minimizing the norm of the coefficient vector jx0i one
can minimize either the scalar product hqjx0i, or work
on the alternative form hajx0i. The first option provides
the optimal U-m coefficient:

xOpt D
hqjqi
hqjai

;

which constitutes an expression related to Eq. (229),
while the form deduced from the second one is equiva-
lent to Eq. (231).

Some Application Remarks. The first-order FQQSPR
equation does not possess immediate predictive power. In
order to circumvent this limitation though, one can eas-
ily show that two alternative approximate algorithms may
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be employed, among other possible similar choices. These
procedures can be used to estimate the unknown proper-
ties of one or various molecules described as QO.

The present algorithms produce similar formal struc-
tures, which can be easily connected with classical QSPR
points of view. Such a resemblance can be also simply
used to manipulate similar, but empirical, equations in
the classical QSPR framework, where the computational
formalism appears to be of the same characteristics as
in linear QQSPR problems. In order to use the algo-
rithms described here in empirical QSPR cases, there is
only need to substitute the QSM, which is the basic ma-
trix in QQSPR procedures, by the Gramian matrix of the
molecular descriptor set as defined in Eq. (198), which
is the comparable molecular space matrix which can be
constructed in classical QSPR. In an indirect manner,
therefore, the present study provides an alternative to the
widespread QSPR algorithms based on the space descrip-
tor path, a new classical QSPR procedure, which appears,
from now on, to be accompanied by a quite diverse tool-
box set, common to the linear QQSPR framework, in order
to obtain predictions of unknown properties in empirical
studies.

Finally, the present results, although exhaustive as far
as one can see but without discarding the existence of al-
ternative FQQSPR equation restrictions, from the theoret-
ical point of view they lie on the linear QQSPR framework,
they have thus to be considered just as a first step in order
to generally solve the prediction problem in QQSPR. This
is so as, contrary to classical QSPR procedures, the exten-
sion of the FQQSPR equation to higher order terms can be
easily described, as well as employed within a set of similar
ideas and procedures as these herein discussed.

Extensive numerical results and additional study of
high order level problems seems therefore to outline the
future research in the open QQSPR area of study.

One Molecule at a Time Linear QQSPR

When constructing the linear QQSPR equation one can
choose a system of one core molecule and one U-m, which
will constitute the simpler case. The similarity matrix is:

Z D
�
ZII ZIU
ZIU ZUU

�
:

Where the subindex I stands for any molecule in the
core set, that is: a well defined molecular structure with
a known property pI and U for any well-defined molecule
with an unknown property� , which has to be estimated. It

can be written:
�
ZII ZIU
ZIU ZUU

��
cI
cU

�
D

�
pI
�

�

!

(
ZII cI C ZIU cU D pI
ZIU cI C ZUUcU D �

:

Taking the first equation and substituting into the second:

cI D
p � ZIU cU

ZII
! � D ZIU

pI � ZIU cU
ZII

C ZUUcU

D
ZIU

ZII
pI C

�
ZUU �

(ZIU )2

ZII

�
cU ;

an expression which, after rearrangement, provides a way
to estimate the unknown property:

� D
1
ZII

�
ZIU pI C

�
ZIIZUU � (ZIU )2


cU


D
1
ZII

(ZIU pI C
cU ) ;

where
 D Det(Z).
One can see the undetermined coefficient cU as equiva-

lent to a parameter  which in turn can be optimized, thus
the unknown property could be rewritten as:

� D ˛ C ˇopt  ˛ D
ZIU pI
ZII

^ ˇ D



ZII
:

There are several ways to obtain the optimal value of the
parameter , but all of them are equivalent. For example,
one can try to make optimal the coefficient cI in the first
equation:

cI D
1
ZII

(pI � ZIU)

!
d
d

ˇ
ˇ̌
ˇ
1
ZII

(pI � ZIU)
ˇ
ˇ̌
ˇ

2
D 0! opt D

pI
ZIU

so, in this way the optimal U-m property is:

�opt D
ZIU pI
ZII

C

pI

ZIIZIU
D

(ZIU )2 C

ZIIZIU

pI D
ZUU

ZIU
pI :

Then the problem consists of obtaining the U-m self-
similarity and the similarity between the core molecule
and the U-m. So, for every core set C molecular structure
one can obtain an estimate of the U-m property, say:

8I 2 C : �U ;opt[I] D
ZUU

ZIU
pI :
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Then, supposing that the cardinality of the core set is
N : #C D N , one can obtain a statistical average of all the
core set estimates of the U-m property:

h�Ui � N�1
NX

ID1

�opt[I] D N�1ZUU

NX

ID1

1
ZIU

pI

D N�1
NX

ID1

!IU pI  8I 2 C : !IU D
ZUU

ZIU
:

An expression which proves that this simple QQSPR for-
mulation arrives at the usual QSPR result, consisting of the
fact that the estimated value of the property of the U-m is
a weighted sum of the properties of the core set:

h�Ui � N�1
NX

ID1

!IU pI ;

the weights being simply the ratios between theU-m quan-
tum self-similarity and the quantum similarity measure of
the U-m with every core set molecular structure.

Practical Considerations. However, in this or other more
sophisticated cases, the estimation procedure can be
achieved in two steps. First, the elements of the core set
can be employed as the U-m ones, one by one in front of
the remnant N � 1 in a kind of Leave One Out procedure.
The N optimal estimated values, fh�Iig say, in this way
can be fitted to the experimental property ones, providing
in this manner a simple, Hansch-like relationship:

p D a~h�i C b ;

a relationship which can be further employed to estimate
the experimental values of the U-m elements fpU g, by us-
ing the above-defined equation:

pU D ah�Ui C b :

Moreover, an interesting feature of this procedure is that
each estimated value, obtained through solving the funda-
mental QQSPR equation and irrespective of the fact that
the estimation is made over the C or U set elements, can
be associated to amean value, obtained over the set of C-m
and also attached to a variance. It is a simple matter of ele-
mentary statistical theory application to obtain confidence
limits for each estimate, and thus to gather information
about, for instance, the outlier nature of some elements
and the goodness-of-fit of the whole procedure.

One Molecule at a Time: Quadratic Terms in QQSPR

The operator which can be employed as the source of
the fundamental QQSPR equation may be expressed with

quadratic and superior terms, within a sequence involving
the density elements of the C-m and U-m elements:

˝(r) D wI�I(r)C wU�U (r)C w2
I �

2
I (r)

C 2wIwU�I(r)�U (r)C w2
U�

2
U (r)C O(3) :

The pair of expectation values of both molecules can be
easily written up to third order as:

pI D h˝�Ii D wIzII C wUzUI C w2
I ZIII

C 2wIwUZIUI C w2
UZUUI ; (232)

and

� D h˝�U i D wIzIU C wUzUU C w2
I ZIIU

C 2wIwUZIUU C w2
UZUUU ; (233)

where use has been made of the similarity measures like:

zIU D
Z

D
�I(r)�U (r)dr D

Z

D
�I(r)�U (r)dr D zUI ;

and triple similarity measures, for instance:

ZIUI D

Z

D
�I(r)�U r)�I(r)dr D ZIIU D ZUII D � � �

the properties as expectation values can be rewritten em-
ploying the ket-matrix notation:

jwi D
�
wI
wU

�
^jzIi D

�
zII
zUI

�
^ZI D

�
ZIII ZUII
ZUII ZUUI

�
;

with a similar notation for the ket jzU i and the matrix ZU ;
the bra notation signifying the corresponding ket trans-
poses. Therefore:

pI D hzIjwi C hwjZIjwi
� D hzU jwi C hwjZU jwi :

(234)

The QQSPR problem consists of the fact that the coef-
ficient vector is not only unknown jwi but also the U-
m property � . In fact, the quadratic system which cor-
responds to the quadratic fundamental QQSPR equation
in this case, is a set of two different quadratic functions
of the same two variables: jwi. The solution may be more
complicated than in the linear case, but the procedure can
be described in similar terms. That is, first use the C-m
equation to express the coefficient wI in terms of the U-m
coefficient and the corresponding similarity measures el-
ements. Then optimize such a coefficient with respect to
the U-m one, considered as a parameter. The optimal val-
ues of wU can be employed to evaluate an optimal value of
the unknown U-m property � .
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A Possible Algorithm. The first fundamental QQSPR
equation can be easily transformed into the second-order
polynomial root seeking structure.

w2
I ZIII C wI(zII C 2wUZIUI)

C (wUzUI C w2
UZUUI) � pI D 0 ;

which provides:

wI D (2ZIII)�1
"

� (zII C 2wUZIUI)

˙

s
(zII C 2wUZIUI)2 � 4ZIII
�
��
wUzUI C w2

UZUUI

� pI



#

;

and after rearranging the square root part:

wI D (ZIII)�1
2

6
4�

�
zII
2
C wUZIUI

�
˙

vu
uut

w2
U (Z

2
IUI � ZIIIZUUI)

CwU (zII ZIUI � zUIZIII)

C




zII
2

�2
C ZIII pI

�

3

7
5 ;

the coefficient wI appears in terms of wU and the implied
similarity integrals. Also, this expression can be employed
in the second fundamental QQSPR equation to obtain the
U-m property in terms of only one parameter. As in the
linear case, the expression of wI can be optimized with re-
spect to wU , which can be considered now as a parameter.
The expression to be optimized can be written as:

wI D (ZIII)�1
�
�(˛ C wUˇ)˙

q
w2
U�2 C wU�1 C �0

�
;

˛ D
zII
2

;ˇ D ZIUI ;

�2 D Z2
IU I � ZIIIZUUI ; �1 D zII ZIUI � zUIZIII ;

�0 D ˛
2 C ZIII pI :

(235)

Thus, the equation yielding the optimal value ofwU can be
easily written as:

0 D
dwI

dwU
D �ˇ ˙

2wU�2 C �1

2
p
w2
U�2 C wU�1 C �0

! 4ˇ2�w2
U�2 C wU�1 C �0


D (2wU�2 C �1)2

! ˇ2�w2
U�2 C wU�1 C �0


D

�
wU�2 C

�1

2

�2

D (wU�2)2 C wU�2�1 C

�
�1

2

�2

! w2
U
�
ˇ2 � �2


�2 C wU

�
ˇ2 � �2


�1

C

�
ˇ2�0 �

�
�1

2

�2�
D 0 ;

yielding:

wOpt
U D [2�2]�1

"

� �1

˙

s

� 21 � 4�2
�
ˇ2 � �2

�1
�
ˇ2�0 �

��1
2

�2�#

;

(236)

this value permits us to compute wOpt
I by means of

Eq. (235) and therefore �Opt can be obtained with
Eqs. (235) using the original form (233).

Alternative Unrestricted Variational Algorithm. Starting
again from the quadratic Eq. (234), one can vary both parts
of the FQQSPR equation:

pI D hzI jwi C hwjZIjwi ! jw[pI]i D �
1
2
Z�1I jzIi ;

� D hzU jwi C hwjZU jwi ! jw[�]i D �
1
2
Z�1U jzUi

so, the optimal estimate values of the C-m and U-m prop-
erties will be given by:

pestI D �
1
4
hzI jZ�1I jzIi ;

�est D �
1
4
hzU jZ�1U jzUi ;

which can be associated to minimal values, as the second-
order similarity matrices are constructed to be positive
definite and thus:

Det jZIj D ZIII ZUUI � Z2
UII > 0

^ Det jZU j D ZUIIZUUU � Z2
UUI > 0 :

So, an ultimate procedure could be designed, starting to
obtain with every one of the core set elements the follow-
ing linear equation via a least squares procedure:

p D apest C b ;

in such a way that the linear equation above provides the
possibility to obtain the final estimate of the U-m property
value:

� D a�est C b :
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Glossary

Silicon nanowire field effect transistors A silicon nano-
wire field effect transistor (SNWFET) has silicon
nanowire as the channel, whose cross-sectional area is
typically 10 � 100 nm2. The charge transport mainly
occurs in one-dimensional subbandswhich are formed
within the channel due to the strong quantum con-
finement.With enhanced gate control by three-dimen-
sional gates surrounding the channel, SNWFETs can
outperform conventional planar metal-oxide-semi-
conductor field effect transistors (MOSFETs) in their
ultimate scaling limit.

Carbon nanotube field effect transistors Carbon nano-
tube field effect transistors (CNTFETs) resemble
SNWFETs except that semiconducting carbon nano-
tubes are used as the channel material instead of sil-
icon nanowires. Due to intrinsically nano-scale size,
good electrical property, and almost ballistic transport
nature of carbon nanotubes, CNTFETs exhibit de-
vice performance well exceeding conventional MOS-
FETs. CNTFETs with Schottky-barrier contacts or
with doped source/drain can be realized.

Quantum transport in semi-conductor devices
As the feature size of semi-conductor devices be-
comes extremely small, the wave nature of the elec-
trons should prevail in their transport in the devices.
The governing equation is the Schrödinger equation
and typically single-particle Schrödinger equation with
Hartree potential is sufficient for device simulations.

Non-equilibrium green’s function The Schrödinger
equation with open boundaries can be solved by us-
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ing the non-equilibrium Green’s Function (NEGF)
approach, where the Green’s function is defined as
the impulse response function of the system Hamilto-
nian. NEGF approach is formally equivalent to other
approaches such as quantum transmitting boundary
method, but has advantages in inclusion of individ-
ual scattering/interaction terms. A key part of NEGF
method is to calculate the self-energies, which contain
information about the contacts and scattering or inter-
action that are considered.

Definition of the Subject

Nanowire FETs such as SNWFETs and CNTFETs are con-
sidered as strong candidates for the future nano-electronic
devices to replace the today’s planar MOSFETs. The de-
vices are intrinsically nano-scale so quantum effects such
as the size quantization, barrier tunneling, and interfer-
ence should prevail. In particular, as the channel length
of the nanowire is reduced below 10 nm or so, the source-
to-drain tunneling current importantly contributes to the
total current. In order to characterize and predict their de-
vice performance accurately, quantum device simulations
based on the direct solution of the Schrödinger wave equa-
tions should be performed. The NEGF method, among
others, provides a powerful solution scheme for quantum
device simulations. Modeling and simulations are gaining
greater importance as computer experiments, particularly
in the nano-electronic device area where performance es-
timation and optimization of newly developed devices are
necessary to reduce efforts and costs of real experiments.

Introduction

According to the ITRS 2007 [15], MOSFET devices with
sub-10 nm channel length are expected to be fabricated
by 2015. In their ultimate scaling regime, performance of
conventional planar MOSFETs will be seriously degraded
mainly due to the short channel effects [10]. As new de-
vice architectures to overcome the problems, nanowire
FETs such as SNWFETs and CNTFETs have been re-
cently drawing attention [5,7,16,25,33]. The advantage of
SNWFETsmainly lies on the presence of themultiple gates
around the channel which can suppress the short chan-
nel effects through the enhanced gate control [7,25,33].
In CNTFETs, intrinsically nano-scale carbon nanotubes
with excellent electrical properties are used as the channel
material so device performance exceeding conventional
MOSFETs can be obtained [5,16]. To characterize the new
devices and predict their performance accurately in the
nano-scale regime, device simulations with solid quantum
mechanical treatment are necessary.

For SNWFETs, quantum-mechanical studies have
been mostly performed based on the parabolic effective
mass theory (PEMT) [6,22,28,30]. PEMT provides a sim-
ple Hamiltonian to be dealt with so that efficient simu-
lations employing NEGF method can be performed, es-
pecially for SNWFETs with homogeneous cross-sections
and ballistic transport. For ultra-thin Si nanowires, how-
ever, their bulk property in the transverse direction is
not preserved and so their band structure becomes dif-
ferent from that of bulk silicon. In fact, recent studies
have revealed that if the cross-sectional area of the sili-
con nanowire is less than about 3 × 3 nm2 non-parabolic
and band-edge shift effects becomes so great that PEMT is
no longer valid [12,24,31]. In this case, atomistic calcula-
tions such as full-band tight binding (TB) or first-princi-
ple calculations are necessary to obtain the correct disper-
sion relationship [12,20,23,24,31]. As practical device sim-
ulation approaches, however, they have limitations due to
the enormous computational burden. A hybrid approach
may give an optimal solution: namely, one continues to
use PEMT for ultra-thin Si nanowire channel through ap-
propriate tuning of effectivemasses and band gap from the
atomistic calculations, which has been shown to be valid in
recent works [24,31].

For CNTFETs, various approaches ranging from semi-
classical to full-band quantum approaches have been im-
plemented for device simulations [2,3,11,13,18,26]. The
models yield comparable simulation results in the region
above the threshold, but accurate dispersion relationships
from atomistic calculations are needed to correctly ac-
count for intra-band and inter-band tunneling in the sub-
threshold region. For that purpose, the single-band (pz)
TB approach seems to be an optimal one: One may con-
sider more sophisticated Hamiltonians such as full-band
or Hückel TB Hamiltonians, but as long as electronic
transport is concerned the single-band TB seems to be suf-
ficient because they yield almost the same dispersion re-
lationships [21]. An effective mass approach can be also
taken, but the computational complexity is not greatly re-
duced compared to the TB approach, while loss of accu-
racy is inevitably incurred due to simplifications involved.

In nanowire FETs of a few tens nanometer in size, dif-
fusive transport due to electron-phonon interaction and
surface roughening cannot be entirely ignored and there
have recently been considerable efforts to include the scat-
tering effects [14,17,32]. In this article, however, ballis-
tic transport is assumed throughout, since our focus is
on the ultimately scaled devices where ballistic transport
is expected to prevail and may account for major device
characteristics. Simulation based on the ballistic transport
alone may also serve as a starting point to build more so-
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phisticated simulation tools including scattering and other
effects.

In this article, simulation methods employing PEMT
and single band TB for SNWFETs and CNTFETs re-
spectively are described in some details as practical ap-
proaches for quantum device simulations. Model systems
and their Hamiltonians are firstly introduced, followed
by NEGF method in the real and mode spaces. Details
on the k-space and product-space solutions of cross-sec-
tional Schrödinger equations for SNWFETs are next de-
scribed. Numerical aspects of three-dimensional Poisson’s
equations are then addressed. Some simulation results for
nanowire FETs are lastly shown, followed by conclusion
and future prospects.

Model Systems

Figure 1a shows a schematic diagram of a SNWFETwhich
is a three-dimensional (3D) structure with multiple gates
around the silicon nanowire channel. The source (S) and
drain (D) regions are either heavily doped (doped S/D de-
vice) or metallic such that Schottky barriers exist at the in-
terfaces with the channel (SB device). The channel region
is intrinsic or lightly p-doped and a metallic gate with the
mid-gap work function of 4.6 eV is assumed here. Possible
types of multiple gates around the nanowire channel are
Tri, Pi, Omega, Gate-all-around (GAA) [6,29].

Quantum Simulations of Ballistic Nanowire Field Effect Transistors, Figure 1
Device Schematics: a SNWFET with its cross-section on the right and b CNTFET with zigzag carbon nanotube channel

In CNTFETs, single-walled (n,0) zigzag nanotubes are
used as the channel material as shown in Fig. 1b. For
ohmic-contact devices, source and drain regions are as-
sumed to be infinite carbon nanotubes, which are sim-
ple extension of the channel nanotube but heavily doped.
If the source and drain regions are both n-doped (or
p-doped) and channel is intrinsic, the devices resem-
ble MOSFETs and thus called CNT MOSFETs [4,13]. If
source-channel-drain is of p � i � n type (or n � i � p),
the devices operate like tunnel FETs [4]. For Schottky-con-
tact devices, on the other hand, S/D regions are assumed to
be metallic zigzag nanotubes such that Schottky barriers of
height �Bn, which is given as an input, is formed at the
interfaces with channel. Three gate-types, coaxial, semi-
cylindrical, and top gates, are considered. The coaxial gate
device is in effect two-dimensional (2D) device, with 2D
electrostatics and transport, while the other two are truly
3D devices.

SimulationMethods

Self-consistent Method

In our device simulations of nanowire FETs, the quan-
tum transport of electrons is described by the Schrödinger
equation with open boundary conditions and electrostat-
ics are given by the 3D Poisson’s equation. To correctly
describe highly out-of-equilibrium states due to the finite
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source-drain voltage, the two equations should be solved
together to yield the self-consistent solution. Namely, we
iteratively solve the Schrödinger equation

Hf�g D E ; (1)

to obtain the electron density n3D D j j2, where H is the
system Hamiltonian for a given potential profile f�g and
 is the wave function, and the Poisson’s equation

r2� D �
q0
�

(Nd � n3D) ; (2)

to obtain the potential profile, where Nd is doping den-
sity. Once the self-consistency is reached, the drain cur-
rent is calculated. Among other approaches to solve the
Schrödinger equation with open boundaries, the non-
equilibrium Green’s function approach [9] is employed
and described here.

EMTHamiltonian for SNWFETs

The effectivemass Hamiltonian for the SNWFET in Fig. 1a
is given by

H D H? C Hk ; (3)

where
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where m�x , m�y , and m�z are effective masses in the x, y,
and z directions, respectively, and V(x; y; z) is the con-
duction band-edge. Notice that m�y and m�z are in general
functions of y and z if both silicon and oxide regions are
taken into account, while m�x is the silicon effective mass
in the transport direction. For the effective masses, one
may simply use the values of bulk Si; for instance, in the
[100] transport direction, (m�x ;m�y ;m�z ) D (mt ;mt ;ml ),
(mt ;ml ;mt), and (ml ;mt ;mt), for the three valleys re-
spectively, where mt D 0:18m0 and ml D 0:98m0, and
each valley has the degeneracy of 2. For other transport di-
rections, one can refer to Ref. [27]. Effective masses in the
oxide region do not importantly affect the vertical confine-
ment energies nor lateral transport, so one may extend the
Si effective masses into the oxide region for computational
simplicity.

The Si effective masses can be also extracted from the
band diagrams produced by full-band TB or first prin-

ciple calculations. In the original work of Ko et al. [20],
a sp3d5s� TB model was considered and the conduction
bands of a Si (100) wire were obtained: Two pairs of val-
leys out of six valleys with k vectors perpendicular to the
wire direction were found to fall onto the � point in
the wire Brillouin zone, and the electron effective masses
along the confinement directions are relatively larger for
the states than for the two remaining states that become
off-� states in the wire. Similar works performed by other
groups [24,31] and a recent DFT calculation [12] all in-
dicate that the Si effective masses start to deviate from
their bulk values if the wire cross-sectional area becomes
smaller than about 10 nm2.

For a nanowire with circular cross-section, H? can be
expressed in the circular polar coordinates, in an approxi-
mation,
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: (7)

In the real-space, if we use the finite difference scheme
and slice the nanowire along the transport direction into
Nx cross-sections, H? becomes a block diagonal matrix
with diagonal elements H?;i of size Ns � Ns which is the
2D Hamiltonian of the ith cross-section, where Ns is the
number of grid points of a cross-section, and Hk becomes
a block tridiagonal matrix with diagonal elements

˛ D 2tx � INs�Ns ; (8)

and off-diagonal elements

ˇ D �tx � INs�Ns ; (9)

where INs�Ns is an Ns � Ns identity matrix and tx D
„2/2m�x (
x)2, where 
x is the grid spacing in the trans-
port direction.

TBHamiltonian for CNTFETs

A (n; 0) zigzag nanotube has alternating sublattices, as
shown in Fig. 1b. In the nearest-neighborhood single-band
(pz) tight binding description, the coupling matrices be-
tween the sublattices are given by t and b, where

t D tB � In�n ; (10)

b D tB

2

6
66
4

1 1 1
1 1

: : :

1 1

3

7
77
5
; (11)
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where In�n is an n � n identity matrix and tB is the TB
coupling parameter. Then the Hamiltonian is written as

H D

2

666
6666
4

a0 b�

b a1 t
t a2 b

b� a3 t
t a4

: : :

3

777
7777
5

(12)

where ai is the coupling matrix within the ith sublattice,
which is n � n diagonal matrix with elements

[ai] j; j D �q0 �(i; j) ; (13)

where j is the index along the circumferential direction of
nanotube (1 � j � n) and �(i; j) is the vacuum level po-
tential at the atom site (i, j) as determined by the Poisson’s
equation.

NEGF Approach

In the NEGF approach [9], the device Green’s function
G(E) is given by

G(E) D (E � H �˙L �˙R)�1 ; (14)

where H is the device Hamiltonian and ˙L,R are con-
tact self-energies of semi-infinite leads to the left (L) and
right (R) of the device region, respectively. The ballistic
transport is assumed here as only the contact self-energies
are considered, which are formally expressed by

˙L,R D �
�
L,R(E � HL,R)�1�L,R; (15)

where HL,R are Hamiltonians of the left and right leads,
respectively, and �L,R are coupling matrices between the
device and the leads.

Given the Green’s function G(E), the charge density at
position Er can be calculated as follows. Let us first define

�L,R(Er; E) D
h
G(E)�L,R(E)G�(E)

i

Er;Er
(16)

where

�L,R(E) D i


˙L,R(E) �˙

�
L,R(E)

�
(17)

and [ � ]Er;Er denotes the diagonal element of the relevant
matrix corresponding to the position Er.

The electron density n3D(Er) in n-type SNWFETs,
where only the electron transport in n-type FETs is con-
sidered, is given by

n3D(Er) D
1

2��V

�

Z 1

�1

dE
�
fCL �L(Er; E)C fCR �R(Er; E)


; (18)

where �V is the volume element, whereas the electron
density n2D(Er) and the hole density p2D(Er) on the CNT
surface in CNTFETs are given by

n2D(Er) D
1

2��S

Z 1

En(Er)
dE
�
fCL �L(Er; E)C fCR �R(Er; E)


;

(19)

p2D(Er) D
1

2��S

Z En(Er)

�1

dE
�
f�L �L(Er; E)C f�R �R(Er; E)


;

(20)

where En(Er) D �q0�(Er) is the charge neutrality level and
�S is the area element. In Eqs. (18)–(20),

f˙L,R(E) D
1

1C e˙


E�EL;R

F

�
/kBT

; (21)

where EL
F D EF is the Fermi energy at the source and

ER
F D EF � q0Vd is the Fermi energy at the drain, where

Vd is the drain voltage.
The drain current Id is calculated by using the Lan-

dauer–Büttiker formula:

Id D
2q
h

Z 1

�1

dE T(E)( fCL (E) � fCR (E)) (22)

where the transmission probability T(E) is

T(E) D Tr(�LG�RG�) (23)

Mode-Space NEGF

The idea of the mode-space NEGF is basically to perform
a unitary transformation from the real space to the “mode”
space and to consider only the modes which contribute to
the transport [8]. If the unitary matrix is denoted byU, we
form

H̃ D U�HU: (24)

We can then deal with H̃ instead of the original Hamilto-
nian and obtain the self-energies, density matrix and cur-
rent using the transformed Hamiltonian. For the density
matrix, however, inverse unitary transformation back to
the real-space is needed to obtain the charge density in the
real-space.

For SNWFETs described by the effective mass Hamil-
tonian of Eq. (3), the 2D Hamiltonian H?;i of each cross-
section is diagonalized by the unitary matrix Ui to yield

H̃?;i D U�i H?;iUi ; (25)

and the transformationmatrixUmay be formed as a block
diagonal matrix having diagonal elements Ui . On the
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other hand, for CNTFETs described by the TB Hamilto-
nian of Eq. (12), the coupling matrix b is diagonalized as

b̃ D U�b b Ub ; (26)

and the block-diagonal unitary matrix U may then be
formed to have identical diagonal elementsUb .

The advantage of the mode-space approach is that
one may handle with matrices of much smaller size.
That is, if the number of modes that effectively con-
tribute to the transport is NM out of total Ns , the size
of H is reduced from NxNs � NxNs in the real-space
to NxNM � NxNM in the mode-space. For instance, for
a SNWFET with rectangular cross-section of 5 × 5 nm2,
NM is about 10, whereas a moderate real-space mesh-
ing would yield Ns � 1000 so computational efficiency is
much greater in the mode-space compared to the real-
space.

Uncoupled Mode-space NEGF for SNWFETs

If the coupling between different transport modes in the
mode-space is non-existent or can be ignored, the trans-
port problem effectively becomes that of 1D transport
modes in parallel [8,13]. For SNWFETs, the so-called un-
coupled mode-space NEGF is resulted if we assume that
the unitary matrices Ui of Eq. (25) has the following
property;

U�iC1Ui � INs�Ns (27)

i. e., the eigenfunctions of neighboring cross-sectional
planes are orthogonal to each other in an approximation.
Then

H̃ D U�HU D U�H?U CU�HkU � H̃?CHk ; (28)

where the block diagonal matrix H̃? has diagonal ele-
ments H̃i of Eq. (25). Thus, H̃ becomes a block tridiagonal
matrix with elements which are diagonal matrices of size
Ns � Ns . By interchanging rows and columns appropri-
ately, H̃ then becomes block-diagonal with elements H̃(m),
where

H̃(m) D

2

6666
66
4

�
(m)
1 C 2tx �tx
�tx �

(m)
2 C 2tx �tx

: : :

�tx
�tx �

(m)
Nx
C 2tx

3

7777
77
5

;

(29)

where �(m)
i is the mth eigenvalue of the ith cross-sectional

plane. H̃(m) of Eq. (29) corresponds to the 1DHamiltonian

of the mth mode, with “effective” potential �(m)(x) in the
transport direction. The modes are therefore completely
uncoupled: With the charge density n(m)

1D of each mode,
the 3D charge density is obtained by

n3D(xi ; y j; zk ) D
X

m
n(m)
1D (xi )j[Ui ] jk;m j2; (30)

and the total drain current is given by

Id D
X

m
Id;m ; (31)

where Id,m is the current of themth mode.
In the uncoupled mode-space approach the original

3D problem is therefore split into problems of solving the
2D Schrödinger equations in the cross-sectional planes
and the 1D Schrödinger equation in the transport direc-
tion. Note that the uncoupledmode-space approach is well
suited for the device simulation considered here, because
the silicon-on-insulator structure ensures the confinement
of the cross-sectional wave functions in the silicon channel
and consequently the shape of the 2D wave functions do
not change much in the lateral direction.

Uncoupled Mode-Space NEGF for CNTFETs

For CNTFETs with coaxial gates, electrostatic potential
�(i) at the ith sublattice is same along the circumferential
direction. Thus, by the unitary transformation of Eq. (26),
ai ’s in Eq. (12) remain intact so H̃ becomes block-tridiago-
nal with elements being n � n diagonal matrices. As in the
case of the SNWFETs, by interchanging rows and columns
H̃ becomes block-diagonal with elements H̃(m), where

H̃(m) D

2

6
666
6
4

�q0�(0) b̃m
b̃m �q0�(1) tB

tB �q0�(2) b̃m
b̃m �q0�(3) tB

: : :

3

7
777
7
5
:

(32)

The charge density on the CNT surface and the drain
current Id can be calculated similarly to the case of the
SNWFETs. In particular, the electron density

n2D(xi ; y j) D
X

m
n(m)
1D (xi )

ˇ
ˇ[Ub] j;m

ˇ
ˇ2 D

1

y

X

m
n(m)
1D (xi )

(33)

where 
y D 2�Rc/n where Rc is the radius of the CNT.
Notice that the uncoupled mode-space approach for the
co-axial CNTFETs is exact [13].
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Surface Green’s functions

For SNWFETs described by the effective mass Hamiltio-
nian of Eqs. (3)–(5), the contact self-energies ˙L and ˙R
in Eq. (15) have non-zero elements ˇ�gLˇ and ˇ gR ˇ� in
the first and last Ns � Ns blocks, respectively, due to the
structure of the coupling matrices �L and �R. The surface
Green’s functions gL,R can be rather simply obtained as fol-
lows. Assuming that the reservoir to the left of the device
is simple extension of the left contact, gL can be written as

gL D


� � ˇ�gLˇ

��1
; (34)

where a Ns � Ns matrix

� D E � INs�Ns � h0 � ˛ ; (35)

where h0 is the 2D Hamiltonian at the contact cross-
section. If U0 is the matrix which diagonalizes h0 and we
denote the unitary-transformed matrix Ã of a matrix A as
Ã� U�0 AU0, Eq. (34) becomes under the unitary transfor-
mation by U0,

g̃L D


�̃ � ˇ� g̃Lˇ

��1
: (36)

Thematrices in the equation are all diagonalmatrices, thus
element kl of the matrix g̃L is

[g̃L]k;l D
�̃k � i

q
4t2x � �̃ 2k

2t2x
ık;l ; (37)

where ık;l is the Kronecker delta. The real-space gL can
be finally obtained by inverse unitary transformation. The
surface Green’s function gR at the drain contact can be cal-
culated likewise.

For CNTFETs described by the TB Hamiltonian
of Eq. (12), the mode-space surface Green’s function
g̃L(D U�b gLUb) at the source contact can be calculated by
solving the following coupled matrix equations:

g̃L D


c̃ � b̃� g̃0Lb̃

��1
; (38)

g̃0L D
�
c̃ � t2B g̃L

�1
; (39)

where

c̃ D U�b (E � In�n � a0)Ub (40)

where a0 as defined in Eq. (13) is the matrix for the sublat-
tice in contact with the source reservoir. If the potential at
the contact is constant along the circumferential direction
so that

a0 D �q0�(0) � In�n (41)

is satisfied, as is true for the case of co-axially-gated CNT-
FETs, all the matrices in Eqs. (38)–(39) are diagonal. One
can then solve for g̃L, similarly to the SNWFET case above,
and obtain the real-space surface Green’s function via the
inverse unitary transformation.

For top-gated CNT MOSFETs, c̃ in Eq. (40) has off-
diagonal elements in general due to the fact that the po-
tential at the contact may vary along the circumference of
the CNT, and the calculation of the surface Green’s func-
tion becomes quite involved [11,19]. But if the ideal ohmic
contact is assumed, the contact in a simulation can be lo-
cated arbitrarily far from the gate such that the condition
in Eq. (41) is satisfied again. For efficient simulations, one
may assume an artificially high dielectric in the immediate
vicinity of the contacts, instead of having a very long simu-
lation region, in order to achieve the condition in Eq. (41).

For the Schottky-contact CNTFETs where the source
and drain leads are assumed to be metallic zigzag CNTs,
g̃L and g̃0L in Eqs. (38) and (39) become identical to each
other and one has, regardless of the gate types,

g̃L D
�
c̃ � t2B g̃L

�1
; (42)

with �(0) in Eq. (41) being a constant built-in potential
due to the Schottky contact. In this special case, the real-
space surface Green’s functions are identical to the mode-
space counterparts, because the latter are independent of
the modes.

Solution of 2D Schrödinger Equations

In the mode-space approach for SNWFETs, 2D Hamilto-
nian H?;i at each cross-section is diagonalized; i. e., the
eigenvalue problem

H?;i m(y; z; xi ) D Em(x) m(y; z; xi ) ; (43)

where

H?;i D �
„2

2
@

@y

 
1
m�y

@

@y

!

�
„2

2
@

@z

�
1
m�z

@

@z

�
C V (y; z; xi) ; (44)

is solved subject to the boundary condition that the wave
functions vanish at the boundaries of the 2D cross-sec-
tional plane. If we write  m(y; z; xi ) in Eq. (43) as

 m(y; z; xi ) D
X

K

AK jKi ; (45)

where fjKig is a basis set and AK ’s are expansion coef-
ficients, and insert it in Eq. (43) and multiplying hLj to
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the both sides of the equation, we obtain an eigenvalue
problem

X

K

HLKAK D EmAL ; (46)

whereHLK � hLjH?;i jKi. In the widely used k-space so-
lution [1], we use

jKi D

s
2
Ly

s
2
Lz

sin(kp y) sin(kqz) ; (47)

where Ly and Lz are side lengths of the cross-section in the
y and z directions, respectively, and

kp D
p�
Ly

; (p D 1; : : : ;Ny) (48)

kq D
q�
Lz

; (q D 1; : : : ;Nz) (49)

where Ny and Nz are number of meshes in the y and z di-
rections, respectively. Note that the index K in Eq. (47) is
mapped to indices p and q through K D Ny(p � 1)C q.
Specifically, for the Hamiltonian of Eq. (44) with contin-
uous effective masses across the silicon/oxide interfaces,
HLK is given by

HLK D
4

LyLz

Z L y

0

Z Lz

0
dydz sin(kp0 y) sin(kq0 z) � : : :

� � � �

 
„2k2p
2m�y

C
„2k2q
2m�z

C V(y; z; xi )

!

� sin(kp y) sin(kqz);

(50)

where kp0 and kq0 are defined similarly to kp and kq
in Eqs. (48) and (49), respectively, and the index L in
the equation is mapped to indices p0 and q0 through
L D Ny(p0 � 1)C q0. Numerically, HLK in Eq. (50) can
be efficiently evaluated using the FFT routines [1].

In the product-space approach [28], on the other hand,
we use the basis set

jKi � �p(y)�q(z) ; (51)

where �p(y) � �p(y; xi ) is the pth mode eigenfunction in
the y direction with its eigenvalue �(y)p � �

(y)
p (xi ), satisfy-

ing
(

�
„2

2m�y

d2

dy2
C V̄(y)

)

�p(y) D �
(y)
p �p(y) ; (52)

where V̄ (y) � V̄(y; xi) is an average potential in the y di-
rection, defined by

V̄(y; xi) D
1
Tsi

Z ToxCTsi

Tox
dzV (xi ; y; z) ; (53)

where Tsi is the silicon channel thickness as shown in
Fig. 1a. Similarly, we define �q(z) � �q(z; xi ) as the qth
mode eigenfunction in the z direction with its eigenvalue
�
(z)
q � �

(z)
q (xi), satisfying

�
�
„2

2m�z

d2

dz2
C V̄(z)

�
�q(z) D �(z)q �q(z) ; (54)

where V̄(z) � V̄(z; xi ) is an average potential in the z di-
rections, defined by

V̄(z; xi ) D
1
Wsi

Z WoxCWsi

Wox

dyV(xi ; y; z) : (55)

The 1D eigenvalue problems of Eqs. (52) and (54) can be
solved easily in the 1D k-space transformation [1]. If we
use a uniformmesh of sizes Ny andNz in the y and z direc-
tions, respectively, K ranges from 1 to NyNz and we index
it in the order of increasing value of �K � �

(y)
p C �

(z)
q . Us-

ing the relationships of Eqs. (51)–(55),HLK in the product
space becomes

HLK D �LıLK C hLj(V(y; z) � V̄(y) � V̄ (z)jKi: (56)

An advantage of the product-space approach is that only
the first few eigenvalues, which correspond to the subband
modes that contribute to the transport, are sufficient to be
included in the eigenvalue problem. In other words, ifM is
the number of subbands that participate in the transport,
the size of the matrix H in Eq. (56) is reduced to M by
M. For instance,M is about 10 for the nanowire transistor
of cross-sectional area of 5 × 5 nm2. One therefore needs
to find the first 10 eigenvalues of a 10 by 10 matrix in the
product-space solution. As the area of the cross-sectional
plane increase,M increases in proportion to the area. The
matrixH is effectively a banded matrix of band size NB
which ranges from 1 to 10 for the cross sectional areas of
5 × 5 nm2 to 20 ×20nm2, which also contributes to the ef-
ficiency of the numerical calculation.

Solution of 3D Poisson’s Equation

In a self-consistent solution of SNWFETs, the following
Poisson’s equation,

r2� k D �
q
�



ND � nk3D e(�

k��k�1)/kBT
�
; (57)

may be used instead of the one in Eq. (2) to achieve faster
convergence. In Eq. (57), � k and nk3D are the kth step solu-
tions for the potential and electron density, respectively.
For CNTFETs, on the other hand, we solve the Laplace
equation in the oxide and interior of CNT,

r2� k D 0 ; (58)
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together with the interface condition on the CNT surface,

�ox
@� k

@n̄

ˇ̌
ˇ̌
ˇ
ox

� �cnt
@� k

@n̄

ˇ̌
ˇ̌
ˇ
cnt

D : : :

: : : q0


ND C pk2De

(�k�1��k )/kBT � nk2De
(�k��k�1)/kBT

�
;

(59)

where n̄ denotes the direction normal to the CNT surface,
and nk2D and pk2D are the kth step solutions for electron
and hole densities on the CNT surface given by Eqs. (19)
and (20), respectively.

The boundary conditions for the Poisson’s equation
for ohmic contact devices are such that for the gate con-
tact region,

�(x; y; z) D Vg C �e � �mg (60)

where �e and �mg are the electron affinity of channel mate-
rial and themetal gate work function, but for other bound-
aries including source/drain contacts, the free bound-
ary condition can be used. Especially, the free bound-
ary condition at the source/drain contacts is necessary
to achieve the thermal equilibrium conditions in the
source/drain [9]. For the Schottky contacts,

�(x; y; z) D

(
�bi at the source contact
�bi C Vd at the drain contact ;

(61)

where the built-in potential �bi � Ec � EF � �Bn where Ec
is the conduction band edge and �Bn is the Schottky bar-
rier height.

Simulation Results

SNWFETs

Simulation results for some device characteristics of
SNWFETs such as transfer characteristics and scaling
behaviors are presented in the following. In the simu-
lated devices, the channel silicon is lightly p-doped with
NA D 1015 cm�3 and it is oriented such that its (100) di-
rection is parallel to the transport direction. The silicon
nanowire has square cross-section of 5 × 5 nm2, the gate
oxide thickness is 1 nm, and the metal gate work function
�mg is set at 4.61 eV. In the case of ohmic contact de-
vices, the source/drain are heavily n-doped with the dop-
ing concentration of 1020 cm�3 while the Fermi energy of
the metal source in the case of Schottky contact devices is
assumed to lie 0.5 eV above the (virtual) metal CB edge.

The scaling behavior of GAA SNWFETs with doped
S/D with respect to the shrink of the gate length is shown

in Fig. 2a. It can be seen from the figure that the device
characteristics degrade as the gate length becomes shorter.
On-currents do not vary significantly with L, due to the
ballistic nature of the transport, but off-current values in-
crease sharply. We note that the SS increases sharply with
Lg, especially when Lg is smaller than 10nm. The behav-
ior of SS with the gate length can be explained in terms of
the increasing tunneling-current contribution to the total
current, Itunn/Id, with respect to reduction of gate length,
as can be seen in the inset of Fig. 2a. Itunn/Id becomes in-
creasingly large as Lg becomes shorter, and if Lg = 5 nm,
the tunneling contribution at Vg D 0 is more than 90% of
the total current, giving rise to the high off-current. How-
ever, if Lg = 15 nm, for instance, the tunneling contribu-
tion becomes much smaller, below 40% in the off-state. In
the on-state, the thermionic components dominate for the
two cases. Similar trends were also observed for PI-gate
and TRI-gate devices, with almost the same Itunn/Id irre-
spectively of the gate types (for the device with the same
dimensions and at the same biases). Therefore, we can see
that the short channel effects in the SNWFETs arise due to
the direct source-to-drain tunneling current.

SB-MOSFETs show similar behavior below threshold.
Figure 2b shows Id � Vg characteristics of SB devices with
�Bn D 0:2 eV when the gate length is gradually reduced
from 30 nm down to 5 nm. Due to the increase of the di-
rect source-to-drain tunneling current as in the case of the
doped S/D devices, drastic deterioration of the off current
behavior is noticed. The degree of degradation is severer
for SB-MOSFETs, due to the presence of the SB barriers
at the contacts as will be discussed shortly. On the other
hand, the on-state currents are dominated by the tunnel-
ing current as seen in the inset of Fig. 2b contrary to the
case of the doped S/D devices.

In a scaling of ballistic SNWFETs, the general trend
is that the device performance improves as the channel
length L becomes longer (for the same cross-sectional
area) or as the channel cross-sectional area W � Wsi is
decreased (for the same channel length). If L and W are
varied simultaneously while the aspect ratio L/W is fixed,
the characteristics of SNWFETs are largely determined
by their aspect ratio [28]. We show in Fig. 3 the device
performance, as measured by its subthreshold swing, of
SNWFETswith ohmic and Schottky contacts, respectively,
for different aspect ratio L/W and different gate types.
Compared to their planar counterparts, SNWFETs with
multiple gates show enhanced performance, as expected,
but it is noteworthy that the multi-gate effect is much
greater for devices with smaller aspect ratio. Due to the
tunneling current component in the off-state, SS of SB-
MOSFETs are seen to be larger than their doped S/D coun-
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Quantum Simulations of Ballistic Nanowire Field Effect Transistors, Figure 2
Id � Vg characteristics of GAA SNWFETs with a doped S/D and b Schottky-barrier contacts. In the insets are shown the tunneling
current contribution Itunn/Id

Quantum Simulations of Ballistic Nanowire Field Effect Transis-
tors, Figure 3
Subthreshold slopes of SB-MOSFETs and MOSFETs with doped
S/D, respectively, for different gate types and aspect ratios

terparts. Notice that SS approaches the theoretical limit of
60 mV/decade for L/W D 2 in GAA devices with doped
S/D.

Figure 4 shows the change of the threshold voltage

Vth from 30 nm device for SB and doped S/D devices,
respectively, as the channel length is gradually shortened.
A sharp difference between the threshold behaviors of SB
and doped S/D devices is noticed in the figure: as the chan-
nel length is gradually decreased from L = 30 nm,
Vth in-

Quantum Simulations of Ballistic Nanowire Field Effect Transis-
tors, Figure 4
Threshold-voltage change 	Vth as a function of channel
length L for SB-MOSFETs and MOSFETs with doped S/D. For the
SB-MOSFETs,�Bn D 0:2eV was assumed

creases for the SB devices while it decreases for the doped
S/D devices. The increasing 
Vth behavior of the SB de-
vices can be explained by the increasing CB bending stiff-
ness: that is, as the channel length becomes shorter, CB
bending by the gate voltage becomes less effective, which
means that more gate voltage should be applied to enter
the on-state and as the consequence, the threshold volt-
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age is increased. For the doped S/D devices, CB also be-
comes stiffer to bending by the gate voltage as the channel
length becomes shorter. This however does not lead to in-
crease of the threshold voltage, because the top of the bar-
rier is gradually lowered as the gate voltage is increased in
the case of the doped S/D devices (and the off-state top-
of-the-barrier is lower for shorter-channel devices, so less
gate voltage is needed to be applied to enter the on-state),
while it is clamped by the Schottky barriers in the case of
the SB devices. An advantage of multiple-gated devices can
be noticed in Fig. 4. Compared to the case of 2DSG devices,
the threshold-voltage change to the channel length of the
GAA devices is considerably suppressed.

Simulation Results of CNTFETs

Some simulation results for CNTFETs such as the device-
type and gate-type dependence are presented in the follow-
ing. CNTFETs with (13,0) zigzag nanotube with diameter
of �1nm and band gap energy of �0.83 eV are consid-
ered. Thickness and dielectric constant of the gate oxide
are 1 nm and 25, respectively. The channel is assumed to
be intrinsic, and the midgap Schottky barrier is assumed
for SB CNTFETs while the source/drain regions are n-
doped with 107 cm�1 for CNTMOSFETs.

The transfer characteristics of coaxial SB-CNTFETs as
the channel length is scaled down from 20 nm to 5 nm are

Quantum Simulations of Ballistic Nanowire Field Effect Transistors, Figure 5
Id � Vg characteristics of coaxial CNTFETs for various channel lengths: a SB-MOSFETs and b CNT MOSFETs

shown in Fig. 5a. For L & 10nm, Id � Vg characteristics
are almost same regardless of the channel length because
the CNT channel is ballistic and the current is dominated,
and limited at the same time, by the tunneling current at
the source SB contact. As the device is aggressively scaled
down below 10 nm in the channel length, subthreshold
currents increase sharply, due to the increased source-to-
drain tunneling current as in the case of SNWFETs, and
for L < 5 nm, the on-off current ratio becomes less than
102. Note that ambipolar conduction occurs in the SB-
CNTFETs owing to the mirror-symmetric conduction and
valence band structures and current is at its minimum at
Vg D Vd/2 for midgap Schottky barrier height.

Similar scaling behavior can be observed in coaxial
CNT MOSFETs, as shown in Fig. 5b. The seemingly am-
bipolar behavior is however due to band-to-band (BTB)
tunneling at negatively high gate voltages and the current
minima take place when BTB tunneling begins to be ini-
tiated. Compared to SB-CNTFETs, on-current level and
on-off current ratio are higher for the CNTMOSFETs, be-
cause the thermionic currents prevail in the on-state and
the minority carrier injection is suppressed unlike the SB
devices. Notice also that SS of the electron branch (the
right branch in the figure) approaches the theoretical limit
of 60mV/decade for conventional MOSFETs while that of
the BTB branch is less than that because of the BTB tun-
neling. As the channel length is scaled down, however, the
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Quantum Simulations of Ballistic Nanowire Field Effect Transistors, Figure 6
Ion/Ioff ratios and subthreshold slopes for top, semi-cylindrical, and coaxial gated CNT MOSFETs with different channel lengths

device performance becomes degraded as can be seen in
Fig. 5b but compared to SB devices, the degree of degrada-
tion is less severe.

The gate-type dependence of CNTFETs with Schottky
barrier contacts is shown in Fig. 6, where SS and Ion/Ioff
of the top, semi-cylindrical, and co-axial gated devices, re-
spectively, are shown for different channel lengths. As ex-
pected, device performance is improved as the gate num-
ber is increased, especially for devices with sub-10 nm
channel length.

Future Directions

A future practical device simulator should possess multi-
dimensional, multi-scale features. For simulations of sil-
icon MOSFET-type devices, especially, it should support
both planar and wire structures in terms of dimensional-
ity and should encompass a few nanometer to a few mi-
crometer in terms of device size. Efforts should be made to
develop a simulator that is most efficient in each regime
of interest and seamlessly connects different regimes at
the same time. Ballistic nanowire transistor simulation
as considered in this article covers only a small portion
of the whole area: The ballistic transport regime should
be expanded and smoothly transit to diffusive transport
regime in one direction and simplified approaches based
on the effective-mass theory or single-band tight-binding
method as adopted here should be connected with fully

atomistic or first-principle calculations in the other di-
rection. For the former, mode-space approach the with
one-dimensional subbands where transport can be treated
via NEGF, Boltzmann equation or Wigner function ap-
proaches seems to be quite attractive as recent works re-
veal. For the latter, hybrid approach that captures essential
physics from rigorous calculations and enables efficient
computation at the same time should be further elaborated
in such a way to provide an integrated platform for a prac-
tical device simulator.
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